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—xact Diagonalization: Main ldea

® Solve the Schrddinger equation of a quantum many body system numerically

Hiw) = B,

® Sparse matrix, but for guantum many body systems the vector space
dimension grows exponentially!

® Some people will tell you that’s all there is.

® But if you want to get a maximum of physical information out of a
finite system there is a lot more to do and the reward is a powerful:

Quantum Mechanics Toolbox



Hilbert space sizes

® The Hilbert space of a quantum many body system grows
exponentially in general

For N spin 1/2 particles, the complete Hilbert space has dim=2" states
10 spins dim=1'024

20 spins dim=1°'048'576

30 spins dim=1‘073‘741824

40 spins dim=1’099'511’627°776

50 spins dim=1125'899906‘'842’'624 ...

The quantum mechanical wave function

IS a vector in this Hilbert (vector) space and
we would like to know the ground state and
a few other low lying eigenstates




Symmetries

® Consider a XXZ spin model on a lattice. What are the symmetries of the problem *?

H = Z JTY(SPSY 4 SYSY) + J7 ;8757

® The Hamiltonian conserves total S%, we can therefore work within a given S# sector
This easily implemented while constructing the basis, as we discussed before.

® The Hamiltonian is invariant under the space group, typically a few hundred elements.
(in many cases = Translations x Pointgroup). Needs some technology to implement...

® At the Heisenberg point, the total spin is also conserved. It is however very difficult to
combine the SU(2) symmetry with the lattice symmetries in a computationally useful
way (non-sparse and computationally expensive matrices).

® At S72=0 one can use the spin-flip (particle-hole) symmetry which distinguishes even
and odd spin sectors at the Heisenberg point. Simple to implement.



Spatial Symmetries

® Spatial symmetries are important for reduction of Hilbert space

® Symmetry resolved eigenstates teach us a lot about the physics at work,
dispersion of excitations, symmetry breaking tendencies,
topological degeneracy, ... = more about this in the second lecture

40 sites square lattice lcosidodecahedron (30 vertices)
T ® PG =40 x 4 elements Ih:120 elements
OO0O0O0O0O0Q O
OO0 QO0O O
O ONONONONG®) O
OO NONONONO. O
OYWOOO0OO0 O
O O0O0O0 O
O 00000 O
O O O Q0 O
ONONOgoNONO O



—xact Diagonalization: Applications

® Quantum Magnets: nature of novel phases, critical points in 1D, dynamical
correlation functions in 1D & 2D

® Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, cluster spectra, etc

® Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

® Quantum dimer models / constrained models (anyon chains, ...)

® Full Configuration Interaction in Quantum Chemistry, Nuclear structure

® Quantum Field Theory



—xact Diagonalization: Present Day Limits

® Spin S=1/2 models:
40 spins square lattice, 39 sites triangular, 42 sites Honeycomb lattice
48 sites kagome lattice, soon 50-52 spins square lattice
64 spins or more In elevated magnetization sectors
up to ~500 billion basis states

® Fractional quantum hall effect
different filling fractions v, up to 16-20 electrons
up to 3.5 billion basis states

® Hubbard models (~ Full Cl in Quantum Chemistry)
20 sites square lattice at half filling, 21 sites triangular lattice
24 sites honeycomb lattice
up to 160 billion basis states

low-lying eigenvalues, not full diagonalization



—xact Diagonalization Literature

® N. Laflorencie & D. Poilblanc,
“Simulations of pure and doped low-dimensional spin-1/2 gapped systems”

Lecture Notes in Physics 645, 227 (2004).

® R.M. Noack & S. Manmana,
“Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems”,

AIP Conf. Proc. 789, 93 (2005).

® A. Weisse, H. Fehske
“Exact Diagonalization Techniques”

Lecture Notes in Physics 739, 529 (2008).

