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12. Interplay of Kondo Effect and RKKY Interaction
Johann Kroha

13. Kondo Physics and the Mott Transition
Michele Fabrizio

14. Hund’s Metals Explained
Luca de’ Medici

15. Electron-Phonon Coupling
Rolf Heid

16. Introduction to Superconducting Density Functional Theory
Antonio Sanna

Index





Preface
A naive distinction between metals and insulators rests on the single-electron picture: com-
pletely filled or empty bands characterize insulators while metals have some partially filled
bands. Nature, however, offers a much richer variety of behaviors: Mott insulators would
be band metals in the absence of electron correlation while strongly-correlated metals behave
quasiparticle-like only in the Fermi-liquid regime. Correlated metals and insulators can be dis-
tinguished by the gap in the spectral function. Superconductors form a class of their own, they
have a single-electron gap but are not insulators.

This year’s school addresses the rich physics of correlated insulators, metals, and super-
conductors. Insulators show complex ordering phenomena involving charge, spin, and orbital
degrees of freedom. Correlated metals exhibit non-Fermi-liquid behavior except right at the
Fermi surface. Superconductors are dominated by the delicate interplay of coupling bosons and
quasiparticles. Along with the phenomena, the models and methods for understanding and clas-
sifying them will be explained. The aim of the school is to introduce advanced graduate students
and up to the modern approaches for modeling strongly correlated materials and analyzing their
behavior.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school and the production of
this book. The Institute for Complex Adaptive Matter (ICAM) offered travel grants for selected
international speakers and participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
L. Weidener of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Julian Mußhoff, Esmaeel Sarvestani,
Amin Kiani Sheikhabadi, and Qian Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Richard Scalettar, and Richard Martin

August 2017





1 Electronic Structure Computation Meets
Strong Correlation: Guiding Principles

Richard M. Martin
University of Illinois at Urbana-Champaign, Illinois
Stanford University, Stanford, California
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1.2 Richard M. Martin

1 Introduction

1.1 Read this first!

Before reading the rest of this chapter, please read the following questions, formulate your
answers (or at least your approach to answering them) and think about the relation to the
topics of this school. After the school check if you think that your understanding has evolved.

• What does the term correlation mean? The general definition in statistics and the defini-
tion(s) used in the fields that are the topics of this school.

• What does “strong correlation” mean? “Strong” relative to what? Do we always have to
specify the context in order for the term meaningful?

• What are signatures of correlation? What are the types of experimental information from
which we may conclude that a material is strongly correlated. What theoretical findings
indicate strong correlation?

• What are examples of materials and phenomena that are often called “strongly correlated”
in present-day condensed matter physics? What are the reasons for this designation? Why
should we care enough for individuals and groups around the world to devote countless
hours and resources for decades?

• Van der Waals interactions are due purely to correlated fluctuations between electrons
on different atoms or molecules that are weakly coupled. Is this an example of strong
correlations?

• What is a “Mott insulator”? What is the Luttinger theorem and to what extent is it an
actual theorem?

The purpose of this lecture is to set the tone that interacting, correlated electrons present some
of the most difficult challenges in physics. There are no exact solutions except for very few
special models; yet there are powerful techniques that are being applied to complex problems.
Each method involves approximations and assumptions that may be forgotten or brushed aside
when they are applied. This is a perfect example of a field where one should examine critically
every aspect of the theory and the methods for calculations.
Modern electronic structure methods successfully determine ground state structures, phonon
frequencies, and many other properties to within a few percent for large classes of materials,
and they are improving with new ideas, methods, and experience. Yet they may fail miserably
to account for some other properties. As calculations become more and more powerful, it is
more and more important to formulate the problem clearly and judge what aspects of the results
are meaningful. We need fundamental guiding principles to recognize how to use the results to
draw well-justified, useful conclusions. In this endeavor, I will give some of my pet principles
and examples,1 and warnings about the care needed to apply them. These are only examples
and you must identify for yourself what is needed in your research!

1Many of the ideas and examples in this chapter are taken from [1], with some added comments. Many addi-
tional references are given there.
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1.2 Strong correlation: What do we mean? What is the evidence?

Since our goal is to develop theories of materials with strong correlation, we should define
carefully what is meant by terms like “correlation” and “strong,” and what are the experimental
signatures. The standard definition of correlation for fermions is anything beyond Hartree-Fock.
However, this is not sufficient for present purposes: Correlation is crucial for all materials
with more than one electron. The correlation energy is a large part of the total energy that
determines structures of materials and related properties. Correlation is even more important
for excitations: Hartree-Fock leads to band gaps in insulators much greater than experiment and
it is completely wrong for the properties of any metal because it leads to a singularity at the
Fermi energy due to the long-range Coulomb interaction. Any useful theory of excitations must
involve a screened interaction which removes the singularity at the Fermi surface. Screening
is one aspect of correlation, and it is one of the successes of the RPA and GW approximations
considered below. A model with short-range interactions that is proposed to apply to a real
material has some assumption, perhaps hidden, of why a short range interaction is appropriate.
In short, correlation must be included for a reasonable theory in any material, whether it is
metallic Na or Ce, insulating NaCl or NiO.

In addition, the definitions depend upon whether one considers restricted or unrestricted Hartree-
Fock. Often there is a broken symmetry solution that lowers the total energy and captures a large
part of the correlation energy. In this case, the question is whether or not the broken symmetry
is physically reasonable and how to use such a solution even if there is no such broken sym-
metry. This brings us immediately to issues of broken symmetry, phase transitions, and order
parameters.

For many problems correlation is largest at short range, and the approach is to identify some
reduced degrees of freedom on each site that already takes into account local on-site correlation.
The key is that there is a degeneracy or near-degeneracy of the local states, e.g., a spin, weakly
coupled to the rest of the system. Then the issues have to do with two aspects of correlation, on
each site and between the different sites. This is the type of problem addressed in this chapter
and each example involves identifying some set of local degrees of freedom.2 The typical
systems involved are transition elements with localized atomic-like d and f states illustrated in
Fig. 1, which is a rearrangement of the rows of transition elements so that the most localized
orbitals are at the upper right and the most extended at the lower left. This provides an intuitive
picture of the progression from band-like metallic superconductors colored blue to magnetic
systems with localized moments involving 4f states colored red. Many of the most interesting
elemental solids and compounds contain elements at the boundary where there is the greatest
competition between interactions and independent-particle terms.

2There are other cases such as the fractional quantum Hall effect, where the single-particle kinetic energy is
zero and the interaction is the dominant effect.
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Fig. 1: Rearranged periodic table of the transition elements showing the trend from delocalized
orbitals for elements at the lower left indicated by the blue color to the most localized at the
upper right colored red. At the boundary are the elements that exhibit anomalous properties. In
compounds the occupation of d or f orbitals may vary, for example, the extraordinary properties
of the copper oxides where the Cu 3d states are near the boundary. (Similar to figure in [2],
originally due to J.L. Smith.)

1.3 Experimental signatures

So what is the driving force to identity “strongly correlated” materials and what do we want to
determine? A general classification of properties of condensed matter is the division between
ground state and excitations, where each can reveal essential aspects of correlation. Of course,
the qualitative nature of the excitations is determined by the symmetry of the ground state, for
example, a gap in an s-wave superconductor, or the magnon dispersion in a magnetic system.
This is crucial for understanding but we also want more quantitative information. Consider the
example of a high-temperature d-wave superconductor which is certainly often called “strongly
correlated.” However, it was shown by Kohn and Luttinger [3] many years ago that perturba-
tion theory predicts that, due to repulsive electron-electron interactions, the Fermi liquid state
of any metal is unstable to a superconducting state with some pair angular momentum if the
temperature is low enough, i.e., the ground state is a superconductor. Clearly symmetry is not
enough and we must look further if terms like weak or strong are to be useful.

A theme of this lecture is that a ubiquitous signature of “strongly correlated” materials is strong
variations with temperature. Temperature dependence is often the most important property
for actual applications and it is often the property most directly measured in experiments, but
it is difficult to calculate the effects directly. Of course, temperature dependence is due to
excitations, but measuring spectra for excitations requires specialized experiments which often
are difficult to interpret. However, spectra are more directly related to theoretical methods. High
energy features in the spectra are direct evidence for large interactions, but it is the low energy
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excitations that determine the temperature dependence, the response to perturbations that lead
to phase transitions, and other effects. Prime examples of such behavior involve the elements
listed in Fig. 1.
It is not my purpose to say that we must use theoretical methods that include temperature di-
rectly. This may be very difficult and not needed to understand the observed phenomena. This
lecture is devoted to sorting out the issues and using various theoretical methods – with judi-
ciously chosen guiding principles.

1.4 Fermi liquids, Mott insulators, .....

Since this is a school on “The Physics of Correlated Insulators, Metals, and Superconductors,”
certainly terms like “Fermi liquid,” “Mott insulator,” etc., will arise and we should be clear what
is meant in each case. In particular, it is important to be clear about the meaning of the term
insulator, and realize that there is not a unique definition of “Mott insulator.” There is no hope
of forcing everyone to adopt a single convention, and probably it is best not to try to make a
single term apply to many complex problems. But we can be clear what is meant in specific
cases.
A common feature of the different definitions is an insulator that would be a metal if the elec-
trons did not interact. Even this condition already has problems if we want to identify “cor-
related” systems. If one allows for a broken symmetry, the unrestricted Hartree-Fock solution
includes some important aspects of correlation and can lead to an insulating state; in fact, it
tends to favor an insulator. There may be additional conditions that are used to define the term
“Mott insulator.” One is that they are only those that can be insulators without a broken sym-
metry, i.e., the order is not essential. A yet more restrictive definition is only insulators with no
broken symmetry at zero temperature, called quantum “spin liquids” (see, e.g., [4] and papers
referred to there), which present deep issues concerning the states of matter. These three def-
initions exemplify the issues addressed in this lecture: the nature of different states of matter;
what experimental signatures show that correlations play an essential role; the power of mod-
ern computational methods to make quantitative predictions; the difficulty of making robust
conclusions even if we have such powerful methods; and some guiding principles to help.

2 The four primary methods for quantitative calculations
for materials

Quantitative calculations for materials are now an essential part of research, a fact made possible
by the development of theoretical approaches together with powerful computational methods.
There are four complementary approaches each having a crucial step in its genesis in the 1960’s,
key advances in the 1980’s that made possible effective computational algorithms, and active,
ongoing developments. The present discussions follow [1, 5] where each approach is described
in much more detail.
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2.1 Density functional theory (DFT)

It is important to realize that there were two different steps in the development of DFT done in
1964 and 1965.3 One is the proof by Hohenberg and Kohn [7] that all properties of a system
of electrons are determined by the ground state density n(r), and in principle, each can be
expressed as a functional of the functional of n(r). This would be only a minor observation
were it not for the second step by Kohn and Sham [8] to define an auxiliary system of non-
interacting electrons designed to reproduce that exact ground state density and energy. The
Kohn-Sham approach uses independent-particle methods, but it is not an independent-particle
approximation; instead it is a stroke of genius to reformulate the entire approach to many-body
theory to calculate certain properties, in principle exactly, with no guarantee that any other
property can be determined by the method. The success of DFT is due to the fact that it is a
theory of interacting, correlated electrons and it has proven to be possible to find approximate
functionals Exc[n] for exchange and correlation contributions to the total ground state energy
that are remarkably accurate, even for many systems that are called “strongly correlated.” Often
the local approximation (LDA) is very good, and improved approximations have made DFT
an integral part of research in chemistry and other fields. The work of Car and Parrinello in
1985 [9] set the stage for developments of efficient computational approaches that have made
DFT into an indispensable method for realistic calculations.

Extensions of the original formulation illustrate the power and the limitations of the approach.
The extension to hybrid functionals and methods like “DFT +U” are often important for systems
we call strongly correlated, and the role of such methods are discussed in the examples below.
Successful functionals have been developed to describe the van der Waals interaction, which
is a non-local effect due to correlation (see, e.g., [10]). The ground state of a superconductor
is also described in principle by DFT and functionals that include effects of electron-phonon
interaction have been developed (see [11] that cites earlier references). Very soon after the
Kohn-Sham paper, Mermin [12] showed that the density and free energy at any temperature are
given exactly in terms of a temperature dependent functional Exc(T )[n] for the exchange and
correlation energy. However, there has been almost no use of the Mermin functional because it
has been so difficult to make useful thermodynamic functionals for exchange and correlation.
(Question to the reader: why is this so hard?)

Excitations are not supposed to be given by DFT, even in principle. It is an independent-particle
approximation to use the eigenvalues the Kohn-Sham equations as excitation energies. This is
merely one of many possible independent-particle approximations and it is not justified by any
systematic theory. Indeed the results often are badly in error, even for materials as simple as
silicon.

3An extensive presentation is in [5] as well as in many good references such as the lecture by Jones in volume
3 of this series in 2013 [6].
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2.2 Quantum Monte Carlo

There are various ways quantum Monte Carlo (QMC) simulations can be used to treat inter-
acting quantum systems by sampling the many-body wavefunction. One is variational Monte
Carlo, where a wavefunction is optimized to provide the lowest possible energy for that type of
function. A different approach is diffusion Monte Carlo that is based upon the analogy of the
Schrodinger and the diffusion equations. This approach can provide the exact solution for the
ground state of an interacting system of particles, and the first such calculation was done in 1965
by McMillan for 4He [13]. However, the direct application to fermions does not work because
the wavefunction must change sign and cannot be treated as a probability distribution. This has
led to the fixed-node approximation where the nodal surface (where the wavefunction changes
sign in the 3N dimensional space for N particles) is constrained to be the same as that of an op-
timized many-body variational function. This is the method used in the famous Ceperley-Alder
work [14] in 1987 that provided the total energy of the homogeneous electron gas used in the
construction of local density approximations to DFT. Other approaches include auxiliary field
Monte Carlo and the more recent continuous time [15] methods that are particularly appropriate
for embedded systems and are used in DMFT, as discussed below.

2.3 Many-body perturbation theory

A general approach to the theory of excitations in many-electron systems can be developed in
terms of a perturbation expansion in the Coulomb interaction. The Green function G(k, ω) is
expressed by a Dyson equation in terms of the non-interacting part G0(k, ω) and a self energy
Σ(k, ω), which contains the effects of interaction,

G−1 = G−10 −Σ. (1)

The approach used in much current work is the “GW ” approximation developed by Hedin [16]
in 1965, who applied it to the homogeneous electron gas and gave it the modest name GW to
denote that it is lowest-order approximation Σ = GW , where W is the screened interaction. In
condensed matter it is essential to screen the long-range Coulomb interaction, so that W itself
is an infinite sum of diagrams. In the 1980’s it was possible to develop computational methods
to apply GW to materials, and it is now widely used to calculate band gaps in systems where
the correlation is relatively weak, such as in semiconductors.4 Extensive description can be
found in [1] and reviews such as [17]. A question addressed here is when it can be a reasonable
approximation for more strongly correlated systems with d and f states.

2.4 Dynamical mean-field theory (DMFT)

DMFT is a Green function method that treats the correlation in a way that is very different from
GW . Instead of a low-order expansion, the approach is to treat the short range correlation more

4It also can describe the asymptotic 1/r6 form of the van der Waals interaction, which is a pure correlation
effect. The difference from the examples of strong correlation considered here is that perturbation theory works
because there is a large gap and no low energy electronic excitations.
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Fig. 2: Single site embedded in a lattice. For the Ander-
son impurity model (AIM) this depicts a real impurity with
interactions embedded in a metal in which the electrons
do not interact. It also represents the many-body problem
solved in DMFT in the single site approximation: a site
with interactions treated explicitly embedded in a medium
with a frequency-dependent self-energy, which is equiva-
lent to an AIM solved self-consistently with the requirement
that the self-energy for the surrounding lattice is the same
as that calculated for the embedded site.

accurately and to treat the longer range correlation more approximately or ignore it altogether.
This is designed to treat materials with d and f states and models such as the Hubbard model,
and it is the main approach considered in the examples in this chapter. There are precedents,
both published in 1965, that capture some of the ideas in DMFT. They are still widely-used
for intuitive understanding and are described in Sec. 4.2. Two seminal advances have led to the
formulation of DMFT: The first is the work of Metzner and Vollhardt [18] and Müller-Hartmann
[19] in 1989, who developed the quantum theory of interacting particles in infinite dimensions.
The second advance is the recognition by Georges and Kotliar [20] and, independently, by
Jarrell [21] in 1992 that an embedded site can be viewed as an auxiliary system equivalent to an
Anderson impurity model (AIM). Thus the analytic and computational methods developed for
the AIM are directly applicable as solvers for DMFT calculations, and many insights developed
over the years can be used to understand the phenomena caused by interactions. Good resources
for the concepts and theoretical methods are the review [22] and many lectures in this series,
notably in the volumes devoted to DMFT [23, 24] which also describe ongoing developments
and realistic applications.
The essence of DMFT is to calculate a Green function and self-energy by a many-body calcu-
lation for a site or cluster of sites embedded in a medium that represents the rest of the crystal.5

For example, the single-site approximation is to carry out the calculation for a site embedded in
the rest of the crystal as illustrated in Fig. 2. This approach can be used for a real impurity on a
site, which is the Anderson impurity model (AIM) discussed in Sec. 4.1. However, DMFT is not
an impurity approximation; the calculation is done self-consistently with the atoms in the rest of
the crystal (depicted by the solid gray circles in Fig. 2) required to have the same self-energy as
that calculated for the central site. The calculation for the embedded site is used only to deter-
mine the self-energy for the states on the site, and the final result is a translation-invariant Green
function G(k, ω) given by Eq. (1), where there is no approximation in the independent-particle
G0(k, ω) and the approximation is that the self-energy has only local on-site components, i.e.,
Σ(ω) is independent of momentum k.

5In the literature the term DMFT is often used to denote only the single-site approximation following the
traditional definition in statistical mechanics. Here and in [1] DMFT is regarded as a general approach for a site
or cluster of sites embedded in a medium. DMFT is designed to give spectra, whereas an alternative approach,
Density Matrix Embedding, is designed to give the energies for the ground state [25].
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In applications to models with on-site interactions U and hopping matrix elements between
sites, DMFT is constructed to be exact in two limits: the non-interacting limit, U = 0, and the
limit of infinite dimensions d → ∞ where there is no correlation between sites and mean-field
theory is exact (see especially [24]). In calculations for materials, interactions W and a small
basis set are inputs to the method; this introduces approximations and uncertainties, and usually
the parameters are calculated using DFT or many-body perturbation methods. Also there are
other less correlated bands that are approximated by some other method like DFT or GW.
There are various ways to do the many-body calculation for the embedded site or cluster. The
natural approach is to use the finite temperature formalism with fixed Fermi energy so that
the particle number of the site is not fixed. One on the most powerful approaches uses finite
temperature Monte Carlo calculations which samples all possible occupations of the central
site. This builds upon the work on the AIM which provided the exact solution by Hirsch and
Fye [26] for the case of a single-band with spin 1/2, where there is no sign problem. Those
methods have been adapted directly and more recently a continuous time algorithm [15] has
been developed just for the embedded site or cluster.

3 Guiding principles

All many-body calculations for interacting, correlated electrons – except for a few models that
can be solved exactly – involve approximations. How can we justify that the results of such
a calculation are meaningful? This is the first question before one addresses the issues of the
quantitative accuracy. It is very useful to have some guiding principles that are rooted in deep,
fundamental principles like conservation of energy and momentum, symmetry, and topological
classification. In addition, there may be guiding principles that are based upon very general
arguments that involve theoretical derivations, and one might suspect that the derivations have
some loopholes or they break down in some cases. In these cases the guiding principles may
be especially fruitful if they are taken seriously: A conclusion that the principle applies is
extremely useful and insightful. A demonstration that it is violated may indicate an error or
may be truly important; it should not be taken lightly and it may indicate new, here-to-fore
unknown possibilities. Let us examine a few guiding principles, and in the following sections
illustrate their use.
T=0 vs. T > 0: There are crucial differences between T = 0 and T > 0. Much of the theory of
electronic structure is formulated specifically for perfect crystals at T = 0. However, we want
to consider both T = 0 and T > 0, where there is always disorder and finite entropy, and it is
crucial to recognize the differences.
Metals vs. Insulators: Strictly the distinction between metal and insulator is well-defined only
at zero temperature. At any T > 0 there is some conductivity. However, the difference in con-
ductivity may be very large; the effects of thermal disorder are manifested in the temperature
dependence and the characteristic behavior as T → 0 is the way metals and insulators are dis-
tinguished in practice. We will adopt the terms metal and insulator, with the realization that we
must be careful applying arguments valid only at T = 0 to problems at T > 0, and vice versa.
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3.1 Conservations laws and continuity:
Normal metals and Fermi liquid theory

Fermi liquid theory is a fabulously successful theory attributed to Landau. It was initially ap-
plied to liquid 3He, where the interaction is short range, and later extended to include Coulomb
interactions by Silin. As told to me by Alexey Abrikosov, Landau arrived at his proposal by
asking himself: “What is conserved?” The fact that conservation laws are unchanged by the
interaction suggests continuity. Even though 3He has strong interactions the proposal is that it
remains an isotropic liquid with a Fermi surface and low energy excitations that have the same
quantum numbers as if it were a system of non-interacting fermions, but with a modified effec-
tive mass and susceptibilities. This is not a theory of how to calculate the effective parameters,
but rather of relations among them, that are extremely useful and insightful.
The messages that I want to emphasize are the importance of continuity and the separation of the
three different aspects of our understanding: the formulation of the theory, explicit mathemat-
ical methods to calculate the properties, and proofs (if any) that the results of the calculations
are rigorously correct. Some aspects can be argued to be guaranteed if the system evolves con-
tinuously from a known state, even if there are no theoretical proofs that the system evolves
continuously, and no proofs that the theoretical derivations are foolproof. Systems that are
continuously connected to some independent-particle state are termed “normal.” The same ar-
guments also apply to insulators where there is a gap. Of course, there are many examples of
transitions between states that have different symmetry, and we can ask if each state can be
considered to evolve continuously from some known state.6

3.2 The Luttinger theorem and Friedel sum rule

The Luttinger theorem states that in a perfect crystal the volume enclosed by the Fermi surface
in k-space is the same, independent of interactions. (I will use the term “theorem,” but it might
be better to call it a sum rule since theorem implies mathematical rigor.) It is sufficient to
indicate the sense of the derivation in the original papers by Luttinger and Ward (LW) [27, 28],
which is summarized in App. J of [1]. The total number of electrons is given by dΩ/dµwhereΩ
is the thermodynamic potential and µ is the chemical potential. The derivation by LW involves
the particular way of summing diagrams to expressΩ in terms of the Green functionG (which is
an infinite sum of diagrams involving the bare G0) summed over Matsubara frequencies, taking
the limit of T → 0 and a partial integration. The derivation uses the fact that the one-particle
Green function G(k, ω) evaluated at the Fermi energy ω = EF (where EF = µ(T = 0)) is real,
and the final result is that G(k, EF ) changes sign as a function of k at the Fermi surface, so
that the volume is defined by the region where the Green function is negative. The conclusions
apply only at T = 0 where the Fermi surface is precisely defined and the states at the Fermi
energy have infinite lifetime, just as for an independent-particle system.

6There can be further distinctions including classification by the topology of the eigenstates as a function of k
where topologically trivial and non-trivial states are each connected to an independent-particle state with the same
topology.
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As far as I know there are no rigorous proofs that the summations are uniformly convergent, and
there are no loopholes in the mathematical derivations.7 However, we can appeal to the principle
of continuity, to rephrase the argument: The theorem should be obeyed so long as the system is
normal, i.e., can be continuously connected to some independent-particle system. The lack of a
rigorous proof applies to any case, such as Na, Al, or Cu, and it is experiment that shows these
systems act like normal Fermi liquids with a Fermi surface that obeys the theorem as T → 0 for
the accessible range of temperatures. We already know one example, superconductivity, which
is certainly not normal! Any violation of the theorem would herald a different state of matter;
in both theory and experiment we should be doubly careful not to treat violations lightly and to
search vigorously for exceptions!

It is instructive to consider also the Friedel sum rule [30] on the sum of phase shifts for an
impurity in a metal, which is an example of how much can be learned without heavy mathe-
matical calculations. The sum rule follows from the condition that the sum of phase shifts of
the states at the Fermi energy due to the impurity equals the number of electrons added (or
subtracted) around the impurity compared to the host. Since charges are perfectly screened in
a metal, the number of electrons is balanced exactly by the added charge of the nuclei of the
impurity relative to the host. The sum rule was originally derived for independent particles;
however, the derivations of LW apply here with the difference that the sum is over the phase
shifts that are labelled by the point symmetry of the impurity instead of the momentum k that
labels the quantum numbers for a translation symmetry of a crystal [31]. But there is a great
difference because the impurity cannot induce a phase transition in an extended solid and the
system evolves continuously as the interaction is increased. There are no caveats and we can
be confident that the Friedel sum rule is valid no matter how strong are the interactions on the
impurity.

Knowing only the sum rule we can draw conclusions about the Kondo effect, one of the classic
problem of condenser matter physics described in the next section. At zero temperature resis-
tance caused by an impurity in a metal is determined by the phase shifts. A widely-used model
for the Kondo effect and the Anderson impurity model is a one-band model where there is only
one phase shift. If the band is chosen to be symmetric, the impurity state is half-filled and it
follows that the impurity causes the maximum possible resistance no matter how strong is the
interaction or how weak is the coupling to the host. It is not many steps to an understanding of
the Kondo effect at least qualitatively.

7However, it is tested in the case where there is an exact solution by Lieb and Wu [29] for the one dimensional
Hubbard model. There the Luttinger theorem is rigorously satisfied for any particle filling. The excitation spec-
trum is different from a Fermi liquid, but nevertheless there is a Fermi surface and it is the same independent of
interactions, except at 1/2 filling where there is a gap.
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4 Instructive models

4.1 The Anderson impurity model and the Kondo effect

The Kondo effect is the observed temperature dependence of the resistivity of solids containing
transition metal impurities.8 The expected behavior is a decrease as T is lowered, since the
resistivity due to dynamical effects such as phonons decreases. It should never increase and
at low temperature it reaches a plateau determined by the static disorder. However, the Kondo
effect is that there is a resistance minimum after which it increases and saturates for T → 0,
contrary to all expectations. This set up the problem of a spin embedded in a metal, which is
a strong-coupling problem that defied solution until Wilson’s invention of the numerical renor-
malization group [32]. The problem is that a perturbation series in the coupling of the spin to
the metal diverges due to the low energy excitations in the metal.
If we step back and note that the spin is actually electrons, the problem can be cast as the Ander-
son impurity model (AIM) with strong interactions on the impurity site [33]. This is depicted
in Fig. 2, where the central site is shown with lines that denote the states of the interacting
system on the impurity, while the surrounding lattice is considered as a non-interacting metal.
As discussed in the previous section, the principle of continuity and the Friedel sum rule leads
to the conclusion that the system must evolve, as the interaction increases, keeping the sum of
phase shifts unchanged, so that the resistance at T = 0 is constrained. For the simplest problem
of a single band there is only one phase shift and the resistance is the maximum possible value
at T = 0. There are now exact solutions [34] and useful approximations that fully support the
analysis.
Anderson [33] provided an instructive analysis illustrated in Fig. 3. Consider the case of a half-
filled band with a symmetric density of states and an added state on one site at the Fermi energy
so that it is half-filled. If there are no interactions this leads to a density of states on the impurity
site that is broadened due to coupling to the continuum of host states as depicted schematically
in the lower panel of Fig. 3. If we add an interaction U only on the impurity site, the problem
remains symmetric if the energy to remove an electron is −U/2 below the Fermi energy and
to add a second electron on the site is increased by U , i.e., U/2 above the Fermi energy. In
this case the impurity state must remain half-filled by symmetry and a restricted Hartree-Fock
solution gives exactly the same density of states. However, there can be a broken-symmetry
unrestricted solution with one spin mainly occupied and the other mainly empty; for U larger
than a critical value this is the lowest energy state as illustrated in the middle panel. As pointed
out by Anderson, this is fundamentally incorrect but it heralds the strongly interacting regime
where something interesting happens. The exact solution for T = 0 is shown schematically
at the top in the large U regime; it has both behaviors: the feature at the Fermi energy that is
required by the Friedel sum rule and the high energy features that are at energies similar to that
given by the unrestricted Hartree-Fock approximation.

8Ted Geballe told me that in 1955 he asked John Bardeen to name the most important unsolved problems in
condensed matter physics. Bardeen replied, “superconductivity” and, after a characteristic pause, “the resistance
minimum” now called the Kondo effect.
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Fig. 3: Schematic illustration of the spectra for an Anderson impurity in the regime that leads
to the Kondo effect. As described in the text, the bottom panel shows the broadened peak for the
non-interacting case; the middle illustrates the peaks above and below the Fermi energy for the
broken-symmetry unrestricted Hartree-Fock solution in the large U regime; and the top shows
the qualitative form of the full spectrum that has a peak at the Fermi energy, which satisfies the
Friedel sum rule.

The spectrum in Fig. 3 already shows how we can understand some important aspects of solids
illustrated later. The “three-peak” behavior of the spectral density is a characteristic signature
of systems that are often called strongly correlated. We can expect high-energy features due to
the strong local interactions and low-energy features that lead to strong temperature dependence
and large susceptibility; for the impurity there can be no phase transitions but in a crystal with
interactions on every site, the large susceptibility can lead to transitions to various kinds of
ordered states. Even though the unrestricted Hartree-Fock calculation is unphysical, it indicates
the regime of strong interactions. The temperature dependence is not shown in Fig. 3, but it is
similar to that shown later in Fig. 5, which shows that the peak at the Fermi energy disappears
as T is increased, another signature of strong interactions.
Notice the “strongly interacting” problem with large U is continuously connected to the non-
interacting U = 0 state. There is no sharp division between a Mg impurity Na and a Mn
impurity in Au. What is the difference? The temperature scale that is denoted by the Kondo
temperature!

4.2 The Hubbard and Gutzwiller approximations

Although we have rigorous solutions for the AIM and 1d Hubbard model, we do not yet know
whether the conclusions can be used in other problems. Let us try the opposite approach:
approximations that are so extreme that they can be solved analytically. The question is what
aspects can we use to make confident conclusions about the complicated many-body problem.
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Fig. 4: Spectral function for a half-filled band with a semicircular density of states shown at
the top. The lower four panels show the spectra calculated in the Gutzwiller (dashed lines) and
Hubbard (solid lines) approximations as the interaction U increases. The Gutzwiller approx-
imation leads to a narrowed band with a mass (inverse of the band width) that diverges and
above a critical UG there is no solution, which is a model for a metal-insulator transition. In
the Hubbard “alloy” approximation the band widens and above UH a gap opens to form an
insulating state.

In fact the approximations considered in this section were both proposed in 1965 and they are
very enlightening for all the methods and examples in the rest of this chapter!
The approximations described here can be applied to any lattice, but there is a special case that
allows an analytic solution, the semicircular form for the independent-particle density of states
shown at the top of Fig. 4 where

ρ(ω) = − 1

π
ImG0(ω) =

2

πD2

√
D2 − ω2, (2)

which is non-zero only for |ω| < D and D is 1/2 the band width. This is the actual density
of states for the Bethe lattice in infinite dimensions so that it can be interpreted as an lattice
where each atom has an infinite number of neighbors. Since mean-field theory is exact for an
infinite number of neighbors where fluctuations average out, DMFT provides the exact solution,
as discussed in the following section.
The approach of Gutzwiller [35] was to propose a variational form for the ground state wave-
function that is the same as independent particles (or some other mean-field solution) multiplied
by a factor that reduces the probability of double occupation. This is widely used and can be
evaluated essentially exactly by Monte Carlo methods. The Gutzwiller approximation is to ig-
nore the correlation of the occupation of electrons on different sites; this leads to equations
that can be solved in general numerically and analytically for simple models. Minimization
of the energy as a function of U leads to a state with reduced kinetic energy interpreted as a
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band narrowing or increased mass. For a one-band Hubbard model the result is that the Fermi
surface is unchanged but the mass increases as the density approaches half-filling and exactly
at half-filling there is a critical UG

c where the solution is for infinite mass. This is illustrated
for the semicircular density of states at half-filling in Fig. 4. This is widely used as a scenario
for a Mott transition as a function of band filling: bands with increasing mass as the density
approaches 1/2 until it diverges signalling an insulator.
Hubbard proposed a different approach in terms of the Green function [36]. The propagation of
an electron in an interacting system is approximated by assuming the rest of the electrons act
as a static array of scatterers, called an “alloy approximation.” The further approximation that
allows analytic solution is the coherent potential approximation which ignores the correlation
between occupation on different sites, which was derived independently by Hubbard and others
and is now widely used in real alloys. This leads to a Green function given by Eq. (1) with an
on-site self-energyΣ(ω), like in DMFT, but a static mean-field approximation. The result is that
the states near the Fermi energy have a lifetime, which may be reasonable for high temperature
but is fundamentally incorrect at T = 0. On the other hand it leads to a gap for large U as
illustrated in Fig. 4 with well-defined band edges. This provides a different scenario for a Mott
transition as a function of the interaction: a spectrum that broadens until a gap opens above a
critical UH

c .
Thus we have two widely-used pictures of a Mott transition: one is a band at the Fermi energy
that narrows as the interaction increases and the other a broadening of the bands until they are
splitting into what are called the upper and lower “Hubbard bands.” Each ignores correlation
of occupation on different sites and assumes no change of symmetry, and each can be argued to
capture a part of the physics.

4.3 Dynamical mean-field theory (DMFT) for the Hubbard model

As discussed in Sec. 2.4, DMFT is an approach to treat interacting electrons in a crystal, but
the heart of the many-body calculation is the calculation of the on-site Green function and self-
energy for an embedded site that is equivalent to a self-consistent Anderson impurity model
(AIM). This section illustrates DMFT by showing a few results for a one-band Hubbard model.
It is especially appropriate to consider the semicircular density of states defined in Eq. (2)
which allows a direct comparison with the Hubbard and Gutzwiller approximations shown in
Fig. 4. Because the single-site DMFT is exact in the limit of infinite dimensions, the result is the
exact solution for the Bethe lattice with an infinite number of neighbors. Thus this is an exact
solution for a special model and our job is to recognize when the results can help us understand
the properties of real complex systems in finite dimensions!9

9In finite dimensions, this is an approximation and an approach to an exact solution requires that the calculations
be done for large enough clusters that the correlations between electrons on different sites has converged. For
examples like the two-dimensional Hubbard model various size clusters have been treated, which is essential for
some important effects [37]. However, this is generally not feasible for calculations for realistic systems with
many-bands and all the DMFT calculations in the examples for real materials in the following section are done in
the single-site approximation.
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Fig. 5: Spectral function for a half-filled band with a semicircular density of states calculated
using DMFT in the single site approximation. The spectra have features like the Anderson
impurity model in Fig. 3 and the approximations for a Bethe lattice in Fig. 4: Gutzwiller (peak
at the Fermi level that narrows as the interactions U increases) and Hubbard (spectra that
broadens as U increases with weight that decreases at the Fermi level until a gap opens). At
the right is shown the effect of temperature: the feature at the Fermi energy at low temperature
vanishes at high temperature where the states act like decoupled spins and the spectral weight
is transferred to the high energy peaks. Adapted from figures in [22].

