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1 Introduction

Compounds containing 3d transition-metal ions have been intriguing solid state physicists ever
since the appearance of solid state physics as a field of research. In fact, already in the 1930’s
NiO became the first known example of a correlated insulator in that it was cited by deBoer
and Verwey as a counterexample to the then newly invented Bloch theory of electron bands
in solids [1]. During the last 25 years 3d transition-metal compounds have become one of the
central fields of solid state physics following the discovery of the cuprate superconductors, the
colossal magnetoresistance phenomenon in the manganites and, most recently, the iron-pnictide
superconductors.
It was conjectured early on that the reason for the special behavior of these compounds is the
strong Coulomb interaction between electrons in their partially filled 3d-shells. The 3d wave
functions are orthogonal to those of the inner-shells — such as 1s, 2s, 2p, 3s and 3p — solely
due to their angular part Y2,m(ϑ, ϕ). Their radial part R3,2(r) therefore is not pushed out to re-
gions far from the nucleus by the requirement to be orthogonal to the inner shell wave functions
and therefore is concentrated close to the nucleus (the situation is exactly the same for the 4f

wave functions). Any two electrons in the 3d-shell thus are forced to be close to each other on
average so that their mutual Coulomb repulsion is strong (the Coulomb repulsion between two
3d electrons is small, however, when compared to the Coulomb force due to the nucleus and the
inner shells so that the electrons have to stay close to one another!). For clarity we also mention
that the Coulomb repulsion between two electrons in the inner shells of most heavier elements
is of course much stronger than between 3d electrons. This, however, is irrelevant because
these inner shells are several 100–1000 eV below the Fermi energy so that they are simply com-
pletely filled and inert. On the other hand, the 3d-orbitals in transition-metal compounds or the
4f -orbitals in materials containing the Rare Earth elements participate in the bands at the Fermi
level so that the strong Coulomb interaction in these orbitals directly influences the conduction
electrons. The conduction bands in such compounds therefore form dense many-body-systems
of strongly interacting electrons and the energy from the Coulomb repulsion is large compared
to the average kinetic energy. This dominance of the interaction energy in turn implies a propen-
sity to show ordering phenomena and the ensuing phase transitions. It is therefore ultimately
the Coulomb repulsion in the partially filled 3d-shells of the transition-metals and the 4f -shells
of the rare earths which gives rise to the wide variety of spectacular phenomena observed in
these compounds. Let us therefore discuss this Coulomb interaction in more detail.

2 Multiplets of a free ion

2.1 General considerations

As an example let us consider an Ni2+ ion in vacuum which has the electron configuration
[Ar] 3d8. It is a standard exercise in textbooks of atomic physics to show that the d8 configura-
tion, which is equivalent to d2, has the following multiplets or terms: 3F , 3P , 1G, 1D and 1S,
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Term J E (eV)
3F 4 0.000

3 0.169
2 0.281

1D 2 1.740
3P 2 2.066

1 2.105
0 2.137

1G 4 2.865
1S 0 6.514

Table 1: Energies of the multiplets of Ni2+ (taken from Ref. [2]. J is the total angular momen-
tum quantum number and the J = 4 member of 3F has been taken as the zero of energy.

whereby according to the first two Hund’s rules 3F is the ground state. ‘Multiplets’ thereby is
simply another word for ‘eigenstates of the system of 26 electrons in the electric field of the Ni
nucleus’ (the nuclear charge of Ni is 28). Actually, the electrons in the shells below the 3d-shell
may be considered as inert due to the large binding energies of these shells so that to very good
accuracy one can consider only the 8 electrons in the 3d-shell. The energies of the multiplets
can be deduced experimentally by analyzing the optical spectrum of Ni vapor and are listed in
Table 1. They span a range of several eV whereby multiplets with nonzero spin are in addition
split by spin-orbit coupling which results in intervals of order 0.1 eV. All of these eigenstates
correspond to the same electron configuration, namely [Ar] 3d8, so that the fact that, say, 3P

has a higher energy than 3F is not due to an electron having been promoted from a state with
low energy to one with high energy as in an optical transition. Rather, the excited multiplets –
3P , 1G, 1D and 1S – should be viewed as collective excitations of the 8-electron system, sim-
ilar in nature to a plasmon in an electron gas. And just as a plasmon can exist only due to the
Coulomb interaction between electrons, the multiplet splitting in atomic shells also originates
from the Coulomb interaction between electrons. To understand it we therefore need to discuss
the Coulomb interaction between electrons in a partially filled atomic shell.
As a first step we introduce Fermionic creation and annihilation operators c†n,l,m,σ which create
an electron with z-component of spin σ in the orbital with principal quantum number n, orbital
angular momentum l, and z-component of orbital angular momentum m. In the case of a partly
filled 3d-shell all ni = 3 and all li = 2 identically, so that these two indices could be omitted,
but we will keep them for the sake of later generalizations. In the following we will often con-
tract (n, l,m, σ) to the compound index ν for brevity, so that, e.g., c†νi = c†ni,li,mi,σi .
The procedure we will follow is degenerate first-order perturbation theory as discussed in prac-
tically any textbook of quantum mechanics. The unperturbed Hamiltonian H0 thereby corre-
sponds to the energies of the different atomic shells

H0 =
∑
n,l

εn,l
∑
m,σ

c†n,l,m,σcn,l,m,σ
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m= −2 m= −1 m= 0 m= 1 m= 2

Fig. 1: Coulomb scattering of two electrons in the d-shell. In the initial state |ν〉 (top) the elec-
trons are distributed over the five d-orbitals which are labeled by their m-values. Due to their
Coulomb interaction two electrons scatter from each other and are simultaneously transferred
to different orbitals, resulting in the state |µ〉 (bottom).

whereas the Coulomb interaction is considered as the perturbation H1. The dn configuration
comprises all states which are obtained by distributing the n electrons over the 2 · 5 = 10

spin-orbitals:
|ν〉 = |ν1, ν2 . . . νn〉 = c†ν1c

†
ν2
. . . c†νn|0〉 . (1)

and the number of these states obviously is nc = 10!/(n! (10−n)!). In writing the basis states as
in (1) we need to specify an ordering convention for the creation operators on the right hand side.
For example, only states are taken into account where m1 ≤ m2 ≤ m3 · · · ≤ mn. Moreover,
if two mi are equal the c†mi↓-operator is assumed to be to the left of the c†mi↑-operator. If we
adopt this convention, every possible state obtained by distributing the n electrons over the 10

spin-orbitals is included exactly once in the basis. If the ni and li were to take different values
we could generalize this by demanding that the (ni, li,mi)-triples be ordered lexicographically.
As will be seen below, strict application of an ordering convention for the Fermi operators is
necessary to determine the correct Fermi signs for the matrix elements.
If only H0 were present all the states (1) would be degenerate. The Coulomb interaction H1

between the electrons then (partially) lifts this degeneracy and this is the physical reason for
the multiplet splitting. The standard procedure in this a situation is to set up the matrix hµ,ν =

〈µ|H1|ν〉 and diagonalize it to obtain the first order energies and wave functions [3]. Thereby
H1 has both diagonal matrix elements such as 〈ν|H1|ν〉 but also off-diagonal matrix elements
〈µ|H1|ν〉. The diagonal matrix elements describe the fact that the Coulomb repulsion between
two electrons in different orbitals depends on the spatial character of these orbitals whereas the
off-diagonal matrix elements describe the scattering of two electrons from each other as shown
in Figure 1.
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In second quantization the Coulomb Hamiltonian H1 takes the form

H1 =
1

2

∑
i,j,k,l

V (νi, νj, νk, νl) c
†
νi
c†νjcνkcνl ,

V (ν1, ν2, ν3, ν4) =

∫
dx

∫
dx′ ψ∗ν1(x) ψ∗ν2(x

′) Vc(x, x
′) ψν3(x

′) ψν4(x) ,

Vc(x, x
′) =

1

|r − r′|
. (2)

Here x = (r, σ) is the combined position and spin coordinate with
∫
dx · · · =

∑
σ

∫
dr . . .

and Vc is the Coulomb interaction between electrons. Note the factor of 1/2 in front of H1 and
the correspondence of indices and integration variables ν3 ↔ x′ and ν4 ↔ x in the Coulomb
matrix element, see textbooks of many-particle physics such as Fetter-Walecka [4].

