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11.2 Dirk van der Marel

1 Introduction

Optical spectroscopy is one of the most versatile spectroscopic techniques of condensed matter
physics [1]. It can be used to study lattice vibrations, electronic excitations, electronic collective
modes of materials and can be readily applied in the presence of magnetic fields, high pressure,
low or high temperatures. Optical spectrometers exist for almost any wavelength band of the
electromagnetic spectrum and span from radio-waves through THz, visible, UV to X-rays. By
virtue of a high control and reproducibility various different kinds of calibration techniques
permit to obtain precise absolute numbers for the constants characterizing the optical spectra of
a material. This state of affairs is further improved by advances in the past decade permitting
the direct measurement of the amplitude and phase of reflected signals in the THz band of the
spectrum.
Many possible experimental configurations giving access to the intrinsic optical constants of
materials are nowadays routinely used, including transmission, absorption, reflection, ellipsom-
etry, and combinations thereof. We will not dwell on all these different techniques here, but
give two simple examples and continue with a short summary of how from measured optical
data one obtains the fundamental properties such as optical conductivity and dielectric function.
If a ray of light is reflected from the surface of a material with an angle θ relative to the surface
normal, the two orthogonal types of polarization of the electric field (see Fig. 1) are (i) perpen-
dicular to the plane of reflection (“senkrecht” in German) indicated as s-polarization, and (ii)
perpendicular to the plane of reflection indicated as p-polarization. For an isotropic material the
reflection coefficients for these two geometries are provided by Fresnel’s laws

rs =
cos θ −

√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

and rp =
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

. (1)

Note that these reflection coefficients are complex numbers. Experimentally one can measure
the intensity R = |r|2 of a reflected signal quite easily, but obtaining the phase is often much
more difficult. One of the solutions consists of doing a so-called “ellipsometry” experiment,
whereby the state of elliptical polarization of a light-ray is measured after reflection, where the
incident ray is linearly polarized with a polarization being a linear superposition of s- and p-
polarization. We will not dwell on the details here, but the important thing is, that this provides
the ratio rp/rs which now is a complex number. An alternative method is to take advantage
of the fact that ln r = ln

√
R + iφ where φ = Arg(r), and that ln

√
R(ω) and φ(ω) satisfy

Fig. 1: Left (right): Geometry for the reflection of s (p) polarized light.
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Fig. 2: The four steps of calculating the optical conductivity from a reflectivity spectrum using
the example of aluminum (after Ref. [2]).

Kramers-Kronig relations. It is then sufficient to measure R(ω) in a sufficiently broad spectral
range, in order to calculate also φ(ω), and from these two together obtain the real and imaginary
part of ε. This constitutes the first of the four steps providing the optical conductivity function
indicated in Fig. 2 for the example of aluminum. The second is to invert the Fresnel expression
for the reflection coefficient at the given angle of incidence and polarization of the light, giving
as a first step the index of refraction, n = Re

√
ε and the extinction coefficient κ = Im

√
ε, and

from there the optical conductivity

σ(ω) =
ω

4πi
[ ε(ω)− 1 ] . (2)

The optical conductivity is one of the most commonly used parameters to describe the electro-
magnetic response. Macroscopically, the frequency dependent conductivity tensor σ(ω) con-
stitutes a natural extension to the DC electrical conductivity relating electric field and current
density: ~ = σ ~E, where ~ and ~E are the macroscopic current density and electric field com-
ponents. In what follows we will assume that ~ and ~E are parallel to one of the axes of the
conductivity tensor σ(ω), and drop explicit tensor and vector notation to keep the notation as
light as possible. On the microscopic level σ(ω) is proportional to the current-current correla-
tion function

σ(ω) =
e2

ωV

{
iN

m
+

∫ ∞
0

dteiωt〈ψ| [̂(t), ̂(0)] |ψ〉
}
, (3)

where N is the number of electrons, V the volume, m and e the electron mass and charge, and
̂(t) = eiHt/~ ̂ e−iHt/~ is the velocity operator. The time integral can be carried out explicitly,
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Fig. 3: Illustration of the f -sum rule for the case of aluminum (after Ref. [2]).

providing for the real part of the conductivity of a system in thermal equilibrium

