
.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
......

.....
.....

.

Jü
lic
h,

Se
pt
em

be
r2

2,
20

15
. . . . . . .The Hubbard model . . . . . . . . . . . . . .Some rigorous results . . . . . .Functional Renormalisation Summary, conclusions, and outlook

The Hubbard model and its properties

Andreas Mielke

Institut für Theoretische Physik, Heidelberg

Jülich, September 22, 2015



.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
......

.....
.....

.

Jü
lic
h,

Se
pt
em

be
r2

2,
20

15
. . . . . . .The Hubbard model . . . . . . . . . . . . . .Some rigorous results . . . . . .Functional Renormalisation Summary, conclusions, and outlook

Contents

...1 The Hubbard model

...2 Some rigorous results

...3 Functional Renormalisation

...4 Summary, conclusions, and outlook



.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
......

.....
.....

.

Jü
lic
h,

Se
pt
em

be
r2

2,
20

15
. . . . . . .The Hubbard model . . . . . . . . . . . . . .Some rigorous results . . . . . .Functional Renormalisation Summary, conclusions, and outlook

Contents

...1 The Hubbard model
Definition
Historical remarks
Symmetries of the Hubbard model

...2 Some rigorous results

...3 Functional Renormalisation

...4 Summary, conclusions, and outlook



.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
......

.....
.....

.

Jü
lic
h,

Se
pt
em

be
r2

2,
20

15
. . . . . . .The Hubbard model . . . . . . . . . . . . . .Some rigorous results . . . . . .Functional Renormalisation Summary, conclusions, and outlook

Definition

The Hubbard model

Electrons on a lattice with a screened interaction
Hamiltonian:

H = Hkin + Hint

=
∑

x,y∈V,σ
txyc†x,σcy,σ +

∑
x
Uxc†x↑c

†
x↓cx↓cx↑

V is the set of vertices (lattice sites).
T = (txy)x,y∈V describes the hopping, txy may be complex, but T should be self adjoint.
In this talk we assume txy to be real.
Often nearest neighbour hopping: txy = t for nearest neighbours, 0 otherwise.
Ux is a local (repulsive) interaction. Often Ux = U independent of x.
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Historical remarks

Historical remarks

Pariser, Parr and independently Pople formulated and used the model 1953 in
quantum chemistry.
Hubbard formulated the model in 1963 to understand electron correlations in
narrow energy bands.
Kanamori independently introduced the model in 1963 to describe itinerant
ferromagnetism.
Gutzwiller independently introduced the model in 1963 to understand the
metal-insulator transition.
∼ 1.400 papers on the Hubbard model before 1980.
∼ 14.000 papers on the Hubbard model before 2000.
∼ 55.000 papers on the Hubbard model till today.
(numbers from Google Scholar)
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Symmetries of the Hubbard model

Symmetries of the Hubbard model

.Gauge symmetry:

..

......

c†xσ → exp(iα)c†xσ, cxσ → exp(−iα)cxσ
The Hamiltonian

H =
∑

x,y∈V,σ
txyc†x,σcy,σ +

∑
x
Uxc†x↑c

†
x↓cx↓cx↑

remains invariant if this transformation is applied.
As a consequence, the particle number Ne =

∑
xσ c

†
xσcxσ is conserved.

This is a generic property of almost all models in condensed matter theory which
describe fermions.
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Symmetries of the Hubbard model

Symmetries of the Hubbard model

.Spin symmetry:

..

......

Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
local spin operators: Sα,x = 1

2

∑
σ,σ′ c†xσ(σα)σ,σ′cxσ′ , α = x, y, z, Sx = (Sx,x,Sy,x,Sz,x)

global spin operators:

Sα =
∑
x
Sα,x, S = (Sx,Sy,Sz), S± = Sx ± iSy, S+ =

1

2

∑
n⃗

c†x↑cx↓, S− = S†
+

These operators form an SU(2) algebra, [Sx,Sy] = iSz .
The Hamiltonian commutes with these operators, it has a SU(2) -symmetry.
H, S2 and Sz can be diagnosed simultaneously.
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Symmetries of the Hubbard model

Symmetries of the Hubbard model
.
Particle-hole transformations:..

