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1 Introduction

In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress
as a spectroscopic technique. This is a direct result of the availability of high-brilliance syn-
chrotron X-ray radiation sources and of advanced photon detection instrumentation. The tech-
nique’s unique capability to probe elementary excitations in complex materials by measuring
their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of
experimental photon science. In these lecture notes we discuss both the theoretical background
of RIXS, focusing on those determining the low-energy charge, spin, orbital and lattice excita-
tions of solids. These lecture notes are based on and to a large extend an excerpt from a recent
review article [1].
Resonant Inelastic X-ray Scattering is a fast-developing experimental technique in which one
scatters X-ray photons inelastically off matter. It is a photon-in − photon-out spectroscopy for
which one can, in principle, measure the energy, momentum, and polarization change of the
scattered photon. The change in energy, momentum, and polarization of the photon are trans-
ferred to intrinsic excitations of the material under study and thus RIXS provides information
about those excitations. RIXS is a resonant technique in which the energy of the incident photon
is chosen such that it coincides with, and hence resonates with, one of the atomic X-ray tran-
sitions of the system. The resonance can greatly enhance the inelastic scattering cross-section,
sometimes by many orders of magnitude, and offers a unique way to probe charge, magnetic,
and orbital degrees of freedom on selective atomic sites in a crystal. Early experimental work,
and some more recent reviews include [2–9].

Fig. 1: (Kinetic) energy and momentum carried by the different elementary particles that are
often used for inelastic scattering experiments. The scattering phase-space (the range of ener-
gies and momenta that can be transferred in a scattering event) of X-rays is indicated in blue,
electrons in brown and neutrons in red.
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1.1 Features of RIXS as an experimental method

Compared to other scattering techniques, RIXS has a number of unique features: it covers
a huge scattering phase-space, is polarization dependent, element and orbital specific, bulk
sensitive, and requires only small sample volumes. We briefly illustrate these features below
and discuss them more extensively in the sections to follow.

1. RIXS exploits both the energy and momentum dependence of the photon scattering cross-
section. Comparing the energies of a neutron, electron, and photon, each with a wave-
length on the order of the relevant length scale in a solid, i.e., the interatomic lattice
spacing, which is on the order of a few Angstroms, it is obvious that an X-ray photon
has much more energy than an equivalent neutron or electron, see Fig. 1. The scattering
phase space (the range of energies and momenta that can be transferred in a scattering
event) available to X-rays is therefore correspondingly larger and is in fact without equal.
For instance, unlike photon scattering experiments with visible or infrared light, RIXS
can probe the full dispersion of low energy excitations in solids.

2. RIXS is element and orbital specific: Chemical sensitivity arises by tuning the incident
photon energy to specific atomic transitions of the different types of atoms in a material.
Such transitions are called absorption edges. RIXS can even differentiate between the
same chemical element at sites with inequivalent chemical bondings, with different va-
lencies or at inequivalent crystallographic positions if the absorption edges in these cases
are distinguishable. In addition, the type of information that may be gleaned about the
electronic excitations can be varied by tuning to different X-ray edges of the same chem-
ical element (e.g., K-edge for exciting 1s electrons, L-edge for electrons in the n = 2

shell, or M -edge for n = 3 electrons), since the photon excites different core-electrons
into different valence orbitals at each edge. The energies of these edges are shown in
Fig. 2.

3. RIXS is bulk sensitive: the penetration depth of resonant X-ray photons is material and
scattering-geometry specific, but typically it is on the order of a few µm for photons of
10 keV in the hard X-ray regime, and on the order of 0.1 µm for photons of 1 keV in the
soft X-ray regime.

4. RIXS needs only small sample volumes: the photon-matter interaction is relatively strong,
compared to, for instance, the neutron-matter interaction strength. In addition, photon
sources deliver many orders of magnitude more particles per second, in a much smaller
spot, than do neutron sources. These facts make RIXS possible on very small volume
samples, thin films, surfaces, and nano-objects, in addition to bulk single crystal or pow-
der samples.

5. RIXS can utilize the polarization of the photon: the nature of the excitations created in the
material can be disentangled through polarization analysis of the incident and scattered
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Fig. 2: Energy of the K, L1, L3, M1, and M5 X-ray absorption edges as a function of atomic
number Z. X-ray energies below 1 keV are referred to as soft, above as hard.

photons, which allows one, through the use of various selection rules, to characterize the
symmetry and nature of the excitations. To date, very few experimental facilities allow the
polarization of the scattered photon to be measured [10, 11], though the incident photon
polarization is frequently varied. It is important to note that a polarization change of a
photon is necessarily related to an angular momentum change. Conservation of angular
momentum means that any angular momentum lost by the scattered photons has been
transferred to elementary excitations in the solid.

In principle RIXS can probe a very broad class of intrinsic excitations of the system under study,
as long as these excitations are overall charge-neutral. This constraint arises from the fact that
in RIXS the scattered photons do not add or remove charge from the system under study. In
principle then, RIXS has a finite cross-section for probing the energy, momentum and polar-
ization dependence of, for instance, the electron-hole continuum and excitons in band metals
and semiconductors, charge transfer and d-d-excitations in strongly correlated materials, lattice
excitations and so on. In addition magnetic excitations are also symmetry-allowed in RIXS,
because the orbital angular momentum that the photons carry can in principle be transferred to
the electron’s spin angular moment. This versatility of RIXS is an advantage and at the same
time a complicating factor, because different types of excitations will generally be present in a
single RIXS spectrum.
The generic advantages of the RIXS technique listed above perhaps raise the question as to
why this spectroscopic technique is not as widely used as, say, angle-resolved photoemission
(ARPES) or neutron scattering. The main limitation is that the RIXS process is photon-hungry,
i.e., it requires a substantial incident photon flux to obtain enough scattered photons to collect
spectra with a high enough resolution in energy and momentum in a reasonable time. With a
required resolving power (defined as the incident photon energy divided by the energy resolu-
tion) of four orders of magnitude, RIXS has been a real challenge. Up until a few years ago
this has limited RIXS experiments to measuring energy losses on the order of half an electron
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volt or greater. Thus neutron scattering and ARPES offered a more direct examination of the
low energy excitations near the Fermi level. However, recent progress in RIXS instrumentation
has been dramatic and this situation is now changing. One of the purposes of these notes is
to summarize this progress which is beginning to elevate RIXS into an important condensed
matter physics tool for probing elementary excitations in solids.

1.2 Progress of RIXS in the last decades

As discussed above, the generic features of RIXS make it, in principle, an attractive technique
to study the intrinsic momentum dependent, low-energy response of a material. However there
are of course practical limitations. The most critical of these is the energy resolution, which
is determined both by the availability of the instrumentation necessary to energy-resolve the
photons, and by the availability of tunable photon sources of sufficient intensity.

In order to tune the incident photon energy to a particular edge, a tunable X-ray photon source
is essential. This can be achieved with synchrotron radiation sources and their increase in
brilliance over the past decades has been many orders of magnitudes in the 103-104 eV X-ray
regime. The next generation photon sources include X-ray free electron lasers (FELs), which
are coming on line at the time of writing. The peak brilliance of these sources is again orders of
magnitude larger than that of the third generation synchrotrons and it is likely that these sources
will provide further advances, particularly for time-resolved experiments.

This vast increase in photon flux has been matched by advances in the RIXS instrumentation:
the monochromators, analyzers, and spectrometers. The resulting increase in resolution of
RIXS experiments over time, as measured for instance at the hard X-ray Cu K- and soft X-
ray Cu L3-edges, has greatly improved in the past decade. In concert with the great progress in
the RIXS experiments, there has been a similarly rapid advance in the theoretical understanding
of the scattering process and of the dynamic correlation functions that the technique probes.
Taken together, the theoretical and experimental advances have driven an enormous increase in
the number of RIXS-related publications.

It seems likely that this strong growth will continue. First, because of the ongoing push to bet-
ter energy resolutions. Second, and perhaps more importantly, because there are a multitude
of different X-ray absorption edges, in particular for the heavier elements in the periodic ta-
ble, and each one of these can, in principle, be exploited for RIXS measurements. The bulk
of RIXS data so far has been collected at 3d transition metal and oxygen edges. This is moti-
vated by the intense scientific interest in strongly correlated transition-metal oxides such as the
high-Tc cuprate superconductors and the colossal magnetoresistance manganites. This focus on
transition-metal oxides is an accident of history. It has been very beneficial to the field, driving
advances in instrumentation and theory at the relevant edges, but there is clearly a huge potential
for growth as interest moves on to other materials and other fields.
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1.3 Probing elementary excitations with RIXS

The elementary excitations of a material determine many of its important physical properties,
including transport properties and its response to external perturbations. Understanding the
excitation spectrum of a system is key to understanding the system.