Reσ(ω) =
πe2

V

∑
µν

(Zν − Zµ)
〈ν|̂|µ〉〈µ|̂|ν〉
Eµ − Eν

δ(~ω + Eν − Eµ) , (4)

where |η〉 is a many-body eigenstate with energy Eη and Zη is the statistical probability to find
the system in this state (the “partition function”). Integration of both sides over ω yields∫ ∞

−∞
Reσ(ω)dω =

2πe2

V

∑
µ,ν

Zν
〈ν|̂|µ〉〈µ|̂|ν〉
Eµ − Eν

. (5)

Using Ĥ|ν〉 = Eν |ν〉 and ̂ = i~−1[Ĥ, x̂] one can show in a few steps that∫ ∞
−∞

Reσ(ω) dω =
πe2

i~V
〈[̂, x̂]〉 . (6)

At this point we can substitute on the right hand side the following useful property of the many-
body current and position operators: [̂, x̂] = i~N/m. We take advantage of the fact that
for a time-reversal symmetric situation Reσ(ω) = Reσ(−ω), so we can restrict to positive
frequencies and arrive at the so-called f -sum rule∫ ∞

0

Reσ(ω) dω =
πe2n

2m
. (7)

This f -sum rule, or Thomas Reich Kuhn (TRK) rule, is one of the most powerful tools in
optical studies of materials. It relates the integrated optical conductivity directly to the density
of charged objects, and the absolute value of their charge and mass.
In Fig. 3 the f -sum rule is illustrated by the earlier example of the aluminum: The right hand
panel shows the partial integral

neff(ω) =
2meVu
πe2

∫ ω

0

Reσ(ω′) dω′. (8)
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Fig. 4: Optical conductivity and partial sumrule for the optical phonon spectrum of MgO.

First of all it demonstrates that in the limit ω → ∞ the number neff approaches 13, which is
exactly the number of electrons (core and valence together) per aluminum atom. Moreover, the
function neff(ω) rises in a number of steps: The first step from 0 to 2 eV gives approximately
two electrons, from 2 to 100 eV yields an additional one, from 100 to 1000 eV adds 8 more, and
above 1000 eV a final pair of electrons is added. We see, that the number of electrons in a given
shell is recovered in the optical transitions from the corresponding shell to the empty states
above the Fermi energy, revealing in the present example the configuration 1s22s22p63s13p2

(where the labels 3s and 3p are not to be taken literally in view of the lattice surrounding each
Al atom). The plot also gives an impression of the scale over which one has to integrate in order
to detect the spectral weight of the valence electrons: The full spectral weight corresponding to
the three valence electrons is retrieved only at ~ω ≈ 50 eV.
Of course the nuclei also contribute to the f -sum rule. We left this point out of consideration
until now since it usually plays a minor role, but it becomes important when analyzing the
vibrational spectra of insulating materials. The f -sum rule accounting for all types of particles
j with charge ej , mass mj and density nj in the sample reads

Re

∫ ∞
0

σ(ω) dω =
∑
j

πe2
jnj

2mj

. (9)

In Fig. 4 we show the infrared optical conductivity of the insulator MgO together with the partial
sum-rule integral

neff(ω) =
2Vu

π(2e)2(m−1
O +m−1

Mg)

∫ ω

0

Reσ(ω′) dω′ (10)

to illustrate that masses and charges of the Mg2+ and O2− ions account for the spectral weight
of the optical phonons. Note, however, that the spectral weight having to do with the nuclear
masses is tiny as compared to the electrons. The electronic part contains some 5 orders of
magnitude more spectral weight, but is not visible on this scale since the spectral range shown
here is far below the band gap of this insulating material.
To provide some representative examples of the optical spectra of strongly correlated metals
and insulators, we close this section with the optical spectra of the rare-earth nickelates RNiO3,
where R is a trivalent rare-earth ion. These transition metal compounds display a phase tran-
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Fig. 5: Real part of the optical conductivity for selected temperatures and en-
ergy/temperature color maps of samples (a) NdNiO3/NdGaO3-110, (b) NdNiO3/NdGaO3-101,
and (c) SmNiO3/LaAlO3-001. Metal-insulator phase transitions are indicated by arrows on the
color maps. A and B designate two peaks in the insulating phase (reproduced from Ref. [3]).

