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1 Introduction

The tight-binding method is the simplest fully quantum mechanical approach to the electronic
structure of molecules and solids. Although less accurate than density functional calculations
done with a good basis set, tight-binding calculations provide an appealingly direct and trans-
parent picture of chemical bonding [1–10]. Easily interpreted quantities such as local densities
of states and bond orders can be obtained from density-functional codes too, but emerge much
more naturally in a tight-binding picture. Another advantage of tight-binding calculations is that
they require much less computer time than more sophisticated electronic structure calculations,
whilst still producing qualitatively and often quantitatively correct results. Chemists also value
the efficiency and intuitive simplicity of the tight-binding method, although they usually refer
to it as Hückel theory.
In non-interacting systems, tight-binding calculations are so simple that analytic results are of-
ten attainable — a rare occurrence in the study of electrons in molecules and solids. Interacting
systems are much more difficult to deal with and the scope for analytic work is correspondingly
smaller, but the multi-band Hubbard model, which may be viewed as an interacting generaliza-
tion of a tight-binding model, forms the starting point of much of the work in the field.
Section 2 provides a simple introduction to tight-binding methods for non-interacting systems,
showing how to obtain the Hamiltonian matrix by choosing a basis of localized atomic-like
basis functions and using the variational principle. The distinction between the semi-empirical
and ab-initio tight-binding methods is clarified and a few example semi-empirical tight-binding
calculations are discussed.
Section 3 addresses the relationship between non-selfconsistent tight-binding models and density-
functional theory, which was not fully understood until the late eighties [11, 12].
Section 4 introduces the multi-band Hubbard generalization of the tight-binding approximation
and explains how it may be used to describe systems of interacting electrons. The rotational
symmetry of the Coulomb interaction places strong restrictions on the form of the electron-
electron interaction part of the multi-band Hubbard Hamiltonian: for an s shell the interaction
Hamiltonian has only one free parameter; for a p shell there are two free parameters; and for a
d shell there are three free parameters. It turns out that some of the most widely used Hubbard-
and Stoner-like models of interacting electrons are missing terms that must be present by sym-
metry and are not necessarily small [13].

2 Tight-binding models

All electronic structure methods require the calculation of sets of one-electron orbitals ψi(r).
In most cases, these are solutions of a non-interacting or mean-field Schrödinger equation of
the form1

1This chapter uses dimensionless equations involving only the numerical values of physical quantities. The
numerical values are as measured in Hartree atomic units, where the Dirac constant ~ = h/2π, the mass
of an electron me, and the elementary charge e are all equal to unity, and the permittivity of free space
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(
−1

2
∇2 + Veff(r)

)
ψi(r) = εiψi(r) . (1)

The effective potential Veff is a simple multiplicative function of position in density-functional
theory (DFT), but in Hartree-Fock theory it becomes a non-local integral operator, and in quasi-
particle theory it is both non-local and energy dependent.
Differential equations such as Eq. (1) are often solved by introducing a spatial grid and discretiz-
ing, but this approach is not much used in electronic structure theory. Instead, most electronic
structure methods represent the orbitals as linear combinations of basis functions and recast the
Schrödinger equation in matrix form. The finite-element approach so prevalent in engineering
also uses a basis set, although the basis functions in that case are polynomials defined within
polyhedral volume elements, patched together at the interfaces between elements. The clearest
way to explain the basis-set approach is via the variational principle.

2.1 Variational formulation of the Schrödinger equation

The problem of finding the eigenfunctions of a Hamiltonian Ĥ is equivalent to the problem of
finding the stationary points (by which, of course, I mean the stationary wave functions) of the
functional

E[ψ] = 〈ψ|Ĥ|ψ〉 (2)

subject to the normalization constraint

N [ψ] = 〈ψ|ψ〉 = 1 . (3)

The constrained minimum value of E[ψ] is the ground-state eigenvalue; the values of E[ψ] at
other stationary points are excited-state eigenvalues.
Suppose we make a guess, ψ̃i, at the i’th energy eigenfunction ψi. We can then write

ψ̃i =
ψi +∆ψi

〈ψi +∆ψi|ψi +∆ψi〉1/2
,

where ∆ψi is small if the guess is good. Since E[ψ] is stationary with respect to normalization-
conserving variations about ψi, the energy estimate

E[ψ̃i] = εi +O[(∆ψi)2]

has a second-order error. If ∆ψi is small, the error in εi is even smaller.
The practical importance of this simple observation is hard to exaggerate. It explains why
variational approaches often yield reliable energies even when the approximate eigenfunctions
are quite poor.

ε0 is equal to 1/(4π). Distances are made dimensionless by dividing by the Hartree atomic unit of length,
a0 = 4πε0~2/(mee

2) ≈ 0.529 × 10−10 m, also known as the Bohr radius. Energies are made dimensionless
by dividing by the Hartree atomic unit of energy, ~2/(ma20) = e2/(4πε0a0) ≈ 27.2 eV.
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A convenient way to guess a wave function is to choose a finite set of M basis functions,
{φ1(r), φ2(r), . . . , φM(r)}, and express ψ̃(r) as a linear combination:

ψ̃(c, r) =
M∑
α=1

cα φα(r) . (4)

Basis sets commonly used to approximate the energy eigenfunctions of atoms, molecules and
solids include atom-centered Gaussians, plane waves, and atomic orbitals. The values of the
expansion coefficients can be chosen by seeking the stationary points of

E[ψ̃] = E(c) =

∫ ( M∑
α=1

cαφα

)∗
Ĥ

(
M∑
β=1

cβφβ

)
d3r =

M∑
α,β

c∗αHαβ cβ , (5)

subject to the normalization constraint

N [ψ̃] = N(c) =

∫ ( M∑
α=1

cαφα

)∗( M∑
β=1

cβφβ

)
d3r =

M∑
α,β

c∗α Sαβ cβ = 1 , (6)

where

Hαβ ≡
∫
φ∗αĤφβ = Hamiltonian matrix, (7)

Sαβ ≡
∫
φ∗αφβ = overlap matrix. (8)

Given a basis set, the Hamiltonian and overlap matrix elements must be obtained by integration.
The integrals can be evaluated analytically in some cases, but usually have to be estimated
numerically, perhaps using a grid-based quadrature method. Some basis sets (such as plane
waves) are orthonormal, in which case Sαβ = δαβ is the identity matrix. The Hamiltonian and
overlap matrices are always Hermitian.
By choosing a finite basis set, we have replaced the problem of finding the stationary points
of a functional E[ψ̃] by the problem of finding the stationary points of a function of many
variables E(c1, c2, . . . , cM). This is a great simplification. If the basis set is poor, the functions
ψ̃(r) =

∑M
α=1 cα φα(r) that make E(c1, c2, . . . , cM) stationary subject to the normalization

constraint
∑

α,β c
∗
α Sαβ cβ = 1 may not be very similar to the exact eigenfunctions, but at least

we will have the variational principle in our favor when evaluating energies.
It is straightforward to show that E(c) is stationary subject to N(c) = 1 when

M∑
β=1

Hαβ cβ = ε̃

M∑
β=1

Sαβ cβ , (9)

where ε̃ is a Lagrange multiplier for the normalization constraint. This generalized Hermitian
matrix eigenproblem (“generalized” because of the presence of a positive-definite Hermitian
overlap matrix S) yields M real eigenvalues ε̃i and M eigenvectors ci with components ciα,
α = 1, 2, . . . ,M . The corresponding approximate eigenfunctions are

ψ̃i(r) =
M∑
α=1

ciαφα(r) . (10)
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Standard computational libraries such as LAPACK contain robust and well-tested subroutines
for solving generalized eigenvalue problems.
Another way to think about the linear variational method is in terms of projection operators. The
generalized matrix eigenproblem of Eq. (9) may be derived by seeking the stationary points of
〈ψ|P̂ ĤP̂ |ψ〉 subject to the normalization constraint 〈ψ|P̂ |ψ〉 = 1, where P̂ is the projector
onto the space spanned by the basis functions. The linear variational method produces exact
eigenfunctions of the projected Hamiltonian ĤP ≡ P̂ ĤP̂ .
The Rayleigh-Ritz variational principle tells us that M approximate eigenvalues, ε̃1, ε̃2, . . .,
ε̃M , obtained by solving a linear variational problem with a basis set of M functions are upper
bounds for the corresponding exact eigenvalues:

ε̃1 ≥ ε1, ε̃2 ≥ ε2, . . . , ε̃M ≥ εM .

Improving or extending the basis set can only lower these bounds. This convenient systematic
convergence underlies the success of the linear variational approach and explains why it is so
frequently used to solve the Schrödinger equation.

2.2 The tight-binding Hamiltonian matrix

If the basis functions used in the linear variational method are atomic or atomic-like orbitals,
the generalized matrix eigenvalue problem is called a tight-binding model. The phrase “atomic-
like” refers to orbitals that resemble atomic orbitals in form but have been modified in some
way. Atomic orbitals centered on different atoms are not automatically orthogonal, so one com-
mon modification is to replace them by orthogonalized linear combinations. More generally,
since there is no guarantee that atomic orbitals are a good basis for the strongly delocalized
energy eigenfunctions found in many molecules and solids, one can often gain accuracy by
changing the atomic orbitals in simple ways, using the variational principle as a guide. A more
extreme approach is to replace the atomic orbitals by localized linear combinations of exact
energy eigenfunctions for the solid, guaranteeing that the basis set is able to represent those
eigenfunctions exactly.

2.2.1 Ab initio tight binding

The most straightforward way to construct a tight-binding model is to choose an atomic-like
basis set and evaluate the Hamiltonian and overlap matrix elements defined in Eqs. (7) and (8).
If the basis functions and (pseudo-)potential are represented as linear combinations of Gaus-
sians, the necessary integrals can be evaluated analytically, but in most other cases they must
be found using numerical quadrature methods. If one is willing to evaluate the matrix elements
repeatedly as the charge density iterates to self-consistency and the effective potential changes
(see Sec. 3 for a fuller discussion), this ab initio tight-binding approach [14–16, 7] can be used
to solve the full DFT or Hartree-Fock equations.
When used in this manner, the tight-binding method differs little from the atom-centered Gaus-
sian methods used by quantum chemists. There is, however, a difference of emphasis: scientists
who label their approach as tight binding use minimal basis sets, often consisting of just a few
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basis functions on each atom. They view the loss of accuracy caused by the limitations of
the basis as a price worth paying for the sake of simplicity. Most quantum chemists prefer to
increase the number of Gaussians until the results of their calculations converge.
Using a minimal basis set of atomic-like functions is most successful when the distances be-
tween atoms are reasonably large compared with the ranges of the basis functions. This is
known as the tight-binding limit. In nearly-free-electron sp-bonded metals such as aluminium,
where the valence wave functions look more like plane waves than atomic orbitals, minimal
tight-binding basis sets are not very effective. This does not prevent the use of ab initio tight
binding, but means that more basis functions are required to obtain accurate results. In d- and
f -electron metals, the tight-binding description works better for the d and f bands than for the
more delocalized s and p bands.
It is tempting to avoid the complication of dealing with an overlap matrix by orthogonalizing the
basis functions. This is easily accomplished using the modified Gram-Schmidt algorithm or by
multiplication with the inverse square root of the overlap matrix (which always exists because
S is Hermitian and positive definite). In most cases, however, orthonormalizing the atomic-like
basis functions is a bad idea. Generalized eigenvalue problems are not much harder to solve than
ordinary eigenvalue problems, so little computer time is saved, but the complexity of the method
is increased because the orthonormalized basis functions include contributions from atomic-like
orbitals centered on several different atoms and lack the simple rotational symmetries of atomic-
like orbitals. The complicated dependence of the orthonormalized orbitals on the local crystal
structure also makes it harder to find simple parametrizations of the Hamiltonian matrix.