® A. Lauchli
"Numerical Simulations of Frustrated Systems”
in “Highly Frustratred Magnetism”, Springer, Eds. Lacroix, Mendels, Mila, (2011).
available upon e-mail request.
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“Tower of States” spectroscopy

® \What are the finite size manifestations of a continuous symmetry
breaking ?
(eg in superfluids/superconductors, magnetic order, spin nematic order)

® Order parameter is zero on a finite system ! (symmetric partition function)

® So usually one looks into order parameter correlations [(order parameter)?]

zZ




“Tower of States” spectroscopy

® Order parameter is not a conserved quantity

® Order parameter is zero on a finite size sample (Wigner-Eckart) é

® How does one get spontaneous symmetry breaking anyway “?

® Ground state degeneracy is building up as we approach
the thermodynamic limit, which will allow to form a symmetry breaking
wave packet at zero energy cost



“Tower of States” spectroscopy

® \What are the finite size manifestations of a continuous symmetry breaking ?
(eg in superfluids/superconductors, magnetic order, spin nematic order)

® Low-energy dynamics of the order parameter
Theory: PW. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

® Dynamics of the free order

Continuum parameter is visible in the finite size
spectrum. Depends on the continuous
- H symmetry group. ED is good at spectra.
-7 A
% Magnons |
Lli H / ® U(1): (892 SU2): S(S+1)
ﬁ/ Tower of E
States ! : :
| ® Symmetry properties of levels in the
I N * L Tower states are crucial and constrain
d > the nature of the broken symmetries.

S(S+1)



Toy model: from square lattice -

eisenberg

antiferromagnet to the Lieb-Mat

1S model

® Hamiltonian H=J Z Si-S;
® Fourier transform H=2J Z% S-S
® Keep only the (0,0) and (r1,m1) mode

® Lieb Mattis model recovered

4.
Hy = _(Stht — 5124 — SJQB)

P g

C. Lhuillier, cond-mat/0502464



Symmetry decomposition of order parameter

® Order parameter manifold forms a representation space for the symmetry
group of the Hamiltonian (more details later)

® Decompose this (reducible) representation into irreducible representations

1 step translation
bond reflection
A S A S

plaguette rotation

2) operation
Wlth non-collinear

axis




Symmetry decomposition of order parameter

® As a result of the group theoretical analysis one obtains

® 1 irrep with S=0, (0,0) Al

@® 1 irrep with S=1, (rT,17) AT

® 1 irrep with S=2, (0,0) AT

® 1 irrep with S=3, (rt,11) Al

7

N = 32

g O Gamma.D4.Al
M.D4.A1

112 QIO 3IO
Stot(Stot + 1)

actual ED results for square lattice Heisenberg model
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General Formalism for Symmetry Decomposition

® Ground state manifold: span of all |igs) a prototypical state (e.g. product state)

Vs = span {WE}S>}

where |i&s) are the degenerate ground states in the thermodynamic limit.
This space is finite dimensional for discrete symmetry breaking and infinite dim.
for continuous symmetry breaking.

® The symmetry group acts nontrivially within this subspace (prototypical states
“break” symmetries), it forms a (reducible) representation 1’

I :Q — Aut(VGs) Ia :e n,p
g t— (<wé}8|09|¢é8>)i,j 0 !

® The representation can be decomposed into irreducible representations of the

symmetry group according to standard group theory formula:
1

"= 1g1 > Xol9) Te(I(9))

geg




General Formalism: Simplification using “stabiliser”

® General action I':G — Aut(Vas)
g (<¢E}S’OQ|¢5}S>)ZJ
® Often we have

. 1if O, |gs) = |9 . . .
(Yos|Ogltbgs) = {o N 1 .GS> Vas) i.e. ~ Permutation matrix
otnerwise

® Then we can simplify the representation reduction formula

1
" = Swblie] 2 o)

g€Stab(|bgs))

using the “stabiliser” sulbgroup concept

Stab(|vgs)) = {9 € G : Oy |tgs) = |Yas) }
® we only need:

e the stabilizer Stab(|i)gs)) of a prototypical state |1)gs) in the groundstate manifold

e the characters of the irreducible representations of the symmetry group G
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-Irst a simple example: TR
Discrete Symmetry Breaking el

® Columnar Dimer Valence Bond Crystal (4 different singlet states)
occurs in Quantum Dimer models and some frustrated quantum magnets

q
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G=D=T xPG  t=(00), t,=(10), t,=(0,1), t,=(11) PG = C4

Xk(t) — ekt Stab(|W,yps)) = {1 x 1} U {1 x Co} U {t, x 1} U {t, x Cy}
where C5 denotes the rotation about an angle 7 around the center of a plaquette.

