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The Schrédinger equation

Understanding the behaviour of electrons in solids almost
always requires us to solve the Schrédinger equation:

(=572 + Venln)) ) = et

2
@ V.(r) depends on the approximations being used.

@ If rmeans (ny, ro,. .., ry), this is the N-electron
Schrédinger equation.

@ Most of the methods used are based on the variational
principle.



Variational formulation of the Schrédinger equation

Solving the Schrédinger equation

Hy; = ejib;

to find the eigenvalues and eigenfunctions of His equivalent to
finding the stationary points of the functional

e[v] = (¥|H|p)

subject to the normalization constraint

() =1



Practical importance of the variational formulation

@ Suppose ¥ is a normalized guess at v; with error Aq);.
@ Since €[v] is stationary and equal to ¢; when ¢ = v,

e[i] = €i + O[(Ai)?]

o If 1/7,- is accurate, ¢; is even more accurate.

This simple observation underlies the success of almost all
current methods used to solve the Schrédinger equation



The linear variational principle

A convenient way to guess solutions is to use a basis set

M
b(e,r) = Cadalr)
a=1

and choose ¢, to make

M
€[] = ([GIAID) = cildalHlds)cs
a,p

stationary subject to

M
(W) =Y cildaldsics =1
o8



Defining the Hamiltonian and overlap matrices

Hos = [ 6(0Bosd®r. Sua= [ oaostnds

we seek the stationary points of

e(c) = CZHa/BCﬁ (summation convention)

subject to ¢, S, 5¢5 = 1.

Not surprisingly, this is equivalent to solving the matrix
Schrédinger equation

Haﬁcg = €Saﬁca

)



Advantages and disadvantages

Hag Cs = €Sa5 Co
Advantages

@ Solving the matrix problem yields M approximate
eigenvalues ¢; and eigenvectors ¢; at once.

@ Solving matrix eigenvalue problems is much easier than
finding the eigenfunctions and eigenvalues of differential
equations. Excellent general purpose numerical libraries
are available.

Disadvantages
@ Calculating H,g and S, 3 can be painful.
@ Diagonalizing very large matrices is slow.



The Rayleigh-Ritz variational principle

If P, 1, . .., ¥m_1 are the M approximate eigenfunctions
obtained by solving a linear variational problem with M basis
functions, then

&= (Gl Al > e,  i=0,1,...,M—1

@ Every eigenvalue obeys a variational principle.

@ Improving the basis set can only lower the approximate
eigenvalues.

@ The convergence with basis set is reassuringly controlled.
@ Errors of order Ay in ¢ lead to errors of order (A;)? in €.



Siloxane on Silica

A quantum MD simulation of the tearing of a siloxane molecule from a silica surface



What is tight binding?

TB = Linear variational approach with atomic-like orbitals

Most natural when orbitals overlap little and bands are narrow.

Three flavours:
@ Ab initio
@ Wannier-function-based
@ Semi-empirical



Ab initio tight binding

@ Explicit basis of Gaussians,
Slater-type or atomic-like
orbitals. Not usually
orthogonal. @ Similar in style to

conventional quantum

chemical approaches.

@ Solve matrix eigenvalue
problem computationally.

@ Evaluate matrix elements
computationally.



Wannier-function-based tight binding

@ Orthogonal or non-orthogonal
localized linear combinations
of Bloch eigenfunctions.

@ Calculating Wannier functions
requires solving the
Schrddinger equation.

@ By construction span the
bands from which they were
created exactly.

@ Complicated form = no
simple parameterization.

Maximally localized bonding Wannier functions constructed from the four valence
bands of Si (left) and GaAs (right)



Semi-empirical tight binding

@ No explicit orbitals. Instead
parameterize matrix
elements.

@ Orthogonal or
non-orthogonal.

@ Minimal basis. Quick to set
up and solve.

@ Analytically tractable in
simple cases.

@ Inaccurate. Unreliable.
Non-transferable.

@ Best for qualitative
information.



Semi-empirical tight binding: cascade simulation
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Slater-Koster rules

This matrix element is neither Hpp, Or Hppr, but since

m=—|

/
FA”) "= Z D;n’,m(w) Ylml

it can be expressed in terms of them.