......

c†xσ → cxσ, cxσ → c†xσ
the Hamiltonian becomes

H → H′ =
∑
x,y,σ

txycxσc†yσ + U
∑
x
cx↑cx↓c†x↓c

†
x↑

= −
∑
x,y,σ

txyc†yσcxσ + U
∑
x
(1− c†x↑cx↑)(1− c†x↓cx↓)

= −
∑
x,y,σ

txyc†xσcyσ + U
∑
x
c†x↑c

†
x↓cx↓cx↑ + U(|V| − Ne)

For a bipartite lattice, i.e. a lattice, which decays into two sub-lattices A and B so that
txy = 0 if both x and y belong to the same sub-lattice, it is possible to introduce the
following transformation:

c†xσ → c†xσ if x ∈ A, c†xσ → −c†xσ if x ∈ B

This transformation changes the sign of the kinetic energy.
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Symmetries of the Hubbard model

Symmetries of the Hubbard model

.Pseudo-Spin Symmetry

..

......

For a bipartite lattice at half filling, the Hamiltonian commutes with the operators

Ŝz =
1

2
(Ne − |V|), Ŝ+ =

∑
x∈A

c†x↑c
†
x↓ −

∑
x∈B

c†x↑c
†
x↓, Ŝ− = Ŝ†

+

This is a second SU(2)-symmetry.
The model has thus a SU(2)× SU(2) = SO(4) symmetry at half filling.
In discussions concerning high temperature superconductivity, even an approximate
SO(5)-symmetry has been proposed.
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Symmetries of the Hubbard model

Symmetries of the Hubbard model

.Further symmetries

..

......

Lattice symmetries:
On translationally invariant lattices, the model has the symmetries of the lattice.
The one-dimensional case:

The one dimensional Hubbard model is solvable by the Bethe ansatz.
It has an infinite set of invariants.
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Lieb’s Theorem

Some rigorous results
.
Lieb’s Theorem (1989)..

......

Let H be the Hubbard Hamiltonian in with real txy, the graph of T = (txy) should be
connected, and negative Ux < 0. Let the particle number Ne be even. Then, the
ground state is unique and has a total spin S = 0.

.Remark..

......

On a bipartite lattice, using a combined particle-hole and phase transformation
for spin-down only the kinetic energy remains the same but the signs of Ux are
switched.
In that way, one can obtain a result for the attractive Hubbard model.
Since Sz with the above transformation transforms to Ŝz, one obtains a result for
Ŝz = 0, i.e. Ne = |V|, i.e. half filling.

.
Corollary (Lieb 1989)
..

......

Let H be the Hubbard Hamiltonian with real txy, the graph of txy should be connected
and bipartite, and positive Ux = U > 0. Let the particle number Ne = |V|. Then, the
ground state is unique in the subspace Sz = 0. The total spin is S = 1

2
||A| − |B||.
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Lieb’s Theorem

Lieb’s Theorem
.Corollary (Lieb 1989)
..

......

Let H be the Hubbard Hamiltonian with real txy, the graph of txy should be connected
and bipartite, and positive Ux = U > 0. Let the particle number Ne = |V|. Then, the
ground state is unique in the subspace Sz = 0. The total spin is S = 1

2
||A| − |B||.

.
Why S = 1

2
||A| − |B||?

..

......

...1 T = (txy)x,y∈V has a symmetric spectrum and the rank of T is max(|A|, |B|).
Therefore, the eigenvalue 0 has a degeneracy of ||A| − |B||.
Applying Hund’s rule (Mielke 1993) for small U yields S = 1

2
||A| − |B||.

...2 For large U and half filling, the Hubbard model can be mapped to an
antiferromagnetic Heisenberg model

Heff =
∑
x,y

2t2xy
U
Sx · Sy
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Lieb’s Theorem

Lieb’s Theorem

proves long range order – ferrimagnetism – on bipartite lattices with |A| = α|B|,
α ̸= 1.
does not prove anti-ferromagnetism, i.e.long range order for |A| = |B|.
There is no proof for long range anti-ferromagnetic order in the Hubbard model.
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The Mermin-Wagner Theorem

Some rigorous results
.The Mermin-Wagner Theorem
(no long range order in one or two dimensions at finite temperature)
........