sition between a high-temperature metallic phase and low-temperature insulating phases (para-
magnetic or magnetic). This transition is highly sensitive to changing the rare-earth ion R,
as well as structural constraints and strain. This could find applications to switches or to the
recently proposed piezoelectric transistors. Furthermore strain-control can be used in order
to ‘orbital engineer’ the nickelates, stabilizing the dx2−y2 component of the eg doublet at the
expense of the dz2 one. If full orbital polarization could be reached, this would lead to a ‘single-
band’ material, with an electronic structure very similar to that of a cuprate, and hence possibly
to high-temperature superconductivity. A single active band is favorable because of: (i) the
absence of competing orbital fluctuations and (ii) importantly, the large antiferromagnetic su-
perexchange expected in this case. Fig. 5 shows the energy dependence (upper panels) and
energy/temperature color maps (lower panels) of the real part of the optical conductivity for
three differently strain- and composition-tuned samples. In the insulating state, at low tempera-
tures, the dominant features of the optical conductivity are two peaks at 0.6 (A) and 1.4 eV (B)
for all three samples. Upon increasing the temperature and passing through the insulator-metal
transition, the peaks vanish and a broad 1 eV peak along with a weak feature at 0.5 eV for sam-
ples (b) and (c) appear instead. Formation of free carriers is clearly visible with the growth of a
zero energy mode in the optical conductivity for ~ω = 1 eV (Fig. 5) as well as a sign change in
the real part of the dielectric function.

The physics as to why this transition takes place is quite interesting and has been discussed in
a number of recent papers. Here we quote the discussion in Ref. [3]: “Dynamical mean-field
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Fig. 6: Optical conductivity of the semiconductors GaAs, Si, and GaP (after Ref. [4])

theory calculations confirm aforementioned two-peak structure and allow us to identify these
spectral changes and the associated changes in the electronic structure. We demonstrate that the
insulating phase in these compounds and the associated characteristic two-peak structure are
due to the combined effect of bond disproportionation and Mott physics associated with half of
the disproportionated sites. We also provide insights into the structure of excited states above
the gap.”

2 Insulators and excitons

The example of RNiO3 of the previous chapter is perhaps somewhat untypical in that the mate-
rial owes its insulating gap, at least in part, to a many-body effect. In a standard semiconducting
material such as GaAs the optical absorption is understood to arise from the optical excitation of
individual electrons across the band gap, resulting in optical spectra such as displayed in Fig. 6.
However, in many insulating materials additional absorption is observed for energies smaller
than the gap, for reasons having nothing to do with impurities. The reason why this happens
has to do with a fundamental issue related to the interactions between the electrons, and this
shows up already when one is trying to excite a single electron. Naively one may be tempted
to assume that, left by itself, a single electron should not suffer much influence of many-body
effects, but this is nonetheless not justified. The problem is, that in an optical process one always
creates an electron along with a hole, and these two particles interact, in fact, quite strongly. As
a result, provided the electron and hole are not too far apart from each other, can (and do) form
bound states, better known as excitons. The physics of excitons has much in common with that
of the hydrogen atom, or rather of positronium, since both the electron and the hole have about
the same mass. The fact that their masses are different coming from the fact that the electron is
in the band above the gap, and the hole in the band below the gap, and the dynamical masses in
these bands are usually different. The theory of exciton bound states is rather well developed.
We provide a few key elements here.
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Fig. 7: Left: incorrect way to plot the energy of an exciton. Middle panel: Sketch of the single
electron dispersion curves of a direct gap insulator. Right-hand panel: Electron-hole excitation
continuum corresponding to the bandstructure of the middle panel (shaded) and sketch over
several “flavors” of excitons in the gap. The red and blue blobs in the middle panel indicate
roughly the envelope of momentum-values involved in creating an exciton bound state with finite
momentum of the collective center-of-mass coordinate.

Quite frequently excitons are plotted in the band structure, in the way shown in the left-hand
panel of Fig. 7. The difficulty is, that excitons are neutral excitations, they are bosonic, carry
spin S = 0 or S = 1. Since the band-structure graph shows the energies and momenta of
single-electron states, there is no unambiguous way to draw an exciton in such a diagram, and
if one thinks a bit longer about the problem one realizes that by doing so one misses some
important aspects of the excitonic states related to the many-body nature of these excitations,
having far-reaching consequences. The middle and right-hand graphs illustrate how, as a first
step, one associates electron-hole continua with a given momentum-transfer (note that only
one dimension of momentum space is shown, the additional dimensions extend the number of
electron-hole states for a given value of their collective momentum q shown in the right-hand
panel). The electron-hole attractive Coulomb interaction can pull one or several excitonic bound
states out of the continuum for any given value of q.
In the simplest description the excitons are described by the two-particle Hamiltonian

