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orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell where
four spins align such that they span a regular tetrahedron. In this chapter we show the tower of
states for the three magnetic orders in this model.

Fig. 4: (Left): Simulation cluster for the Exact Diagonalization calculations. (Center): Brillouin
zone of the triangular lattice with the momenta which can be resolved with this choice of the
simulation cluster. Different symbols denote the little groups of the corresponding momentum.
(Right): TOS for the 120

� Néel order on the triangular lattice. The symmetry sectors and
multiplicities fulfill the predictions from the symmetry analysis (See Tab. 5). One should note,
that the multiplicities grow with Stot for non-collinear states.

Fig. 5: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities for each
even/odd Stot are constant for collinear phases. (Right): TOS for the tetrahedral order on the
triangular lattice.

First of all Fig. 4 shows the simulation cluster used for the Exact Diagonalization calculations
in [31]. We chose a N = 36 = 6 ⇥ 6 sample with periodic boundary conditions. This sample
allows to resolve the momenta � , K and M , amongst several others in the Brillouin zone.
The K and M momenta are the ordering vectors for the 120

�, stripy and tetrahedral order.
Furthermore this sample features full sixfold rotational as well as reflection symmetries (the
latter only in the absence of the chiral term). Its pointgroup is therefore given by the dihedral
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Exact Diagonalization: Main Idea

Solve the Schrödinger equation of a quantum many body system numerically 

Sparse matrix, but for quantum many body systems the vector space 
dimension grows exponentially! 

Some people will tell you that’s all there is. 

But if you want to get a maximum of physical information out of a  
finite system there is a lot more to do and the reward is a powerful: 

H|�⇥ = E|�⇥

Quantum Mechanics Toolbox



Hilbert space sizes
 The Hilbert space of a quantum many body system grows  
 exponentially in general  
 For N spin 1/2 particles, the complete Hilbert space has dim=2N states  
 10 spins dim=1‘024 
 20 spins dim=1‘048‘576 
 30 spins dim=1‘073‘741‘824 
 40 spins dim=1’099’511’627’776 
 50 spins dim=1‘125‘899‘906‘842’624 ... 
 The quantum mechanical wave function 
 is a vector in this Hilbert (vector) space and 
 we would like to know the ground state and 
 a few other low lying eigenstates

|�⇤ or |⇥⇤



Symmetries

 Consider a XXZ spin model on a lattice. What are the symmetries of the problem ? 

 The Hamiltonian conserves total Sz, we can therefore work within a given Sz sector 
 This easily implemented while constructing the basis, as we discussed before. 

The Hamiltonian is invariant under the space group, typically a few hundred elements. 
(in many cases = Translations x Pointgroup). Needs some technology to implement... 

At the Heisenberg point, the total spin is also conserved. It is however very difficult to  
combine the SU(2) symmetry with the lattice symmetries in a computationally useful 
way (non-sparse and computationally expensive matrices).  

At Sz=0 one can use the spin-flip (particle-hole) symmetry which distinguishes even 
and odd spin sectors at the Heisenberg point. Simple to implement.
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Spatial Symmetries
Spatial symmetries are important for reduction of Hilbert space 

Symmetry resolved eigenstates teach us a lot about the physics at work, 
dispersion of excitations, symmetry breaking tendencies,  
topological degeneracy, ... ⇒ more about this in the second lecture
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dominant energy term. Thus, in addition to their great
relevance in the context of nanomagnetism and the grow-
ing interest for potential applications in quantum com-
puting20, information storage21 and magnetic imaging22,
molecular nanomagnets can also provide a suitable plat-
form for addressing theoretical questions and testing
ideas from the more general context of frustrated mag-
netism.

In this work, we focus on two magnetic molecule real-
izations of the Heisenberg kagomé AFM on the sphere.
The first consists of 8 corner-sharing triangles and is re-
alized in the Cu12La8

23 cluster with 12 Cu2+ s = 1/2
ions occupying the vertices of a symmetric cuboctahe-
dron (see Fig. 1). The spin topology of this cluster is
identical to the 12-site kagomé wrapped on a torus (cf.
Fig. 16). The second cluster is one of the largest frus-
trated molecules synthesized to date, namely the giant
Keplerate Mo72Fe30 system24. This features an array of
thirty s = 5/2 Fe3+ ions occupying the vertices of twenty
corner-sharing triangles spanning an almost perfect icosi-
dodecahedron (see Fig. 1). Interestingly, its quantum
s = 1/2 analogue, Mo72V30, consisting of V4+ ions has
also been synthesized quite recently25,26. We may note
here that the cuboctahedron and the icosidodecahedron
can be thought of as two existing positive curvature (with
n = 4 and 5 respectively) counterparts of Elser and
Zeng’s27 generalization of the kagomé structure on the
hyperbolic plane where each hexagon is replaced by a
polygon of n sides with n > 6.

Among the above highly frustrated clusters, Mo72Fe30

has been the most investigated so far, both theoreti-
cally and experimentally. The exchange interactions in
Mo72Fe30 are quite small, J/kB ≃ 1.57 K24, and this has
allowed for the experimental observation of a M = Ms/3
plateau at H ≃ 5.9 Tesla which has been explained
classically by Schröder et al.17. In addition, this clus-
ter manifests a very broad Inelastic Neutron Scattering
(INS) response as shown by Garlea et al.28. On the
other hand, Mo72V30 has a much stronger AFM exchange
J/kB ≃ 250 K25,26, and thus is not well suited for the
observation of the field-induced plateau. However, its
low-energy excitation spectrum can still be investigated

FIG. 1: (Color online) Schematic representation of the cuboc-
tahedron (left) and the icosidodecahedron (right). The first
consists of 12 vertices, 24 edges, 6 square and 8 triangular
faces, while the latter consists of 30 vertices, 60 edges, 12
pentagons and 20 corner-sharing triangles.

by INS experiments (which, to our knowledge, have not
been performed so far). As to the s = 1/2 cuboctahedron
Cu12La8

23, we are not aware of any magnetic measure-
ments reported so far on this cluster.

The main magnetic properties of the present clusters
can be explained very well by the isotropic Heisenberg
model with a single AFM exchange parameter J , i.e.

H = J
∑

⟨ij⟩

si · sj , (1)

where, as usual, ⟨ij⟩ denotes pairs of mutually interact-
ing spins s at sites i and j. Other terms such as single-
ion anisotropy (for s > 1/2) or Dzyaloshinsky-Moriya
interactions must be present as well in the present clus-
ters, but they are expected to be much smaller than the
exchange interactions and thus they can be neglected.
Here, as a simple theoretical tool to understand some of
the properties of the Heisenberg model, it will be very ex-
pedient to introduce some fictitious exchange anisotropy,
i.e. extend Eq. (1) to its more general XXZ variant

H′ = Hz + Hxy, (2)

Hz = Jz

∑

⟨ij⟩

sz
i s

z
j , (3)

Hxy =
Jxy

2

∑

⟨ij⟩

(s+
i s−j + s−i s+

j ) , (4)

where Jxy, Jz denote the transverse and longitudinal ex-
change parameters respectively. In what follows we de-
note α = Jxy/Jz.

