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Introduction



The Schrödinger equation

Understanding the behaviour of electrons in solids almost
always requires us to solve the Schrödinger equation:(

−1
2
∇2 + Veff(r)

)
ψi(r) = εiψi(r)

Veff(r) depends on the approximations being used.
If r means (r1, r2, . . . , rN), this is the N-electron
Schrödinger equation.
Most of the methods used are based on the variational
principle.



Variational formulation of the Schrödinger equation

Solving the Schrödinger equation

Ĥψi = εiψi

to find the eigenvalues and eigenfunctions of Ĥ is equivalent to
finding the stationary points of the functional

ε[ψ] = 〈ψ|Ĥ|ψ〉
subject to the normalization constraint

〈ψ|ψ〉 = 1



Practical importance of the variational formulation

Suppose ψ̃i is a normalized guess at ψi with error ∆ψi .
Since ε[ψ] is stationary and equal to εi when ψ = ψi ,

ε[ψ̃i ] = εi +O[(∆ψi)
2]

If ψ̃i is accurate, ε̃i is even more accurate.

This simple observation underlies the success of almost all
current methods used to solve the Schrödinger equation



The linear variational principle

A convenient way to guess solutions is to use a basis set

ψ̃(c, r) =
M∑
α=1

cαφα(r)

and choose cα to make

ε[ψ̃] = 〈ψ̃|Ĥ|ψ̃〉 =
M∑
α,β

c∗α〈φα|Ĥ|φβ〉cβ

stationary subject to

〈ψ̃|ψ̃〉 =
M∑
α,β

c∗α〈φα|φβ〉cβ = 1



Defining the Hamiltonian and overlap matrices

Hαβ =

∫
φ∗α(r)Ĥφβ(r)d3r , Sαβ =

∫
φ∗α(r)φβ(r)d3r ,

we seek the stationary points of

ε(c) = c∗αHαβcβ (summation convention)

subject to c∗αSαβcβ = 1.
Not surprisingly, this is equivalent to solving the matrix
Schrödinger equation

Hαβcβ = ε̃Sαβcα



Advantages and disadvantages

Hαβcβ = ε̃Sαβcα

Advantages
Solving the matrix problem yields M approximate
eigenvalues ε̃i and eigenvectors ci at once.
Solving matrix eigenvalue problems is much easier than
finding the eigenfunctions and eigenvalues of differential
equations. Excellent general purpose numerical libraries
are available.

Disadvantages
Calculating Hαβ and Sαβ can be painful.
Diagonalizing very large matrices is slow.



The Rayleigh-Ritz variational principle

If ψ̃0, ψ̃1, . . . , ψ̃M−1 are the M approximate eigenfunctions
obtained by solving a linear variational problem with M basis
functions, then

ε̃i = 〈ψ̃i |Ĥ|ψ̃i〉 ≥ εi , i = 0,1, . . . ,M − 1

Every eigenvalue obeys a variational principle.
Improving the basis set can only lower the approximate
eigenvalues.
The convergence with basis set is reassuringly controlled.
Errors of order ∆ψi in ψ̃i lead to errors of order (∆ψi)

2 in ε̃i .



Siloxane on Silica

A quantum MD simulation of the tearing of a siloxane molecule from a silica surface



What is tight binding?

TB ≡ Linear variational approach with atomic-like orbitals

Most natural when orbitals overlap little and bands are narrow.

Three flavours:

Ab initio
Wannier-function-based
Semi-empirical



Ab initio tight binding

Explicit basis of Gaussians,
Slater-type or atomic-like
orbitals. Not usually
orthogonal.

Evaluate matrix elements
computationally.

Solve matrix eigenvalue
problem computationally.

Similar in style to
conventional quantum
chemical approaches.



Wannier-function-based tight binding

Orthogonal or non-orthogonal
localized linear combinations
of Bloch eigenfunctions.

By construction span the
bands from which they were
created exactly.

Calculating Wannier functions
requires solving the
Schrödinger equation.

Complicated form⇒ no
simple parameterization.

Maximally localized bonding Wannier functions constructed from the four valence
bands of Si (left) and GaAs (right)



Semi-empirical tight binding

No explicit orbitals. Instead
parameterize matrix
elements.