The results of DMFT calculations are shown in Figs. 5 and 6. Here we skip all the details of
the calculations and give only a few results. As expected, the spectra shown in the left side of
Fig. 5 have the characteristics of those for the AIM shown in Fig. 3, a central peak that narrows
as the interaction increases and high energy peaks separated by U . The right side of Fig. 5
shows the temperature dependence for a case where the solution has a narrow central peak that
disappears as T increases. This is not a broadening but a true many-body effect. For the AIM
the analogous result is the Kondo effect where the resistance decreases at T increases. For a
lattice, it is the Fermi surface that disappears, which is illustrated later in Fig. 8.
However, unlike the AIM, the self-consistency leads to a very different consequence: As U in-
creases the central peak disappears at some value of U1

c and a gap opens at a value U2
c . Thus the

DMFT result shows both behaviors captured by the Gutzwiller and Hubbard approximations
shown in Fig. 4. This provides a scenario for a Mott transition as a function of the interaction
that is the exact solution for a model! Whether or not this applies to a real problem in finite di-
mensions is an issue. Furthermore, if we look more carefully into the solutions for the Hubbard
model there is an important issue not considered so far, and a deep issue of physics still to be
understood.
The issues are illustrated in Fig. 6. A result of the DMFT calculations is that for some regime of
interaction U there are two types of solutions, an insulating solution with a gap for U > U1

c and
a metallic solution with a central peak for all U < U2

c , with U1
c < U2

c . In the region from U1
c to

U2
c the two solutions indicate two phases with the same symmetry so that there is a first-order

phase transition. Furthermore, as a function of temperature the central peak disappears and the
gap fills in until there is a critical point and the solutions merge like the water steam transition.
This is shown in the left side of Fig. 6 by the dashed line ending in a critical point, which has
the features of a Mott transition.
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Fig. 6: Phase diagram for Bethe-lattice in infinite dimensions which has a semi-circular density
of states in the limit of infinite dimensions. Left: Results for a Hamiltonian that has only
nearest neighbor hopping t; the dashed line ending in a critical point indicates a transition
between the two types of spectra in Fig. 5. However, for this model the actual transition is
to an antiferromagnetic insulator (AFI) indicated by the solid line. At the right is the phase
diagram if a second-neighbor hopping t′ is included; the AFI state is not as favorable (note
the expanded vertical scale) and there is a range of temperatures where the first-order metal-
insulator transition occurs. (For this t′ there is also an antiferromagnetic metal phase that is
not shown and is not important for our purposes.) Adapted from figures in [22].

However, there is more that can be learned from the single-site DMFT calculation. The previous
calculation is in fact restricted DMFT where it is required that there is no order of the spins or
any other order. One possibility is an antiferromagnetic state where each site is allowed to have
a net spin and it is surrounded by sites with opposite spin. Such a solution is allowed for any
lattice that is “bipartite,” i.e., that can be divided into A and B sites, where all A sites have only
B neighbors and vice versa. The Bethe lattice has this property and we can expect that such
a state is favored just as it is in the multitude of other models and actual materials that order
antiferromagnetically. This can still be solved by single-site calculation where the A and B
sites are related by time reversal symmetry. Indeed the calculations find an antiferromagnetic
phase for temperatures and values of U shown by the solid line in the left side of Fig. 6. The
first-order transition is completely eliminated and the only stable phases are a metal with no
order and an ordered antiferromagnet.

Nevertheless, there is a way to uncover the first order transition. A second-neighbor hopping
(denoted t′) couples an A site to the nearest other A site (the same for B sites) which tends to
frustrate the antiferromagnetic order and reduce the temperature range where the antiferromag-
netic insulator is the stable phase. It turns out that the independent-particle density of states is
still semicircular, but with modified width, and the calculations can still be done within the same
model. This is shown in the right side of Fig. 6 (note the reduced temperature scale). Now the
first-order transition can actually occur for some temperature range about the antiferromagnetic
transition. This is the behavior known from the classic example, V2O3, discussed in Sec. 5.3.

Finally, we arrive at a deep issue that opens the door (or not) to new states and phenomena
that are qualitatively different from normal states of matter. If the antiferromagnetic order can
be eliminated could the insulating state extend all the way to T = 0? Further discussions are
postponed to later.
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5 A few examples: Data, interpretation, and theory

5.1 Cerium: volume collapse phase transition, heavy fermions, ...

Experimental facts and interpretations. Cerium is the first transition element in the lan-
thanide series. In various compounds it exhibits behavior that is readily identified as due to one
electron in the localized, atomic-like 4f shell (f 1) (for example, in magnetic Ce2O3 where Ce
has a formal valence +3) or an empty 4f shell (f 0) (as in non-magnetic CeO2, formal valence
+4). As an impurity in metallic La it leads to the Kondo effect expected for a localized f 1

embedded in a metal. Some compounds such as CeIrIn5 are “heavy fermion” materials [42]
with masses (inversely proportional the band widths) orders of magnitude larger than ordinary
metallic bands, similarly to the Kondo effect for impurities where the energy scale can vary
over orders of magnitude for different impurities and hosts.
For many decades it has been known that elemental Ce has a phase diagram as a function
of temperature and pressure with a first-order transition between the high volume γ- and low
volume α-phases, each with the same fcc structure. There is an anomalously large 15% volume
change at room temperature and a critical point at higher temperature analogous to the water-
steam transition. The γ phase has a temperature-dependent magnetic susceptibly accounted for
by weakly coupled f 1 spins, whereas the α phase appears to be inert magnetically. The first
interpretation was the natural one: a transition between magnetic f 1 states and non-magnetic
f 0 with an electron transferred to the weakly interacting metallic bands. However, more recent
experiments showed that the 4f occupation in the α phase is also close to f 1, for example, as
indicated by the photoemission and inverse photoemission data shown at the top of Fig. 7, where
the sidebands below and above the Fermi energy indicate the strong interactionsU ≈ 7 eV and f
states in both phases, with bands at the Fermi energy in the α phase like the three peak structure
for the Anderson impurity model in Fig. 3.
Guiding principles for theory. We are faced with a strongly interacting problem of a lattice of
localized f states coupled to delocalized metallic bands. It is certainly very difficult to explain in
detail all the properties of cerium and its compounds.10 The purpose of the present discussion
is to examine what we can understand from experiment alone and what we can believe from
DFT calculations that are simple to do now-a-days, but which are clearly inadequate in some
respects. Furthermore we want the reasoning to apply, a least qualitatively, not just for one
material but for many different cases. The same reasoning is also invaluable in judging what
can be believed from a heavy many-body calculation, which certainly involves assumptions and
approximations.
A great success of DFT calculations using standard functionals like LDA is that for Ce the
calculations find an equilibrium volume near that for the α phase and a 4f occupation of ap-

10Two mechanisms have been proposed to explain the α-γ transition caused by the large interactions for elec-
trons in the 4f states. In one proposal the primary effect is a “Mott transition” of the f states; the d states do not
play an essential role. The other proposal is a “Kondo volume collapse” in which the primary driving force is the
coupling of the f states to the band-like d states; this is a simplified version of the results of the DMFT calculations
described here.
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Fig. 7: Electron removal (photoemission) and addition (inverse photoemission) spectra for
α (left) and γ (right) phases of Ce. Top: Measured spectra at room temperature [38] that
is mainly the Ce 4f component. Middle: Single-site DMFT calculations for the 4f states
with parameters from LDA. For the α phase (left) theory “b” [39, 40] is broadened by the
experimental resolution and includes the 6s–6p–5d states. Theory “a” [41] shows the high-
resolution peaks near the Fermi energy including spin-orbit splitting. Note widths are ≈ 10×
narrower than the LDA peaks in the bottom panel. For the γ phase (right) the calculation finds
upper and lower Hubbard bands with no peak at the Fermi energy. Bottom: The density of
states for static mean-field calculations: LDA for a non-magnetic solution in the α phase and
unrestricted LDA+U for a magnetically ordered state in the γ phase. The peaks are 4f and
the broad spectra are bands formed from 6s–6p–5d states. Each static mean-field calculation
describes an aspect of the spectrum, but cannot explain the three-peak spectrum found in the
DMFT. Similar to figure in [1] provided by A.K. McMahan except “theory a” modified from
figure provided by K. Haule.

proximately one. Such a calculation is guaranteed to have partially-filled 4f bands at the Fermi
energy, as illustrated in the bottom left panel of Fig. 7, which satisfy the Luttinger theorem
including the f states. Quantitatively, the bands are narrow, but yet broad enough that there
would be only band-like paramagnetism, consistent with what is observed in the α phase. How-
ever, the LDA calculation cannot explain the peaks well above and below the Fermi energy that
indicate a large interaction.
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What can we conclude about the results of a heavy many-body calculation even before it is
done? So long as the system does not have a transition to an ordered magnetic state and the
temperature is much lower than the characteristic energy scales, continuity implies that the
Luttinger theorem is obeyed and any correct many-body calculation must give bands that are
well-defined at the Fermi energy, even though they may be much narrower than the LDA bands
and the spectrum is very different as one goes away from the Fermi energy. This is illustrated
by the results shown in Fig. 7 for DMFT calculations done in the single-site approximation.

What about the γ phase? Another success of DFT calculations is that if one allows for spin
polarization there is another solution with larger volume close to that observed for the γ phase
at room temperature. The spectrum is illustrated in the lower right panel of Fig. 7, which
shows the result of an “LDA+U” calculation for a magnetically ordered state. The spectrum is
qualitatively like the experiment with apparently no 4f bands at the Fermi energy, similar to
the unrestricted Hartree-Fock approximation in Fig. 3. Is this inconsistent with the Luttinger
theorem? Before we do a many-body calculation, what do we expect to be the different possible
results? If the temperature is high compared to some characteristic energy scale (the scale of
interactions between spin on different sites), we do not expect there to be bands at the Fermi
energy! Indeed, this is the result of the single-site DMFT calculation for the model in Fig. 5,
where the central peak vanishes at high temperature, and the same behavior is found in the
DMFT calculation for γ-Ce shown in the middle right panel of Fig. 7.

Consider now the heavy fermion material CeIrIn5 for which DMFT results [43] are shown in
Fig. 8. From experiment such as specific heat measurements we know the characteristic energy
scale is very low, somewhat above 10 K and there is no magnetic order at 10 K. The figure
shows the huge effects of interactions: At room temperature the bands at the Fermi energy are
almost like an LDA calculation at T = 0 with the f states artificially removed. This mimics
the fact that the f states are essentially decoupled at this temperature and result is a “small
fermi surface” that does not include f electrons. At low temperature the bands are like an
LDA calculation with the f states included, i.e., a “large Fermi surface,” but they are greatly
renormalized as shown in the right side of Fig. 8 where the scale is expanded by a factor of 100.

What can we conclude? None of the calculations definitively establishes the mechanisms for
the behaviors and there is no theoretical proof that the systems do not order in some way. But
if we take from experiment that there is no transition to some ordered phase at the relevant
temperatures, then we can have a qualitative picture without doing a heavy many-body calcu-
lation. Furthermore, since there is no order, the single-site approximation is reasonable and it
appears to be an appropriate starting point for quantitative understanding. The fact that low
energy scales emerge implies that susceptibilities are large such that there may be transforma-
tions to other states at lower temperature, which is found in many heavy fermion materials [42].
Finally, a lesson from the previous sections is that if we seek the behavior at T = 0, we expect
the system to be either a Fermi liquid or have a transition to an ordered state, and we should be
very careful about using T = 0 arguments at T > 0 and vice versa.



Strong Correlation and Guiding Principles 1.21

0.01

0.0

-0.01

E
n
e
rg
y
(e
V
)

(a) DFT+DMFT at 300 K

open-core DFT (blue lines
E
n
e
rg
y
(e
V
)

1.0

0.0

-1.0

DFT+DMFT at 10 K

DFT (blue lines) scaled by factor of 100
0.01

0.0

-0.01

E
n
e
rg
y
(e
V
)

(a) DFT+DMFT at 300 K

open-core DFT (blue lines
E
n
e
rg
y
(e
V
)

1.0

0.0

-1.0

Fig. 8: Momentum resolved spectra at 300 K (left) and 10 K (right) calculated using single-site
DMFT. As discussed in the text at 300 K the 4f weight at the Fermi energy is very small, but a
very narrow 4f band (note the greatly expanded scale energy in the right figure!) emerges in
analogy to the Kondo effect and the model DMFT calculation shown on the right side of Fig. 6.
From [43].

5.2 NiO and Mott insulators

NiO is the original “Mott insulator” as identified by de Boer and Verwey [48] and pointed out by
Mott and Peierls [49] in 1937. Below the Curie temperature of 525 K, it is an antiferromagnetic
insulator with a gap around 4 eV, which can be seen from the spectra shown in the top panel
of in Fig. 9. It satisfies the narrower condition for a Mott insulator: If there is no order there
should be fractionally filled bands that would indicate a metal, but in fact it acts like an insulator
with a gap that does not depend on the magnetic order and remains above the Curie temperature
(which is found in experiments not shown in the figure). The structure is fcc and there are no
complications about which d states are involved (unlike the other classic case V2O3).
Guiding principles. This case is simpler than the various problems for Ce compounds since
NiO is an insulator with a gap, and it allows us to ask simple direct questions. What about the
Luttinger theorem when there is no broken symmetry? Since this is a “Mott insulator” can we
trust any results from methods such as the GW approximation, based upon perturbation theory?
The theoretical results shown in Fig. 9 suggest that we have a rather good understanding of the
basic issues even if there is much yet to be understood. As in many systems, DFT calculations
are very successful in predicting the structure. At the bottom is the spectra that shows the result
from an LDA calculation for the ordered antiferromagnetic structure; there is a gap, but it is
very small and not visible in the figure since the spectra are broadened to compare with the
experiment. In addition to the gap being too small, the relative positions of the oxygen p and
the Ni d states are wrong. Improved DFT calculations using DFT+U (a generalized gradient
functional GGA + U in this case) functionals open the gap but cannot give both the magnitude of
the gap and the positions of the p and d in agreement with experiment. The HSE hybrid density
and Hartree-Fock functional leads to much improved spectra. An example of GW calculation
is shown for “one shot” G0W0 starting from the HSE wavefunctions and eigenvalues. Similar
results are found using a self-consistent GW method that is independent of the starting point.
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Fig. 9: Spectra for electron removal and addition in NiO. Top: experimental results for 3d
weight from [44] and [45]. The other panels are calculated spectra projected on the O-p (grey)
and Ni-3d (red) components. The lower four panels: DFT calculations with different function-
als, above these: GW calculation, all for the antiferromagnetic state [46]. The top theoretical
results are the spectra for the paramagnetic state calculated using single-site DMFT (called
DMFA in the figure) with parameters from DFT calculations [47]. Similar to a figure in [1].

These methods are not chosen to fit NiO; the same approximations give improved results for
semiconductors, large classes of oxides, and other systems. The conclusion is that DFT and GW
calculations can be very useful and describe systems like NiO so long as we restrict ourselves
to the ordered state at low temperature.
The gap and insulating behavior of NiO remain for temperatures above the Curie temperature
where there is no ordered moment. In this case any T = 0 DFT or GW-type calculation must
lead to a metal; this is not shown but must occur by electron counting for partially filled bands
that originate from atomic-like d states. Why do these methods not work for NiO above the
Curie temperature where there is no order? The simple answer is that temperature has a large
effect because the large on-site interactions lead to local moments that persist above the Curie
temperature. Approaches that take the disordered moments into account can explain the gap in
the high temperature state. A simple approach is a static approximation like the Hubbard alloy
approximation that opens a gap like that shown in Fig. 4. A greatly improved approach is the
DMFT calculation for the dynamically disordered system shown in Fig. 9. This is the result
within the single-site approximation which means that correlations between electrons on a site
are included but correlations between different are sites treated only as an average mean-field,
which is justified at high enough temperature.
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5.3 V2O3 and the Mott transition

Whereas NiO is described as a Mott insulator, V2O3 is the classic example of what has been
termed a Mott transition. The famous phase diagram [50] is not shown here but the basic points
are illustrated in the phase diagram in the right side of Fig. 6. Experimentally the different parts
of the phase diagram are accessed by applying pressure and doping with Cr. Pressure squeezes
the atoms together resulting in larger independent-particle hopping terms and a decrease in
the relative importance of interactions, which favors the metal. At low temperature and low
pressure V2O3 is an antiferromagnetic insulator, like the right side of Fig. 6. Applying pressure
corresponds to moving to the left in the figure until there is a transition to a paramagnetic metal;
these are only two states observed at low temperature. With Cr doping there is also a first-order
transition in the paramagnetic phase at higher temperature, like the phase line in Fig. 6 that
ends in a critical point. It is this transition that has long been taken as the classic example of
a Mott transition with no change of symmetry. Because of the complicated crystal structure
and possible ordering of the electronic states, there have been many models proposed to explain
the behavior. But for our purposes the only relevant point is that there exists a transition with
a change in the spectrum and conductivity from a form expected for an insulator to that for a
metal in some range of temperature and pressure. However, the two states are not really distinct
since they merge continuously above the critical point.
Does this violate the Luttinger theorem? Just as the analysis for NiO, it does not because the
transition is only observed at high temperature. It is important to understand the reasons for
insulating-like and metallic-like behavior, but it should be done with the understanding that it
is not inconsistent with the theorem unless the transition actually continues all the way to zero
temperature, which leads up to the issues in the following section.

6 The Mott insulator and topological order

Several times in the previous sections there were references to deep issues in physics that are
brought to light by relentlessly pursuing the question of whether or not a Mott insulator with
no order can exist at zero temperature. Recall that the difference between a metal and an in-
sulator is precisely defined only at T = 0, and the Fermi surface and Luttinger theorem are
precisely defined only at T = 0. An insulating state with fractional occupation and no order
T = 0 (termed a quantum spin-liquid; see, e.g., [4] and papers referred to there) would vio-
late the original statement of Luttinger theorem. There is now growing evidence that such a
state would have some form of topological order11 and would be a state of matter with quan-
tum order not described by any classical order parameter [51]. There is a well-known example,
superconductivity, and it would be an extraordinary advance to discover other states of matter
with quantum order. For states with topological order, there is not a continuous connection to

11Topological insulators that have been of great interest recently are band insulators with a Hamiltonian H(k)
that has non-trivial topology as a function of k in the Brillouin zone. For a Mott insulator there may be related
properties, but this has not been worked out to my knowledge.
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an independent-particle system, and many works using different approaches find that at a tran-
sition to a topologically ordered state the volume enclosed by the Fermi surface can change by a
discrete amount. This leads to a possible new formulation of the Luttinger theorem that extends
the original derivation to systems with topological order. Perhaps the most direct conclusions
related to the Luttinger theorem are due to Sachdev and coworkers who have argued that any
state that does not satisfy the original Luttinger theorem must have topological order. (See,
e.g., [52].)

7 A few final remarks

It is nice to appreciate the prescient work of the 1960’s that are the basis of much of the work
today and still provide very valuable insights, along with the advances of the 1980’s and early
1990’s that have provided new ideas and methods that are the basis for actual calculations done
today. As the calculations have become more and more powerful we have reached the point
where quantitative theory is an essential part of research on actual materials in actual exper-
imental conditions. Despite great successes in many cases, there are failures in others. In
addition, present day theories often use different methods for different regimes of correlation,
for example, the band-like behavior for the materials at the lower left in Fig. 1 and the extreme
localized local-moment behavior for materials in the upper right. It is the materials on the bor-
derline that have interesting, anomalous behavior; they present the greatest challenges because
correlation plays an especially important role. At such points we need guiding principles to
keep the ship afloat and not be caught on the rocks.
Consider the example presented in Sec. 5.1 of cerium in the α and γ phases, where temperature
is an essential ingredient in the complete picture. It is a luxury to be able to carry out a heavy
many-body calculation like DMFT that can span the range of behaviors within one method, but
the main point of the discussion in Sec. 5.1 is that we can understand the qualitative behavior
using methods like DFT if we use clear guiding principles like the Luttinger theorem together
with well-established properties of models such as the spectra of the Anderson impurity model
and the temperature dependence in the Kondo effect. The same guiding principles help clar-
ify the limitations of methods like the single-site approximation (or other approximations) in
DMFT and help us understand the results.
The guiding principles emphasized here have many tentacles that reach into the very essence
of the goal of making robust theories and conclusions that can be trusted. In all the cases
described here, whether real materials or models, there is no rigorous proof that the calculations
are the final answer. It is very difficult to prove that one has found the global minimum free
energy state, i.e., there can be no state with a different type of order that is lower in free energy.
Nevertheless, there are many very useful lessons to be learned and interesting results, if they
are used judiciously. The combination of experiment, theory, and computational methods, each
held to high standards, can provide solid understanding and even open doors to possible new
states of matter.
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1 Introduction

In the United States (and perhaps also around the world) we have a joke about some students’
tendency to try to understand physics by memorizing equations: In comprehending electric
circuits, we say, it is important that such students completely master Ohm’s three laws for
current flow in a metal,

V = IR I = V/R R = V/I . (1)

In this chapter, we shall present the subtle relations between resistance, voltage and current,
and come to grips with the equations and the deep concepts governing metallic and insulating
behavior, and their extension to superconductors. We will see that there is considerably more
depth to the field than Ohm’s Three Laws, as represented by Eq. (1).

The difference between metals, insulators, and superconductors can be precisely defined, and
illustrated, within the framework of tight-binding Hamiltonians (TBH). That will be our pri-
mary language here. In addition to developing some analytic approaches to the solution of
these Hamiltonians, and hence their characterization into distinct charge transport categories, a
good fraction of the material will involve a discussion of how to implement the concepts and
equations in precise calculational frameworks, including exact diagonalization and Quantum
Monte Carlo (QMC).

The organization of this chapter is as follows. We first describe, in a rather qualitative way,
the different types of insulators (band, Anderson, and Mott) which can arise. Our criteria for
insulating behavior will focus on the appearance of a gap in the single particle energy levels
(band insulator), the appearance of localized eigenfunctions in the presence of disorder (Ander-
son insulator), or the possibility that interactions between electrons are so strong that motion of
electrons is inhibited (Mott insulator). The first two cases can be addressed with some precision
with simple calculations, but the latter is much more challenging. In fact, it is fair to say that a
full understanding of Mott insulating behavior has not yet been achieved, an especially unfortu-
nate state of affairs since out of Mott insulators many of the most interesting new materials and
novel physics develops.

The second part of the chapter develops a more formal set of mathematical criteria for distin-
guishing metals, insulators, and superconductors, one which focussed directly on the current-
current correlation function (and hence, in a sense, can be viewed as a proper treatment of the
quantities in Eq. (1) !) This closely follows the discussion of Scalapino, White, and Zhang in
Ref. [1]. These criteria will be shown to give sensible results both in simple analytic treat-
ments and also with QMC methods. In the latter case, disorder can also be included, along with
interactions.

The final section will outline alternative approaches to distinguishing metallic, insulating, and
superconducting behavior which involve an approximate formula for the conductivity and an
examination of the single particle spectral function.
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2 A brief introduction to tight-binding Hamiltonians
Metals and band insulators

Tight-Binding Hamiltonians (TBH) allow for a simplified description of electrons in a solid,
which complements methods like density functional theory. Rather than calculate the wave
functions in continuum space, one instead focuses on a collection of discrete sites or orbitals
which the electrons can occupy and, between which, make transitions. We will assume the
student has some familiarity with second quantization, which forms the language of TBHs. We
begin with the simplest TBH

Ĥ = −t
∑
〈 j,l 〉σ

(
ĉ†jσ ĉlσ + ĉ†lσ ĉjσ

)
− µ

∑
j

(
n̂j ↑ + n̂j ↓

)
. (2)

Ĥ consists of a kinetic energy term which describes the destruction of a fermion of spin σ

on site l, via the operator ĉlσ, and its re-creation on site j, via the operator ĉ†jσ; and a chem-
ical potential term. The creation and destruction operators obey anticommutation relations
{ĉ†jσ, ĉ

†
lσ′} = {ĉjσ, ĉlσ′} = 0 and {ĉjσ, ĉ

†
lσ′} = δj l δσ σ′ , which guarantee that they describe

fermionic particles. As one consequence, the number operators n̂jσ = ĉ†jσ ĉjσ can take only the
values 0, 1.

The symbol
〈
j, l
〉

in Eq. (2) denotes the collection of pairs of sites between which the hopping
of electrons is allowed. Very commonly, this is restricted to the near neighbor sites of some
periodic lattice, for example a one-dimensional chain, two dimensional square, triangular, or
honeycomb lattice, etc. Because there are no interactions, the two spin species σ =↑, ↓ can,
for the moment, be considered independently. We will define the density ρ to be the number of
fermions per lattice site.

For most of this chapter, we will assume periodic boundary conditions. In this situation, the
translation invariance of the geometry suggests that going to momentum space will simplify
our understanding. Indeed, if we introduce

ĉ†kσ =
1√
N

∑
j

e+ik·j ĉ†jσ ĉ†jσ =
1√
N

∑
k

e−ik·j ĉ†kσ , (3)

the Hamiltonian Eq. (2) becomes diagonal: rather than destruction on one spatial site being
partnered with creation on a different spatial site, creation and destruction processes only occur
between identical momenta. It is worth emphasizing that the new ‘momentum creation and
destruction operators’ obey the same anti-commutation relations of the original operators in
real space, so that each of the momenta states k can be occupied by at most one fermion of each
spin species.

Let’s consider, for concreteness, a one dimensional chain. The explicit calculation is (ignoring
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the chemical potential term)

Ĥ = −t
∑
j,σ

( ĉ†j σ ĉj+1σ + ĉ†j+1σ ĉj σ )

= − t

N

∑
j,σ

∑
k

∑
k′

(
e−ik j ĉ†k σe

+ik′ (j+1)ĉk′ σ + e−ik (j+1)ĉ†k σe
+ik′ j ĉk′ σ

)
= − t

N

∑
k

∑
k′

∑
j σ

e+i(k
′−k) j(e+ik′ + e−ik

)
ĉ†k σ ĉk′ σ . (4)

If we use the orthogonality relation
∑

j e
+i(k′−k) j = Nδk k′ (which is also employed in the

inversion of the site to momentum transformation of Eq. (3)) we obtain the Hamiltonian in
momentum space

Ĥ =
∑
k σ

−2t cosk ĉ†k σ ĉk σ . (5)

The structure of Eq. (5) is quite general, that is, also correct in higher dimension and on different
lattice structures. For an arbitrary TBH,

Ĥ =
∑
kσ

εk n̂kσ n̂kσ = ĉ†kσ ĉkσ . (6)

As noted earlier, Ĥ is diagonal in the momentum indices, so that a state characterized by the
occupation of certain momenta is an eigenstate of Ĥ with an energy equal to the sum of the
corresponding εk. This is, obviously, not true of position occupation number states. Different
lattice geometries are encapsulated in the specific dispersion relation εk. Summarizing, then,
when viewed in momentum space there is a single, continuous, ‘energy band’ which is, at T = 0

occupied by two, spin ↑ and ↓, fermions for all εk < µ. Such a model is always metallic, except,
at zero temperature T , in the trivial limits where µ is below the lowest level in the band, i.e.,
when there are no fermions on the lattice (ρ = 0) or when µ is above the highest level in the
band, i.e., when every level is occupied (ρ = 2).
A more interesting situation arises when multiple energy bands are present. This can occur in a
variety of ways. Again focussing on a one dimensional chain, consider an additional staggered
potential ∆

∑
j(−1) j njσ = eiπjnjσ in the Hamiltonian. When one goes to momentum space

the staggered potential mixes momenta k and k + π:

∆
∑
j

(−1)j c†jcj = ∆
1

N

∑
j

∑
k

∑
p

eiπj e−ikj c†k e
+ipj cp = ∆

∑
k

c†kck+π . (7)

(We have used the orthogonality relation
∑

j e
+i(p+π−k) j = Nδk p+π again.) Now, going to

momentum space has not fully diagonalized the Hamiltonian: the wavevectors k and k+π mix.
Using the forms already written down for the hopping term,

H =
∑
k

(
c†k c†k+π

)( −2t cos k ∆

∆ −2t cos (k + π)

)(
ck
ck+π

)
, (8)
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Fig. 1: The dispersion relation of a one dimensional non-interacting TBH before (black) and
after (red, blue, green) a staggered potential (−1)j n̂j is added. The staggered potential opens
a gap near k = ±π/2 and leads to insulating behavior at half-filling.

where the k sum is over the reduced Brillouin zone −π/2 < k < π/2, so as not to overcount
the modes.
This structure is not restricted to a one dimensional chain, but will arise for any ‘bipartite’ lattice
(that is, one whose sites divide into two sets A and B such that the neighbors of A belong only
to B and vice-versa. In this general situation, momenta k and k + ~π mix. One must still do a
final diagonalization of the 2x2 matrices in Eq. (8). The allowed energy levels are

Ek = ±
√
ε2k +∆2 , (9)

where k ranges only over the reduced Brillouin zone containing only one of each pair k and
k+ ~π. The dispersion relation of Eq. (9) has a gap 2∆ separating the positive and negative Ek.
The system is insulating, not just in the trivial limits when there are no electrons on the lattice or
when all sites are fully occupied, but also at half-filling ρ = 1, which occurs when the chemical
potential −2∆ < µ < +2∆. See Fig. 1
One way of diagnosing such a band insulator is by computing ρ(µ). Within an energy band, the
density ρ increases as the chemical potential µ is raised. However, for µ in the gap, ρ is constant.
This plateau in ρ(µ) reflects a vanishing of the electronic compressibility κ = ∂ρ/∂µ = 0. We
will see that this criterion for insulating behavior applies also to interaction-driven situations,
but not to the disorder-induced Anderson insulator.
In the discussion above we generated multiple bands and a band gap through an additional stag-
gered potential. One could also generalize the original TBH, Eq. (2), so that several fermionic
species are present. One can, for example, allow two orbitals (and associated operators ĉ and d̂)
on every site of a square lattice,

Ĥ =− t
∑
〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ )− t
∑
〈 j,l 〉σ

( d̂†jσd̂lσ + d̂†lσd̂jσ )

− t′
∑
jσ

( d̂†jσ ĉjσ + ĉ†jσd̂jσ )− µ
∑
j

(n̂dj ↑ + n̂dj ↓ + n̂cj ↑ + n̂cj ↓) . (10)
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Each of the individual fermionic species associated with operators ĉ and d̂ hops on near-neighbor
sites. However, the two types of fermions are also allowed to interconvert on the same site of
the lattice, with hopping parameter t′.
Once again going to momentum space, the mixing of the two fermionic species leads to

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kσ

εkd̂
†
kσd̂kσ + t′

∑
kσ

(
d̂†kσ ĉkσ + ĉ†kσd̂kσ

)
=
∑
k

(
c†k d†k

)( εk t′

t′ εk

)(
ck
dk

)
. (11)

The final 2x2 rotation yields the energy levels,

E±k = −2t
(
cos kx + cos ky

)
± t′ . (12)

This band structure is somewhat more rich than that which arises from a staggered potential,
where a gap opens for any nonzero ∆. Here, instead, the bands overlap for t′ < 4 t and the
system is always metallic (except for ρ = 0 or ρ = 2). However, it can be made insulating at
ρ = 1 if t′ > 4 t. The TBH of Eq. (10) is sometimes used to describe ‘bilayer’ geometries,
where c and d label two different spatial layers, as opposed to distinct orbitals.
The considerations of this section have described the simplest type of metal-insulator transition:
Fermions which are noninteracting, on a translationally invariant lattice such that the placement
of the chemical potential either within one of the energy bands (a metal) or in a gap between
them (insulator).

3 Antiferromagnetic and charge density wave insulators

Insulating behavior which is closely connected, from the viewpoint of mathematical structure,
to that of the previous section arises when interactions are included within mean-field theory
(MFT). Consider the most simple type of TBH interaction, a repulsion between spin up and spin
down fermions on the same spatial site. Together with the kinetic energy of Eq. (2) we obtain
the Hubbard Hamiltonian,

Ĥ = −t
∑
〈 j,l 〉σ

(
ĉ†jσ ĉlσ + ĉ†lσ ĉjσ

)
− µ

∑
j

(
n̂j ↑ + n̂j ↓

)
+ U

∑
j

n̂j ↑n̂j ↓ . (13)

The MFT approximation consists of recasting the interaction term in Eq. (13) as,

U
∑
j

(
n̂j ↑ 〈n̂j ↓〉+ n̂j ↑ 〈n̂j ↓〉 − 〈n̂j ↑〉 〈n̂j ↓〉

)
. (14)

It is clear that if the fermionic occupations possess an antiferromagnetic (AF) pattern, 〈n̂j↑〉 =
ρ+ (−1)jm and 〈n̂j↓〉 = ρ− (−1)jm, on a bipartite lattice, then a staggered potential similar
to that described by Eq. (7) is present. As a consequence of this ‘spin density wave’ (SDW), a
band gap opens and ‘Slater’ insulating behavior arises, in direct analogy of the argument leading
up to Eq. (8).
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Although this MFT treatment of the Slater insulator is indeed close to that of a staggered poten-
tial, it is worth emphasizing that AF can also arise away from ρ = 1. Of course, it is necessary
to determine whether the ansatz for 〈njσ〉 in which the occupations vary spatially actually low-
ers the free energy for nonzero m. The answer will depend, in general, on U and ρ and can be
used to generate the MFT phase diagram. The result for the d = 2 square lattice is given in [2].
Note that it is also possible that a ‘ferromagnetic’ ansatz 〈n̂j↑〉 = ρ +m and 〈n̂j↓〉 = ρ −m,
lowers the energy. This is quite a bit less likely to lead to an insulating gap since, as discussed
above within the context of a bilayer model, a large order parameter m is required to introduce
a gap between energy bands which are rigidly shifted, whereas a gap immediately opens for any
staggered potential amplitude ∆.
A similar type of insulator arises when fermions interact with local phonon (oscillator) modes
p̂ j, q̂ j, rather than with each other, e.g. in the Holstein model

ĤHolstein − t
∑
〈 j,l 〉σ

( ĉ†jσ ĉlσ + ĉ†lσ ĉjσ ) +
1

2

∑
j

(
p̂2j + ω2q̂2j

)
+ λ

∑
j

(
n̂j↑ + n̂j↑

)
q̂ j . (15)

One can get a preliminary understanding of its physics by ignoring the phonon kinetic energy
and considering only static ionic displacements. On a bipartite lattice, an oscillating set of
displacements 〈 q̂ j 〉 = q0(−1)j opens a gap in the fermion dispersion relation precisely as
with a staggered potential associated with an AF spin pattern. Unlike the latter case, however,
the resulting densities of up and down spin are in phase, leading to a charge density wave
(CDW) as opposed to a SDW. At half-filling, the lowering of the electronic energy from εk
to Ek = −

√
ε2k +∆2 favors non-zero values of q0. Against this competes the increase in the

potential energy ω2
0 q

2
0/2. Which effect dominates depends on the phonon frequency ω0, the

electron-phonon coupling λ, the dimensionality of the lattice, and, of course, a proper treatment
of quantum fluctuations of the phonons.