2.2 The Coulomb matrix elements

Our single-particle basis consists of atomic spin-orbitals so if we switch to polar coordinates
(r, ϑ, ϕ) for r the wave functions in (2) are

ψνi(x) = Rni,li(r) Yli,mi(ϑ, ϕ) δσ,σi . (3)

The radial wave functions Rni,li are assumed to be real, as is the case for the true radial wave
function of bound states in a central potential. Apart from that we do not really specify them.
In fact, it would be rather difficult to give a rigorous prescription for their determination. It will
turn out, however, that these radial wave functions enter the Coulomb matrix elements only via
a discrete and rather limited set of real numbers which are often obtained by a fit to experiment.
In addition to (3), we use the familiar multipole expansion of the Coulomb interaction

1

|r − r′|
=

∞∑
k=0

k∑
m=−k

Y ∗k,m(ϑ′, ϕ′)
4π

2k + 1

rk<
rk+1
>

Yk,m(ϑ, ϕ) . (4)

We now insert (3) and (4) into (2). We recall that
∫
dx · · · =

∑
σ

∫
dr . . . and first carry out

the sum over spin variables which gives a factor of δσ1,σ4 δσ2,σ3 . Next we pick one term with
given k and m from the multipole expansion (4) and proceed to the integration over the spatial
variables (r, ϑ, ϕ) and (r′, ϑ′, ϕ′). Let us first consider the angular variables (ϑ, ϕ). Obviously
these always come as arguments of spherical harmonics and there is one from ψ∗ν1(x), one from
the multipole expansion (4), and one from ψν4(x). We thus obtain a factor of∫ 2π

0

dϕ

∫ 1

−1
d cos(ϑ) Y ∗l1,m1

(ϑ, ϕ) Yk,m(ϑ, ϕ) Yl4,m4(ϑ, ϕ) . (5)

Such a dimensionless integral over three spherical harmonics is called a Gaunt coefficient and
can be shown to be proportional to a Clebsch-Gordan coefficient [5, 6]. This property is an
immediate consequence of the Wigner-Eckart theorem.
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Another interesting property can be seen if we recall the ϕ-dependence of the spherical har-
monics: Yl,m(ϑ, ϕ) = Pl,m(ϑ) eimϕ. It follows that the Gaunt coefficient (5) is different from
zero only if m1 = m4 + m. Moreover, since the ϑ-dependent factors Pl,m(ϑ) are real [5, 6] all
nonvanishing Gaunt coefficients are real as well. In the same way the integration over (ϑ′, ϕ′)

gives ∫ 2π

0

dϕ′
∫ 1

−1
dcos(ϑ′) Y ∗l2,m2

(ϑ′, ϕ′) Y ∗k,m(ϑ′, ϕ′) Yl3,m3(ϑ
′, ϕ′), (6)

which by analogous reasoning is different from zero only if m2 +m = m3. Since both (5) and
(6) must be different from zero for the same m in order to obtain a nonvanishing contribution,
we must have m1 + m2 = m3 + m4. This is simply the condition that Lz be conserved in the
Coulomb scattering of the two electrons.
It remains to do the integral over the two radial variables r and r′. These two integrations cannot
be disentangled so we find a factor of

Rk(n1l1, n2l2, n3l3, n4l4) =

∫ ∞
0

dr r2
∫ ∞
0

dr′ r′2Rn1l1(r)Rn2l2(r
′)
rk<
rk+1
>

Rn3l3(r
′)Rn4l4(r) . (7)

These integrals, which have the dimension of energy, are labeled by the multipole index k,
and the number of relevant multipole orders is severely limited by the properties of the Gaunt
coefficients: First, since the latter are proportional to Clebsch-Gordan coefficients the three
l-values appearing in them have to obey the so-called triangular condition [3] whence k ≤
min(|l1 + l4|, |l2 + l3|). For a d-shell where li = 2 it follows that k ≤ 4. Second, the parity
of the spherical harmonic Ylm is (−1)l, i.e. even for the case li = 2. For integrals such as
(5) or (6) to be different from zero the spherical harmonic Yk,m from the multipole expansion
must have even parity, too, so that for Coulomb scattering within a d-shell only R0, R2 and
R4 are relevant. This shows that the sloppy definition of the wave function Rni,li(r) is not a
real problem because details of this wave function are irrelevant anyway. In a way, these three
parameters may be viewed as a generalization of the Hubbard-U in that Rk is something like
the ‘the Hubbard-U for k-pole interaction’.
We introduce the following notation for the nonvanishing Gaunt coefficients

ck(lm; l′m′) =

√
4π

2k + 1

∫ 2π

0

dϕ

∫ 1

−1
d cos(ϑ)Y ∗lm(ϑ, ϕ)Yk,m−m′(ϑ, ϕ)Yl′,m′(ϑ, ϕ) . (8)

These coefficients are tabulated in Appendix 20a of the textbook by Slater [5] or Table 4.4 of
the textbook by Griffith [6], and also in the Appendix of this chapter. Using this notation and
the fact that the Gaunt coefficients are real we can finally write the Coulomb matrix element as

V (ν1, ν2, ν3, ν4) = δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4 (9)

×
∞∑
k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2) R

k(n1l1, n2l2, n3l3, n4l4) .
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−2 −1 0 1 2m=

459 = 0 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1

−2 −1 0 1 2m=

0 0 1 1 1 1 1 0 1 0 = 250

Fig. 2: The coding of basis states by integers and a scattering process.

2.3 Solution of the Coulomb problem by exact diagonalization

We now describe how the problem of the partly filled 3d-shell can be solved numerically, using
the method of exact diagonalization. The basis states (1) correspond to all possible ways of
distributing n electrons over the 10 spin-orbitals of the 3d-shell (two spin directions for each
m ∈ {−2,−1 . . . 2}). As illustrated in Figure 2 we can code each of these basis states by an
integer 0 ≤ i ≤ 210. If we really use all of these integers we are actually treating all states with
0 ≤ n ≤ 10 simultaneously but this will be convenient for later generalizations. Next, for a
given initial state |ν1, ν2, . . . νn〉 we can let the computer search for all possible transitions of
the type shown in Figure 1 and compute the corresponding matrix elements from (9) using, say,
the ck(lm; l′m′) copied from Slater’s textbook and some given R0, R2 and R4. Let us consider
the following matrix element

〈0|cµn . . . cµ1 V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2cλ3cλ4 c

†
ν1
c†ν2 . . . c

†
µn|0〉 .

For this to be nonzero, the operators c†λ3 and c†λ4 must be amongst the c†νi , otherwise the an-
nihilation operators in the Hamiltonian could be commuted to the right where they annihilate
|0〉. In order for these pairs of operators to cancel each other, cλ4 must first be commuted to
the position right in front of c†λ4 . If this takes n4 interchanges of Fermion operators we get a
Fermi sign of (−1)n4 . Bringing next cλ3 right in front of c†λ3 by n3 interchanges of Fermion
operators gives a sign of (−1)n3 . Analogously, the creation operators c†λ1 and c†λ2 have to be
commuted to the left to stand to the immediate right of their ‘partner annihilation operators’
so as to cancel them. If this requires an additional number of Fermion interchanges n2 for c†λ2
and n1 for c†λ1 there is an additional Fermi sign of (−1)n1+n2 . The total matrix element then
is (−1)n1+n2+n3+n4V (λ1, λ2, λ3, λ4). The correct Fermi sign is crucial for obtaining correct re-
sults and must be evaluated by keeping track of all necessary interchanges of Fermion operators.
This is perhaps the trickiest part in implementing the generation of the Hamilton matrix or any
other operator in a computer program.
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E S L n Term E S L n Term
0.0000 1 3 21 3F 0.0000 3/2 3 28 4F
1.8420 0 2 5 1D 1.8000 3/2 1 12 4P
1.9200 1 1 9 3P 2.1540 1/2 4 18 2G
2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
9.9774 1/2 2 10 2D

Table 2: Energies of the d8 multiplets calculated with R2 = 10.479 eV, R4 = 7.5726 eV (Left),
and energies of the d7 multiplets calculated with R2 = 9.7860 eV, R4 = 7.0308 eV (Right).

