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Scope

Competing interactions and degeneracy
Classical ground-state correlations
Order by disorder

Spin liquids

- RVB spin liquids

- Algebraic spin liquids

—> Chiral spin liquids

—> Spin hematics

Conclusions



The basic models

o ISIng H = JLJSISJ, SIS] = xlor T?\lf
(4.9)

= Heisenberg model
(5%, SP] = ie*#7S7, and S? = S(S + 1)

Classical limit 5’; are unit vectors



Geometrical frustration

t

Not frustrated > Frustrated

t

Antiferromagnetic coupling + odd loops

!

Competition between exchange paths = frustration



Ising on triangular lattice

= At least one unsatisfied bond per triangle

m Infinite number of ways to achieve only
one unsatisfied bond on each triangle

At least 2V/3 GS

v

Residual entropy
S/N > (1/3) In2 = 0.210...




Entropy of triangular Ising model

= Wannier (1950): S/N = 0.3230...
= Alternative: dimer problem on dual lattice

# GS = 2 times
# dimer coverings on
honeycomb lattice




Kasteleyn matrix

Bonds oriented with odd number of
clockwise arrows on even plaquettes

1 if 2, y ajdacent and 7 —
—11f 2, 7 ajdacent and 72 + 7

() otherwise.

1 1 1
¥ i = / dr/ dyIn |3 + 2 cos(2my) — 2 cos(27(z + y)) — 2 cos(27x)| ~ 0.1615
he 0 0



Spin Ice

= Dy, Ti,0,, HO,Ti,Op

= Pyrochlore lattice

s Ferromagnetic exchange interactions
m Strong anisotropy: spins ‘in” or ‘out’

Ground state:

2 sSpins in, 2 spins out
\ Residual entropy:

the ‘ice problem’




Pyrochlore lattice




Residual entropy
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Spin ice Ice

‘Exact’ : S/kg = 0.20501
(Nagle, 1966) Ramirez et al, 1999

Pauling (1945): S/ks = (1/2) In (3/2) = 0.202732



Heisenberg model

= Bravais lattice: helical order
~ pitch vector = minimum of J(qg), FT of J,

\; ;; Triangular lattice:

3-sublattice order

Sum of spins = 0 on each triangle



Infinite degeneracy

= J;-J, model on square lattice

Classical energy
independent of 6




Kagome

s Coplanar ground states: sum of spins = 0 on each
triangle > degeneracy of 3-state Potts model

= Non-coplanar ground states

Rotate a chain of blue
and red spins around
green direction




Classical GS correlations (Ising)

s Correlations = average over all GS
= [riangular lattice (Stephenson, 1964)

—

(0(F)o(T) o 1/r'/?

= Simple argument: Kasteleyn matrix on
honeycomb gapless (Dirac points at 0)

= Physical interpretation: the maximally
flippable configuration dominates the sum



Maximally flippable state

e
ﬂ’} %’ All red spins

/NN N’ flippable (2/3)
\WAYAVAVA




Mapping on height model

on up triangles, height z(r):
increases by + 2 clockwise if dimer
decreases by 1 otherwise



Coarse graining

Consistent with 1/ r/2 if

Rough phase




Pyrochlore

m 2 in - 2 out on each tetrahedron
= Continuum limit: magnetic field

1 3(éa-7)(és-T)— (én - €5)r°
o

Dipolar correlations



Pinch points in Ho, Ti,0-




Quantum fluctuations

&g & T
S*=8—a,a,

25—(1 a; a;




Zero-point energy

f

Bogoliubov rotation — [Ke et ae U




Order by disorder

(B

= Even if the GS is degenerate, B E

the spectrum depends on GS
—> selection by zero-point energy




Ising transition

2 collinear states == Ising degree of freedom

v

Ising transition for any S
Chandra, Coleman, Larkin, PRL" 89

MC: Ising transition for classical spins

C. Weber, L. Capriotti, G. Misguich, F. Becca, M. Elhajal, FM, PRL" 03



Thermal fluctuations

|
F = Fy — §NthnT—I—TZlncu/;c

k

In general, minimize

Exception: zero (harmonic) modes

1 1
F=F~sNThT—NThT+...