4 Anderson and Mott insulators

In this section we combine a discussion of two distinct types of insulator, those arising from
disorder and those arising from strong repulsive interactions.
Anderson insulators develop from randomness in a tight binding Hamiltonian. We begin our
discussion by considering a one dimensional TBH with a single site at the chain center N/2
with a lower energy than all the others

Ĥ = −t
∑
j,σ

(
ĉ†j σ ĉj+1σ + ĉ†j+1σ ĉj σ

)
− µ0 c

†
N/2 ,σcN/2 ,σ . (16)

Figure 2(top left) shows the eigenenergies, obtained numerically by diagonalizing Ĥ . Since
translation invariance is broken by the impurity, we no longer label the eigenvalues with a
momentum index k. Nevertheless, all but one of the eigenvalues form a band, which looks very
much like the ε(k) = −2t cos(k) in the absence of the impurity (µ0 = 0). However, there is
one extremal eigenvalue split off from all the others, which we have placed at n = 512. This
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Fig. 2: Top Left: Eigenspectrum of the TBH Eq. (16) for a chain of length N = 512 and
impurity depths µ0 = 0.05, 0.10, 0.20, 0.50. Shown over their full range, the energy levels are
indistinguishable from each other and from those of Fig. 1. Top Right: A blow-up of the eigen-
spectrum allows the resolution of the impurity level split off below the energy band. Bottom Left:
Participation ratios of all eigenvectors are of order the number of sites N , except for the single,
localized mode. Bottom Right: The square of the components of the associated eigenfunctions,
in the vicinity of the defect at N/2 = 256. As the impurity depth µ0 decreases, the eigenfunc-
tions are less localized. Since momentum is no longer a good quantum number in the presence
of the breaking of translation invariance by the defect, the horizontal axes in the top row are
labeled by the eigenvalue index j rather than k.

separation is clear in the blow up of Fig. 2(top right). Figure 2(bottom right) plots the square
of the amplitude of the components

∣∣φj∣∣2 of the localized eigenfunctions. They are seen to be
sharply peaked at N/2.
A useful way to characterize the spatial extent of an eigenfunction with components φj (which
we assume are normalized to

∑
j

∣∣φj∣∣2 = 1) is via the participation ratio P

P−1 =
∑
j

∣∣φj∣∣4. (17)

If the eigenfunction is fully localized on a single site j0, that is, if φj = δ(j, j0), it is easy to see
P−1 = 1 and hence P = 1. On the other hand, if the eigenfunction is completely delocalized
φj = 1/

√
N we have P−1 = 1/N and hence P = N . By considering other cases one can
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be convinced that, roughly speaking, P measures the number of sites in the lattice where φj is
“large.” Figure 2(bottom left) plots these participation ratios. They are all of the order of the
lattice size N (meaning the states are delocalized) except for a single mode (j = 512) which is
localized.
This problem is formally very similar to that of localization of vibrations of a harmonic chain
with a single massm′ or spring k′ which differs from all the others, in the sense that the solution
of both reduces to diagonalization of the same type of matrices. In the case of vibrations, it is
interesting to note that localization occurs only for a defect mass which is lighter than all the
others. This can be seen to be physically reasonable in the extreme limits: If m′ � m, one
pictures the very light mass as vibrating back and forth between the heavy ‘walls’ provided by
its neighbors. A heavy defect, m′ � m, shoves aside its neighbors and its vibrations spread
throughout the chain.
The problem of a small number of impurities in a noninteracting TBH can be treated analyti-
cally [3]. The procedure is sufficiently interesting and important to provide the initial steps here.
In order to connect this discussion with the previous material, it is useful to recall an alternate
approach to the solution of noninteracting TBHs.
We solved Eq. (2) by a rather sophisticated method, namely by doing a canonical transformation
on the fermionic creation and annihilation operators which diagonalized Ĥ . A less sophisticated
solution is to construct the matrix for Ĥ using position occupation states as a basis. This is done
in the usual way, by allowing Ĥ to act on each basis vector. Because Ĥ conserves particle num-
ber (fermion creation and destruction operators always appear as partners), its matrix consists
of independent blocks corresponding to the particle number. For a linear chain of N sites with
periodic boundary conditions, then

Ĥ | 1 0 0 0 0 0 · · · 0 0 〉 = −t | 0 1 0 0 0 0 · · · 0 0 〉 − t | 0 0 0 0 0 0 · · · 0 1 〉
Ĥ | 0 1 0 0 0 0 · · · 0 0 〉 = −t | 1 0 0 0 0 0 · · · 0 0 〉 − t | 0 0 1 0 0 0 · · · 0 0 〉
Ĥ | 0 1 0 0 0 0 · · · 0 0 〉 = −t | 1 0 0 0 0 0 · · · 0 0 〉 − t |0 0 1 0 0 0 · · · 0 0 〉

· · · etc. (18)

The calculation of the single particle eigenstates φ and eigenenergies E, in the absence of an
impurity, therefore corresponds to the linear algebra problem,∑

n

Lmn φn = 0 Lmn = E δmn − t δm,n−1 − t δm,n+1 , (19)

where L is the matrix of numbers which forms the single particle block of Ĥ in the occupation
number basis.
The nontrivial solution of Eq. (19) requires the vanishing of the determinant |L | = 0. It is an
easily proven that the k component of the nth eigenvector is φn = eikn, and Ek = −2 t cosk,
solve Eq. (19). The periodic boundary conditions discretize the allowed k values to k = 2πn/N

with n = {1, 2, 3, . . . , N}. Notice that this solution is precisely the same as that arising from
the transformation to momentum space operators, Eq. (5)!
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Fig. 3: The qualitative physics of the Mott insulator is seen by considering a half-filled system
(one particle per site). Left: When the on-site repulsion U between particles is weak, they are
free to hop around the lattice. Empty, singly, and doubly occupied sites are all present, with
only the average density equalling one particle per site. Right: On the other hand, when U is
very large compared to t, it is energetically preferable for the particles to sit with exactly one
fermion on each individual site.

This second approach to the problem lends itself nicely to an attack on the behavior in the
presence of randomness. One can write the problem as,∑

n

Lmn φn =
∑
k

δLmk φk →
(
I −GδL

)
φ = 0 , (20)

where δL is the matrix which contains the local chemical potentials and G = L−1. In the case
of Eq. (16), δL has a single nonzero entry along its diagonal.
A solution to Eq. (20) is,

φn =
∑
lk

Gnl δLlk φk . (21)

However, this a only ‘formal’ solution because the unknown variables φn appear on both sides
of Eq. (21). However, note that the non-trivial solution of Eq. (21) requires | I − GδL | = 0.
The important observation is that the sparsity or δL enormously simplifies the linear algebra
problem. Instead of rank N , the matrix I − Gδ L whose determinant must be computed
has much lower rank. Furthermore, the solution of the eigenproblem of L is known, we have
an explicit expression for the Green function, Gnl =

∑
k e

ik(n−l)/Ek. Amazingly, then, the
problem of the modes in the presence of n � N defects boils down to the diagonalization of
an n × n matrix, whose elements involve the known defect potential δL and Green function
G. Ref. [3] provides some explicit examples, and a beautiful graphical solution of several
interesting cases.
Having discussed the situation when there is a single, or small number of, defects, it is natural
to ask what happens when there are many impurities present, for example when there is a
randomly chosen chemical potential on every site of the lattice. This is the problem of ‘Anderson
Localization’ [4]. In one dimension, all the eigenstates become localized, for any amplitude of
disorder. This is also true in two dimensions, although just barely [5]. In three dimensions, the
eigenfunctions at the extremes of the spectrum (that is, those associated with the largest and
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x
t t

Fig. 4: The Pauli Principle prevents fermions of like spin on adjacent sites from hopping
(left), a process which is allowed if the fermions have opposite spin (right). In the case of
antiparallel spin, the intermediate state created by the hop has a doubly occupied site, and
hence a potential energy U . The resulting second order lowering of the energy relative to the
parallel spin arrangement is proportional to −t2/U .

smallest eigenvalues) are localized, while the eigenfunctions near the center of the spectrum are
extended. The energy which separates these two behaviors is referred to as the mobility edge.
In 3D one has the appearance of Anderson insulating behavior, and the possibility of associated
metal-insulator transitions: If the chemical potential lies below the mobility edge, only localized
eigenfunctions are occupied, and the system is an insulator. When µ crosses the mobility edge,
extended states become occupied, and the system becomes a metal. It is important to emphasize
that, in stark contrast to the band, SDW, and CDW insulators previously discussed, there is no
gap in the spectrum. The compressibility κ is nonzero in the insulator, and a plot of density ρ as
a function of chemical potential µwould show no marked signal at the transition from Anderson
insulator to metal.
The final qualitative discussion concerns “Mott insulators,” whose behavior arises from inter-
actions, as opposed to gaps in the band structure or localization by disorder. Consider a single
band Hubbard Hamiltonian, for example on a square lattice, at “half-filling” (one electron per
site). The simple physical picture of a Mott insulator is that if the on-site repulsion U is very
large, the energy cost for the double occupation which must occur in order for the electrons to
move, overwhelms the kinetic energy and freezes the electrons in place. See Fig. 3.
Although in Fig. 3 the spin orientations of the fermions are not indicated, it is natural to ask
if they have any preferred arrangement. There are several arguments which suggest AF order.
The first treats the hopping term in the Hubbard Hamiltonian Eq. (13) perturbatively. Consider
two adjacent sites, both singly occupied with fermions of parallel spin. The interaction energy
is zero, and, because of the Pauli Principle, the matrix element of the kinetic energy in this
state vanishes, so there is no shift in the energy. If the fermions have antiparallel spin, however,
the kinetic energy operator connects to an intermediate state with one empty and one doubly
occupied site, with energy U . Thus the energy of a pair of sites with antiparallel spin fermions
is lowered by ∆E ∼ −t2/U . See Fig. 4. There are other arguments suggesting AF dominates
at half-filling, for example a calculation of the magnetic susceptibility of the Hubbard Hamil-
tonian within the random phase approximation. A very nice early discussion of these ideas,
emphasizing several unique features of the square lattice dispersion, is contained in Ref. [2].
Figure 5 shows some quantum simulation results for the square lattice Hubbard Hamiltonian
at U = 4. ρ(µ) develops a ‘Slater-Mott’ plateau at half-filling. (See below.) The figure uses
a convention in which the interaction term is written in particle-hole symmetric form so that
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Fig. 5: Left: The density ρ as a function of the chemical potential µ for the Hubbard Hamilto-
nian on a square lattice at U = 4t and three different inverse temperatures β = t/T = 4, 6, 8.
As β increases, Right: The density of fermions at a nonzero chemical potential, as a function of
β shows that ρ→ 1.

µ = 0 corresponds to ρ = 1. The vanishing of the compressibility, κ = 0, at ρ = 1 is a
truly remarkable change in behavior since, on the square lattice, the noninteracting system has
a divergent density of states at half-filling: κ = ∞ at U = 0! The algorithm used in the
figure is ‘determinant QMC’. This approach treats the interactions between electrons exactly,
on lattices of finite spatial extent (a few hundred up to about a thousand spatial sites), and thus
provides a much more rigorous treatment than that provided by MFT. The reader is referred to
Refs. [2, 6–8] for a discussion of DQMC and its application to magnetism in the 2D Hubbard
Hamiltonian.
The review of these ideas emphasizes an important point: in many situations (especially on
bipartite lattices) a ‘Slater insulator,’ which occurs at weak to intermediate U due to the opening
of an AF gap, merges smoothly, as U increases, into the Mott insulator where the lack of
transport predominantly arises from the high cost of double occupancy. There is no sharp
boundary between these two types of insulator, but rather a gradual crossover. A very deep
question indeed is whether for fermionic systems symmetry breaking such as AF order always
accompanies the Mott insulator, or whether a featureless, translationally invariant Mott phase
can occur, as for collections of bosonic particles [9].

5 Formal definitions

The proverbially alert reader will have noticed that the preceding discussion avoided what would
seemingly be the most natural quantity to distinguish metals and insulators, namely the conduc-
tivity σ. This is because transport properties are a bit more subtle to deal with. We will now
consider σ and develop an understanding, which unifies the preceding, more qualitative, dis-
cussion. An added bonus will be the fact that the superfluid density, the defining characteristic
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of a superconductor, naturally arises. The discussion in this section very closely follows that of
Ref. [1]. The derivation is a bit dense. The key ‘practical results’ are Eqs. (30) and (31) which
allow for the determination of Drude weight D and superfluid density Ds from the current-
current correlation function Λxx.
Consider the response of the current to presence of a vector potential Ax(l). As shown in
Ref. [10], this modifies the hopping term in the kinetic energy (suppressing the spin indices),

c†l+xcl + c†l cl+x → eieAx(l)c†l+xcl + e−ieAx(l)c†l cl+x . (22)

This can be expanded in powers of A so that the kinetic energy K acquires an additional term
which can be expressed in terms of the paramagnetic current density in the x direction ejpx(l)
and the kinetic energy density on bonds in the x direction, kx(l),

KA = K −
∑
l

(
ejpx(l)Ax(l) +

e2kx(l)

2
Ax(l)

2
)

(23)

jpx(l) = it
∑
σ

(
c†l+xσclσ − c

†
lσcl+xσ

)
kx(l) = −t

∑
σ

(
c†l+xσclσ + c†lσcl+xσ

)
.

Differentiating Eq. (23) with respect to Ax(l) yields the total current density, which includes
both paramagnetic and diamagnetic contributions,

jx(l) = −
δKA

δAx(l)
= e jpx(l) + e2 kx(l)Ax(l) (24)

If one assumes a plane wave form for the vector potential,

Ax(l, t) = Re
(
Ax(q, ω) e

iq·l−iωt) , (25)

then the resulting current is,

〈jx(l, t)〉 = Re
(
〈 jx(q, ω)〉 eiq·l−iωt

)
〈 jx(q, ω)〉 = −e2

(
〈kx〉 − Λxx(q, ω)

)
Ax(q, ω) . (26)

The real-frequency current-current correlation functions Λ(q, ω) are related to those at Matsub-
ara frequencies iωm = 2πmT ,

Λxx(q, iωm) =
1

N

∫ β

0

dτeiωmτ 〈jpx(q, τ)jpx(−q, 0)〉 , (27)

by analytic continuation.
Equations (26), (27) and the calculations leading to them are simply somewhat more complex
versions of the relations such as the one which expresses the magnetization induced by an
applied Zeeman field, to the magnetization-magnetization correlation functions and thereby the
magnetic susceptibility χ, or any of the other multitude of ‘fluctuation-dissipation’ relations
which arise from linear response theory.
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It remains to connect this rather abstract quantity to more physical objects like the superfluid
density: For bosonic particles, the superfluid density can be measured in, for example, a tor-
sional oscillator experiment. As T is decreased below the superfluid transition temperature, the
moment of inertia of a liquid in a container abruptly decreases, because the liquid inside no
longer couples to the walls of the container. As we discuss below, for fermionic particles the
superfluid density determines the distance to which a magnetic field penetrates a superconduc-
tor.
One of the early fundamental advances in understanding superconductivity was London’s ob-
servation that the Meissner effect follows if one assumes the current density is proportional to
the vector potential,

jx(qy) = −
1

4π

1

λ2
Ax(qy) . (28)

That is, magnetic fields will be expelled from a superconductor at distances beyond the pene-
tration depth λ,

1

λ2
=

4πnse
2

mc2
, (29)

which depends on the superfluid density ns. A comparison of Eqs. (28), (29) with Eq. (26)
provides a link between the superfluid weight Ds = ns/m and the current-current correlation
function:

Ds

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy → 0, iωm = 0) . (30)

The usual relations between vector potential and electric field, Ex = −∂Ax/∂t, and between
the conductivity and electric field, result in an analogous formula for the Drude weight, the delta
function contribution Dδ(ω) to the conductivity,

D

πe2
= −〈−kx 〉 − Λxx(qx = 0, qy = 0, iωm → 0) . (31)

Details of this connection are in Ref. [1].
The third limit, in which the longitudinal momentum is taken to zero, relates Λ to the kinetic
energy,

〈−kx 〉 = Λxx(qx → 0, qy = 0, iωm = 0) . (32)

Summarizing, the key results are the following: Depending on the limits in which the momenta
and frequency are taken to zero, one can obtain superfluid densityDs and Drude weightD from
the current-current correlation function.
The superfluid density Ds and the Drude weight D form a basis for distinguishing an insulator
(D = Ds = 0), from a metal, (D 6= 0, Ds = 0), from a superconductor (Ds 6= 0). It is
rather remarkable that these alternate limits of approaching zero momentum and frequency
yield distinct results and profoundly different physical quantities, especially to physicists who
are accustomed to not being overly worried about the subtleties of the order of operations.
We will introduce the simplified notation ΛL ≡ limqx→0 Λxx(qx, qy = 0; iωn = 0) and ΛT ≡
limqy→0 Λxx(qx = 0, qy; iωn = 0) so that Eqs. (30) and (32) can be simply expressed as Ds =

π[−Kx − ΛT ] and −Kx = ΛL respectively.
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Fig. 6: Left: Kinetic energy Kx, longitudinal ΛL, and transverse ΛT limits of current-current
correlation function for the attractive Hubbard model with U = −4 t at temperature T = 0.1
and filling ρ = 0.875. The horizontal axis is the strength of random site energies −V < µi <
+V . The data indicate that ΛL = −Kx over all parameter ranges, as required by gauge
invariance. Right: The superfluid density Ds = π

(
−Kx−ΛT

)
and Drude weight D. To within

the accuracy of the numerics, D = Ds. See Eqs. (30), (31), and also Fig. 7

6 Applications of formal theory

Ref. [1] considered the simplest TBHs to check their formalism, namely the clean, single band
attractive and repulsive Hubbard Hamiltonians on a square lattice. Here we present results [11]
on a TBH which also includes disorder in the site energies (an additional term

∑
i vi(ni↑ + ni↓)

in the Hubbard Hamiltonian), to illustrate how powerful and general Eqs. (30), (31) truly are.
We use the same DQMC approach which generated the data shown in Fig. 5 (and which was
used in [1]). We note, however, that the implementation of these criteria within DQMC requires
the evaluation of imaginary time-dependent observables, as opposed to the algorithmically more
simple equal time quantities like the energy, density, and magnetic, charge, and pairing structure
factors. Such calculations slow down DQMC simulations quite significantly, especially at low
temperatures and on large spatial lattices.
It is important to note that, while the presence of randomness breaks translation invariance
for a single disorder realization, translation invariance is recovered after disorder averaging.
Typically one finds calculations for 10-100 distinct instances of the local site potential {vi} are
required in DQMC simulations such as those described here.
Results from [11] for ΛT , ΛL and −Kx are plotted in Fig. 6(left) as a function of the strength V
of randomness in the site energies−V < vi < +V . The attractive interaction strength U = −4,
temperature T = 0.10, and density ρ = 0.875. D and Ds are plotted in Fig. 6(right). They
decrease monotonically with disorder. There is a critical value Vc beyond which D = Ds = 0

and the system becomes insulating. These results are consistent with a direct superconductor to
insulator transition in 2D, without an extended intervening metallic phase.
Figure 7 provides some numerical details on the extrapolation in Matsubara frequencies which,
following Eq. (31), is needed to captureD. Similar plots showing the momentum extrapolations
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Fig. 7: Illustration of the details of the extrapolation procedure to obtain the Drude weight D
via Eq. (31). The horizontal axis n = ωn/(2πT ). Parameters are as in Fig. 6. In the metallic
phase, which occurs precisely at the critical point V = Vc ∼ 3.25, the slope of D(ωn) can be
used to obtain σdc. See text.

to obtain Ds and verify ΛL = −〈Kx 〉 are not shown, but can be found in Ref. [1]. Note that
in general the simulations are performed in a regime where there are up to several hundred
Matsubara frequencies, but only 10-30 momenta in each direction, an order of magnitude less.
Thus the momentum extrapolations needed for ΛL and ΛT are typically more challenging than
those for D.
As argued in Ref. [1], the extrapolation in Fig. 7 can also be used to obtain the dc conductivity
via

D(ωn) = πσdc|ωn| . (33)

We will use this as a consistency check against alternate ways of quantifying the metal-insulator
transition and obtaining σdc.

7 Conductivity and spectral function

This final section before the conclusions will focus on two further QMC approaches to the
metal-insulator transition. The first technique, like those of Sec. 6, begins with the current-
current correlation function, but has the advantage of avoiding analytic continuation and ex-
trapolation to zero momentum or frequency. It is, however, approximate. The second method
moves away from Λxx and instead considers the spectral function.
Consider the fluctuation-dissipation theorem

Λxx(q, τ) =

∫ +∞

−∞

dω

π

exp(−ωτ)
1− exp(−βω)

ImΛxx(q, ω) . (34)

In principle one can invert this Laplace transform to get ImΛxx, but this process is known to be
very ill-conditioned [12]. We instead proceed as follows: If the temperature T � Ω, the scale
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Fig. 8: Left: The resistivity ρdc = 1/σdc obtained from Eq. (35) as a function of temperature.
The on-site attraction U = −4 t and the density ρ = 0.875. The curves are (top to bottom)
for disorder strengths V = 5.0, 4.5, 4.0, 3.5, 2.0, 2.5, 2.0, 1.5, 1.0. For large V , ρdc increases
as T is lowered, indicating insulating behavior. For small V , ρdc decreases as T is lowered,
indicating metallic behavior. The open symbol at T = 0.10 is the value of ρdc inferred from the
V = Vc data in Fig. 7. See text. Right: The data are replotted to show ρdc as a function of V for
curves of constant T . The crossing indicates the approximate position Vc of the metal-insulator
transition. For these parameters, the superconducting transition temperature Tc . 0.05t, so
no abrupt drop in ρdc occurs. The quantum of resistance ρQ = h/(4e2) = π/2 in our units
(~ = e2 = 1).

at which ImΛ deviates from its low frequency behavior ImΛ ∼ ωσdc, it is useful to evaluate
Eq. (34) at the largest possible imaginary time, τ = β/2. By doing this, the factor e−ωτ cuts off
all contributions to the integral for frequencies above Ω, allowing us to replace ImΛ by ωσdc,
and enabling an analytic evaluation of the integral. The result

σdc =
β2

π
Λxx(q = 0, τ = β/2) , (35)

provides a very useful approximate formula for σdc, subject to the restrictions noted above.
The reasoning leading to Eq. (35) is dubious for non-random systems: for example, for a Fermi
liquid, the scale Ω ' 1/τe−e ∼ N(0)T 2, so that it is impossible to satisfy T � Ω at low T .
However, in the presence of strong disorder Ω it is set by V. Since Ω is T -independent, it is
possible to lower the temperature sufficiently far in the DQMC simulation to make Eq. (35)
applicable.
There is a quite nice consistency between the different methodologies to characterize the phases
of the model, and even the quantitative values of the conductivity. For example, Fig. 6 shows an
onset of nonzero D and Ds for V in the range 3 . V . 4 as the disorder strength is decreased.
These results are based on Eqs. (30), (31). Meanwhile, the crossings of the data for ρdc in
Fig. 8 indicate Vc ∼ 3.5. Here Eq. (35) was utilized. Analysis of D based on Eq. (31) yields
Vc ∼ 3.25 and, furthermore, via Eq. (33), gives a numerical value for σdc which agrees quite
closely with Eq. (35). This sort of careful cross-checking of numerics is of course essential in
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Fig. 9: Superconducting-insulator transition in thin amorphous Bi films as a function of carrier
density [17]. Note the qualitative similarity to Fig. 8. (As noted in the caption to Fig. 8, the less
abrupt drop in the DQMC data is a consequence of the fact that T > Tc over the temperature
range shown.)

any calculational approach, but is especially important in QMC studies of interacting fermions,
where limitations of finite size and the sign problem are especially acute.

As a connection to real materials, we observe that the curves in Fig. 8 are remarkably similar
to those found in the experimental literature on the two dimensional superconductor-insulator
transition (SIT) in the presence of disorder [13]. In these studies, the SIT has been accessed
in a wide variety of ways: by explicitly changing the degree of microscopic disorder (similar
to the model studied here in which V is varied, by altering the film thickness, by applying a
magnetic field, or by changing the carrier density. An example of the latter tuning method is
given in Fig. 9. With DQMC, different ways of driving the SIT have also been explored with
DQMC [11, 14–16].

One further method of distinguishing metals and insulators relies on the computation of the
momentum-resolved spectral functionA(q, ω) and its sum, the density of states. The formalism
is similar to that of Eq. (34), except involving the single-particle Green function G(q, τ).

G(q, τ) =

∫ +∞

−∞
dω

exp(−ωτ)
1 + exp(−βω)

A(q, ω) N(ω) =
∑
q

A(q, ω) . (36)

Figure 10 shows what this diagnostic discloses concerning the square lattice Hubbard Hamilto-
nian at half-filling. One observes that N(ω = 0) → 0 as T → 0 both for weak U , the ‘Slater
insulator’ driven by SDW order, and at intermediate U where the crossover begins to Mott in-
sulating behavior. The size of the insulating gap is roughly given by the temperature range over
which N(ω = 0) is small. This is seen to increase with increasing U .
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Fig. 10: Density of states at the Fermi surface, N(ω = 0) of the half-filled Hubbard Hamilto-
nian as a function of temperature T for different values of the interaction strength U = 2, 4, 6.
As T → 0, the density of states vanishes in all cases. One concludes the Hubbard Hamiltonian
on a square lattice with ρ = 1 is insulating over the entire range 0 < U <∞.

8 Conclusions

We began this chapter with some simple qualitative pictures of metals and various types of in-
sulators: (i) band insulators which arise when a TBH has several non-overlapping bands and the
chemical potential lies between them; (ii) SDW and CDW insulators whose origin can be un-
derstood within a MFT treatment of interactions between the electrons or between electrons and
phonons; (iii) Anderson insulators formed by disorder; and (iv) the most challenging situation,
Mott insulators driven by strong interactions.
We then turned to a formal way of characterizing metals and insulators in terms of different
limits of the current-current correlation function, and the implications for the conductivity and
superfluid density. Our qualitative pictures of the distinction between metal and insulator in (i)
and (ii) focussed on the spectrum of the Hamiltonian rather than the conductivity. The MFT
treatment of the formal criteria showed the linkage between the two pictures.
The formal criteria have also been used in conjunction with QMC in the solution of the Hubbard
Hamiltonian [1] to show that they indeed work when the interactions are treated more exactly
than in MFT. We gave some illustrations of this approach when disorder and interactions are
both present which serves as a specific model calculation for the superconducting to insulator
phase transition [11], which is so well-explored experimentally [13]. Finally, we showed a
few QMC results for the conductivity, spectral function, and density of states in determining
insulating behavior.
It is worth noting two further approaches to the question of the metal-insulator transition which
have also been widely used in QMC. The first is an analysis of the behavior of the electron
self-energy at small Matsubara frequencies. For a illustration of this method, see [18]. The
second is an analytic continuation of the imaginary time dependent spin, χ(τ) = 〈M(τ)M(0)〉,
and charge, P (τ) = 〈N(τ)N(0)〉, correlation functions. Here M =

∑
i

(
ni↑ − ni↓

)
and N =
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∑
i

(
ni↑ + ni↓

)
. The presence of ‘spin and charge gaps’ in the low frequency behavior of their

Laplace transforms χ(ω) and P (ω) can be used to infer the presence of insulating behavior
associated with spin and charge order. See, for example, [19].
We finish by returning to the opening of this chapter, presenting the reader with a question: In
our first encounter with the idea of conductors, one associates the resistance R in Ohm’s law
with some sort of scattering mechanism which provides for the loss of energy. Where is such
dissipation in models like the clean Hubbard Hamiltonian?
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1 Introduction

By definition, a macroscopically homogeneous material is insulating whenever its dc longitudi-
nal conductivity vanishes, i.e., when the real symmetric part of the conductivity tensor σ(+)

αβ (ω)

goes to zero for ω → 0. Here and throughout Greek subscripts are Cartesian indices. For
a d-dimensional system of volume Ld the conductance G equals Ld−2σ. When measured in
klitzing−1 (symbol R−1K ) conductivity is dimensionless in d = 2, while it has the dimensions of
an inverse length in d = 3. We remind that 1 RK = h/e2 ' 25,813 ohm [1].
Longitudinal conductivity is an intensive material property whose most general form can be
written as

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i

πω

]
+ σ

(regular)
αβ (ω) = σ

(Drude)
αβ (ω) + σ

(regular)
αβ (ω), (1)

where the constant Dαβ goes under the name of Drude weight. The insulating behavior of a
material implies that Dαβ = 0 and that the real symmetric part of σ(regular)

αβ (ω) goes to zero for
ω → 0 at zero temperature.
Eqn. (1) will be expressed below using linear-response theory (Kubo formulas); it may include—
at least in principle—disorder and correlation, but does not include any dissipative mechanisms.
The conductivity obeys the f -sum rule∫ ∞

0

dω Re σαα(ω) =
Dαα

2
+

∫ ∞
0

dω Re σ(regular)
αα (ω) =

ω2
p

8
=
πe2n

2m
, (2)

where n is the electron density and ωp is the plasma frequency. For free electrons (a gas of
noninteracting electrons in a flat potential) σ(regular)

αβ (ω) vanishes, while Dαβ assumes the same
value as in classical physics [2], i.e, Dαβ = πe2(n/m) δαβ: this explains the extraordinary
longevity of Drude theory, developed in the year 1900. Given eqn. (2), switching on the poten-
tial (one-body and two-body) has the effect of transferring some spectral weight from the Drude
peak into the regular term.
Dissipation can be included phenomenologically in the Drude term by adopting a single-relax-
ation-time approximation, exactly as in the classical textbook case [2], i.e.,

σ
(Drude)
αβ (ω) =

i

π

Dαβ

ω + i/τ
, (3)

whose τ →∞ limit coincides with first term in the expression (1).
In the special case of a band metal (i.e., a crystalline system of non interacting electrons)
σ
(regular)
αβ (ω) is a linear-response property, which accounts for interband transitions, and is non-

vanishing only at frequencies higher than a finite threshold. Instead, Dαβ is a ground-state
property which accounts for the inertia of the many-electron system in the adiabatic limit, and
provides an effective value of n/m, where the free-electron value is modified by the periodic
potential. After an integration by parts, Dαβ can be equivalently expressed as a Fermi-surface
integral, and acquires then the meaning of an “intraband” term [3]. As said above, the free-
electron Drude weight is an upper limit for the actual value of Dαβ .
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In 1964 Kohn published the milestone paper “Theory of the insulating state” [5], according to
which insulators and metals differ in their ground state. Even before the system is excited by
any probe, a different organization of the electrons is present in the ground state and this is the
key feature discriminating between insulators and metals. Kohn’s theory remained little visited
for many years until the late 1990s, when a breakthrough occurred in electronic structure theory:
the modern theory of polarization (for historical presentations see, e.g., Refs. [6–8]).
The many-body version of polarization theory appeared in 1998 [9]; shortly afterwards—inspired
by the fact that electrical polarization discriminates qualitatively between insulators and metals—
Resta and Sorella [10] provided a definition of many-electron localization rather different from
Kohn’s, and derived by the theory of polarization. Their program was completed soon after
by Souza et al. [11] (hereafter quoted as SWM), thus providing the foundations of the modern
theory of the insulating state, deeply rooted in geometrical concepts. A couple of review papers
appeared in 2002 [12] and in 2011 [13]. We are going to revisit the theory here. The present
viewpoint differs somewhat from the previous one; some of the results given here are original
and published for the first time.

2 Linear response and conductivity

To start with, we fix our conventions about Fourier transforms

f(ω) =

∫ ∞
−∞

dt eiωtf(t) f(t) =
1

2π

∫ ∞
−∞

dω e−iωtf(ω); (4)

different conventions can be found in the literature.
Suppose we have a general input signal finput(t) and the corresponding output foutput(t), which
is due to the response of a time-independent physical system. The most general linear response
is given by a convolution

foutput(t) =

∫ ∞
−∞

dt′ χ(t− t′)finput(t′), (5)

where χ(t) is the generalized susceptibility. It is easily verified that χ(t) can equivalently be
defined as the response an instantaneous δ-like “kick” at t = 0; causality implies that χ(t) = 0

for t < 0. The convolution theorem yields

foutput(ω) = χ(ω) finput(ω). (6)

Within quantum mechanics at zero temperature, we define χ(t) by means of a perturbation in
the Hamiltonian ∆Ĥ = −δ(t)Â (the “kick”), acting on the system in its ground state. The
response is measured as the expectation value of another operator B̂. Without loss of generality
we simplify our notation by assuming that

〈Ψ0|Â|Ψ0〉 = 0, 〈Ψ0|B̂|Ψ0〉 = 0. (7)
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Time-dependent perturbation theory leads to the Kubo formula for the generalized susceptibil-
ity, which we write in the ω domain adopting the compact notation due to Zubarev [14–16]

χ(ω) = −〈〈B̂|Â〉〉ω; (8)

〈〈B̂|Â〉〉ω =
1

~
lim
η→0+

∑
n6=0

′
(
〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉

ω − ω0n + iη
− 〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉

ω + ω0n + iη

)
, (9)

where ω0n = (En − E0)/~. The positive infinitesimal η ensures causality, and we remind that

lim
η→0+

1

ω ± iη
= P 1

ω
∓ iπδ(ω) , (10)

where P indicates the principal part. We draw attention to the fact that the sign convention
adopted in this chapter agrees with Zubarev [14, 15] and Chandler [17], but is opposite the one
of McWeeny [16] and other textbooks.
We apply the general linear response theory by addressing an interacting N -electron system,
whose most general Hamiltonian we write, in the Schrödinger representation and in Gaussian
units, as

Ĥ(κ) =
1

2m

N∑
i=1

∣∣∣pi +
e

c
A(ri) + ~κ

∣∣∣2 + V̂ ; (11)

the potential V̂ includes one-body (possibly disordered) and two-body (electron-electron) con-
tributions. Equation (11) is exact in the nonrelativistic, infinite-nuclear-mass limit. The velocity
in eqn. (11) is augmented with two terms: A(r) is a vector potential of electromagnetic origin,
and κ, having the dimensions of an inverse length, is called “flux” or “twist”. Setting κ 6= 0

amounts to a gauge transformation. The electrons are confined in a cubic box of volume Ld and
the eigenstates |Ψn(κ)〉 are normalized to one in the hypercube of volume LNd; we will adopt
the simplifying notation |Ψn(κ = 0)〉 = |Ψn〉.
Bulk properties of condensed matter are obtained from the thermodynamic limit: N →∞, L→
∞, with N/Ld constant. Since the following formulas will comprise κ-derivatives evaluated at
κ = 0, it is important to stress that the differentiation is performed first, and the thermodynamic
limit afterwards.
Two kinds of boundary conditions can be adopted for the given Hamiltonian: either periodic
(PBCs) or “open” (OBCs). We briefly address the latter case first: the cubic box confines the
electrons in an infinite potential well, the eigenstates |Ψn(κ)〉 are square-integrable over RNd,
and the position operator r̂ =

∑
i ri is the ordinary multiplicative operator. Within OBCs the

effect of the gauge is easily “gauged away”: the ground-state energy is gauge-independent,
while the ground state is |Ψ0(κ)〉 = e−iκ·r̂|Ψ0〉.
We will come back below (Sec. 7) to OBCs. For the time being we adopt instead Born-von-
Kàrmàn PBCs over each electron coordinate ri independently, whose Cartesian components
ri,α are then equivalent to the angles 2πri,α/L. The potential V̂ enjoys the same periodicity,
which implies that the electric field averages to zero over the sample. As noticed by W. Kohn
in 1964 [5], PBCs violate gauge invariance in the conventional sense: for instance, the ground
state energy E0(κ) actually depends on κ.
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In order to address conductivity it is essential to adopt PBCs: there cannot be any steady state
current within OBCs. Furthermore, since the multiplicative position r̂ is no longer a legitimate
operator within PBCs [9], it is mandatory to adopt the vector-potential gauge for the macro-
scopic electric field E: the perturbation in the Hamiltonian is therefore an ω-dependent vector
potential δA, constant in space.
One key point is that the vector potential modifies the velocity operator. We stick to the symbol
v̂ for the velocity in absence of the perturbation, and at κ = 0: this may include a ground-state
vector potential, but not the perturbing one, i.e.,

v̂ =
1

m

N∑
i=1

[
pi +

e

c
A(ri)

]
. (12)

The current carried by a generic state |Ψ〉 after the perturbation is switched on is therefore

j = − e

Ld
〈Ψ |v̂|Ψ〉 − e2N

mcLd
δA. (13)

Expansion of the Hamiltonian to first order in the perturbing vector potential δA yields

∆Ĥ =
e

c
δA · v. (14)

If we set E and δA along the β direction, the linearly induced current in the α direction is

jα = − e2N

mcLd
δA δαβ −

e

Ld
〈〈 v̂α |

e

c
δA v̂β〉〉ω = − e2

cLd

(
N

m
δαβ + 〈〈v̂α|v̂β〉〉ω

)
δA(ω), (15)

where we are restoring the ω dependence. The term in δA2, being constant in space, has zero
matrix elements; it is also second order in E .
In order to arrive at the conductivity we need to express δA(ω) in eqn. (15) in terms of E(ω). In
the time domain their relationship is E = −1

c
∂δA/∂t; a naive integration would yield δA(ω) =

−icE(ω)/ω, but this violates causality. The correct integration yields:

δA(ω) = cE(ω)

[
1

iω
− πδ(ω)

]
. (16)

Therefore the current, as expressed directly in terms of the field intensity, is

jα(ω) = σαβ(ω) Eβ(ω) = − e
2

Ld

(
N

m
δαβ + 〈〈v̂α|v̂β〉〉ω

)[
1

iω
− πδ(ω)

]
Eβ(ω). (17)

We then write the Kubo formula as

〈〈vα|vβ〉〉ω =
1

~
lim
η→0+

∑
n6=0

′
(
Rn,αβ + i In,αβ
ω − ω0n + iη

− Rn,αβ − i In,αβ
ω + ω0n + iη

)
, (18)

Rn,αβ = Re 〈Ψ0|vα|Ψn〉〈Ψn|vβ|Ψ0〉, In,αβ = Im 〈Ψ0|vα|Ψn〉〈Ψn|vβ|Ψ0〉, (19)

where Rn,αβ is symmetric and In,αβ antisymmetric. The longitudinal conductivity is the sym-
metric part σ(+)

αβ (ω) of the tensor. Upon exploiting eqn. (10) we eventually get

Dαβ =
πe2

Ld

(
N

m
δαβ −

2

~
∑
n6=0

′Rn,αβ

ω0n

)
, (20)
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Re σ(regular)
αβ (ω) =

πe2

~Ld
∑
n6=0

′ Rn,αβ

ω0n

[ δ(ω − ω0n)− δ(ω + ω0n) ], (21)

Im σ
(regular)
αβ (ω) =

2e2

~Ld
∑
n6=0

′ Rn,αβ

ω0n

ω

ω2
0n − ω2

. (22)

The two terms σ(Drude)
αβ (ω) and σ(regular)

αβ (ω) obey the Kramers-Kronig relationships separately;
we also remind that only the longitudinal conductivity σ(+)

αβ (ω) is addressed for the time being.
The transverse conductivity σ(−)

αβ will be addressed in Secs. 6 and 9.
At any finite-size L the spectrum is discrete and the system is gapped, while in a metal the gap
closes in the large-L limit. It is therefore necessary to regularize the singular sums in eqns. (20-
22); this can be done in the following way [18]: One starts assuming a finite value of η in the
Kubo formula, eqn. (9), with η much larger than the level spacing; then one takes the L → ∞
limit first, and the η → 0+ limit afterwards.
The first term in the parenthesis in eqn. (20) yields the free-electron Drude weight, while the
second term accounts for the (always negative) correction due to the one-body potential and
to the electron-electron interaction. We have given here the Kubo formula for a many-body
Hamiltonian; for independent electrons eqn. (18) is easily transformed into a double sum over
occupied and unoccupied orbitals [3].