Theorem (Koma, Tasaki 1992) For a Hubbard model in one and two dimensions with
finite range hopping (i.e. txy = 0 if the distance |x− y| lies above some
finite value) in the thermodynamic limit, the following bounds hold for
the correlation functions

|⟨c†x↑c
†
x↓cy↓cy↑⟩| ≤

{
|x− y|−αf(β) for d = 2

exp(−γf(β)|x− y|) for d = 1

|⟨Sx · Sy⟩| ≤
{

|x− y|−αf(β) for d = 2
exp(−γf(β)|x− y|) for d = 1

for some α > 0, γ > 0, f(β) > 0 where ⟨.⟩ denotes the expectation value
at inverse temperature β and f(β) is a decreasing function of β which
behaves like f(β) ≈ 1/β for β ≫ β0 and f(β) ≈ (2/β0)| ln(β)| for β ≪ β0. β0
is some constant.
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The Mermin-Wagner Theorem

Some rigorous results

.The Mermin-Wagner Theorem, remarks

..

......

Originally, Mermin and Wagner showed the absence of long range order at finite
temperate and d = 1 or d = 2 for the Heisenberg ,model in 1966.
Walker and Ruijgrok (1968) and Gosh (1971) extended the result to the Hubbard
model.
The result can be extended to many lattice models with a continuous symmetry.
The proof by Koma and Tasaki is very general, it only needs a U(1) symmetry.
The algebraic decay |x− y|−αf(β) is not optimal for large temperature, one
expects an exponential decay.
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Nagaoka’s Theorem

Some rigorous results

.Nagaoka’s Theorem
(ferromagnetic ground state at hard-core interactions and one hole in a half-filled
band)..

......

Theorem (Tasaki 1989) The Hubbard model with non-negative txy, Ne = |V| − 1, and a
hard-core repulsion Ux = ∞ for all x ∈ V has a ground state with a total
spin S = 1

2
Ne. The ground state is unique except for the usual

(2S+ 1)-fold spin degeneracy provided a certain connectivity condition
for txy holds.
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Nagaoka’s Theorem

Some rigorous results

.Nagaoka’s Theorem, some remarks

..

......

Original proofs by Thouless 1965, and Nagaoka 1966.
The proof makes use of the Perron-Frobenius theorem, stating that an irreducible
matrix with non-negative entries has non degenerate largest eigenvalue and the
corresponding eigenstate has positive entries.
Variational results by many people show that the result breaks down for
Ne < |V| − 1 or not too large U.
Especially on bipartite lattice, the Nagaoka ferromagnet seems to be a singular
result.
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Flat-band systems

Some rigorous results

.Flat-band ferromagnetism, preliminary remarks

..

......

Hund’s rule favours ferromagnetism if there are degenerate single-particle
eigenstates.
For a lowest flat band, the existence of a ferromagnetic ground state is trivial.
The main question is: When is the ferromagnetic ground state unique?
An important quantity to answer this question is the single particle density
matrix ρxy, i.e. the lattice representation of the projector onto the single particle
eigenstates forming the flat band, ρxy =

∑
i ψ

∗
i (x)ψi(y), where ψi(x) form an

orthonormal basis of the degenerate single particle states forming the flat band.
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Flat-band systems

25 years of flat bands
First result by E. Lieb 1989, ferrimagnetism on bipartite lattices with a flat band.
Ferromagnetism on line graphs, example Kagomé lattice: A. Mielke 1991ff.
Decorated lattices: H. Tasaki (partially with A. Mielke) 1992ff.
Complete description for fermions with irreducible (ρxy)x,y∈V: A. Mielke 1999.
First examples with highly reducible (ρxy)x,y∈V by Batista and Shastry 2003.
Topologically flat bands, various authors, starting around 2008.
First paper with correlated Bosons in flat bands: Huber and Altman 2010.
First experimental realisation of the Kagomé lattice as an optical lattice: Jo et al.
(Stamper-Kurn group, Berkeley) 2011.
Complete description for fermions with highly reducible (ρxy)x,y∈V: A. Mielke
2012.
Complete description for bosons and 2d line graphs below the critical density: J.
Motruk, A. Mielke 2013.
Pair formation has been observed in 1d Bose-Hubbard models by Takayoshi et al
(2013), Phillips et al (2014).
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Flat-band systems

Lattices with flat bands

The Lieb lattice (a decorated square lattice, one additional vertex on each edge).

Kagomé lattice, line graph of the hexagonal lattice.

Pyrochlore lattice, line graph of the diamond lattice.
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Flat-band systems

Fermions, ρxy irreducible
.Theorem (1)
..

......

The Hubbard model with a Nd fold degenerate single particle ground state and
Ne ≤ Nd electrons has a unique (2S+ 1)-fold degenerate ferromagnetic ground state
with S = Nd/2 if and only if Ne = Nd and ρxy is irreducible.

The proof has two steps:
.Theorem (2)
..

......