The main results presented in this article are of direct
relevance to the experimental findings in Mo72Fe30 men-
tioned above and thus span two major themes. The first
deals with the nature of the low-lying excitations above
the M = Ms/3 plateau phase. For the s = 1/2 icosi-
dodecahedron we show that all these excitations are adi-
abatically connected to collinear “up-up-down” (hence-
forth “uud”) Ising ground states (GS’s), at the same time
being well isolated from higher levels by a relatively large
energy gap. We argue that this feature must be spe-
cial to the topology of the icosidodecahedron and that
it must survive for s = 5/2 as well. This prediction
can be verified experimentally by a measurement of the
low-temperature specific heat and the associated entropy
content at the plateau phase of Mo72Fe30. A comple-
mentary physical picture will emerge by performing a
high order perturbative expansion in α, in the spirit of
Refs. 9,10,11, and by deriving and solving to lowest or-
der the corresponding effective QDM on the dual clusters.
The dependence of the model parameters on α and s is
also found and given explicitly.

Our second theme concerns the origin of the broad
INS response reported for Mo72Fe30

28. Previous theories
based on the excitations of the rotational band model28,29

or on spin wave calculations30,31 predict a small number
of discrete excitation lines at low temperatures and thus

Icosidodecahedron (30 vertices) 
Ih:120 elements

40 sites square lattice 
T ⊗ PG =40 x 4 elements



Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, dynamical 
correlation functions in 1D & 2D 

Fermionic models (Hubbard/t-J): gaps, pairing properties, 
correlation exponents, cluster spectra, etc 

Fractional Quantum Hall states: energy gaps, 
overlap with model states, entanglement spectra 

Quantum dimer models / constrained models (anyon chains, ...) 

Full Configuration Interaction in Quantum Chemistry, Nuclear structure 

Quantum Field Theory 



Exact Diagonalization: Present Day Limits

Spin S=1/2 models:  
	 40 spins square lattice, 39 sites triangular, 42 sites Honeycomb lattice 
     48 sites kagome lattice, soon 50-52 spins square lattice 
     64 spins or more in elevated magnetization sectors 
up to ~500 billion basis states 

Fractional quantum hall effect 
	 different filling fractions ν, up to 16-20 electrons  
up to 3.5 billion basis states 

Hubbard models (~ Full CI in Quantum Chemistry) 
	 20 sites square lattice at half filling, 21 sites triangular lattice 
     24 sites honeycomb lattice 
up to 160 billion basis states
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Exact Diagonalization Literature
 N. Laflorencie & D. Poilblanc, 
 “Simulations of pure and doped low-dimensional spin-1/2 gapped systems” 
 Lecture Notes in Physics 645, 227 (2004). 

 R.M. Noack & S. Manmana,  
 “Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems”, 
 AIP Conf. Proc. 789, 93 (2005). 

 A. Weisse, H. Fehske 
 “Exact Diagonalization Techniques” 
 Lecture Notes in Physics 739, 529 (2008). 

 A. Läuchli 
 ”Numerical Simulations of Frustrated Systems”  
 in “Highly Frustratred Magnetism”, Springer, Eds. Lacroix, Mendels, Mila, (2011). 
 available upon e-mail request.
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“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry 
breaking ? 
 (eg in superfluids/superconductors, magnetic order, spin nematic order)


 Order parameter is zero on a finite system ! (symmetric partition function)


 So usually one looks into order parameter correlations [(order parameter)2]
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Order parameter is not a conserved quantity  

Order parameter is zero on a finite size sample (Wigner-Eckart) 

How does one get spontaneous symmetry breaking anyway ? 

Ground state degeneracy is building up as we approach  
the thermodynamic limit, which will allow to form a symmetry breaking 
wave packet at zero energy cost

“Tower of States” spectroscopy



“Tower of States” spectroscopy
 What are the finite size manifestations of a continuous symmetry breaking ? 
 (eg in superfluids/superconductors, magnetic order, spin nematic order)


 Low-energy dynamics of the order parameter 
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of 
States

1/N 1/L

En
er

gy

 Dynamics of the free order  
 parameter is visible in the finite size 
 spectrum. Depends on the continuous 
 symmetry group. ED is good at spectra. 

 U(1):  (Sz)2   SU(2):  S(S+1) 

 Symmetry properties of levels in the 
 Tower states are crucial and constrain 
 the nature of the broken symmetries.



Toy model: from square lattice Heisenberg 
antiferromagnet to the Lieb-Mattis model

Hamiltonian 

Fourier transform 

Keep only the (0,0) and (π,π) mode 

Lieb Mattis model recovered 
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C. Lhuillier, cond-mat/0502464

H = 2J
�

k

�k Sk · S�k

�k

H0 =
4J

N
(S2

tot � S2
A � S2

B)

Figure 2.1: Typical spectrum of a finite size collinear Ising magnet. The
tower of eigen-levels joined by the continuous line and noted |0⟩ is the An-
derson tower of states needed to form a symmetry breaking Ising ordered
ground-state (Eq. 2.13): such a state is non stationary on a finite size sample.
The second set |1⟩ (dashed line) is associated with the lowest excitations,
which are highly degenerate and non dispersive.

On a finite size lattice the classical Néel state (1.13) is a non stationary
state of H0 (eq. 2.7). But, its precession rate decreases as O( 1

N ) with the
system size and becomes infinitely slow in the thermodynamic limit.

The coherent Néel states described by Eq.(1.11), form an (overcomplete)
basis of this ground-state multiplicity. The present study of their SU(2) in-
variant representation shows that the multiplicity of this subspace is O(Nα)
where α is the number of sublattices of the classical Néel state[11, 12]. This
gives a non extensive entropy of the ground-state at T = 0 in agreement
with Nernst theorem.

Excitations
In this model an excited state is obtained by flipping a single spin of a

sublattice. From equation (2.9) one sees that these excitations are localized
and have an energy:

Eexc
Ising = 2J

[

1 +
4(S + 1)

N

]

. (2.11)

For any size these excitations are gapful and O(J).
Conclusion
H0 describes an Ising magnet in an SU(2) invariant framework: its spec-

trum has the very simple structure schematized in Fig. 2.1. In the thermo-
dynamic limit this magnet can be described either in an SU(2) invariant

17

H = J
�

�i,j⇥

Si · Sj



Symmetry decomposition of order parameter

Order parameter manifold forms a representation space for the symmetry 
group of the Hamiltonian (more details later) 

Decompose this (reducible) representation into irreducible representations

A B A B

1 step translation 
bond reflection 

plaquette rotation

A B A B

SU(2) operation 
with non-collinear 

axis 
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TOS, the single magnon gap, therefore scales as Eexc / J/L to zero5. As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

Exact Diagonalization

“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter

 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of

States

1/N 1/L

E
n
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rg
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Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low energy magnon excitations are seperated from
the TOS and a continuum of higher energy states and scale with 1/L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single magnon dispersion (green boxes) with Stot 2 {1, 2, . . . } are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

5In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = k0 and
k = (0, 0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.

Symmetry decomposition of order parameter

As a result of the group theoretical analysis one obtains 

1 irrep with S=0, (0,0) A1 

1 irrep with S=1, (π,π) A1 

1 irrep with S=2, (0,0) A1 

1 irrep with S=3, (π,π) A1 

...

actual ED results for square lattice Heisenberg model
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General Formalism for Symmetry Decomposition

Ground state manifold: span of all                                     (e.g. product state) 
 
 
where             are the degenerate ground states in the thermodynamic limit. 
This space is finite dimensional for discrete symmetry breaking and infinite dim. 
for continuous symmetry breaking. 