3 Drude weight

We have arrived at eqn. (20) by means of linear-response theory, while we have stressed above
that Dαβ must be regarded as a ground-state property, which measures the inertia of the many-
electron system in the adiabatic limit. In order to show this, we follow W. Kohn, who in 1964
adopted the “twisted” Hamiltonian, eqn. (11). By expanding E0(κ) to second order one gets

E0(κ) ' N~2

2m
κ2 − ~ κακβ Re

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω0n

; (23)

the expansion is essentially the many-body analogue of the elementary k · p expansion for the
band energy, leading to the effective mass.
By comparing eqn. (23) to (20) one immediately gets Kohn’s result:

Dαβ =
πe2

~2Ld
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0

. (24)

We remind that it is crucial to set κ = 0 in the derivative before the thermodynamic limit is
taken: this ensures that we are following the ground state adiabatically [19]. In insulators the
second derivative is zero: this can be proved in various ways.
In the simple case of a band metal eqn. (24) becomes the Brillouin-zone (BZ) integral [3]:

Dαβ = πe2
∑
j

∫
BZ

[d k] θ(µ− εjk)m−1j,αβ(k), (25)
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where [dk] = dk/(2π)d, µ is the Fermi level, εjk are band energies, and the effective inverse
mass tensor of band j is

m−1j,αβ(k) =
1

~2
∂2εjk
∂kα∂kβ

. (26)

4 The Resta-Sorella approach

We consider a special value κ0 = 2π
L

eα, where eα is the unit vector in any Cartesian direction.
For this special κ0 the effect of the gauge is easily gauged away; in fact the state vector

|Ψ̃0(κ0)〉 = e−iκ0·r̂|Ψ0〉 (27)

obeys PBCs, and is an eigenstate of Ĥ(κ0) with eigenvalue E0, similarly to the OBCs case.
Now the issue is whether |Ψ̃0(κ0)〉 coincides or not with the genuine |Ψ0(κ0)〉, obtained, as
said above, by following the ground state adiabatically while κ is switched on continuously.
Eqn. (24) shows that whenever D 6= 0 the state |Ψ0(κ0)〉 has an energy higher than E0: it is
therefore an excited eigenstate of Ĥ(κ0), orthogonal to |Ψ̃0(κ0)〉. If instead D = 0, then the
state |Ψ0(κ0)〉 coincides—apart for a phase factor—with |Ψ̃0(κ0)〉 (we are assuming a nonde-
generate ground state):

〈Ψ̃0(κ0)|Ψ0(κ0)〉 = 〈Ψ0|eiκ0·r̂|Ψ0(κ0)〉 = 0 , D 6= 0, (28)

〈Ψ̃0(κ0)|Ψ0(κ0)〉 = 〈Ψ0|eiκ0·r̂|Ψ0(κ0)〉 = eiγ, D = 0. (29)

We notice, en passant, that γ is the single-point Berry phase determining the polarization [9];
we are not discussing the issue here.
Replacing now |Ψ0(κ0)〉 with |Ψ0〉 we are approximating eqns. (28) and (29) to order 1/L, i.e.,

|zN | = | 〈Ψ0|eiκ0·r̂|Ψ0〉 | = O(1/L), D 6= 0, (30)

|zN | = | 〈Ψ0|eiκ0·r̂|Ψ0〉 | = 1−O(1/L), D = 0. (31)

The Resta-Sorella [10] localization length is defined for an isotropic system in dimension d as

λ2 = − 1

4π2n2/d
lim
N→∞

N2/d−1 log |zN |2 = − 1

4π2
lim
N→∞

L2

N
log |zN |2, (32)

where n = N/Ld is the density. Owing to eqns. (30) and (31) the localization length diverges
when D 6= 0 and converges to a finite limit otherwise.
A very successful application of this theory concerns the Mott transition in 1-dimensional hy-
drogen chains within PBCs [20, 21]. We reproduce here Fig. 1 from Ref. [20] by Stella et al.
who have performed variational quantum Monte Carlo studies, up to 66 atoms. The crossover
between the weakly correlated (band) metallic regime—at small a—and the strongly correlated
(Mott) insulating regime—at large a—is clearly visible in both panels of Fig. 1, which indicate
the transition at a ' 3.5 bohr. The bottom panel shows that the modulus of the matrix element
in eqns. (30) and (31). Top panel: λ/a. Bottom panel: the modulus of the matrix element
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Fig. 1: Results for chains of H atoms
of different lengths as a function of the
interatomic distance a, after Ref. [20].
Top panel: λ/a. Bottom panel:
the modulus of the matrix element in
eqns. (30) and (31).

switches from zero to one in a narrow a region, the transition becoming sharper with increasing
size. The top panel perspicuously shows that in the Mott-insulating regime λ is size-insensitive,
while in the metallic regime it diverges with size. Unfortunately, the authors have chosen to plot
λ/a instead of λ itself. Therefore the λ value in the large a limit cannot be verified: we expect
that it goes to the isolated-atom limit, i.e., λ = 1 bohr.

5 The Souza-Wilkens-Martin sum rule
(periodic boundary conditions)

The modern theory of the insulating state is also rooted in a sum rule, introduced in 2000 by
SWM [11]. They define the insulating/metallic character of a homogenous material via the
frequency integral

ISWM =

∫ ∞
0

dω

ω
Re σαα(ω); (33)

for the sake of simplicity we address isotropic materials only. ISWM converges in all insula-
tors and diverges in all metals. In fact the integral converges at the upper limit—compare to
eqn. (2)—but it diverges at the lower one whenever Dαα 6= 0 and also whenever Re σ(regular)

αα (0)

is finite. The SWM integral has instead a finite value when the system has either a spectral gap
or a mobility gap. We evaluate ISWM using the regular part only of longitudinal conductivity,
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eqn. (22):

ISWM =
πe2

~Ld
∑
n6=0

′ |〈Ψ0|v̂α|Ψ0〉|2

ω2
0n

. (34)

The SWM integral is related by a sum rule to the quantum metric, defined according to Provost
and Vallee [22], and where the relevant parameter is the twist κ. The metric-curvature tensor at
κ = 0 is

Fαβ =
1

N

(
〈∂καΨ0|∂κβΨ0〉 − 〈∂καΨ0|Ψ0〉〈Ψ0|∂κβΨ0〉

)
, (35)

where we have divided by N in order to get an intensive quantity. This tensor is real symmetric
in time-reversal invariant system, and may be endowed with an antisymmetric imaginary part if
time-reversal invariance is lacking. The latter feature is discussed in the next Section.
The metric tensor at κ = 0 is the real symmetric part of Fαβ:

gαβ =
1

N

(
Re 〈∂καΨ0|∂κβΨ0〉 − 〈∂καΨ0|Ψ0〉〈Ψ0|∂κβΨ0〉

)
; (36)

since gαβ is gauge-invariant, we are going to evaluate it in the parallel-transport gauge, where

|∂καΨ0〉 = ~
∑
n6=0

′
|Ψn〉
〈Ψn|v̂α|Ψ0〉
E0 − En

= −
∑
n6=0

′
|Ψn〉
〈Ψn|v̂α|Ψ0〉

ω0n

, (37)

Fαβ =
1

N

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2
0n

=
1

N

∑
n6=0

′ Rn,αβ + iIn,αβ
ω2
0n

. (38)

From eqns. (34) and (38) we thus get

gαα =
~

πe2n

∫ ∞
0

dω

ω
Re σ(regular)

αα (ω), (39)

where n = N/Ld. We observe that in eqn. (39) the l.h.s. is a ground-state property, while the
r.h.s. concerns the excitations of the system.
In the insulating case σ(regular) coincides with the full conductivity; if εg is either the spectral
gap or the mobility gap, the SWM sum rule reads

gαα =
~

πe2n

∫ ∞
εg/~

dω

ω
Re σαα(ω). (40)

The f -sum rule leads to the inequality:

gαα <
~2

πe2n εg

∫ ∞
εg/~

dω Re σαα(ω) =
~2

2mεg
. (41)

From the above it becomes clear that the PBCs metric, when defined via eqn. (36), does not
discriminate between insulators and metals: in the latter case it misses the (diverging) Drude
contribution to eqn. (33). For instance, eqn. (39) vanishes for the paradigmatic metal: the free
electron gas.
The author has recently shown how to remove this drawback of the PBCs metric, upon defining
it in a somewhat more general way [23]. The novel metric coincides with the established one in
the insulating case, but diverges in metals. The theory is incomplete, in that it only addresses in-
dependent electrons (in both the crystalline and noncrystalline cases). This recent development
is reviewed in Sec. 8.
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6 Many-body Chern number

The celebrated TKNN paper (Thouless, Kohmoto, Nightingale, and den Nijs) [24] explains
the integer quantum Hall effect as the manifestation of a topological invariant of the electronic
ground state in 2d, the integer C1 ∈ Z, called Chern number of the first class. The choice of
the sign of C1 is not uniform across the literature: the one adopted in this Chapter is consistent
with most of the recent papers.
Later Niu, Thouless, and Wu [25] addressed the fractional quantum Hall effect, where the many-
body wavefunction is known to be strongly correlated. They provided a many-body definition
of C1 which, in the notations of the present work, reads:

C1 =
i

2π

∫ 2π/L

0

dκx

∫ 2π/L

0

dκy ( 〈∂κxΨ0(κ)|∂κyΨ0(κ)〉 − 〈∂κyΨ0(κ)|∂κxΨ0(κ)〉 ). (42)

Since the L → ∞ is implicit in the definition, we observed in Ref. [26] that the mean-value
theorem yields

C1 =
i

2π

(
2π

L

)2 (
〈∂κxΨ0|∂κyΨ0〉 − 〈∂κyΨ0|∂κxΨ0〉

)
. (43)

This is clearly proportional to the imaginary part of the metric-curvature tensor, as defined in
eqn. (35):

C1 = −4πn Im Fxy , (44)

where n = N/L2 is the 2d density. A minor detail is worth mentioning: the ground-state
wavefunction is a singlet state in the previous Section, while it is instead spin-polarized in the
quantum-Hall regime.
The main result by Niu, Thouless, and Wu is the expression of the quantized Hall conductivity
in terms of the many-body Chern number C1. From eqns. (17) and (18) one gets

Re σ(−)
xy (ω) = − e2

ωL2
Im 〈〈vx|vy〉〉ω = − 2e2

~L2

∑
n6=0

′ In,xy
ω2 − ω2

0n

, (45)

and from eqns. (38) and (44) the final result is

Re σ(−)
xy (0) =

2e2n

~
Im Fxy = −e

2

h
C1. (46)

7 Bounded samples within open boundary conditions

At variance with the PBCs results presented in Sec. 5, the OBCs metric does carry the infor-
mation to discriminate between insulators and metals. As said above, within OBCs the twist is
easily gauged away and one has |Ψ0(κ)〉 = e−iκ·r̂|Ψ0〉, where r̂ =

∑
i ri is the ordinary position

operator, well defined within OBCs.
It is expedient to adopt a κ-dependent phase factor and write instead:

|Ψ0(κ)〉 = e−iκ·(r̂−d)|Ψ0〉, d = 〈Ψ0|r̂|Ψ0〉. (47)
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The gauge-invariant metric, eqn. (36), takes then the form

g̃αβ =
1

N

(
〈Ψ0|r̂αr̂β|Ψ0〉 − 〈Ψ0|r̂α|Ψ0〉〈Ψ0|r̂βΨ0〉

)
, (48)

where the different symbol emphasizes the different boundary conditions adopted for |Ψ0〉.
eqn. (48) clearly shows that g̃αβ is the second cumulant moment of the position, or equivalently
the ground-state quantum fluctuation of polarization. The basic tenet of the modern theory of
the insulating state is that the OBCs metric, eqn. (48), in the large-N limit diverges in all metals
and converges in all insulators.
We are going to recast g̃αβ in terms of one-body and two body densities, defined as

n(r1) = N
∑
σ1

∫
dx2dx3 . . . dxN |Ψ(x1,x2, . . .xN)|2, (49)

n(2)(r1, r2) = N(N − 1)
∑
σ1σ2

∫
dx3 . . . dxN |Ψ(x1,x2, . . .xN)|2, (50)

where xi ≡ (ri, σi) are the space and spin coordinates of the i-the electron, and a singlet ground
state is assumed. Straightforward manipulations lead to the equivalent form:

g̃αβ =
1

2N

∫
drdr′ (r− r′)α(r− r′)β[n(r)n(r′)− n(2)(r, r′) ], (51)

showing that g̃αβ is the second moment of the exchange-correlation hole, averaged over the
sample.
We have not justified yet why the OBCs metric discriminates between insulators and metals.
In a bounded sample there cannot be a steady-state current, nonetheless an oscillating field
induces charge sloshing and an oscillating macroscopic current. Therefore at ω 6= 0 a linear
relationship of the kind jα(ω) = σ̃αβ(ω)Eβ(ω) holds. The definition of the insulating state,
making reference to large bounded samples, is that even σ̃αβ(ω) vanishes in the ω → 0 limit.
The order of limits is crucial: first N →∞, and then ω → 0. The SWM integral bypasses this
problem of limits: the insulating state requires that

ĨSWM =

∫ ∞
0

dω

ω
Re σ̃αα(ω), (52)

stays finite in the large-N limit. We stress that σ̃αβ(ω) differs from the genuine longitudinal
conductivity σ

(+)
αβ (ω) in two respects: it lacks the Drude peak, and it includes contributions

from the sample boundary. The latter feature enters the Kubo formula by means of the matrix
elements.
We are going to relate ĨSWM to the OBCs metric g̃αβ . To this aim we start converting g̃αβ into a
sum-over-states form. Using again eqn. (37), we get an expression identical in form to eqn. (38),
i.e.,

g̃αβ =
1

N

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2
0n

; (53)
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the key point is that the velocity matrix elements therein are very different, owing to the different
boundary conditions. Addressing once more the extreme case of the free electron gas, all matrix
elements in eqn. (38) vanish (by an obvious selection rule); they don’t vanish for a bounded
sample within OBCs, as in eqn. (53).
Within OBCs we may safely adopt the scalar potential gauge, where σ̃ has the compact expres-
sion

σ̃αβ(ω) = − e
2

L3
〈〈v̂α|r̂β〉〉ω (54)

in Zubarev’s notations. The matrix elements of r̂ are converted into the matrix elements of v̂ by
means of the commutator [Ĥ, r̂], i.e., 〈Ψ0|r̂|Ψn〉 = i〈Ψ0|v̂|Ψn〉/ω0n, to obtain

Re σ̃αα(ω) =
e2π

~L3

∑
n 6=0

′ |〈Ψ0|v̂α|Ψn〉|2

ω0n

[ δ(ω − ω0n) + δ(ω − ω0n) ], (55)

leading to the OBCs version of the SWM sum rule

g̃αα =
~

πe2n

∫ ∞
0

dω

ω
Re σ̃αα(ω). (56)

Once more, eqns. (55) and (56) are identical in form to their PBCs counterpart, eqns. (21) and
(39), but their physical content—as well as their defining quantities—are very different in the
metallic case. For instance, σ̃αβ(ω) by itself obeys the f -sum rule, while σ(regular)

αβ (ω) does not:
see eqn. (2).
In the insulating case, instead, the PBCs conductivity σ(ω) coincides with the OBCs one σ̃(ω).
It follows that the (finite) metric g̃αα coincides with gαα and obeys the SWM sum rule in the
form of eqn. (40). This can be proved in various ways; the basic feature is that the macroscopic
polarization Pα(ω) linearly induced by an oscillating field stays finite for ω → 0 in insulating
materials, and can therefore be evaluated using either OBCs or PBCs, in any gauge.
Finally, we observe that the l.h.s. of eqn. (56) is a ground-state quantum fluctuation, while the
r.h.s. is a property of the system excitations. Eqn. (56) belongs then to the general class of
fluctuation-dissipation theorems.

8 Independent electrons

Owing to eqn. (51), in the noninteracting case the OBCs metric g̃αβ is expressed in terms of the
one-body density matrix as ρ(r, r′) = 2〈r|P|r′〉 as

g̃αβ =
1

N

∫
drdr′ (r− r′)α(r− r′)β |〈r|P|r′〉|2. (57)

As said above, the convergence/divergence of g̃αβ in the large-N limit discriminates between
electrons and metals. For instance, the well known P expression for the free-electron gas [27],
when inserted in eqn. (57), yields a diverging g̃αβ in d = 1, 2, and 3. This is what is expected in
a metal, and is in sharp contrast with the OBCs metric gαβ which—if defined as in eqn. (36)—
vanishes. The difference is to be ascribed to the different order of limits. In this Section we
are going to provide a more general definition of the OBCs metric gαβ , which coincides with
eqn. (36) in the insulating case, but has the virtue of diverging in the metallic case.
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Crystalline systems

Besides the electron-gas case, where P is known analytically, simulations for model noninter-
acting systems within OBCs have indeed demonstrated the large-N divergence of the OBCs
metric g̃, eqn. (58), in the metallic case [28,29]. Simulations and heuristic arguments altogether
suggest that the metallic divergence of g̃ is of order of the linear dimension L of the system in
d = 1, 2, or 3.
The PBCs metric gαβ , as defined so far, does not diverge in the metallic case and requires
therefore a somewhat different definition in order to acquire the same desirable feature. The
novel definition provided here follows Ref. [23].
In the crystalline case the PBCs ground-state projector P is

P = Vcell
∑
j

∫
BZ

[d k] θ(µ− εjk)|ψjk〉〈ψjk|, (58)

where BZ is the Brillouin-zone, |ψjk〉 = eik·r|ujk〉 are the Bloch states (normalized to one over
the unit cell of volume Vcell), εjk are the band energies, µ is the Fermi level, the integration is
over [d k] = dk/(2π)d, and d is the dimension. We recast eqn. (58) in terms of Bloch projectors
Pk as

〈r|P|r′〉 = Vcell

∫
BZ

[d k] eik·(r−r
′)〈r|Pk|r′〉, Pk =

∑
j

θ(µ− εjk)|ujk〉〈ujk|, (59)

and we choose a gauge which makes |ujk〉 smooth on the whole BZ: this is always possible,
even in topologically nontrivial materials. The Bloch projectors Pk are gauge-invariant in the
generalized Marzari-Vanderbilt sense [30, 31], i.e., they are invariant for any unitary transfor-
mation of the occupied |ujk〉 at the given k.
The BZ integrand is smooth in insulators, and only piecewise continuous in metals. In the latter
case, the sharpness of the Fermi surface is responsible for the power-law decay of 〈r|P|r′〉
for |r − r′| → ∞; the decay is instead quasi-exponential (i.e. exponential times a power) in
insulators [32].
The ground-state projector is lattice-periodic, i.e.,

〈r|P|r′〉 = 〈r + R|P|r′ + R〉, (60)

where R is a lattice translation. Therefore in the large-N limit the crystalline form of eqn. (57)
is

g̃αβ =
1

Nc

∫
cell
dr

∫
all space
dr′ (r− r′)α(r− r′)β |〈r|P|r′〉|2, (61)

where Nc is the number of electrons per crystal cell.
Next we are going to address the PBCs metric gαβ , starting with the insulating case, where it
coincides with the OBCs metric g̃αβ and obeys the SWM sum rule in the form of eqn. (40).
The number of occupied bands is Nc/2, independent of k. A well known result, first shown in
Ref. [33], is

gαβ =
2

n

∫
BZ

[d k] Re Fαβ(k), (62)
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where n is the electron density and Fαβ(k) is the k-dependent metric-curvature tensor [22, 30,
31, 33]:

Fαβ(k) =

Nc/2∑
j=1

〈∂kαujk|∂kβujk〉 −
Nc/2∑
j,j′=1

〈∂kαujk|uj′k〉〈uj′k|∂kβujk〉. (63)

The BZ integral in the r.h.s. of eqn. (62) made its first appearance in the Marzari-Vanderbilt
theory of maximally localized Wannier function, where it provides the gauge-invariant term in
the quadratic spread, universally indicated as ΩI in the literature. The relationship is [30, 31]:

ΩI = Vcell

∫
BZ

[d k]
∑
α

Fαα(k) =
Nc

2

∑
α

gαα. (64)

Notice that the original definition of ΩI is not intensive.
Following Ref. [23] the PBCs metric of a band insulator, eqn. (62), can be recast in a compact
trace form, which has the virtue of showing gauge invariance explicitly. A tedious calculation
shows that

Fαβ(k) = Tr {Pk(∂kαPk)(∂kβPk)}. (65)

We may extend the definition of eqns. (62) and (65) to the metallic case as well, noticing that
the k-derivative of the Bloch projector acquires a singular δ-like term at the Fermi level:

∂kαPk = −
∑
j

δ(µ− εjk)∂kαεjk |ujk〉〈ujk|+
∑
j

θ(µ− εjk)(|ujk〉〈∂kαujk|+ |∂kαujk〉〈ujk|).

(66)
In the insulating case the singularity vanishes, and we thus retrieve the previous result, while
the squared δ, when inserted into eqn. (62), provides the sought for divergence.
The second term in eqn. (66) is smooth in insulators; instead it is only piecewise continuous—
and therefore integrable—in metals. If eqn. (62) is evaluated using this term only, we retrieve
the nondivergent SWM sum rule in the PBCs form of eqn. (39).

Noncrystalline systems

The OBCs metric, eqn. (58), has been implemented to study the metal-insulator (Anderson)
transition in disordered systems. It is well known that in 1d any amount of (uncorrelated)
disorder yields an insulating ground state. OBCs simulations over a lattice model in 1d have
shown that the system has no spectral gap but eqn. (58) converges nonetheless to a finite value
in the large-N limit [28].
In 3d matters are different: a genuine metal-insulator transition may occur. The integral in
eqn. (57) converges whenever 〈r|P|r′〉 is exponential in |r− r′| (as in crystalline insulators), as
well as when |〈r|P|r′〉|2 decays as |r − r′|−a, with a > 5. A detailed study of the Anderson
transition on a paradigmatic lattice model, based on eqn. (57), has recently appeared [34]. This
confirms that the OBCs metric is an alternative tool with respect to the ones currently adopted
in the literature. The standard computational methods to address the Anderson transition are
often peculiar to lattice models (recursive methods and the like) [35], while our approach has a
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general ab-initio formulation and could in principle be applied to realistic disordered materials
by standard electronic structure methods.
A novel approach to disordered and macroscopically inhomogeneous systems (such as hetero-
junctions) has been proposed in Ref. [23]. We recast here the PBCs metric in trace form, i.e.,

gαβ =
2

n
Re
∫
BZ

[d k] Tr {Pk(∂kαPk)(∂kβPk)}. (67)

We are going to show that eqn. (67) can be equivalently cast in a form where any explicit
reference to lattice periodicity disappears.
In order to arrive at such a transformation, we start noticing that the integrand in eqn. (58) is
periodical over the reciprocal lattice, and therefore the BZ integral of its k-gradient vanishes:

i(r− r′)〈r|P|r′〉+ Vcell

∫
BZ

[d k] eik·(r−r
′)〈r|∂kPk|r′〉 = 0; (68)

we remind that eqn. (68) is a well behaved expression only in insulators. The first term therein
is i times [r,P ]: a lattice periodic operator (unlike r itself). The trace of eqn. (68) can therefore
be cast as ∫

BZ

[d k] Tr {∂kαPk} = − i

Vcell

∫
cell

dr 〈r| [rα,P ] |r〉 = −iTrV {[rα,P ]}, (69)

where TrV indicates the trace per unit volume in the Schrödinger representation.
Using similar arguments it is not difficult to prove that, for an unbounded sample within PBCs,

gαβ =
2

n
Re
∫
BZ

[d k] Tr {Pk(∂kαPk)(∂kβPk)} = − 2

n
Re TrV {P [rα,P ] [rβ,P ]}. (70)

The second expression on the r.h.s. has two outstanding virtues: (i) it is expressed directly in the
Schrödinger representation, making no reference to reciprocal space, and (ii) it can be adopted
as such for supercells of arbitrarily large size, thus extending the concept of PBCs metric to
noncrystalline systems, such as alloys and liquids. We have not proved yet that such form can
be adopted as it stands even for bounded samples within OBCs.
If we evaluate the trace per unit volume over the whole sample of volume V , eqn. (70) yields

gαβ = − 2

N
Re Tr {P [rα,P ] [rβ,P ]} =

2

N
Tr {PrαrβP} −

2

N
Tr {PαPrβP}. (71)

We have stated above that in insulators the PBCs metric gαβ is finite and coincides with the
OBCs metric g̃αβ: a simple calculation confirms that eqn. (71) is indeed identical to eqn. (57).
Our novel approach reconciles the PBCs metric with the OBCSs one: both metrics yield the
same message even in the metallic case. Looking at eqn. (70), the first expression on the r.h.s.
diverges because of the sharpness of the Fermi surface embedded in eqn. (66), while the diver-
gence of the second expression has been discussed in Sec. 7.
The next issue is whether one may adopt eqn. (70) locally, in order to address inhomogeneous
systems: preliminary results indicate that the answer is affirmative [36]. For an isotropic system
the local marker for the insulating state is the real function

Lαα(r) ∝ Re 〈r| P [rα,P ] [rα,P ] |r〉 : (72)
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when averaged locally in a homogenous region of the sample it detects the insulating vs. metal-
lic character of that region. For instance in a metal/insulator heterojunction it diverges on
the metallic side and converges to a finite value on the insulating side. It therefore provides
a marker complementary to the (commonly used) local density of states; at variance with it,
Lαα(r) probes locally the organization of the electrons in the ground state, the main property
that—according to the outstanding Kohn’s message [5]—discriminates insulators from metals.

9 Geometry in the anomalous Hall effect

On the theory side, the anomalous Hall effect (in both insulators and metals) is closely related
to the theory of the insulating state. In this section we remain at the independent-particle level.
Furthermore, in agreement with the literature on the topic, we adopt a spinless-electron formal-
ism: factors of two here will differ from the previous sections. The metric-curvature tensor for
a band insulator, eqn. (63), is rewritten as

Fαβ(k) =
Nc∑
j=1

〈∂kαujk|∂kβujk〉 −
Nc∑

j,j′=1

〈∂kαujk|uj′k〉〈uj′k|∂kβujk〉. (73)

So far, we have addressed the real symmetric part of Fαβ(k), i.e., the k-space metric first
introduced by Marzari and Vanderbilt in the theory of maximally localized Wannier functions
[30, 31]. The imaginary antisymmetric part (times −2) is the Berry curvature of the occupied
manifold:

Ωαβ(k) = −2 Im Fαβ(k) = i
Nc∑
j=1

(
〈∂kαujk|∂kβujk〉 − 〈∂kβujk|∂kαujk〉

)
. (74)

From eqn. (65) we equivalently get

Ωαβ(k) = iTr {Pk[ ∂kαPk, ∂kβPk ]}. (75)

While this form was used in the past for the insulating case only, we stress that it holds for the
metallic case as well: in fact, the singular term in eqn. (66) disappears after antisymmetrization.
The key difference is that the Berry curvature of the occupied manifold is smooth in insulators
and only piecewise continuous in metals: its BZ integral is well defined and finite in both cases.
The anomalous Hall conductivity (AHC) is by definition the Hall conductivity in zero magnetic
field; it can be nonvanishing only if the Hamiltonian lacks time-reversal symmetry. When
expressed in klitzing−1 it is dimensionless for d = 2, while it has the dimensions of an inverse
length for d = 3. The known expression for the ω = 0 AHC in both metals and insulators is

σ
(−)
αβ (0) =

4πe2

h

∫
BZ

[d k] Im Fαβ(k) = −e
2

h

1

2π

∫
BZ

dk Ωαβ(k), (76)

and this expressions holds for both d = 2 and d = 3; notice the two equivalent forms, where
the integral is either in [d k] = dk/(2π)d or in dk.
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We address the insulating case first: the AHC is quantized, and in natural units it equals minus
the Chern invariant Cγ , usually defined as

Cγ =
1

4π
εγαβ

∫
BZ

dk Ωαβ(k). (77)

In 2d the Chern invariant is a dimensionless integer ∈ Z. The definition of eqn. (77) coincides
indeed with the Chern number C1, as defined in Sec. 6 for a many-body wavefunction [26].
In the metallic case eqn. (76) is nonquantized: the difference owes to the fact that the Berry cur-
vature of the occupied manifold Ωαβ(k) is smooth in insulators and only piecewise continuous
in metals.
In the metallic case eqn. (76) yields only the intrinsic (or geometric) contribution to the AHC;
extrinsic contributions, known as “skew scattering” and “side jump” must be added [37]. We
stress that, instead, extrinsic contributions have no effect in insulators, owing to the robustness
of topological observables.
The same transformation as in eqn. (70) can be carried over for the antisymmetric imaginary
part of Fαβ(k), leading to

σ
(−)
αβ (0) = −4πe2

h
Im TrV {P [rα,P ] [rβ,P ]}, (78)

where we address a possibly disordered sample, although still unbounded within PBCs. If we
try to proceed analogously to what we did for the real symmetric part, by adopting eqn. (78)
even for a bounded sample within OBCs and evaluating the trace over the whole sample, we
get a vanishing result: the tensor entering eqns. (70) and (78) is obviously real symmetric. This
stems from the fact that even the original definition of g̃αβ , eqn. (48), is not endowed with an
antisymmetric term.
The solution of the paradox was found in Ref. [38]. The real function

C(r) = 4π Im 〈r| P [rα,P ] [rβ,P ] |r〉 (79)

carries indeed the information which allows evaluating the AHC locally; but its average has
to be evaluated using an inner region of the bounded sample and not the whole sample. The
boundary provides a compensating contribution. When the bounded sample is a crystallite, one
may integrate C(r) over the central cell; this integral, divided by the cell volume (area in 2d),
provides the AHC value in the large-sample limit.
In the insulating case the function C(r) samples the topological nature of the ground state lo-
cally: it has therefore been dubbed “topological marker” [38]. Simulations on a paradigmatic
lattice model in 2d for bounded samples (crystalline and disordered) and for heterojunctions
have shown that C(r) samples indeed the local Chern number (equal to minus the Hall conduc-
tivity in natural units).
The metallic case differs from the insulating one in two important respects: (i) the macroscopic
current flows across the whole sample, while it only flows at the boundaries in topological
insulators; (ii) the ground-state projector entering eqn. (79) is power-law in |r − r′|, while it
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is quasi-exponential in insulators (including topological insulators). Despite these differences,
simulations reported in Ref. [39] demonstrate that C(r), eqn. (79), provides in the metallic
case a “geometrical marker”, which allows to evaluate the geometrical contribution to the AHC
locally in both homogenous and inhomogeneous samples.
The homogeneous case of a “dirty” metal deserves a comment. The trace per unit volume of
C(r) clearly includes some geometrical effects due to the impurities. It is argued that the AHC
evaluated in this way may yield the sum of the intrinsic and side-jump contributions to the AHC,
while instead it may not include the skew scattering [37, 40].
Ref. [39] also provides a convergence study. Therein, a metallic crystallite is addressed vs.
an insulating one, and the AHC of the material is evaluated, as said above, by averaging the
respective C(r) over the central cell. The convergence to the bulk value is—as expected—
exponential in the insulating case. In the metallic case the convergence is instead of the order
L−3, where L is the linear dimension of the sample. While the actual simulations are in 2d,
it is conjectured that the convergence is of order L−3 in any dimension, in analogy with what
happens to the large-sample metallic divergence of the metric (of order L in any d).
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1 Introduction

One of the profound Surprises in Theoretical Physics [1] is that magnetism is an inherently
quantum mechanical effect. Classically, magnetic moments originate from electric currents: A
current density ~j(~r ) generates a magnetic moment

~µ =
1

2

∫
~r ×~j d3r . (1)

These moments interact via the dipole-dipole interaction. The magnetostatic interaction energy
between two dipoles at a distance R, R̂ being the unit-vector from the position of the first to
that of the second dipole,

∆E =
µ0

4π

~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

R3
=
~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

4πε0c2 R3
(2)

depends on their distance and relative orientation. This can, however, not be the origin of the
magnetism found in actual materials: In a classical system charges cannot flow in thermody-
namic equilibrium, the celebrated Bohr-van Leeuwen theorem, and hence there are no magnetic
moments to begin with [2].
In quantum mechanics, however, non-vanishing charge currents in the ground state are not
uncommon: An electron in state Ψ(~r ) corresponds to a current density

~j(~r ) = − e~
2ime

(
Ψ(~r )∇Ψ(~r )− Ψ(~r )∇Ψ(~r )

)
(3)

which, for a complex wave function Ψ(~r ), is usually non-vanishing. According to (1) it pro-
duces a magnetic moment proportional to the expectation value of the angular momentum

~µL = − e~
2me

〈~L 〉 = −µB 〈~L 〉 . (4)

The constant of proportionality is the Bohr magneton µB. In particular, an atomic orbital
|n, l,m〉 has a magnetic moment proportional to its magnetic quantum number ~µ = −µBm ẑ.
Also the electron spin ~S carries a magnetic moment

~µS = −geµB 〈~S 〉 . (5)

The constant of proportionality between spin and magnetic moment differs from that between
orbital momentum and moment by the gyromagnetic ratio g0. Dirac theory gives ge = 2, which
is changed to ge ≈ 2.0023 . . . by QED corrections.
Atomic moments are thus of the order of µB. For two such moments at a distance of 1 Å the
magnetostatic energy (2) is of the order of 0.05 meV, corresponding to a temperature of less
than 1 K. Therefore, magnetic ordering which, e.g., in magnetite (Fe3O4), persists till about
860 K, must originate from an interaction other than the magnetostatic interaction of dipoles.
Indeed, it is the interplay of electronic properties which are apparently unrelated to magnetism,
the Pauli principle in combination with the Coulomb repulsion (Coulomb exchange) as well
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as the hopping of electrons (kinetic exchange) that leads to an effective coupling between the
magnetic moments in a solid.

The basic mechanisms of the exchange coupling are quite simple: Since many-body wave func-
tions must change sign under the permutation of Fermions, electrons of the same spin cannot be
at the same position. Electrons of like spin thus tend to avoid each other, i.e., the probability of
finding them close to each other tends to be lower than for electrons of opposite spin (exchange
hole). In that sense the Coulomb energy between two electrons depends on their relative spins.
By this argument, aligning electron spins tends be energetically favorable. This Coulomb ex-
change is the basis of Hund’s first rule. When more than one atom is involved, electrons can
hop from one site to its neighbor. This kinetic term is, again, modified by the Pauli principle,
as the hopping to an orbital on the neighboring atom will only be possible, if there is not al-
ready an electron of the same spin occupying that orbital and by the Coulomb repulsion among
the electrons. This is the idea of kinetic exchange. When Coulomb exchange and kinetic terms
work together we speak of double exchange. In that case the electron-hopping serves to mediate
the spin-correlation created on an atom to its neighbors.

Exchange mechanisms are idealizations of characteristic situations found in real materials. As
such they are merely approximations, but they afford a simplification of the complicated real-
istic description, which provides a good basis for thinking about the relevant effects in a real
material. We will start by discussing the effect of Coulomb exchange matrix elements (Sec. 2).
To keep things simple, we will discuss a two-orbital model and only mention atomic multiplets
and Hund’s rule. Next we turn to exchange mechanisms involving also hopping (Sec. 3). We
start by looking at the a simple two-site model with two electrons. Focussing on the limit of
strong electronic correlations (Coulomb repulsion dominating electron hopping), we introduce
the method of downfolding to derive an effective Hamiltonian in which an explicit coupling
of the electron spins appears. While conceptually simple, this direct exchange mechanism is
rarely found in real materials. There hopping between correlated orbitals is usually mediated
by a weakly correlated orbital. This is the superexchange mechanism. The derivation is very
similar to that of kinetic exchange. However, the number of states involved, makes explicit
book-keeping tedious. To simplify our work, we introduce second quantization as a simple no-
tation of many-electron states. This also enables us to easily discuss double exchange, which
combines direct exchange on an atom with coupling to the neighbors via electron hopping. Ex-
amples are the superexchange between transition metal atoms bridged by an oxygen at a right
angle, which arises from the Coulomb exchange on the oxygen, as well as the exchange in
mixed-valence compounds (Sec. 4). The competition between kinetic and double exchange is
described by the Goodenough-Kanamori rules. Finally we show that exchange is not restricted
to coupling spins, but can also produce interactions between orbital occupations (Sec. 5).