Example: bandstructure of a face-centred cubic solid

N
A

@ For an FCC crystal
a a
A1_§(Oa171)5 A2—§(17Oa1)7 A3—§(1a170)5
2r 2r
B1_Z(_1’171)7 32—2(17—1,1), 53—2(1,17—1).

@ The N;N>N;3 distinct k vectors consistent with the periodic
boundary conditions are

my my m3
k=—B +-—=-B+—B < m; < N,.
N, 1+N2 2+N3 3, 0 < m; <N,



Model and solution

@ Orthogonal tight-binding model with one s orbital per atom.
@ Diagonal matrix elements are 0 and nearest-neighbour

hopping matrix element are h. All other matrix elements
are zero.

Bloch’s theorem says that the tight-binding eigenfunctions take
the form

_ 1 ik-d
|17Z)k> - \/W; ’¢d>e



e Applying the TB Hamiltonian A™® = 3", 4 |¢a)Ha,a (¢ar| to
the Bloch linear combination gives

HTBW) > HTB’QS Ikd

\/WZ

ik-d

S — N | LB
\/W%:Zd](ﬁdﬂ%\ |pa) €

‘F/TB|¢d> eik-(dfd’).

1 e
== ¢a)e*" (pa
Ny N5N3 ; zd:

@ The only non-zero contributions to the inner summation
are those for which d is a nearest neighbour of d'.



~ 1 i / ~ ; I
A lyk) = == > [6a )€Y Y " (par| AP 6 g)e™ (@)
v NiNo>N3 7 7

= ; ik-d’' ik-n
= N1N2N3 ;’¢d’>e ;he
- (hz e’“‘") e

The sum over nearest-neighbour vectors n is easily evaluated
to obtain the bandstructure:

kya k.a ka k«a
e(k) =4h [cos <2> cos( > ) +cos< 5 )cos( 5 )
kxa kya
+ cos <2> cos (2”

(You do not often you get to calculate a bandstructure by hand in a few lines!)




TB total energies

time =95.0fc

electronic charge
-10% [e| 0 +10% [e|

TB total energy expression
Etotal(d) Z Z \/|(p)ﬁ”;0n dJ)
i occ I>dJ

All matrix elements and inter-atomic potentials need to be fitted.



...is ablack art.

@ Bandstructures or total energies?
@ Lots of data or a little?
@ Transferability?



TB total energy model for silicon

ha() = ha(ro) ()" 1o(r)

o

() ()" (1)

Parameter

Value

o

2.360A

n

m

4.54

Viorvion(r)
Parameter | Value (eV)
Es —6.535
Ep 1.760
hsss(ro) —1.820
hspo (o) 1.960
hppo(1o) 3.060
hppr(ro) —0.870
Vigﬁ'_rion(ro) 3.458
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The central problem of condensed matter physics

The many-electron Schrédinger equation

( 22 +Z\r—r| Zzwr—om ij_%) voE

I>J

is our grand unified theory.

(T’+ Vee + Ven+Enn) V=FEV

If only we could solve it!



The energy functional

There exists a functional E[n] which is minimized and equal to
the ground-state energy Ey when the electron density n(r) is
equal to the ground-state electron density ng(r).

The Levy construction

E[n] = Miny_, o) (W|HIW)



Terms in E[n]

E[n] = Ts[n] + Een[n] + En[n] + Enn + Exc[N]

@ Tg[n] is the KE of a system of non-interacting electrons with
ground-state electron density n(r)

@ E.[n] = / Viwe(F)n(r)a®r

en(rn(r') s, 3,
@ Eyn] = 2// T a°rd°r

@ E,c[n] is known as the exchange-correlation energy



Self-consistency

The Euler-Lagrange equation derived by minimizing E[n] looks
like a non-interacting Schrédinger equation

(—;Vz + Vks([n], I‘)) ¥i(r) = eig(r)
except that

Vks([n], r) = Vaue(r) + e n(r') 3y, 96k

|r—r'| on(r)
~——
Hartree potential Vie([N],r)

depends on the electron density n(r) = Y, oo |%i(F)[2.