The symmetry group acts nontrivially within this subspace (prototypical states 
“break” symmetries), it forms a (reducible) representation  

The representation can be decomposed into irreducible representations of the 
symmetry group according to standard group theory formula:

5.8 A. M. Läuchli, M. Schuler, and A. Wietek

to the reciprocal Bloch vectors defined on this lattice. Put differently, the vectors k are the re-
ciprocal lattice points of the lattice spanned by the simulation torus of our n⇥ n square lattice.
The character �

k

of the k-representation is given by

�
k

(t) = eik·t (16)

where t 2 T is the vector of translation. This is just the usual Bloch factor for translationally
invariant systems.
Let us now consider a (symmorphic) space group of the form D = T ⇥ PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on a
n ⇥ n square lattice this could for example be the dihedral group of order 8, D4 consisting of
fourfold rotations together with reflections. The representation theory and the character tables
of these point groups are well-known. Since D is now a product of the translation and the
point group we could think that the irreducible representations of D are simply given by the
product representations (k ⌦ ⇢) where k labels a momentum representation and ⇢ an irrep of
PG. But here is a small caveat. We have to be careful since D is only a semidirect product of
groups since translations and pointgroup symmetries do not necessarily commute. This alters
the representation theory for this product of groups and the irreps of D are not just simply the
products of irreps of T and PG. Instead the full set of irreps for this group is given by (k⌦ ⇢

k

)

where ⇢
k

is an irrep of the so called little group L
k

of k defined as

L
k

= {g 2 PG; g(k) = k} (17)

which is just the stabilizer of k in PG. For example all pointgroup elements leave k = (0, 0)

invariant, thus the little group of k = (0, 0) is the full pointgroup. In general this does not hold
for other momenta and only a subgroup of PG will be the little group of k. In Fig. 4 we show the
k-points of a 6⇥ 6 triangular lattice together with its little groups as an example. The K point
in the Brillouin zone has a D3 little group, the M point a D2 little group. Having discussed
the represenation theory for (symmorphic) space groups we state that the characters of these
representations are just given by

�(k,⇢k)(t, p) = eik·t�
⇢k
(p) (18)

where t 2 T , p 2 PG and �
⇢k

denotes the character of the representation ⇢
k

of the little group
L
k

.

3.2 Predicting irreducible representations in spontaneous symmetry break-
ing

Spontaneous symmetry breaking at T = 0 occurs when the groundstate | GSi of H in the
thermodynamic limit is not invariant under the full symmetry group G of H . We will call a
specific groundstate | GSi a prototypical state and the groundstate manifold is defined by

VGS = span

�| i

GSi
 

(19)
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where | i

GSi is the set of degenerate groundstates in the thermodynamic limit. This groundstate
manifold space can be finite or infinite dimensional depending on the situation. For breaking a
discrete finite symmetry, such as in the example given in section 4.1.2, this state will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry6 as in section 4.2 this
groundstate manifold is infinite dimensional in the thermodynamic limit. For every symmetry
g 2 G we denote by O

g

the symmetry operator acting on the Hilbert space. The groundstate
manifold becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the eigenstates in this manifold. Another way of saying this is that we want to
compute the irreducible representations of G to which the eigenstates belong to. For this we
look at the action � of the symmetry group G on VGS defined by

� :G ! Aut(VGS) (20)

g 7! �h i

GS|Og

| j

GSi
�
i,j

(21)

This is a representation of G on VGS, so every group element g 2 G is mapped to an invertible
matrix on VGS. In general this representation is reducible and can be decomposed into a direct
sum of irreducible representations

� =

M

⇢

n
⇢

⇢ (22)

These irreducible representations ⇢ are now the quantum numbers of the eigenstates in the
groundstate manifold and n

⇢

are its respective multiplicities (or degeneracies). Therefore these
irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multiplicities
we can use a central result from representation theory, the character formula

n
⇢

=

1

|G|
X

g2G

�
⇢

(g) Tr(� (g)) (23)

where �
⇢

(g) is the character of the representation ⇢ and Tr(� (g)) denotes the trace over the
representation matrix � (g) as defined in eq. (20). Often we have the case that

h GS|Og

| 0
GSi =

8
<
:
1 if O

g

| 0
GSi = | GSi

0 otherwise
(24)

With this we can simplify eq. (23) to what we call the character-stabilizer formula

n
⇢

=

1

|Stab(| GSi)|
X

g2Stab(| GSi)

�
⇢

(g) (25)

where
Stab(| GSi) ⌘ {g 2 G : O

g

| GSi = | GSi} (26)

is the stabilizer of a prototypical state | GSi. We see that for applying the character-stabilizer
formula in eq. (25) only two ingedients are needed:

6The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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where | i
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irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multiplicities
we can use a central result from representation theory, the character formula

n
⇢

=

1

|G|
X

g2G

�
⇢

(g) Tr(� (g)) (23)

where �
⇢

(g) is the character of the representation ⇢ and Tr(� (g)) denotes the trace over the
representation matrix � (g) as defined in eq. (20). Often we have the case that

h GS|Og

| 0
GSi =

8
<
:
1 if O

g

| 0
GSi = | GSi

0 otherwise
(24)

With this we can simplify eq. (23) to what we call the character-stabilizer formula

n
⇢

=

1

|Stab(| GSi)|
X

g2Stab(| GSi)

�
⇢

(g) (25)

where
Stab(| GSi) ⌘ {g 2 G : O

g

| GSi = | GSi} (26)

is the stabilizer of a prototypical state | GSi. We see that for applying the character-stabilizer
formula in eq. (25) only two ingedients are needed:

6The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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to the reciprocal Bloch vectors defined on this lattice. Put differently, the vectors k are the re-
ciprocal lattice points of the lattice spanned by the simulation torus of our n⇥ n square lattice.
The character �

k

of the k-representation is given by

�
k

(t) = eik·t (16)

where t 2 T is the vector of translation. This is just the usual Bloch factor for translationally
invariant systems.
Let us now consider a (symmorphic) space group of the form D = T ⇥ PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on a
n ⇥ n square lattice this could for example be the dihedral group of order 8, D4 consisting of
fourfold rotations together with reflections. The representation theory and the character tables
of these point groups are well-known. Since D is now a product of the translation and the
point group we could think that the irreducible representations of D are simply given by the
product representations (k ⌦ ⇢) where k labels a momentum representation and ⇢ an irrep of
PG. But here is a small caveat. We have to be careful since D is only a semidirect product of
groups since translations and pointgroup symmetries do not necessarily commute. This alters
the representation theory for this product of groups and the irreps of D are not just simply the
products of irreps of T and PG. Instead the full set of irreps for this group is given by (k⌦ ⇢

k

)

where ⇢
k

is an irrep of the so called little group L
k

of k defined as

L
k

= {g 2 PG; g(k) = k} (17)

which is just the stabilizer of k in PG. For example all pointgroup elements leave k = (0, 0)

invariant, thus the little group of k = (0, 0) is the full pointgroup. In general this does not hold
for other momenta and only a subgroup of PG will be the little group of k. In Fig. 4 we show the
k-points of a 6⇥ 6 triangular lattice together with its little groups as an example. The K point
in the Brillouin zone has a D3 little group, the M point a D2 little group. Having discussed
the represenation theory for (symmorphic) space groups we state that the characters of these
representations are just given by

�(k,⇢k)(t, p) = eik·t�
⇢k
(p) (18)

where t 2 T , p 2 PG and �
⇢k

denotes the character of the representation ⇢
k

of the little group
L
k

.