How exchange gives rise to an effective coupling of momenta is most easily shown for single-
or two-site models. To see how these results carry over to solids, we consider the case of direct
exchange (Sec. 6). Starting from the Hubbard model we show how taking the limit of strong
correlations leads to the t-J-model, which, for half-filling, simplifies to the Heisenberg model.
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2 Coulomb exchange

The Coulomb repulsion between electrons,

HU =
∑
i<j

1

|~ri − ~rj|
, (6)

is manifestly spin-independent. Nevertheless, because of the antisymmetry of the many-electron
wave function, the eigenenergies of HU depend on spin. This is the basis of the multiplet struc-
ture in atoms and of Hund’s first two rules.
To understand the mechanism of this Coulomb exchange we consider a simple two-electron
model. In the spirit of tight-binding, we assume that we have solved the two-electron Hamil-
tonian H0, replacing the interaction term HU , e.g., as a self-consistent potential

∑
i U(~ri), ob-

taining an orthonormal set of one-electron eigenstates ϕα(~r ) with eigenvalues εα. We now ask
for the effect of re-introducing the interaction HU −

∑
i U(~ri). The largest effect we will find

for states that are degenerate.
Let us consider two orbitals α = a, b. Then the two-electron Slater determinants with spins σ
and σ′

Ψa,σ; bσ′(~r1, s1; ~r2, s2) =
1√
2

∣∣∣∣∣ ϕa(~r1) σ(s1) ϕa(~r2) σ(s2)

ϕb(~r1)σ
′(s1) ϕb(~r2)σ

′(s2)

∣∣∣∣∣ (7)

=
1√
2

(
ϕa(~r1)ϕb(~r2) σ(s1)σ

′(s2)− ϕb(~r1)ϕa(~r2) σ
′(s1)σ(s2)

)
are degenerate eigenstates of H0 with eigenvalue εa + εb, independent of the spin orientations.
To see how this degeneracy is lifted, we calculate the matrix elements of HU in the basis of the
Slater determinants Ψa,σ; bσ′ .
When both electrons have the same spin (σ = σ′), we can factor out the spin functions

Ψa,σ; bσ =
1√
2

(
ϕa(~r1)ϕb(~r2)− ϕb(~r1)ϕa(~r2)

)
σ(s1)σ(s2) (8)

and obtain 〈
Ψa,σ; b,σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,σ

〉
=

1

2
(Uab − Jab − Jba + Uba) = Uab − Jab (9)

where the direct terms are the Coulomb integral

Uab =

∫
d3r1

∫
d3r2

|ϕa(~r1)|2 |ϕb(~r2)|2

|~r1 − ~r2|
(10)

while the cross terms give the exchange integral

Jab =

∫
d3r1

∫
d3r2

ϕa(~r1)ϕb(~r1) ϕb(~r2)ϕa(~r2)

|~r1 − ~r2|
. (11)

For the states where the electrons have opposite spin (σ′ = −σ)〈
Ψa,σ; b,−σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,−σ

〉
= Uab (12)
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the diagonal matrix element has no exchange contribution, as the overlap of the spin functions
for the cross terms vanish. There are however off-diagonal matrix elements〈

Ψa↑; b↓

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa↓; b↑〉 = −Jab . (13)

Since HU does not change the spins, these are the only non-zero matrix elements. In the basis
of the states Ψ↑↑, Ψ↑↓, Ψ↓↑ and Ψ↓↓ the Coulomb term is thus given by

HU =


Uab − Jab 0 0 0

0 Uab −Jab 0

0 −Jab Uab 0

0 0 0 Uab − Jab

 . (14)

The triplet states Ψ↑↑ and Ψ↓↓ are obviously eigenstates of HU with eigenenergy

∆εtriplet = Uab − Jab . (15)

Diagonalizing the 2 × 2 submatrix, we obtain the third triplet state (Ψ↑↓ + Ψ↓↑)/
√
2 and the

singlet state (Ψ↑↓ − Ψ↓↑)/
√
2

1√
2
(Ψ↑↓ − Ψ↓↑) =

1√
2

(
ϕa(~r1)ϕb(~r2) + ϕb(~r1)ϕa(~r2)

) 1√
2

(
|↓↑〉 − |↑↓〉

)
(16)

with energy
∆εsinglet = Uab + Jab . (17)

To see whether the triplet or the singlet is lower in energy, we need to know the sign of the
exchange matrix element. While the Coulomb integral Uab, having a positive integrand, is
obviously positive, it is less obvious that also Jab > 0. Introducing Φ(~r ) = ϕa(~r )ϕb(~r ) and
Fourier transforming to Φ(~k ) =

∫
d3k Φ(~r ) e−i

~k·~r we obtain [3, 4]:

Jab =

∫
d3r1 Φ(~r1)

∫
d3r2

1

|~r1 − ~r2|
Φ(~r2)︸ ︷︷ ︸

=(2π)−3
∫
dk Φ(k)eikr14π/k2

(18)

=
1

(2π)3

∫
d3k

∫
d3r1 e

i~k·~r1Φ(~r1)︸ ︷︷ ︸
=Φ(k)

Φ(~k )
4π

k2
(19)

=
1

(2π)3

∫
d3k |Φ(~k )|2 4π

k2
> 0 (20)

Thus the triplet states are below the singlet state by an energy 2Jab. If the ϕα are degenerate
atomic orbitals, this is an example of Hund’s first rule: For an atomic shell, the lowest state will
have maximum spin.
Since HU only contains interactions within the system of electrons, it commutes with the total
orbital momentum [HU , ~Ltot] = 0. Obviously it also commutes with the total spin ~Stot. The
eigenstates of H0 + HU can thus be classified by their quantum numbers L and S. These
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Fig. 1: Angular momenta of the Hund’s rules ground state 2S+1LJ for d-shells.

terms are written as 2S+1L. For p- and d-shells they are listed in table 1. Hund’s rules give
the multiplet term with the lowest energy: For a given shell, this lowest state has the largest
possible spin (Hund’s first rule). If there are several terms of maximum multiplicity, the one
with lowest energy has the largest total orbital momentum (Hund’s second rule). There is a
third Hund’s rule, which, however, is not related with the electron-electron repulsion but with
spin-orbit coupling: Within L-S coupling HSO splits the atomic orbitals into eigenstates of the
total angular momentum ~J = ~Ltot+ ~Stot. The multiplets 2S+1L thus split into 2S+1LJ . The term
with the lowest energy is the one with smallest J if the shell is less than half-filled and largest
J if it is more than half-filled (Hund’s third rule). These rules are illustrated for d-shells in
Fig. 2. A more detailed discussion of multiplet effects and the Coulomb interaction in atomic-
like systems can be found in [5, 6], calculations of multiplets including spin-orbit coupling can
be performed online, at http://www.cond-mat.de/sims/multiplet.

s 2S

p1 or p5 2P

p2 or p4 1S 1D 3P

p3 2P 2D 4S

d1 or d9 2D

d2 or d8 1S 1D 1G 3P 3F

d3 or d7 2P
2×
2D 2F 2G 2H 4P 4F

d4 or d6
2×
1S

2×
1D 1F

2×
1G 1I

2×
3P 3D

2×
3F 3G 3H 5D

d5 2S 2P
3×
2D

2×
2F

2×
2G 2H 2I 4P 4D 4F 4G 6S

Table 1: Atomic multiplets for open s-, p-, and d-shells. For terms that appear multiple times
the number of distinct terms is indicated. The Hund’s rules ground state is indicated in bold.

http://www.cond-mat.de/sims/multiplet
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3 Kinetic exchange

When electron-hopping plays the main role in the exchange mechanism, we speak of kinetic
exchange. In contrast to Coulomb exchange the resulting interactions are usually antiferro-
magnetic, i.e., they prefer antiparallel spins. The physical principle of kinetic exchange can be
understood in a simple two-site system. We discuss this problem in some detail and introduce
two key concepts along the way: downfolding and second quantization. As we will see in the
subsequent sections, realistic exchange mechanisms are natural generalizations of this simple
mechanism [7–9].

3.1 A toy model

As a toy model, we consider the minimal model of an H2 molecule. We restrict ourselves to
two (orthonormal) orbitals, ϕ1 and ϕ2, separated by some distance. If we add an electron to the
system, that electron will be able to move between the two orbitals, with a matrix element −t.
Because we allow the electron to only occupy two orbitals, the Hamiltonian is a 2× 2 matrix

H =

(
0 −t
−t 0

)
. (21)

This tight-binding Hamiltonian is easily diagonalized giving the linear combinations

ϕ± =
1√
2

(
ϕ1 ± ϕ2

)
(22)

as eigenstates with eigenenergies ε± = ∓t. We have written the hopping matrix element as −t,
so that for t > 0 the state without a node, ϕ+, is the ground state.
Pictorially we can write the basis states by specifying which orbital the electron occupies. For
a spin-up electron we then write

ϕ1 = |↑ , · 〉 and ϕ2 = | · , ↑ 〉 (23)

where we now represent the basis states by where the electron is located.
If there are two electrons in the system, i.e., one electron per orbital, we can again use basis
states which just specify, which orbitals the electrons occupy. For two electrons of opposite
spin we then find two states where the electrons are in different orbitals

|↑ , ↓ 〉 |↓ , ↑ 〉 “covalent states”

and two states where the electrons are in the same orbital

|↑↓ , · 〉 | · , ↑↓〉 “ionic states”.

In this basis the Hamiltonian matrix for our simple model of the H2 molecule has the form

H =


0 0 −t −t
0 0 +t +t

−t +t U 0

−t +t 0 U


|↑ , ↓ 〉
|↓ , ↑ 〉
|↑↓ , · 〉
| · , ↑↓〉

(24)
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Fig. 2: Spectrum of the two-site Hubbard model as a function of U . For large U there are two
levels with energy close to zero. Their energy difference corresponds to the exchange energy.
The remaining two states with ionic character have an energy roughly proportional to U .

As before, moving an electron to a neighboring orbital gives a matrix element −t, with an
additional sign when the order of the electrons is changed (Fermi statistics!). For the ionic states,
where both electrons are in the same orbital, we have the Coulomb matrix element U . Coulomb
matrix elements involving electrons on different sites are, for reasonably large distance between
the sites, negligible. So there is no Coulomb exchange, just the local Coulomb repulsion in our
model. Diagonalizing H we find the energy spectrum and the corresponding eigenstates:

ε± =
U

2
±
√
U2 + 16 t2

2
, Ψ± =

(
|↑ , ↓ 〉 − |↓ , ↑ 〉 − ε±

2t

[
|↑↓ , · 〉+ | · , ↑↓〉

])√
2 + ε2

±/(2t
2)

εcov = 0 , Ψcov =
1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
εion = U , Ψion =

1√
2

(
|↑↓ , · 〉 − | · , ↑↓〉

)
The eigenenergies as a function of U are shown in figure 2.

3.2 Direct exchange

Again, we have found that the energy of two-electron states depends on the relative spin of the
electrons. To understand this more clearly we analyze the limit when U is much larger than t.
From Fig. 2 we see that there are two states with energies that increase with U . They are the
states Ψion and Ψ+ that have considerable contributions of the ionic states. Then there are two
states whose energy is close to zero. They are the states that have mainly covalent character.
To find the energy and the character of these levels in the limit U → ∞ we can just expand
ε− → −4t2/U and ε+ → U + 4t2/U . We thus see that while the purely covalent state, the
spin-triplet state Ψcov, is independent of U , Ψ− has a slightly lower energy due to some small
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direct exchange

Fig. 3: Simple picture of direct exchange: The antiparallel alignment of the spins (left) is
favored, since it allows the electrons to hop to the neighboring site. For parallel spins (right)
hopping is suppressed by the Pauli principle.

admixture of the ionic states. In the limit U → ∞ it becomes the maximally entangled state
(| ↑ , ↓ 〉 − |↓ , ↑ 〉)/

√
2. We see that for large U , Ψ− cannot be expressed, even approximately,

as a Slater determinant, see also Sec. 3.4. This is the reason why strongly correlated systems
are so difficult to describe.
An instructive method to analyze the large-U limit, which can readily be generalized to more
complex situations, where we can no longer diagonalize the full Hamiltonian, is the down-
folding technique. The mathematical background is explained in the appendix. The idea of
downfolding is to partition the Hilbert space into parts that are of interest, here the low-energy
covalent type states, and states that should be projected out, here the high-energy ionic states.
With this partitioning we can view the Hamiltonian matrix (24) as built of 2 × 2 submatrices.
Calculating the inverse on the space of covalent states (see Eqn. (85) in the appendix) we find
an effective Hamiltonian which now operates on the covalent states only:

Heff(ε) =

(
−t −t
+t +t

)(
ε− U 0

0 ε− U

)−1(
−t +t

−t +t

)
≈ −2t2

U

(
1 −1
−1 1

)
. (25)

In the last step we have made an approximation by setting ε to zero, which is roughly the energy
of the states with covalent character.
The process of eliminating the ionic states thus gives rise to an effective interaction between
the covalent states, which was not present in the original Hamiltonian (24). Diagonalizing the
effective Hamiltonian, we find

εs = −
4t2

U
, Ψs =

1√
2

(
|↑ , ↓ 〉 − |↓ , ↑ 〉

)
εt = 0 , Ψt =

1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
These states correspond to the singlet and triplet states in the hydrogen molecule. Here the
singlet-triplet splitting is 2Jdirect = −4t2/U . The other states in the triplet are those with two
electrons of parallel spin: | ↑ , ↑ 〉 and | ↓ , ↓ 〉. They, of course, also have energy zero, as
hopping is impossible due to the Pauli principle.
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To understand the nature of the effective interaction in the low-energy Hamiltonian we observe
that the off-diagonal matrix elements in (25) correspond to flipping the spin of both electrons
(“exchange”). Remembering that

~S1 · ~S2 = Sz1S
z
2 +

1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
(26)

we see that the effective interaction will contain a spin-spin coupling term.

3.3 Second quantization for pedestrians

A systematic way for obtaining the form of the effective interaction is by using second quantiza-
tion, which will also help us simplify our notation. For a mathematically rigorous introduction
see, e.g., [10]. In second quantization we use operators to specify in which orbital an electron
is located. As an example, c†1,↑ puts a spin-up electron in orbital ϕ1. Denoting the system with
no electrons by |0〉, the basis states that we have considered so far are written as

|↑ , · 〉 = c†1↑|0〉
| · , ↑ 〉 = c†2↑|0〉

for the single-electron states, and

|↑ , ↓ 〉 = c†2↓c
†
1↑|0〉

|↓ , ↑ 〉 = c†2↑c
†
1↓|0〉

|↑↓ , · 〉 = c†1↓c
†
1↑|0〉

| · , ↑↓〉 = c†2↓c
†
2↑|0〉

(27)

for the two-electron states. In order to describe the hopping of an electron from one orbital to
another, we introduce operators that annihilate an electron. For example c1↑ removes a spin-up
electron from orbital ϕ1. The hopping of an up electron from ϕ1 to ϕ2 is thus described by the
operator c†2↑c1↑ that first takes an electron out of orbital 1 and then creates one in orbital 2. The
Hamiltonian for a spin-up electron hopping between two orbitals can thus be written as

H = −t
(
c†1↑c2↑ + c†2↑c1↑

)
. (28)

Calculating the matrix elements with the single-electron basis states, we recover the matrix (21).
For the calculation we need to know that the operators that describe the electrons anticommute.
This reflects the fact that a many-electron wave function changes sign when two electrons are
exchanged. Using the notation {a, b} = ab+ ba we have{

ciσ, cjσ′
}
= 0

{
c†iσ, c

†
jσ′

}
= 0

{
ciσ, c

†
jσ′

}
= δi,jδσ,σ′

Moreover, trying to annihilate an electron in a state where there is no electron, results in zero:
ciσ|0〉 = 0. Finally, as the notation implies, c†iσ is the adjoint of ciσ and 〈0|0〉 = 1.
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To describe the Coulomb repulsion between two electrons in the same orbital we use that
niσ = c†iσciσ returns 0 when operating on a basis state with no spin-σ electron in orbital ϕi,
and has eigenvalue 1 for a basis state with a spin-σ electron in orbital ϕi. It is thus called the
occupation-number operator. The Coulomb repulsion in orbital ϕ1 is then described by the op-
erator Un1↑n1↓, which is non-zero only when there is a spin-up and a spin-down electron in ϕ1.
The Hamiltonian for our two-orbital model, where both up- and down-spin electrons can hop,
and including the Coulomb repulsion for two electrons in the same orbital, is thus given by

H = −t
(
c†1↑c2↑ + c†2↑c1↑ + c†1↓c2↓ + c†2↓c1↓

)
+ U

(
n1↑n1↓ + n2↑n2↓

)
= −t

∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (29)

You should convince yourself that when you calculate the matrix elements for the two-electron
states, you recover the matrix (24). The great advantage of writing the Hamiltonian in second-
quantized form is that it is valid for any number of electrons, while the matrix form is restricted
to a particular number of electrons.
Coming back to the effective Hamiltonian (25), we can rewrite Heff in second quantized form:

Heff = −2t2

U

(
c†2↑c

†
1↓c1↓c2↑ − c

†
2↓c
†
1↑c1↓c2↑ − c

†
2↑c
†
1↓c1↑c2↓ + c†2↓c

†
1↑c1↑c2↓

)
(30)

= −2t2

U

(
c†1↓c1↓c

†
2↑c2↑ − c

†
1↑c1↓c

†
2↓c2↑ − c

†
1↓c1↑c

†
2↑c2↓ + c†1↑c1↑c

†
2↓c2↓

)
Looking at equation (90) in the appendix we see that the spin operators are given in second
quantization by

Sxi =
1

2

(
c†i↑ci↓ + c†i↓ci↑

)
Syi = − i

2

(
c†i↑ci↓ − c

†
i↓ci↑

)
Szi =

1

2

(
ni↑ − ni↓

)
. (31)

From this we find (after some calculation) that the effective Hamiltonian can be written in terms
of the spin operators

Heff =
4t2

U

(
~S1 · ~S2 −

n1 n2

4

)
. (32)

To conclude, we again find that the completely spin-independent Hamiltonian (29), in the limit
of large U , gives rise to a spin-spin interaction. Since the exchange coupling J = 4t2/U

is positive, states with antiparallel spins have lower energy. Thus direct exchange leads to
antiferromagnetism.
It is important to realize that the singlet-triplet splitting for the effective Hamiltonian really
arises from the admixture of ionic states into the singlet. By downfolding we eliminate the
high-energy ionic states, i.e., charge fluctuations, from our Hilbert space. The eliminated states
then give rise to an effective spin-spin interaction on the new reduced low-energy Hilbert space.
We must therefore keep in mind that, when working with the effective Hamiltonian (32), we are
considering slightly different states than when working with the original Hamiltonian (29).
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3.4 Mean-field treatment

To conclude our discussion of the simplest kinetic exchange mechanism, it is instructive to
consider the results of a mean-field treatment. For the two-electron Hamiltonian (24) it is
straightforward to find the Hartree-Fock solution by directly minimizing the energy expec-
tation value for a two-electron Slater determinant. The most general ansatz is a Slater de-
terminant constructed from an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the spin-up, and
ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)ϕ2 for the spin-down electron:

|Ψ(θ↑, θ↓)〉 =
(
sin(θ↓) c

†
1↓ + cos(θ↓) c

†
2↓

) (
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

)
|0〉 . (33)

Translating the second quantized states via (27) into the basis used for writing the Hamiltonian
matrix (24), we find the expectation value

〈Ψ(θ↑, θ↓)|H|Ψ(θ↑, θ↓)〉 = −2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+U
(
sin2 θ↑ sin

2 θ↓ + cos2 θ↑ cos
2 θ↓
)
. (34)

If the Slater determinant respects the mirror symmetry of the H2 molecule, it follows that the
Hartree-Fock orbitals for both spins are the bonding state ϕ+ (θ = π/4). This is the restricted
Hartree-Fock solution. The corresponding energy is E(π/4, π/4) = −2t + U/2. The excited
states are obtained by replacing occupied orbitals ϕ+ with ϕ−. Altogether we obtain the re-
stricted Hartree-Fock spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(35)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry. The states (35) are spin-
contaminated [11]. Even worse, the Hartree-Fock ground state, and consequently all the states,
are independent of U . The weight of the ionic states is always 1/2, leading to an increase of the
energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. For U < 2t this does not lead to a state of
lower energy. For larger U there is a symmetry-broken ground state

ΨUHF = Ψ(θ, π/2− θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (36)

Its energy is EUHF = −2t2/U . This looks similar to the singlet energy εs, however, with a
different prefactor. Still there is no triplet state (spin contamination) and, for U → ∞, the
overlap with the true singlet ground state goes to |〈ΨUHF |Ψ−〉|2 = 1/2. In an extended system
the breaking of the symmetry implies long-range order.



Exchange Mechanisms 4.13

-2

-1.5

-1

-0.5

 0

 0.5

 1

0 /4 /2

E H
F(

)

U=2t

Fig. 4: Energy expectation value for a Slater determinant Ψ(θ, π/2−θ) forU=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

3.5 Superexchange

For the direct exchange mechanism discussed above, it is crucial that there is hopping between
the orbitals. These orbitals are typically localized d-orbitals of transition-metals. However,
direct exchange cannot explain the antiferromagnetism of most transition-metal compounds:
Since the d-orbitals are so localized, hopping can only occur between orbitals on different atoms
that are very close to each other. But most antiferromagnetic insulators are transition-metal
oxides, so that the transition-metal cations are separated by large oxygen anions. In such a
situation, shown in figure 5, direct hopping between the d-orbitals is very unlikely. The concept
of direct exchange can, however, be extended to these cases by taking into account hopping via
the intermediate p-orbital. This mechanism is called superexchange.
To understand superexchange, we consider two d-orbitals with an oxygen p-orbital in-between.
We introduce the operator c†iσ, which creates a spin-σ electron in the d-orbital at site i, where
i = 1 denotes the d-orbital on the left and i = 2 the one on the right (see Fig. 5). Likewise
c†pσ creates an electron in the p-orbital. The energy of an electron in a d- or p-orbital is εd and
εp, respectively. The Coulomb repulsion between two electrons in a d-orbital is Ud, while we
neglect the repulsion between electrons in the p-orbital. Finally, −tpd is the hopping between p
and d orbitals. The Hamiltonian for the system of figure 5 is then given by

H =
∑
σ

(
εd
∑
i

niσ + εp npσ − tpd
∑
i

(
c†iσcpσ + c†pσciσ

))
+ Ud

∑
i

ni↑ni↓ . (37)

In the absence of hopping, the ground state will have singly occupied d-orbitals, corresponding
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Fig. 5: In superexchange an oxygen p-orbital mediates the exchange interaction between two
transition-metal d-orbitals.

to a positively charged transition-metal ion, and a doubly occupied p-orbital, corresponding to
an O2− ion. To study a possible coupling between the spins on the d-orbitals, we first look at
the case where both d-spins point upwards (see the far right of Fig. 6). The Hamiltonian matrix
in the corresponding Hilbert space is then given by

H =

 0 tpd tpd

tpd Ud +∆pd 0

tpd 0 Ud +∆pd

 c†2↑c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↑|0〉

(38)

where we have chosen 2(εp + εd) as the zero of our energy scale and defined ∆pd = εd − εp.
The basis states of the Hilbert space are given on the right and the lines indicate the partitioning
of the Hilbert space for downfolding. The effective Hamiltonian for parallel spins on d-orbitals
is then

Heff = (tpd, tpd)

(
ε− (Ud +∆pd) 0

0 ε− (Ud +∆pd)

)(
tpd
tpd

)
≈ −

2t2pd
Ud +∆pd

(39)

where in the last step we have set ε to zero.
For antiparallel spins the Hilbert space is nine-dimensional. We sort the basis states into groups
that are connected by the hopping of one electron. Starting from the two states with singly oc-
cupied d-orbitals, the second group has one of the p-electrons transferred to a d-orbital, leading
to one doubly occupied d, while the last group has a second electron hopped, leading to either
an empty p- or an empty d-orbital. The corresponding Hamiltonian matrix is

0 0 +tpd +tpd 0 0 0 0 0

0 0 0 0 +tpd +tpd 0 0 0

+tpd 0 Ud +∆pd 0 0 0 −tpd 0 −tpd
+tpd 0 0 Ud +∆pd 0 0 0 −tpd −tpd
0 +tpd 0 0 Ud +∆pd 0 +tpd 0 +tpd
0 +tpd 0 0 0 Ud +∆pd 0 +tpd +tpd

0 0 −tpd 0 +tpd 0 Ud 0 0

0 0 0 −tpd 0 +tpd 0 Ud 0

0 0 −tpd −tpd +tpd +tpd 0 0 2(Ud +∆pd)



c†2↓c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↓c
†
p↑c
†
1↓|0〉

c†2↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
1↑|0〉

c†2↑c
†
p↓c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↓|0〉

c†p↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
p↑|0〉

c†2↓c
†
2↑c
†
1↓c
†
1↑|0〉
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superexchange

Fig. 6: Simple picture of superexchange. Here the orbital on the central site is different from
the orbitals on the sides. Typically, in the center there is an oxygen p-orbital coupling two
d-orbitals. This situation is illustrated in Fig. 5. For antiparallel spins on the d-orbitals there
are two ways that two consecutive hopping processes are possible. For parallel spins the Pauli
principle suppresses the second hopping process.

Downfolding the high energy states with at least one doubly occupied d-orbital, setting ε = 0

and expanding in 1/Ud (remembering (A + ∆)−1 ≈ A−1(1 − ∆A−1)), which is equivalent to
second-order perturbation theory, leads to

Heff = H00 + T01

(
ε−

(
H11 + T12 (ε−H22)

−1 T21

))−1
T10

≈ H00 − T01H
−1
11 T10 − T01H

−1
11 T12H

−1
22 T21H

−1
11 T10 (40)

= −
2t2pd

Ud +∆pd

(
1 0

0 1

)
−

2t4pd
(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)(
1 −1
−1 1

)
. (41)

The first term is the same as for parallel spins (39). The additional term is of the same type
as that found for the direct exchange mechanism. Again, it can be written in terms of spin
operators. In the present case they are the spin operators for the d-orbitals, while the p-orbital
does no longer appear in the spin Hamiltonian. The spin coupling is now given by

J =
4t4pd

(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)
, (42)

which reflects that the superexchange mechanism involves four hopping processes (see Fig. 6),
while direct exchange only involves two hoppings (see Fig. 3). The hopping process involving
only a single doubly occupied d-orbital (middle of Fig. 6) is a generalization of the simple direct
exchange with an effective hopping teff = t2pd/(Ud +∆pd) between the d-orbitals and gives the
first term, 4t2eff/Ud, in (42), while the hopping process involving two occupied d-orbitals (left in
Fig. 6) gives the second term 4t4pd/(Ud +∆pd)

3.
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3.6 Ferromagnetic superexchange

In the discussion of superexchange we have, so far, assumed that the oxygen ion lies between
the two d-orbitals. This 180◦ geometry is shown on the left of Fig. 7. The situation is quite
different, when the oxygen forms a 90◦ bridge between the two d-orbitals, see the right of
Fig. 7. By symmetry, there is only hopping between the d- and the p-orbital that point towards
each other (cf. the Slater-Koster integrals). As there is also no hopping between the p-orbitals
on the same site, the Hamiltonian for the system separates into two parts, one involving only
the d orbital on site 1 and the px orbital and the other only involving d on site 2 and py, e.g.:

H1 =

(
0 +tpd

+tpd Ud +∆pd

)
c†x↓c

†
x↑c
†
1↓|0〉

c†x↓c
†
1↓c
†
1↑|0〉

(43)

Since it is not possible for an electron on site 1 to reach site 2, none of the superexchange
processes discussed above are operational. Nevertheless, the energy for the system depends
on the relative orientation of the electron spins in the two d-orbitals. To see this, we have to
remember that Coulomb exchange prefers a triplet for two electrons in different orbitals on the
same site (Hund’s first rule). Including Jxy on the oxygen (but neglecting Up for simplicity),
we get, for the triplet state with two up-electrons, the Hamiltonian (note that there is no Hund’s
rule term for the states with three electrons, i.e. one hole, on the two oxygen orbitals px and py)

0 tpd tpd 0

tpd Ud +∆pd 0 tpd
tpd 0 Ud +∆pd tpd

0 tpd tpd 2(Ud +∆pd)− Jxy


c†1↑c

†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↑c
†
2↓c
†
2↓|0〉

. (44)

The first state has the two up-electrons on the d-orbitals. The second group of states has one
d-orbital doubly occupied, while the last state has both d doubly occupied, i.e., two electrons
on the two p-orbitals – the situation discussed in Sec. 2. Calculating the effective Hamiltonian
as in (40) gives the energy of the triplet state

Heff = −
2t2pd

Ud +∆pd

−
4t4pd

(Ud +∆pd)2

1

2(Ud +∆pd)− Jxy
. (45)

Starting from singly occupied d orbitals with opposite spin, we obtain

0 0 tpd 0 tpd 0 0 0

0 0 0 tpd 0 tpd 0 0

tpd 0 Ud +∆pd 0 0 0 tpd 0

0 tpd 0 Ud +∆pd 0 0 0 tpd
tpd 0 0 0 Ud +∆pd 0 tpd 0

0 tpd 0 0 0 Ud +∆pd 0 tpd

0 0 tpd 0 tpd 0 2(Ud +∆pd) −Jxy
0 0 0 tpd 0 tpd −Jxy 2(Ud +∆pd)



c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↑c
†
2↓c
†
2↑|0〉
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Fig. 7: Dependence of superexchange on geometry: When the d-orbitals interact via an oxygen
in-between (the 180◦ geometry shown on the left), both d-orbitals couple to the same p-orbital,
while the hopping to the two other p-orbitals vanishes by symmetry. The result is antiferromag-
netic superexchange. When the angle of the M-O-M group is 90◦ (right), the d-orbitals couple
to orthogonal p-orbitals, making it impossible for an electron on one d-orbital to reach the d-
orbital on the other site. In this case, superexchange is mediated via the Coulomb exchange on
the connecting oxygen.

giving the effective Hamiltonian

Heff = −
2t2pd

Ud +∆pd

(
1 0
0 1

)
−

4t4pd
(Ud +∆pd)2

1

4(Ud +∆pd)2 − J2
xy

(
2(Ud +∆pd) +Jxy

+Jxy 2(Ud +∆pd)

)
.

Rearranging the matrices, we can bring this to the canonical form

Heff =−
(

2t2pd
Ud +∆pd

+
4t4pd

(Ud +∆pd)2

1

2(Ud +∆pd)− Jxy

)
+++

4t4pd
(Ud +∆pd)2

Jxy
4(Ud +∆pd)2 − J2

xy

(
1 −1
−1 1

)
. (46)

The first term is just the energy of the triplet state (45). The second gives the difference in
energy to the singlet. Despite the fact that the electrons cannot be transferred between the d
orbitals we thus get a singlet-triplet splitting. This coupling of the spins originates from the
states with both d-orbitals doubly occupied: the two remaining electrons, one each on the px-
and py-orbital, respectively, form a triplet of energy 2Jxy lower than that of the singlet (see
Eqn. (15)). When the electrons hop back from the d-orbital, the entanglement of the spins is
transferred to the remaining electron on the d. Originating from the Coulomb exchange on the
oxygen, the exchange coupling is ferromagnetic

J = −
4t4pd

(Ud +∆pd)2

2Jxy
4(Ud +∆pd)2 − J2

xy

. (47)

It tends to be significantly weaker than the antiferromagnetic 180◦ superexchange coupling (42).
When the angle of the M-O-M group is larger than 90◦, hopping to both p-orbitals becomes
possible according to the Slater-Koster rules and the antiferromagnetic superexchange processes
of Fig. 6 start to compete with the ferromagnetic superexchange mediated by the Coulomb
exchange on the oxygen. This is one basis of the Goodenough-Kanamori rules [7, 12].
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4 Double exchange

Double exchange takes its name from the fact that it results from a combination of Coulomb-
and kinetic-exchange. In that sense the 90◦ superexchange mechanism discussed above is a
double exchange mechanism. More commonly, double exchange is encountered in mixed-
valence compounds. So far we have considered systems with an integer number of electrons
per site. When correlations are strong the lowest energy state will essentially have the same
number of electrons on every site and hopping will be strongly suppressed by the Coulomb
repulsion energy U as we have seen for the simple two-site model of kinetic exchange. In a
mixed valence system the number of electrons per site is non-integer, so even for large U some
site will have more electrons than others. Thus electrons can hop between such sites without
incurring a cost U . Hence these compounds are usually metallic.
As a simple example we consider two sites with two orbitals of the type discussed in Sec. 2.
We assume that each site has one electron in orbital a, and that there is only a single electron
in the b-orbitals. This electron can hop between the sites via a hopping matrix element tbb. The
situation is illustrated in Fig. 8.
When all three spins are up, Sztot = 3/2, we have a simple 2× 2 Hamiltonian, taking Uab as our
zero of energy

H =

(
−Jab −tbb
−tbb −Jab

)
. (48)

The eigenstates are the bonding/antibonding linear combinations of the Hund’s rule triplets.
Their dispersion is ±t:

ε± = −Jab ± tbb . (49)

We see that the hopping couples the two sites into a state with the electrons in the a-orbital in a
triplet state:

Ψ± =
1√
2

(
| ↑, ↑〉1 | · , ↑〉2 ± | · , ↑〉1 | ↑, ↑〉2

)
=

1√
2

(
| ↑, · 〉b ± | · , ↑〉b

)
| ↑, ↑〉a . (50)

In the language of quantum information, the hopping electron teleports the local Hund’s rule
triplet to the a-orbitals.
To obtain the Hamiltonian for the Sztot = 1/2 states, we arrange the basis states in the order they
are connected by matrix elements, see Fig. 8. We obtain the tridiagonal Hamiltonian

H =



−Jab −tbb 0 0 0 0

−tbb 0 −Jab 0 0 0

0 −Jab 0 −tbb 0 0

0 0 −tbb 0 −Jab 0

0 0 0 −Jab 0 −tbb
0 0 0 0 −tbb −Jab


(51)

The ground-state is the equally weighted linear combination of all basis states. It has energy
ε = −Jab− tbb and belongs to the sector with Stot = 3/2. Again, the hopping electron teleports
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tbb

Jab

Fig. 8: Matrix elements entering the double-exchange Hamiltonian. Hopping matrix elements
tbb are indicated as double arrows, Coulomb-exchange matrix elements Jab as double lines.
Note that the right half of the states are obtained from the left by flipping all spins.

the triplets from the sites into a triplet state of the spins in the a-orbitals:

1√
6

(
|↑, ↑〉1|· , ↓〉2+|· , ↑〉1|↑, ↓〉2+|· , ↑〉1|↓, ↑〉2+|↓, ↑〉1|· , ↑〉2+|↑, ↓〉1|· , ↑〉2+|· , ↓〉1|↑, ↑〉2

)
=

1√
2

(
|↑, · 〉b + |· , ↑〉b

) 1√
2

(
|↑, ↓〉a + |↓, ↑〉a

)
+

1√
2

(
|↓, · 〉b + |· , ↓〉b

)
|↑, ↑〉a

As in the Sztot = 3/2-sector, there is a corresponding eigenstate of energy ε = −Jab + tbb
with the b-electron antibonding. Again, we find that the triplet state is centered at −Jab with
dispersion ±tbb. Thus the hopping electron in orbital b tends to align the spins in orbital a.
While the total spin is conserved, this is not true for the spin on site i, ~Si,a + ~Si,b or for the
spin in the a-orbitals ~S1a + ~S2a. Consequently the hopping mixes the Hund’s rule singlets and
triplets and therefore does not produce a singlet state of the a electrons. Instead, for tbb � Jab,
we find in first order perturbation theory