In this respect strongly correlated electron materials, e.g. transition-metal oxides, are of special
interest because the low-energy electronic properties are determined by high-energy electron-
electron interactions (energies on the order of eV’s). From these strong interactions and cor-
relations a set of quantum many-body problems emerge, the understanding of which lies at
the heart of present day condensed matter physics. Most often this many-body physics is cap-
tured in model Hamiltonians, the exact parameters of which must be determined experimentally.
RIXS, along with other spectroscopic techniques, can play an important role there, though we
note that it is a spectroscopic technique applicable to many other materials and is, of course, not
limited to correlated systems.

In the following, we discuss the relevant excitation energy and momentum scale on which RIXS
can probe the excitation spectrum of a solid. We then briefly introduce the kinds of elementary
excitations that are accessible to RIXS.

Excitation Energy and Momentum Scale As is shown in Fig. 3, the elementary excita-
tion spectrum in solids spans the range from plasmons and charge transfer excitations at a few
eV, determining for instance optical properties, through excitons, d-d excitations and magnons
down to phonons at the meV scale. In principle, RIXS can measure the momentum-dependence
of the excitation energy of all these modes, i.e. their dispersion, because the photon transfers
momentum as well as energy to the material under study.

This is unusual if one is accustomed to optical light scattering, such as Raman scattering [12].
Photons in the visible range of the spectrum with an energy of a few eV carry negligible mo-
mentum compared to the quasi-momentum of the elementary excitations of a solid (Fig. 1). A
photon of 2 eV has a momentum of roughly ~q = 10−27 kg m/s, or a wavevector q = 10−3 Å−1

whereas elementary excitations in a crystal with a lattice constant of say 3 Å have wavevectors
up to q = 2π/3 ≈ 2 Å−1. On this scale optical light scattering is in essence a zero momentum
probe. To measure the dispersion of elementary excitations for momenta in a sizable portion
of a typical Brillouin zone, X-rays with energy on the order of 1 keV or more are needed,
corresponding to, for instance, the Cu L-edge.

Overview of elementary excitations In this paragraph we briefly discuss the different ele-
mentary excitations accessible to RIXS.

Plasmons. Collective density oscillations of an electron gas are referred to as plasmons. They
can be observed by inelastic X-ray scattering (IXS) or by optical probes since they occur at
finite energy for q=0. Plasmon-like excitations were also observed early on in RIXS [13], but
their resonant enhancement with respect to IXS is weak, and little work has been done since.



RIXS on Elementary Excitations 12.7

Fig. 3: Different elementary excitations in condensed matter systems and their approximate
energy scales in strongly correlated electron materials such as transition-metal oxides.

Charge-transfer excitations. Charge transport in a condensed matter system is determined by
the energetics of moving electrons from one site to another. In a transition-metal oxide, there
are two relevant energy scales for this process. The first is the energy associated with an electron
hopping from a ligand site to a metal site. This is known as the charge transfer energy, ∆, where
∆ = E(dn+1L) − E(dn), and L represents a hole on the ligand site. The second energy scale
is the energy, U , associated with moving a d-electron from one metal site to another where
U = E(dn+1) + E(dn−1)− 2E(dn). Strongly correlated insulators may be classified by which
of these two energies is the larger [14]. If U > ∆, then the gap is of the charge transfer type
and the system is said to be a charge-transfer insulator. Conversely, if U < ∆, then the gap is
controlled by the d-d Coulomb energy and the system is said to be a Mott-Hubbard insulator.

The bulk of the interesting transition metal oxide compounds, including the cuprates, nickelates
and manganites are all in the charge transfer limit. This means the lowest lying excitations
across the optical gap are charge transfer excitations and therefore these are of central impor-
tance in these materials. Key questions include the size of the gap (typically on the order of
a few eV) and the nature of the excitations: Do they form bound exciton states? Are these
localized or can they propagate through the lattice? What are their lifetimes, symmetries, and
temperature dependence, etc. While some studies have been performed using other techniques,
notably EELS and optical conductivity measurements, RIXS offers a powerful probe for many
of these questions and has been applied extensively.

Crystal-field and orbital excitations. Many strongly correlated systems exhibit an orbital degree
of freedom, that is, the valence electrons can occupy different sets of orbitals. Orbitally active
ions are also magnetic: they have a partially filled outer shell. This orbital degree of freedom
determines many physical properties of the solid, both directly, and also indirectly because
the orbitals couple to other degrees of freedom. For instance, the orbital’s charge distribution
couples to the lattice, and according to the Goodenough-Kanamori rules for superexchange the
orbital order also determines the spin-spin interactions. The nature of the orbital degree of
freedom, i.e., the orbital ground state and its excitations, are an important aspect of strongly
correlated systems.
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In many Mott insulators this orbital physics is governed by the crystal field: the levels of the or-
bitally active ion are split and the orbital ground state is uniquely determined by local, single-ion
considerations. The orbital excitations from this ground state are transitions between the crystal
field levels. Crystal field transitions between different d-orbitals are called d-d excitations. Such
excitations are currently routinely seen by RIXS and are now well understood.
In other cases the crystal field does not split the levels of the outer shell very much, leaving
an orbital (quasi-)degeneracy in the ground state. This local low-energy degree of freedom can
couple to orbital degrees of freedom on neighboring sites by superexchange processes, and in
this way collective orbital excitations can emerge. The quanta of these collective modes are
called orbitons, in analogy to spin waves and magnons. Definitive proof of the existence of
orbitons remains elusive. RIXS is contributing significantly to the search for orbitons.
Magnetic excitations. Magnetism and long-range magnetic ordering are arguably the best
known and most studied consequences of the electron-electron interactions in solids. When
usual magnetic order sets in, be it either of ferro-, ferri-, or antiferromagnetic type, the global
spin rotation symmetry in the material is broken. As a result characteristic collective magnetic
excitations emerge. The resulting low-energy quasiparticles, the magnons, and the interactions
between them determine all low temperature magnetic properties. Magnon energies can extend
up to ∼ 0.3 eV (e.g. in cuprates) and their momenta up to ∼ 1 Å−1. Recently magnon disper-
sions have been measured for the first time at the Cu L-edge on thin films of La2CuO4 [15]. In
K-edge RIXS bi-magnon excitations and their dispersions have also been observed [16].
A melting of the long-range ordering, for instance through an increase in quantum fluctuations
as a result of the introduction of mobile charge carriers in a localized spin system, or by the
frustration of magnetic interactions between the spins, can result in the formation of spin-liquid
ground states. Spin liquids potentially have elusive properties such as high-temperature super-
conductivity or topological order, which one is only beginning to explore and understand. Some
of the more exotic magnetic excitations that emerge from these ground states, such as spinons
and triplons can also be observed by RIXS [17].
Phonons. Phonons are the quantized lattice vibration modes of a periodic solid. These are
bosonic modes with energies typically below 0.1 eV, so that the detection of single phonon ex-
citations is only just possible with present day RIXS resolution. Therefore phonon loss features
were resolved for the first time with RIXS only very recently, at the Cu L- [15] andK-edge [18].
In addition anomalous features in CuB2O4 have been qualitatively described by extending the
electron-only considerations to include the lattice degrees of freedom [19]. Theoretically, the
study of phonons in RIXS promises quantitative investigations of the electron-phonon cou-
pling [20].

2 The RIXS process

The microscopic picture of the resonant inelastic X-ray scattering process is most easily ex-
plained in terms of an example. We will choose a copper-oxide material as a typical exam-
ple, but it should be stressed once more that the focus of RIXS on transition-metal oxides is
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Fig. 4: In a direct RIXS process the incoming X-rays excite an electron from a deep-lying core
level into the empty valence. The empty core state is then filled by an electron from the occupied
states under the emission of an X-ray. This RIXS process creates a valence excitation with
momentum ~k′ − ~k and energy ~ωk − ~ωk′ .

something of an accident of history and is not a fundamental limitation of the technique. In a
copper-oxide material, one can tune the incoming photon energy to resonate with the copper
K, L, or M absorption edges, where in each case the incident photon promotes a different type
of core electron into an empty valence shell, see Figs. 4 and 5. The electronic configuration of
Cu2+ is 1s22s22p63s23p63d9, with the partially filled 3d valence shell characteristic of transition
metal ions. The copper K-edge transition 1s → 4p, is around 9000 eV and in the hard X-ray
regime. The L2,3-edge 2p → 3d (∼ 900 eV) and M2,3-edge 3p → 3d (∼ 80 eV) are soft X-ray
transitions. Alternatively, by tuning to the Oxygen K-edge, one can choose to promote an O 1s

to an empty 2p valence state, which takes ∼ 500 eV.