Cil 1 ]Cy|Cyl(Cy)3 1

SHERE 0 Sab(a] g NNt

B | +1 | -1 | +1 1 deStab(|¥cv Bs))

E, | +1 | +1 | -1 -1 _ 1 [1 ek (0.0) 4 1 ok (00) 4 1 gik(0,1) 4 q ez‘k-(o,l)] 1

E, | +1 | -1 | -1 +i 4 .
Table 1: Character table for pointgroup C,. OB = [Stab(|¥ey ps))| deSt Z X5 (@)Xt ()

ab(|chBS>)
1

_ Z [1 o'k(0,0) + (_1) oik:(0,0) +1 ok (0,1) 4 (_1) eik'(o’l)] _0



-Irst a simple example:
Discrete Symmetry Breaking

® Staggered Valence Bond Crystal, also fourfold degenerate

— e o — Irreps | cVBS | sVBS
I (I ) (0,00A | 1 1
q - 5> d >
— (0,0)B | 1 1
_b = 4 = B q__ (7_‘_7 O) A 1 O
>4 (0,7) A 1 0
Th——p 45 4 (7T, W)Ea 0 1
I e (7, m)Ey 0 1
< [N Z [N 2 )
B O
271 Fx () E
E T . .
A ool Found in a ring-exchange model:
272 AML et al, PRL 2005
- A (0,0) B1
| | [ | |
36 sites, K/J=0.6, 6=0.17x S 0 1

(a) (b)



Continuous Symmetry Breaking
Collinear magnetic order

® collinear magnetic order: spins are all (anti)parallel to a common axis in spin space

) = [T )
® (simplified) square lattice space group, SO(3) spin symmetry group
g :D X C D :Z2XZ2:{1atxatyatxy} C — 80(3)
® Ground state manifold Vas ={0qg [¢) ;9 € G}

® Stabilizer of a single Néel state:

e No translation in real space or a diagonal ¢, translation together with a spin rotation
R, («) around the z-axis with an arbitrary angle .

e Translation by one site, ¢, or ¢,, followed by a rotation R,(7) of 180° around an axis
a 1 z perpendicular to the z-axis.

Stab(|1)) = {1 X R.(@)} U {tay X R.()} U {ta X Ra(m)} U {ty X Ra(7)}



Continuous Symmetry Breaking
Collinear magnetic order

® [rreducible representations of the symmetry group

() = ke {(0,0), (0.7), (r,0), ()} (s(r) = S E+ )]

sin =

® Multiplicity of irreducible representations (general formula)

k- 1 ik-(ez+e 1
Nacsy =0 /daxS(Rz(a)) + elkeleat y)4|R ol /dozXS(RZ(oz))
0

® evaluated for the present case (details in lecture notes)

Moo = 5 (LT 141 (1 41 (-1)%) = { oS ote S| Al M.AL
: 0) 1 0)
e = g (L 1H 111 (1) 1 <—1>S){ it S ol 1] o 1
n((om@zi(1-1—1-1+1-(—1)5—1 (-1)%) =0 i (1) (1)
1 S 5
n((ﬂ,O),S)21(1’1_1'1_1'(—1) +1-(=1) ):0



Continuous Symmet
Collinear magnetic o

Y

Sreaking

rder

® Exact Diagonalization for a N=32 site square lattice Heisenberg model

N =32

O GammaD4.Al
M.D4.A1

0 2 é 112 Qb
Stot(Stot + 1)