Once the matrix has been set up it can be diagonalized numerically. Table 2 gives the resulting
multiplet energies for d8 and d7, the values of L and S for each multiplet and the degeneracy
n. The values of the Rk parameters have been calculated by using Hartree-Fock wave functions
R3,2 for Ni2+ and Co2+ in (7). The energy of the lowest multiplet is taken as the zero of en-
ergy and it turns out that all energy differences depend only on R2 and R4. Note the increasing
complexity of the level schemes with increasing number of holes in the d-shell. Comparing
the energies of the multiplets for d8 with the experimental values in Table 1 one can see good
agreement with deviations of order 0.1 eV. The only exception is 1S. This is hardly a surprise
because here the theoretical energy is 13 eV which is comparable to the difference in energy
between the 3d and the 4s-shell in Ni (which is ≈ 10 eV). It follows that the basic assumption
of the calculation, namely that the separation between atomic shells is large compared to the
multiplet energies, is not fulfilled for this particular multiplet. To treat 1S more quantitatively it
would likely be necessary to include basis states with configurations like 3d7 4s1, or, put another
way, to consider the screening of the Coulomb interaction by particle-hole excitations from the
3d- into the 4s-shell. Finally, the Table shows that the ground states indeed comply with the
first two of Hund’s rules: They have maximum spin and maximum orbital angular momentum
for this spin. It can be shown that this is indeed always the case as long as one uses Coulomb
and exchange integrals with the correct, i.e. positive, sign [5, 6].

2.4 Diagonal matrix elements

The expression (9) is exact but looks somewhat complicated so let us try to elucidate its physical
content and thereby also make contact with various approximate ways to describe the Coulomb
interaction which can be found in the literature. We first consider those matrix elements where
either ν4 = ν1 and ν3 = ν2 (case 1) or ν3 = ν1 and ν4 = ν2 (case 2). In both cases the four
Fermion operators in the corresponding terms of H1 can be permuted to give the product of
number operators nν1nν2 (with nν = c†νcν) whereby in case 2 an odd number of interchanges of
Fermion operators is necessary so that an additional factor of (−1) appears. Whereas for case
1 the product δσ1,σ4 δσ2,σ3 in (9) always is 1, it vanishes for case 2 unless σ1 = σ2. The Pauli
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principle requires that ν1 6= ν2 (otherwise one has the product c†ν1c
†
ν1

= 0) so that for case 1 the
two orbitals may have the same orbital quantum numbers n, l,m but then must differ in their
spin, whereas in case 2 the spins have to be equal so that the orbital quantum numbers definitely
must be different. Using (9) the respective matrix elements are

V (ν1, ν2, ν2, ν1) =
∞∑
k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2)R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞∑
k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2)R

k(n1l1, n2l2, n1l1, n2l2).

(10)

It is customary to introduce the following abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

The F k and Gk are called Slater-Condon parameters. The ak and bk are listed in Appendix 20a
of Slater’s textbook [5] and also the Appendix of the this chapter.
We now want to bring these diagonal matrix elements to a more familiar form and thereby
specialize to a partly filled 3d-shell. In this case all ni = 3 and li = 2 so that for each k there
is only one F k and one Gk and, in fact, Gk = F k. For brevity we omit the n and l quantum
numbers in the rest of the paragraph so that, e.g., the electron operators become c†m,σ with m
the z-component of L. The sum of all diagonal matrix elements then becomes

H1,diag =
∑
m

Um,m nm,↑nm,↓ +
1

2

∑
m6=m′

(
Um,m′

∑
σ,σ′

nm,σnm′,σ′ − Jm,m′

∑
σ

nm,σnm′,σ

)
,

Um,m′ =
∑

k ∈{0,2,4}

ak(m,m′) F k , Jm,m′ =
∑

k ∈{0,2,4}

bk(m,m′) F k.

The first term on the right-hand side originates from case 1 with m1 = m2 and the factor of 1/2

in front of this term is cancelled because there are two identical terms of this type with either
ν1 = (m, ↑) and ν2 = (m, ↓) or ν1 = (m, ↓) and ν2 = (m, ↑). Defining nm = nm,↑ + nm,↓ and
Szm = (nm,↑ − nm,↓)/2 we have∑

σ,σ′

nm,σ nm′,σ′ = nm nm′

∑
σ

nm,σ nm′,σ = 2
(
Szm S

z
m′ +

nmnm′

4

)
,

so that

H1,diag =
∑
m

Um,m nm,↑ nm,↓ +
1

2

∑
m6=m′

(
(Um,m′ − 1

2
Jm,m′)nmnm′ − 2Jm,m′ SzmS

z
m′

)
.
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This is the sum of a Hubbard-like density interaction∝ Um,m′ and an Ising-like spin interaction
∝ Jm,m′ . The interaction parameters thereby depend on the orbitals and can be expressed in
terms of the Slater Condon parameters F k and the products of Gaunt coefficients ak and bk. It
is obvious that Jm,m′ > 0 so that the Ising-like interaction describes ferromagnetic coupling —
as one would expect on the basis of the first Hund’s rule. A truncated Coulomb Hamiltonian
like H1,diag is used in some LDA+U schemes [7] and also in many Dynamical Mean-Field cal-
culations for 3d transition-metal compounds [8].
To complete the Hund’s rule term we consider in addition those terms inH1 where ν1 = (m,σ),
ν2 = (m′, σ̄), ν3 = (m, σ̄) and ν4 = (m′, σ). In these terms the product δσ1,σ4 δσ2,σ3 is nonvan-
ishing as well and for both values of σ the matrix element (2) is∑

k ∈{0,2,4}

ck(m,m′) ck(m,m′)F k =
∑

k ∈{0,2,4}

bk(m,m′)F k = Jm,m′

The Fermion operators are c†m,↑c
†
m′,↓cm,↓cm′,↑ + c†m,↓c

†
m′,↑cm,↑cm′,↓ = −(S+

m S
−
m′ + S−m S

+
m′), i.e.,

the transverse part of the Heisenberg exchange. Combining these terms with the Ising-like spin
exchange term we obtain

H1,H =
∑
m

Um,m nm,↑ nm,↓ +
1

2

∑
m6=m′

(
(Um,m′ − 1

2
Jm,m′)nmnm′ − 2Jm,m′ Sm · Sm′

)
.

This is now the sum of a density interaction and a spin-rotation invariant ferromagnetic spin
exchange. It has to be kept in mind that this Hamiltonian has been obtained by retaining only
a relatively small subset of matrix elements in the original Coulomb Hamiltonian. A further
simplification which is often used is to replace Um,m′ and Jm,m′ by their averages over all
corresponding pairs (m,m′). Using the ak and bk in the Appendix one readily obtains

U =
1

25

∑
m,m′

Um,m′ = F 0,

U − J =
1

20

∑
m6=m′

(Um,m′ − Jm,m′) = F 0 − 1

14
(F 2 + F 4),

so that J = (F 2 + F 4)/14.
To conclude the discussion, we consider the diagonal matrix elements 〈ν|H1|ν〉 in the basis of
n-electron states |ν〉 defined in (1). Since ν1 and ν2 in (10) can be any two out of the n occupied
orbitals in |ν〉 the total diagonal matrix element of H1 is obtained by summing over all n(n−1)

2

pairs (i, j) formed from the occupied orbitals

〈ν|H1|ν〉 =
∑
i<j

∑
k

(
ak(limi, lj,mj)F

k(nili, njlj)− δσiσj bk(limi, lj,mj)G
k(nili, njlj)

)
.