Orthogonal or
non-orthogonal.

Minimal basis. Quick to set
up and solve.

Analytically tractable in
simple cases.

Inaccurate. Unreliable.
Non-transferable.

Best for qualitative
information.



Semi-empirical tight binding: cascade simulation



Semi-empiricial tight binding: matrix elements

Veff(r) =
∑

I

VI(r − RI)

spσ zero pdσ pdπ zero



Slater-Koster rules

x

y

z
dIJ

Atom I

Atom J

This matrix element is neither Hppσ or Hppπ, but since

R̂)Y m
l =

l∑
m′=−l

Dl
m′,m(ω)Y m′

l

it can be expressed in terms of them.



Example: bandstructure of a face-centred cubic solid

A1

A3

N1

N3

A2

N2

For an FCC crystal

A1 =
a
2

(0,1,1), A2 =
a
2

(1,0,1), A3 =
a
2

(1,1,0),

B1 =
2π
a

(−1,1,1), B2 =
2π
a

(1,−1,1), B3 =
2π
a

(1,1,−1).

The N1N2N3 distinct k vectors consistent with the periodic
boundary conditions are

k =
m1

N1
B1 +

m2

N2
B2 +

m3

N3
B3, 0 ≤ mi < Ni .



Model and solution

Orthogonal tight-binding model with one s orbital per atom.
Diagonal matrix elements are 0 and nearest-neighbour
hopping matrix element are h. All other matrix elements
are zero.

Bloch’s theorem says that the tight-binding eigenfunctions take
the form

|ψk 〉 =
1√

N1N2N3

∑
d

|φd〉eik ·d



Applying the TB Hamiltonian ĤTB =
∑

d ,d ′ |φd〉Hd ,d ′〈φd ′ | to
the Bloch linear combination gives

ĤTB|ψk 〉 =
1√

N1N2N3

∑
d

ĤTB|φd〉eik ·d

=
1√

N1N2N3

∑
d ′

∑
d

|φd ′〉〈φd ′ |ĤTB|φd〉eik ·d

=
1√

N1N2N3

∑
d ′
|φd ′〉eik ·d ′

∑
d

〈φd ′ |ĤTB|φd〉eik ·(d−d ′).

The only non-zero contributions to the inner summation
are those for which d is a nearest neighbour of d ′.



ĤTB|ψk 〉 =
1√

N1N2N3

∑
d ′
|φd ′〉eik ·d ′

∑
d

〈φd ′ |ĤTB|φd〉eik ·(d−d ′)

=
1√

N1N2N3

∑
d ′
|φd ′〉eik ·d ′

∑
n

heik ·n

=

(
h
∑

n
eik ·n

)
|ψk 〉

The sum over nearest-neighbour vectors n is easily evaluated
to obtain the bandstructure:

ε(k) = 4h
[
cos

(
ky a
2

)
cos

(
kza
2

)
+ cos

(
kza
2

)
cos

(
kxa
2

)
+ cos

(
kxa
2

)
cos

(
ky a
2

)]
(You do not often you get to calculate a bandstructure by hand in a few lines!)



TB total energies

TB total energy expression

ETB
total(d) =

∑
i occ

εi(d) +
∑
I>J

V pair
ion-ion(dI − dJ)

All matrix elements and inter-atomic potentials need to be fitted.



Fitting TB models

. . . is a black art.

Bandstructures or total energies?
Lots of data or a little?
Transferability?



TB total energy model for silicon

hα(r) = hα(r0)
( r0

r

)n
fc(r)

V pair
ion-ion(r) = V pair

ion-ion(r0)
( r0

r

)m
fc(r)

Parameter Value (eV)
Es −6.535
Ep 1.760
hssσ(r0) −1.820
hspσ(r0) 1.960
hppσ(r0) 3.060
hppπ(r0) −0.870
V pair

ion-ion(r0) 3.458

Parameter Value
r0 2.360Å
n 2
m 4.54





Electron Elevator
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Elevator Effect
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The central problem of condensed matter physics

The many-electron Schrödinger equation−1
2

∑
i

∇2
i +

∑
i>j

e2

|ri − rj |
−
∑

i

∑
I

ZI e2

|ri − dI |
+
∑
I>J

ZIZJ e2

|dI − dJ |

Ψ = EΨ

is our grand unified theory.