−Jab − tbb
(

1, 1, 1, 1, 1, 1
)T
/
√
6

−Jab − tbb/2
(

2, 1, 1, −1, −1, −2
)T
/
√
12

−Jab + tbb/2
(

2, −1, −1, −1, −1, 2
)T
/
√
12

−Jab + tbb
(

1, −1, −1, 1, 1, −1
)T
/
√
6

+Jab − tbb/2
(

0, 1, −1, −1, 1, 0
)T
/2

+Jab + tbb/2
(

0, 1, −1, 1, −1, 0
)T
/2

(52)

While the triplet states, Stot = 3/2, are centered around −Jab with dispersion ±tbb, states with
singlet character are centered at the same energy, but have smaller dispersion, ±tbb/2.
We can look at the situation from a different perspective, focusing on the effect of the spins
in the a-orbitals on the hopping electron. This is another source of Goodenough-Kanamori
rules [12]. We choose the quantization-axis on site 2 rotated relative to that on site 1 by an
angle ϑ. Taking the original quantization axis as ẑ and the direction from site 1 to site 2 as x̂,
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Fig. 9: With quantization axes tilted between the sites, all states couple. Matrix elements are
indicated by arrows: Hopping only couples sites with the same occupation of the a-orbitals.
Full lines stand for tbb cos(ϑ/2), dotted lines for matrix elements proportional to tbb sin(ϑ/2).
These states are coupled by off-diagonal Coulomb exchange matrix elements Jab, shown as
double lines.

the rotation in spin space is given by exp(−iσy ϑ/2) (see appendix C). Introducing operators
d2bσ in the rotated basis, we have, in terms of the original operators,

d2b↑ = cos(ϑ/2) c2b↑ − sin(ϑ/2) c2b↓ (53)

d2b↓ = sin(ϑ/2) c2b↑ + cos(ϑ/2) c2b↓ (54)

so the hopping becomes

−tbb c†2b↑c1b↑ = −tbb
(
+cos(ϑ/2) d†2b↑ + sin(ϑ/2) d†2b↓

)
c1b↑ (55)

−tbb c†2b↓c1b↓ = −tbb
(
− sin(ϑ/2) d†2b↑ + cos(ϑ/2) d†2b↓

)
c1b↓ . (56)

Obviously, such a change of basis does not change the spectrum of the resulting Hamiltonian.
We do get a new situation, however, when we assume that the spin on orbital a is fixed. This
is, e.g., a good approximation when the spin in the a-orbital arises actually not a from a single
electron, but from many electrons coupled by Hund’s rule, e.g., in a half-filled t2g-level, like in
the manganites. Then there are no off-diagonal exchange terms (double lines in Fig. 9) and the
Hamiltonian splits into 4 × 4 blocks with only hopping (solid and dotted lines in Fig. 9) and
on-site Coulomb exchange Jab. The Hamiltonian then becomes

H =


−Jab +tbb cos(ϑ/2) +tbb sin(ϑ/2) 0

+tbb cos(ϑ/2) −Jab 0 −tbb sin(ϑ/2)
+tbb sin(ϑ/2) 0 0 +tbb cos(ϑ/2)

0 −tbb sin(ϑ/2) +tbb cos(ϑ/2) 0

 , (57)

where the a-spin simply produces a Zeeman splitting of orbital b, proportional to the exchange
coupling Jab. In the limit tbb � Jab we can neglect the states with misaligned spins and obtain

ε = −Jab ± tbb cos(ϑ/2) , (58)

i.e., for parallel spins, ϑ = 0, the gain in kinetic energy is maximized, giving the ground-state
energy of the full Hamiltonian, while for anti-parallel spins, ϑ = π the dispersion vanishes.
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5 Orbital-ordering

Exchange mechanisms are not restricted to the coupling of spins. As pointed out by Kugel and
Khomskii [13], also orbital occupations can interact. Such a coupling leads, besides an ordering
of the spins, to an ordering of the orbitals.
To understand the mechanism of orbital-ordering, we consider an eg-molecule, i.e., two sites
with two orbitals a and b, as discussed in Sec. 2. The Hamiltonian on the sites is thus given by
(14). In addition, the two sites are coupled by hopping matrix elements taa and tbb, i.e., hopping
does not change the type, a or b, of the occupied orbital. We now consider the case of one
electron in orbital a and the other in orbital b.
First, we consider the situation when both electrons have the same spin, e.g., spin-up. The basis
states are shown in Fig. 10. Setting up the Hamiltonian is analogous to setting up (24)

H↑↑ =


0 0 −tbb −taa
0 0 +taa +tbb

−tbb +taa Uab − Jab 0

−taa +tbb 0 Uab − Jab

 . (59)

Downfolding to the states without doubly occupied sites, we obtain

H↑↑eff ≈ −
1

Uab − Jab

(
t2aa + t2bb −2taatbb
−2taatbb t2aa + t2bb

)
= −(taa − tbb)2

Uab − Jab
− 2taatbb
Uab − Jab

(
1 −1
−1 1

)
. (60)

Thus we find that there is an interaction between the states with exchanged orbital-occupation,
i.e., an orbital-exchange. For the present case of ferromagnetically aligned spins, the direct
orbital exchange coupling favors the orbital singlet, when the hopping matrix elements are of
the same sign. In analogy with the situation in kinetic exchange, this is called antiferro orbital
exchange. To make the relation with kinetic exchange even more explicit, we can introduce, in
analogy to (31), pseudo-spin operators ~Tiσ

T xiσ =
1

2

(
c†aiσcbiσ + c†biσcaiσ

)
, T yiσ = − i

2

(
c†aiσcbiσ − c

†
biσcaiσ

)
, T ziσ =

1

2
(naiσ − nbiσ) (61)

so that we can write

H↑↑eff = −(taa − tbb)2

Uab − Jab
+

4taatbb
Uab − Jab

(
~T1↑ · ~T2↑ −

1

4

)
. (62)

Fig. 10: Basis states for an up-electron in orbital a and another up-electron in orbital b. Note
that the states are ordered as in Eqn. (24).
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1 2

3 4

5 6

7 8

Fig. 11: Basis states for electrons of opposite spin. The numbering used for the matrix (63)
is indicated. Spin exchange is indicated by the full, orbital exchange by the dotted arrow. The
states with both electrons on the same site are coupled via Coulomb exchange (double arrows).

When the two electrons have opposite spin, we can study the interplay of spin- and orbital-
exchange. The basis states are shown in Fig. 11. We expect orbital exchange to operate between
the first two states in each row and spin exchange between the states between the rows. The
Hamiltonian is

H↑↓ =



0 0 0 0 −tbb −taa 0 0

0 0 0 0 +taa +tbb 0 0

0 0 0 0 0 0 −tbb −taa
0 0 0 0 0 0 +taa +tbb
−tbb +taa 0 0 Uab 0 −Jab 0

−taa +tbb 0 0 0 Uab 0 −Jab
0 0 −tbb +taa −Jab 0 Uab 0

0 0 −taa +tbb 0 −Jab 0 Uab


(63)

from which we obtain

H↑↓eff ≈ − 1

U2
ab − J2

ab


(t2aa + t2bb)Uab −2taatbb Uab (t2aa + t2bb)Jab −2taatbb Jab
−2taatbb Uab (t2aa + t2bb)Uab −2taatbb Jab (t2aa + t2bb)Jab
(t2aa + t2bb)Jab −2taatbb Jab (t2aa + t2bb)Uab −2taatbb Uab
−2taatbb Jab (t2aa + t2bb)Jab −2taatbb Uab (t2aa + t2bb)Jab


= − 1

U2
ab − J2

ab

(
Uab Jab
Jab Uab

)
⊗

(
t2aa + t2bb −2taatbb
−2taatbb t2aa + t2bb

)
(64)

= − 1

U2
ab − J2

ab

[
Uab + Jab − Jab

(
1 −1
−1 1

)]
⊗
[
(taa − tbb)2 + 2taatbb

(
1 −1
−1 1

)]
.

I.e., we get a simultaneous coupling of the spin- and orbital degrees of freedom. The first
term describes the coupling of the spins, which is antiferromagnetic, while the coupling of the
orbitals is, for hopping matrix elements of the same sign, ferro, i.e., orbital triplet. In terms of
the spin and pseudo-spin operators we can write, with ~Ti =

∑
σ
~Tiσ and ~Si =

∑
α∈{a,b}

~Sα,i

H↑↓eff = − 1

U2
ab − J2

ab

[
(Uab + Jab) + 2Jab

(
~S1 ·~S2 −

1

4

)][
(taa − tbb)2 − 4taatbb

(
~T1 · ~T2 −

1

4

)]
.

There will be additional terms when we allow states with both electrons in the same orbital.



Exchange Mechanisms 4.23

6 Extended systems

6.1 Hubbard model

We now turn to extended systems. For this we consider the Hubbard model [14] on an infinite
lattice. Note that now the Hilbert space is infinitely dimensional, so we can no longer write
down the Hamiltonian in its matrix form but have to rely on the second quantized form (29)

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (65)

As in our toy model we still assume that each atom has only a single relevant orbital. There
are links between the neighboring atoms with matrix elements t, which can be intuitively in-
terpreted as hopping from site to site. In the absence of other terms the hopping gives rise to a
band. A second energy scale is given by the Coulomb repulsion U between two electrons on
the same atom. If this on-site Coulomb repulsion is comparable to or even larger than the band
width, the electrons can no longer be considered independent; since the double occupation of an
atom is energetically very costly, the movement of an electron will be hindered by the Coulomb
repulsion. One says that the electrons move in a correlated way. We should note that also the
Pauli principle hinders the movement of an electron. This effect can, however, be efficiently
described by constructing a Slater determinant of independent-electron wave functions. Corre-
lations, on the other hand, are notoriously difficult to describe since no simple wave functions
for such systems are available. In the case of strong correlations, i.e., for U � t, we will treat
the hopping as a perturbation. This is called the atomic limit, since the sites behave as almost
independent atoms. Thus it is most appropriate to describe strongly correlated electrons in a
local picture, i.e., in terms of electron configurations, which are the states that diagonalize the
Coulomb term.

6.2 Mott transition

The physics described by the Hubbard model is the interplay between kinetic energy and
Coulomb repulsion. Writing the Hubbard-Hamiltonian either in real or in k-space

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓

=
∑
kσ

εk c
†
kσckσ +

U

M

∑
k,k′,q

c†k↑ck−q↑c
†
k′↓ck′+q↓ ,

where M is the number of lattice sites, we see that there are obviously two limiting cases:
There is the non-interacting- or band-limit, when t � U . In that case, only the hopping term
survives, i.e., there are no interactions, and the Hamiltonian can be solved easily in k-space. The
energy levels then form a band and the system is metallic, except when the band is completely
filled. In the opposite case, the atomic limit, the interaction term dominates. In that limit, to
minimize the Coulomb energy, the electrons will be distributed over the lattice sites as uniformly
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parameter range physical picture behavior

t�U: band-limit
k

ε
filling of a band
⇒ metal

t�U: atomic limit
no hopping for
integer filling
⇒ insulator

Fig. 12: Metal-insulator transition for half-filling, i.e., one electron per site.

as possible. For a non-degenerate, half-filled system this means, that every site carries exactly
one electron, and hopping is suppressed, because it would create a doubly occupied site, which
would increase the energy by U � t. Thus in the atomic limit the half-filled system will be
an insulator. Clearly, in-between these two limiting cases there must be, at some value Uc, the
so-called critical U , a transition from a metallic to an insulating state – the Mott transition [15].
Usually this transition is expected when U becomes of the order of the (non-interacting) band
width W .
As the criterion for determining the metal-insulator transition we can use the opening of the gap
for charge-carrying single-electron excitations

Eg = E(N + 1)− 2E(N) + E(N − 1) , (66)

where E(N) denotes the total energy of a cluster of M atoms with N electrons. For the half-
filled system we have N = M . It is instructive to again consider the two limiting cases. In the
non-interacting limit the total energy is given by the sum over the eigenvalues of the hopping
Hamiltonian

∑
n:occ εn. Thus, in the non-interacting limit Eband

g = εN+1 − εN , which, for a
partly filled band, will vanish in the limit of infinite system size. On the other hand, in the
atomic limit, the Coulomb energy for a single site with n electrons is Un(n − 1)/2. Thus, for
half-filling of we have

Eatml
g = U , (67)

i.e., the insulating state in the atomic limit is characterized by a finite gap.
For an infinite system the gap Eg can be rewritten in terms of the chemical potential. In the
thermodynamic limit (M → ∞ with N/M constant) we have to distinguish two types: the
energy needed to add an electron to the system (electron affinity)

µ+ = lim(E(N + 1)− E(N)) =
dε(n)

dn

∣∣∣∣
n↘1

, (68)

and the energy required to extract an electron from the system (ionization energy)

µ− = lim(E(N)− E(N − 1)) =
dε(n)

dn

∣∣∣∣
n↗1

. (69)

The gap is then given by the discontinuity in the left- and right-derivative of the energy per site
ε(n) = limE(N)/M : Eg = µ+ − µ−.
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6.3 Heisenberg model

We now consider the Hubbard model in the limit of large U . This is the generalization of the dis-
cussion of direct kinetic exchange in Sec. 3.2 to an extended system. For large U we work with
the electron configurations, in which the interaction term is diagonal. Configurations with dou-
bly occupied sites will have energies of the order of U or larger, so these are the configurations
that we would like to project out. For downfolding we thus partition the configuration basis,
and hence the Hilbert space, into the set of low-energy states which have no doubly occupied
sites

S =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∀i : ni↑ + ni↓ ≤ 1
}

(70)

and the set of high-energy states with one or more doubly occupied sites

D =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∃i : ni↑ + ni↓ = 2
}
. (71)

The hopping term T , which for large U is a perturbation to the interaction term I , couples
the subspaces by hopping an electron into or out of a doubly occupied site. In addition it lifts
the degeneracies within the subspaces. Hence the Hamiltonian can be partitioned as (note that
I ≡ 0 on subspace S)

Ĥ =

(
PS T PS PS T PD
PD T PS PD (T + I)PD

)
, (72)

Since we are dealing with an extended system, the subspaces are infinite, so we cannot write the
Hamiltonian on the subspaces as matrices. Instead we restrict the operators to the appropriate
subspace by using projection operators, PS projecting on the low-energy configurations S, PD
projecting on D. Just like in 3.2 we can then write down an effective Hamiltonian operating on
the low-energy configurations only:

Heff = PS T PS + PS T PD [PD (ε− (I + T )) PD]
−1 PD T PS , (73)

Unlike in the derivation of direct exchange, for the extended system we have no way of cal-
culating the inverse in the second term explicitly. We can, however, expand in powers of t/U .
This is Kato’s method for perturbation theory (see, e.g., section 16.3 of [16]). Essentially we
only need to consider configurations with a single double-occupancy – these correspond to the
states of lowest energy in D. On this subspace the interaction term is diagonal with eigenvalue
U and can thus be easily inverted. We then obtain the Hamiltonian

Ht−J = PS

T − t2

U

∑
〈ij〉〈jk〉σσ′

c†kσ′cjσ′ nj↑nj↓ c
†
jσciσ

 PS , (74)

which is called the t-J Hamiltonian. The first term describes the hopping, constrained to con-
figurations with no doubly occupied sites. Thus it essentially describes the hopping of empty
sites (holes). To understand what the second term does, we observe that, because of the oper-
ators nj↑nj↓, there are only contributions for states with a singly occupied site j: njσ = 0 and
nj,−σ = 1. After applying the second term, site j will again be singly occupied with njσ′ = 0
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Fig. 13: Processes contained in the three-site term T ′: indirect hopping processes to a second-
nearest neighbor site with an intermediate (virtual) doubly occupied state. In the first process
the two hopping processes are performed by the same electron, in the second process each
electron hops once and thus the spin on the intermediate site is flipped.

and nj,−σ′ = 1. Hence, for σ 6= σ′ the spin on site j will be flipped. Moreover, we distinguish
the contributions where only two different sites are involved (k = i) from the three-site terms
(k 6= i). The terms for k = i are just the ones we already know from the kinetic exchange
mechanism. The three-site terms describe a second-nearest neighbor hopping of an electron
from site i to site k via a singly occupied intermediate site j. For σ = σ′ the spin of the hopping
electron is opposite to that on the intermediate site. For σ 6= σ′ the spin of the intermediate site
is flipped – as is that of the hopping electron. This is shown in Fig. 13. The t-J Hamiltonian is

Ht−J = PS [T +HH + T ′] PS (75)

with

T = −t
∑
〈ij〉,σ

c†jσciσ (76)

HH =
4t2

U

∑
〈ij〉

(
~Sj · ~Si −

ninj
4

)
(77)

T ′ = − t
2

U

∑
〈ij〉〈jk〉

i 6=k

∑
σ

(
c†kσ(1− njσ)ciσ − c

†
k,−σc

†
jσcj,−σciσ

)
nj,−σ (78)

In the case of half-filling, when ni = 1, all hopping processes are suppressed, i.e., the projection
PS annihilates T and T ′. Thus for a Mott insulator the t-J model reduces to the spin 1/2

Heisenberg model
HH = J

∑
〈ij〉

~Sj · ~Si + const. (79)

with the exchange coupling J = 4t2/U given by the direct kinetic exchange mechanism. We
again stress that the spin-spin interaction is a result of projecting out the states with double
occupancies.
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7 Conclusion

We have seen that magnetic interactions in matter arise from the interplay of the Pauli principle
and Coulomb interaction, kinetic energy, or both. The resulting effective couplings between
magnetic moments are thus not fundamental interactions and, usually, take quite complex forms.
However, in limiting cases they can become quite simple and transparent. These scenarios are
called exchange mechanisms, of which we have discussed here a small selection. They give
an idea of what magnetic interactions can be expected in real materials. Thus, despite their
simplicity, exchange mechanisms provide vital guides for understanding the physics of complex
ordering phenomena, of spins and orbital-occupations, from simple concepts.
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Appendices

A Atomic units

Practical electronic structure calculations are usually done in atomic units, a.u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.
The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (80)

When we implement such an equation in a computer program, we need to enter the numerical
values of all the fundamental constants. We can avoid this by inventing a system of units
in which the numerical values of the electron mass me, the elementary charge e, the Planck-
constant ~, and the dielectric constant 4πε0 are all equal to one. In these units the above equation
can be programmed as

H = −1

2
∇2 − 1

r
. (81)

This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of
basis units we still need the atomic unit of length, which we call a0, and of time, t0. To find the
values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units:
~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)

2~3/mee
4 ≈ 2.4189 · 10−17 s

1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)
2~2. Because

of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom, about 27.211 eV.
It would be tempting to try to set the numerical value of all fundamental constants to unity.
But this must obviously fail, as the system of equations to solve becomes overdetermined when
we try to prescribe the numerical values of constants that are not linearly independent in the
space of basis units. Thus, we cannot, e.g., choose also the speed of light to have value one, as
would be practical for relativistic calculations. Instead, in atomic units it is given by c t0/a0 =

4πε0~c/e2 = 1/α, where α is the fine structure constant. Thus c = α−1 a.u. ≈ 137 a.u.
The Bohr magneton is µB = 1/2 a.u. The Boltzmann constant kB, on the other hand, is
independent of the previous constants. Setting its value to one fixes the unit of temperature to
1 a.u. temperature = mee

4/(4πε0)
2~2kB = Ha/kB ≈ 3.158 · 105 K.
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B Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

H =

(
H00 T01

T10 H11

)
, (82)

where H00 is the Hamiltonian restricted to the states of interest (reduced Hilbert space), H11

the Hamiltonian for the ‘other’ states, and the T matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

G(ω) = (ω −H)−1 =

(
ω −H00 −T01

−T10 ω −H11

)−1

. (83)

Its elements are easily determined by solving the system of two linear matrix equations(
ω −H00 −T01

−T10 ω −H11

)(
G00 G01

G10 G11

)
=

(
1 O

O 1

)
, (84)

keeping track of the order of the sub-matrix products. The resolvent on the reduced Hilbert
space is thus given by

G00(ω) =

ω − [H00 + T01(ω −H11)
−1 T10︸ ︷︷ ︸

=Heff(ω)

]


−1

. (85)

This expression looks just like the resolvent for a Hamiltonian Heff on the reduced Hilbert
space. This effective Hamiltonian describes the physics of the full system, but operates only on
the small reduced Hilbert space: For an eigenvector H|Ψ〉 = E|Ψ〉 on the full Hilbert space

H|Ψ〉 =

(
H00 T01

T10 H11

)(
|Ψ0〉
|Ψ1〉

)
= E

(
|Ψ0〉
|Ψ1〉

)
(86)

its projection |Ψ0〉 onto the reduced Hilbert space is an eigenstate of Heff(E). On the other
hand, we can construct the full eigenstate from a solution Heff(E)|Ψ0〉 = E|Ψ0〉 on the reduced
Hilbert space by upfolding |Ψ〉 ∝ (1+ (E −H11)

−1T10)|Ψ0〉.
Of course, this drastic simplification comes at a price: the effective Hamiltonian is energy
dependent. If the hopping matrix elements in T01 are small, and/or if the states in the part of the
Hilbert space that has been integrated out are energetically well-separated from the states that
are explicitly considered, this energy dependence can, to a good approximation, be neglected.
We can then replace ω by some characteristic energy ε0 for the states in the reduced Hilbert
space to obtain an energy-independent Hamiltonian

Heff(ω) = H00 + T01(ω −H11)
−1 T10 ≈ H00 + T01(ε0 −H11)

−1 T10 = Heff(ε0) (87)

that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with
an energy close to ε0. Expanding (ω − H11)

−1 about ε0, we can systematically improve the
approximation (linear and higher-order methods).
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C Pauli matrices

Here we collect the most important properties of the Pauli matrices. The Pauli or spin matrices
are defined as

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(88)

They are hermitian, i.e. σ†i = σi , and σ2
i = 1. Therefore their eigenvalues are ±1. The

eigenvectors of σz are |mz〉, mz = ±1:

|+ 1〉 =

(
1

0

)
and | − 1〉 =

(
0

1

)
. (89)

For these vectors we find

σx|mz〉 = | −mz〉 σy|mz〉 = imz| −mz〉 σz|mz〉 = mz|mz〉. (90)

The products of the Pauli matrices are σx σy = iσz, where the indices can be permuted cycli-
cally. From this follows for the commutator

[σx, σy] = 2iσz, (91)

while the anticommutator vanishes:
{σx, σy} = 0 (92)

Finally a rotation by an angle ϕ about the axis n̂ changes the spin matrices

Rn̂(ϕ) = e−in̂·~σ ϕ/2 = cos(ϕ/2)− i sin(ϕ/2) n̂ · ~σ . (93)
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1 Introduction: strong correlations at orbital degeneracy

Strong local Coulomb interactions lead to electron localization in Mott or charge transfer corre-
lated insulators. The simplest model of a Mott insulator is the non-degenerate Hubbard model,
where the large intraorbital Coulomb interaction U suppresses charge fluctuations due to the
kinetic energy ∝ t. As a result, the physical properties of a Mott insulator are determined by an
interplay of kinetic exchange ∝ J , with

J =
4t2

U
, (1)

derived from the Hubbard model at U � t, and the motion of holes in the restricted Hilbert
space without double occupancies, as described by the t-J model [1]. Although this generic
model captures the essential idea of strong correlations, realistic correlated insulators arise in
transition metal oxides (or fluorides) and the degeneracy of their partly filled and nearly degener-
ate 3d (or 4d) strongly correlated states has to be treated explicitly. Quite generally, strong local
Coulomb interactions lead then to a multitude of quite complex behavior with often puzzling
transport and magnetic properties [2]. The theoretical understanding of this class of compounds,
including the colossal magneto-resistance (CMR) manganites as a prominent example [3], has
to include not only spins and holes but in addition orbital degrees of freedom, which have to be
treated on equal footing with the electron spins [4]. For a Mott insulator with transition metal
ions in dm configurations, charge excitations along the bond 〈ij〉, dmi dmj 
 dm+1

i dm−1
j , lead to

spin-orbital superexchange which couples two neighboring ions at sites i and j.
It is important to realize that modeling of transition metal oxides can be performed on different
levels of sophistication. We shall present some effective orbital and spin-orbital superexchange
models for the correlated 3d-orbitals depicted in Fig. 1 coupled by hopping t between nearest
neighbor ions on a perovskite lattice, while the hopping for other lattices may be generated by
the general rules formulated by Slater and Koster [5]. The orbitals have particular shapes and
belong to two irreducible representations of the Oh cubic point group:
(i) a two-dimensional (2D) representation of eg-orbitals {3z2 − r2, x2 − y2}, and
(ii) a three-dimensional (3D) representation of t2g-orbitals {xy, yz, zx}.
In the absence of any tetragonal distortion or crystal-field due to surrounding oxygens, the 3d-
orbitals are degenerate within each irreducible representation of the Oh point group and have
typically a large splitting 10Dq ∼ 2 eV between them. When such degenerate orbitals are
party filled, electrons (or holes) have both spin and orbital degrees of freedom. The kinetic
energy Ht in a perovskite follows from the hybridization between 3d- and 2p-orbitals. In an
effective d-orbital model the oxygen 2p-orbitals are not included explicitly and we define the
hopping element t as the largest hopping element obtained for two orbitals of the same type
which belong to the nearest neighboring 3d ions.
We begin with the conceptually simpler t2g-orbitals, where finite hopping t results from the
d–p hybridization along π-bonds which couples each a pair of identical orbitals active along a
given bond. Each t2g-orbital is active along two cubic axes and the hopping is forbidden along
the one perpendicular to the plane of this orbital, e.g., the hopping between two xy-orbitals is
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Fig. 1: Schematic representation of 3d-orbitals: Top — two eg-orbitals {3z2 − r2, x2 − y2};
Bottom — three t2g-orbitals {zx, yz, xy}. (Image courtesy of Yoshinori Tokura)

not allowed along the c axis (due to the cancellations caused by orbital phases). It is therefore
convenient to introduce the following short-hand notation for the orbital degrees of freedom [6],

|a〉 ≡ |yz〉, |b〉 ≡ |zx〉, |c〉 ≡ |xy〉. (2)

The labels γ = a, b, c thus refer to the cubic axes where the hopping is absent for orbitals of a
given type,

Ht(t2g) = −t
∑
α

∑
〈ij〉‖γ 6=α

a†iασajασ, (3)

Here a†iασ is an electron creation operator in a t2g-orbital α ∈ {xy, yz, zx} with spin σ =↑, ↓
at site i, and the local electron density operator for a spin-orbital state is niασ = a†iασaiασ. Not
only spin but also orbital flavor is conserved in the hopping process ∝ t.
The hopping Hamiltonian for eg-electrons couples two directional eg-orbitals {|iζα〉, |jζα〉}
along a σ-bond 〈ij〉 [7],

Ht(eg) = −t
∑
α

∑
〈ij〉‖α,σ

a†iζασajζασ. (4)

Indeed, the hopping with amplitude−t between sites i and j occurs only when an electron with
spin σ transfers between two directional orbitals |ζα〉 oriented along the bond 〈ij〉 direction, i.e.,
|ζα〉 ∝ 3x2 − r2, 3y2 − r2, and 3z2 − r2 along the cubic axis α = a, b, and c. We will similarly
denote by |ξα〉 the orbital which is orthogonal to |ζα〉 and is oriented perpendicular to the bond
〈ij〉 direction, i.e., |ξα〉 ∝ y2 − z2, z2 − x2, and x2 − y2 along the axis α = a, b, and c. For
the moment we consider only electrons with one spin, σ =↑, to focus on the orbital problem.
While such a choice of an over-complete basis {ζa, ζb, ζc} is convenient, for writing down the
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kinetic energy a particular orthogonal basis is needed. The usual choice is to take

|z〉 ≡ 1√
6
(3z2 − r2), |z̄〉 ≡ 1√

2
(x2 − y2), (5)

called real eg-orbitals [7]. However, this basis is the natural one only for the bonds parallel to
the c axis but not for those in the (a, b) plane, and for ↑-spin electrons the hopping reads (here
for clarity we omit the spin index σ)

H↑t (eg) = −1

4
t
∑
〈ij〉‖ab

[
3a†iz̄ajz̄ + a†izajz ∓

√
3
(
a†iz̄ajz + a†izajz̄

)]
− t

∑
〈ij〉‖c

a†izajz, (6)

and although this expression is of course cubic invariant, it does not manifest this symmetry but
takes a very different appearance depending on the bond direction. However, the symmetry is
better visible using the basis of complex eg-orbitals at each site j [7],

|j+〉 = 1√
2

(
|jz〉 − i|jz̄〉

)
, |j−〉 = 1√

2

(
|jz〉+ i|jz̄〉

)
, (7)

corresponding to “up” and “down” pseudospin flavors, with the local pseudospin operators
defined as

τ+
i ≡ c†i+ci−, τ−i ≡ c†i−ci+, τ zi ≡ 1

2
(c†i+ci+ − c

†
i−ci−) = 1

2
(ni+ − ni−). (8)

The three directional |iζα〉 and three planar |iξα〉 orbitals at site i, associated with the three cubic
axes (α = a, b, c), are the real orbitals,

|iζα〉 = 1√
2

[
e−iϑα/2|i+〉+ e+iϑα/2|i−〉

]
= cos(ϑα/2)|iz〉 − sin(ϑα/2)|iz̄〉, (9)

|iξα〉 = 1√
2

[
e−iϑα/2|i+〉 − e+iϑα/2|i−〉

]
= sin(ϑα/2)|iz〉+ cos(ϑα/2)|iz̄〉, (10)

with the phase factors ϑia = −4π/3, ϑib = +4π/3, and ϑic = 0, and thus correspond to the
pseudospin lying in the equatorial plane and pointing in one of the three equilateral “cubic”
directions defined by the angles {ϑiα}.
Using the above complex-orbital representation (7) we can write the orbital Hubbard model for
eg-electrons with only one spin flavor σ =↑ in a form similar to the spin Hubbard model,

H↑(eg) = −1

2
t
∑
α

∑
〈ij〉‖α

[(
a†i+aj++a†i−aj−

)
+γ
(
e−iχαa†i+aj−+e+iχαa†i−aj+

)]
+ Ū

∑
i

ni+ni−,

(11)
with χa = +2π/3, χb = −2π/3, and χc = 0, and where the parameter γ, explained below,
takes for eg-orbitals the value γ = 1. The appearance of the phase factors e±iχα is character-
istic of the orbital problem—they occur because the orbitals have an actual shape in real space
so that each hopping process depends on the bond direction and may change the orbital fla-
vor. The interorbital Coulomb interaction ∝ Ū couples the electron densities in basis orbitals
niα = a†iµaiµ, with µ ∈ {+,−}; its form is invariant under any local basis transformation to
a pair of orthogonal orbitals, i.e., it gives an energy Ū for a double occupancy either when
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two real orbitals are simultaneously occupied, Ū
∑

i nizniz̄, or when two complex orbitals are
occupied, Ū

∑
i ni+ni−.

In general, on-site Coulomb interactions between two interacting electrons in 3d-orbitals de-
pend both on spin and orbital indices and the interaction Hamiltonian takes the form of the
degenerate Hubbard model. Note that the electron interaction parameters in this model are
effective ones, i.e., the 2p-orbital parameters of O (F) ions renormalize on-site Coulomb inter-
actions for 3d-orbitals. The general form which includes only two-orbital interactions and the
anisotropy of Coulomb and exchange elements is [8]

Hint = U
∑
iα

niα↑niα↓ +
∑
i,α<β

(
Uαβ −

1

2
Jαβ

)
niαniβ − 2

∑
i,α<β

Jαβ ~Siα · ~Siβ

+
∑
i,α<β

Jαβ

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (12)

Here a†iασ is an electron creation operator in any 3d-orbital α ∈ {xy, yz, zx, 3z2 − r2, x2 − y2}
and σ̄ ≡ −σ, with spin states σ =↑, ↓ at site i. The parameters {U,Uαβ, Jαβ} depend in
the general case on the three Racah parameters A, B and C [9] which may be derived from
somewhat screened atomic values. While the intraorbital Coulomb element is identical for all
3d-orbitals,

U = A+ 4B + 3C , (13)

the interorbital Coulomb Uαβ and exchange Jαβ elements are anisotropic and depend on the
involved pair of orbitals; the values of Jαβ are given in Table 1. The Coulomb Uαβ and ex-
change Jαβ elements are related to the intraorbital element U by a relation which guarantees the
invariance of interactions in the orbital space,

U = Uαβ + 2Jαβ . (14)

In all situations where only the orbitals belonging to a single irreducible representation of the
cubic group (eg or t2g) are partly filled, as, e.g., in the titanates, vanadates, nickelates, or copper
fluorides, the filled (empty) orbitals do not contribute, and the relevant exchange elements Jαβ

Table 1: On-site interorbital exchange elements Jαβ for 3d orbitals as functions of the Racah
parameters B and C (for more details see Ref. [9]).

3d-orbital xy yz zx x2 − y2 3z2 − r2

xy 0 3B + C 3B + C C 4B + C
yz 3B + C 0 3B + C 3B + C B + C
zx 3B + C 3B + C 0 3B + C B + C

x2 − y2 C 3B + C 3B + C 0 4B + C
3z2 − r2 4B + C B + C B + C 4B + C 0
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are all the same (see Table 1), i.e., for t2g (eg) orbitals,

J tH = 3B + C, (15)

JeH = 4B + C. (16)

Then one may use a simplified degenerate Hubbard model with isotropic form of on-site inter-
actions (for a given subset of 3d-orbitals) [10],

H
(0)
int = U

∑
iα

niα↑niα↓ +

(
U − 5

2
JH

) ∑
i,α<β

niαniβ − 2JH
∑
i,α<β

~Siα · ~Siβ

+ JH
∑
i,α<β

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (17)

It has two Kanamori parameters: the Coulomb intraorbital element U (13) and Hund’s exchange
JH standing either for J tH (15) or for JeH (16). Now Ū ≡ (U − 3JH) in Eq. (11). We emphasize
that in a general case when both types of orbitals are partly filled (as in the CMR manganites)
and both thus participate in charge excitations, the above Hamiltonian with a single Hund’s
exchange element JH is insufficient and the full anisotropy given in Eq. (17) has to be used
instead to generate correct charge excitation spectra of a given transition metal ion [9].

2 Orbital and compass models

If the spin state is ferromagnetic (FM) as, e.g., in the ab planes of KCuF3 (or LaMnO3),
charge excitations dmi d

m
j 
 dm+1

i dm−1
j with m = 9 (or m = 4) concern only high-spin

(HS) 3A1 (or 6A1) states and the superexchange interactions reduce to an orbital superexchange
model [11]. Thus we begin with an orbital model for eg-holes in KCuF3, with a local basis at
site i defined by two real eg-orbitals, see Eq. (5), being a local eg-orbital basis at each site. The
basis consists of a directional orbital |iζc〉 ≡ |iz〉 and the planar orbital |iξc〉 ≡ |iz̄〉. Other
equivalent orbital bases are obtained by rotation of the above pair of orbitals by an angle ϑ to

|iϑ〉 = cos (ϑ/2) |iz〉 − sin (ϑ/2) |iz̄〉,
|iϑ̄〉 = sin (ϑ/2) |iz〉+ cos (ϑ/2) |iz̄〉, (18)

i.e., to a pair {|iϑ〉, |i, ϑ+ π〉}. For angles ϑ = ±4π/3 one finds equivalent pairs of directional
and planar orbitals in a 2D model, {|iζa〉, |iξa〉} and {|iζb〉, |iξb〉}, to the usually used eg-orbital
real basis given by Eq. (5).
Consider now a bond 〈ij〉 ‖ γ along one of the cubic axes γ = a, b, c, and a charge excita-
tion generated by a hopping process i → j. The hopping t couples two directional orbitals
{|iζγ〉, |jζγ〉}. Local projection operators onto these active and the complementary inactive
{|iξγ〉, |jξγ〉} orbitals are

Pγiζ = |iζγ〉〈iζγ| =
(

1

2
+ τ

(γ)
i

)
, Pγiξ = |iξγ〉〈iξγ| =

(
1

2
− τ (γ)

i

)
, (19)
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(c)

Fig. 2: Virtual charge excitations leading to the eg-orbital superexchange model for a strongly
correlated system with |z〉 and |x〉 ≡ |z̄〉 real eg-orbitals (5) in the subspace of ↑-spin states:
(a) for a bond along the c axis 〈ij〉 ‖ c; (b) for a bond in the ab plane 〈ij〉 ‖ ab. In a FM plane
of KCuF3 (LaMnO3) the superexchange (27) favors (c) AO state of |AO±〉-orbitals (28).
(Images (a-b) reproduced from Ref. [11]; image (c) courtesy of Krzysztof Bieniasz)

where
τ

(γ)
i ≡ 1

2
(|iζγ〉〈iζγ| − |iξγ〉〈iξγ|) , (20)

and these operators are represented in the fixed {|iz〉, |iz̄〉} basis as follows:

τ
(a)
i = −1

4

(
σzi −

√
3σxi

)
, τ

(b)
i = −1

4

(
σzi +

√
3σxi

)
, τ

(c)
i =

1

2
σzi . (21)

A charge excitation between two transition metal ions with partly filled eg-orbitals will arise by
a hopping process between two active orbitals, |iζγ〉 and |jζγ〉. To capture such processes we
introduce two projection operators on the orbital states for each bond,

P(γ)
〈ij〉 ≡

(
1

2
+ τ

(γ)
i

)(
1

2
− τ (γ)

j

)
+

(
1

2
− τ (γ)

i

)(
1

2
+ τ

(γ)
j

)
, (22)

Q(γ)
〈ij〉 ≡ 2

(
1

2
− τ (γ)

i

)(
1

2
− τ (γ)

j

)
. (23)

Unlike for a spin system, the charge excitation dmi d
m
j 
 dm+1

i dm−1
j is allowed only in one

direction when one orbital is directional |ζγ〉 and the other is planar |ξγ〉 on the bond 〈ij〉 ‖ γ,

i.e.,
〈
P(γ)
〈ij〉

〉
= 1; such processes generate both HS and low-spin (LS) contributions. On the

contrary, when both orbitals are directional, i.e., one has
〈
Q(γ)
〈ij〉

〉
= 2, only LS terms contribute.