(11)
As will be seen in the next paragraph, this formula is sufficient for the analytical calculation of
the multiplet energies.
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2.5 Analytical calculation of multiplet energies by the diagonal sum-rule

The exact diagonalization procedure outlined in Sec. 2.3. can be used to obtain all eigenenergies
and the corresponding eigenstates of the Coulomb problem. It is a flexible numerical method of
solution into which crystalline electric field, hybridization with ligand orbitals, spin-orbit cou-
pling, and Coulomb interaction with holes in core shells, which is important for the discussion
of X-ray absorption spectra, can be incorporated easily. On the other hand, multiplet theory
was invented during the 1920’s to explain the spectra of free atoms or ions, and at that time
computers were not available. It turns out, however, that despite the apparent complexity of the
problem the energies of the multiplets can be obtained analytically and this will be described in
the following.
The first ingredient is the so-called diagonal sum-rule. This is simply the well-known theorem
that the sum of the eigenvalues of a Hermitian matrixH is equal to its trace Tr(H) =

∑
iHii. It

follows immediately by noting that the trace of a matrix is invariant under basis transformations,
i.e., Tr(H) = Tr(UHU−1) for any unitary matrix U . By choosing U to be the matrix which
transforms to the basis of eigenvectors of H the diagonal sum-rule follows immediately.
Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by their
values of Lz and Sz. The diagonal sum-rule then can be applied separately for each of these
blocks. In addition, the dimension of the blocks decreases as Lz and Sz approach their maxi-
mum possible values so that the number of multiplets contained in a given block increases.
As an example for the procedure let us consider a p2 configuration (by particle-hole symmetry
this is equivalent to a p4 configuration). We write the Fermion operators in the form cl,m,σ,
i.e., we suppress the principal quantum number n. Since we have 6 possible states for a sin-
gle p-electron (three m-values and two spin directions per m-value) we have 15 states for two
electrons. The triangular condition implicit in the Gaunt coefficients now restricts the multipole
order k to be ≤ 2. Again, only even k contribute, so that we have two Slater-Condon parame-
ters, F 0 and F 2 (and F k = Gk). The following Table which is taken from Slater’s textbook [5]
gives the values of the coefficients ak(1,m; 1,m′) and bk(1,m; 1,m′): We first consider the
sector with Sz = 1. The highest possible Lz is Lz = 1 which is realized only for a single state,
|1〉 = c†1,0,↑c

†
1,1,↑|0〉. We can conclude that one of the multiplets is 3P and its energy is equal to

Table 3: The coefficients ak and bk for two p-electrons.

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1
±1 0 1 −2 0 3

0 0 1 4 1 4
±1 ∓1 1 1 0 6
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the diagonal matrix element of |1〉 which by (11) is

E(3P ) =
∑

k∈{0,2}

(ak(1, 1; 1, 0)− bk(1, 1; 1, 0))F k = F 0 − 5

25
F 2.

We proceed to the sector Sz = 0. Here the highest possible Lz is Lz = 2 again obtained for
only single state namely c†1,1,↓c

†
1,1,↑|0〉. We conclude that we also have 1D with energy

E(1D) =
∑

k∈{0,2}

ak(1, 1; 1, 1)F k = F 0 +
1

25
F 2.

The two multiplets that we found so far, 1D and 3P , comprise 5 + 9 = 14 states – we thus
have just one state missing, which can only be 1S. To find its energy, we need to consider the
sector Sz = 0 and Lz = 0. There are three states in this sector: c†1,0,↓c

†
1,0,↑|0〉, c

†
1,−1,↑c

†
1,1,↓|0〉 and

c†1,−1,↓c
†
1,1,↑|0〉. Two out of the three eigenvalues of the 3 × 3 Hamiltonian in the basis spanned

by these states must be E(3P ) and E(1D), because these multiplets also have members with
Sz = 0 and Lz = 0. To obtainE(1S) we accordingly compute the sum of the diagonal elements
of the 3× 3 matrix and set

E(3P ) + E(1D) + E(1S) =
∑

k∈{0,2}

(ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1))F k

→ E(1S) = F 0 +
10

25
F 2.

This example shows the way of approach for multiplet calculations using the diagonal sum-
rule: one starts out with a state with maximum Lz or Sz for which there is usually only a
single basis state. This basis state belongs to some multiplet whose energy simply equals the
‘diagonal element’ of the 1 × 1 Hamiltonian. Then one proceeds to lower Sz and/or Lz and
obtains energies of additional multiplets by calculating the trace of the respective block of the
Hamilton matrix and using the known energies of multiplets with higher Lz or Sz. It turns out
that in this way the energies of all multiplets involving s, p, d or f electrons can be expressed
in terms of the Slater-Condon parameters by analytical formulas. A rather complete list can be
found for example in the Appendices 21a and 21b of the textbook by Slater [5].
One point which may be helpful when reading the literature is the following: for the special
case of a partly filled d-shell many authors use the so-called Racah parameters A, B, and C
instead of the 3 Slater-Condon parameters F 0, F 2, and F4. The rule for conversion is simple:

A = F 0 − 49

441
F 4 B =

1

49
F 2 − 5

441
F 4 C =

35

441
F 4 .

The Racah-parameters have been introduced because the analytical formulas for the energies
of the multiplets of dn as derived by the diagonal sum-rule look nicer when they are expressed
in terms of them. For example Griffith [6] gives multiplet energies in terms of the Racah-
parameters in his Table 4.6.
As stated above, multiplet theory was originally developed to discuss the spectra of atoms or
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p2 C N+ O2+ Si P+ S2+

1.124 1.134 1.130 1.444 1.430 1.399

p4 O F+ S Cl+

1.130 1.152 1.401 1.392

Table 4: The ratio (12) for various Atoms and Ions with p2 and p4 configurations outside a
closed shell.

ions in the gas phase. The question then arises, as to what are the values of the Slater-Condon
parameters. Of course one might attempt to compute these parameters using, e.g., Hartree-Fock
wave functions in the expression (7). It turns out, however, that very frequently the number of
multiplets considerably exceeds the number of relevant Slater-Condon parameters. In the case
of the p2 configuration we had three multiplets, 3P , 1D, and 1S, but only two Slater-Condon
parameters F 0 and F 2. This would suggest to obtain the values of the Slater-Condon param-
eters by fit to the spectroscopic data and the textbook by Slater [5] contains a vast amount of
experimental data which are analyzed in this way. For the p2 configuration we restrict ourselves
to a simple cross check. Using the above formulae and eliminating the F ’s we find:

r =
E(1S)− E(1D)

E(1D)− E(3P )
=

3

2
. (12)

This relation should be obeyed by all ions with two p-electrons outside filled shells, e.g., the
series C, N1+ and O2+ or two holes in a filled p-shell such as the series O and F+. The energies
of these multiplets have been measured with high precision and are available in databases [2]
and Table 4 shows the resulting values of r. For the first-row elements the deviation is about
25%, for the second row only about 5%. We recall that multiplet theory corresponds to first or-
der degenerate perturbation theory, where H0 contains the orbital energies and H1 the Coulomb
interaction between electrons in one shell. It therefore will work the better the larger the sepa-
ration between different atomic shells and this is indeed larger in the second row elements.