H =
P 2
coll

2M
+
p2
rel

2µ
− e2

εrrel
M = me +mh (11)

µ−1 = m−1
e +m−1

h (12)

so that the energies of the combined electron-hole states are described by

Continuum states: Ecnt = Egap +
~2q2

2M
+

~2k2

2µ

Bound states: Ebnd = Egap +
~2q2

2M
− Ry∗

n2
(13)

Effective Rydberg: Ry∗ =
µe4

2ε2~2
. (14)
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Fig. 8: Electron-hole gap and excitonic bound states of KCl [5] and Cu2O [6] .

In Fig. 8 two examples are shown of simple insulating materials, with clear excitonic spectra.
The left-hand graph is of KCl, having a gap of 8.5 eV, the right one of Cu2O with a gap of and
2.17 eV. However, the single-particle bandstructure of these materials is not really described by
free electron and hole parabolas, and moreover ε has non-trivial momentum dependence, hence
the predictions of Eq. (14) can not be expected to be overly accurate, but they can provide a
ballpark estimate. Indeed, the observed deepest (n = 1) exciton binding energies of about
0.3 eV for KCl and 0.1 eV for Cu2O are in the right ballpark estimated from the q = 0 dielectric
constants ε ∼ 5 for KCl, and ε ∼ 7 for Cu2O.
Even more extreme cases of deeply bound excitons occur in Mott-Hubbard insulators, provided
there is some orbital degeneracy. This is the case in, for example, CuGeO3 [7] and in NiO [8,9].
In both these materials the on-site Coulomb repulsion splits apart the one-electron-removal- and
one-electron-addition-states close to the Fermi-energy, with an energy separation of about 8 eV.
This, in fact, pushes the one-electron removal states below the occupied oxygen band, so that
the observed correlation-induced gap corresponds to the charge transfer from oxygen to Cu in
the former and oxygen to Ni in the latter example. These gaps are several eV large (see Fig. 9),
but a much less energy-costly excitation is possible whereby the electron-hole pair stays on the
same copper or nickel site! This happens by exciting the electron from its ground state orbital

Fig. 9: Optical spectra of the charge-transfer insulators CuGeO3 [7] and NiO [8, 9], demon-
strating bound neutral excitations deep inside the correlation gap.
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in the 3d shell to an unoccupied one. Since the electron-hole attractive interaction is of the
same order as the Hubbard U , this kind of excitations (which go under the name crystal-field
excitation or orbital excitation) lives deep inside the Hubbard gap. In the case of CuGeO3 it
gives rise to a single peak at 1.8 eV, while the charge transfer gap is about 3.1 eV. In NiO the
orbital degeneracy is larger, so that a series of several peaks is observed at 1, 1.5, and 2 eV, deep
inside the charge transfer gap of 4 eV.

3 Superconductors and plasmons

According to BCS theory the superconducting ground state can be described by the wavefunc-
tion

|ΨBCS〉 =
∏
k

(
uk + vkc

†
k,↑c
†
−k,↓

)
|0〉

|uk|2 + |vk|2 = 1

2ukvk =
∆k√

ξ2
k + |∆k|2

(15)

where ∆k is the superconducting gap. One of the most obvious and widely reported optical
phenomena in a superconductor is the BCS gap. An example is shown in Fig. 10 for the con-
ventional s-wave superconductor NbN [10].
However, in the context of superconductivity in the cuprates a number of additional effects
related to superconductivity has been discovered. Here we will discuss some of these: c-axis
kinetic-energy driven superconductivity has been proposed within the context of inter-layer
tunneling, and has been extensively discussed in a large number of papers [11–15]. One of the
main reasons to suspect that superconductivity was c-axis kinetic driven, was the observation of
‘incoherent’ c-axis transport of quasi-particles in the normal state [16] and, rather surprisingly,
also in the superconducting state [17–19], thus providing a channel for kinetic energy lowering
for charge carriers as soon as pairing sets in. A very useful tool in the discussion of kinetic