2.2.2 Wannier tight binding

A more sophisticated approach to ab initio tight binding is to use a basis of localized linear
combinations of exact eigenfunctions; these are called Wannier functions by physicists and
Foster-Boys orbitals by chemists [17,18]. Since there is one Wannier function for every energy
eigenfunction, the Wannier functions span the band(s) from which they were created. Solving
the tight-binding matrix eigenvalue problem in the Wannier function basis therefore reproduces
those energy bands and eigenfunctions exactly. This means that using the Wannier basis for, say,
electronic transport calculations, ought to give accurate results. The “maximally localized” [18]
Wannier bonding orbitals for Si and GaAs are illustrated in Fig. 1.
Wannier-based tight-binding methods preserve many of the advantages of simpler tight-binding
approaches without the inaccuracy, but Wannier functions are complicated in form and hard
to calculate without solving the Schrödinger equation. Furthermore, although carefully con-
structed Wannier functions decay exponentially with distance away from the atom or bond on
which they are centered [18], they may not decay rapidly. The Hamiltonian and overlap matrices
can be quite long-ranged and may have non-zero matrix elements between Wannier functions
on distant atoms, making them inconvenient to use. Finally, if an atom moves, the Wannier
functions and all matrix elements involving them have to be recalculated from scratch, which is
inefficient.
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Fig. 1: Maximally-localized Wannier functions constructed from the four valence bands of Si
(left) and GaAs (right; Ga at upper right, As at lower left). The Wannier functions are real and
have opposite sign on the blue and red isosurfaces. Not surprisingly, the functions look like σ-
bonded combinations of sp3 hybrid orbitals. (Reprinted figure with permission from Ref. [18],
Copyright 2012 by the American Physical Society.)

2.2.3 Semi-empirical tight binding

A much simpler approach is semi-empirical tight-binding [2, 3], in which the Hamiltonian and
overlap matrix elements are treated as adjustable parameters and fitted to the results of exper-
iments or more sophisticated calculations. The basis functions never appear explicitly and are
used only to help justify the chosen forms of the Hamiltonian and overlap matrices. To limit
the number of fitting parameters, it is normally assumed that the inter-atomic matrix elements
extend to first or second neighbors only. Many semi-empirical tight-binding models also set
the overlap matrix to the identity, assuming implicitly that the underlying basis set has been
orthonormalized.
The drawbacks of this approach are obvious: it is approximate and may or may not give accurate
results; but it does incorporate the essential wave-like physics described by the Schrödinger
equation. To the best of my knowledge, it is the least computationally intensive fully quantum
mechanical method available. To show what can be done using relatively modest computational
resources, Fig. 2 is a snapshot from a 95 fs semi-empirical tight-binding molecular-dynamics
simulation of a radiation damage cascade in a box of 13,440 Cu atoms subject to periodic
boundary conditions.

2.2.4 One-, two- and three-center integrals

In an attempt to simplify the construction of semi-empirical tight-binding models, various ap-
proximations are made. The tight-binding description of the electronic structure of a given
crystal structure then requires only a handful of fitting parameters. If the tight-binding model is
to be used in a molecular-dynamics simulation, where the atoms are moving and the structure
is changing, these parameters become functions of the local structure of the solid. For example,
a Hamiltonian or overlap matrix element involving atomic-like basis functions on two different
atoms is a function of the separation between those atoms and perhaps also of the positions of
other neighboring atoms.
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Fig. 2: The final configuration of a 95 fs tight-binding molecular dynamics simulation of a
radiation damage cascade in Cu. The cascade was initiated by giving 1 keV of kinetic energy
to a single atom in the middle of a simulation cell of 13,440 atoms. Only atoms that have
moved significantly are shown. One of the advantages of the tight-binding method relative to
classical force-field methods is that it has access to electronic properties. Here we show the
instantaneous atomic charges.

The most useful approximation concerns the form of the potential Veff(r), which is often as-
sumed to be a superposition of short-ranged spherical contributions, one centered on each atom:

Veff(r) ≈
∑
I

Veff,I(|r − dI |) , (11)

where dI is the position of the nucleus of atom I (or the ionic core of atom I if, as is usual,
the tight-binding model describes the valence electrons only). DFT calculations for many
molecules and solids have shown that Eq. (11) is often quite a good approximation.
A general Hamiltonian matrix element between basis function α on atom I and basis function
β on atom J then takes the form:

HIα,Jβ = 〈φIα|Ĥ|φJβ〉 = 〈φIα|
(
− 1

2
∇2 +

∑
K

Veff,K(|r − dK |)
)
|φJβ〉 . (12)

If I and J happen to be the same, I = J , the matrix element includes one- and two-center
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contributions:

〈φIα|Ĥ|φIβ〉 = 〈φIα|
(
−1

2
∇2 + Veff,I

)
|φIβ〉︸ ︷︷ ︸

one-center

+
∑
K (6=I)

〈φIα|Veff,K |φIβ〉︸ ︷︷ ︸
two-center crystal field

. (13)

The one-center term can be calculated considering a single spherical atom in isolation. The
two-center crystal-field terms, which are often ignored, depend on the relative positions of two
different atoms and describe how the Hamiltonian matrix elements between orbitals centered
on atom I are affected by the potential of atom K.
If I and J differ, the Hamiltonian matrix elements include two- and three-center contributions:

〈φIα|Ĥ|φJβ〉 = 〈φIα|
(
−1

2
∇2 + Veff,I + Veff,J

)
|φJβ〉︸ ︷︷ ︸

two-center electron hopping

+
∑

K (6=I,J)

〈φIα|Veff,K |φJβ〉︸ ︷︷ ︸
three-center

. (14)

The two-center electron hopping contributions are the same as in a dimer involving atoms I and
J only and can be calculated without considering the rest of the solid. The three-center contri-
butions are typically small and, like the crystal-field terms, are often ignored. (Both crystal-field
and three-center terms are normally retained in ab initio tight-binding calculations.) The overlap
matrix elements can be decomposed in an analogous manner, but include one- and two-center
contributions only.
If we make the two-center approximation (ignore all three-center integrals) and neglect crystal-
field terms, the Hamiltonian matrix for a solid or molecule becomes very simple. It contains
one-center terms, which can be calculated by considering an isolated “atom” with a spherical
Hamiltonian, and two-center electron hopping terms, which can be calculated by considering
an isolated “dimer” with a cylindrical Hamiltonian. The words “atom” and “dimer” are in quo-
tation marks because the potential Veff,I associated with atom I may not resemble the potential
of an isolated atom and may depend on the environment in which atom I is located.

2.2.5 Slater-Koster parameters

Most tight-binding models use atomic-like basis functions of the form Rnl(r)Ỹ
m
l (θ, φ), where

Rnl(r) is a radial function, Ỹ m
l (θ, φ) is a real spherical harmonic defined by

Ỹ m
l =

1

i
√
2

[
(−1)mY −ml − Y m

l

]
, m < 0, (15)

Ỹ m
l = Y m

l , m = 0, (16)

Ỹ m
l =

1√
2

[
(−1)mY m

l + Y −ml

]
, m > 0, (17)

and Y m
l is a conventional complex spherical harmonic. The real spherical harmonics are the

Cartesian s, p and d orbitals familiar from high-school chemistry lessons and are illustrated in
Figs. 3 and 4.
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Fig. 3: The real spherical harmonics Ỹ 1
1 = px, Ỹ −11 = py and Ỹ 0

0 = pz. The distance from the
origin to the surface in direction (θ,φ) is proportional to |Ỹ m

l (θ, φ)|2

Fig. 4: The l = 2 real spherical harmonics Ỹ −22 = dxy, Ỹ −12 = dyz, Ỹ 1
2 = dzx, Ỹ 2

2 = dx2−y2 ,
and Ỹ 0

2 = d3z2−r2 . The distance from the origin to the surface in direction (θ,φ) is proportional
to |Ỹ m

l (θ, φ)|2

Because the effective potential Veff,I of an atom is assumed to be spherically symmetric, there
is only one non-zero one-center matrix element for every distinct choice of the compound in-
dex nl. Two-center matrix elements may be calculated by considering an isolated dimer with
effective potential Veff,I + Veff,J . If this dimer is aligned with the z axis, the z-component of
angular momentum is a good quantum number and matrix elements between basis functions
with different values of the azimuthal quantum number m are zero. This reduces the number of
non-zero two-center matrix elements substantially.

As an example, consider a dimer oriented along the z axis. One of the two atoms has a valence
shell of p orbitals and the other a valence shell of d orbitals. For simplicity, we assume that the
basis set is orthonormal, implying that the orbitals on the two atoms have been orthogonalized
in some way. The non-zero one-center matrix elements involving orbitals on the first atom all
have the same value, which we call Vp; the one-center matrix elements involving orbitals on the
second atom are all equal to Vd. The non-zero hopping matrix elements linking the two atoms
have only two possible values, hpdσ and hpdπ, corresponding to pairs of orbitals with m = 0

or m = 1. Since no p orbital has m = ±2, there are no non-zero hopping matrix elements
with m = ±2, even though there are d orbitals with m = ±2 on the second atom. Thus, the
electronic structure of the dimer is defined by just four numbers. Quantities such as Vp, Vd,
hpdσ, and hpdπ are called Slater-Koster parameters [1].



Tight-Binding Models and Coulomb Interactions 3.11

Fig. 5: A two-center matrix element between pz orbitals on atoms I and J separated by the
vector dIJ = dJ − dI . Each pz orbital may be expressed as a linear combination of px, py and
pz orbitals quantized relative to the dIJ axis, so the matrix element is a linear combination of
the Slater-Koster parameters hppπ and hppσ.

We have not yet worked out how to evaluate two-center Hamiltonian matrix elements for dimers
not aligned with the global z axis. An example of this problem is shown in Fig. 5. The two pz
orbitals are neither parallel nor perpendicular to the dimer axis dIJ , so the two-center hopping
matrix element between them is neither hppσ (the value for two p orbitals pointing along dIJ )
nor hppπ (the value for two p orbitals pointing perpendicular to dIJ ). Fortunately, rotating a
real spherical harmonic Ỹ m

l always produces a linear combination of real spherical harmonics
with the same value of l but different values of m. More precisely, if the operator R̂ω rotates
the function to which it is applied by ω radians about an axis parallel to the unit vector ω̂, the
rotated real spherical harmonic R̂ωỸ m

l can be expressed as a linear combination of the 2l + 1

unrotated real spherical harmonics with the same value of l:

R̂ωỸ m
l =

l∑
m′=−l

D̃l
m′,m(ω) Ỹ

m′

l . (18)

This allows us to express the orbitals pictured in Fig. 5 as linear combinations of orbitals aligned
with the dimer axis, and hence to express the two-center Hamiltonian and overlap matrix ele-
ments for the tilted dimer in terms of the Slater-Koster parameters. Slater and Koster [1] provide
a convenient table expressing the two-center matrix elements of the rotated dimer in terms of
the Slater-Koster parameters and the direction cosines of the dimer axis. Given the one-center
Slater-Koster parameters for all atom types and the two-center Slater-Koster parameters for all
pairs of atom types at all inter-atomic separations, one can use this table to write down the
two-center tight-binding Hamiltonian for any molecule or solid built of those atoms.