3.2 Predicting irreducible representations in spontaneous symmetry break-
ing

Spontaneous symmetry breaking at T = 0 occurs when the groundstate | GSi of H in the
thermodynamic limit is not invariant under the full symmetry group G of H . We will call a
specific groundstate | GSi a prototypical state and the groundstate manifold is defined by

VGS = span

�| i

GSi
 

(19)
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where | i

GSi is the set of degenerate groundstates in the thermodynamic limit. This groundstate
manifold space can be finite or infinite dimensional depending on the situation. For breaking a
discrete finite symmetry, such as in the example given in section 4.1.2, this state will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry6 as in section 4.2 this
groundstate manifold is infinite dimensional in the thermodynamic limit. For every symmetry
g 2 G we denote by O

g

the symmetry operator acting on the Hilbert space. The groundstate
manifold becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the eigenstates in this manifold. Another way of saying this is that we want to
compute the irreducible representations of G to which the eigenstates belong to. For this we
look at the action � of the symmetry group G on VGS defined by

� :G ! Aut(VGS) (20)

g 7! �h i

GS|Og

| j

GSi
�
i,j

(21)

This is a representation of G on VGS, so every group element g 2 G is mapped to an invertible
matrix on VGS. In general this representation is reducible and can be decomposed into a direct
sum of irreducible representations

� =

M

⇢

n
⇢

⇢ (22)

These irreducible representations ⇢ are now the quantum numbers of the eigenstates in the
groundstate manifold and n

⇢

are its respective multiplicities (or degeneracies). Therefore these
irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multiplicities
we can use a central result from representation theory, the character formula

n
⇢

=

1

|G|
X

g2G

�
⇢

(g) Tr(� (g)) (23)

where �
⇢

(g) is the character of the representation ⇢ and Tr(� (g)) denotes the trace over the
representation matrix � (g) as defined in eq. (20). Often we have the case that

h GS|Og

| 0
GSi =

8
<
:
1 if O

g

| 0
GSi = | GSi

0 otherwise
(24)

With this we can simplify eq. (23) to what we call the character-stabilizer formula

n
⇢

=

1

|Stab(| GSi)|
X

g2Stab(| GSi)

�
⇢

(g) (25)

where
Stab(| GSi) ⌘ {g 2 G : O

g

| GSi = | GSi} (26)

is the stabilizer of a prototypical state | GSi. We see that for applying the character-stabilizer
formula in eq. (25) only two ingedients are needed:

6The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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• the stabilizer Stab(| GSi) of a prototypical state | GSi in the groundstate manifold

• the characters of the irreducible representations of the symmetry group G
We want to remark that in the case of G = D ⇥ C where D is a discrete symmetry group such
as the spacegroup of a lattice and C is a continuous symmetry group such as SO(3) rotations
for Heisenberg spins the eqs. (23) and (25) include integrals over Lie groups additionally to the
sum over the elements of the discrete symmetry group D. Furthermore also the characters for
Lie groups like SO(3) are known. For an element R 2 SO(3) the irreducible representations are
labeled by the spin S and its characters are given by

�
s

(R) =

sin

⇥
(S +

1
2)�

⇤

sin

�

2

(27)

where � 2 [0, 2⇡] is the angle of rotation of the spin rotation R. We work out several exam-
ples for this case in section 4.2 and compare the results to actual numerical data from Exact
Diagonalization.

4 Examples

4.1 Discrete symmetry breaking

In this section we want to apply the formalism of section 3 to systems, where only a discrete
symmetry group is spontaneously broken and not a continuous one. In this case, the ground-
state of the system in the thermodynamic limit is described by a superposition of a finite number
of degenerate eigenstates with different quantum numbers. On finite-size systems, however, the
symmetry cannot be broken spontaneously and a unique groundstate will be found. The other
states constituting to the degenerate eigenspace in the thermodynamic limit exhibit a finite-size
energy gap which is exponentially small in the system size N , � / e�N/⇠. The quantum
numbers of these quasi-degenerate set of eigenstates are defined by the symmetry-broken state
in the thermodynamic limit.

4.1.1 Introduction to valence-bond solids

In section 2 we have seen that the classically ordered Néel state is a candidate to describe the
groundstate of the antiferromagnetic Heisenberg model Eq. (1) with J > 0 in the thermody-
namic limit on a bipartite lattice. The energy expectation value of this state on each bond is
eNéel = �J/4.
The state which minimizes the energy of a single bond is, however, a singlet state |S = 0i
formed by the two spins on the bond with energy eVB = �3J/4, called a valence bond (VB) or
dimer. A valence bond covering of an N -site lattice can then be described by a tensor product
of N/2 VBs, where each site belongs to exactly one VB7. Another possible candidate for the

7The set of all possible valence bond coverings with arbitrary length spans the full Stot = 0 sector of the models
Hilbert space and is overcomplete [13, 14].
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thermodynamic groundstate of Eq. (1) is then a superposition of all possible VB coverings
with nearest neighbour VBs. Such states do not break the SU(2) spin-rotational symmetry as
Stot = 0 and are in general not eigenstates of the Hamiltonian: Acting with the operator S

i

· S
j

between sites i and j belonging to two different VBs changes the VB configuration.
This classical groundstate manifold is highly degenerate. As the VB coverings are in general
not eigenstates of the Hamiltonian, they encounter quantum fluctuations. The energy correc-
tions due to these fluctuations are usually not equivalent for different coverings, although the
bare energies are identical. The VB coverings with the largest energy gain are selected by the
fluctuations as the true groundstate configurations. If this order-by-disorder mechanism [15,16]
selects regular patterns of VB coverings, the discrete lattice symmetries are spontaneously bro-
ken in the thermodynamic limit, and a valence bond solid (VBS) is formed. Fig. 2 and Fig. 3
show two different VBS states on the square lattice. VBSs show no long-range spin order, but
long-range dimer-correlations h(S

a

·S
a

0
)(S

b

·S
b

0
)i where a, a0 and b, b0 label sites on individual

dimers. In section 4.1.2 we will see how different VBS states can be identified and distinguished
by the quantum numbers of the quasi-degenerate groundstate manifold on finite-size systems.
The groundstate of the Heisenberg model Eq. (1) on the square lattice is not a VBS but a Néel
state, which has already on the classical level a lower variational energy. Nevertheless, several
models in 1- and 2-D are known which feature VBS groundstates [17–21]. Interestingly, in [22]
a model was proposed, which shows a direct continuous quantum phase transition between a
Néel state and a VBS. This transition exhibits very exotic, non-classical behaviour and is called
deconfined quantum critical point [23].

4.1.2 Identification of VBSs from finite-size spectra

Columnar valence-bond solid A columnar VBS (cVBS) on a square lattice is shown in
Fig. 2. Four equivalent states can be found, indicating that there will be a four-fold quasi-
degenerate groundstate manifold. A cVBS obviously breaks the translational and point-group
symmetries of an isotropic SU(2)-invariant Hamiltonian on the lattice spontaneously but not the
continuous spin symmetry group.

Fig. 2: The four columnar VBS coverings of a square lattice. Valence bonds (spin singlets) are
indicated by blue ellipses.