To write the superexchange model we need the charge excitation energy which for the HS
channel is,

ε1 ≡ E1(dm+1) + E0(dm−1)− 2E0(dm) = U − 3JH = Ū , (24)

where E0(dm) in the ground state energy for an ion with m electrons. Note that this energy
is the same for KCuF3 and LaMnO3 [8], so the eg-orbital model presented here is universal.
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Second order perturbation theory shown in Figs. 2(a-b) gives [11],

H↑(eg) = − t
2

ε1

∑
〈ij〉‖γ

P(γ)
〈ij〉. (25)

For convenience we define the dimensionless Hund’s exchange parameter η

η ≡ JH
U
. (26)

The value of J defines the superexchange energy scale and is the same as in the t-J model [1],
while the parameter η (26) characterizes the multiplet structure when LS states are included as
well, see below. The eg-orbital model (25) (for HS states) takes the form

H↑(eg) =
1

2
Jr1

∑
〈ij〉‖γ

(
τ

(γ)
i τ

(γ)
j −

1

4

)
+ Ez

∑
i

τ
(c)
i , (27)

where r1 = U/εHS = U/Ū = 1/(1 − 3η). Here we include the crystal-field term ∝ Ez which
splits off the eg orbitals. The same effective model is obtained from the eg Hubbard model
Eq. (11) at half-filling in the regime of Ū � t. It favors, consistently with its derivation, pairs
of orthogonal orbitals along the axis γ, with the energy gain for such a configuration −1

4
Jr1.

When both orbitals would be instead selected as directional along the bond, 〈τ (γ)
i τ

(γ)
j 〉 = 1

4
, the

energy gain vanishes as this orbital configuration corresponds to the situation incompatible with
the HS excited states considered here and the superexchange is blocked. The ground state in
the 2D ab plane has alternating orbital (AO) order between the sublattices i ∈ A and j ∈ B,

|i+〉 = 1√
2

(
|iz〉+ |iz̄〉

)
, |j−〉 = 1√

2

(
|jz〉 − |jz̄〉

)
, (28)

of orbitals occupied by holes in KCuF3 and by electrons in LaMnO3, see Fig. 2(c).
Here we are interested in the low temperature range T < 0.1J and the 2D (and 3D) eg-orbital
model orders at finite temperature T < Tc [12], i.e., below Tc = 0.3566J for a 2D model [13],
so we assume perfect orbital order given by a classical Ansatz for the ground state,

|Φ0〉 =
∏
i∈A

|iθA〉
∏
j∈B

|jθB〉, (29)

with the orbital states, |iθA〉 and |jθB〉, characterized by opposite angles (θA = −θB) and
alternating between two sublattices A and B in the ab planes. The orbital state at site i

|iθ〉 = cos (θ/2) |iz〉+ sin (θ/2) |iz̄〉, (30)

is here parameterized by an angle θ which defines the amplitudes of the orbital states defined in
Eq. (5). The AO state specified in Eq. (29) is thus defined by

|iθA〉 = cos (θ/2) |iz〉+ sin (θ/2) |ix〉,
|jθB〉 = cos (θ/2) |jz〉 − sin (θ/2) |jx〉, (31)

with θA = θ and θB = −θ.
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(a-b) (c)

Fig. 3: (a-b) Orbital-wave excitations obtained for different values of the crystal-field splitting
Ez for a 3D (left) and a 2D (right) orbital superexchange model (27), with Jr1 ≡ J . The
result shown for the 3D model at Ez = 0 actually corresponds to the limit Ez → 0. (c) Gap
∆/J in the orbital excitation spectrum and energy quantum correction ∆E/J as functions of
the crystal-field splitting Ez/J , for the 3D (2D) model shown by full (dashed) lines. (Images
reproduced from Ref. [11])

The excitations from the ground state of the orbital model (27) are orbital waves (orbitons)
which may be obtained in a similar way to magnons in a quantum antiferromagnet. An im-
portant difference is that the orbitons have two branches which are in general nondegenerate,
see Fig. 3(a-b). In the absence of a crystal field (Ez = 0) the spectrum for the 2D eg-orbital
model has a gap and the orbitons have weak dispersion, so the quantum corrections to the order
parameter are rather small. They are much larger in the 3D model but still smaller than in an an-
tiferromagnet [11]. The gap closes in the 3D model at Ez = 0, but the quantum corrections are
smaller than in the Heisenberg model. Note that the shape of the occupied orbitals changes at
finite crystal field, and the orbitons have a remarkable evolution, both in the 3D and 2D model,
see Figs. 3(a-b). Increasing Ez > 0 first increases the gap but when the field overcomes the
interactions and polarizes the orbitals (at Ez = 4J in 2D and Ez = 6J in 3D model), the gap
closes, see Fig. 3(c). This point marks a transition from the AO order to uniform ferro-orbital
(FO) order. Note that in agreement with intuition the quantum corrections ∆E/J are maximal
when the gap closes and low-energy orbitons contribute.
To see the relation of the 2D eg-orbital model to the compass model [14] we introduce a 2D
generalized compass model (GCM) with pseudospin interactions on a square lattice in the ab
plane (Jcm > 0) [15],

H(θ) = −Jcm

∑
{ij}∈ab

(
σaij(θ)σ

a
i+1,j(θ) + σbij(θ)σ

b
i,j+1(θ)

)
. (32)

The interactions occur along nearest neighbor bonds and are balanced along both lattice di-
rections a and b. Here {ij} labels lattice sites in the ab plane and {σaij(θ), σbij(θ)} are linear
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Fig. 4: Artist’s view of the evolution of orbital interactions in the generalized compass model
Eq. (32) with increasing angle θ. Heavy (blue) lines indicate favored spin directions induced by
interactions along two nonequivalent lattice axes a and b. Different panels show: (a) the Ising
model at θ = 0◦, (b) the 2D eg-orbital model at θ = 60◦, and (c) the OCM at θ = 90◦. Spin order
follows the interactions in the Ising limit, while it follows one of the equivalent interactions, σa

or σb, in the OCM. This results in the symmetry breaking quantum phase transition (QPT) which
occurs between (b) and (c). (Image reproduced from Ref. [15])

combinations of Pauli matrices describing interactions for T = 1
2

pseudospins

σaij(θ) = cos(θ/2) σxij + sin(θ/2) σzij ,

σbij(θ) = cos(θ/2) σxij − sin(θ/2) σzij . (33)

The interactions in Eq. (32) include the classical Ising model for σxij operators at θ = 0◦ and be-
come gradually more frustrated with increasing angle θ ∈ (0◦, 90◦] — they interpolate between
the Ising model (at θ = 0◦) and the isotropic compass model (at θ = 90◦), see Fig. 4. The latter
case is equivalent by a standard unitary transformation to the 2D compass model with standard
interactions, σxijσ

x
i,j+1 along the a and σzijσ

z
i+1,j along the b axis [15],

H(π/2) = −Jcm

∑
〈ij〉‖a

σxijσ
x
i+1,j − Jcm

∑
〈ij〉‖b

σzijσ
z
i,j+1 . (34)

The model (32) includes as well the 2D eg-orbital model as a special case, i.e., at θ = 60◦.
Increasing the angle θ between the interacting orbital-like components (33) in Fig. 4 is equiv-
alent to increasing frustration which becomes maximal in the 2D compass model. As a result,
a second order quantum phase transition from Ising to nematic order [16] occurs at θc ' 84.8◦

which is surprisingly close to the compass point θ = 90◦, i.e., only when the interactions are
sufficiently strongly frustrated. The ground state has high degeneracy d = 2L+1 for a 2D cluster
L × L of one-dimensional (1D) nematic states which are entirely different from the 2D AO
order in the eg-orbital model depicted in Fig. 4(c), yet it is stable in a range of temperatures
below Tc ' 0.06 Jcm [17].
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3 Superexchange models for active eg orbitals

3.1 General structure of the spin-orbital superexchange

We consider the case of partly filled degenerate 3d-orbitals and large Hund’s exchange JH .
In the regime of t � U , electrons localize and effective low-energy superexchange interac-
tions consist of all the contributions which originate from possible virtual charge excitations,
dmi d

m
j 
 dm+1

i dm−1
j — they take the form of a spin-orbital model, see Eq. (37) below. The

charge excitation n costs the energy

εn = En(dm+1) + E0(dm−1)− 2E0(dm), (35)

where the dm ions are in the initial HS ground states with spins S = m
2

and have the Coulomb
interaction energy E0(dm) =

(
m
2

)
(U − 3JH) each (if m < 5, else if m > 5 one has to consider

here m holes instead, while the case of m = 5 is special and will not be considered here as in
the t32ge

2
g configuration the orbital degree of freedom is quenched). The same formula for the

ground state energy applies as well to Mn3+ ions in d4 configuration with spin S = 2 HS ground
state, see Sec. 3.3. By construction also the ion with fewer electrons (holes) for m < 5 is in
the HS state and E0(dm−1) =

(
m−1

2

)
(U − 3JH). The excitation energies (35) are thus defined

by the multiplet structure of an ion with more electrons (holes) in the configuration dm+1, see
Fig. 5. The lowest energy excitation is given by Eq. (24) — it is obtained from the HS state of
the 3dm+1 ion with total spin S = S+ 1

2
and energy E1(dm+1) =

(
m+1

2

)
(U −3JH). Indeed, one

recovers the lowest excitation energy in the HS subspace, see Eq. (24), with JH being Hund’s
exchange element for the electron (hole) involved in the charge excitation, either eg or t2g. We
emphasize that this lowest excitation energy ε1 (24) is universal and is found both in t2g and eg
systems, i.e., it does not depend on the electron valence m. In contrast, the remaining energies
{εn} for n > 1 are all for LS excitations and are specific to a given valence m of the considered
insulator with dm ions. They have to be determined from the full local Coulomb interaction
Hamiltonian (12), in general including also the anisotropy of the {Uαβ} and {Jαβ} elements.
Effective interactions in a Mott (or charge transfer) insulator with orbital degeneracy take the
form of spin-orbital superexchange [4,18]. Its general structure is given by the sum over all the
nearest neighbor bonds 〈ij〉‖γ connecting two transition metal ions and over the excitations n
possible for each of them as

H = −
∑
n

t2

εn

∑
〈ij〉‖γ

P〈ij〉(S)Oγ〈ij〉, (36)

where P〈ij〉(S) is the projection on the total spin S = S ± 1
2

and Oγ〈ij〉 is the projection operator
on the orbital state at the sites i and j of the bond. Following this general procedure, one finds
a spin-orbital model with Heisenberg spin interaction for spins S = m

2
of SU(2) symmetry cou-

pled to the orbital operators which have much lower cubic symmetry, with the general structure
of spin-orbital superexchange ∝ J (1) [8]

HJ = J
∑
γ

∑
〈ij〉‖γ

{
K̂(γ)
ij

(
~Si · ~Sj + S2

)
+ N̂ (γ)

ij

}
. (37)
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Fig. 5: Energies of charge excitations εn (35) for selected cubic transition metal oxides, for:
(a) eg excitations to Cu3+ (d8) and Mn2+ (d5) ions; (b) t2g excitations to Ti2+ (d2) and V2+

(d3) ions. The splittings between different states are due to Hund’s exchange element JH which
refers to a pair of eg- and t2g-electrons in (a) and (b). (Image reproduced from Ref. [8])

It connects ions at sites i and j along the bond 〈ij〉 ‖ γ and involves orbital operators, K̂(γ)
ij and

N̂ (γ)
ij which depend on the bond direction γ = a, b, c for the three a priori equivalent directions

in a cubic crystal. The spin scalar product,
(
~Si · ~Sj

)
, is coupled to orbital operators K̂(γ)

ij which

together with the other “decoupled” orbital operators, N̂ (γ)
ij , determine the orbital state in a Mott

insulator. The form of these operators depends on the type of orbital degrees of freedom in a
given model. They involve active orbitals on each bond 〈ij〉 ‖ γ along direction γ. Thus the
orbital interactions are directional and have only the cubic symmetry of a (perovskite) lattice
provided the symmetry in the orbital sector is not broken by other interactions, for instance by
crystal-field or Jahn-Teller terms.
The magnetic superexchange constants along each cubic axis Jab and Jc in the effective spin
model

H = Jab
∑
〈ij〉‖ab

~Si · ~Sj + Jc
∑
〈ij〉‖c

~Si · ~Sj, (38)

are obtained from the spin-orbital model (37) by decoupling spin and orbital operators and
next averaging the orbital operators over a given orbital (ordered or disordered) state. It gives
effective magnetic exchange interactions: Jc along the c axis, and Jab within the ab planes. The
latter Jab ones could in principle still be different between the a and b axes in case of finite
lattice distortions due to the Jahn-Teller effect or octahedra tilting, but we limit ourselves to
idealized structures with Jab being the same for both planar directions. We show below that the
spin-spin correlations along the c axis and within the ab planes

sc = 〈~Si · ~Sj〉c, sab = 〈~Si · ~Sj〉ab, (39)

next to the orbital correlations, play an important role in the intensity distribution in optical
spectroscopy.
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In correlated insulators with partly occupied degenerate orbitals not only the structure of the su-
perexchange (37) is complex, but also the optical spectra exhibit strong anisotropy and temper-
ature dependence near the magnetic transitions, as found, e.g., in LaMnO3 [28] or in the cubic
vanadates LaVO3 and YVO3 [29]. In such systems several excitations contribute to the excita-
tion spectra, so one may ask how the spectral weight redistributes between individual subbands
originating from these excitations. The spectral weight distribution is in general anisotropic al-
ready when orbital order sets in and breaks the cubic symmetry, but even more so when A-type
or C-type AF spin order occurs below the Néel temperature TN.
At orbital degeneracy the superexchange consists of the terms H(γ)

n (ij) as a superposition of
individual contributions on each bond 〈ij〉 due to charge excitation n (35) [19]

H = J
∑
n

∑
〈ij〉‖γ

H(γ)
n (ij), (40)

with the energy unit for each individual H(γ)
n (ij) term given by the superexchange constant

J (1). It follows from d–d charge excitations with an effective hopping element t between
neighboring transition metal ions and is the same as that obtained in a Mott insulator with
nondegenerate orbitals in the regime of U � t. The spectral weight in the optical spectroscopy
is determined by the kinetic energy, and reflects the onset of magnetic order and/or orbital
order [19]. In a correlated insulator the electrons are almost localized and the only kinetic
energy which is left is associated with the same virtual charge excitations that contribute also
to the superexchange. Therefore, the individual kinetic energy terms K(γ)

n may be directly
determined from the superexchange (40) using the Hellmann-Feynman theorem,

K(γ)
n = −2J

〈
H(γ)
n (ij)

〉
. (41)

For convenience, we define here the K(γ)
n as positive quantities. Each term K

(γ)
n (41) originates

from a given charge excitation n along a bond 〈ij〉 ‖ γ. These terms are directly related to the
partial optical sum rule for individual Hubbard subbands, which reads [19]

a0~2

e2

∫ ∞
0

σ(γ)
n (ω)dω =

π

2
K(γ)
n , (42)

where σ(γ)
n (ω) is the contribution of band n to the optical conductivity for polarization along

the γ axis, a0 is the distance between transition metal ions, and a tight-binding model with
nearest neighbor hopping is implied. Using Eq. (41) one finds that the intensity of each band is
indeed determined by the underlying orbital order together with the spin-spin correlation along
the direction corresponding to the polarization.
One has to distinguish the above partial sum rule (42) from the full sum rule for the total spectral
weight in optical spectroscopy for polarization along a cubic direction γ, involving

K(γ) = −2J
∑

n

〈
H

(γ)
n (ij)

〉
, (43)

which stands for the total intensity in the optical d–d excitations. This quantity is usually of less
interest as it does not allow for a direct insight into the nature of the electronic structure being a
sum over several excitations with different energies εn (35) and has a much weaker temperature
dependence. In addition, it might be also more difficult to deduce from experiment.
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3.2 Kugel-Khomskii model for KCuF3 and K2CuF4

The simplest and seminal spin-orbital model is obtained when a fermion has two flavors, spin
and orbital, and both have two components, i.e., spin and pseudospin are S = T = 1

2
. The phys-

ical realization is found in cuprates with degenerate eg-orbitals, such as KCuF3 or K2CuF4 [4],
where Cu2+ ions are in the d9 electronic configuration, so charge excitations d9

i d
9
j 
 d10

i d
8
j are

made by holes. By considering the degenerate Hubbard model for two eg-orbitals one finds that
d8 ions have an equidistant multiplet structure, with three excitation energies which differ by
2JH [here JH stands for JeH in Eq. (16)], see Table 2. We emphasize that the correct spectrum
has a doubly degenerate energy (U − JH) and the highest non-degenerate energy is (U + JH),
see Fig. 5(a). Note that this result follows from the diagonalization of the local Coulomb inter-
actions in the relevant subspaces—it reflects the fact that a double occupancy (|z↑z↓〉 or |z̄↑z̄↓〉)
in either orbital state (|z〉 or |z̄〉) is not an eigenstate of the degenerate Hubbard in the atomic
limit (17), so the excitation energy U is absent in the spectrum, see Table 2.
The total spin state on the bond corresponds to S = 1 or 0, so the spin projection operators
P〈ij〉(1) and P〈ij〉(0) are easily deduced, see Table 2. The orbital configuration which corre-
sponds to a given bond 〈ij〉 is given by one of the orbital operators in Sec. 2, either P(γ)

〈ij〉 for

the doubly occupied states involving different orbitals, or Q(γ)
〈ij〉 for a double occupancy in a

directional orbital at site i or j. This gives a rather transparent structure of one HS and three LS
excitations in Table 2. The 3D Kugel-Khomskii (KK) model then follows from Eq. (36) [20,21]

H(d9) =
∑
γ

∑
〈ij〉‖γ

[
− t2

U − 3JH

(
~Si · ~Sj +

3

4

)
P(γ)
〈ij〉 +

t2

U − JH

(
~Si · ~Sj −

1

4

)
P(γ)
〈ij〉

+

(
t2

U − JH
+

t2

U + JH

)(
~Si · ~Sj −

1

4

)
Q(γ)
〈ij〉

]
+ Ez

∑
i

τ ci . (44)

The last term ∝ Ez is the crystal field which splits off the degenerate eg-orbitals when a Jahn-
Teller lattice distortion occurs, and is together with Hund’s exchange η a second parameter to

Table 2: Elements needed for the construction of the Kugel-Khomskii model from charge
excitations on the bond 〈ij〉: excitation n, its type (HS or LS) and energy εn, total spin state
(triplet or singlet) and the spin projection operator P〈ij〉(S), and the orbital state as well as the
corresponding orbital projection operator.

charge excitation spin state orbital state
n type εn S P〈ij〉(S) orbitals on 〈ij〉 ‖ γ projection

1 HS U − 3JH 1
(
~Si · ~Sj + 3

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

2 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

3 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉

4 LS U + JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉
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construct phase diagrams, see below. Here it refers to holes, i.e., large Ez > 0 favors hole
occupation in |z̄〉 ≡ |x2 − y2〉/

√
2 orbitals, as in La2CuO4. On the other hand, while Ez ' 0,

both orbitals have almost equal hole density.
Another form of the Hamiltonian (44) is obtained by introducing the coefficients

r1 =
1

1− 3η
, r2 = r3 =

1

1− η
, r4 =

1

1 + η
, (45)

and defining the superexchange constant J in the same way as in the t− J model Eq. (1). With
the explicit representation of the orbital operators P(γ)

〈ij〉 and Q(γ)
〈ij〉 in terms of

{
τ

(γ)
i

}
one finds

H(d9) =
1

2
J
∑
γ

∑
〈ij〉‖γ

{[
−r1

(
~Si · ~Sj +

3

4

)
+ r2

(
~Si · ~Sj −

1

4

)](
1

4
− τ (γ)

i τ
(γ)
j

)

+ (r3 + r4)

(
~Si · ~Sj −

1

4

)(
τ

(γ)
i +

1

2

)(
τ

(γ)
j +

1

2

)}
+ Ez

∑
i

τ ci . (46)

In the FM state spins are integrated out and one finds from the first term just the superexchange
in the eg-orbital model analyzed before in Sec. 2.
The magnetic superexchange constants Jab and Jc in the effective spin-orbital model (46) are ob-
tained by decoupling spin and orbital operators and next averaging the orbital operators 〈K̂(γ)

ij 〉
over the classical state |Φ0〉 as given by Eq. (29). The relevant averages are given in Table 3,
and they lead to the following expressions for the superexchange constants in Eq. (38)

Jc =
1

8
J
[
− r1 sin2 θ + (r2 + r3)(1 + cos θ) + r4(1 + cos θ)2

]
, (47)

Jab =
1

8
J

[
−r1

(
3

4
+ sin2 θ

)
+ (r2 + r3)

(
1− 1

2
cos θ

)
+ r4

(
1

2
− cos θ

)2
]
, (48)

which depend on two parameters: J (1) and η (26), and on the orbital order (31) specified by
the orbital angle θ. It is clear that the FM term ∝ r1 competes with all the other AF LS terms.
Nevertheless, in the ab planes, where the occupied hole eg-orbitals alternate, the larger FM
contribution dominates and makes the magnetic superexchange Jab weakly FM (Jab . 0) (when

Table 3: Averages of the orbital projection operators standing in the spin-orbital interactions
in the KK model (46) and determining the spin interactions in Hs (38) for the C-type orbital
order of occupied eg-orbitals which alternate in ab planes, as given by Eqs. (31). Nonequivalent
cubic directions are labeled by γ = ab, c.

operator average ab c

Q(γ)
〈ij〉 2

〈(
1
2
− τ (γ)

i

)(
1
2
− τ (γ)

j

)〉
1
2

(
1
2
− cos θ

)2 1
2

(
1 + cos θ

)2

P(γ)
〈ij〉

〈
1
4
− τ (γ)

i τ
(γ)
j

〉
1
4

(
3
4

+ sin2 θ
)

1
4

sin2 θ

R(γ)
〈ij〉 2

〈(
1
2

+ τ
(γ)
i

)(
1
2

+ τ
(γ)
j

)〉
1
2

(
1
2

+ cos θ
)2 1

2

(
1− cos θ

)2
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a

c
b

Fig. 6: Left: schematic view of the four simplest orbital configurations on a representative
cube of the 3D lattice: (a) AO order with 〈τa(b)

i 〉 = ±1
2

changing from site to site and 〈τ ci 〉 = 1
4
,

obtained for Ez < 0, (b) AO order with 〈τa(b)
i 〉 = −1

2
changing from site to site and 〈τ ci 〉 =

−1
4
, obtained for Ez > 0, (c) FO order with occupied z-orbitals and 〈τ ci 〉 = 1

2
(cigar-shaped

orbitals), and (d) FO order with occupied z̄-orbitals and 〈τ ci 〉 = −1
2

(clover-shaped orbitals).
Right: schematic view of four spin configurations (arrows stand for up or down spins) in phases
with spin order: (i)A-AF, (ii)C-AF, (iii) FM, and (iv)G-AF. (Images reproduced from Ref. [24])

sin2 θ ' 1), while the stronger AF superexchange along the c axis (Jc � |Jab|) favors quasi
one-dimensional (1D) spin fluctuations. Thus KCuF3 exhibits spinon excitations for T > TN.
Consider first the 2D KK model on a square lattice, with γ = a, b in Eq. (46), as in K2CuF4. In
the absence of Hund’s exchange, interactions between S = 1

2
spins are AF. However, they are

quite different depending on which of the two eg-orbitals are occupied by holes: Jzab = 1
16
J for

|z〉 and J z̄ab = 9
16
J for |z̄〉 hole orbitals. As a result, the AF phases with spin order in Fig. 6(iv)

and the FO order shown in Figs. 6(c) and 6(d) are degenerate at finite crystal field Ez = −1
2
J .

This defines a quantum critical point Q2D = (−0.5, 0) in the (Ez/J, η) plane. Actually, at this
point also one more phase has the same energy—the FM spin phase of Fig. 6(i) with AO order
of |±〉 orbitals (28) shown in Fig. 6(a) [21].
To capture the corrections due to quantum fluctuations, one may construct a plaquette mean
field approximation or entanglement renormalization ansatz (ERA) [22]. One finds important
corrections to a mean field phase diagram near the quantum critical point Q2D, and a plaquette
valence bond (PVB) state is stable in between the above three phases with long range order, with
spin singlets on the bonds ‖ a (‖b), stabilized by the directional orbitals |ζa〉 (|ζb〉). A novel
ortho-AF phase appears as well when the magnetic interactions change from AF to FM ones
due to increasing Hund’s exchange η, and for Ez/J < −1.5, see Fig. 7(a). Since the nearest
neighbor magnetic interactions are very weak, exotic four-sublattice ortho-AF spin order is
stabilized by second and third nearest neighbor interactions, shown in Fig. 7(b). Such further
neighbor interactions follow from spin-orbital excitations shown in Fig. 7(c). Note that both
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(a) (b)

(c)

Fig. 7: Spin-orbital phase diagram and entanglement in the 2D KK model:
(a) phase diagram in the plaquette mean field (solid lines) and ERA (dashed lines) variational
approximation, with insets showing representative spin and orbital configurations on a 2 × 2

plaquette — z̄-like
(
tc=−〈τ ci 〉 = 1

2

)
and z-like (ta,c =−〈τ c(a)

i 〉 = −1
2
) orbitals are accompa-

nied either by AF long range order (arrows) or by spin singlets on bonds in the PVB phase;
(b) view of an exotic four-sublattice ortho-AF phase near the onset of FM (or FMz) phase;
(c) artist’s view of the ortho-AF phase — spin singlets (ovals) are entangled with either one or
two orbital excitations |z〉 → |z̄〉 (clovers). (Images reproduced from Ref. [22])

approximate methods employed in Ref. [22] (plaquette mean field approximation and ERA)
give very similar range of stability of ortho-AF phase.
In the 3D KK model the exchange interaction in the ab planes (48) and along the c axis (47) are
exactly balanced at the orbital degeneracy (Ez = 0) and the quantum critical point where several
classical phases meet in mean field approximation isQ3D = (0, 0), see Fig. 8(a). While finiteEz
favors one or the other G-AF phase, finite Hund’s exchange η favors AO order stabilizing A-AF
spin order, see Fig. 6(i). This phase is indeed found in KCuF3 at low temperature T < TN and
is also obtained from electronic structure calculations [23]. We remark that for unrealistically
large η > 0.2, spin order changes to FM.
Large qualitative changes in the phase diagram are found when spin correlations on bonds
are treated in cluster mean field approximation (using plaquettes or linear clusters [24]), see
Fig. 8(b). Phases with long range spin order (G-AF, A-AF, and FM) are again separated by
exotic types of magnetic order which arise by a similar mechanism to that described above for
an ab monolayer, i.e., nearest neighbor exchange changes sign along one cubic direction. Near
the QCP Q3D one finds again a PVB phase, as in the 2D KK model. In addition to the phase
diagram of Fig. 7(a), the transitions between G-AF and PVB phases are continuous and mixed
PVB-AF phases arise.
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Fig. 8: Phase diagram of the 3D KK model obtained in two mean field methods: (a) the single-
site mean field, and (b) the cluster mean field. The shaded (green) area indicates phases with AO
order while the remaining magnetic phases are accompanied by FO order with fully polarized
orbitals, either z̄ (x) (for Ez > 0) or z (for Ez < 0). In this approach a plaquette valence-bond
(PVB) phase with alternating spin singlets in the ab planes (yellow) separates the phases with
magnetic long range order, see Fig. 6. Phases with exotic magnetic order are shown in orange.
Note the different ranges of Ez/J shown. (Images reproduced from Ref. [24])

3.3 Spin-orbital superexchange model for LaMnO3

Electronic structure calculations giveA-AF spin order, in agreement with experiment. It follows
from the spin-orbital superexchange for spins S = 2 in LaMnO3, He, due to the excitations
involving eg-electrons. The energies of the five possible excited states [9] shown in Fig. 5(a)
are: (i) the HS (S = 5

2
) 6A1 state, and (ii) the LS (S = 3

2
) states: 4A1, 4E (4Eε, 4Eθ), and 4A2,

will be parameterized again by the intraorbital Coulomb element U and by Hund’s exchange JeH
between a pair of eg-electrons in a Mn2+ (d5) ion, defined in Eq. (16). The Racah parameters
B = 0.107 eV and C = 0.477 eV justify an approximate relation C ' 4B, and we find the LS
excitation spectrum: ε(4A1) = U + 3

4
JH , ε(4E) = U + 5

4
JH (twice), and ε(4A2) = U + 13

4
JH .

Using the spin algebra (Clebsch-Gordan coefficients) and considering again two possible eg-
orbital configurations, see Eqs. (22) and (23), and charge excitations by t2g-electrons, one finds
a compact expression [25],

He =
1

16

∑
γ

∑
〈ij〉‖γ

{
−8

5

t2

ε(6A1)

(
~Si · ~Sj + 6

)
P(γ)
〈ij〉 +

[
t2

ε(4E)
+

3

5

t2

ε(4A1)

](
~Si · ~Sj − 4

)
P(γ)
〈ij〉

+

[
t2

ε(4E)
+

t2

ε(4A2)

](
~Si · ~Sj − 4

)
Q(γ)
〈ij〉

}
+ Ez

∑
i

τ ci . (49)

Ht =
1

8
Jβrt

(
~Si ·~Sj − 4

)
. (50)

Here β = (tπ/t)
2 follows from the difference between the effective d–d hopping elements

along the σ and π bonds, i.e., β ' 1
9
, while the coefficient rt stands for a superposition of all
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(A) (B)

Fig. 9: Kinetic energies per bond K(γ)
n (41) for increasing temperature T obtained from the

respective spin-orbital models for FM (top) and AF (bottom) bonds along the axis γ:
(A) LaMnO3 (with J = 150 meV, η ' 0.18 [8], end experimental points [28]);
(B) LaVO3 with η=0.13 [19] and experimental points [29].
The kinetic energies in HS states (n = 1, red lines) are compared with the experiment (filled
circles). Vertical dotted lines indicate the value of TN . (Images reproduced from Ref. [8])

t2g excitations involved in the t2g superexchange [8]. Note that spin-projection operators for
high (low) total spin S = 2 (S = 1) cannot be used, but again the HS term stands for a FM
contribution which dominates over the other LS terms when 〈P(γ)

〈ij〉〉 ' 1. Charge excitations by
t2g-electrons give double occupancies in active t2g-orbitals, soHt is AF but this term is small—
as a result FM interactions may dominate but again only along two spatial directions. Indeed,
this happens for the realistic parameters of LaMnO3 for the ab planes where spin order is FM
and coexists with AO order, while along the c axis spin order is AF accompanied by FO order,
i.e., spin-orbital order is A-AF/C-AF. Indeed, this type of order is found both from the theory
for realistic parameters and from the electronic structure calculations [26]. One concludes that
Jahn-Teller orbital interactions are responsible for the enhanced value of the orbital transition
temperature [27].
The optical spectral weight due to HS states in LaMnO3 may be easily derived from the present
model (49), following the general theory, see Eq. (41). One finds a very satisfactory agree-
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(a) (b)

Fig. 10: Band structure along the high symmetry directions in: (a) G-AF phase at x = 0 and
(b) C-AF phase at x = 0.05. Spin majority (minority) bands are shown by solid (dashed) lines.
Parameters: t = 0.4 eV, JH = 0.74 eV, g = 3 eV. Insets shows the Fermi surfaces at low doping.
Special k-points: Γ = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), R = (π, π, π), Z = (0, 0, π).
(Images reproduced from Ref. [30])

ment between the present theory and the experimental results of [28], as shown in Fig. 9(A).
We emphasize, that no fit is made here, i.e., the kinetic energies (41) are calculated using the
same parameters as those used for the magnetic exchange constants [8]. Therefore, such a
good agreement with experiment suggests that indeed the spin-orbital superexchange may be
disentangled, as also verified later [27].

To give an example of a phase transition triggered by eg-electron doping of Sr1−xLaxMnO3 we
show the results obtained with a double exchange model for degenerate eg-electrons extended
by the coupling to the lattice [30],

H= −
∑
ij,αβ,σ

tijαβa
†
iασajβσ − 2JH

∑
i

~Si ·~si +J
∑
〈ij〉

~Si · ~Sj −gu
∑
i

(niz − niz̄) +
1

2
NKu2. (51)

It includes the hopping of eg-electrons between orbitals α = z, z̄ as in Eq. (6). The tetragonal
distortion u is finite only in the C-AF phase. Here we define it as proportional to a difference
between two lattice constants a and c along the respective axis, u ≡ 2(c − a)/(c + a), and
N is the number of lattice sites. The microscopic model that explains the mechanism of the
magnetic transition in electron doped manganites from canted G-AF to collinear C-AF phase
at low doping x ' 0.04. The double exchange supported by the cooperative Jahn-Teller effect
leads then to dimensional reduction from an isotropic 3D G-AF phase to a quasi-1D order
of partly occupied 3z2 − r2-orbitals in the C-AF phase [30]. We emphasize that this theory
prediction relies on the shape of the Fermi surface which is radically different in the G-AF and
the C-AF phase. Due to the Fermi surface topology, spin canting is suppressed in the C-AF
phase, in agreement with the experiment.
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4 Superexchange for active t2g orbitals

4.1 Spin-orbital superexchange model for LaTiO3

LaTiO3 would be the electron-hole symmetric compound to KCuF3, if not the orbital degree of
freedom was t2g here. This changes the nature of orbital operators from the projections for each
bond to scalar products of pseudospin T = 1

2
operators. The superexchange spin-orbital model

(37) in the perovskite titanates couples S = 1
2

spins and T = 1
2

pseudospins arising from the t2g
orbital degrees of freedom at nearest neighbor Ti3+ ions, e.g., in LaTiO3 or YTiO3 [6]. Due to
the large intraorbital Coulomb element U electrons localize and the densities satisfy the local
constraint at each site i,

nia + nib + nic = 1. (52)

The charge excitations lead to one of four different excited states [9], shown in Fig. 5(b):
(i) the high-spin 3T1 state at energy U − 3JH , and
(ii) three low-spin states — degenerate 1T2 and 1E states at energy (U − JH), and
(iii) an 1A1 state at energy (U + 2JH).
As before, the excitation energies are parameterized by η, defined by Eq. (26), and we introduce
the coefficients

r1 =
1

1− 3η
, r2 =

1

1− η
, r3 =

1

1 + 2η
. (53)

One finds the following compact expressions for the terms contributing to superexchangeHJ(d1),
Eq. (40) [6],

H
(γ)
1 =

1

2
Jr1

(
~Si ·~Sj +

3

4

)(
A

(γ)
ij −

1

2
n

(γ)
ij

)
, (54)

H
(γ)
2 =

1

2
Jr2

(
~Si ·~Sj −

1

4

)(
A

(γ)
ij −

2

3
B

(γ)
ij +

1

2
n

(γ)
ij

)
, (55)

H
(γ)
3 =

1

3
Jr3

(
~Si ·~Sj −

1

4

)
B

(γ)
ij , (56)

where

A
(γ)
ij = 2

(
~τi · ~τj +

1

4
ninj

)(γ)

, B
(γ)
ij = 2

(
~τi ⊗ ~τj +

1

4
ninj

)(γ)

, n
(γ)
ij = n

(γ)
i + n

(γ)
j . (57)

As in Sec. 3.2, the orbital (pseudospin) operators
{
A

(γ)
ij , B

(γ)
ij , n

(γ)
ij

}
depend on the direction of

the 〈ij〉 ‖ γ bond. Their form follows from two active t2g-orbitals (flavors) along the cubic
axis γ, e.g., for γ = c the active orbitals are a and b, and they give two components of the
pseudospin T = 1

2
operator ~τi. The operators

{
A

(γ)
ij , B

(γ)
ij

}
describe the interactions between

these two active orbitals, which include the quantum fluctuations, and take either the form of a
scalar product ~τi · ~τj in A(γ)

ij , or lead to a similar expression

~τi ⊗ ~τj = τxi τ
x
j − τ

y
i τ

y
j + τ zi τ

z
i (58)
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in B(γ)
ij . These latter terms enhance orbital fluctuations by double excitations due to the τ+

i τ
+
j

and τ−i τ
−
j terms. The interactions along the axis γ are tuned by the number of electrons occu-

pying active orbitals, n(γ)
i = 1 − niγ , which is fixed by the number of electrons in the inactive

orbital niγ by the constraint (52). The cubic titanates are known to have particularly pronounced
quantum spin-orbital fluctuations [18], and their proper treatment requires a rather sophisticated
approach. Therefore, in contrast to the AF long range order found in eg-orbital systems, spin-
orbital disordered state may occur in titanium perovskites, as suggested for LaTiO3 [6].