Fig. 10: Optically detected superconducting gap of NbN
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Fig. 11: Leftmost panel: Loss-function of La2−xSrxCuO4 for field and current oriented perpen-
dicular to the superconducting planes. The plasmon shows up in the superconducting state and
is associated to the Josephson coupling between the planes. Second panel: Energy-momentum
dispersion of photons polarized along the c-direction in La1.85Sr0.15CuO4+δ for different tem-
peratures. Tc of this sample is 33 K. The photons travelling inside the superconductor become
massive, when the U(1) gauge symmetry is broken in the superconductor to which the photons
are coupled. (Figure and caption copied from Ref. [20]) Third panel: Simulation of the di-
electric function in a material with two types of Josephson coupling alternating [21]. Fourth
(rightmost) panel: The c-axis optical conductivity and loss-function, of SmLa0.8Sr0.2CuO4−δ for
4 K (closed symbols), and 20 K (open symbols). Tc of this sample is 16 K. When the sample
enters the superconducting state, two longitudinal collective modes appear (7 and 12.8 cm−1)
and one with transverse polarization (12.1 cm−1). The two modes near 12 cm−1 correspond to
relative phase fluctuations of the two copper-oxygen layers within the unit cell [22]. (Figure
and caption copied from Ref. [20])

energy is the low frequency spectral weight associated with the charge carriers. In infrared
spectra this spectral weight is contained within a the ’Drude’ conductivity peak centered at
ω = 0. Within the context of the tight-binding model a simple relation exists between the
kinetic energy per site, with volume per site Vu, and the low frequency spectral weight [23, 24]

Ekin =
~2Vu
4πe2a2

ω2
p . (16)

Here the plasma frequency, ωp, is used to quantify the low frequency spectral weight

ω2
p,s

8
+

∫ ωm

0+
Reσ(ω) dω =

1

8
ω2
p , (17)

where the integration should be carried out over all transitions within the band, including the
δ-function at ω = 0 in the superconducting state.
The δ(ω) peak in Reσ(ω) is of course not visible in the spectra directly. However, the presence
of the superfluid is manifested prominently in the London term of Re ε(ω) (proportional to
Imσ(ω)): εL(ω) = −ω2

p,sω
−2. In La2−xSrxCuO4 the London term is manifested in a spectacular

way as a prominent plasma resonance perpendicular to the superconducting planes [25]. To
illustrate this, the left-hand panel of Fig. 11 shows the so-called Loss-function

L(ω) = − Im
1

ε(ω)
, (18)
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Fig. 12: Sketch of the forces governing a Leggett mode.

which shows its peak at the frequency where ε(ω) crosses zero, which corresponds to the
screened plasma-frequency. The right-hand panel shows the corresponding dispersion of the
transverse polarized “polariton” waves inside the material (always with electric field perpendic-
ular to the planes, hence the wave propagates along the planes)

p = ~ωc−1
√
ε(ω) . (19)

The right-hand graph is, by the way, a nice demonstration of the Anderson-Higgs mechanism:
The electromagnetic waves inside the superconductor acquire a mass mc2 = ~ωp,s due to the
spontaneous breaking ofU(1) gauge symmetry associated with the superconducting order. Cou-
pling of the superconducting order parameter to the fluctuations of charge and phase introduces
a mass-gap both in the longitudinal plasmons and in the transverse polariton modes.
To return to the Josephson plasmons, a further effect was discovered when two Josephson junc-
tions alternate along the c-direction. In this case one will observe two longitudinal Josephson
plasmons, and an additional one in-between, which shows up as a peak in the optical conductiv-
ity and has transverse polarization (but always with electric field perpendicular to the planes).
This was predicted theoretically and indeed observed experimentally by a number of groups.
Interestingly this mode has many properties in common with the so-called Leggett mode. When
in a two-band system the charge distribution is brought out of equilibrium the electronic com-
pressibility constitutes a restoring force, whereas the inertia is given by the Josephson cou-
pling between the two reservoirs (see sketch in Fig. 12). For a Fermi-liquid the compressibility
Kn2 = ∂n/∂µ corresponds to density of states at the Fermi level. In the context of ’exci-
tons’ in two-band superconductors, the compressibility term has been first considered in 1966
by Leggett [26]. In neutral fluids the compressibility causes propagation of sound, whereas for
electrons it causes the dispersion of plasmons.
The peak in the loss-function can be used to estimate the superfluid spectral weight, ω2