2.2.6 Fitting and transferability

Semi-empirical tight-binding Hamiltonian and overlap matrix elements (if the model is non-
orthogonal) are often fitted to bandstructures. This makes sense if individual electronic eigen-
values and eigenfunctions are the quantities of interest, as is the case, for example, in electronic
transport calculations, but is not appropriate if the tight-binding model is to be used to calculate
total energies or inter-atomic forces. In that case it is better to fit to total energies and/or forces
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calculated for a variety of structures using a more accurate method such as DFT with a good
basis set. The wider the range of local atomic environments included in the data set, the better
the results. Large tabulations of fitted tight-binding parameters are available [19].
It would be impractical to refit the parameters of a tight-binding model for every different ar-
rangement of the ions in a molecular dynamics simulation, so assumptions have to be made
about how the matrix elements between nearby orbitals depend on ionic positions. The short
range of the atomic-like basis functions, and the observation that the form of the potential in
one region of a solid or molecule does not normally depend strongly on the positions of distant
atoms, suggest that only the local ionic arrangement is important. It does not, however, imply
that the mapping from ionic positions to matrix elements is simple. If the assumptions made
in parametrizing a tight-binding model are wrong or inaccurate, it is likely to produce poor re-
sults whenever the local ionic arrangement is far from any of the arrangements included in the
training set. In such cases we say that the tight-binding model is not “transferable”.
In general, despite all the work that has been done, parametrizing and fitting semi-empirical
tight-binding models remains a dark art. Some of the most successful attempts [20] are among
the simplest and were constructed using very little data, while highly-fitted models often prove
brittle and show poor transferability. The problem of constructing a transferable semi-empirical
tight-binding model is similar in nature to the problem of constructing a transferable classical
force field and leads to similar frustrations. Tight-binding models are better than force fields
because they are properly quantum mechanical — but they are only an approximation. As we
illustrate with a few examples below, semi-empirical tight-binding is at its best when used to
build a qualitative understanding of chemical bonding.

2.3 Example semi-empirical tight-binding calculations
2.3.1 The hydrogen molecule

Two hydrogen atoms are held a distance d apart and approximated using a tight-binding model
with a single atomic-like s orbital on each atom. The Hamiltonian and overlap matrices are

H =

(
V h

h V

)
and S =

(
1 s

s 1

)
. (19)

The eigenvectors are

e+ =
1√

2(1 + s)

(
1

1

)
and e− =

1√
2(1− s)

(
1

−1

)
, (20)

normalized such that
e†i S ej = δij, (21)

as is appropriate for a generalized eigenvalue problem. The corresponding eigenvalues are

ε± =
V ± h
1± s

. (22)

It is reassuring to see the bonding and anti-bonding linear combinations of basis functions
emerge naturally from the analysis.
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VV

h

h

Lattice parameter a

Fig. 6: A schematic representation of the tight-binding Hamiltonian matrix of a ring of hydrogen
atoms subject to periodic boundary conditions.

2.3.2 Bandstructure of a ring of hydrogen atoms

Consider a chain of N hydrogen atoms subject to periodic boundary conditions (i.e., with the
ends joined together to form a ring). A schematic representation of the Hamiltonian matrix is
shown in the Fig. 6. As in the case of the H2 molecule, there are on-site (diagonal) Hamiltonian
matrix elements V and nearest-neighbor hopping matrix elements h. This time, however, we
assume for simplicity that the basis set is orthonormal. We shall also assume, as usually turns
out to be the case, that h is negative. The Hamiltonian is an N × N matrix with N large, so it
looks as if it will be difficult to find the eigenvalues and eigenvectors. If we remember to use
Bloch’s theorem, however, the problem becomes simple.

A normalized Bloch-like linear combination of basis functions takes the form

|ψkp〉 =
1√
N

N−1∑
n=0

|φn〉 eikpna , (23)

where

kp =
2πp

Na
with p = 0, 1, 2, . . . , N − 1, (24)

and a is the bond length. The values of kp are chosen such that |ψkp〉 satisfies the periodic bound-
ary conditions: 〈φ0|ψkp〉 = 〈φN |ψkp〉. Since exp (ikp+Nna) = exp (ikpna) for any integer n,
we lose nothing by restricting p to the range 0 ≤ p < N .

Applying the projected Hamiltonian ĤP =
∑

m,n |φm〉Hmn〈φn| to the Bloch function |ψkp〉
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h hg g

1 1 12 2 2

Fig. 7: A schematic representation of the tight-binding Hamiltonian matrix of part of a large
ring of diatomic molecules subject to periodic boundary conditions.

gives

ĤP |ψkp〉 =
1√
N

N−1∑
n=0

ĤP |φn〉

=
1√
N

N−1∑
n=0

(
V |φn〉+ h|φn−1〉+ h|φn+1〉

)
eikpna

= V

(
1√
N

N−1∑
n=0

|φn〉eikpna
)

+ heikpa

(
1√
N

N−1∑
n=0

|φn−1〉eikp(n−1)a
)

+ he−ikpa

(
1√
N

N−1∑
n=0

|φn+1〉eikp(n+1)a

)
. (25)

Noting that |φ−1〉 ≡ |φn−1〉 and |φN〉 ≡ |φ0〉 because of the periodic boundary conditions, this
simplifies to

ĤP |ψkp〉 =
[
V + h(eikpa + e−ikpa)

]
|ψkp〉, (26)

showing that |ψkp〉 is an eigenfunction of ĤP with eigenvalue

ε(kp) = V + 2h cos(kpa) . (27)

As the size N of the ring increases, the allowed values of kp get closer and closer together
and the cosinusoidal bandstructure of the infinite tight-binding ring is sampled more and more
densely.

2.3.3 Bandstructure of a ring of diatomic molecules

The tight-binding model pictured in Fig. 7 has two orbitals per unit cell and produces two energy
bands. There are N unit cells (2N atoms) altogether and N inequivalent values of k consistent
with the periodic boundary conditions. For simplicity we set the diagonal Hamiltonian matrix
elements V1 and V2 to zero; the nearest-neighbor off-diagonal Hamiltonian matrix elements h
and g (both of which are < 0) alternate along the chain.
Since we have two basis functions per unit cell, we can construct two Bloch functions at each
allowed value of k:

|ψ(1)〉 = 1√
N

∑
n

eikn2a|φn,1〉, |ψ(2)〉 = 1√
N

∑
n

eikn2a|φn,2〉,
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Fig. 8: The bandstructure of the tight-binding ring of dimers in the limit as the number N of
two-atom unit cells tends to infinity. There are two bands because there are two basis functions
per unit cell.

where |φn,1〉 and |φn,2〉 are the two basis functions in unit cell n. The unit cell now has length
2a, so the Brillouin zone is −π/(2a) ≤ k < π/(2a). The corresponding vectors of orbital
coefficients, c(1) and c(2), with components

c
(1)
n,1 =

1√
N
eikn2a, c

(1)
n,2 = 0,

and

c
(2)
n,1 = 0, c

(2)
n,2 =

1√
N
eikn2a,

satisfy

Hc(1) = hc(2) + ge+ik2ac(2),

Hc(2) = hc(1) + ge−ik2ac(1),

where H is the 2N × 2N Hamiltonian matrix. It follows that the linear combination v =

α1c
(1) + α2c

(2) is an eigenvector ofH if(
0 h+ ge−ik2a

h+ geik2a 0

)(
α1

α2

)
= λ

(
α1

α2

)
.

The two energy eigenvalues ε±(k) at wavevector k are the eigenvalues of this 2 × 2 matrix.
Writing h = (1 +∆)h0 and g = (1−∆)h0, some algebra shows that

ε±(k) = ±2|h0|
√
1− (1−∆2) sin2(ka) .

Fig. 8 shows the bandstructure in the case when ∆ = 0.1.
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Fig. 9: The N1×N2×N3 parallelepiped supercell to which periodic boundary conditions are
applied.

2.3.4 Bandstructure of a face-centered-cubic solid

Consider a large but finite face-centered-cubic crystal consisting of a block of N1 × N2 × N3

parallelepiped unit cells, as illustrated in Fig. 9. Apply periodic (not Bloch) boundary condi-
tions, so that an electron leaving one face of the block immediately reappears at the equivalent
point on the opposite face. The primitive Bravais lattice vectors are

A1 =
a

2
(0, 1, 1) , A2 =

a

2
(1, 0, 1) , A3 =

a

2
(1, 1, 0) , (28)

and the corresponding reciprocal vectors are

B1 =
2π

a
(−1, 1, 1) , B2 =

2π

a
(1,−1, 1) , B3 =

2π

a
(1, 1,−1) . (29)

The N1N2N3 distinct k vectors consistent with the periodic boundary conditions are

k =
m1

N1

B1 +
m2

N2

B2 +
m3

N3

B3 with 0 ≤ m1<N1, 0 ≤ m2<N2, 0 ≤ m3<N3. (30)

As in the previous examples, we approximate the system as an orthogonal tight-binding model
with one atomic-like s orbital per atom. The diagonal matrix elements Vs are set to zero (defin-
ing the zero of energy) and the nearest-neighbor hopping matrix elements are equal to h. Matrix
elements linking orbitals on more distant neighbors are assumed to be zero. The Bloch linear
combinations of basis functions are

|ψk〉 =
1√

N1N2N3

∑
d

|φd〉 eik·d , (31)

where the sum is over the positions d of all N1N2N3 atoms in the block and |φd〉 is the basis
function on the atom at d. Eq. (31) is a three-dimensional analogue of the one-dimensional
Bloch linear combination used in Sec. 2.3.2.
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Applying the projected Hamiltonian ĤP =
∑
d,d′ |φd〉Hd,d′ 〈φd′| to the Bloch linear combina-

tion gives

ĤP |ψk〉 =
1√

N1N2N3

∑
d

ĤP |φd〉eik·d

=
1√

N1N2N3

∑
d′

∑
d

|φd′〉〈φd′|ĤP |φd〉eik·d

=
1√

N1N2N3

∑
d′

|φd′〉eik·d
′∑
d

〈φd′|ĤP |φd〉eik·(d−d
′). (32)

The only non-zero contributions to the inner summation are those for which d is a nearest neigh-
bor of d′, in which case the matrix element is equal to h. The summation over all lattice vectors
d may therefore be replaced by a summation over the positions of the 12 nearest neighbors of
the atom at d′. Denoting the vectors from the atom at d′ (or any other lattice site) to its 12
nearest neighbors by n, we obtain

ĤP |ψk〉 =
1√

N1N2N3

∑
d′

|φd′〉eik·d
′∑
n

heik·n =

(
h
∑
n

eik·n

)
|ψk〉 (33)

Just as for a ring of hydrogen atoms, the Bloch functions are automatically eigenvalues of the
tight-binding Hamiltonian. This is generally the case when there is only one basis function per
unit cell, since the translational symmetry is then sufficient to determine the energy eigenfunc-
tions completely. The sum over the 12 nearest neighbors is easily evaluated to obtain

ε(k) = 4h

[
cos

(
kya

2

)
cos

(
kza

2

)
+ cos

(
kza

2

)
cos

(
kxa

2

)
+ cos

(
kxa

2

)
cos

(
kya

2

)]
.

This simple expression provides an accurate description of the bandstructure of any face-cen-
tered-cubic crystal of weakly-interacting atoms with outermost s shells. All of the Noble gases
except helium crystallize into face-centered cubic structures under sufficient pressure, and all
have bandstructures of this form.