(
T̂ + V̂ ee + V̂ en + Enn

)
Ψ = EΨ

If only we could solve it!



The energy functional

There exists a functional E [n] which is minimized and equal to
the ground-state energy E0 when the electron density n(r) is
equal to the ground-state electron density n0(r).

The Levy construction

E [n] = MinΨ→n(r)〈Ψ|Ĥ|Ψ〉



Terms in E [n]

E [n] = Ts[n] + Een[n] + EH[n] + Enn + Exc[n]

Ts[n] is the KE of a system of non-interacting electrons with
ground-state electron density n(r)

Een[n] =

∫
Vnuc(r)n(r)d3r

EH[n] =
1
2

∫∫
e2n(r)n(r ′)
|r − r ′| d3rd3r ′

Exc[n] is known as the exchange-correlation energy



Self-consistency

The Euler-Lagrange equation derived by minimizing E [n] looks
like a non-interacting Schrödinger equation(

−1
2
∇2 + VKS([n], r)

)
ψi(r) = εiψi(r)

except that

VKS([n], r) = Vnuc(r) +

∫
e2n(r ′)
|r − r ′|d

3r ′︸ ︷︷ ︸
Hartree potential

+
δExc

δn(r)︸ ︷︷ ︸
Vxc([n],r)

depends on the electron density n(r) =
∑

i occ |ψi(r)|2.

An iterative method of solution is required



Self-consistent total energy

Once self-consistency has been reached the total energy is
obtained using

E [n] = Ts[n] + Een[n] + EH[n] + Enn + Exc[n]

with

n(r) =
∑
i occ

|ψi (r)|2

and

Ts[n] =
∑
i occ

∫
ψ∗i (r)

(
−1

2
∇2
)
ψi (r)d3r



The DFT total energy in terms of the eigenvalues

Since

Ts[n] =
∑
i occ

∫
ψ∗i (r)

(
−1

2
∇2
)
ψi (r)d3r

=
∑
i occ

∫
ψ∗i (r)

(
−1

2
∇2 + VKS([n], r)− VKS([n], r)

)
ψi (r)d3r

=
∑
i occ

εi −
∫

VKS([n], r)n(r)d3r

the total energy can also be expressed as

E [n] =
∑
i occ

εi −
∫

VKS[n]n + Een[n] + EH[n] + Enn + Exc[n]



Comparison of DFT and TB total energies

DFT

E [n] =
∑
i occ

εi −
∫

VKSn + Een[n] + EH[n] + Enn + Exc[n]

TB

ETB
total =

∑
i occ

εi +
∑
I>J

V pair
ion-ion(dI − dJ)

The TB Schrödinger equation is not self-consistent.

The potential in the TB Schrödinger equation is normally
assumed to be a sum of spherical atomic-like potentials.

The TB double-counting term is simple and pairwise.



Variational TB
The non-selfconsistent tight-binding total energy is a stationary
approximation to the DFT total energy.



General variational formulation of DFT

Consider the following functional of n(r), Veff(r) and Ψ(r1, r2, . . . , rN)

E [n,Veff,Ψ] = 〈Ψ|
N∑

i=1

(
−1

2
∇2

i + Veff(ri )

)
|Ψ〉 −

∫
Veffn + G[n]

where

G[n] =

∫
Vnucn + EH[n] + Exc[n] + Enn

δG
δn

= Vnuc + VH + Vxc = VKS



Euler-Lagrange equations

E [n,Veff,Ψ] = 〈Ψ|
N∑

i=1

(
−1

2
∇2

i + Veff(ri )

)
|Ψ〉 −

∫
Veffn + G[n]

The corresponding Euler-Lagrange equations are fully equivalent to
DFT!