After absorbing a soft or hard X-ray photon, the system is in a highly energetic, unstable state:
a hole deep in the electronic core is present. The system quickly decays from this intermediate
state, typically within 1–2 femtoseconds. Decay is possible in a number of ways, for instance via
an Auger process, where an electron fills the core hole while simultaneously emitting another
electron. This non-radiative decay channel is not relevant for RIXS, which instead is governed
by fluorescent decay, in which the empty core-state is filled by an electron and at the same time
a photon is emitted.

There are two different scattering mechanisms by which the energy and momentum of the emit-
ted photon can change from the incident one. These are known as direct and indirect RIXS. The
distinction between these two is discussed below.
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2.1 Direct and indirect RIXS

Resonant inelastic X-ray scattering processes are classified as either direct or indirect [21, 22].
This distinction is useful because the cross-sections for each are quite different. When direct
scattering is allowed, it is the dominant inelastic scattering channel, with indirect processes
contributing only in higher order. In contrast, for the large class of experiments for which direct
scattering is forbidden, RIXS relies exclusively on indirect scattering channels.

Direct RIXS For direct RIXS, the incoming photon promotes a core-electron to an empty
valence band state, see Fig. 4. Subsequently an electron from a different state in the valence
band decays and annihilates the core hole.
The net result is a final state with an electron-hole excitation, since an electron was created in
an empty valence band state and a hole in the filled valence band. The electron-hole excitation
can propagate through the material, carrying momentum ~q and energy ~ω. Momentum and
energy conservation require that q = k′ − k and ω = ωk′ − ωk, where ~k (~k′) and ~ωk (~ωk′)
are the momentum and energy of the incoming (outgoing) photon, respectively.
For direct RIXS to occur, both photoelectric transitions, the initial one from core to valence
state and succeeding one from conduction state to fill the core hole, must be allowed. These
transitions can for instance be an initial dipolar transition of 1s→ 2p followed by the decay of
another electron in the 2p band from 2p → 1s, in for example wide-band gap insulators. This
happens for instance at theK-edge of oxygen, carbon, and silicon. At transition-metal L-edges,
dipole transitions give rise to direct RIXS via 2p → 3d absorption and subsequent 3d → 2p

decay. In all these cases, RIXS probes the valence and conduction states directly. Although the
direct transitions into the valence shell dominate the spectral line shape, the spectral weight can
be affected by interactions in the intermediate-state driven by, for example, the strong core-hole
potential.

Indirect RIXS The indirect RIXS process is slightly more complicated. For pure indirect
RIXS to occur, photoelectric transitions from the core-state to conduction-band states must
be weak. Instead, the incoming photon promotes a core-electron into an empty state several
electron volts above the Fermi level. Subsequently the electron from this same state decays to
fill the core hole, see Fig. 5. The most studied example is RIXS at the transition-metal K-edges
(1s→ 4p). Obviously, in the absence of any additional interaction, no inelastic scattering would
be observed. But in the intermediate state a core hole is present, which exerts a strong potential
on the 3d valence electrons, that therefore tend to screen the core hole. The core-hole potential
scatters these valence electrons, thereby creating electron-hole excitations in the valence band.
After the 4p→ 1s decay, the electron-hole excitations are then left behind in the system.
Indirect RIXS is thus due to shakeup excitations created by the intermediate state core hole.
The fact that close to the absorption edge the 1s core hole and 4p electron bind together to form
an exciton does not change this picture conceptually. In this case, one may think of the valence
electrons as scattering off this exciton.
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Fig. 5: In an indirect RIXS process, an electron is excited from a deep-lying core level into the
valence shell. Excitations are created through the Coulomb interaction Uc between the core
hole (and in some cases the excited electron) and the valence electrons.

In RIXS, the solid is taken from a ground state with energy Eg, to a final-state with excitations
and an energy Ef . The energy and momentum of the excitation is determined by the difference
in photon energy ~ωk − ~ωk′ and momentum ~k′ − ~k, respectively. The RIXS intensity can
in general be written in terms of a scattering amplitude as

I(ω,k,k′, ε, ε′) =
∑
f

|Ffg(k,k′, ε, ε′, ωk)|2 δ(Ef + ~ωk′ − Eg − ~ωk) ,

where the delta function enforces energy conservation and the amplitude Ffg(k,k′, ε, ε′, ωk)

reflects which excitations are probed and how, for instance, the spectral weights of final-state
excitations depend on the polarization vectors, ε and ε′ of the incoming and outgoing X-rays,
respectively. The following sections derive the RIXS scattering amplitude and demonstrate how
it can be broken down into separate pieces.
First, we need to derive a general expression for the RIXS scattering amplitude. Section 3 looks
at the interaction between photons and matter. RIXS refers to the process where the material
first absorbs a photon. The system is then in a short-lived intermediate state, from which it
relaxes radiatively. In an experiment, one studies the X-rays emitted in this decay process.
This two-step process cannot be described simply by using Fermi’s Golden Rule, but requires a
higher-order treatment, known as the Kramers-Heisenberg equation [23]. Since the absorption
and emission are single-photon processes, the interactions between the X-rays and the material
are dominated by the terms in the cross-section proportional to p ·A, where p is the momentum
of the electrons in the material and A is the vector potential of the photon. The interaction
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Fig. 6: In the theory of RIXS, the scattering amplitude Ffg occurring in the Kramers-
Heisenberg equation is separated into several pieces. One can split off the angular and polar-
ization dependence Tx, leaving fundamental scattering amplitudes Fx. Several approximation
schemes then break down these scattering amplitudes into a resonance function P and effective
transition operators W x.

between the X-rays and the material depends on external quantities, such as wavevector k and
polarization vectors ε of the X-rays, and operators, such as p and r. As a result the electronic
transitions are intermingled. The scattering amplitude can be split into an angular and polar-
ization dependence Tx(k̂, k̂′, ε, ε′) related to the experimental geometry and spectral functions
Fx(k, k′, ωk) that measure the properties of the material, see Fig. 6. This separation can be done
exactly. It is important to note that there are only a finite number of fundamental scattering am-
plitudes Fx(k, k′, ωk) and that the RIXS scattering amplitude is a linear combination of these
fundamental scattering amplitudes weighted by the angular functions Tx(k̂, k̂′, ε, ε′).
The next step is to understand the fundamental scattering amplitudes. This can be done numer-
ically but, in addition, several authors have used approximation schemes in order to provide
more insight into the scattering amplitude. Generally, the approximations involve the propa-
gation of the system in the time between the absorption and emission processes. The schemes
generally allow the separation of the fundamental scattering amplitudes into a resonance func-
tion P (ωk, ωk′) and an effective transition between ground and final states 〈f |W x|g〉, see Fig. 6.
The resonance function gives the strength of the fundamental scattering amplitude, which is a
combination of radial matrix elements of the transition operators and energy denominators that
describe the resonant effect as a function of ωk. The effective transition operators create ex-
citations in the valence shell similar to an optical excitation. In certain cases, these operators
can also be related to correlation functions such as the dynamic structure factor. The approx-
imations depend on the RIXS process. Direct RIXS is approximated by using a fast-collision
approximation and indirect RIXS can be approached via perturbative methods or an ultra-short
core-hole lifetime expansion, see Section 4.1.

3 Interaction of light and matter

To develop the theory of RIXS, we first need to derive the Hamiltonian that describes the in-
teraction of the incident X-ray beam with the electrons in the sample. The interaction terms
in this Hamiltonian are small, controlled by the dimensionless fine structure constant α =
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e2/4πε0~c ≈ 1/137, with e = |e| the magnitude of the elementary charge and ε0 the permittiv-
ity of free space. Therefore they can be treated as a perturbation to the terms in the Hamiltonian
that describe the system under study. To second order in such a perturbation theory, we obtain
the Kramers-Heisenberg formula, which describes RIXS very well. We need to go to second or-
der because two interactions are needed: one to create the core hole, and one for the subsequent
radiative de-excitation.