In the following we use Eq. (25) to compute the symmetry sectors of the groundstate manifold.
The discrete symmetry group is

G = D = T ⇥ PG (28)
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where T = Z2 ⇥ Z2 = {1, t
x

, t
y

, t
x

t
y

} are the non-trivial lattice translations with translation
vectors

t1 = (0, 0), t
x

= (1, 0), t
y

= (0, 1), t
xy

= (1, 1) (29)

and PG = C4 denotes the point-group of lattice rotations8. To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(| 

cV BS

i), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype | 

cV BS

i. The stabilizer is given by

Stab(| 
cV BS

i) = {1⇥ 1} [ {1⇥ C2} [ {t
y

⇥ 1} [ {t
y

⇥ C2} (30)

where C2 denotes the rotation about an angle ⇡ around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations T can be labelled by
the allowed momenta k

k 2 Irreps(T ) = {(0, 0), (⇡, 0), (0, ⇡), (⇡, ⇡)}, (31)

and the corresponding characters for an element t 2 T are

�
k

(t) = e

ik·t. (32)

The irreps (usually called A, B and E) and characters for the point-group C4 are tabulated in
Tab. 1.

C4 1 C4 C2 (C4)
3

A +1 +1 +1 +1
B +1 -1 +1 -1
E
a

+1 +i -1 -i
E
b

+1 -i -1 +i

Table 1: Character table for pointgroup C4.

Using Eq. (25) we can now reduce the representation induced by the state | 
cV BS

i to irreducible
representations to get the quantum numbers of the quasi-degenerate groundstate manifold. Let
us explicitely consider n(⇡,0)A/B

as an example:

n(⇡,0)A =

1

|Stab(| 
cV BS

i)|
X

d2Stab(| 
cV BS

i)

�
A

(d)�
k=(⇡,0)(d) (33)

=

1

4

⇥
1 eik·(0,0) + 1 eik·(0,0) + 1 eik·(0,1) + 1 eik·(0,1)

⇤
= 1 (34)

n(⇡,0)B =

1

|Stab(| 
cV BS

i)|
X

d2Stab(| 
cV BS

i)

�
B

(d)�
k=(⇡,0)(d) (35)

=

1

4

⇥
1 eik·(0,0) + (�1) eik·(0,0) + 1 eik·(0,1) + (�1) eik·(0,1)

⇤
= 0 (36)

8The dihedral group D4 is also a symmetry group of the model. For the sake of simplicity we decided to only
consider the subgroup C4 in this section.
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= (0, 1), t
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= (1, 1) (29)

and PG = C4 denotes the point-group of lattice rotations8. To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(| 

cV BS

i), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype | 

cV BS

i. The stabilizer is given by

Stab(| 
cV BS

i) = {1⇥ 1} [ {1⇥ C2} [ {t
y

⇥ 1} [ {t
y

⇥ C2} (30)

where C2 denotes the rotation about an angle ⇡ around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations T can be labelled by
the allowed momenta k

k 2 Irreps(T ) = {(0, 0), (⇡, 0), (0, ⇡), (⇡, ⇡)}, (31)

and the corresponding characters for an element t 2 T are

�
k

(t) = e

ik·t. (32)

The irreps (usually called A, B and E) and characters for the point-group C4 are tabulated in
Tab. 1.

C4 1 C4 C2 (C4)
3

A +1 +1 +1 +1
B +1 -1 +1 -1
E
a

+1 +i -1 -i
E
b

+1 -i -1 +i

Table 1: Character table for pointgroup C4.
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The representations of the discrete symmetry group can be simply labeled by four momenta
k 2 {(0, 0), (0, ⇡), (⇡, 0), (⇡, ⇡)} with corresponding characters

�
k

(t) = eik·t

The continuous symmetry group is the Lie group SO(3). It’s representations are labeled by the
total spin S and the character of the spin-S representation is given by

�
S

(R) =

sin

⇥
(S +

1
2)�

⇤

sin

�

2

where � 2 [0, 2⇡] is the angle of rotation of the element R 2 SO(3). We see that spin rotations
with diffenent axes but same rotational angle give rise to the same character. The representations
of the total symmetry group G = D ⇥ C are now just the product representations of D and C,
therefore also the characters of representations of G are the product of characters of D and C.
We label these representations by (k, S) where k denotes the lattice momentum and S the total
spin. We now apply the character-stabilizer formula, Eq. (25), to derive the multiplicities of the
representations (k, S) in the groundstate manifold. In the case of the square antiferromagnet
this yields

n(k,S) =eik·0
1

4 |R
z

(↵)|

2⇡Z

0

d↵�
S

(R
z

(↵)) + eik·(ex+e

y

) 1

4 |R
z

(↵)|

2⇡Z

0

d↵�
S

(R
z

(↵)) (42)

+eik·ex
1

4 |R
a

(⇡)|

2⇡Z

0

d↵�
S

(R
a

(⇡)) + eik·ey
1

4 |R
a

(⇡)|

2⇡Z

0

d↵�
S

(R
a

(⇡)) (43)

We compute

|R
z

(↵)| = |R
a

(⇡)| =
2⇡Z

0

d� = 2⇡

1

2⇡

2⇡Z

0

d↵�
S

(R
z

(↵)) =
1

2⇡

2⇡Z

0

d↵
sin

⇥
(S +

1
2)↵

⇤

sin

↵

2

=

1

2⇡

2⇡Z

0

d�
SX

l=�S

eil� = 1 (44)

and

1

2⇡

2⇡Z

0

d��
S

(R
a

(⇡)) =
1

2⇡

2⇡Z

0

d�
sin

⇥
(S +

1
2)⇡

⇤

sin

⇡

2

= (�1)

S (45)

Putting this together gives the final result for the multiplicities of the representations in the tower
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Eventually, the cVBS covering will be described by a four-fold quasi-degenerate groundstate
manifold with the following quantum numbers

�(| 
cV BS

i) = (0, 0)A � (0, 0)B � (⇡, 0)A � (0, ⇡)A. (37)

VBS states are a superposition of spin singlets on the lattice, therefore the spin quantum number
for all levels in the groundstate manifold must be trivial, Stot = 0.

Staggered valence-bond solid The columnar VBS is not the only regular dimer covering of
the square lattice. Another possible regular covering is the staggered VBS (sVBS), where again
four equivalent configurations span the groundstate manifold. One of these configurations is
shown in Fig. 3.

Fig. 3: One of the four identical staggered VBS coverings on the square lattice.

Obviously, also the sVBS spontaneously breaks the translational and point-group symmetries
of an isotropic Hamiltonian, but not the spin-rotational symmetry. Following the same steps
as before we can compute the quantum numbers of the four quasi-degenerate groundstates for
the sVBS. The stabilizer turns out to be different to the case of the cVBS and thus also the
decomposition into irreps yields a different result:

�(| 
sV BS

i) = (0, 0)A � (0, 0)B � (⇡, ⇡)E
a

� (⇡, ⇡)E
b

. (38)

Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.

Irreps cVBS sVBS
(0, 0) A 1 1
(0, 0) B 1 1
(⇡, 0) A 1 0
(0, ⇡) A 1 0
(⇡, ⇡)E

a

0 1
(⇡, ⇡)E

b

0 1

Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.