3 Tight-binding models and density-functional theory

3.1 Introduction

Section 2 showed how the tight-binding approximation can be used to find approximate solu-
tions of one-particle Schrödinger equations of the form[

−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r). (34)

This is useful but by no means the end of the story, since tight-binding models are also used
to describe how the total energy of a solid or molecule varies as the atoms move around [2,
3, 7, 9, 11, 12, 14, 15]. Any tight-binding model capable of providing a reliable account of the
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structure-dependent total energy can be used as an engine for the calculation of the inter-atomic
forces (gradients of the total energy with respect to atomic positions) required for quantum
molecular dynamics simulations. Tight-binding quantum molecular dynamics simulations are
less accurate than their DFT equivalents but require much less computer power.
If one wishes to describe total energies, calculating the electronic eigenvalues εi of the occupied
valence states is not sufficient [21]. The total energy also includes another term that represents,
roughly, the repulsive interaction between the ionic cores:

ETB
total(d) =

∑
i occ

εi(d) + Eion-ion(d), (35)

where d ≡ {d1,d2, . . . ,dNI
} is shorthand for the set of all ionic positions. (The dependence

of the electronic eigenvalues εi on d arises via the position dependence of the Hamiltonian and
overlap matrix elements.) The ion-ion interaction energy Eion-ion(d) must also be parametrized
and/or fitted and is often but not always assumed to be pairwise in form:

Eion-ion(d) =
∑
I>J

V pair
ion-ion(dI − dJ), (36)

where the sum is over all pairs I and J of ions and dI and dJ are the corresponding ionic
positions.
The form of Eq. (35) is reminiscent of the expression for the total energy in Hohenberg-Kohn-
Sham DFT,

E =
∑
i occ

εi−
∫
VKS([n], r)n(r) d

3r+

∫
Vnuc(r)n(r) d

3r+
1

2

∫∫
n(r)n(r′)

|r − r′|
d3r′d3r+Exc[n]+Enn,

(37)
where n(r) is the electron number density and the eigenvalues are solutions of the Kohn-Sham
equation, which looks like Eq. (34) with a density-dependent effective potential of the form:

VKS([n], r) = Vnuc(r) +

∫
n(r′)

|r − r′|
d3r′ + Vxc([n], r). (38)

The first term on the right-hand side of Eq. (38) is the potential exerted on the electrons by the
classical, point-like nuclei; the second, known as the Hartree term, is the Coulomb potential
of the electron charge cloud; and the third is the exchange-correlation potential, which is dis-
cussed below. The second term on the right-hand side of Eq. (37) cancels the potential energy
contribution to the sum of energy eigenvalues, leaving only the kinetic energy contribution;
the third, fourth and fifth terms add the energy of interaction between the electrons and nuclei,
the Coulomb interaction energy of the electronic charge cloud, and the exchange-correlation
energy. The final term is the classical Coulomb interaction energy of the nuclei with each other.
A recap of the basics of DFT is given in Sec. 3.2 below. For the time being, we note only
that the DFT total-energy expression, which experience has shown is usually very accurate,
consists of a sum of eigenvalues and additional “ion-ion repulsion” terms. This looks quite
like the tight-binding total energy expression, except that: (i) the DFT ion-ion repulsion terms
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are density dependent and not obviously simple or pairwise; and (ii) the Kohn-Sham effective
potential depends on the electron density n(r), which in turn depends on the eigenfunctions via
n(r) =

∑
i occ |ψi(r)|2.

The dependence of the Kohn-Sham potential on the wavefunctions obtained by solving the
Kohn-Sham equation means that an iterative method of solution is required. The first step is
to guess an input electron density nin(r), which might perhaps be a superposition of atomic
densities. The corresponding Kohn-Sham potential VKS([n

in], r) can then be calculated and
the Kohn-Sham equation solved to find the output wavefunctions and hence the output den-
sity nout(r) =

∑
i occ |ψout

i (r)|2. The input and output densities differ in general, so the next
step is to adjust the input density to try to reduce the difference between the input and output
densities. After an iterative series of adjustments, a “self-consistent” electron density n0(r)

is obtained, for which the wavefunctions ψ0i(r) obtained by solving the Kohn-Sham equation
with input potential VKS([n0], r) regenerate n0(r) exactly. In tight-binding total energy calcula-
tions, by contrast, the Schrödinger equation only has to be solved once and no self-consistency
is required.
The aim of the rest of this section is to explain the link between DFT and tight-binding theory.
Can we derive a non-selfconsistent tight-binding model with a simple ion-ion repulsion term
from the much more complicated self-consistent formalism of DFT?

3.2 Review of density-functional theory

Density-functional theory [22, 23] looks like a mean-field theory, but is remarkable because it
provides an exact mapping from a system of interacting electrons to a system of non-interacting
electrons moving in an effective potential that depends on the electron density. Solving the
self-consistent non-interacting problem gives, in principle, the exact interacting ground-state
energy E0 and electron density n0(r) for any given arrangement of the nuclei. The success of
DFT, which appears to be a theory of non-interacting electrons but in fact describes a system
of interacting electrons, in part explains the success of the “standard model” of a solid as an
assembly of non-interacting electrons moving in a fixed external potential.

3.2.1 Preliminaries

The N -electron eigenfunctions Ψ(r1, r2, . . . , rN) of any finite collection of atoms satisfy the
many-electron Schrödinger equation:(

−1

2

∑
i

∇2
i +

∑
i>j

1

|ri − rj|
−
∑
i

∑
I

ZI
|ri − dI |

+
∑
I>J

ZIZJ
|dI − dJ |

)
Ψ = EΨ, (39)

where ri is the position of electron i and ZI is the atomic number of atom I at position dI . For
simplicity, we shorten this to (

T̂ + V̂ee + V̂en + Enn

)
Ψ = EΨ. (40)
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We are working within the Born-Oppenheimer approximation and treating the nuclei as station-
ary and classical, so the nuclear positions dI and nuclear-nuclear Coulomb interaction energy
Enn are regarded as constants when solving the electronic problem.
The central quantity in DFT is the electron (number) density n(r), the operator for which is

n̂(r) =
N∑
i

δ(r − ri). (41)

Since

V̂en =
N∑
i

Vnuc(ri) =

∫
Vnuc(r)

N∑
i

δ(r − ri) d3r, (42)

the electron-nucleus interaction operator (or any other one-electron potential energy term) can
be written in terms of the electron density operator:

V̂en =

∫
Vnuc(r) n̂(r) d

3r. (43)

Note that r in this equation is a simple vector, not an operator; the electron position operators
r1, r2, . . ., rN are buried in the definition of n̂(r). Taking an expectation value of Eq. (43) gives
the obvious result:

〈Ψ |V̂en|Ψ〉 =
∫
Vnuc(r) 〈Ψ |n̂(r)|Ψ〉 d3r =

∫
Vnuc(r)n(r) d

3r. (44)

3.2.2 The energy functional

The first step in any derivation of DFT is to show that there exists a functional, E[n], of the
electron number density n(r), which takes its minimum value, equal to the ground-state energy
E0, when the density is the ground-state density n0(r). Levy [24] manages this by giving an
explicit construction of such a functional:

E[n] = min
Ψ→n
〈Ψ |Ĥ|Ψ〉 = min

Ψ→n
〈Ψ |T̂ + V̂ee + V̂en + Enn|Ψ〉. (45)

In words: given an electron density n(r), the functional E[n] is evaluated by checking all
possible normalized antisymmetric N -electron wavefunctions which give that density to find
the one that minimizes 〈Ψ |Ĥ|Ψ〉. This minimum value is the value assigned to the functional at
the density n(r). It can be shown that it is possible to find at least one N -electron wavefunction
corresponding to any reasonable density n(r), so the constrained search always produces a
value.
The variational principle guarantees that the minimum value of E[n] occurs when n(r) is equal
to the ground-state density n0(r). The optimal wavefunction Ψ is then the ground state Ψ0, and
the value of the functional is the ground-state energy:

E[n0] = min
Ψ→n0

〈Ψ |Ĥ|Ψ〉 = 〈Ψ0|Ĥ|Ψ0〉 = E0 . (46)
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Since Enn is a constant, and since the expectation value of V̂en gives the same result,

〈Ψ |V̂en|Ψ〉 =
∫
Ven(r)n(r) d

3r, (47)

for all wavefunctions Ψ yielding the density n(r), the total-energy functional may be written in
the form

E[n] = min
Ψ→n
〈Ψ |T̂ + V̂ee|Ψ〉+

∫
Ven(r)n(r) d

3r + Enn = F [n] +

∫
Ven(r)n(r) d

3r + Enn,

(48)

where the second equality defines F [n].
The definition of F [n] makes no reference to the positions of the nuclei, so its value depends
on the electron density n(r) only. It is thus a universal functional: given an input density
n(r), the value of F [n] is fixed regardless of the nuclear charges or positions. (Remember
that functionals such as E[n] and F [n] are defined for all reasonable input densities n(r); the
density that minimizesE[n] depends on the arrangement of the ions, but that is a separate issue.)
Since the functional F [n] is the same in all solids, atoms and molecules, it could in principle be
calculated once and for all.

3.2.3 Contributions to the energy functional

If, given a density n(r), we could easily evaluate E[n], the many-electron problem would be
solved: all that we would have to do to find the ground-state density and energy would be to vary
n(r) until the functional reached a minimum. Unfortunately, but not unexpectedly, evaluating
the functional is equivalent to solving the full N -body problem and is out of the question. We
therefore have to approximate.
To make approximating the energy functional easier, it helps to identify some of the contribu-
tions to F [n]. Since the definition of F [n] involves an expectation value of the electron-electron
interaction, one obvious contribution is the Hartree energy:

EH[n] =
1

2

∫∫
n(r)n(r′)

|r − r′|
d3rd3r′. (49)

Another large and easily recognizable contribution is the kinetic energy of the interacting elec-
trons. Although this is hard to evaluate, we can work out the kinetic energy Ts[n] of a system
of non-interacting electrons with ground-state density n(r). There is no reason to think that
Ts[n] is the same as the kinetic energy of the interacting electrons, but it is of the same order of
magnitude and relatively easy to calculate.
One way to work out Ts[n] is to choose a non-interacting Hamiltonian, −1

2
∇2 + Veff(r), solve

the Schrödinger equation [
−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r), (50)
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and occupy first N eigenfunctions to obtain the corresponding electron density

n(r) =
∑
i occ

|ψi(r)|2. (51)

Ts[n] is then given by:

Ts[n] =
∑
i occ

∫
ψ∗i (r)

(
−1

2
∇2

)
ψi(r) d

3r =
∑
i occ

εi −
∫
Veff(r)n(r) d

3r . (52)

The drawback of this technique is that it produces the value of Ts[n] at the density n(r) ob-
tained by solving the Schrödinger equation. If you require Ts[n] at a given density n(r), it is
necessary to vary the input potential Veff(r) until the output density

∑
i occ |ψi(r)|2 is equal to

n(r). This may not even be possible — not every density n(r) is the ground-state density of a
non-interacting system — although it rarely if ever poses a problem in practice.
So far, then, we have identified two contributions that we believe should make up a large part
of F [n]. The next step is to write

F [n] = Ts[n] + EH[n] + Exc[n], (53)

or, equivalently,

E[n] = Ts[n] +

∫
Vnuc(r)n(r) d

3r + EH[n] + Exc[n] + Enn. (54)

The terms we have identified have been written explicitly, and Exc[n], known as the exchange
and correlation energy, is a “rubbish” term to take care of the rest of F [n]. Like F [n], the
Hartree energy EH[n] and the non-interacting kinetic energy Ts[n] are universal functionals of
the electron density and could, in principle, be calculated once and for all. Since

Exc[n] = F [n]− Ts[n]− EH[n], (55)

it follows that the exchange-correlation functional Exc[n] is also universal.
Given an electron density n(r), the non-interacting kinetic energy, the Hartree energy, the
electron-nuclear interaction energy, and the nuclear-nuclear interaction energy are all easily
obtained. The only difficult term is the unknown universal functional Exc[n]. This includes all
of the complicated parts of the many-body problem and has to be approximated. The surprising
accuracy of simple approximations to Exc[n] is the reason DFT is so useful. The question of
how to construct good approximate exchange-correlation functionals is fascinating but too com-
plicated to discuss here. For our purposes, it is sufficient to assume that good approximations
exist and can be evaluated easily.