3.1 Kramers-Heisenberg cross-section

The incident X-rays are described by an electromagnetic field with vector potential A(r, t). The
coupling between such a field and electrons is given by the theory of quantum electrodynamics.
It is common to start from the exactly solvable case of a single electron without potentials (A
and electric potential φ(r, t)). Then, the potentials are (perturbatively) introduced and one takes
two limits. The first of these is that the electrons travel at speeds, v, small compared to the
speed of light. This is a good approximation even for, e.g., copper 1s core electrons, where
we estimate v ∼ ~Z/ma0 ≈ 0.21c with Z the atomic number for copper and a0 the Bohr ra-
dius. At first glance, v/c might not appear small in this case, but γ = 1/

√
1− v2/c2 ≈ 1.02

and relativistic effects are still small. The second limit is that the potentials related to both the
electrons and the photons in the system are small compared to twice the mass of the electron:
eφ/2mc2, e|A|/2mc� 1 (m is the electron mass). Although the intrinsic potentials of materi-
als diverge close to the nuclei, they may be treated consistently within the whole procedure for
Z � 137 (see page 948 in [24]). Photon potentials at existing X-ray sources satisfy these limits.
However, in the future at very strongly focussed X-ray Free Electron Lasers, the electric field
of the photon is projected to exceed 1016 V/m, which gives e|A| ∼ 2mc at a photon energy of
∼ 8 keV so that these approximations are no longer valid. However, such effects are neglected
here and the formalism is developed for non-relativistic electrons in small potentials.
In these limits, one obtains for a system withN electrons, in SI units (see pages 944–947 in [24]
or pages 85–88 in [25]),

H =
N∑
i=1

[
(pi + eA(ri))

2

2m
+
e~
2m
σi ·B(ri)

+
e~

2(2mc)2
σi ·

(
E(ri)× (pi + eA(ri))− (pi + eA(ri))× E(ri)

)]
(1)

+
e~2ρ(ri)
8(mc)2ε0

+HCoulomb +
∑
κ,ε

~ωκ
(
a†κεaκε +

1

2

)
,

where pi, ri and σi are, respectively, the momentum and position operators and the Pauli ma-
trices acting on electron i. A(r) is the vector potential, E(r) = −∇φ − ∂A/∂t, the electric
field, and B(r) = ∇ × A, the magnetic field. a(†)κε annihilates (creates) a photon in the mode
with wave vector κ and polarization vector ε. The second term yields the Zeeman splitting,
and the third includes spin-orbit coupling. The interaction of electrons with an external electric
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potential and with other electrons and nuclei in the sample (including the Darwin term) are all
described by HCoulomb. The vector potential can be expanded in plane waves as

A(r) =
∑
κ,ε

√
~

2Vε0ωκ
(
ε aκεe

iκ·r + ε∗a†κεe
−iκ·r) , (2)

where V is the volume of the system.
In order to derive the photon scattering cross-section one splits the Hamiltonian H into an
electron-photon interaction part, H ′, and the remaining terms, H0, which describe the electron
and photon dynamics in the absence of electron-photon interactions. H ′ is then treated as a per-
turbation to H0. To calculate the RIXS cross-section in this perturbation scheme, it is assumed
that there is a single photon in the initial state with momentum ~k, energy ~ωk and polarization
ε that is scattered to (~k′, ~ωk′ , ε′) in the final state. Photon scattering then induces a change
in the material from ground state |g〉 to final state |f〉, with energies Eg and Ef respectively. In
the process, the photon loses momentum ~q = ~k − ~k′ and energy ~ω = ~ωk − ~ωk′ to the
sample. Fermi’s Golden Rule to second order gives the transition rate for this process :

w =
2π

~
∑
f

∣∣∣∣〈f|H ′ |g〉+∑
n

〈f|H ′ |n〉 〈n|H ′ |g〉
Eg − En

∣∣∣∣2δ(Ef − Eg) , (3)

where the initial state |g〉 = |g;kε〉, the intermediate state |n〉 and the final state |f〉 = |f ;k′ε′〉
are eigenstates of H0 with energies Eg = Eg + ~ωk, En, and Ef = Ef + ~ωk′ , respectively.
The first order amplitude in general dominates the second order, but when the incoming X-rays
are in resonance with a specific transition in the material (Eg ≈ En), then the second order
terms become large. The second order amplitude causes resonant scattering, while the first
order yields non-resonant scattering.
In order to derive H ′ it is useful to classify the terms of Eq. (1) by powers of A. Terms of H
that are quadratic in A are the only ones to contribute to the first order amplitude, because they
contain terms proportional to a†k′ε′akε and akεa

†
k′ε′ . To be specific, the quadratic contribution

from the first term of H gives rise to non-resonant scattering, while the third term of H yields
magnetic non-resonant scattering. Although both appear in the first order scattering amplitude,
they in principle also contribute to the second order, but we neglect these processes because
they are of order α3/2.
The interaction terms linear in A do not contribute to the first order amplitude, but do contribute
to the second order. They thus give rise to resonant processes. In the following, we neglect such
contributions that come from the third term of Eq. (1), because they are of second order in two
separate expansions. Firstly, this term of H is of second order in the limits discussed above, and
secondly, it appears in the second order of the scattering amplitude. Finally, all terms in Eq. (1)
that are independent of A are included in H0. The relevant remaining terms are

H ′ =
N∑
i=1

[
e

m
A(ri)·pi +

e2

2m
A2(ri) +

e~
2m
σi ·∇×A(ri)−

e2~
(2mc)2

σi ·
∂A(ri)

∂t
×A(ri)

]
, (4)

where the gauge was fixed by choosing ∇ ·A(r) = 0 so that A · p = p ·A.
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The two terms of H ′ that contribute to the first order amplitude are the one proportional to A2

and the σ ·(∂A/∂t)×A term. The latter is smaller than the former by a factor ~ωk(′)/mc
2 � 1,

and is therefore neglected. The first order term in Eq. (3) then becomes

e2

2m
〈f|
∑
i

A2(ri) |g〉 =
~e2

2mVε0
ε′∗ · ε
√
ωkωk′

〈f |
∑
i

eiq·ri |g〉 . (5)

When the incident energy ~ωk is much larger than any resonance of the material, the scattering
amplitude is dominated by this channel, which is called Thompson scattering. In scattering
from a crystal at zero energy transfer, this term contributes amongst others to the Bragg peaks.
It also gives rise to non-resonant inelastic scattering. In practice, RIXS spectra show a strong
resonance behavior, demonstrating that for these processes, it is the second order term that
dominates the scattering. We therefore omit the A2 contribution in the following. More details
on non-resonant inelastic X-ray scattering can be found in, for instance, [8, 26].
The second order amplitude in Eq. (3) becomes large when ~ωk matches a resonance energy
of the system, and the incoming photon is absorbed first in the intermediate state, creating a
core hole. The denominator Eg + ~ωk − En is then small, greatly enhancing the second order
scattering amplitude. We neglect the other, off-resonant processes here, though they do give
an important contribution to non-resonant scattering [6]. The resonant part of the second order
amplitude is

e2~
2m2Vε0

√
ωkωk′

∑
n

N∑
i,j=1

〈f | e−ik′·ri
(
ε′∗ ·pi − i~

2
σi ·k′×ε′∗

)
|n〉

Eg + ~ωk − En + iΓn
〈n| eik·rj

(
ε·pj +

i~
2
σj ·k×ε

)
|g〉

(6)
where a lifetime broadening Γn is introduced for the intermediate states. This accounts for the
many non-radiative interaction terms that are not included in H ′ (for example Auger decay),
which make the intermediate states very short lived.
Resonant scattering can thus occur via a magnetic and a non-magnetic term. An estimate shows
that the latter dominates. The size of localized 1s copper core orbitals is a0/Z ≈ 0.018 Å so
that for 10 keV photons the exponential eik·r is close to unity and can be expanded. The non-
magnetic term can induce a dipole transition of order |p| ∼ ~Z/a0 ∼ 5.9·10−23 kg m/s, whereas
the magnetic term gives a dipole transition of order (k · r)~|k|/2 ∼ 2.5 · 10−25 kg m/s. We thus
ignore the magnetic term here, and the relevant transition operator for the RIXS cross-section is