δE
δn

= −Veff +
δG
δn

= −Veff + VKS = µ

δE
δVeff

= 〈Ψ|n̂(r)|Ψ〉 − n(r) = 0

δE
δΨ∗

=
N∑

i=1

(
−1

2
∇2

i + Veff(ri )

)
|Ψ〉 = E |Ψ〉

Note: the middle equation follows because

〈Ψ|
N∑

i=1

Veff(ri )|Ψ〉 = 〈Ψ|
∫ ( N∑

i=1

δ(r − ri )

)
Veff(r)d3r |Ψ〉 = 〈Ψ|

∫
n̂(r)Veff(r)d3r |Ψ〉



Stationarity

If we evaluate E [n,Veff,Ψ] for guessed inputs, the errors will be
second order in

∆n = n − n0, ∆Veff = Veff − VKS([n0]), ∆Ψ = Ψ−Ψ0.

good guesses⇒ better energies



The Generalized Harris functional

The generalized formulation is rather too general, so specialize.

Given choices for n and Veff, minimize

E [n,Veff,Ψ] = 〈Ψ|
N∑

i=1

(
−1

2
∇2

i + Veff(ri)

)
|Ψ〉−

∫
Veffn+G[n]

with respect to Ψ to obtain

E [n,Veff] =
∑
i occ

εi [Veff]−
∫

Veffn + G[n]

(Specializing further by setting Veff(r) = VKS([n], r)
yields the Harris functional of n(r) alone)



TB and the Harris functional

Non-selfconsistent Harris DFT total energy

E [n,Veff] =
∑
i occ

εi [Veff]−
∫

Veffn + G[n]

Tight binding total energy

ETB
total =

∑
i occ

εi +
∑
I>J

V pair
ion-ion(dI − dJ)

If we set

n(r) =
∑

I

nI(r − dI) V (r) =
∑

I

VI(r − dI)

the two functionals are (almost) the same.



Effectiveness

TB models and DFT
The tight-binding total energy is a good approximation to
the non-selfconsistent total energy of Harris DFT.

The input density and potential are superpositions of
spherical atomic- or ionic-like contributions.

Fails when the atomic configuration in the solid is very
unlike that of an isolated atom (solution: smarter trial
densities/potentials)
Problems with charge transfer (solution: self-consistent TB)

Bottom line
With a good basis set and good input densities/potentials,
non-selfconsistent TB is quantitatively accurate.



Semi-empirical tight binding: dynamic screening

A point charge q moves at velocity v0 through a solid.
At high velocity (top panel), the electronic screening cloud
cannot keep up.



Many-electron tight-binding models

The many-electron equivalent of a TB model is:

Ĥ =
∑
ζ

∑
αβ

ĉ†α,ζhαβ ĉβ,ζ +
1
2

∑
ζ,ζ′

∑
αβγδ

ĉ†α,ζ ĉ
†
β,ζ′Vαβ,χγ ĉγ,ζ′ ĉχ,ζ

where ĉ†α,ζ is the creation operator for an atomic-like spin-orbital

φα,ζ(r , s) = φα(r)χζ(s)

The matrix elements are

hαβ =

∫
φ∗α(r)

(
−1

2
∇2 + Vnuc(r)

)
φβ(r) d3r

Vαβ,χγ =

∫∫
φ∗α(r)φ∗β(r ′)

e2

|r − r ′|φχ(r)φγ(r) d3r d3r ′



Symmetry requirements

Ĥ =
∑
ζ

∑
αβ

ĉ†α,ζhαβ ĉβ,ζ +
1
2

∑
ζ,ζ′

∑
αβγδ

ĉ†α,ζ ĉ
†
β,ζ′Vαβ,χγ ĉγ,ζ′ ĉχ,ζ

If φα(r) ∝ Y m
l (r̂), the one-particle matrix elements hαβ can

all be expressed in terms of a few numbers: hssσ, hpdπ, . . .
Are there analogous simplifications for Vαβ,χγ?

What is the most general form of Vαβ,χγ allowed by symmetry?

(The answer has been known since the time of Slater,
but people often get it wrong even today.)



Interaction matrix

For simplicity, consider a single angular momentum shell on a
single atom.

The 2l + 1 spatial orbitals in the basis are

φm(r) = Rnl(r)Y m
l (r̂), −l ≤ m ≤ l

Vαβ,χγ has (2l + 1)4 elements.
How many are independent?