2.6 Spin-orbit coupling

As the last problem in this section on free atoms or ions we briefly discuss spin-orbit coupling.
The corresponding Hamiltonian is

HSO = λSO

n∑
i=1

li · Si = λSO

n∑
i=1

(
lziS

z
i +

1

2
(l+i S

−
i + l−i S

+
i )

)
.

where li (Si) are the operator of orbital (spin) angular momentum of the ith electron. The
spin-orbit coupling constant λSO can be written as [3]

λSO =
~2

2m2
ec

2rorb

dVat
dr

∣∣∣∣
r=rorb
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where me is the electron mass, c the speed of light, Vat is the atomic potential acting on the
electron, and rorb the spatial extent of the radial wave function.
The first term on the right hand side can be translated into second quantized form easily:

H
‖
SO = λSO

l∑
m=−l

m

2

(
c†l,m,↑cl,m,↑ − c

†
l,m,↓cl,m,↓

)
. (13)

As regards the transverse part, we note [3] that the only nonvanishing matrix elements of the or-
bital angular momentum raising/lowering operator are 〈l,m±1|l±|l,m〉=

√
(l ∓m)(l ±m+ 1)

whence

H⊥SO =
λSO

2

l−1∑
m=−l

√
(l −m)(l +m+ 1)

(
c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓

)
. (14)

Spin-orbit coupling can be implemented rather easily into the numerical procedure, the main
difficulty again is keeping track of the Fermi sign. Due to the fact that neither Lz nor Sz

are conserved anymore the corresponding reduction of the Hilbert space is no longer possible.
In transition-metal compounds the spin-orbit coupling constant λSO for the 3d-shell is rather
small, of order λSO ≈ 0.05 eV. Still, if the ground state of a given ion has a non-vanishing
spin, spin-orbit coupling will determine how this spin orients itself in an ordered phase giving
rise to a magnetic anisotropy. In the rare-earth elements spin-orbit coupling in the 4f -shell
is of comparable magnitude as the Coulomb repulsion. There, taking spin-orbit coupling into
account is mandatory.

3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Clearly, one might ask if the results obtained
in this limit retain any relevance once the ion is embedded into a solid and this will be discussed
in the following. One may expect, however, that the small spatial extent of the 3d radial wave
function R3,2(r) suppresses any effect of the environment in a solid, so that in many cases the
main effect of embedding the ion into a solid is the partial splitting of the multiplets of the free
ion.
In many transition-metal compounds the 3d ions are surrounded by an approximately octahe-
dral or tetrahedral ‘cage’ of nonmetal ions such as Oxygen, Sulphur, Arsenic. These nearest
neighbor ions, which will be called ‘ligands’ in the following, have a two-fold effect: first, they
produce a static electric field, the so-called crystalline electric field or CEF, and second there
may be charge transfer, that means electrons from a filled ligand orbital may tunnel into a 3d-
orbital of the transition-metal ion and back due to the overlap of the respective wave functions.

3.1 Crystalline electric field

The electric field that acts on a given ion in a solid may to simplest approximation be obtained
by representing the other ions in the solid as point charges. The electrostatic potential VCEF (r)
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produced by these point charges around the nucleus in question then in principle can be obtained
by using the multipole expansion (4). This results in an expression of the type

VCEF (r) =
∞∑
l=0

l∑
m=−l

Cl,m rl Yl,m(ϑ, ϕ)

where the coefficients Cl,m depend on the geometry of the crystal. Matrix elements of VCEF (r)

between atomic eigenfunctions of the type (3) can be calculated by applying similar procedures
as in the computation of the Coulomb matrix elements (and in particular again involve Gaunt
coefficients).
However, such calculations often do not give very accurate numbers. For example, there will
always be some charge transfer between the ions in the solid so that it is difficult to decide which
charge should be assigned to a given ion. Moreover, the calculation of matrix elements involves
a radial integral over the wave function Rn,l(r) which is not really well known. Therefore, we
give a qualitative discussion based on symmetry.
Let α be some symmetry operation, i.e. a coordinate transformation represented by a unitary
3 × 3 matrix mα, that leaves the environment of the ion in question invariant. In other words,
the transition-metal ion itself must be transformed into itself whereas every other ion must be
transformed into an ion of the same species. Then we define for any function of the coordinates
f(r) the operator Tαf(r) = f(m−1α r). Thus, if we want to know the value of Tαf(r) at some
given point r, we can look it up by evaluating the original function f(r) at the point r′ = m−1α r

which is transformed into r by the operation α. In other words, if we imagine functions of r
to be represented by color maps in real space, the map of Tαf(r) is that of f(r) but subject
to the transformation α. Since the charge density of the environment is invariant under the
allowed symmetry operations, the same holds true for its electrostatic potential VCEF (r) so
that Tα VCEF (r) = VCEF (r). It follows that the Hamiltonian H̃ = Hion + VCEF (r) (where
Hion is the sum of the nuclear potential of the transition-metal ion, the kinetic energy of the
electrons and their Coulomb interaction) commutes with Tα. It is then straightforward to show
that if ψ(r) is an eigenstate of H̃ with energy E, H̃ ψ(r) = E ψ(r) , the transformed function
Tα ψ(r) is an eigenstate to the same energy:

[H̃, Tα]ψ(r) = 0 ⇒ H̃ (Tαψ(r)) = TαE ψ(r) = E (Tαψ(r)).

We can thus investigate to what degree the degeneracy of the five 3d-orbitals is lifted in a given
environment by systematically studying which (combinations of) 3d-orbitals are transformed
into each other by the symmetry operations which leave the environment invariant. For the
general case this can be done by invoking the very elegant mathematical formalism of group
theory [6, 9]. On the other hand, for an environment with cubic symmetry a simple shortcut is
possible. Namely all 48 cubic symmetry operations can be expressed as the product of one of
the 6 permutations of the 3 coordinate axis and one of the 23 = 8 transformations which change
the signs of an arbitrary subset of the 3 coordinates. Moreover the d-like spherical harmonics
Y2,m can be expressed as linear combinations of products of two of the three components of the
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unit vector r/|r|, such as xy/r2 or z2/r2. For example

Y2,2(ϑ, ϕ) =
1√
4π

√
15

8
sin2 ϑ e 2iϕ =

1√
4π

√
15

8

(
x2 − y2

r2
+ 2i

xy

r2

)
.

It is then obvious that under cubic operations mixed products such as xy/r2 will be transformed
into mixed products, whereas squares such as z2/r2 will be transformed into squares. Thus,
if we form linear combinations of the spherical harmonics which consist exclusively of either
mixed products or squares, we know that these two groups of linear combinations will remain
degenerate in the cubic environment. In fact, the mixed products are precisely the three t2g-
orbitals

dxy =
i√
2

(Y2,−2 − Y2,2) =

√
15

4π

xy

r2
,

dyz =
i√
2

(Y2,−1 + Y2,1) =

√
15

4π

yz

r2
,

dxz =
1√
2

(Y2,−1 − Y2,1) =

√
15

4π

xz

r2
, (15)

whereas from the squares the two eg-orbitals can be formed:

dx2−y2 =
1√
2

(Y2,−2 + Y2,2) =

√
15

16π

x2 − y2

r2
,

d3z2−r2 = Y2,0 =

√
5

16π

3z2 − r2

r2
. (16)

There are only two eg-orbitals because one special combination of the squares, namely r2,
is transformed into itself under all symmetry operations. In a cubic environment, the 5-fold
degenerate d-level therefore always splits into the 3-fold degenerate t2g-level and the 2-fold
degenerate eg-level. The energy difference between the two eg- and the three t2g-orbitals is
called 10Dq for historical reasons. The above discussion can be summarized in the operator for
the electrostatic potential of an environment with cubic symmetry:

HCEF = C − 4Dq
∑

α∈t2g ,σ

c†α,σcα,σ + 6Dq
∑
α∈eg ,σ

c†α,σcα,σ .