D =
1

imωk

N∑
i=1

eik·ri ε · pi , (7)

where a prefactor has been introduced for convenience in the following expressions.
The double-differential cross-section I(ω,k,k′, ε, ε′) is now obtained by multiplying by the
density of photon states in the solid angle dΩ (= Vk′2 d|k′| dΩ/(2π)3) and dividing by the
incident flux c/V [25, 6, 8]

I(ω,k,k′, ε, ε′) = r2em
2ω3

k′ωk

∑
f

|Ffg(k,k′, ε, ε′, ωk, ωk′)|2 δ(Eg − Ef + ~ω) , (8)
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where the classical electron radius re = 1
4πε0

e2

mc2
. The scattering amplitude at zero temperature

is given by

Ffg(k,k′, ε, ε′, ωk, ωk′) =
∑
n

〈f | D′† |n〉 〈n| D |g〉
Eg + ~ωk − En + iΓn

, (9)

where the prime in D′ indicates it refers to transitions related to the outgoing X-rays. Eqs. (8)
and (9) are referred to as the Kramers-Heisenberg equations, which are generally used to calcu-
late the RIXS cross-section.
Alternatively, we can rewrite the denominator for the intermediate-states in terms of a Green
function, which is also referred to as the intermediate-state propagator, which describes the
system in the presence of a core hole:

G(zk) =
1

zk −H
=
∑
n

|n〉〈n|
zk − En

, (10)

where |n〉 forms a complete basis set and

zk = Eg + ~ωk + iΓ, (11)

where Γ is taken to be independent of the intermediate states. The quantity zk is the energy of
the initial state combined with the finite lifetime of the core hole. In the following we will often
suppress the explicit label k of zk and denote it simply by z, with an implicit incident energy
dependence. With the core-hole propagator G and transition operators D in place, the RIXS
scattering amplitude Ffg finally reduces to the elegant expression

Ffg = 〈f | D′†G(zk)D |g〉 . (12)

3.2 Scattering amplitude in dipole approximation

In the previous section, Eqs. (8) and (9) give the Kramers-Heisenberg expression for RIXS.
The next step is to separate the part pertaining to the geometry of the experiment from the
fundamental scattering amplitudes that relate to the physical properties of the system, see Fig. 6.
In addition, better-defined transition operators will be obtained. Due to the complexity of the
multipole expansion, we first give a derivation in the dipole limit allowing the reader to better
follow the arguments. In the next section, we present the higher order transitions.
In the dipole limit, one assumes that eik·ri ∼= eik·Ri where Ri indicates the position of the ion to
which electron i is bound. Note that Ri is not an operator. This has as a result that the electronic
transitions are due to the momentum operator p and Eq. (7) becomes

D = ε ·D with D =
1

imωk

N∑
i=1

eik·Ripi . (13)
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Generally, the matrix elements are expressed in terms of the position operator r. For example,
in the absorption step, one can write

〈n|D |g〉 =
N∑
i=1

eik·Ri

imωk

〈n|pi |g〉 =
N∑
i=1

eik·Ri

~ωk

〈n| [ p
2
i

2m
, ri] |g〉

∼=
N∑
i=1

eik·Ri

~ωk

(En − Eg) 〈n| ri |g〉 ∼=
N∑
i=1

eik·Ri 〈n| ri |g〉 ,

where ~ωk
∼= En − Eg. The operator thus reduces to the dipole operator D =

∑N
i=1 e

ik·Riri
that causes electronic transitions.
The next step is to separate the part that pertains to the geometry of the experiment (the po-
larization vectors ε′ and ε) from the physical properties of the system. Ultimately, our interest
lies in the spectral functions of a material. The geometry is chosen in an optimal way to mea-
sure them. Using spherical-tensor algebra, we can rewrite the scattering amplitude, Eq. (12),
remaining in the dipole limit, Eq. (13), as

Ffg =
2∑

x=0

[x]n2
11x 〈f | [ε′∗, ε]x · [D†, G(zk)D]x |g〉 ,

using the shorthand [l1 · · · ln] = (2l1 + 1) · · · (2ln + 1); n11x is a normalization constant, and
[ , ]x is a tensor product. Since the tensor product couples tensors of rank 1 (the polarization
vectors and the position vector r), the rank x of the tensor products can assume the values 0, 1,
and 2. The fundamental scattering amplitudes are given by

Fx(zk) = 〈f | [D†, G(zk)D]x |g〉 . (14)

For each value of x, there are 2x + 1 components F x
q with q = −x,−x + 1, . . . , x. Note that,

whereas there is an infinite number of different scattering amplitudes, for dipole transitions,
there are only nine fundamental ones ( 3 × 3 = 1 + 3 + 5 = 9). All the other possible scatter-
ing amplitudes are combinations of these fundamental scattering amplitudes with a weighting
determined by the angular dependence

Tx(ε, ε′) = [x]n2
11x[ε

′∗, ε]x, (15)

which again has nine components T xq (ε, ε
′). For x = 0, 1, the angular dependence is given by

the inner product, T 0
0 (ε, ε

′) = 1
3
ε′∗ · ε, and the outer product, T 1

α(ε, ε
′) = 1

2
(ε′∗ × ε)α of the

polarization vectors, respectively. The total scattering amplitude in the dipole limit can now be
written as

Ffg(ε, ε′, ωk) =
2∑

x=0

Tx(ε, ε′) · Fx(zk) . (16)

The spectra for different x and q are combinations of the spectra for different polarizations.
Usually, the scattering amplitudes are calculated in terms of the components Dα of the dipole
operator, where α = 1, 0,−1 in spherical symmetry or α = x, y, z in Cartesian coordinates.
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The spectra for different polarizations are then combined to form the fundamental scattering
amplitudes. This can be compared with X-ray absorption. The circular dichroic spectrum (the
x = 1 fundamental spectrum for X-ray absorption) is usually calculated by subtracting the
spectra for left and right circularly polarized light (α = ±1). The scattering amplitudes in
terms of the components of the dipole operator are given by

Fα′α = 〈f |D†α′ G(zk)Dα |g〉 =
∑
n

〈f |D†α′ |n〉 〈n|Dα |g〉
~ωk + Eg − En + iΓ

. (17)

Note that again there are only nine spectra and this is just a representation of the nine funda-
mental spectra in a different basis. The simplest scattering amplitude is the isotropic one given
by x = 0. The tensor containing the isotropic scattering amplitudes F0 has only one component
F 0
0 ,

F 0
0 = F00 + F11 + F−1,−1 = Fxx + Fyy + Fzz, (18)

which is just a sum of all the different polarization components. For the expressions in spherical
symmetry, note that, since r†iα′ = (−1)α′

ri,−α′ , there is no net transfer of angular momentum
to the system for the isotropic scattering amplitude. Since the angular dependence is given by
T0 = ε′∗ ·ε, the isotropic contribution to the spectral line shape is removed in many experiments
by the use of a 90◦ scattering condition with the incoming polarization vector in the scattering
plane (π-polarized). This makes the incoming polarization vector perpendicular to both possible
outgoing polarization vectors and therefore ε′∗ · ε = 0. In addition, this has the advantage that
it strongly reduces the non-resonant A2 term from the experimental RIXS data (which has the
same polarization dependence). This contributes mostly to the elastic line and is frequently the
major experimental impediment to measuring low-energy excitations.
Tensors of rank x = 1 have three components. For example, the q = 0 component is given by

F 1
0 = F11 − F−1,−1 = Fxy − Fyx. (19)

For resonant elastic X-ray scattering, the F 1
0 scattering amplitude is the one that gives rise to,

amongst others, magnetic scattering. The angular dependence for x = 1, is given by an outer
product T1 = ε′∗ × ε.
At this point it is useful to make a comparison with X-ray absorption (XAS) and resonant X-ray
(elastic) scattering (RXS), which are determined by the scattering amplitude Fgg

IXAS(ε, ωk) =− 1

π
Im [Fgg(ε, ε, ωk)] (20)

IRXS(ε, ε
′, ωk) = |Fgg(ε, ε′, ωk)|2, (21)

where for X-ray absorption, there is only a polarization vector for the incident X-rays, and
ε′ ≡ ε. Since for XAS and RXS the “final” state is equivalent to the ground state in the
scattering amplitude (|f〉 = |g〉) an additional restriction is imposed on the scattering. In many
symmetries, this means that only the q = 0 component contributes, reducing the scattering
amplitude determining XAS and RXS to

Fgg(ωk) =
2∑

x=0

T x0 (ε, ε
′)F x

0 (zk) . (22)
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This implies that of the 3 × 3 = 9 components in the full scattering amplitude, only 3 compo-
nents, corresponding to x = 0, 1, 2 and q = 0, remain. For X-ray absorption, these correspond
to the well-known isotropic, circular dichroic, and linear dichroic spectra, respectively.