3.2.4 Minimization of the energy functional

We now know how to evaluate all the terms in the energy functional

E[n] = Ts[n] + Een[n] + EH[n] + Enn + Exc[n]. (56)
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To calculate the exact interacting ground-state density n0(r) (and hence the exact ground-state
energy E0), we have to find the density that minimizes E[n] subject to the normalization con-
straint

∫
n(r) d3r = N . Mathematically, the ground-state density is determined by the station-

arity condition,

δE =

∫
δE[n]

δn(r)
δn(r) d3r = 0, (57)

which must hold for all density variations δn(r) that integrate to zero.
The variations of the electron-nuclear and Hartree terms are easy to find:

δEen = δ

(∫
Vnuc(r)n(r) d

3r

)
=

∫
Vnuc(r) δn(r) d

3r, (58)

δEH =

∫ (∫
n(r′)

|r − r′|
d3r′

)
δn(r) d3r =

∫
VH([n], r) δn(r) d

3r, (59)

where VH([n], r) is the Hartree potential mentioned earlier. The variation of the exchange-
correlation energy,

δExc =

∫
δExc

δn(r)
δn(r) d3r =

∫
Vxc([n], r) δn(r) d

3r (60)

defines the exchange-correlation potential Vxc([n], r), which is easy enough to work out given
a simple approximate exchange-correlation functional.
The variation of the kinetic energy functional can be found by returning to Eqs. (50), (51),
and (52). Suppose that the input potential changes from Veff to Veff + δVeff, causing the output
density — the density at which Ts is calculated — to change from n to n+δn. Using first-order
perturbation theory, the sum of the occupied one-electron eigenvalues changes by∑

i occ

δεi =
∑
i occ

∫
ψ∗i (r) δVeff(r)ψi(r) d

3r =

∫
n(r) δVeff(r) d

3r. (61)

Hence

δTs = δ

[∑
i occ

εi −
∫
Veff(r)n(r) d

3r

]

=

∫
n(r) δVeff(r) d

3r −
∫

[n(r) δVeff(r) + Veff(r) δn(r)] d
3r

= −
∫
Veff(r) δn(r) d

3r . (62)

By combining the variations of each term, we can now write down the Euler-Lagrange equation
that determines the minimum of the total energy functional:

δE = δTs + δEen + δEH + δExc

=

∫ (
− Veff(r) + Vnuc(r) + VH([n], r) + Vxc([n], r)

)
δn(r) d3r = 0. (63)



3.24 W.M.C. Foulkes

Because of the constraint of normalization conservation,∫
δn(r) d3r = 0, (64)

the k = 0 Fourier component of −Veff + Vnuc + VH + Vxc is not fixed by Eq. (63). All other
Fourier components must be zero, however, and hence

Veff(r) = Vnuc(r) + VH([n], r) + Vxc([n], r) + const. = VKS([n], r) + const. (65)

The value of the constant has no effect on the calculation of Ts[n] (which is the only purpose of
Veff), so we set it to zero.
Let us think about the meaning of Eq. (65). The total energy functional is minimized when
the potential Veff(r) appearing in the non-interacting Schrödinger equation with ground-state
density n(r) is exactly equal to VKS([n], r) = Vnuc(r) + VH([n], r) + Vxc(]n], r). Since VH and
Vxc depend on the electron density, this is the self-consistency condition discussed in Sec. 3.1:
the potential occurring in the non-interacting Schrödinger equation is determined by the ground-
state electron density obtained by solving that equation.

3.2.5 Expressions for the DFT total energy

Once the ground-state density n0(r) and the corresponding effective potential VKS([n0], r) and
one-electron wavefunctions ψ0i(r) have been found, the total ground-state energy is given by

E[n0] = Ts[n0] + Een[n0] + EH [n0] + Exc[n0] + Enn. (66)

Since

Ts[n0] =
∑
i occ

ε0i −
∫
VKS([n0], r)n0(r) d

3r, (67)

the ground-state energy may also be written as

E =
∑
i occ

ε0i −
∫
VKS([n0], r)n0(r) d

3r + Een[n0] + EH [n0] + Exc[n0] + Enn. (68)

The total ground-state energy is not just the sum of the one-electron eigenvalues, as might be
expected, but includes additional density-dependent terms. These we referred to earlier as the
ion-ion interaction terms, but they are more often called the double-counting-correction terms.
This name is appropriate because VKS([n0], r) includes the Hartree potential,

VH([n0], r) =

∫
n0(r

′)

|r − r′|
d3r′, (69)

so the sum of self-consistent eigenvalues includes the Hartree energy twice:∫
VH([n0], r)n0(r)d

3r =

∫∫
n0(r)n0(r

′)

|r − r′|
= 2EH [n0]. (70)

The double-counting corrections remedy this problem.
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3.3 Density-functional theory without self-consistency

Although DFT calculations require iteration to self-consistency, most tight-binding total en-
ergy calculations do not. To help relate the tight-binding approximation to DFT, we now ask
whether DFT calculations can also be made non-selfconsistent. The idea is to guess the ground-
state density n0(r) and perhaps also the ground-state Kohn-Sham potential VKS([n0], r), and
evaluate the total energy functional using these guesses. Since the guesses are inputs to the
non-selfconsistent calculation, we call then nin(r) and V in

eff(r) from now on. To improve the
accuracy of the approximate energies obtained, we insist that the expression evaluated to ob-
tain the approximate total energy must be exact when the input density and potential are exact
and stationary with respect to small variations of the input density and/or potential about the
exact ground state. The errors in energies evaluated are then of second or higher order in
nin(r)− n0(r) and V in

eff(r)− VKS([n0], r), which we hope are small.
DFT is already a variational theory, in that the total energy functional E[n] is minimized at the
ground-state density: if the guessed density is nin(r) = n0(r) + ∆n(r), the error in the total
energy is positive and of order (∆n)2. The standard DFT functional is difficult to work with,
however, because the evaluation of Ts[nin] requires the potential Veff(r) for which nin is the
non-interacting ground-state density. Finding this potential requires a self-consistency cycle no
easier than that appearing in an ordinary self-consistent DFT calculation.
Another option is to guess the input potential V in

eff(r), solve the Kohn-Sham equation once non-
selfconsistently to obtain the corresponding one-electron eigenfunctions and output density, and
call the output density nout(r). At that point we have all of the information required to evaluate

E[nout] = Ts[n
out] + Een[n

out] + EH [n
out] + Exc[n

out] + Enn (71)

without self-consistent cycling. The drawback of this approach is that, even though V in
eff(r) may

have a simple form — it could, for example, be a superposition of spherical atomic-like poten-
tials as assumed in many tight-binding models — the output density nout(r) will not normally
be simple and the double-counting correction terms will be far from pairwise. The link between
DFT and tight binding remains elusive.

3.3.1 General variational formulation of density-functional theory

The derivation of density functionals better adapted for use in non-selfconsistent calculations
is made easier by starting from a very general variational formulation of DFT first described in
the form used here by Haydock in 1998 [21].
Consider the following functional of n(r), Veff(r), and Ψ(r1, r2, . . . , rN), regarded as indepen-
dent functions:

E[n, Veff, Ψ ] = 〈Ψ |
(
T̂ +

∫
Veff(r)n̂(r) d

3r

)
|Ψ〉 −

∫
Veff(r)n(r) d

3r +G[n], (72)

where
G[n] =

∫
Vnuc(r)n(r) d

3r + EH[n] + Exc[n] + Enn (73)
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is shorthand for the sum of all Coulomb and exchange-correlation contributions to the total
energy functional. The Kohn-Sham potential VKS([n], r) corresponding to density n(r) is the
functional derivative of G[n]:

VKS([n], r) =
δG

δn(r)
. (74)

We seek the stationary points of E[n, Veff, Ψ ] subject to the normalization constraints 〈Ψ |Ψ〉 =
1 and

∫
n(r)d3r = N . Since Ψ(r1, r2, . . . , rN) and n(r) are independent functions in this

approach, the two constraints are also independent.
The problem of finding the stationary points of 〈Ψ |Ĥ|Ψ〉 subject to 〈Ψ |Ψ〉 = 1 is equivalent
to solving the Schrödinger equation ĤΨ = EΨ , where E is a Lagrange multiplier for the
constraint. The variations of E[n, Veff, Ψ ] with respect to n(r) and Veff(r) are easy to work out
[note that varying the function n(r) has no effect on the operator n̂(r)], leading to the three
Euler-Lagrange equations:

−Veff(r) + VKS([n], r) = µ, (75)

〈Ψ |n̂(r)|Ψ〉 − n(r) = 0, (76)(
T̂ +

∫
Veff(r)n̂(r)

)
|Ψ〉 = Enon-int|Ψ〉, (77)

where µ is a Lagrange multiplier for the density normalization constraint. The Lagrange mul-
tiplier for the wavefunction normalization constraint has been called Enon-int to avoid confusion
with the energy functional itself. All three Euler-Lagrange equations must be satisfied at any
stationary point of E[n, Veff, Ψ ].
The remarkable feature of these three equations is that they are fully equivalent to the equations
of self-consistent DFT. The first says that the effective one-electron potential must equal the
Kohn-Sham potential to within an arbitrary constant µ; this is the DFT self-consistency condi-
tion. The second says that Ψ(r1, r2, . . . , rN) must generate the one-electron density n(r), just
as in the Levy definition of the total energy functional. The third and final Euler-Lagrange equa-
tion says that the wavefunction Ψ must be an eigenfunction of the non-interacting Schrödinger
equation

N∑
i=1

(
−1

2
∇2
i + Veff(ri)

)
Ψ = Enon-intΨ, (78)

which separates into N one-electron equations:(
−1

2
∇2 + Veff(r)

)
ψi(r) = εi[Veff]ψi(r). (79)

If follows that the wavefunction Ψ appearing in the definition of the general density func-
tional is single Slater determinant of the one-electron eigenfunctions used to calculate the non-
interacting kinetic energy; it is not the physical many-electron wavefunction. If E[n, Veff, Ψ ] is
stationary with respect to variations of n and Veff and minimized with respect to Ψ , the equations
of DFT are fully satisfied and E[n, Veff, Ψ ] is the ground-state energy of the interacting system.
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Since E[n, Veff, Ψ ] is stationary about the self-consistent DFT solution, we can replace n, Veff,
and Ψ by three independent guesses, nin, V in

eff and Ψ in, safe in the knowledge that ∆E =

E[nin, V in
eff, Ψ

in]−E[n0, VKS[n0], Ψ0) is a quadratic form in the quantities nin−n0, V in
eff−VKS[n0],

and Ψ in − Ψ0. If these are all small, the error in the calculated energy should be even smaller.