An iterative method of solution is required



Self-consistent total energy

Once self-consistency has been reached the total energy is
obtained using

E[n] = Ts[n] + Een[n] + En[n] + Enn + Exc[n]
with

n(r) = 3 [u(r)P
and

Tl =Y [ 657 uine

i occ



The DFT total energy in terms of the eigenvalues

Since

Tl =X [4i)(-5v) winer

i occ

=3 [uier (—v2+va([n1) Via(101.1)) w(r)cPr

i occ

=) - /VKS [n], r

i occ

the total energy can also be expressed as

Eln] = Z € — / Vks[n]n + Een[n] 4+ En[n] + Enn + Exc[n]

i occ



Comparison of DFT and TB total energies

DFT

Eln] = 6/ / Viksn + Een[n] + En[n] + Enn + Exc[N]

i occ

B
Etotal - Z €+ Z Vlgﬁlrlon (d)—dy)

i occ I>J

@ The TB Schrédinger equation is not self-consistent.

@ The potential in the TB Schrédinger equation is normally
assumed to be a sum of spherical atomic-like potentials.

@ The TB double-counting term is simple and pairwise.



Variational TB

The non-selfconsistent tight-binding total energy is a stationary
approximation to the DFT total energy.



General variational formulation of DFT

Consider the following functional of n(r), Veg(r) and V(r, 1o, ..., Iy)

N
1
Eln, Var, W] = (913 (~ 592 + Var(r) ) 19) — [ Vean-+ Gl
i=1
where

Gl = / Vot + En[] + Exc[rl] + Enm

0G
%: nuc+VH+ ch: VKS



Euler-Lagrange equations

N
EIn, Verr, W] = (W] Y (;V,z + Veh‘(ri)> V) — / Vetin + G[n]
i

The corresponding Euler-Lagrange equations are fully equivalent to
DFT!

0E 0G
5n :_Veff‘i‘ﬁ = — Vet + Vks = 1
0E

S = (VIAIv) — n(r) =

N

oo =3 (37 + Verlr)) ) = W)

i=1

Note: the middle equation follows because

<‘~V\ZVeff (V) = \U\/ < rr,) ait(r)a%r W) = ‘U\/ Vert(r)d®r |W)



If we evaluate E[n, Ve, V] for guessed inputs, the errors will be
second order in

An=n—ny,  AVesr= Vet — Vks([mo]), AV =V -V,

good guesses = better energies



The Generalized Harris functional

The generalized formulation is rather too general, so specialize.

@ Given choices for n and Vg, minimize

N
1
Eln. Ve, ] = (0] (=555 + Ver(r) ) 1) [ V-G
i=1
with respect to V¥ to obtain

E[n, Verl] = > il Ver] - / Vestn + G[n]

i occ

(Specializing further by setting Ver(r) = Vks([n], r)
yields the Harris functional of n(r) alone)



TB and the Harris functional

Non-selfconsistent Harris DFT total energy

E[n, Veg] = Z €i[ Vert] — / Vettn + G[n|

i occ

Tight binding total energy

air
total = Z €+ Z V|gn jonl d,)

i occ I>J

If we set

n(ry=> n(r—d) V(r)=>_Vi(r-d)
/

!

the two functionals are (almost) the same.



Effectiveness

TB models and DFT
The tight-binding total energy is a good approximation to
the non-selfconsistent total energy of Harris DFT.

@ The input density and potential are superpositions of
spherical atomic- or ionic-like contributions.
e Fails when the atomic configuration in the solid is very
unlike that of an isolated atom (solution: smarter trial

densities/potentials)
e Problems with charge transfer (solution: self-consistent TB)

Bottom line
With a good basis set and good input densities/potentials,
non-selfconsistent TB is quantitatively accurate.



Semi-empirical tight binding: dynamic screening

A point charge g moves at velocity vy through a solid.
At high velocity (top panel), the electronic screening cloud
cannot keep up.