3.3 Scattering amplitude for a multipole expansion

We next generalize the ideas from the previous section to include the different types of multi-
poles arising from the p ·A interaction in Eq. (4). Since the dipolar and quadrupolar transitions
in RIXS are predominantly excitations from a localized core hole into the valence states, the
common approach is to expand the plane wave in the vector potential, see Eq. (2), around the
site where the absorption takes place. Essentially, one is using an approximation of the type
eik·ri ∼= 1 + ik · ri but in spherical harmonics. In the previous section, we treated the case
that eik·ri ∼= 1. The plane wave can be expanded in terms of spherical harmonics Ylm(θ, ϕ) and
spherical Bessel functions jl [27]

eik·ri = 4π
∞∑
l=0

l∑
m=−l

iljl(kri)Y
∗
lm(θk̂, ϕk̂)Ylm(θr̂i , ϕr̂i).

In order to arrive at the standard transition operators, it makes sense, at this point, to rewrite the
above equation in terms of spherical tensors. A common set of tensors are the normalized spher-
ical harmonics, which we write as the tensor r̂(l) with components r̂(l)m =

√
4π/[l]Ylm(θr̂, ϕr̂).

In addition, r(l) = rlr̂(l). Note that r(0) = 1. For spherical harmonic tensors of order l = 1, the
superscript is dropped r = r(l). This allows us to rewrite the expansion as

eik·ri =
∞∑
l=0

[l] iljl(kr) k̂
(l) · r̂(l)i . (23)

As in the previous section, we want to separate the momentum and polarization vectors of the
X-rays (the geometry of the experiment) from the transitions in the material under consideration
(the fundamental spectra). This can be done by recoupling the different tensors. Recoupling of
the tensors [27–29] leads to

D =
1

imω

N∑
i=1

eik·ri ε · pi =
1

imω

N∑
i=1

∑
lL

[lL] il

[l]!!
n2
1lL k

l[pi, r
(l)
i ]L · [ε, k̂(l)]L, (24)

where the approximation jl(kr) ∼= (kr)l/[l]!! for kr � 1 has been used, with the double
factorial l!! = l(l−2) · · · . Note that the operators acting on the electrons, namely the momentum
pi and position ri, are coupled together to form an effective operator DlL of rank L = l−1, l, l+
1. The quantities related to the photons, namely, the wavevector k and polarization ε also form
a tensor of rank L. Let us first consider the transition operators in Eq. (24) by introducing the
transition operators [30]

DlL =
plL(k)

imω

N∑
i=1

[pi, r
(l)
i ]L, (25)
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with plL(k) = [lL]n2
1lL k

l/[l]!! = 1, k/2, k/6 for lL = 01, 11, 12, respectively. The values
of l and L give rise to the usual dipolar (lL = 01), magnetic dipolar (11), and quadrupolar
(12) transition operators. For l = 0, one has r

(0)
i = 1 and the operator simplifies to D01 =∑

i pi/imω, which is equivalent to the dipole operator in Eq. (13) of the previous Section. In
cartesian coordinates, the operator [ri,pi]1 = Li and D11 = αa0

2

∑
i Li, with a0 the Bohr radius

and the angular momentum given in ~. The orbital moment forms, together with the Zeeman
term in Eq. (1), the magnetic dipole transition. Since magnetic dipole transitions are of the order
of α2 = 1/1372, i.e., about five orders of magnitude, smaller than the electric dipole transitions
of the same wavelength, they will be neglected in the remainder of this paper. The next operator
is D12 = k

6

∑N
i=1 r

(2)
i which is the electric quadrupole operator.

In the remainder, we limit ourselves to the electric L-pole transitions, and we can drop the
l = L − 1 from the expressions, i.e., DL−1,L → DL. The transition operators are then
D ∼ [ε,k(L−1)]L ·DL with DL = pL(k)

∑N
i=1 r

(L)
i with L = 1, 2 for dipolar and quadrupolar

transitions, respectively. The relative strengths of the components of the multipole transition op-
erators r(L)M depend on the direction of polarization and wavevector through [ε,k(L−1)]L. These
reduce to ε and [ε,k]2, for the electric dipolar and quadrupolar transitions, respectively. As
discussed in the previous section, the part that depends on the geometry of the experiment and
the fundamental spectra (9 and 25 for dipolar and quadrupolar transitions, respectively) that de-
scribe the physical properties of the system can be separated exactly. This can again be achieved
by applying a recoupling on the scattering amplitude, which can then be rewritten as

Ffg(k,k
′, ε, ε′, ωk) =

2L∑
x=0

TLx(k̂, k̂′, ε, ε′) · FLx(k, k′, ωk) .

Neglecting interference effects between different multipoles, the scattering amplitude for a par-
ticular multipole is given by [30]

FLx(k, k′, ωk) =
∑
n

[〈f | (DL)† |n〉 , 〈n|DL |g〉]x

~ωk + Eg − En + iΓ
,

which has angular dependence

TLx(k̂, k̂′, ε, ε′) = [x]n2
LLx [[ε

′∗, k̂′(L−1)]L, [ε, k̂(L−1)]L]x.

The above equations give an exact separation of the Kramers-Heisenberg expression for RIXS
into an angular dependence and a fundamental scattering amplitude, achieving the first step
shown in Fig. 6.
In the previous section the Kramers-Heisenberg expression for the RIXS scattering amplitude
Ffg , Eq. (9), was derived and re-expressed as a product of a photon absorption operator D, the
intermediate state propagator G and a photon emission operator D†, sandwiched between the
RIXS final and ground state

Ffg = 〈f|D†GD|g〉 . (26)
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Fig. 7: Theoretical approach to the intermediate state propagator, classifying direct and indirect
RIXS processes and common approximations to the propagator: a [31], b [32], c [33], d [34],
e [35], f [36], g [37], h [21], i [22], j [38].

The presence of the intermediate state propagator is what makes the theory of RIXS complicated
– and interesting. The propagator G is defined in terms of the inverse of the total Hamiltonian
H of the system, G(zk) = (zk −H)−1, where the operator H naturally divides into the ground
state Hamiltonian H0 (governing the quantum system without a core hole) and the core-hole
Hamiltonian HC perturbing the system after photon absorption: H = H0 + HC . It should be
noted that even if one commonly refers to HC as the core-hole Hamiltonian, it also includes the
interaction between the electron excited into the conduction band and the rest of the material.
As core hole and excited electron together form an exciton, their separate effects on the system
cannot, in principle, be disentangled.

4 Definition of direct/indirect RIXS

At this point it is useful to separate the full propagator G into the unperturbed propagator G0 =

(zk − H0)
−1 and a term that contains the core-hole Hamiltonian HC , using the identity G =

G0 + G0HCG. This also separates the RIXS amplitude into two parts, which define direct and
indirect RIXS [22]:

Fdirect
fg = 〈f|D†G0D|g〉 (27)

and

F indirect
fg = 〈f|D†G0HCGD|g〉 . (28)

Note that this definition of direct/indirect RIXS, based on the Kramers-Heisenberg expression,
is exact.
For the direct RIXS amplitude, the core hole does not play a role – the photon absorption and
emission matrix elements determine which electronic transitions are allowed. The physical
picture that arises for direct RIXS is that an incoming photon promotes a core-electron to an
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empty valence state and subsequently an electron from a different state in the valence band
decays, annihilating the core hole, see Fig. 4. Thus for direct RIXS to occur, both photoelectric
transitions, the initial one from core to valence state and the succeeding one from valence state
to fill the core hole, must be allowed. These transitions can, for example, be an initial dipolar
transition of 1s → 2p followed by the decay of another electron in the 2p band from 2p → 1s.
This happens at theK-edge of oxygen, carbon and silicon. In addition, at transition-metal (TM)
L-edges, dipole transitions causing direct RIXS are possible via 2p→ 3d and 3d→ 2p dipolar
transitions. In all these cases RIXS probes the valence and conduction states directly.
For indirect RIXS, the scattering amplitude depends critically on the perturbing core-hole Hamil-
tonian; without it the indirect scattering amplitude vanishes. In general the scattering, F indirect

fg ,
arises from the combined influence of HC and transition matrix elements D. Most often for
indirect RIXS, D/D† create/annihilate an electron in the same state, far above the Fermi level.
For instance at the TM K-edge, the 1s↔ 4p process creates/annihilates an electron in 4p states
electonvolts above the TM 3d valence shell. The delocalized 4p electron can then be approx-
imated as being a spectator because (Coulomb) interactions involving the localized core hole
are usually much stronger and dominate the scattering cross-section.
It should be noted that if scattering is direct, as for instance at TM L-edges, indirect processes
can also contribute to the total scattering amplitude. However, as indirect scattering arises in
this case as a higher order process, it is normally weaker than the leading order direct scattering
amplitude. Conversely, in case of indirect RIXS, direct processes are absent by definition.