The constant C, which gives the center of gravity of the energies of the five orbitals, is largely
irrelevant. By expressing the eg and t2g harmonics dα in terms of the original Yl=2,m via (15) and
(16) we can thus representHCEF as a quadratic form in the original c†ν-operators. This quadratic
form involves the splitting 10Dq as a parameter, so that this way of dealing with the crystalline
electric field is very similar in spirit to our treatment of the Coulomb interaction in that details
of the radial wave functions Rn,l(r) are absorbed into a parameter which may be adjusted to
experiment. Alternatively, the numerical value of 10Dq for a given solid may also be obtained
from a fit to an LDA band structure. By adding HCEF to the Hamiltonian for the intra-atomic
Coulomb interaction we can now discuss the splitting of the original multiplets of the free ion
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d8 (left) and d7

(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table 3.

under the influence of the electrostatic potential of the environment. The following should be
noted: the above discussion refers to the wave function of a single electron. The multiplets,
however, are collective eigenstates of all n electrons in an atomic shell which are created by the
Coulomb interaction between electrons. The question of how these collective states split in a
cubic environment is not at all easy to answer. One way would be exact diagonalization includ-
ing the term HCEF . Plots of the energies of the resulting crystal-field multiplets versus 10Dq

are called Tanabe-Sugano diagrams [10]. An example is shown in Figure 3.1 which shows the
eigenenergies of the d8 and d7 configuration with Coulomb interaction and cubic CEF as 10Dq

is increasing. One realizes that the highly degenerate multiplets of the free ion are split into
several levels of lower degeneracy by the CEF, which is to be expected for a perturbation that
lowers the symmetry. Note that the components into which a given multiplet splits up all have
the same spin as the multiplet itself. This is because the spin of an electron does not feel an
electrostatic potential — or, more precisely, because the operator of total spin commutes with
any operator which acts only on the real-space coordinates ri of the electrons.
An interesting example for the application of the Tanabe-Sugano diagrams are transition-metal
ions in aqueous solution. In fact, the preference of transition-metal ions for an environment with
cubic symmetry is so strong that such immersed ions often surround themselves with an octa-
hedron of water molecules. Thereby the dipole moments of these six molecules all point away
from the ion and thus create an electric field which cubic symmetry which again gives rise to the
eg-t2g splitting. Optical transitions between the CEF-split multiplets, which are possible only
due to slight distortions of the octahedron or the generation/annihilation of vibrational quanta
during the transition, correspond to frequencies in the visible range and result in the charac-
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teristic colors of such solutions. The Tanabe-Sugano diagrams have proved to be a powerful
tool to understand the absorption spectra of such solutions [6]. By matching the energies of
the observed transitions to energy differences in the Tanabe-Sugano diagrams one can extract
estimates for the Slater-Condon parameters and for 10Dq. The values of the Slater-Condon
parameters are somewhat smaller than those for ions in vacuum due to dielectric screening in
the solution. An independent estimate for 10Dq can also be extracted from measured heats
of hydration (this is because both 10Dq and the electrostatic energy of the system ‘ion plus
octahedron’ depend on the distance between the transition-metal ion and the water molecules)
and compared to the estimate from the absorption spectrum whereby reasonable agreement is
usually obtained [9].

3.2 Charge transfer

We proceed to a discussion of charge transfer. This means that electrons can tunnel from lig-
and orbitals into 3d-orbitals, so that the number of electrons in the d-shell fluctuates. To deal
with this we need to enlarge our set of Fermion operators c†ν/cν by operators l†µ/lµ which cre-
ate/annihilate electrons in orbitals centered on ligands. The compound index µ for the ligand
operators also must include the index i of the ligand: µ = (i, n, l,m, σ). The Hamiltonian
describing the charge transfer then would read

Hkin =
∑
i,j

(
tνi,µj c

†
νi
lµj +H.c.

)
+
∑
j

εµj l
†
µj
lµj +

∑
i

ενi c
†
νi
cνi . (17)

The hybridization integrals tνi,µj ,νj may be expressed in terms of relatively few parameters by
using the famous Slater-Koster tables, see the lecture by M. Foulkes [11] at this school. For
example, if only the p-orbitals of the ligands are taken into account there are just two relevant
parameters, Vpdσ and Vpdπ. Estimates for these may be obtained from fits to LDA band struc-
tures. If electrons are allowed to tunnel between d-shell and ligand orbitals the orbital energies
εµj become relevant as well. Estimating the d-shell orbital energies from LDA calculations is
tricky due to the double counting problem: the energies of the d-orbitals extracted from band
structure calculations include the Hartree-potential, which is also included in the diagonal ma-
trix elements of the Coulomb interaction and thus must be subtracted in some way.
We now specialize to the case where the ligands are oxygen ions which form an ideal octahedron
with the transition-metal ion in the center of gravity of the octahedron. Retaining only the three
oxygen 2p-orbitals per ligand the total number of orbitals in this cluster would be 5 + 6 · 3 = 23

per spin direction which is far too big to be treated by exact diagonalization. However, the
number of ligand orbitals can be reduced drastically if we note that for each of the real-valued
transition-metal 3d-orbitals Yα(ϑ, ϕ) there is precisely one linear combination of O 2p-orbitals
on the ligands, Lα, which hybridizes with it. The first term on the right-hand side of (17) then
simplifies to

Hhyb = 2Vpdπ
∑
α∈t2g

∑
σ

(
c†α,σ lασ +H.c.

)
+
√

3Vpdσ
∑
α∈eg

∑
σ

(
c†α,σ lασ +H.c.

)
.
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By inserting the unitary transformation (15) and (16) to transform to the original complex spher-
ical harmonics this is easily included into the formalism. In the exact diagonalization program
this means that the number of orbitals has to be doubled, because we have the five linear com-
binations Lα, each of which can accommodate an electron of either spin direction. This leads
to a quite drastic increase in the dimension of the Hilbert space but using, e.g., the Lanczos
algorithm, see e.g. Ref. [12], the problem still is tractable.
In constructing model-Hamiltonian-like descriptions of transition-metal compounds for which
clusters containing several unit cells can be studied by exact diagonalization or quantum Monte
Carlo, one can often find (approximate) analytical solutions by taking the limit of large 10Dq.
Then, one may restrict the basis to states where the numbers of electrons in the t2g and eg-
orbitals are fixed. For example, for Ni2+ (i.e. d8) in cubic symmetry one may assume that the
six t2g-orbitals always are completely filled. Then, one need to consider only the two electrons
in the partially filled eg level, resulting in a significant reduction of the number of possible basis
states. Similarly, for early transition-metal compounds one often assumes that the eg-orbitals are
so high in energy that only the t2g-orbitals need to be taken into account. Since it is the Coulomb
interaction which reshuffles electrons between the five d-orbitals, the errors in these simplified
models obviously are of order F 2/10Dq or F 4/10Dq. In making such approximations it is
advantageous to transform the Coulomb matrix elements (9) to real spherical harmonics. This
is trivial, although tedious, because they are related by the unitary transformation (15), (16).

4 Cluster calculation of photoemission and
X-ray absorption spectra

In the preceding section we have discussed the general formalism for exact diagonalization of
a cluster consisting of a transition-metal ion and its nearest neighbor ions (ligands). Thereby
the following terms were included into the Hamiltonian: the Coulomb repulsion between the
electrons in the 3d-shell, the electrostatic field produced by the other ions in the crystal, charge
transfer between the ligands and the transition metal 3d-orbitals and (possibly) the spin-orbit
coupling in the 3d-shell. By diagonalizing the resulting Hamilton matrix we can obtain the
eigenfunctions |Ψν〉 and their energiesEν and these can be used to simulate various experiments
on transition-metal compounds such as electron spectroscopy, optical spectroscopy, electron
spin resonance or inelastic neutron scattering. It has turned out that these simulations are in fact
spectacularly successful. In many cases calculated spectra can be overlaid with experimental
ones and agree peak by peak. Nowadays complete packages for such cluster simulations are
available, and these are used routinely for the interpretation of, e.g., electron spectroscopy [13].
This shows in particular that the multiplets of the free ion, suitably modified by the effects
of crystalline electric field and charge transfer, persist in the solid and thus are essential for a
correct description of transition-metal compounds. In the following we want to explain this in
more detail and consider photoelectron spectroscopy and X-ray absorption. In this lecture only
a very cursory introduction can be given, there are however several excellent reviews on the
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application of multiplet theory to the simulation of such experiments [14–16].
In a valence-band photoemission experiment electromagnetic radiation impinges on the sample
which then emits electrons. This is nothing but the well-known photoeffect. Valence band
photoemission means that the photoelectrons are ejected from states near the Fermi level so that
to simplest approximation an ion in the solid undergoes the transition dn → dn−1 (note that
this ignores charge transfer, which in fact is quite essential!). What is measured is the current
I of photoelectrons as a function of their kinetic energy Ekin and possibly the polar angles
(ϑ, ϕ) relative to the crystallographic axes of the sample. Frequently one measures the angle-
integrated spectrum, obtained by averaging over (ϑ, ϕ) or rather by measuring a polycrystalline
sample. A further parameter, which strongly influences the shape of the spectrum I(Ekin), is
the energy hν of the incident photons. At sufficiently high hν the photoionization cross-section
for the transition-metal 3d-orbitals is significantly larger than for the other orbitals in the solid
so that the photoelectrons in fact are emitted almost exclusively from the 3d-orbitals. This is
often called XPS for X-ray photoemission spectroscopy.
The theory of the photoemission process is complicated [17, 18] but with a number of simpli-
fying assumptions one can show that the photocurrent I(Ekin) measured in angle-integrated
photoemission at high photon energy is proportional to the so-called single-particle spectral
function