30

S| I''Al M.Al
0 1 0
1 0 1
2 1 0
3 0 1



Seyond the collinear Neel state

® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

H = Z cos(0) S; - S; +sin(d) (S;-S;)°
(

6,)

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

® 3=0: coplanar magnetic order,
< 120 degree structure

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

120° Néel

I'Al I'Bl K.Al

-10
i 1 0 0

® non-collinear magnetic structure
= SU(2) is completely broken,

S

0

1o 1

1 0 2
15 H 31 2 2
S

number of levels in TOS increases with

-20 - 7 g
| 2/ ® Quantum numbers are identical to the S=1/2 case
AFM, 6=0 "

_25- L1 1 | | | |
®612 20 30 42 S(S+1)




Spin Quadrupolar Order

Andreev & Grishchuk, Chubukov, Papanicolaou

® Order parameter is not a vector as usual, but
instead a tensor of rank two.

® Belongs to the class of spin nematic states,

i.e.(S;) =0, but SU(2) is broken nevertheless.

pure quadrupole

® Single site example: | SY =0), S=1
(5%) =0

® anisotropic fluctuations break SU(2) symmetry
(5M)%) =0 ((§™%)%) #0

quadrupole



Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

20

15}

AT

10

O [ ! 1 ! ! i
<M 6 12 20 30 42

FQ

® 9=-1v/2 : ferroquadrupolar phase, finite
guadrupolar moment, No spin order

® No spatial symmetry breaking.

-

= only trivial spatial irrep appears in TOS

Ferroquadrupolar order parameter, only even S

® all directors are collinear

(O GammaD6.A1

Stot(Stot + 1)

= SU(2) is broken down to U(1),

number of states in TOS is independent of S.

S(S+1)



Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

guadrupolar moment, no spin order,
three sublattice structure.

-7/2

® Breaks translation symmetry. Tree site unit cell

AFQ = nontrivial momenta must appear in TOS

) ® Antiferroguadrupolar order parameter, complicated
S dependence.

o AFQ
=~ S| I.A1 I'Bl K.Al
1} O Gamma.D6.A1 |-
Gamma.D6.B1 O 1 () O
@- _ O KD3A1 1 O O 0
(I) 2 é/ 1I2 Zb Sb 4I2 2 0 O 1
Stot(Stot + 1) 3 0 1 0

S(S+1)
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Continous symmetry breaking with other groups

® SU(N) guantum magnetism in ultracold atomic gases

triangular lattice

® Here an SU(3) example on the
triangular lattice:

® 00 ©
AML, F. Mila, K. Penc “ .‘ .. "
PRL (2006) 'Y 'Y

® 0060 ©

® 5(S+1) scaling gets replaced by
quadratic Casimir of irreducible
representations of symmetry group.




Quantum Ciritical Points

® Universal spectrum of the critical field theory at the quantum critical point

® Spectrum scales as 1/L. Here an example for the Ising CFT in 2+1D:

7 =i - Square T = % + @z - Triangular
14| &

@ O
O
O @H
N
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O d

12 S O B A

0f s by

(E — Ey) x VN /c
O
=
oo

; ; ; S I I d .. Z9 even, ED/QMC |
% f ’ © Zodd, ED/QMC
2F 1l TR e ] b D [0 Z:even, e-exp

/ " Z5 odd, e-exp
1 V2 2 V5 0 1 V3 2
K K

M. Schuler, S. Whitsitt, L.P. Henry,
S.Sachdev & AML, arXiv:1603.03042




Conclusions

® Exact Diagonalization based spectroscopy of quantum many body
Hamiltonians is a very powerful technigue.

® Well developed framework to diagnose and characterise (continuous) symmetry
breaking on finite size systems. Recent extensions to quantum critical points

® More details in lecture notes written together with M. Schuler and A. Wietek

- O Gamma.D4.Al

00 -7 M.D4.A1

0 2 6 12

20 30

Stot(Stot + 1)



Thank you for your attention !