3.3.2 The Harris functional

The general variational formulation of DFT is a little too general to be useful in practice, but
serves as a good starting point for deriving simpler density functionals. If we start by carrying
out the constrained minimization with respect to Ψ to find the one-electron eigenvalues and
eigenfunctions corresponding to the input potential Veff, we obtain a functional of n and Veff

only:

EGHF[n, Veff] =
∑
i occ

εi[Veff]−
∫
Veff(r)n(r) d

3r +G[n]. (80)

This functional was first discussed by Foulkes and Haydock [12] and is sometimes called the
generalized Harris or generalized Harris-Foulkes functional [8]. The one-electron eigenvalues
εi[Veff] are obtained by solving(

−1

2
∇2 + Veff(r)

)
ψi(r) = εi[Veff]ψi(r). (81)

Note that the evaluation of EGHF[n, Veff] for given inputs n(r) and Veff(r) requires the one-
electron Schrödinger equation to be solved once only; no self-consistent looping is required.
A further simplification is to set Veff(r) equal to VKS([n], r). Since Veff(r) and VKS([n], r) are the
same in the ground state, this does not affect the location of the stationary point. The resulting
functional of n(r) only is called the Harris or Harris-Foulkes functional [25, 12, 8]:

EHF[n] =
∑
i occ

εi[n]−
∫
VKS([n], r)n(r) d

3r +G[n]. (82)

The energy eigenvalues εi[n] are now obtained by solving(
−1

2
∇2 + VKS([n], r)

)
ψi(r) = εi[n]ψi(r). (83)

As in the case of EGHF[n, Veff], no-selfconsistent looping is required to evaluate EHF[n] for a
given n(r).
Both EGHF[n, Veff] and EHF[n] are stationary about the ground state, a property that could in
principle be used to guide an iterative, self-consistent algorithm towards the exact ground-state
energy and density. In most cases, however, this has no advantages over the standard approach
using the Hohenberg-Kohn-Sham functional. The main uses of EGHF[n, Veff] and EHF[n] are in
non-selfconsistent DFT calculations.
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3.4 The tight-binding total energy method as a stationary approximation
to density-functional theory

Let us return to the generalized Harris functional, Eq. (80), and the corresponding one-electron
problem, Eq. (81). The functional is stationary about the exact ground state, so evaluating it
for input densities and potentials close to the ground state produces total energies with second-
order errors. With this in mind, we choose an input density in the form of a superposition of
spherical densities,

nin(r) =
∑
I

nI(|r − dI |), (84)

and an input potential in the form of a superposition of spherical atomic-like potentials,

V in
eff(r) =

∑
I

Veff,I(|r − dI |). (85)

For most solids, it is possible to construct superpositions of spherical atomic-like densities
and potentials that match the exact ground-state density and Kohn-Sham potential rather well.
The spherical densities required to describe a highly ionic solid might, of course, be ionic,
integrating to produce a net atomic charge. Once the approximate potential and density have
been constructed, we solve Eq. (81) non-selfconsistently to find the one-electron eigenvalues
εi[V

in
eff]. The energy functional EGHF[n

in, V in
eff] is then evaluated using Eq. (80).

Because V in
eff(r) is a superposition of spherical atomic-like potentials, the one-electron Hamil-

tonian has exactly the form assumed in Sec. 2.2.4. We can therefore find the one-electron
eigenvalues by choosing a basis set of atomic-like orbitals, constructing the one-, two- and
three-center contributions to the tight-binding Hamiltonian and overlap matrices, and solving
the generalized tight-binding eigenvalue problem. Furthermore, since both V in

eff and nin are su-
perpositions of spherical functions, almost all of the double-counting corrections appearing in
Eq. (80) are strictly pairwise. The only exceptions are the exchange-correlation terms, which
retain some weak non-pairwise character because Exc[n] is not a simple quadratic functional
of n. In the exchange-only version of the local density approximation, for example, Exc[n] is
proportional to the integral of n4/3(r) over the system.
If we ignore the small three- and higher-center contributions to the exchange-correlation double-
counting terms, we have succeeded in deriving something very close to a tight-binding total en-
ergy model [11, 12]. The potential of the solid is approximated as a superposition of spherical
atomic-like contributions, and the corresponding one-electron Schrödinger equation is solved
once, non-selfconsistently, using a basis set of localized atomic-like functions. The total en-
ergy is the sum of the occupied eigenvalues and an (almost) pairwise ion-ion repulsion. The
variational principle ensures that the calculated total energy decreases systematically towards
E[nin, V in

eff] as the basis set is improved; and the stationarity of the GHF functional ensures that
E[nin, V in

eff]− E0 is quadratic in nin(r)− n0(r) and V in
eff(r)− VKS([n0], r).

The first derivation of the tight-binding total energy method [11, 12] from DFT was based on
the Harris functional of the density only, with an input density in the form of a superposition of
spherical atomic-like densities. The exchange-correlation contributions to the effective potential
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VKS([n
in], r) appearing in Eq. (83) cannot then be written as a sum of spherical atomic-like

contributions, which complicates the argument somewhat, but the conclusions are similar.
The accuracy of the Harris functional used with a superposition of spherical atomic-like den-
sities has been tested for a wide range of solids [26–28] with surprising success. It is often
capable of producing quantitatively accurate results, especially if the spherical atomic-like den-
sities are optimized in some way [?, 28]. It does not work so well in transition metals, where
the electronic configuration of an atom in the solid may be very different from that of an iso-
lated atom, and often fails in ionic solids with significant charge transfer. In cases like these
self-consistent tight-binding calculations are required [30–33].

4 Coulomb interactions for s, p, and d electrons

Although DFT is exact in principle, real DFT calculations require approximate exchange-
correlation functionals. These are hard to improve systematically and do not always work as
well as one might hope. Furthermore, the version of DFT described here yields ground-state
properties only (time-dependent DFT [34] gives some excited-state properties). What can we
do if the exchange-correlation functional proves inaccurate or we wish to calculate quantities
DFT cannot provide? The most natural option is to return to the many-electron Schrödinger
equation, Eq. (39), and attempt to solve that directly. Are there tight-binding-like models for
many-particle problems?

4.1 The tight-binding full-configuration-interaction method

The main feature of the tight-binding approach is the choice of a basis of atomic-like orbitals,
φα(r), with α = 1, 2, . . . ,M . The many-electron wavefunction Ψ(r1, r2, . . . , rN), which is a
totally antisymmetric function ofN different electron positions, can be approximated as a linear
combination of Slater determinants of these orbitals:

Dα(r1, r2, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φα1(r1) φα2(r1) . . . . . . φαN
(r1)

φα1(r2) φα2(r2) . . . . . . φαN
(r2)

φα1(rN) φα2(rN) . . . . . . φαN
(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (86)

where α = (α1, α2, . . . , αN) lists the indices of the orbitals appearing in Dα. A Slater deter-
minant containing the same orbital twice vanishes because it has two identical columns, so we
can assume that all of the indices are different. The order in which the indices appear affects
the sign of the determinant only, so it is often convenient to insist that α1 < α2 < . . . < αN .
Given a determinant for which this is not the case, one can always permute the indices into
ascending order. Every pair interchange swaps two columns and changes the sign of the deter-
minant, but nothing else is affected. We assume from now on that the one-electron basis set is
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orthonormal, 〈φα|φβ〉 = δαβ , in which case the N -electron basis set of Slater determinants is
also orthonormal:

〈Dα|Dβ〉 =
∫
D∗α(r1, r2, . . . , rN)Dβ(r1, r2, . . . , rN) d

3r1d
3r2 . . . d

3rN = δαβ, (87)

where δαβ = δα1β1δα2β2 . . . δαNβN and the lists (α1, α2, . . . , αN) and (β1, β2, . . . , βN) are in
ascending order.
Because the one-electron basis set is finite, the N -electron basis of Slater determinants is far
from complete. It is, however, huge. Consider, for example, a system of N = 10 electrons
described using a basis set of M = 20 one-electron orbitals. The number of possible Slater
determinants is the number of ways of picking N orbitals from a set of M possibilities. This is
MCN = 20C10 = 184, 756.
The next step is to approximate the eigenstates of the many-electron Hamiltonian as linear
combinations of Slater determinants,

Ψ =
∑
α

cαDα, (88)

and determine the optimal expansion coefficients using the linear variational method described
in Sec. 2.1. The resulting matrix eigenvalue problem takes the form∑

β

Hαβcβ = Ecα, (89)

where Hαβ = 〈Dα|Ĥ|Dβ〉. Note that Ĥ is the full N -electron Hamiltonian operator and
Hαβ = 〈Dα|Ĥ|Dβ〉 is a 3N -dimensional integral. Fortunately, because Ĥ only contains one-
and two-electron operators, all non-zero Hamiltonian matrix elements can be expressed in terms
of three- and six-dimensional integrals. Solving the eigenvalue problem in Eq. (89) yields
MCN approximate eigenvalues and eigenfunctions of the exact many-electron Hamiltonian.
These may also be viewed as exact eigenvalues and eigenfunctions of the projected Hamiltonian
P̂ ĤP̂ , where P̂ is the projector onto the space spanned by the MCN Slater determinants in the
basis.
This approach is very difficult to use because of the enormous size of the many-electron Hilbert
space, but is useful for small atoms and molecules. Chemists call it the full configuration
interaction method. Seen from the point of view of this article, it is the many-electron equivalent
of the tight-binding method.

4.1.1 Second-quantized notation

The projected Hamiltonian P̂ ĤP̂ corresponding to the real-space Hamiltonian

Ĥ =
∑
i

(
−1

2
∇2
i + Vnuc(ri)

)
+
∑
i>j

1

|ri − rj|
(90)

may be written in second-quantized notation as

Ĥ =
∑
α,β

hαβ ĉ
†
αĉβ +

1

2

∑
α,β,χ,γ

Vαβ,χγ ĉ
†
αĉ
†
β ĉγ ĉχ, (91)
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where ĉ†α and ĉα are creation and annihilation operators for electrons in the one-electron orbital
φα(r) and

hαβ =

∫
φ∗α(r)

(
−1

2
∇2
i + Vnuc(r)

)
φβ(r) d

3r, (92)

Vαβ,χγ =

∫∫
φ∗α(r)φ

∗
β(r
′)

1

|r − r′|
φχ(r)φγ(r

′) d3rd3r′, (93)

are the one- and two-particle Hamiltonian matrix elements. The creation and annihilation oper-
ators satisfy the anticommutation relations:{

ĉα, ĉ
†
β

}
= ĉαĉ

†
β + ĉ†β ĉα = δαβ. (94)

Second-quantized notation is explained in the first chapter of almost every book on many-body
theory; the dense but precise explanation given by Negele and Orland [35] is a good one. It
is important to understand that “second quantization” is a misnomer: the second-quantized
notation brings nothing new except algebraic convenience; the second-quantized Hamiltonian is
exactly the same as the originalN -electron Hamiltonian; and the basis set of Slater determinants
has not changed.
The systems for which DFT fails and many-body tight-binding methods are most useful are
often magnetic, so we can no longer ignore the electron spin. The spin-dependent tight-binding
basis functions take the form