Selection of the state(s) with maximal
number of zero modes



Spin liquids

= Quantum correction to local magnetization

m Frustration
- soft spectrum
—> strong (often diverging) correction
- no magnetic long-range order




Spin gap

1,-1, chain (GRS CITTRR I PRI

(2

Majumdar-Ghosh point: J,/J,=1/2
2 exactly dimerized ground states
|weven> = H |S(Z7Z T 1)> |wodd> = H |S(27Z + 1)>

1 even 2 odd

1S(i,7+ 1)) = singlet



Shastry-Sutherland

Product of singlets on red bonds:
- always an eigenstate
- GS if inter-dimer coupling
not too large

= Spin gap
= Magnetization plateaux



week ending

PRL 110, 067210 (2013) PHYSICAL REVIEW LETTERS 8 FEBRUARY 2013

Incomplete Devil’s Staircase in the Magnetization Curve of SrCu,(B0O;),

M. Takigawa,"* M. Horvati¢,” T. Waki,' S. Krimer,” C. Berthier,” F. Lévy-Bertrand,”" I. Sheikin,” H. Kageyama,”
Y. Ueda,' and F. Mila®
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week ending

PHYSICAL REVIEW LETTERS 27 SEPTEMBER 2013

PRL 111, 137204 (2013)

Magnetization of SrCu,(B0O;), in Ultrahigh Magnetic Fieldsup to 118 T

Y.H. Matsuda,"* N. Abe,' S. Takeyama,' H. Kageyama,” P. Corboz,” A. Honecker,*” S. R. Manmana,*
G.R. Foltin,® K. P. Schmidt,® and F. Mila’
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RVB spin liquids

= Anderson, 1973: restore translational symmetry
by a superposition of dimer coverings

- Resonating Valence Bond spin liquid

Not realized on triangular lattice (3-sublattice LRO)



Quantum dimer model

RK point: V/J=1 - GS = sum of all configurations
Correlations: algebraic (Kasteleyn matrix gapless)
- Isolated point, no RVB phase



QDM on triangular lattice

Moessner and Sondhi, PRL 2001

RK point V/J=1 > Kasteleyn matrix gapped
- exponentially decaying correlations
- RVB phase



Topological sectors

Number of dimers cutting a given line
I

IIIIII

Parity conserved - 2 topological sectors (N even or N odd)
Torus: four topological sectors (two cuts)
Numerical proof: Ralko, Ferrero, Becca, Ivanov, FM (2005)



RVB phase in Heisenberg model?

= Spin-1/2 kagome antiferromagnet
- DMRG simulations
Han, Huse, White, 2011

- Effective QDM
Rousochatzakis, Wan, Tchernyshov, FM, 2014

m Experimental realization?
- Problematic (residual interactions, DM,...)



Algebraic spin liquids

= Spin-1/2 chain: algebraic correlations
(Bethe ansatz, bosonisation)

m Extension in 2D?

Abrikosov fermions

1
f f f f
Z Jij [— ( cheichici +he. ) A (Cn% B %%) (Cn% B C.uc.n)}




Mean-field decoupling

o al f
Xij = CipCjp T+ Ci Gy

Affleck-Marston 1988

E = +Jx04/c0s? k, + cos? k,

Dirac points
bty = o2

—> Algebraic correlations




Variational approach

Good variational energy
for spin-1/2 kagome

Ran, Hermele, Lee, Wen, 2007



Chiral spin liquids

= [he order parameter breaks P and T, but
not PT

« Bxample:  RGEED

= Simple approach: Gutzwiller projected
wave functions with fractional fluxes

m Best candidate: a small parameter range

in the J;-J,-J; model on kagome
Gong, Zhu, Sheng 2014



Nematic order

= Order parameter: 2-spin operator

= p-nematic:

= N-nematic: rank-2 tensor with 5 components




Simple example: S=1

Consider  ISEEY)

(57")?) #0

' J —

True for any a Broken SU(2) symmetry

!

Not magnetic



Quadrupole states and directors

= S (=i9)1) _ 1)) — d cos ¢[0)

Rotation of | S,=0>

d = (sin ¢ cos ¢, sin ¢ sin ¢, cos ()

« director »



S=1 with biquadratic interaction

= ]Z [CosﬁSS + sin? (S;S;) } —th“

(S%)% — (S7)
—= [2(57)* — (87)* — (57)?]
V' { -

SFSY +575;




S=1 on triangular lattice

Antiferroquadrupolar

Directors mutually
perpendicular on 3
sublattices

6! (see also Tsunetsugu-Arikawa, '06)
M Ferroquadrupolar

Parallel directors

>

A. Lauchli, FM, K. Penc, PRL (2006)



Conclusions

= A lot of exotic phases have been predicted

= Only a few of them have been found in realistic
models or in actual compounds

- room for important discoveries

Further reading:

Introduction to Frustrated Magnetism
Eds C. Lacroix, P. Mendels, and F. Mila
(Springer, New York, 2011).