A(ω) = − 1

πZ
=

2∑
m=−2

∑
µ

e−βEµ
〈
Ψµ

∣∣∣∣c†3,2,m,σ 1

ω + (H − Eµ) + i0+
c3,2,m,σ

∣∣∣∣Ψµ〉

=
1

Z

2∑
m=−2

∑
µ,ν

e−βEµ
∣∣〈Ψν |c3,2,m,σ|Ψµ〉∣∣2 δ(ω + (Eν − Eµ)). (18)

Here H is the Hamiltonian describing the solid, |Ψµ〉 and Eµ denote the eigenstates and eigen-
energies ofH with a fixed electron numberNe. Moreover, β = (kBT )−1 with kB the Boltzmann
constant and T the temperature, and Z =

∑
µ exp(−βEµ). The operator c3,2,m,σ removes an

electron from a 3d-orbital. In the thermodynamical limit the results will not depend on the
position of the ion in the sample and accordingly we have suppressed the site index on c3,2,m,σ.
After removal of the electron the sample then remains in an eigenstate |Ψν〉withNe−1 electrons
and energy Eν . The relation between Ekin and ω follows from energy conservation:

hν + Eµ = Ekin + Φ+ Eν

The left- and right-hand sides of this equation are the energies of the system before (solid +
photon) and after (solid + photoelectron) the photoemission process. Thereby Φ is the so-
called work function, i.e., the energy needed to transverse the potential barrier at the surface of
the solid (this needs to be introduced because the measured kinetic energy Ekin is the one in
vacuo). It follows from the δ-function in the second line of (18) that we have to put I(Ekin) ∝
A(Ekin + Φ− hν).
We now make an approximation, introduced by Fujimori and Minami [19], and evaluate A(ω)

by replacing the energies and wave functions of the solid by those of the octahedral cluster. If
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Fig. 4: Comparison of experimental valence band photoemission spectra and results from clus-
ter calculations: NiO (left), CoO(center), MnO(right). Reprinted with permission from [19],
Copyright 1984 by the American Physical society, from [20], Copyright 1991 by the American
Physical society, and from [21], Copyright 1990 by the American Physical society.

we moreover let T → 0 the sum over µ becomes a sum over the m degenerate ground states
of the cluster and e−βEµ/Z → 1/m. The underlying assumption is that the coupling of the
clusters to its environment in the solid will predominantly broaden the ionization states of the
cluster into bands of not too large bandwidth. This broadening is usually simulated by replacing
the δ-functions by Lorentzians. To compare to a measured spectrum, the calculated spectrum
often is convoluted with a Gaussian to simulate the finite energy resolution of the photoelectron
detector.

Figure 4 shows various examples from the literature where measured XPS-spectra are compared
to spectra calculated by the procedure outlined above. The sticks in some of the theoretical
spectra mark the final state energies Eν and are labeled by the symbols of the irreducible rep-
resentation of the octahedral group to which the corresponding final state wave function |Ψν〉
belongs. The figure shows that the agreement between the theoretical spectra and experiment is
usually rather good. It is interesting to note that the three oxides shown in the figure all have the
same crystal structure, namely the rocksalt structure. Since moreover Ni, Co and Mn are close
neighbors in the periodic table, LDA predicts almost identical band structures with the main
difference being an upward shift of the chemical potential with increasing nuclear charge of the
transition metal. Despite this, the XPS spectra differ considerably and this change is reproduced
very well by the theoretical spectra. This is clear evidence that the shape of the spectra is de-
termined not so much by the single particle band structure, but by the multiplet structure of the
transition-metal ion, which in turn depends on its valence and spin state.

How then does the multiplet structure determine the photoelectron spectrum? As mentioned
above, if we neglect charge transfer, photoemission corresponds to the transition from the
ground state of dn, i.e. the lowest state in the Tanabe-Sugano diagram for the respective n,
to some eigenstate of dn−1. This final state, however, is nothing but some state in the Tanabe-
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Sugano diagram for dn−1. Moreover, if the ground state of dn has spin S, the final state must
have spin S ± 1

2
so that the number of possible final states is significantly restricted. In this

way, the photoemission spectrum will contain relatively few sharp lines whose positions are
determined by the energies of the multiplets.
Next, we discuss X-ray absorption. In an X-ray absorption experiment an electron from either
the 2p- or the 3p-shell absorbs an incoming X-ray photon and is promoted to the 3d-shell via a
dipole transition. In terms of electron configurations, the transition thus is 2p63dn → 2p53dn+1

(for definiteness we will always talk about the 2p-shell from now on). Of particular interest
here is the range of photon energies just above the threshold were the energy of the photon
is sufficient to lift the core electron to an unoccupied state. Above this threshold the X-ray
absorption coefficient κ(ω) rises sharply, which is called an absorption edge. The energy of
the edge thereby is characteristic for a given element so that one can determine unambiguously
which atom in a complex solid or molecule is probed. The ω-dependence of κ(ω) in an energy
range of a few eV above the absorption edge, called NEXAFS for Near Edge X-ray Absorption
Fine Structure, contains information about the initial state of the 3d-shell, i.e., its valence and
spin state, and this information can be extracted by using cluster calculations. The measured
quantity in this case is

κ(ω) = − 1

πZ
=

2∑
m=−2

∑
µ

e−βEµ
〈
Ψµ

∣∣∣∣D(n)
1

ω − (H − Eµ) + i0+
D(n)

∣∣∣∣Ψµ〉

=
1

Z

2∑
m=−2

∑
µ,ν

e−βEµ |〈Ψν |D(n)|Ψµ〉|2 δ(ω − (Eν − Eµ)). (19)

This is very similar to the single-particle spectral function (18), the only difference is that now
the dipole operator D(n) appears in place of the electron annihilation operator c3,2,m,σ. This
also implies that the number of electrons in the final states |Ψν〉 now is equal to that in the initial
states |Ψµ〉.
We again make the approximation to use the octahedral cluster to simulate this experiment. The
initial state for this experiment, 2p63dn, is simply the ground state of the cluster. More difficult
is the final state, 2p53dn+1. This has a hole in the 2p-shell so that the single-particle basis has
to be enlarged once more to comprise also the 6 spin-orbitals available for 2p electrons. We
may restrict the basis, however, to include only states with 5 electrons (or 1 hole) in these 6
spin-orbitals, so that the dimension of the Hilbert space increases only by a moderate factor of
6. The spin-orbit coupling constant JSO,2p in the 2p-shell of 3d transition-metals is of order
10 eV so we definitely need to include spin-orbit coupling in the 2p-shell. Here the forms (13)
and (14) with l = 1 can be used. The orbital angular momentum l = 1 and the spin of 1

2
can be

coupled to a total angular momentum of either J = 3
2

or J = 1
2
. Using the identity

〈L · S〉 =
1

2

(
J(J + 1)− L(L+ 1)− S(S + 1)

)
we expect a splitting of E 3

2
−E 1

2
= λSO

2
(15
4
− 3

4
) = 3λSO

2
. This means that we actually have two

edges, separated by 3λSO
2
≈ 10 − 15 eV for 2p core levels. The one for lower photon energy,



Multiplets in Transition-Metal Ions 5.23

m= −2 m= −1 m= 0 m= 1 m= 2

3d

2p

 

Fig. 5: An electron in the 3d-shell and an electron in the 2p-shell scatter from one another.

called the L3 edge, is due to electrons coming from 2P3/2, the one for higher photon energy
(L2-edge) due to electrons from 2P1/2. Since there are 4 2P3/2 states but only 2 2P1/2 states the
L3 edge has roughly twice the intensity of the L2 edge.
Next, there is the Coulomb interaction between the core-hole and the electrons in the d-shell.
For example, there may now be Coulomb scattering between a 2p and a 3d electron as shown
in Figure 5.
This, however, is again described by the corresponding Coulomb matrix element (9). Here now
one of the indices ν1 and ν2 and one of the indices ν3 and ν4 must refer to the 2p-orbital and
there are two possible combinations. If ν2 and ν3 refer to the 2p-orbital we have∑

k

ck(2,m1; 2,m4) c
k(1,m3; 1,m2) F

k(3, 2; 2, 1) .