By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.
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where T = Z2 ⇥ Z2 = {1, t
x

, t
y

, t
x

t
y

} are the non-trivial lattice translations with translation
vectors

t1 = (0, 0), t
x

= (1, 0), t
y

= (0, 1), t
xy

= (1, 1) (29)

and PG = C4 denotes the point-group of lattice rotations8. To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(| 

cV BS

i), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype | 

cV BS

i. The stabilizer is given by

Stab(| 
cV BS

i) = {1⇥ 1} [ {1⇥ C2} [ {t
y

⇥ 1} [ {t
y

⇥ C2} (30)

where C2 denotes the rotation about an angle ⇡ around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations T can be labelled by
the allowed momenta k

k 2 Irreps(T ) = {(0, 0), (⇡, 0), (0, ⇡), (⇡, ⇡)}, (31)

and the corresponding characters for an element t 2 T are

�
k

(t) = e

ik·t. (32)

The irreps (usually called A, B and E) and characters for the point-group C4 are tabulated in
Tab. 1.

C4 1 C4 C2 (C4)
3

A +1 +1 +1 +1
B +1 -1 +1 -1
E
a

+1 +i -1 -i
E
b

+1 -i -1 +i

Table 1: Character table for pointgroup C4.

Using Eq. (25) we can now reduce the representation induced by the state | 
cV BS

i to irreducible
representations to get the quantum numbers of the quasi-degenerate groundstate manifold. Let
us explicitely consider n(⇡,0)A/B

as an example:

n(⇡,0)A =

1

|Stab(| 
cV BS

i)|
X

d2Stab(| 
cV BS

i)

�
A

(d)�
k=(⇡,0)(d) (33)

=

1

4

⇥
1 eik·(0,0) + 1 eik·(0,0) + 1 eik·(0,1) + 1 eik·(0,1)

⇤
= 1 (34)

n(⇡,0)B =

1

|Stab(| 
cV BS

i)|
X

d2Stab(| 
cV BS

i)

�
B

(d)�
k=(⇡,0)(d) (35)

=

1

4

⇥
1 eik·(0,0) + (�1) eik·(0,0) + 1 eik·(0,1) + (�1) eik·(0,1)

⇤
= 0 (36)

8The dihedral group D4 is also a symmetry group of the model. For the sake of simplicity we decided to only
consider the subgroup C4 in this section.
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First a simple example: 
Discrete Symmetry Breaking

Staggered Valence Bond Crystal, also fourfold degenerate
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Eventually, the cVBS covering will be described by a four-fold quasi-degenerate groundstate
manifold with the following quantum numbers

�(| 
cV BS

i) = (0, 0)A � (0, 0)B � (⇡, 0)A � (0, ⇡)A. (37)

VBS states are a superposition of spin singlets on the lattice, therefore the spin quantum number
for all levels in the groundstate manifold must be trivial, Stot = 0.

Staggered valence-bond solid The columnar VBS is not the only regular dimer covering of
the square lattice. Another possible regular covering is the staggered VBS (sVBS), where again
four equivalent configurations span the groundstate manifold. One of these configurations is
shown in Fig. 3.

Fig. 3: One of the four identical staggered VBS coverings on the square lattice.

Obviously, also the sVBS spontaneously breaks the translational and point-group symmetries
of an isotropic Hamiltonian, but not the spin-rotational symmetry. Following the same steps
as before we can compute the quantum numbers of the four quasi-degenerate groundstates for
the sVBS. The stabilizer turns out to be different to the case of the cVBS and thus also the
decomposition into irreps yields a different result:

�(| 
sV BS

i) = (0, 0)A � (0, 0)B � (⇡, ⇡)E
a

� (⇡, ⇡)E
b

. (38)

Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.

Irreps cVBS sVBS
(0, 0) A 1 1
(0, 0) B 1 1
(⇡, 0) A 1 0
(0, ⇡) A 1 0
(⇡, ⇡)E

a

0 1
(⇡, ⇡)E

b

0 1

Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.

By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.
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Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.

Irreps cVBS sVBS
(0, 0) A 1 1
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Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.

By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.

4

36 sites, K/J=0.6, θ=0.17π
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FIG. 5: (Color online) Staggered Valence Bond Crystal
phase: (a) Dimer correlations in the groundstate of a 36 site
sample at θ ≈ 0.17π. Full, red (dashed, blue) lines denote neg-
ative (positive) correlations. The line width is proportional
to the correlation. (b) Low energy spectrum of a 36 sites sam-
ple in the same phase. The required four singlets (the singlet
at (π,π) marked with a star is two-fold degenerate) with the
correct quantum numbers corresponding to a staggered VBC
are found below the first triplet.

singlets which will form the fourfold degenerate ground-
state manifold in the thermodynamic limit, as shown in
Fig. 5b). We find two distinct singlets at momentum
(0, 0) and a doubly degenerate singlet at (π, π). The sym-
metry properties of these singlets precisely correspond to
those expected for a staggered dimer phase. We note
that these findings are in line with earlier work which
proposed a staggered dimer phase in a cyclic exchange
model on the square lattice [10] and recent studies of a
two leg ladder [13, 19].

Conclusion— A thorough examination of the low lying
spectrum of the ring exchange Hamiltonian on the square
lattice revealed how a biaxial magnet may be driven to
an uniaxial spin-nematic phase through the interplay of
frustration and quantum fluctuations. These fluctuations
drive the disappearance of the net magnetic moment of
the planar orthogonal four-sublattice state, the spins dis-
order in the spin plane, the associated Goldstone mode
acquires a gap, but nevertheless in a a finite range of
parameters the plane of spins remains locked. To our
knowledge, this is the first clear demonstration of the ex-
istence of such a phase in a two-dimensional quantum
magnet. At last, increasing again the frustration, the
SU(2) symmetry is completely restored, a spin gap opens
simultaneously with the collapse in the S = 0 sector of
the four levels leading to the spatial staggered VBC. This
is one realization of the two-step restoration of symmetry
speculated some years ago by Chandra and Coleman [5].

In some aspects, such as spin susceptibility and ther-
modynamic properties, the spin nematic phase is not dif-
ferent from a standard Néel phase [7]. But the absence of
long range order in ordinary spin-spin correlation func-
tions implies that such systems – although ordered – do
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4.2 Continuous symmetry breaking

In this section we give several examples of systems breaking continuous SO(3) symmetry. We
discuss the introductory example of the Heisenberg antiferromagnet, calculate the irreps in the
TOS and compare this to actual energy spectra from Exact Diagonalization on a finite lattice in
section 4.2.1. Next we discuss three magnetic orders on the triangular lattice and a model where
all of these are stabilized. We show again results from Exact Diagonalizations and compare the
representations in these spectra to the predictions from TOS analysis in section 4.2.2. Finally we
introduce quadrupolar order and show that also this kind of symmetry breaking can be analyzed
using the TOS technique in section 4.2.3.