4.1 Effective theory for indirect RIXS

In the previous section, we have seen that the direct RIXS process can be written in terms of
effective transition operators (see Eq. (27)) that do not involve the core-hole Hamiltonian HC .
When higher-order contribution are neglected, this approach corresponds to the fast-collision
approximation, or the lowest order in the ultrashort core-hole lifetime (UCL) expansion, see
Sec. 4.3. Indirect RIXS is different, as these lowest order terms do not contribute to its RIXS
cross-section and the scattering process critically depends on the higher-order terms. For ex-
ample, K-edge RIXS is dominated by excitations into the transition-metal 4p states. Since
the 4p states are usually almost completely empty, the effective operators for direct RIXS only
contribute to the elastic line, where the effective transition operator creates an electron in the
valence shell in the excitation step and annihilates it again in the emission process.
Experimentally, however, RIXS is observed at the K-edge. Particularly prominent are the
charge-transfer type excitations. Also the excitation of d-d transitions and magnons have been
observed. The general consensus is that these excitations are created through the interaction be-
tween the valence shell and the 1s-4p excitation created in the absorption process. Most work
has focused on the interaction with the potential of the 1s core hole, which is known to be of
the order of 6–8 eV. This potential can be written as

HC =
∑

kk′qµσσ′

U1s,3d d
†
k+q,µσs

†
k′−q,σ′sk′σ′dkµσ , (29)
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where µ sums over the different orbitals. The potential can in principle contain exchange terms,
but these are negligible at the K-edge. The transient presence of this potential in the interme-
diate state leads to strong screening dynamics in the valence shell giving rise to the final-state
excitations. This Section discusses some of the methods used to describe the excitations created
by interactions in the intermediate state.

4.1.1 Momentum dependence for indirect RIXS

Recognizing that for indirect RIXS the core hole dominates the scattering process has an im-
portant consequence for the momentum dependence. In the hard X-ray regime photons have
a momentum q that can span several Brillouin zones because it is larger than the reciprocal
lattice vectors G. The photon momentum reduced to the first Brillouin zone is, by definition,
κ = q− nG. The translational invariance and localized nature of the core potential in Eq. (29)
imply that the momentum dependence of RIXS is determined by the reduced momentum κ. It
will only weakly depend on nG as in reality a finite, but small, length-scale is associated with
the core potential. RIXS spectra will therefore appear practically identical in different Bril-
louin zones. This is confirmed experimentally by [39]. The weak variations found in [40], are
attributed by the authors to polarization effects.
This is remarkable because in IXS the total momentum q determines the scattering amplitude.
The reason for this is that in IXS q enters directly into the transition matrix elements, which in
RIXS are dominated by dipolar transitions for which eiq·r ∼= 1 and that are therefore indepen-
dent of q. In the following, we will see how in certain limits the indirect RIXS amplitude can
be related to the dynamic electronic structure factor Sk(ω), which is directly measured by IXS.
The important difference is thus that IXS measures Sq(ω) and RIXS is, in these cases, related
to Sκ(ω).

4.2 Perturbative approach

The most straight-forward approach to include effects of the interaction HC between the core
hole and the valence shell is the use of perturbation theory. This amounts to replacing G by G0

in Eq. (28) [32, 34, 33, 36, 35, 41], so that

F indirect
fg = 〈f |D†G0HCG0D|g〉, (30)

which is also referred to as the Born approximation and shown in terms of a Feynman dia-
gram expansion in Fig. 8. For dipolar 1s → 4p transitions at the K-edge, we have D =√
3P 1

1s,4p

∑
κkα εαp

†
κ+k,ασsκασ with α = x, y, z, and P 1

1s,4p the reduced matrix element contain-
ing the integral over the radial parts of the wavefunction.
In indirect RIXS, one considers the case where the 1s-4p exciton created in the absorption step
is annihilated in the emission process. Since there is a momentum transfer q from the photons
to the system, this implies that the momentum of the 1s-4p exciton must have changed in the
intermediate state. This can only be a result of interactions of the 1s-4p exciton with the valence
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Fig. 8: Feynman diagram for the transition probability in an indirect RIXS process in the Born
approximation. Green functions for Cu 1s, 4p, and 3d electrons correspond to the solid lines
labeled 1s, 4p, and 3d, respectively. The wavy and broken lines represent the photon propagator
and core hole potential U1s,3d, respectively. The shaded triangle is the effective scattering vertex
of the renormalized interaction between the valence electrons in the 3d-shell [36].

shell. If the dominant interaction is the Coulomb interaction of the core hole with the valence
shell, then the isotropic scattering amplitude can be rewritten as [33, 8]

F indirect
fg (q, ω) = P (ωk, ωk′)T (ε, ε′) 〈f |ρq|g〉 . (31)

Note that all the operators involving the 1s and 4p states have been removed from the expression.
The density operator is

ρq =
∑
kσ

d†k+q,σdkσ . (32)

The resonance behavior is determined by the resonant function

P (ωk, ωk′) = 3(P 1
1s,4p)

2 U1s,3d

(zk − ~ω)zk
, (33)

using the fact that ~ω = ~ωk − ~ωk′ = Ef . The resonant function is more complex than for
direct RIXS reflecting the fact that this is a higher-order excitation. The polarization dependence
requires some careful consideration. In the situation where the 4p electron is a spectator an
electron is excited into the 4p band with momentum k and band index n and subsequently
removed from the same state

T (ε, ε′) =
1

N

∑
kαα′

ε′∗α′εα 〈0|pkα′|E4p
kn〉〈E

4p
kn|p

†
kα|0〉 , (34)

with α = x, y, z. In the atomic limit, this expression reduces to ε′∗ · ε, since the orbital of the 4p
electron is unchanged in the intermediate state. In the absence of band effects, a change in the
polarization therefore implies that the angular momentum of the valence electrons has changed.
However, the 4p states form wide bands that are mixtures of the different 4p orbitals, and these
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local-symmetry arguments only apply at the Γ -point. Therefore, the use of a scattering condi-
tion where the incoming polarization vector is perpendicular to the outgoing polarization vectors
does not necessarily imply that a symmetry change has to occur for the valence electrons.
The essential physics of the material is contained in the fundamental scattering amplitude

Ffg(q) = 〈f |ρq|g〉. (35)

This quantity is directly related to the dynamic structure factor, through

Sq(ω) =
∑
f

|Ffg|2 δ(Ef − ~ω) = − 1

π
Im 〈g|ρ−q

1

~ω −H + i0+
ρq|g〉 , (36)

which corresponds to the bubble in the Feynman diagram in Fig. 8. It should be noted that
RIXS measures a projected Sq(ω), meaning that ρq contains only d†k+q,σdkσ terms. This is a
direct result of the fact that the core-hole Coulomb interaction does not scatter between different
orbitals. This is different from IXS, where in principle the photon can induce a direct transition
from the d states to the ligands. This does not imply that RIXS does not create charge-transfer
excitations, since the charge-transfer states also have d character. In [42] multiple scattering
corrections to the Born approximation are also considered on the basis of a Keldysh Green
function formalism. It was found that multiple scattering effects lead to small modifications in
the shape of the RIXS spectrum, which partly justifies the Born approximation for wide gap
insulators such as La2CuO4 and NiO [43].
For direct RIXS, the detailed dependence on the polarization is given in the fundamental scat-
tering amplitude F x

fg,q. When including the polarization dependence for indirect RIXS, one
obtains a similar fundamental scattering amplitude. The quantity Ffg in Eq. (35) then reduces
to F 0

fg,0 and corresponds to the isotropic term. In the absence of interactions causing a transfer
of angular momentum between the 4p and the valence shell, the indirect RIXS amplitude is
simply proportional to ρq. In terms of tensors, ρq = wdd00 (q).
A significant difference between the two processes is that when direct excitations are made into
the valence shell (e.g. 2p/3p → 3d), the effect of the operator wdd00 = nh is relatively small,
since the excited electron screens the 2p/3p core-hole potential very well. The isotropic con-
tribution then mainly contributes to the elastic line. For indirect RIXS, the excited delocalized
4p electron does not screen the 1s core-hole potential very well. This produces appreciable
screening dynamics of the valence electrons in the intermediate state. This is the reason why
the ρq response generates significant inelastic scattering intensity for indirect RIXS.