The Hubbard model with a Nd fold degenerate single particle ground state and
Ne ≤ Nd electrons has a multi-particle ground state with S < Ne/2− 1 if it has a single
spin flip ground state with S = Ne/2− 1.

and
.Theorem (3)
..

......

The Hubbard model with a Nd fold degenerate single particle ground state and
Ne = Nd electrons has a multi-particle ground state with S = Nd/2− 1 if and only if ρxy
is reducible.
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Flat-band systems

Examples of lattices with irreducible ρxy

All complete graphs, see e.g. Mielke, Tasaki: cond-mat/9606115.

All line graphs of bipartite, 2-connected graphs with positive nearest neighbour
hopping.
Prominent examples:

Kagomé lattice, line graph of the hexagonal lattice.
Pyrochlore lattice, line graph of the diamond lattice.

All decorated graphs of Tasaki-type.

Several topologically flat bands, see e.g. H. Katsura et al, EPL 91, 57007 (2010).
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Flat-band systems

Fermions, ρxy highly reducible

ρ should have the following properties:
...1 ρ is reducible. It can be decomposed into Nr irreducible blocks ρk, k = 1, . . . ,Nr.
Nr should be an extensive quantity, i.e. Nr ∝ Nd ∝ |V|, so that in the
thermodynamic limit the density of degenerate single-particle ground states and
the density of irreducible blocks are both finite.

...2 Let Vk be the support of ρk, i.e. the set of vertices for which at least one element
of ρk does not vanish. ρk,xy = 0 if x /∈ Vk or y /∈ Vk. One has Vk ∩ Vk′ = ∅ if k ̸= k′
because of the fact that ρk are irreducible blocks of the reducible matrix ρ and∪
k Vk ⊆ V.

...3 We choose the basis B such that the support of each basis states ψi(x) is a
subset of exactly one Vk. We denote the number of states belonging to the
cluster Vk as νk. One has ∑

k νk = Nd.

...4 νmax = maxk{νk} is O(1), i.e. not an extensive quantity.
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Flat-band systems

Fermions, ρxy highly reducible

Theorem (Mielke 2012) For Hubbard models with a lowest single-particle
eigenenergy 0 which is Nd-fold degenerate and for which the projector
onto the eigenspace of 0 fulfils the properties on the previous slide, the
following results hold for Ne ≤ Nd:
...1 The ground state energy is 0.
...2 Let Ax be an arbitrary local operator, i.e. an arbitrary combination
of the four creation and annihilation operators c†xσ and cxσ. The
correlation function ρA,xy = ⟨AxAy⟩ − ⟨Ax⟩⟨Ay⟩ has a finite support for
any fixed x and vanishes if x and y are out of different clusters Vk.
The system has no long-range order.

...3 The system is paramagnetic.

...4 The entropy at zero temperature S(c) is an extensive quantity,
S(c) = O(Ne). It increases as a function of c = Ne/Nd from 0 for
c = 0 to some maximal value Smax ≥

∑
k[(νk − 1) ln 2+ ln(νk +2)] and

then decays to S(1) =
∑

k ln(νk + 1).

These models have therefore no long range order. The most interesting aspect is the
finite entropy at zero temperature.
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General idea

Five steps towards renormalisation

...1 Rewrite the Hubbard model in momentum space in a field theoretic form using
Grassmann fields.

...2 Find a generating function of correlation functions.

...3 Show that the generating function is equivalent to the effective action.

...4 Derive an exact renormalisation equation for the effective action.

...5 Solve that equation or obtain rigorous results from it.
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Field theoretic representation of the Hubbard model

Field theoretic representation

Hubbard model in momentum space

H =
∑
k⃗,σ

ϵ⃗kc
†
k⃗,σ

ck⃗,σ +
1

2

∑
k1...k4,σ1...σ4

Vk⃗1 ,⃗k2 ,⃗k3 ,⃗k4c
†
k⃗1σ1

c†
k⃗2,σ2

ck⃗4,σ4
ck⃗3,σ3

The partition function can be written as

Z =

∫
D[ϕ]exp (S[ϕ∗, ϕ])

S[ϕ∗, ϕ] =
∑
K
(iωn − ϵ⃗k + µ)ϕ∗

KϕK − V[ϕ∗, ϕ]

where ϕK are Grassman fields, K = (ωn, k⃗, σ) is a multi index, which contains the wave
vector, the Matsubara frequencies ωn = (2n+1)π

β
, and the spin.The interaction is still a

generic interaction.