p,s, from
the experimental spectra. Apart from universal prefactors, the amount of spectral weight of
the δ(ω) conductivity peak corresponds to the Josephson coupling energy, which in turn is the
inter-layer pairhopping amplitude. It therefore provides an upper limit to the change of kinetic
energy between the normal and the superconducting state [11], because the spectral weight
transferred from higher frequencies to the δ(ω)-peak cannot exceed this amount. This allowed
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a simple experimental way to test the idea of c-axis kinetic energy driven superconductivity
by comparing the experimentally measured values of the condensation energy (Econd) and EJ .
The inter-layer tunneling hypothesis required, that EJ ≈ Econd. Measurements of λc [13]
(approximately 17 µm) and the Josephson plasma resonance (JPR) [12] at 28 cm−1, allowed
a definite determination of the Josephson coupling energy of this compound, indicating that
EJ ≈ 0.3 µeV in Tl2201 with Tc = 80 K. This is a factor 400 lower than Econd ≈ 100 µeV
per copper, based either on cV experimental data [27], or on the formula Econd = 0.5N(0)∆2

with N(0) = 1eV −1 per copper and ∆ ' 15meV . A direct determination of Ekin,s − Ekin,n

is obtained by measuring experimentally the amount of spectral weight transferred to the δ(ω)
peak due to the passage from the normal to the superconducting state, as was done by Basov
et al. [14, 28]. These data indicated that for under-doped materials about 60% comes from the
sub-gap region in the far infrared, while about 40% originates from frequencies much higher
than the gap, whereas for optimally doped cuprates at least 90% originates from the gap-region,
while less than 10% comes from higher energy.

In summary ∆Ekin,c < 0.1EJ in most cases. For several of the single-layer cuprates it has
become clear now, that ∆Ekin significantly undershoots the condensation energy, sometimes by
two orders of magnitude or worse.

3.1 The internal energy of superconductors

The case of electrons moving in a central potential deserves our special attention: As a result
of the virial theorem particles moving in a central potential of the form V (r) = arn satisfy
the relation 〈Hkin〉 = n

2
〈V 〉. For an ensemble of non-interacting electrons moving in a central

potential (e.g. an ensemble of hydrogen atoms) the only terms in the Hamiltonian are the kinetic
energy and V (r), so that the average kinetic energy is therefore a constant fraction of the average
total energy, 〈Hkin〉 = n

2+n
〈Htot〉. The thermally induced changes of 〈Htot〉 are always smaller

that 3kBT per particle. For electrons moving in an e2/r potential this sets an upper limit of kBT
to the change of kinetic energy, and an upper limit 4kBT/3 on the photon energy range over
which spectral weight can be transferred as a function of temperature. From the example of a
harmonic oscillator, discussed below, we will see that transfer of spectral weight as a function
of temperature can even be completely absent.

A necessary condition for the existence of superconductivity is, that the free energy of the su-
perconducting state is lower than that of the non-superconducting state. At sufficiently high
temperature important contributions to the free energy are due to the entropy. These contri-
butions depend strongly on the nature of the low-energy excitations, first and foremost of all
their nature, be it fermionic, bosonic or of a more complex character due to electron correlation
effects. At T = 0 the free energy and internal energy are equal, and are given by the quantum
expectation value of the Hamiltonian, which can be separated into an interaction energy and a
kinetic energy.
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3.2 The Coulomb interaction energy

In a series of papers Leggett has discussed the change of Coulomb correlation energy for a
system which becomes superconducting [29], and has argued, that this energy would actually
decrease in the superconducting state. Experimentally the changes of Coulomb energy can be
measured directly in the sector of q-space of vanishing q. The best, and most stable, experi-
mental technique is to measure the dielectric function using spectroscopic ellipsometry, and to
follow the changes as a function of temperature carefully as a function of temperature. Because
the cuprates are strongly anisotropic materials, it is crucial to measure both the in-plane and
out-of-plane pseudo-dielectric functions, from which the full dielectric tensor elements along
the optical axes of the crystal then have to be calculated. In a recent study the evolution of the
Coulomb energy was measured as a function of temperature and doping of the loss function
spectra in the infrared-visible spectral range of double- and triple-layer bismuth cuprates [30].
Our experiments indicate that for the overdoped samples the superconducting phase transition is
accompanied by a saving of the Coulomb interaction energy, on the underdoped side there is an
increase of the Coulomb energy below Tc, and the change of Coulomb energy for q < 0.31 Å−1