Rotational symmetry

The basis functions transform into linear combinations of each
other under rotations:

R̂ωφα(r) =
l∑

α′=−l

Dl
α′,α(ω)φα′(r)

The Coulomb interaction e2/|r − r ′| is unchanged if r and r ′ are
rotated simultaneously.

Vαβ,χγ =

∫∫
φ∗α(r)φ

∗
β(r
′)

e2

|r − r ′|φχ(r)φγ(r
′)d3rd3r ′

=

∫∫ (
R̂ωφα(r)

)∗ (
R̂ωφβ(r ′)

)∗ e2

|r − r ′|

(
R̂ωφχ(r)

)(
R̂ωφγ(r ′)

)
d3rd3r ′

=
∑

α′β′χ′γ′

(
Dl
α′,α(ω)

)∗ (
Dl
β′,β(ω)

)∗
Vα′β′,χ′γ′D

l
χ′,χ(ω)Dl

γ′,γ(ω)

V is a rotationally invariant fourth-rank tensor of angular momentum l



s-orbital case

There is only one non-zero Coulomb matrix element, Vαα,αα,
which is called the Hubbard parameter and denoted U0.

V̂ =
1
2

U0
∑
ζ,ζ′

ĉ†α,ζ ĉ
†
α,ζ′ ĉα,ζ′ ĉα,ζ

=
1
2

U0

(
ĉ†α,↑ĉ

†
α,↓ĉα,↓ĉα,↑ + ĉ†α,↓ĉ

†
α,↑ĉα,↑ĉα,↓

)
= U0n̂α,↑n̂α,↓



p-orbital case

The general form of an invariant fourth-rank Cartesian
tensor is

Vαβ,χγ = Uδαχδβγ + Jδαγδβχ + J ′δαβδχγ

where U = Vαβ,αβ , J = Vαβ,βα, and J ′ = Vαα,ββ (all with
α 6= β).
Since the orbitals are real, Vαβ,χγ = Vχβ,αγ = Vαγ,χβ,
implying J = J ′.
The 34 = 81 interaction matrix elements can all be
expressed in terms of 2 independent parameters.

Vαβ,χγ = Uδαχδβγ + J(δαγδβχ + δαβδχγ)



The corresponding interaction operator is

V̂ =
1
2

[
(U − J) : n̂2 : − 4J : Ŝ2 : − J : L̂2 :

]
=

1
2

(U − 1
2

J) : n̂2 : − 2J : Ŝ2 : + J
∑
αβ

: (n̂αβ)2 :


where L̂ is the orbital angular momentum, Ŝ is the spin angular
momentum, and

: (n̂αβ)2 : = 2
(

ĉα,↑ĉα,↓
)† (

ĉβ,↑ĉβ,↓
)

represents hopping of singlet pairs of electrons from one spatial
orbital to another.



d-orbital case

The 54 = 625 elements of the interaction matrix can all be
written in terms of 3 independent parameters.

V̂ =
1
2

[(
U − 1

2
J + 5∆J

)
: n̂2 : − 2(J − 6∆J) : Ŝ2 :

+ (J − 6∆J)
∑
αβ

: (n̂αβ)2 : +
2
3

∆J : Q̂2 :

]



Comparison with the Stoner Hamiltonian

For p and d shells, the scalar and vector Stoner Hamiltonians
are:

V̂ Stoner =
1
2

(U − 1
2

J) : n̂2 : − J : Ŝ2
z :

V̂ Stoner =
1
2

(U − 1
2

J) : n̂2 : − J : Ŝ2 :

(The vector version is equivalent to the Hamiltonian of Dworin and
Namath.)

The interaction matrix

Vαβ,χγ = Uδαχδβγ + Jδαγδβχ

looks like the general p-shell result but is missing the Jδαβδχγ
(pair-hopping) term. Consequently, it is not invariant on
interchange of α with χ or β with γ.



p-dimer phase diagram
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Conclusions

Semi-empiricial TB is fun and easy. Try it!
Ab initio self-consistent TB is not so bad, either.
Check the form of any multi-band Hubbard model you may
be using.
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