4.3 Ultrashort core-hole lifetime expansion

The potential that the core hole exerts on the valence electrons is strong, the attraction U1s,3d

between a 1s core hole and 3d electron is typically ∼ 6–8 eV, which is of the same order
as the d-d Coulomb interaction U3d,3d that appears in Hubbard-like models. Treating such a
strong interaction as a weak perturbation renders a perturbation expansion uncontrolled. To
deal with the strong core-hole interaction, the Ultrashort Core-hole Lifetime (UCL) expansion



12.26 Jeroen van den Brink

was developed in [21, 22, 38], which treats the core-hole potential as the dominating energy
scale.
The UCL relies on three observations. First for most RIXS intermediate states, the core hole
lifetime broadening is quite large: typically Γ is of the order of 1 eV. This yields a time scale
τ = 1/2Γ = 4 fs. Only during this ultrashort time is the system perturbed by the core hole.
Many elementary excitations have an intrinsic time scale that is much larger than 4 fs. This
intrinsic timescale is the fundamental oscillation period, related to the inverse frequency ω of an
excitation with energy ~ω. For example, phonons have a typical energy scale of up to 100 meV,
and magnons of up to 250 meV, thus corresponding to timescales almost an order of magnitude
larger than the core hole lifetime. Even low energy electronic valence band excitations can be
within this range.
The resulting physical picture of a RIXS process involving low-energy excitations is therefore
that the dynamics in the intermediate state are limited because of this lack of time, provided that
the excitation time scale is not decreased significantly by the core hole. The second observation
is that the core-hole potential can, to good approximation, be treated as a local potential, i.e.,
its dominating effect is to perturb electrons on the same atom on which the core hole resides.
Finally, the core hole is considered to be immobile, which is a reliable assumption for the deep
core-states such as Cu 1s.
The calculation of the indirect RIXS amplitude within the UCL expansion by [21, 22, 38] is
based on a series expansion of the Kramers-Heisenberg equation, (Eq. 9). But a Green function
approach is equally viable, which then starts by inserting in Eq. (28) the identity G = GC +

GCH0G

F indirect
fg = 〈f|D†G0HCGC(1 +H0G)D|g〉, (37)

where the Green functions,G0 = (zk−H0)
−1,GC = (zk−HC)

−1,G = (zk−H)−1, correspond
to the Hamiltonian of the unperturbed system H0, the valence-electron core-hole interaction
HC , and the total Hamiltonian H = H0 +HC . The UCL is best illustrated by considering the
core-hole Hamiltonian HC = UC

∑
i ρ

s
iρ
d
i , where UC = U1s,3d and ρ1si (ρ3di ) are the density

operators counting the number of 1s core holes (3d electrons) at site i. The simplest system
one can consider is one in which the 3d states are only occupied by either 0 or by 1 electron,
for instance due to strong correlation effects in the 3d shell. As there is only one localized core
hole present in the intermediate state, HC then has the interesting property H l

C = U l−1
C HC for

any integer l > 0 [21, 22], which implies that HC is either 0 or UC . This directly implies the
relation HCGC = HC(zk − UC)−1. One now obtains for the indirect RIXS amplitude

F indirect
fg = 〈f| D†G0

HC

zk − UC
(1 +H0G)D |g〉 . (38)

Note that this expression is exact, but of course specific for the present form of the core-hole
potential; generalized forms are given in [21,22,38], which include the spin and possible orbital
degrees of freedom of the 3d electrons.
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In the leading order of the UCL expansion one retains in Eq. (38) the first order term in HC so
that

F indirect
fg =

〈f| D†HCD |g〉
(zk − ω)(zk − UC)

= P (ωk, ωk′) 〈f| ρdq |g〉 , (39)

where the resonance function

P (ωk, ωk′) = (P 1
1s,4p)

2UC((zk − ω)(zk − UC))−1 (40)

is introduced, and P 1
1s,4p is the 1s → 4p dipole transition amplitude. The generic shape of

the resonance function depends on the form of the core-hole potential. It is remarkable that
the RIXS amplitude found in leading order of the strong coupling UCL is directly related to
the dynamic structure factor Sq(ω) of Eq. (36), which is a situation very similar to the weak
coupling perturbative approach, see Eq. (35). In fact for UC → 0 the strong coupling UCL
resonance function reduces to the perturbative one. This result has important implications for
the interpretation of RIXS spectra since this approach then suggests that with proper handling
of the prefactor, RIXS can be considered as a weak probe that measures Sq(ω).
The sub-leading contributions to the indirect UCL scattering amplitude of Eq. (38) are of the
type HCH0HC . Such terms a priori cannot be reduced to a response of ρq because H0 and HC

do not commute. Physically this term corresponds to an electron (or hole) hopping onto the
core-hole site in the intermediate state. Denoting the hopping amplitude as t, these contribu-
tions to the scattering amplitude are down by a factor t/(zk − UC) with respect to the leading
term. When tuning off-resonance, corrections to the UCL expansion thus become progressively
smaller. On resonance these terms constitute contributions to the RIXS intensity of the order
of (t/Γ )2, which are thus governed by UC and the inverse core-hole lifetime Γ . Corrections to
the UCL are thus smaller for shorter-lived core holes. In cuprates, for instance the effective 3d

valence bandwidth t ≈ 0.4 eV and such corrections are expected to be moderate. For a specific
system, the commutation relation for H0 and HC is known, and such a higher order term can
be calculated explicitly and again be cast in the form of a product of a resonance function and a
generalized charge response function.
The observation that within the UCL the RIXS cross-section can be factored into a resonant pre-
factor and the dynamic structure factor, Sq(ω) was tested experimentally [44]. There an empir-
ical comparison of Cu K-edge indirect RIXS spectra was reported, taken at the Brillouin-zone
center, with optical dielectric loss functions measured in a number of copper oxides: Bi2CuO4,
CuGeO3, Sr2Cu3O4Cl2, La2CuO4, and Sr2CuO2Cl2. Analyzing both incident and scattered-
photon resonances [44] extracted an incident-energy-independent response function. The over-
all spectral features of the indirect resonant inelastic X-ray scattering response function were
found to be in a reasonable agreement with the optical dielectric loss function over a wide energy
range. In the case of Bi2CuO4 and CuGeO3 [44] observed that the incident-energy-independent
response function, Sq=0(ω), matches very well with the dielectric loss function, −Im(1/ε(ω))

measured with spectroscopic ellipsometry, suggesting that the local core-hole approximation
treatment of the UCL works well in these more localized electron systems. Corner-sharing two-
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dimensional copper oxides exhibit more complex excitation features than those observed in the
dielectric loss functions, likely related to non-local core-hole screening effects.
The UCL expansion describes the RIXS cross-section in the limits of small and large core-
hole potential. In the intermediate region, one has to resort to numerical calculations [45]. In
the dynamic structure factor, excitations are created via ρq, implying that electrons and holes
are excited in an equivalent fashion. When dynamical effects are strong in the intermediate
state, this can change and an asymmetry in the excitation of electron and holes can occur [45].
Since the screening electron is strongly bound to the core hole in the intermediate state, it is
more likely to be scattered to higher lying states. The hole excitations on the other hand can
delocalize and have a tendency to be closer to the Fermi level.
Besides charge excitations also magnetic and orbital excitations were studied with the UCL.
Theoretically the two-magnon response of antiferromagnetic La2CuO4 was calculated within
the UCL [46, 47], agreeing nicely with experiment [16]. Collective orbital excitations were
investigated theoretically for LaMnO3 [48] and for YTiO3 [49] and compared to experiments
on titanates [50].
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