is about the same size as the condensation energy. This state of affairs calls for studies with other
experimental techniques, in particular electron energy loss spectroscopy, to explore the momen-
tum dependent structure of these phenomena. Departure of a T 2 dependence of the measured
loss-function data indicates a corresponding temperature dependence of the density-density cor-
relations. Unambiguous assignment to a precursor of superconducting pairing, to another type
of correlation, or neither of these two, is not possible at this stage. The S–N difference of the
Coulomb energy has similar doping dependence as the total condensation energy. While the
latter is in the range of 0 to 2 K per CuO2 unit, the Coulomb energy varies between –1 and 1 K.
Consequently, while it cannot be the whole cause of superconductivity, the Coulomb energy is a
major factor in the total energy balance stabilizing the superconducting state. The experiments
presented here demonstrate that it is in principle possible to determine the subtle changes of
Coulomb correlation energy associated with a superconducting phase transition, and constitute
a promising first step in the experimental exploration of the Coulomb correlation energy as a
function of momentum and energy.

3.3 The kinetic energy

Based on the tight-binding approximation, a partial sum rule is sometimes employed, where the
integral is limited to the valence band, excluding all other bands. Although the theoretical ex-
pressions based on the tight-binding formula are well defined, experimentalists face a problem
here, due to the fact that experimentally the valence electron band overlaps with other bands,
thus hindering an unambiguous separation of the various contribution in the experimental spec-
tra. Nevertheless, relatively clear-cut cases have been reported in the literature, thus motivating
us to address also the tight-binding approximation in our discussion. For a square lattice with
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nearest-neighbor coupling the Hamiltonian is

Ht,α = t
∑
~R,σ

(
c†~R+~δα,σ

c~R,σ + c†~R,σc~R+~δα,σ

)
(20)

and H =
∑

αHt,α − µN . The commutators in Eq. (6) can be easily calculated, resulting in the
f -sum ∫ ω

0

Reσ(∞) dω′ = −πe
2a2

2~2V
〈Ht,α〉 . (21)

Note, that the chemical potential term commutes with x and drops out of the expression for
the f -sum. Hence the tight-binding f -sum provides only the kinetic energy contribution, which
depends both on the number of particles and the hopping parameter t. It is easy to see, that
for a small filling fraction of the band we return to the continuum result: The occupied elec-
tron states are now all located just above the bottom of the valence band, with an energy −t.
Hence in leading orders of the filling fraction −〈ψg|Ht|ψg〉 = Nt. Identifying a2~−2t−1 as the
effective mass m∗ we recognize the familiar f -sum rule, Eq. (6), with the free electron mass
replaced by the effective mass. In BCS theory the lowering of the pair-interaction energy is
partly compensated by a change of kinetic energy of opposite sign. This can be understood
qualitatively in the following way: The correlated motion in pairs causes a localization of the
relative coordinates of electrons, thereby increasing the relative momentum and the kinetic en-
ergy of the electrons. Another way to see this, is that in the superconducting state the step of nk
at the Fermi momentum is smoothed, causing Ekin to become larger [31].
A pedagogical example where the kinetic energy of a pair is higher in the superconducting state,
is provided by the negative-U Hubbard model [32]: Without interactions, the kinetic energy is
provided by the expression

Ekin = −t
∑
〈i,j〉,σ

〈
Ψ |c†iσcjσ +H.c.|Ψ

〉
. (22)

Let us consider a 2D square lattice. If the band contains two electrons, the kinetic energy of
each electron is −2t, the bottom of the band, hence Ekin = −4t. (In a tight-binding picture
the reference energy is the center of the band irrespective of EF , causing Ekin to be always
negative). Let us now consider the kinetic energy of a pair in the extreme pairing limit, i.e.
U � t, causing both electrons to occupy the same site, with an interaction energy −U . The
occupation function nk in this case becomes

nk ≈
1

Nk

t

U

1

(1 + 4εk/U)2
. (23)

This implies that the kinetic energy approaches Ekin → −8t2/U . Hence the kinetic energy
increases from En

kin = −4t to Es
kin = −8t2

U
when the local pairs are formed. The paired

electrons behave like bosons of charge 2e. A second order perturbation calculation yields an
effective boson hopping parameter [33] t′ = t2/U . In experiments probing the charge dynamics,
this hopping parameter determines the inertia of the charges in an accelerating field. As a result
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the plasma frequency of such a model would be

ω2
p,s = 4π

n

2
(2e)2 a

2t2

~2U
, (24)

whereas if these pair correlations are muted

ω2
p,n = 4πne2 a

2t

~2
. (25)