4.2.1 Heisenberg antiferromagnet on square lattice

We now give a first example how the TOS method can be applied to predict the structure of the
tower of states for magnetically ordered phases. We look at the Néel state of the antiferromagnet
on the bipartite square lattice with sublattices A and B. A prototypical state in the groundstate
manifold is given by

| i = |"#"# · · ·i (39)

where all spins point up on sublattice A and down on sublattice B. The symmetry group G =

D ⇥ C of the model we consider is a product between discrete translational symmetry D =

Z2 ⇥ Z2 = {1, t
x

, t
y

, t
xy

} and spin rotational symmetry C = SO(3). We remark that we restrict
our translational symmetry group to D = Z2 ⇥ Z2 instead of D0

= Z ⇥ Z because the Néel
state transforms trivially under two-site translations (t

x

)

2, (t
y

)

2. Thus, only the representations
of D0 trivial under two-site translations are relevant; these are exactly the representations of D.
Put differently we only have to consider the translations in the unitcell of the magnetic structure
which in the present case can be chosen as a 2-by-2 cell. Furthermore, we will for now neglect
pointgroup symmetries like rotations and reflections of the lattice to simplify our calculations.
At the end of this section we give results where also these symmetry elements are incorporated.
The groundstate manifold VGS we consider are the states related to | i by an element of the
symmetry group G, i.e.

VGS = {O
g

| i ; g 2 G} (40)

The symmetry elements in G that leave our prototypical state | i invariant are given by two sets
of elements:

• No translation in real space or a diagonal t
xy

translation together with a spin rotation
R

z

(↵) around the z-axis with an arbitrary angle ↵.

• Translation by one site, t
x

or t
y

, followed by a rotation R
a

(⇡) of 180� around an axis
a ? z perpendicular to the z-axis.

So the stabilizer of our prototype state | i is given by

Stab(| i) = {1⇥R
z

(↵)} [ {t
xy

⇥R
z

(↵)} [ {t
x

⇥R
a

(⇡)} [ {t
y

⇥R
a

(⇡)} (41)
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| i = |"#"# · · ·i (39)

where all spins point up on sublattice A and down on sublattice B. The symmetry group G =

D ⇥ C of the model we consider is a product between discrete translational symmetry D =

Z2 ⇥ Z2 = {1, t
x

, t
y

, t
xy

} and spin rotational symmetry C = SO(3). We remark that we restrict
our translational symmetry group to D = Z2 ⇥ Z2 instead of D0

= Z ⇥ Z because the Néel
state transforms trivially under two-site translations (t

x

)

2, (t
y

)

2. Thus, only the representations
of D0 trivial under two-site translations are relevant; these are exactly the representations of D.
Put differently we only have to consider the translations in the unitcell of the magnetic structure
which in the present case can be chosen as a 2-by-2 cell. Furthermore, we will for now neglect
pointgroup symmetries like rotations and reflections of the lattice to simplify our calculations.
At the end of this section we give results where also these symmetry elements are incorporated.
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of elements:

• No translation in real space or a diagonal t
xy

translation together with a spin rotation
R

z

(↵) around the z-axis with an arbitrary angle ↵.

• Translation by one site, t
x

or t
y

, followed by a rotation R
a

(⇡) of 180� around an axis
a ? z perpendicular to the z-axis.

So the stabilizer of our prototype state | i is given by

Stab(| i) = {1⇥R
z

(↵)} [ {t
xy

⇥R
z

(↵)} [ {t
x

⇥R
a

(⇡)} [ {t
y

⇥R
a

(⇡)} (41)



Irreducible representations of the symmetry group 

Multiplicity of irreducible representations (general formula) 
 
 
 

evaluated for the present case (details in lecture notes)

Continuous Symmetry Breaking 
Collinear magnetic orderStudying Continuous Symmetry Breaking with ED 5.15

The representations of the discrete symmetry group can be simply labeled by four momenta
k 2 {(0, 0), (0, ⇡), (⇡, 0), (⇡, ⇡)} with corresponding characters
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where � 2 [0, 2⇡] is the angle of rotation of the element R 2 SO(3). We see that spin rotations
with diffenent axes but same rotational angle give rise to the same character. The representations
of the total symmetry group G = D ⇥ C are now just the product representations of D and C,
therefore also the characters of representations of G are the product of characters of D and C.
We label these representations by (k, S) where k denotes the lattice momentum and S the total
spin. We now apply the character-stabilizer formula, Eq. (25), to derive the multiplicities of the
representations (k, S) in the groundstate manifold. In the case of the square antiferromagnet
this yields
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Putting this together gives the final result for the multiplicities of the representations in the tower
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Tab. 3 lists the computed multiplicities of the irreducible representations where additionally
the D4 point group was considered in the symmetry analysis. Comparing this to Fig. 1 we
observe that these are exactly the irreducible representations (momenta and point group irreps)
and multiplicities observed in the tower of states for the Heisenberg model on the square lattice.

S � .A1 M .A1
0 1 0
1 0 1
2 1 0
3 0 1

Table 3: Multiplicities of irreducible representations in the TOS for the Néel Antiferromagnet
on a square lattice.

4.2.2 Magnetic order on the triangular lattice

On the triangular lattice several magnetic orders can be stabilized. The Heisenberg nearest
neighbour model has been shown to have a 120

� Néel ordered groundstate where spins on
neighbouring sites align in an angle of 120� [24,25]. Upon adding further second nearest neigh-
bour interactions J2 to the Heisenberg nearest neighbour model with interaction strength J1 it
was shown that the groundstate exhibits stripy order for J2/J1 & 0.18 [26]. Here spins are
aligned ferromagnetically along one direction of the triangular lattice and antiferromagnetically
along the other two. Interestingly, it was shown that there is a phase between these two magnetic
orders whose exact nature is unclear until today. Several articles propose that in this region an
exotic quantum spin liquid is stabilized [27–30]. In a recent proposal two of the authors es-
tablished an approximate phase diagram of an extended Heisenberg model with further scalar
chirality interactions J
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Amongst the already known 120

� Néel and stripy phases an exotic Chiral Spin Liquid and a
magnetic tetrahedrally ordered phase were found. Here we will only discuss the magnetic
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TOS, the single magnon gap, therefore scales as Eexc / J/L to zero5. As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

Exact Diagonalization

“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter

 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of

States

1/N 1/L

E
n
e
rg

y

Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low energy magnon excitations are seperated from
the TOS and a continuum of higher energy states and scale with 1/L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single magnon dispersion (green boxes) with Stot 2 {1, 2, . . . } are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

5In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = k0 and
k = (0, 0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.

Continuous Symmetry Breaking 
Collinear magnetic order
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orders whose exact nature is unclear until today. Several articles propose that in this region an
exotic quantum spin liquid is stabilized [27–30]. In a recent proposal two of the authors es-
tablished an approximate phase diagram of an extended Heisenberg model with further scalar
chirality interactions J
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Amongst the already known 120

� Néel and stripy phases an exotic Chiral Spin Liquid and a
magnetic tetrahedrally ordered phase were found. Here we will only discuss the magnetic



Beyond the collinear Neel state

 Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS4).
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Tower of States 
S=1 on triangular lattice: Antiferromagnetic phase

 ϑ=0 : coplanar magnetic order,  
          120 degree structure

 Breaks translation symmetry. Tree site unit cell 
 ⇒ nontrivial momenta must appear in TOS 

 non-collinear magnetic structure 
 ⇒ SU(2) is completely broken,  
 number of levels in TOS increases with S 

 Quantum numbers are identical to the S=1/2 case
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where the integrals have already been computed in Eqs. (44) and (45). The system size depen-
dent factor (�1)

N is imposed from Eq. 59. To sum up, the TOS for the FQ phase has single
levels for even (odd) S with trivial space-group irreps and no levels for odd (even) S sectors
when N is even (odd)9. The absence of odd (even) S levels is caused by the invariance of
quadrupoles under ⇡-rotation and distinguishes the TOS for a FQ phase from a usual ferro-
magnetic phase. In Fig. 6 the TOS for the model Eq. (56) in the FQ phase is shown on the
left. It shows the expected quantum numbers and multiplicities in the TOS and also an easily
identifiable magnon branch below the continuum.