φα,ζ(r, s) = φα(r)χζ(s), (95)

where s =↑, ↓ and χζ is either χ↑ or χ↓, with χ↑(s) = δs,↑ and χ↓(s) = δs,↓. Note that the spatial
parts of the basis functions are independent of spin; this is by choice. The spin-dependent
Hamiltonian is

Ĥ =
∑
ζ

∑
α,β

hαβ ĉ
†
α,ζ ĉβ,ζ +

1

2

∑
ζ,ζ′

∑
α,β,χ,γ

Vαβ,χγ ĉ
†
α,ζ ĉ

†
β,ζ′ ĉγ,ζ′ ĉχ,ζ , (96)

where ĉ†α,ζ and ĉα,ζ are the creation and annihilation operators for the basis function φα,ζ(r, s)
and satisfy the commutation relations{

ĉα,ζ , ĉ
†
β,ζ′

}
= δαβδζζ′ . (97)

Because the spatial parts of the basis functions were chosen to be independent of spin, the matrix
elements hαβ and Vαβ,χγ are still as given in Eqs. (92) and (93). Relativistic spin-dependent
interactions such as the spin-orbit term have not been included but can easily be added.
The Hamiltonian as expressed in Eq. (96) is closely related to the tight-binding Hamiltonian
considered earlier. The one-electron matrix elements hαβ are analogous to the tight-binding
matrix elements Hαβ = 〈φα|(−1

2
∇2 + Veff(r)|φβ〉, except that the nuclear potential appears

in place of the effective potential. These matrix elements can be parametrized in terms of a
small number of Slater-Koster parameters, just as in tight-binding theory. The two-particle
Coulomb interaction matrix elements Vαβ,χγ are more complicated. In DFT-based tight-binding
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methods they are replaced by the density-dependent Hartree and exchange-correlation potentials
incorporated into Veff.
Switching to a second-quantized formalism has improved the notation but has not made the
many-electron problem any easier to solve. The complicated form of Eq. (91) is also an im-
pediment to pencil-and-paper work. Even if we consider only the three p orbitals on a single
atom, the interaction matrix Vαβ,χγ has 34 = 81 elements. For the five d orbitals this rises to
54 = 625 elements. Such large collections of numbers are not easy to deal with analytically, so
simplifications are required.
The first simplification, often made in the many-body community, is to neglect all Coulomb
integrals involving orbitals on more than one atom. Given the long range of the Coulomb
interaction this seems unintuitive at first, and quantum chemists, who like to get things right,
normally prefer to evaluate all of the matrix elements for all of the orbitals. Most of the many-
body problems studied by condensed matter physicists, however, concern atoms in solids, often
metals, where the interactions between atoms are strongly screened by mobile valence electrons.
In many cases this screening is so efficient that electrons occupying localized d of f orbitals on
one atom interact only weakly with electrons in d or f orbitals on other atoms and the screened
inter-atomic Coulomb matrix elements really can be ignored. The mobile valence electrons are
not included in the tight-binding model explicitly, but their effect is to renormalize the matrix
elements between the localized orbitals that are included.

4.1.2 Coulomb interactions on a single atom

The rest of this article discusses what we know about the symmetries of the matrix Vαβ,χγ that
describes the (screened) Coulomb interactions on a single atom. Can we carry out an equivalent
of the Slater-Koster analysis, allowing us to express the elements of Vαβ,χγ in terms of a minimal
set of basic parameters? How many parameters do we need?
These are questions with a long history, but they still cause a great deal of confusion. The
forms of Vαβ,χγ for shells of s and p electrons are well established, but many different d-shell
Hamiltonians have been proposed and most of them are wrong in one way or another. Some
are missing essential symmetries, failing to remain invariant under rotations in real and/or spin
space; others are missing terms no smaller than the terms kept; and even the best are missing
terms thought to be small. Many otherwise sophisticated papers on many-body physics start
with an incorrect model Hamiltonian and may reach false conclusions as a result. The history
of the subject and the failings of some of the most widely used Hamiltonians are summarized in
Ref. [13], which also clears up the confusion for shells of s, p and d electrons. Here we explain
the results derived in that paper.
Before going on, we remark that the correct form of the on-site Coulomb operator has been
known for more than 50 years and that quantum chemists use it as a matter of course. If we
assume that the 2l + 1 basis functions in a shell of angular momentum l have the same angular
dependence as the spherical harmonics Y m

l , with m = −l,−l + 1, . . . , l, the theory of angular
momentum [36] may be used to derive formulae for Vαβ,χγ . See Ref. [37] for a clear explanation.
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The drawback of this approach is that the formulae are complicated and expressed in terms of
quantities such as Gaunt or Racah coefficients, which are inconvenient for analytic work. The
formulae derived here are less general, in that they apply to s, p and d shells only, but simpler.
The most important symmetry of Vαβ,χγ is rotational invariance. If the basis functions used
to describe a shell of angular momentum l have the same angular dependence as spherical
harmonics Y m

l , the orbital label α may be identified with the m index. Such basis functions
transform into linear combinations of each other under rotations:

R̂ωφα =
l∑

α′=−l

Dl
α′,α(ω)φα′ . (98)

The operator R̂ω rotates the function to which it is applied by ω radians about an axis parallel
to the unit vector ω̂, and Dl(ω) is the (2l + 1) × (2l + 1) matrix corresponding to R̂ω in
the irreducible representation of the rotation group of angular momentum l. The Coulomb
interaction 1/|r − r′| is unchanged if r and r′ are rotated simultaneously, so Vαβ,χγ does not
change if every orbital is replaced by a rotated version:

Vαβ,χγ =

∫∫
φ∗α(r)φ

∗
β(r
′)

1

|r − r′|
φχ(r)φγ(r

′) d3rd3r′

=

∫∫ (
R̂ωφα(r)

)∗ (
R̂ωφβ(r

′)
)∗ 1

|r − r′|

(
R̂ωφχ(r)

)(
R̂ωφγ(r

′)
)
d3rd3r′

=
∑

α′β′χ′γ′

(
Dl
α′,α(ω)

)∗ (
Dl
β′,β(ω)

)∗
Vα′β′,χ′γ′D

l
χ′,χ(ω)D

l
γ′,γ(ω). (99)

This shows that Vαβ,χγ is a rotationally invariant fourth-rank tensor. If the basis functions are
defined using the real spherical harmonics Ỹ l

m introduced in Sec. 2.2.5, the Dl matrices, which
are complex and unitary, are replaced by the D̃l matrices from Eq. (18), which are real and
orthogonal. Since most Hubbard-like models use real spherical harmonics, we are primarily
interested in this case.

4.2 Hubbard-like Hamiltonians for atoms
4.2.1 The one-band Hubbard model: s-orbital symmetry

If the outermost shell is an s shell and all other shells are ignored, the model Hamiltonian for an
atom has only one spatial orbital φα and one non-zero Coulomb matrix element Vαα,αα, which
is called the Hubbard parameter and denoted U0. The interaction Hamiltonian takes the form

V̂ =
1

2
U0

∑
ζ,ζ′

ĉ†α,ζ ĉ
†
α,ζ′ ĉα,ζ′ ĉα,ζ =

1

2
U0

(
ĉ†α,↑ĉ

†
α,↓ĉα,↓ĉα,↑ + ĉ†α,↓ĉ

†
α,↑ĉα,↑ĉα,↓

)
= U0 n̂α,↑n̂α,↓,

(100)

where I have noted that ĉα,ζ ĉα,ζ = 0, reordered the creation and annihilation operators using the
anticommutation relations, and introduced the number operator n̂α,ζ = ĉ†α,ζ ĉα,ζ , which counts
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how many electrons are in basis state φα,ζ . Equation (100) is the famous Hubbard interaction
and is the starting point for much of the analytic work on strongly interacting systems.
It is often convenient to rewrite the atomic interaction Hamiltonian in terms of the operators for
the total number of electrons on the atom,

n̂ =
∑
α,ζ

n̂α,ζ , (101)

and the electronic spin moment of the atom,

m̂ =
∑
α,ζ,ζ′

ĉ†α,ζσζ,ζ′ ĉα,ζ′ , (102)

where σζ,ζ′ = (σxζ,ζ′ , σ
y
ζ,ζ′ , σ

z
ζ,ζ′) is the vector of Paul spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0

0 −1

)
.

In the case of an s shell there is only one spatial orbital and the sums over α in Eqs. (101) and
(102) have only one term each.
The square of the number operator for an s shell is

n̂2 = (n̂α,↑ + n̂α,↓) (n̂α,↑ + n̂α,↓) = 2n̂α,↑n̂α,↓ + n̂α,↑ + n̂α,↓ = 2n̂α,↑n̂α,↓ + n̂, (103)

where we have noted that n̂α,σn̂α,σ = n̂α,σ. The Hubbard interaction for an s shell may therefore
be rewritten in terms of the operator for the total number of electrons as

V̂ =
1

2
U0

(
n̂2 − n̂

)
. (104)

The one-electron −n̂ term on the right-hand side of Eq. (103) arises because the creation op-
erators in n̂2 are not all to the left of the annihilation operators; if we attempt to reorder the
creation and annihilation operators to ensure that this is the case, the anticommutators produce
additional one-electron terms. This mixing of one- and two-electron terms is awkward, so we
define : n̂2 : , the “normal ordered” version of n̂2, by permuting the creation and annihilation
operators until all of the creation operators are on the left, without adding the anticommutator
terms that would be required to leave the product of operators unaltered. If the rearrangement
requires an odd number of flips, the normal ordering also introduces a sign change. It is easy to
show quite generally (not just for an s shell) that

: n̂2 : = n̂2 − n̂, (105)

so we can write the s-shell Hubbard interaction as

V̂ =
1

2
U0 : n̂

2 : . (106)
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The s-band Hubbard interaction can also be written in terms of : m̂2 : = : m̂ · m̂ : . Using the
identity σζζ′ · σξξ′ = 2δζ′ξδζξ′ − δζζ′δξξ′ , one finds that

: m̂2 : = −
∑
αβ

∑
ζξ

(
2ĉ†α,ζ ĉ

†
β,ξ ĉα,ξ ĉβ,ζ + ĉ†α,ζ ĉ

†
β,ξ ĉβ,ξ ĉα,ζ

)
= m̂2 − 3n̂. (107)

For an s shell this is equivalent to

: m̂2 : = −6n̂α,↑n̂α,↓ = −3 : n̂2 : (108)

and we obtain
V̂ = −1

6
U0 : m̂

2 : . (109)

4.2.2 The three-band Hubbard model: p-orbital symmetry

Suppose that the orbitals α, β, χ, and γ are real spherical harmonic p orbitals with angular
dependence x/r, y/r and z/r. The rotation matrix Dl

α′α(ω) is then a familiar Cartesian 3 × 3

rotation matrix Rω, and Vαβ,χγ is a rotationally invariant fourth-rank Cartesian tensor. The
general form of such a tensor is well known [38]:

Vαβ,χγ = Uδαχδβγ + Jδαγδβχ + J ′δαβδχγ, (110)

where U = Vαβ,αβ , J = Vαβ,βα, and J ′ = Vαα,ββ , all with α 6= β.
Bearing in mind that the Cartesian p orbitals are real, a brief inspection of the form of the matrix
element, Eq. (93), shows that Vαβ,χγ = Vχβ,αγ = Vαγ,χβ , implying that J = J ′. Hence we find

Vαβ,χγ = Uδαχδβγ + J(δαγδβχ + δαβδχγ). (111)