.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
.....

.....
......

.....
......

.....
.....

.

Jü
lic
h,

Se
pt
em

be
r2

2,
20

15
. . . . . . .The Hubbard model . . . . . . . . . . . . . .Some rigorous results . . . . . .Functional Renormalisation Summary, conclusions, and outlook

Field theoretic representation of the Hubbard model

Generating function and effective action
There are several ways to do that. A generating function which yields all connected
propagators is

W[J∗, J] = ln
⟨
exp(−V[ϕ∗, ϕ] +

∑
K
(J∗KϕK + ϕ∗

KJK))
⟩

0

Here ⟨.⟩0 denotes the expectation value in the non-interacting system, i.e.

⟨A[ϕ∗, ϕ]⟩0 =

∫
D[ϕ]A[ϕ∗, ϕ]exp(∑K(iωn − ϵ⃗k + µ)ϕ∗

KϕK)∫
D[ϕ]exp(∑K(iωn − ϵ⃗k + µ)ϕ∗

KϕK)

The effective action

Geff[ψ
∗, ψ] = ln ⟨exp(−V[ϕ∗ + ψ∗, ϕ+ ψ])⟩0

is related to the generating function W via

Geff[ψ
∗, ψ] =

∑
K
ψ∗
KC(K)−1ψK +W[C(K)−1ψ∗

K,C(K)−1ψK]

where
C(K) = 1

iωn − ϵ⃗k + µ
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Renormalisation group equations for Geff

Renormalisation group equation
The main idea of renormalisation is simple:

Introduce a cut-off Λ

Perform all integrals in the expression for Geff or W over fields ϕK and ϕ∗
K for

which |iωn − ϵ⃗k + µ| > Λ.
Derive an equation which determines how Geff depends on Λ.

Let us introduce the modified propagator

CΛ(K) = ΘΛ(K)
iωn − (ϵ⃗k − µ)

The resulting equation is

∂

∂Λ
GΛ
eff[ψ

∗, ψ] =
∑
K

∂

∂ψK

∂CΛ(K)
∂Λ

∂

∂ψ∗
K
GΛ
eff[ψ

∗, ψ]

+
∑
K

∂GΛ
eff[ψ

∗, ψ]

∂ψK

∂CΛ(K)
∂Λ

∂GΛ
eff[ψ

∗, ψ]

∂ψ∗
K
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Solutions

Solutions

In general, it is not possible to solve the renormalisation equation exactly.
The results may diverge.
It is well known that for sufficiently low temperatures, a divergence occurs which
leads to a superconducting instability. The Fermi liquid becomes a
superconductor. This effect is called Kohn-Luttinger effect.
The exact flow equation is the basis of various approximations.
Even approximations often need additional numerical solutions, using various
discretisation and truncation schemes.
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Some results

Some results

...1 On the square lattice with nearest neighbour hopping t, next nearest neighbour
hopping t′, and (if not stated otherwise) a repulsive interaction U > 0

...1 Anti-ferromagnetism at or close to half filling (µ = 0) for t′ = 0.

...2 dx2−y2 -wave Cooper pairing at small negative values of t′ and and away from
half filling.

...3 A Pomeranchuk instability (an an-isotropic deformation of the Fermi surface)
leading to orientational symmetry breaking, at sufficiently large |t′|.

...4 A ferromagnetic instability, which may occur if one varies t′ and µ
simultaneously so that the system stays at the van Hove singularity.

...5 s-wave Cooper pairing at negative U.
...2 On other two-dimensional lattices

...1 Unconventional superconductivity or non-magnetic insulating states on the
triangular lattice.

...2 On the hexagonal (honeycomb) lattice at half filling and at stronger
interactions, various instabilities have been found, including a spin liquid
and f-wave Cooper pairing.
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Summary

The Hubbard model
...1 Describes interacting itinerant fermions on a lattice.
...2 Magnetic ordering:

...1 Anti-ferromagnetic or ferrimagnetic order at half filling on bipartite lattices.

...2 Ferromagnetism at large or infinite density of states at the Fermi level.
...3 Superconductivity:

...1 s-wave pairing for attractive U < 0.

...2 dx2−y2wave-pairing for small repulsive U > 0 and not too close to half filling.

...3 f-wave or higher pairing for special lattices.
...4 Other phenomena:

...1 Pomeranchuk instability.

...2 Metall insulator transition (Mott transition).

...3 . . .
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Thank you!
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