Fig. 6: Tower of states for the ferroquadrupolar (left) and antiferroquadrupolar (right) states on
a triangular lattice with N = 12 sites from Exact Diagonalization. The single-magnon branch
for the FQ phase is highlighted with green boxes.

The symmetry analysis for the AFQ phase can be performed in a similar manner and shows a
similar structure to the 120

�-Néel phase, but again levels are deleted for the AFQ. In this case,
however, not all odd levels are deleted but some levels in both, odd and even, S sectors. Tab. 6
shows the multiplicities of irreps in the TOS of the AFQ model in comparison to the magnetic
120

�-Néel state for even N . Fig. 6 shows the simulated TOS for the AFQ phase for the bilinear-
biquadratic model Eq. (56). The symmetry sectors and multiplicities agree with the expected
ones.

AFQ 120

� Néel
S � .A1 � .B1 K.A1 � .A1 � .B1 K.A1
0 1 0 0 1 0 0
1 0 0 0 0 1 1
2 0 0 1 1 0 2
3 0 1 0 1 2 2

Table 6: Irreducible representations and multiplicities for the AFQ phase compared to the mag-
netic 120

�-Néel phase.

9For the simple case of the FQ phase one can also easily calculate the decomposition of a state |S = 1,m = 0i⌦
|S = 1,m = 0i ⌦ . . . into states |S

tot

,m = 0i with the use of Clebsch-Gordan coefficients.
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orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell where
four spins align such that they span a regular tetrahedron. In this chapter we show the tower of
states for the three magnetic orders in this model.

Fig. 4: (Left): Simulation cluster for the Exact Diagonalization calculations. (Center): Brillouin
zone of the triangular lattice with the momenta which can be resolved with this choice of the
simulation cluster. Different symbols denote the little groups of the corresponding momentum.
(Right): TOS for the 120

� Néel order on the triangular lattice. The symmetry sectors and
multiplicities fulfill the predictions from the symmetry analysis (See Tab. 5). One should note,
that the multiplicities grow with Stot for non-collinear states.

Fig. 5: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities for each
even/odd Stot are constant for collinear phases. (Right): TOS for the tetrahedral order on the
triangular lattice.

First of all Fig. 4 shows the simulation cluster used for the Exact Diagonalization calculations
in [31]. We chose a N = 36 = 6 ⇥ 6 sample with periodic boundary conditions. This sample
allows to resolve the momenta � , K and M , amongst several others in the Brillouin zone.
The K and M momenta are the ordering vectors for the 120

�, stripy and tetrahedral order.
Furthermore this sample features full sixfold rotational as well as reflection symmetries (the
latter only in the absence of the chiral term). Its pointgroup is therefore given by the dihedral
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Tower of States 
S=1 on triangular lattice: Ferroquadrupolar phase

 ϑ=-π/2 : ferroquadrupolar phase, finite 
quadrupolar moment,  no spin order

 No spatial symmetry breaking. 
 ⇒ only trivial spatial irrep appears in TOS 

 Ferroquadrupolar order parameter, only even S  

 all directors are collinear 
 ⇒ SU(2) is broken down to U(1),  
 number of states in TOS is independent of S.
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where the integrals have already been computed in Eqs. (44) and (45). The system size depen-
dent factor (�1)

N is imposed from Eq. 59. To sum up, the TOS for the FQ phase has single
levels for even (odd) S with trivial space-group irreps and no levels for odd (even) S sectors
when N is even (odd)9. The absence of odd (even) S levels is caused by the invariance of
quadrupoles under ⇡-rotation and distinguishes the TOS for a FQ phase from a usual ferro-
magnetic phase. In Fig. 6 the TOS for the model Eq. (56) in the FQ phase is shown on the
left. It shows the expected quantum numbers and multiplicities in the TOS and also an easily
identifiable magnon branch below the continuum.

Fig. 6: Tower of states for the ferroquadrupolar (left) and antiferroquadrupolar (right) states on
a triangular lattice with N = 12 sites from Exact Diagonalization. The single-magnon branch
for the FQ phase is highlighted with green boxes.

The symmetry analysis for the AFQ phase can be performed in a similar manner and shows a
similar structure to the 120

�-Néel phase, but again levels are deleted for the AFQ. In this case,
however, not all odd levels are deleted but some levels in both, odd and even, S sectors. Tab. 6
shows the multiplicities of irreps in the TOS of the AFQ model in comparison to the magnetic
120

�-Néel state for even N . Fig. 6 shows the simulated TOS for the AFQ phase for the bilinear-
biquadratic model Eq. (56). The symmetry sectors and multiplicities agree with the expected
ones.
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Tower of States 
S=1 on triangular lattice: Antiferroquadrupolar phase

 ϑ=3π/8 : antiferroquadrupolar phase, finite 
quadrupolar moment,  no spin order, 
three sublattice structure.

 Breaks translation symmetry. Tree site unit cell 
 ⇒ nontrivial momenta must appear in TOS 

 Antiferroquadrupolar order parameter, complicated 
 S dependence.
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ones.
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Continous symmetry breaking with other groups

SU(N) quantum magnetism in ultracold atomic gases 

Here an SU(3) example on the 
triangular lattice: 

S(S+1) scaling gets replaced by 
quadratic Casimir of irreducible  
representations of symmetry group.
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Quantum Critical Points

Universal spectrum of the critical field theory at the quantum critical point 

Spectrum scales as 1/L. Here an example for the Ising CFT in 2+1D:
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interesting as they can be described by universal features which do not depend on the details of
the model. Interestingly, the energy spectrum on finite systems can even be used to identify and
characterize cQPTs. It is given by universal numbers times 1/L, where L =

p
N is the linear

size of the lattice. The quantum numbers of the energy levels show universal features and are
related to the operator content of the underlying critical field theory, although the relation be-
tween them is not yet fully understand for non-flat geometries, like a torus [38,39]. The critical
spectrum for the transverse field Ising model on a torus is shown in Fig. 7. It is a fingerprint for
the 3D Ising cQPT.
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Fig. 7: Universal torus spectrum for a continuous quantum phase transition in the 3D Ising uni-
versality class. Full symbols denote numerical results while empty symbols denote ✏-expansion
results. The dashed line shows a dispersion with the speed of light.
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Conclusions

Exact Diagonalization based spectroscopy of quantum many body 
Hamiltonians is a very powerful technique. 

Well developed framework to diagnose and characterise (continuous) symmetry 
breaking on finite size systems. Recent extensions to quantum critical points 

More details in lecture notes written together with M. Schuler and A. Wietek

5.6 A. M. Läuchli, M. Schuler, and A. Wietek

TOS, the single magnon gap, therefore scales as Eexc / J/L to zero5. As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

Exact Diagonalization

“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter

 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -
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Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low energy magnon excitations are seperated from
the TOS and a continuum of higher energy states and scale with 1/L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single magnon dispersion (green boxes) with Stot 2 {1, 2, . . . } are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

5In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = k0 and
k = (0, 0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.
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