Many-electron tight-binding models

The many-electron equivalent of a TB model is:

ZZCachaﬁ%c+ ZZCac%c w8y Gy G

¢,¢" apys

where c ¢ Is the creation operator for an atomic-like spin-orbital

Pac(F,8) = da(r)xc(S)

The matrix elements are

hy = / 67.(r) (—;v2+ Vnuc(r)> b4(r) dr
Vs = [ [ 60005 S0, r)on () dr



Symmetry requirements

chachaﬁcﬁc QZZéT (€ Vg CrBrc

¢,¢" aByé

@ If ¢o(r)  Y/7(F), the one-particle matrix elements h,z can
all be expressed in terms of a few numbers: hssy, hpar, - - .

@ Are there analogous simplifications for V.3 ?

What is the most general form of V3 , -, allowed by symmetry?

(The answer has been known since the time of Slater,
but people often get it wrong even today.)



Interaction matrix

For simplicity, consider a single angular momentum shell on a
single atom.

@ The 2/ + 1 spatial orbitals in the basis are
dm(r) = Ru(r) Y™ (F), —I<m<|

@ V.5, has (2/ + 1)* elements.
@ How many are independent?



Rotational symmetry

@ The basis functions transform into linear combinations of each
other under rotations:

Z b (r)

a'=—1

@ The Coulomb interaction €?/|r — r'| is unchanged if r and r’ are
rotated simultaneously.

2
© V= [[ ¢z(r)asz(r'),f—,,'qsx(r)m(r’)dsrdaw

J[ (Boo) (Foo:)) 0 (Aooun) (R0:(0)) dProe

|r

> (Dhral@) (Db s(@)) Vargr s Dys (@) Dl ()

ol B! x! !

V is a rotationally invariant fourth-rank tensor of angular momentum /



s-orbital case

There is only one non-zero Coulomb matrix element, V.4 aa,
which is called the Hubbard parameter and denoted Uj.

v PPN B
V=75 > b Cacbac
¢.¢
fU ¢ e & . +é & ¢ ¢
0 aT a,la,lYa,T al oo, a,l

= UO”a Aoy



p-orbital case

@ The general form of an invariant fourth-rank Cartesian
tensor is

Vaﬁ,xw = Uéaxéﬁ'y + J(Scw(sﬁx + J/‘Saﬁ(sxv

where U = Va[g’ag, J= Vaﬁ,ﬂas and J = Vaa,ﬁﬁ (aII with

a7 f).
@ Since the orbitals are real, Vo5, = Vyg,0y = Vayxss
implying J = J'.

@ The 3* = 81 interaction matrix elements can all be
expressed in terms of 2 independent parameters.

Vaﬁ,xv = U(Sax‘sﬁv + J(daw‘sﬁx + 5a65x7)



The corresponding interaction operator is

\A/:%[(U—J): P —4d: 8 —J: [2:}

= — [(U- J):ﬁz: —2J: &2 +Jzi(ﬁaﬁ)2:

aff

i
2

where L is the orbital angular momentum, Sis the spin angular
momentum, and

T
a2 A A A A
(Aap)®s =2(80160,) (65460,)

represents hopping of singlet pairs of electrons from one spatial
orbital to another.



d-orbital case

The 5% = 625 elements of the interaction matrix can all be
written in terms of 3 independent parameters.

\7:% (U—%J+5AJ):ﬁ2: —2(J - 6AJ): §%:
2 N

— (A )2 < . O2-

+(J — 6AJ) EQB:. (Aap)®: +30J: Q2



Comparison with the Stoner Hamiltonian

@ For p and d shells, the scalar and vector Stoner Hamiltonians

are:
Veoner = 2(U — S0): P — J: 82,
Stoner—z( —2 ) e dJdlog
N 1 1 R ~
VStonerZE(U—EJ)ani -J: &%

(The vector version is equivalent to the Hamiltonian of Dworin and
Namath.)

@ The interaction matrix
Vag.xy = Udax0py + Joaypx

looks like the general p-shell result but is missing the Jd, 36,
(pair-hopping) term. Consequently, it is not invariant on
interchange of o with y or 8 with ~.



p-dimer phase diagram
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Conclusions

@ Semi-empiricial TB is fun and easy. Try it!
@ Ab initio self-consistent TB is not so bad, either.

@ Check the form of any multi-band Hubbard model you may
be using.
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