The triangular condition for ck(1,m3; 1,m2) requires k ≤ 2. Since only Ylm with equal l and
hence with equal parity are combined in one ck only even k give nonvanishing contributions
and we have two relevant Coulomb integrals, F 0(2, 3; 2, 1) and F 2(2, 3; 2, 1).
If ν2 and ν4 refer to the 2p-orbital we have∑

k

ck(2,m1; 1,m4) c
k(2,m3; 1,m2)G

k(3, 2; 2, 1).

The triangular condition for both ck requires k ≤ 3. Since now Y1m and Y2m are combined in
one Gaunt coefficient only odd k contribute, so that we have two relevant exchange integrals,
G1(3, 2; 2, 1) and G3(3, 2; 2, 1). Apart from these minor changes, the implementation of the d-p
Coulomb interaction is exactly the same as for the d-d interaction.
The Coulomb interaction between electrons in the 2p-shell is definitely very strong, but it is
irrelevant because we are considering only states with a single hole in this shell. Since this hole
has no second hole to scatter from, the only effect of the Coulomb repulsion between electrons
in the 2p-shell is via the diagonal matrix elements which give a shift of the orbitals energy
ε2p. On the other hand ε2p merely enters the position of the absorption edge, which would be
≈ ε3d− ε2p, but not its spectral shape. Since we are not really interested in computing the onset
of the edge, the precise value of ε2p and hence the Coulomb interaction between 2p electrons is
not important. The CEF effect on the inner shell electrons is usually neglected.
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CoO

Fig. 6: Comparison of experimental 2p XAS-spectra and results from cluster calculations: NiO
(left) and CoO (right). Reprinted with permission from [22], Copyright 1999 by the American
Physical society, and with permission from [23].

Lastly, we discuss the dipole operator D(n). This involves the matrix element of n · r, where
n is the vector which gives the polarization of the X-rays. This can be rewritten as

n · r = r

√
4π

3

1∑
m=−1

ñm Y1,m(ϑ, ϕ) ,

where ñ1 = (−nx + iny)/
√

2, ñ0 = nz and ñ−1 = (nx + iny)/
√

2. It follows that

O(n) =
∑
m,m′

∑
σ

dm,m′ c†3,2,m,σ c2,1,m′,σ

dm,m′(n) = d ñm−m′ c1(2,m; 1,m′)

d =

∫ ∞
0

dr r3R3,2(r)R2,1(r) .

The factor of d merely scales the overall intensity of the spectrum and is largely irrelevant.
Combining all of the above one can compute X-ray absorption spectra. Figure 6 shows examples
from the literature where experimental 2p-XAS spectra for NiO and CoO are compared to
spectra obtained from the cluster model described above. In both cases one can see the splitting
of approximately 15 eV between the L3 and L2 edges. The edges have an appreciable fine
structure, however, which is reproduced well by theory. The spectrum for CoO is shown at
different temperatures and indeed has a significant temperature dependence. The origin of the
temperature dependence is as follows: Cobalt is Co2+ or d7 in CoO and the ground state of
d7 in cubic symmetry is a spin quartet and is orbitally three-fold degenerate so that the total
degeneracy is n = 12. In this situation, the weak spin-orbit interaction in the 3d-shell can lift the
12-fold degeneracy and produce several closely spaced eigenstates. The splitting between these
12 eigenstates is of the order of the spin-orbit coupling constant in the 3d-shell, λSO ≈ 50 meV,
and the higher lying states therefore may be thermally populated with increasing temperature
(see the Boltzmann factors in (19)). This leads to the temperature dependence of the spectra
which obviously is reproduced at least qualitatively by the cluster calculation.
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XPS and XAS experiments are often performed because for example the valence or the spin
state of the transition-metal ion in a given solid or molecule is unknown. Let us assume that
we have two possible states of the ion, |Ψ0〉 and |Ψ ′0〉, with energies E0 and E ′0 (for simplicity
we assume that these are nondegenerate). Then we may ask: how will the spectrum change if
we go from one ground state to the another? We note first that the final states |Ψν〉 and their
energiesEν in (18) and (19) are unchanged. What differs is first the energy differencesEν−E0.
However, since we do not know E0 and E ′0, otherwise we would know which one of them is
lower in energy and hence the ground state, the absolute position of the peaks in the spectrum is
of no significance. What is really relevant is the intensity of the peaks which involves the matrix
elements |〈Ψν |c|Ψ0〉|2 or |〈Ψν |D(n)|Ψ0〉|2. These matrix elements may change drastically when
the ground state wave function |Ψ0〉 changes and by comparing with cluster simulations the
shape of the spectrum can give information about the valence and spin state of the transition-
metal ion.
To summarize this section: multiplet theory is of considerable importance in the interpretation
of photoelectron spectroscopy and X-ray absorption. The simulated spectra usually show very
good agreement with experimental ones. All of this shows that the multiplets of the free ion
persist in the solid and that the proper description of the Coulomb interaction is crucial for the
description of these compounds.

5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells
leads to multiplet splitting. The multiplets may be viewed as collective excitations of the ‘not-
so-many-body-system’ formed by the electrons in a partially filled atomic shell. We have seen
that a relatively simple theory, essentially degenerate first order perturbation theory, describes
the energies of the multiplets quite well and gives a good description of the line spectra of free
atoms. When transition-metal atoms are embedded into a solid, the collective excitations of
the electrons in their partly filled 3d-shells are modified by the crystalline electric field of their
environment and by hybridization with orbitals on neighboring atoms. If these effects are taken
into account, which is relatively easy if one uses exact diagonalization, the resulting ‘extended
multiplet theory’ turns out to be spectacularly successful in reproducing a wide variety of ex-
perimental results for transition-metal compounds. Photoemission spectra, X-ray absorption
spectra, optical absorption spectra, electron spin resonance, and inelastic neutron scattering can
be interpreted in terms of multiplet theory. The often excellent agreement between theory and
experiment which can be thereby obtained is clear evidence that the multiplets of the free ion
are a reality also in solids, with the only modification being some additional splitting due to the
lowering of the symmetry and the modification of spectral intensities due to charge transfer. It
has to be kept in mind, however, that in order to obtain agreement with experiment it is crucial
to use the full Coulomb Hamiltonian, with its matrix elements expressed in terms of Slater-
Condon parameters and Gaunt coefficients. Put another way, we may summarize the present
lecture in three words: Multiplets do matter!
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A Gaunt coefficients

m m′ c0 7 c2 21 c4 a0 49 a2 441 a4 b0 49 b2 441 b4

±2 ±2 1 −2 1 1 4 1 1 4 1

±2 ±1 0
√

6 −
√

5 1 −2 −4 0 6 5

±2 0 0 −2
√

15 1 −4 6 0 4 15
±1 ±1 1 1 −4 1 1 16 1 1 16

±1 0 0 1
√

30 1 2 −24 0 1 30
0 0 1 2 6 1 4 26 1 4 36

±2 ∓2 0 0
√

70 1 4 1 0 0 70

±2 ∓1 0 0 −
√

35 1 −2 −4 0 0 35

±1 ∓1 0 −
√

6 −
√

40 1 1 16 0 6 40

Table 5: The Gaunt coefficients ck(2,m; 2,m′) and the products ak(2,m; 2,m′) and
bk(2,m; 2,m′)
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