This shows that the most general p-shell on-site Coulomb interaction Hamiltonian is defined by
just two independent parameters; the interaction matrix Vαβ,χγ still has 81 elements, but only
two are independent. Setting α = β = χ = γ recovers the well-known equation U0 = U + 2J ,
where U0 = Vαα,αα.
Starting from Eq. (111) and wading through lots of algebra, it is straightforward but tedious to
show that the Coulomb interaction Hamiltonian may be written:

V̂ =
1

2

[
(U − J) : n̂2 : − J : m̂2 : − J : L̂2 :

]
, (112)

where
L̂ = i

∑
αβζ

(ε1βα, ε2βα, ε3βα) ĉ
†
α,ζ ĉβ,ζ (113)

is the vector angular momentum operator, εαβγ is the three-dimensional Levi-Civita symbol,
and L̂2 = L̂ · L̂. An equivalent expression is

V̂ =
1

2

[(
U − 1

2
J

)
: n̂2 : − 1

2
J : m̂2 : + J

∑
αβ

: (n̂αβ)
2 :

]
, (114)
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where the operator n̂αβ =
∑

ζ ĉ
†
α,ζ ĉβ,ζ transfers an electron of either spin from orbital β to

orbital α. The normal-ordered square of this operator,

: (n̂αβ)
2 : =

∑
ζ,ζ′

: ĉ†α,ζ ĉβ,ζ ĉ
†
α,ζ′ ĉβ,ζ′ : = 2

(
ĉα,↑ĉα,↓

)† (
ĉβ,↑ĉβ,↓

)
, (115)

describes the hopping of singlet pairs of electrons from spatial orbital β to spatial orbital α.
Equation (112) exemplifies Hund’s first and second rules for the atom. Noting that m̂ = 2Ŝ,
where Ŝ is the electron spin operator, we see that the energy is minimized by first maximizing
the spin (prefactor−2J) and then maximizing the orbital angular momentum (prefactor−1

2
J).

4.2.3 The five-band Hubbard model: d-orbital symmetry

If we consider Eq. (99) for a shell of d orbitals, the matrices Dl belong to the five-dimensional
l = 2 irreducible representation of the rotation group; they are no longer the familiar 3 ×
3 Cartesian rotation matrices. One way to determine the number of independent parameters
required to specify Vαβ,χγ completely is to use the theory of angular momentum [36], but we
find it easier to use the theory of irreducible Cartesian tensors [39]. This allows us to re-express
the behavior of Vαβ,χγ under rotations using 3× 3 rotation matrices only.
A Cartesian tensor of rank n transforms under rotation in the standard way:

(R̂ωT )ij...k =
∑
i′j′...k′

Rωii′R
ω
jj′ . . . R

ω
kk′Ti′j′...k′ , (116)

with Rω the 3 × 3 matrix for a rotation of ω radians about an axis parallel to ω̂. This map-
ping transforms the 3n elements of T into linear combinations of each other, so the elements
form a basis for a 3n-dimensional representation of the rotation group. In general, however, this
representation is reducible. An irreducible Cartesian tensor of rank n and angular momentum
l transforms in the same way as a general Cartesian tensor, but only has 2l + 1 independent
components. The rule for rotating the tensor, Eq. (116), transforms these 2l + 1 independent
components into linear combinations of each other, so they form a basis for a 2l + 1 dimen-
sional representation of the rotation group. The Cartesian tensor is said to be irreducible if this
representation is irreducible.
We can illustrate these ideas by considering the tensor product of two vectors:

T = a⊗ b =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 . (117)

The nine elements of this tensor transform into linear combinations of each other under rota-
tions, so they are a basis for a nine-dimensional representation of the rotation group. If we
wanted to, we could construct the 9×9 matrix corresponding to the action of any given rotation
directly from the tensorial transformation rule. We would find, however, that the 9×9 represen-
tation is not irreducible. In fact, as we already know from the theory of the addition of angular
momentum,

1⊗ 1 = 0⊕ 1⊕ 2. (118)
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This implies that it must be possible to create from the set of nine independent elements a single
rotationally invariant s function, a set of three p functions, and a set of five d functions.
We can accomplish this explicitly by writing a⊗ b as the sum of three tensors:

Tij = (a⊗ b)ij =
1

3
(akbk)δij + T{ij} +

[
T(ij) −

1

3
(akbk)δij

]
(119)

where T(ij) ≡ 1
2
(Tij + Tji), T{ij} ≡ 1

2
(Tij − Tji), and the summation convention is in force

for repeated suffices. The first term is a multiple of the unit tensor and hence transforms like
an s function; the three non-zero independent elements of the antisymmetric tensor T{ij} are
the components of the vector product a × b and transform under rotations like the three p
functions; and the five independent elements of the traceless symmetric tensor T(ij)− 1

2
(akbk)δij

transform under rotations like the five Cartesian d orbitals. Note that antisymmetric matrices
remain antisymmetric and traceless symmetric matrices remain traceless symmetric matrices
when rotated.
If we choose a = b = r = (x, y, z), the d-like nature of the traceless symmetric part of a ⊗ b
becomes obvious:

(r ⊗ r)(ij) −
1

3
r2δij =

x2 − 1
3
r2 xy xz

xy y2 − 1
3
r2 yz

xz yz z2 − 1
3
r2

 . (120)

The off-diagonal elements xy, yz and zx are the three t2g functions; and the two independent
diagonal elements, which we can take to be 3z2 − r2 and x2 − y2, are the two eg functions. We
call this traceless symmetric tensor B from now on:

Bij = (r ⊗ r)(ij) −
1

3
r2δij. (121)

The link between the traceless symmetric tensor B and the d orbitals is a special case of a
general result, which states that the 2l + 1 independent elements of a totally symmetric lth rank
Cartesian tensor with all traces removed are a basis for the angular momentum l representation
of the rotation group.
If we view every d orbital as an element (or linear combination of elements) ofB, each d orbital
may be labelled using two Cartesian indices i and j. The isotropic fourth-rank five-dimensional
tensor Vαβ,χγ from Eq. (93) then becomes an isotropic eighth-rank three-dimensional tensor
Vij,kl,mn,op, which transforms like BijBklBmnBop.
It is a theorem due to Weyl [40] that any isotropic Cartesian tensor of even rank can be expressed
as a linear combination of products of Kronecker deltas, so the remaining task is to determine
the number of independent products of four Kronecker deltas consistent with the symmetries of
the eighth-rank tensor, bearing in mind that the second-rank tensors B of which it is composed
are traceless and symmetric. The details of this calculation are explained in Ref. [13].
The result, translated back into the notation where each of the five d orbitals is labelled by a
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single index with five possible values, is

Vαβ,χγ =
1

2

(
Uδαχδβγ +

[
J +

5

2
∆J

]
(δαγδβχ + δαβδγχ)− 48∆J

∑
ijkl

ξαijξβjkξχklξγli

)
,

(122)

where ξ is a five-component vector of the traceless symmetric 3 × 3 transformation matrices
used to convert from the two-index notation to the one-index notation:

ξ1=

−
1

2
√
3

0 0

0 − 1
2
√
3

0

0 0 1√
3

, ξ2=
0 0 1

2

0 0 0
1
2

0 0

, ξ3=
0 0 0

0 0 1
2

0 1
2

0

, ξ4=
0 1

2
0

1
2

0 0

0 0 0

, ξ5=
1

2
0 0

0 −1
2

0

0 0 0

.
The indices (1, 2, 3, 4, 5) correspond to the d orbitals (3z2 − r2, zx, yz, xy, x2 − y2). The three
independent parameters U , J and ∆J are defined as follows:

U = V(zx)(yz),(zx)(yz), (123)

J =
1

2

(
V(zx)(yz),(yz)(zx) + V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2)

)
, (124)

∆J = V(3z2−r2)(x2−y2),(x2−y2)(3z2−r2) − V(zx)(yz),(yz)(zx). (125)

U is the Hartree term between pairs of t2g orbitals, J is the average of the eg and t2g exchange
integrals, and ∆J is the difference between the eg and t2g exchange integrals. These definitions
are the same as those used by Oleś and Stollhoff [41], but our Hamiltonian, unlike theirs, is
rotationally invariant in orbital space.
Rewriting Eq. (122) in terms of rotationally invariant operators gives

V̂ =
1

2

[(
U − 1

2
J + 5∆J

)
: n̂2:− 1

2
(J − 6∆J) : m̂2: + (J − 6∆J)

∑
αβ

: (n̂αβ)
2: +

2

3
∆J: Q̂2 :

]
.

(126)

where Q̂2 =
∑

µν Q̂µνQ̂νµ is the square of the on-site quadrupole operator defined and discussed
in Ref. [13]. The mean-field versions of the s, p, and d Hamiltonians may also be found in that
paper.

4.2.4 Comparison with the Stoner Hamiltonian

The interaction part of the Stoner Hamiltonian for shells of p and d orbitals is usually defined
as

V̂Stoner =
1

2
(U − 1

2
J) : n̂2 : − 1

4
J : m̂2

z : . (127)

The m̂2
z term breaks rotational symmetry in spin space, so this is a collinear Stoner Hamiltonian,

appropriate only in cases when the ground state breaks the rotational spin symmetry and chooses
a z axis. We can, however, restore the spin-rotation invariance by replacing m̂2

z by m̂2. This
produces the vector Stoner Hamiltonian,

V̂m̂2Stoner =
1

2
(U − 1

2
J) : n̂2 : − 1

4
J : m̂2 : , (128)
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Fig. 10: The magnetic correlation between two p-shell atoms, each with two electrons, as a
function of the Hubbard parameters U/|t| and J/|t|, where t is the ppσ Slater-Koster parameter
that describes the rate of electron hopping between atoms; the ppπ hopping parameter is−t/2.
The regions of the graph are labelled by the symmetry of the ground state. The left-hand graph
is generated using the full p-electron Hamiltonian from Sec. 4.2.2; the right-hand graph is
generated using the vector Stoner Hamiltonian of Eq. (128). The Stoner phase diagram has a
region with symmetry 3Σ−g extending a long way up the J axis, which is not present when the
full Hamiltonian is used. It also has a region with two degenerate ground states with symmetries
1∆g and 1Σ+

g ; this degeneracy is broken when the full p-electron Hamiltonian is used. From
Ref. [13].

which turns out to be identical to the Hamiltonian proposed by Dworin and Narath [42]. Work-
ing backwards from this Hamiltonian to the general form of the matrix element Vαβ,χγ gives

V m̂2Stoner
αβ,χγ = Uδαχδβγ + Jδαγδβχ, (129)

which looks like the general p-shell result, Eq. (111), except that it is missing the Jδαβδχγ
term. Consequently, the vector Stoner Hamiltonian does not respect the invariance of the matrix
element on interchange of α with χ or β with γ apparent from the form of Eq. (93) when
the orbitals are real. As can be seen from Fig. 10, this omission affects the computed results
significantly.

4.2.5 Conclusion

We have shown how to derive multi-band Hubbard-like Hamiltonians to describe shells of s, p,
and d orbitals. There are important differences [13] between results obtained using the Hamil-
tonians derived here, which respect the symmetries of the problem, and the Stoner Hamilto-
nian, which does not. The vector version of the Stoner Hamiltonian misses the pair-hopping
term present in our p- and d-shell Hamiltonians and the quadrupole term present in our d-shell
Hamiltonian. The collinear version of the Stoner Hamiltonian breaks rotational symmetry in
spin space, which makes it inappropriate for describing spin dynamics.
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lation Methods in Molecular Sciences - Lecture Notes (NIC Series, Institute for Advanced
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