Because the plasma frequency is just the low-frequency spectral weight associated with the
charge carriers, this demonstrates, that for conventional pairs, i.e., those which are formed due to
interaction energy lowering, the expected trend is, that in the superconducting state the spectral
weight decreases. Note, that this argument can only demonstrate the direction in which the
plasma frequency changes when the pair correlations become reduced, but it does not correctly
provide the quantitative size of the change, since the strong coupling regime of Eq. (24) implies
the presence of a finite fraction of uncondensed ’preformed’ pairs in the normal state. The same
effect exists in the limit of weak pairing correlations. In Ref. [34] (Eq. 29, ignoring particle-hole
asymmetric terms) the following expression was derived for the plasma resonance

ω2
p,s =

4πe2

V

∑
k

∆2
k

~2E3
k

[
∂εk
∂k

]2

, (26)

where V is the volume of the system, and E2
k = ε2k + |∆k|2. Integrating in parts, using that

∆2
kE
−3
k ∂kεk = ∂k (εk/Ek), and that ∂kεk = 0 at the zone-boundary, we obtain

ω2
p,s =

4πe2

V

∑
k

nk
mk

(27)

wherem−1
k = ~−2∂2εk/∂k

2, and nk = 1−εk/Ek. For a monotonous band dispersion the plasma
frequency of the superconductor is always smaller than that of the unpaired system: Because
the sign of the band-mass changes from positive near the bottom of the band to negative near the
top, the effect of the broadened occupation factors nk is to give a slightly smaller average over
m−1
k , hence ω2

p is smaller. Note that the mass of free electrons does not depend on momentum,
hence in free space ω2

p is unaffected by the pairing.
To obtain an estimate of the order of magnitude of the change of spectral weight, we consider
a square band of width W with a Fermi energy EF = Ne/(2W ), where Ne is the number of
electrons per unit cell. To simplify matters we assume that 1/mk varies linearly as a function of
band energy: 1/m(ε) = (W − 2EF − 2ε)/(Wm0). We consider the limit where ∆ � W,EF .
Let us assume that the bandwidth ∼ 1 eV, and ∆ ∼ 14 meV corresponding to Tc =90 K. The
reduction of the spectral weight is then 0.28%. If we assume that the bandwidth is 0.1 eV, the
spectral weight reduction would typically be 11.4%.
If the state above Tc is not a Fermi liquid, the situation could be reversed. Indeed even for the 1D
Luttinger liquid n(k) has an infinite slope at kF . If indeed the normal state would have a broad
momentum distribution like the one indicated, the total kinetic energy becomes lower once pairs
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are formed, provided that the slope of n(k) at kF is steeper in the superconducting state. This
is not necessarily in contradiction with the virial theorem, even though ultimately all relevant
interactions (including electron-phonon interactions) are derived from the Coulomb interaction:
The superconducting correlations involve the low energy scale quasi-particle excitations and
their interactions. These effective interactions usually have characteristics quite different from
the original Coulomb interaction, resulting in Ec/Ekin 6= −2 for the low-energy quasi-particles.
Various models have been recently proposed involving pairing due to a reduction of kinetic
energy. In strongly anisotropic materials such as the cuprates, two possible types of kinetic
energy should be distinguished: Perpendicular to the planes [11,35] (along the c-direction) and
along the planar directions [36–41]. Interestingly, it turns out that in underdoped samples of
the cuprates the “kinetic” energy behaves oppositely to the BCS prediction (i.e. it is decreased
by the N–S transition), while on the overdoped side it behaves consistently with BCS (i.e.
it is increased) [42–44], which is in fact consistent with numerical calculations based on the
Hubbard model and the t-J model [45, 46].

4 Conclusions

The optical conductivity is a fundamental property of solids that contains the contributions
of vibrational and electronic character. Among the electronic type of excitations the intra-
band and inter-band transitions, excitons, and plasmons of different types correspond to the
most prominent features in the spectra. In addition multi-magnon excitations or more exotic
collective modes can often be detected. The careful study of the optical properties of solids can
provide valuable microscopic information about the electronic structure of solids. In contrast
to many other spectroscopic techniques, it is relatively easy to obtain reliable absolute values
of the optical conductivity. As a result sum rules and sum rule related integral expressions can
often be applied to the optical spectra.
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