4.2 Spin-orbital superexchange model for LaVO3

As the last cubic system we present the spin-orbital model for V3+ ions in d2 configurations in
the vanadium perovskite RVO3 (R=La,. . . ,Lu). Due to Hund’s exchange one has S = 1 spins
and three (n = 1, 2, 3) charge excitations εn arising from the transitions to [see Fig. 5(b)]:
(i) a high-spin state 4A2 at energy (U − 3JH),
(ii) two degenerate low-spin states 2T1 and 2E at U , and
(iii) a 2T2 low-spin state at (U + 2JH) [31].
Using η (26) we parameterize this multiplet structure by

r1 =
1

1− 3η
, r3 =

1

1 + 2η
. (59)

The cubic symmetry is broken and the crystal field induces orbital splitting in RVO3, hence
〈nic〉 = 1 and the orbital degrees of freedom are given by the doublet {a, b} which defines the
pseudospin operators ~τi at site i. One derives a HS contribution H(c)

1 (ij) for a bond 〈ij〉 along
the c axis, and H(ab)

1 (ij) for a bond in the ab plane

H
(c)
1 (ij) = −1

3
Jr1

(
~Si ·~Sj + 2

) (
1
4
− ~τi ·~τj

)
, (60)

H
(ab)
1 (ij) = −1

6
Jr1

(
~Si ·~Sj + 2

) (
1
4
− τ zi τ zj

)
. (61)

In Eq. (60) the pseudospin operators ~τi describe the low-energy dynamics of (initially degener-
ate) {xz, yz} orbital doublet at site i; this dynamics is quenched inH(ab)

1 (61). Here 1
3
(~Si ·~Sj+2)

is the projection operator on the HS state for S = 1 spins. The termsH(c)
n (ij) for LS excitations

(n = 2, 3) contain instead the spin operator (1 − ~Si · ~Sj) (which guarantees that these terms
cannot contribute for fully polarized spins 〈~Si · ~Sj〉 = 1)

H
(c)
2 (ij) = − 1

12
J
(

1− ~Si ·~Sj
) (

7
4
− τ zi τ zj − τxi τxj + 5τ yi τ

y
j

)
,

H
(c)
3 (ij) = −1

4
Jr
(

1− ~Si ·~Sj
) (

1
4

+ τ zi τ
z
j + τxi τ

x
j − τ

y
i τ

y
j

)
, (62)

while again the terms H(ab)
n (ij) differ from H

(c)
n (ij) only by orbital operators

H
(ab)
2 (ij) = −1

8
J
(

1− ~Si ·~Sj
) (

19
12
∓ 1

2
τ zi ∓ 1

2
τ zj − 1

3
τ zi τ

z
j

)
,

H
(ab)
3 (ij) = −1

8
Jr
(

1− ~Si ·~Sj
) (

5
4
∓ 1

2
τ zi ∓ 1

2
τ zj + τ zi τ

z
j

)
, (63)
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where upper (lower) sign corresponds to bonds along the a(b) axis.
First we present a mean field approximation for the spin and orbital bond correlations which
are determined self-consistently after decoupling them from each other in HJ (37). Spin inter-
actions in Eq. (38) are given by two exchange constants

Jc =
1

2
J
{
ηr1 − (r1 − ηr1 − ηr3)(1

4
+ 〈~τi ·~τj〉)− 2ηr3〈τ yi τ

y
j 〉
}
,

Jab =
1

4
J
{

1− ηr1 − ηr3 + (r1 − ηr1 − ηr3)(1
4

+ 〈τ zi τ zj 〉)
}
, (64)

determined by orbital correlations 〈~τi·~τj〉 and 〈ταi ταj 〉. By evaluating them one finds Jc < 0 and
Jab > 0 supporting C-AF spin order. In the orbital sector one finds

Hτ =
∑
〈ij〉c

[
Jτc ~τi · ~τj − J(1− sc)ηr3τ

y
i τ

y
j

]
+ Jτab

∑
〈ij〉ab

τ zi τ
z
j , (65)

with

Jτc =
1

2
J [(1 + sc)r1 + (1− sc)η(r1 + r3)] ,

Jτab =
1

4
J [(1− sab)r1 + (1 + sab)η(r1 + r3)] , (66)

depending on spin correlations: sc = 〈~Si · ~Sj〉c and sab = −〈~Si · ~Sj〉ab. In a classical C-AF
state (sc = sab = 1) this mean field procedure becomes exact, and the orbital problem maps to
Heisenberg pseudospin chains along the c axis, weakly coupled (as η � 1) along a and b bonds

H(0)
τ = Jr1

∑
〈ij〉c

~τi · ~τj +
1

2
η

(
1 +

r3

r1

) ∑
〈ij〉ab

τ zi τ
z
j

 , (67)

releasing large zero-point energy. Thus, spin C-AF and G-AO order with quasi-1D orbital
quantum fluctuations support each other in RVO3. Orbital fluctuations play here a prominent
role and amplify the FM exchange Jc, making it even stronger than the AF exchange Jab [31].
Having the individual terms H(γ)

n of the spin-orbital model, one may derive the spectral weights
of the optical spectra (41). The HS excitations have a remarkable temperature dependence and
the spectral weight decreases in the vicinity of the magnetic transition at TN, see Fig. 9(B). The
observed behavior is reproduced in the theory only when spin-orbital interactions are treated in
a cluster approach, i.e., they cannot be disentangled, see Sec. 5.2.
Unlike in LaMnO3 where the spin and orbital phase-transitions are well separated, in the RVO3

(R=Lu,Yb,. . . ,La) the two transitions are close to each other [33]. It is not easy to reproduce
the observed dependence of the transition temperatures TOO and Néel TN1 on the ionic radius
rR (in the RVO3 compounds with small rR there is also another magnetic transition at TN2 [34]
which is not discussed here). The spin-orbital model was extended by the coupling to the
lattice to unravel a nontrivial interplay between superexchange, the orbital-lattice coupling due
to the GdFeO3-like rotations of the VO6 octahedra, and orthorhombic lattice distortions [32].
One finds that the lattice strain affects the onset of the magnetic and orbital order by partial
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Fig. 11: Phase transitions in the vanadium perovskites RVO3: (a) phase diagram with the
orbital TOO and Néel TN1 transition temperature obtained from theory with and without orbital-
lattice coupling (solid and dashed lines) [32], and from experiment (circles) [33];
(b) spin 〈Szi 〉 (solid) andG-type orbital 〈τ zi 〉G (dashed) order parameters, vanishing at TOO and
TN1, and the transverse orbital polarization 〈τxi 〉 (dashed-dotted lines) for LaVO3 and SmVO3

(thin and heavy lines). (Images reproduced from Ref. [32])

suppression of orbital fluctuations, and the dependence of TOO is non-monotonous in Fig. 11(a).
Thereby the orbital polarization∝ 〈τx〉 increases with decreasing ionic radius rR, and the value
of TN1 is reduced, see Fig. 11(b). The theoretical approach demonstrates that orbital-lattice
coupling is very important and reduces both TOO and Néel TN1 for small ionic radii.

5 Spin-orbital complementarity and entanglement

5.1 Goodenough-Kanamori rules

While a rather advanced many-body treatment of the quantum physics characteristic for spin-
orbital models is required in general, we want to present here certain simple principles which
help to understand the heart of the problem and to give simple guidelines for interpreting ex-
periments and finding relevant physical parameters of the spin-orbital models of undoped cubic
insulators. We will argue that such an approach based upon classical orbital order is well justi-
fied in many known cases, as quantum phenomena are often quenched by the Jahn-Teller (JT)
coupling between orbitals and the lattice distortions, which are present below structural phase
transitions and induce orbital order both in spin-disordered and in spin-ordered or spin-liquid
phases.
From the derivation of the Kugel-Khomskii model in Sec. 3.2, we have seen that pairs of di-
rectional orbitals on neighboring ions {|iζγ〉, |jζγ〉} favor AF spin order while pairs of orthog-
onal orbitals such as {|iζγ〉, |jξγ〉} favor FM spin order. This is generalized by the classical
Goodenough-Kanamori rules (GKR) [35] that state that AF spin order is accompanied by FO
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Fig. 12: Artist’s view of the GKR [35] for: (a) FOz and AF spin order and (b) AOz and FM
spin order in a system with orbital flavor conserving hopping as is alkali RO2 hyperoxides
(R=K,Rb,Cs) [36]. The charge excitations generated by interorbital hopping fully violate the
GKR and support the states with the same spin-orbital order: (c) FOz and FM spin order and
(d) AOz and AF spin order. (Image reproduced from Ref. [36])

order, while FM spin order is accompanied by AO order, see Figs. 12(a) and 12(b). Indeed,
these rules emphasizing the complementarity of spin-orbital correlations are frequently em-
ployed to explain the observed spin-orbital order in several systems, particularly in those where
spins are large, like in CMR manganites [3]. They agree with the general structure of spin-
orbital superexchange in the Kugel-Khomskii model where it is sufficient to consider the flavor-
conserving hopping between pairs of directional orbitals {|iζγ〉, |jζγ〉}. The excited states are
then double occupancies in one of the directional orbitals while no effective interaction arises
for two parallel spins (in triplet states), so the superexchange is AF. In contrast, for a pair of
orthogonal orbitals, e.g., {|iζγ〉, |jξγ〉}, two different orbitals are singly occupied and the FM
term is stronger than the AF one as the excitation energy is lower. Therefore, configurations
with AO order support FM spin order.

The above complementarity of spin-orbital order is frustrated by interorbital hopping, or may be
modified by spin-orbital entanglement, see below. In such cases the order in both channels could
be the same, either FM/FO, see Fig. 12(c), or AF/AO, see Fig. 12(d). Again, when different
orbitals are occupied in the excited state, the spin superexchange is weak FM and when the
same orbital is doubly occupied, the spin superexchange is stronger and AF. The latter AF
exchange coupling dominates because antiferromagnetism, which is due to the Pauli principle,
does not have to compete here with ferromagnetism. On the contrary, FM exchange is caused by
the energy difference ∝ η between triplet and singlet excited states with two different orbitals
occupied.
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The presented modification of the GKR is of importance in alkaliRO2 hyperoxides (R=K,Rb,Cs)
[36]. The JT effect is crucial for this generalization of the GKR—without it large interorbital
hopping orders the T x-orbital-mixing pseudospin component instead of the T z component in a
single plane. More generally, such generalized GKR can arise whenever the orbital order on a
bond is not solely stabilized by the same spin-orbital superexchange interaction that determines
the spin exchange. On a geometrically frustrated lattice, another route to this behavior can occur
when the ordered orbital component preferred by superexchange depends on the direction and
the relative strengths fulfill certain criteria.

5.2 Spin-orbital entanglement

A quantum state consisting of two different parts of the Hilbert space is entangled if it cannot
be written as a product state. Similar to it, two operators are entangled if they give entangled
states, i.e., they cannot be factorized into parts belonging to different subspaces. This happens
precisely in spin-orbital models and is the source of spin-orbital entanglement [37].
To verify whether entanglement occurs it suffices to compute and analyze the spin, orbital, and
spin-orbital (four-operator) correlation functions for a bond 〈ij〉 along γ axis, given, respec-
tively, by

Sij ≡
1

d

∑
n

〈n| ~Si · ~Sj |n〉 , (68)

Tij ≡
1

d

∑
n

〈
n
∣∣∣(~Ti · ~Tj)(γ)

∣∣∣n〉 , (69)

Cij ≡
1

d

∑
n

〈
n
∣∣∣(~Si · ~Sj − Sij)(~Ti · ~Tj − Tij)(γ)

∣∣∣n〉 (70)

=
1

d

∑
n

〈
n
∣∣∣(~Si · ~Sj)(~Ti · ~Tj)(γ)

∣∣∣n〉− 1

d

∑
n

〈
n
∣∣∣~Si ·~Sj∣∣∣n〉 1

d

∑
m

〈
m
∣∣∣(~Ti · ~Tj)(γ)

∣∣∣m〉 ,
where d is the ground state degeneracy, and the pseudospin scalar product in Eqs. (69) and (70)
is relevant for a model with active t2g orbital degrees of freedom. As a representative example
we evaluate here such correlations for a 2D spin-orbital model derived for a NaTiO2 plane [39],
with the local constraint (52) as in LaTiO3; other situations with spin-orbital entanglement are
discussed in Ref. [37].
To explain the physical origin of the spin-orbital model for NaTiO2 [39] we consider a repre-
sentative bond along the c axis shown in Fig. 13. For the realistic parameters of NaTiO2 the
t2g-electrons are almost localized in the d1 configurations of Ti3+ ions, hence their interactions
with neighboring sites can be described by the effective superexchange and kinetic exchange
processes. Virtual charge excitations between the neighboring sites, d1

i d
1
j 
 d2

i d
0
j , generate

magnetic interactions which arise from two different hopping processes for active t2g-orbitals:
(i) the effective hopping t = t2pd/∆ which occurs via oxygen 2pz-orbitals with the charge trans-
fer excitation energy ∆, in the present case along the 90◦ bonds, and (ii) the direct hopping t′

which couples the t2g-orbitals along the bond and gives kinetic exchange interaction, as in the
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Fig. 13: Left: (a) Hopping processes between t2g-orbitals along a bond parallel to the c axis
in NaTiO2: (i) tpd between Ti(t2g) and O(2pz) orbitals—two tpd transitions define an effective
hopping t, and (ii) direct d–d hopping t′. The t2g-orbitals shown by different colors are labeled
as a, b, and c, see Eq. (2). The bottom part gives the hopping processes along γ = a, b, c axes
in the triangular lattice that contribute to Eq. (71): (b) superexchange and (c) direct exchange.
Right: Ground state for a free hexagon as a function of α (71): (a) bond correlations—spin
Sij Eq. (68) (circles), orbital Tij Eq. (69) (squares), and spin–orbital Cij Eq. (70) (triangles);
(b) orbital electron densities n1γ at a representative site i = 1 (left-most site): n1a (circles),
n1b (squares), n1c (triangles). The insets indicate the orbital configurations favored by superex-
change (α = 0), by mixed 0.44 < α < 0.63, and by direct exchange (α = 1). The vertical lines
indicate an exact range due to the degeneracy. (Images reproduced from Ref. [40])

Hubbard model (1). Note that the latter processes couple orbitals with the same flavor, while
the former ones couple different orbitals (for this geometry) so the occupied orbitals may be
interchanged as a result of a virtual charge excitation—these processes are shown in Fig. 13.
The effective spin-orbital model considered here reads [39]

H = J
{

(1− α) Hs +
√

(1− α)α Hm + α Hd

}
. (71)

The parameter α in Eq. (71) is given by the hopping elements as follows

α =
t′2

t2 + t′2
(72)

and interpolates between the superexchange Hs (α = 0) and kinetic exchange Hd (α = 1),
while in between mixed exchange contributes as well; these terms are explained in Ref. [39].
This model is considered here in the absence of Hund’s exchange η (26), i.e., at η = 0. One
finds that all the orbitals contribute equally in the entire range of α, and each orbital state is
occupied at two out of six sites in the entire regime of α, see Fig. 13. The orbital state changes
under increasing α and one finds four distinct regimes, with abrupt transitions between them. In
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the superexchange model (α = 0) there is precisely one orbital at each site which contributes,
e.g. n1c = 1 as the c-orbital is active along both bonds. Having a frozen orbital configuration,
the orbitals decouple from spins and the ground state is disentangled, with Cij = 0, and one
finds that the spin correlations Sij = −0.4671, as for the AF Heisenberg ring of L = 6 sites.
Orbital fluctuations increase gradually with increasing α and this results in finite spin-orbital
entanglement Cij ' −0.12 for 0.10 < α < 0.44; simultaneously spin correlations weaken to
Sij ' −0.27.

In agreement with intuition, when α = 0.5 and all interorbital transitions shown in Fig. 13
have equal amplitude, there is large orbital mixing which is the most prominent feature in the
intermediate regime of 0.44 < α < 0.63. Although spins are coupled by AF exchange, the
orbitals fluctuate here strongly and reduce further spin correlations to Sij ' −0.21. The orbital
correlations are negative, Tij < 0, the spin-orbital entanglement is finite, Cij ' −0.13, and
the ground state is unique (d = 1). Here all the orbitals contribute equally and n1γ = 1/3

which may be seen as a precursor of the spin-orbital liquid state which dominates the behavior
of the triangular lattice. The regime of larger values of α > 0.63 is dominated by the kinetic
exchange in Eq. (71), and the ground state is degenerate with d = 2 [40], with strong scattering
of possible electron densities {biγ}, see Fig. 13. Weak entanglement is found for α > 0.63,
where Cij '6= 0. Summarizing, except for the regimes of α < 0.09 and α > 0.63 the ground
state of a single hexagon is strongly entangled, i.e., Cij < −0.10, see Fig. 13.

5.3 Fractionalization of orbital excitations

As a rule, even when spin and orbital operators disentangle in the ground state, some of the
excited states are characterized by spin-orbital entanglement. It is therefore even more subtle to
separate spin-orbital degrees of freedom to introduce orbitons as independent orbital excitations,
in analogy to the purely orbital model and the result presented in Fig. 3 [41]. This problem
is not yet completely understood and we show here that in a 1D spin-orbital model the orbital
excitation fractionalizes into freely propagating spinon and orbiton, in analogy to charge-spinon
separation in the 1D t-J model.

While a hole doped to the FM chain propagates freely, it creates a spinon and a holon in an
AF background described by the t-J model. A similar situation occurs for an orbital excitation
in an AF/FO spin-orbital chain [41]. An orbital excitation may propagate through the system
only after creating a spinon in the first step, see Figs. 14(a) and 14(b). The spinon itself moves
via spin flips ∝ J > t, faster than the orbiton, and the two excitations get well separated, see
Fig. 14(c). The orbital-wave picture of Sec. 2, on the other hand, would require the orbital
excitation to move without creating the spinon in the first step. Note that this would be only
possible for imperfect Néel AF spin order. Thus one concludes that the symmetry between the
spin and the orbital sector is broken also for this reason and orbitals are so strongly coupled
to spin excitations in realistic spin-orbital models with AF/FO order that the mean field picture
separating these two sectors of the Hilbert space breaks down.
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(c)

(b)

(a)

Fig. 14: Schematic representation of the orbital motion and the spin-orbital separation in a
1D spin-orbital model. The first hop of the excited state (a)→(b) creates a spinon (wavy line)
that moves via spin exchange ∝ J . The next hop (b)→(c) gives an orbiton freely propagating
as a holon with an effective hopping t ∼ J/2. (Image reproduced from Ref. [41])

6 t-J -like model for ferromagnetic manganites

Even more complex situations arise when charge degrees of freedom are added to spin-orbital
models. The spectral properties of such models are beyond the scope of this discussion, we
shall only point out that macroscopic doping changes radically the spin-orbital superexchange
by adding to it ferromagnetic exchange triggered by the eg-orbital liquid realized in hole doped
manganites. As a result, the CMR effect is observed and the spin order changes to FM [3].
Similar to the spin case, the orbital Hubbard model Eq. (11) gives at large Ū � t the eg t-J
model [42], i.e., eg-electrons may hop only in the restricted space without doubly occupied e2

g

sites. The kinetic energy is gradually released with increasing doping x in doped manganese
oxides La1−xAxMnO3, with A =Sr,Ca,Pb, which is a driving mechanism for an effective FM
interaction generated by the kinetic energy ∝ H̃↑t (eg) in the double exchange [3]. It competes
with AF exchange which eventually becomes frustrated in the FM metallic phase, arising typi-
cally at sufficient hole doping x ' 0.17. The evolution of magnetic order with increasing doping
results from the above frustration: at low doping x ∼ 0.1 AF spin order becomes stable and first
changes to a FM insulating phase, see Fig. 15(a). Only at larger doping x, an insulator-to-metal
transition takes place which explains the CMR effect [3].
In the FM metallic phase the magnon excitation energy is derived from the manganite t-J
model and consists of two terms [42]: (i) superexchange being AF for the orbital liquid and
(ii) FM double exchange JDE, proportional to the kinetic energy of eg-electrons (6)

JDE =
1

2zS2

∣∣∣〈H̃↑t (eg)
〉∣∣∣ . (73)



5.30 Andrzej M. Oleś
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X ΓΓ M
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Fig. 15: Theoretical predictions for magnon spectra in the FM metallic phase in manganites:
(a) spin-wave stiffness D (solid line) as a function of hole doping x given by double exchange
(dashed) reduced by superexchange (SE) for: A-AF, FM insulating (FI), and FM metallic
(FM) phases, and experimental points for La1−xSrxMnO3 (diamonds) and La0.7Pb0.3MnO3

(circle); empty circles for the hypothetical AO |±〉 state unstable against the eg-orbital liq-
uid; (b) magnon dispersion ω~q obtained at x = 0.30 (solid line) and the experimental points for
La0.7Pb0.3MnO3 [43] (circles and dashed line). Parameters: U = 5.9, JeH = 0.7, t = 0.41, all
in eV. (Images reproduced from Ref. [42])

Here z is the number of neighbors (z = 6 for the cubic lattice), and 2S = 4 − x is the average
spin in a doped manganese oxide. The kinetic energy |〈H̃↑t (eg)〉| measures directly the band
narrowing due to the strong correlations in the eg-orbital liquid. This explains why the spin-
wave stiffness D is: (i) reduced by the frustrating AF superexchange JSE but (ii) increases
proportionally to the hole doping x in the FM metallic phase, see Fig. 15(a). As a result, the
magnon dispersion in the FM metallic phase is given by

ω~q = (JDE − JSE) zS2(1− γ~q), (74)

where γ~q = 1
z

∑
~δ e

i~q·~δ, and ~δ is a vector which connects the nearest neighbors.
An experimental proof that indeed the eg-orbital liquid is responsible for isotropic spin excita-
tions in the FM metallic phase of doped manganites, we show the magnon spectrum observed
in La0.7Pb0.3MnO3, with rather large stiffness constant D = 7.25 meV, see Fig. 15(b). Note
that D would be much smaller in the phase with AO order of |±〉 orbitals (28). Summarizing,
the isotropy of the spin excitations in the simplest manganese oxides with FM metallic phase is
naturally explained by the orbital liquid state of disordered eg-orbitals.

7 Conclusions and outlook

Spin-orbital physics is a very challenging field in which only certain and mainly classical as-
pects have been understood so far. We have explained the simplest principles of spin-orbital
models determining the physical properties of strongly correlated transition metal oxides with
active orbital degrees of freedom. In the correlated insulators exchange interactions are usually
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Fig. 16: Top: Doping by transition metal ions in an ab plane with C-AF/G-AO order of {a, c}
orbitals found in d4 Mott insulators (ruthenates) with: (a) orbital dilution by the d3 impurity
with S = 3/2 spin, and (b) charge dilution by the d2 impurity with S = 1 spin. Host S = 1
spins (red/black arrows) interact by Jhost and doublons in a (c) orbitals shown by green symbols.
Here doping occurs at a doublon site and spins are coupled by Jimp along hybrid (red) bonds.
Bottom: (c) phase diagram for a single d3 impurity replacing a doublon in c-orbital in the C-
AF host [46], with changes in the orbital order indicated by dashed boxes (note a → b orbital
flips); (d-e) orbital fluctuations promoted on d2–d4 hybrid bonds with (d) AF and (e) FM spin
correlations. In the latter case (e) the doublons at two orbitals are coupled in excited states
(doublon and hole in ovals), and one obtains orbital flips∝ T−i T

+
j accompanied by Ising terms

∝ T zi T
z
j , while double excitations ∝ T+

i T
+
j occur on AF bonds (d) even in the absence of

Hund’s exchange and are amplified by finite η. (Image reproduced from Ref. [47])

frustrated and this frustration is released by a certain type of spin-orbital order, with the com-
plementarity of spin and orbital correlations at AF/FO or FM/AO bonds, as explained by the
Goodenough-Kanamori rules [35].

One of the challenges is spin-orbital entanglement, which becomes visible both in the ground
and excited states. The coherent excitations such as magnons or orbitons are frequently not
independent and also composite spin-orbital excitations are possible. Such excitations are not
yet understood, except for some simplest cases as, e.g., the 1D spin-orbital model with SU(4)
symmetry where all these excitations are on an equal footing and contribute to the entropy in
the same way [44]. Such a perfect symmetry does not occur in nature, however, and the orbital
excitations are more complex due to finite Hund’s exchange interaction and, at least in some
systems, orbital-lattice couplings. They may be a decisive factor explaining why spin-orbital
liquids do not occur in certain models. For the same reason, in the absence of geometrical
frustration, the orbital liquid seems easier to obtain than the spin liquid.
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Doping of spin-orbital systems leads to very rich physics with phase transitions induced by
moving charge carriers, as for instance in the well known example of the CMR manganites.
Yet, the holes doped into correlated insulators with spin-orbital order may be of quite different
nature. Charge defects may prevent the holes from coherent propagation [45] and as a result the
spin-orbital order will persist to rather high doping level.
Recently doping by transition metal ions with different valence was explored [46]—in such t2g
systems local or global changes of spin-orbital order result from the complex interplay of spin-
orbital degrees of freedom at orbital dilution, see Fig. 16(a). In general, the observed order
in the doped system will then depend on the coupling between the ions with different valence
compared with that within the host Jimp/Jhost, and on Hund’s exchange at doped ions ηimp. Not
only a crossover between AF and FM spin correlations is expected with increasing ηimp, but also
the orbital state will change from inactive orbitals to orbital polarons on the hybrid bonds with
increasing Jimp, see Fig. 16(c). Quite a different case is given when double occupancies are
replaced by empty orbitals in charge doping as shown in Fig. 16(b). Here orbital fluctuations
are remarkably enhanced by the novel double excitation ∝ T+

i T
+
j terms, see Figs. 16(d-e). On

the one hand, large spin-orbital entanglement is expected in such cases when Hund’s exchange
is weak, while on the other hand the superexchange will reduce to the orbital model in the FM
regime. By mapping of this latter model to fermions one may expect interesting topological
states in low dimension that are under investigation at present.
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[25] L.F. Feiner and A.M. Oleś, Phys. Rev. B 59, 3295 (1999)
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1 The Hubbard model

The Hubbard model was proposed in the 1960s to describe electrons in 3d transition metals.
In these elements, the radial wave function of the 3d-electrons has a very small spatial extent.
Therefore, when the 3d shell is occupied by several electrons, these are forced to be close to one
another on the average so that the electrostatic energy is large. The energy of a given transition
metal ion therefore varies strongly with the number of electrons it contains. To study the mo-
tion of conduction electrons under the influence of this strong Coulomb repulsion Hubbard [1],
Kanamori [2], and Gutzwiller [3] proposed a simplified model. Thereby both, the five-fold de-
generacy of the 3d-orbital and the presence of other bands in the solid are neglected. Rather, one
considers a lattice of sites – whereby the geometry of the lattice is not really specified – with one
s-like orbital at each site. Orbitals on different sites are assumed to be orthogonal, but for not
too distant sites i and j there are nonvanishing matrix elements ti,j of the Hamiltonian between
the orbitals centered on these sites. The Coulomb interaction between electrons in orbitals on
different sites is neglected, but if two electrons – which then necessarily have opposite spin –
occupy the same orbital the energy is assumed to increase by the large amount U to simulate the
strong dependence of the energy on the occupation number. If we denote the creation operator
for an electron of spin σ in the orbital at lattice site i by c†i,σ the model thus can be written as

H =
∑
i,j

∑
σ

ti,j c
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ = Ht +HU . (1)

Here ni,σ = c†i,σci,σ counts the number of electrons with spin σ in the orbital at site i.
After the discovery of the cuprate superconductors in 1987 and after Zhang and Rice demon-
strated [4] that the CuO2 planes in these compounds can be described by the so-called t-J model
– which is equivalent to the Hubbard model in the limit U/t � 1 – there was renewed interest
in the 2-dimensional Hubbard model. However, the lightly doped Mott-insulator – which most
probably is the system to be understood in order to solve the many puzzles posed by the cuprate
superconductors – is still far from being solved. Accordingly, the purpose of this lecture is to
present some of the basic approximations developed for this model.
We consider (1) for a two-dimensional square lattice with N sites, lattice constant a = 1, and
periodic boundary conditions. For hopping integrals −t between nearest ((1, 0)-like) neighbors
and −t′ between 2nd nearest ((1, 1)-like) neighbors the dispersion relation is

εk = −2t
(
cos(kx) + cos(ky)

)
− 4t′ cos(kx) cos(ky). (2)

The number of electrons with spin σ in the system is denoted by Nσ – whereby we are mostly
interested in the nonmagnetic case N↑ = N↓ – so that the number of electrons is Ne = N↑+N↓.
In the following, densities per site will be denoted n, e.g., n↑ = N↑/N . For ne = 1 we have
N↑ = N↓ = N/2 so that precisely half of the k-points for each spin direction are occupied and
we have a half-filled band, i.e., a metal in conventional band theory. Instead it will be shown
below that for sufficiently large U/t the Hubbard model describes an insulator, the so-called
Mott-insulator. The region of primary interest for cuprate superconductors is ne ≥ 0.8, i.e., the
lightly doped Mott-insulator, and U/t ≈ 10.
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2 Some notation and review of Green functions

We first introduce some notation that will be used frequently and give a brief review of imag-
inary time Green functions. There are numerous excellent textbooks on the use of field theory
for condensed matter physics where more details can be found [5–7].
The thermal average of any operator Ô is given by

〈Ô〉th =
1

Z
Tr
(
e−β(H−µN)Ô

)
(3)

with the grand partition function

Z = Tr
(
e−β(H−µN)

)
. (4)

Introducing the imaginary-time Heisenberg operator (with K = H − µN )

cα(τ) = eτK cα e
−τK ⇒ −∂cα(τ)

∂τ
= [cα(τ), K] (5)

the imaginary time Green function is defined as

Gα,β(τ) = −
〈
T cα(τ) c†β

〉
th

= −Θ(τ)
〈
cα(τ) c†β

〉
th

+Θ(−τ)
〈
c†β cα(τ)

〉
th

(6)

=
1

Z

(
−Θ(τ)

∑
i,j

e−β(Ei−µNi) eτ(Ei−Ej+µ)
〈
i
∣∣ cα∣∣j〉 〈j∣∣ c†β ∣∣i〉

+Θ(−τ)
∑
i,j

e−β(Ei−µNi) eτ(Ej−Ei+µ)
〈
i
∣∣ c†β ∣∣j〉 〈j∣∣ cα∣∣i〉

)
, (7)

where α, β denote some set of quantum numbers, |i〉 are the exact eigenstates of the system
with energies Ei and particle number Ni. Using ∂Θ(τ)

∂τ
= δ(τ) it follows from (5) and (6) that

the Green function obeys the equation of motion

− ∂

∂τ
Gα,β(τ) = δ(τ)

〈{
cα, c

†
β

}〉
th
−
〈
T [cα(τ), K] c†β

〉
th
. (8)

It follows from (7) that G is well-defined only if τ ∈ [−β, β] (the reason is that the Ei − µNi

are unbounded from above [8]) and that for τ ∈ [−β, 0] one has G(τ + β) = −G(τ). It follows
that G(τ) has the Fourier transform (see equation (25.10) in [6] with ~ = 1)

G(τ) =
1

β

∞∑
ν=−∞

e−iωντG(iων), G(iων) =

∫ β

0

dτ eiωντ G(τ), ων =
(2ν + 1)π

β
. (9)

The iων are the (Fermionic) Matsubara frequencies. Inserting (7) into (9) one obtains

Gαβ(iων) =
1

Z

∑
i,j

e−β(Ei−µNi) + e−β(Ej−µNj)

iων + µ− (Ej − Ei)
〈
i
∣∣ cα∣∣j〉〈j∣∣ c†β ∣∣i〉. (10)

We specialize to a single band and assume that the z-component of the spin is a good quantum
number so that the Green function is a scalar and α = β = (k, σ). The function G(k, iων)
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Fig. 1: The Green function G(ω) for real ω. The dashed vertical lines give the poles, ωi.

can be analytically continued to the whole complex frequency plane by replacing iων → z

where z is any complex number. As can be seen from (10) the function G(z) is analytic in the
complex z-plane except for the real axis where it has simple poles at z = Ej −Ei−µ. It is this
property on which the usefulness of the imaginary-time Green function is based: the analytic
continuation of its Fourier transform G(z) can be evaluated along a line infinitesimally above
the real axis and then gives the Fourier transform of the retarded real-time Green function –
from which the single-particle spectral function A(k, ω), i.e., the combined photoemission and
inverse photoemission spectrum of a system can be obtained:

A(k, ω) = − 1

π
Im G(k, ω + i0+) .

For this reason the Fourier transform (10) is often called ‘the’ Green function. Equation (10) is
the Lehmann representation of the Green function.
It is shown in textbooks of field theory [5–7] that the imaginary-time Green function can be
expanded in Feynman diagrams (whereas such an expansion is not possible for the real-time
Green function at finite temperature) and the self-energy Σ(k, z) can be introduced as usual:(

z + µ− εk −Σ(k, z)
)
G(k, z) = 1 . (11)

Next we discuss the analytical structure of the Green function and the self energy. It can be seen
from (10) that the Fourier transform of the Green function has the general form

G(z) =
∑
i

αi
z − ωi

,

where the αi and ωi are real numbers. Along the real axis G(ω) therefore looks like in Fig. 1.
This shows that in between any two successive poles ωi and ωi+1 the Green function crosses
zero with a negative slope

G(ω) ≈ −βi(ω − ζi).
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Near the crossing point ζi we thus have

Σ(ω) = −G−1(ω) + ω + µ− εk =
σi

ω − ζi
+ . . .

where σi = 1/βi. The self-energy thus has poles on the real axis as well, and these poles are
‘sandwiched’ in between the poles of the Green function. Luttinger has shown [9] that Σ(ω)

is essentially determined by these poles and their residua in that it can be written in the whole
complex frequency plane as

Σ(z) = VHF +
∑
i

σi
z − ζi

(12)

where VHF is equal to the Hartree-Fock potential (or rather its Fourier coefficient with the
proper momentum).

3 The Hubbard dimer: solution by exact diagonalization

As a first example we consider the Hubbard model on a dimer

H = −t
∑
σ

(
c†1,σc2,σ + c†2,σc1,σ

)
+

2∑
i=1

ni,↑ni,↓. (13)

This can be solved by exact diagonalization , i.e., by constructing a basis of the entire Hilbert
space, setting up the Hamilton matrix in this basis and diagonalizing it. The Hamiltonian (13)
is invariant under the exchange of the site indices, 1 ↔ 2, so that we can classify eigenstates
by their parity P under this operation. Alternatively, we might view (13) as describing a ‘2-site
ring with periodic boundary conditions’ and hopping integral t/2. Such a 2-site ring has two
allowed momenta, k = 0 and k = π. The exchange of sites is equivalent to a translation by one
lattice site, and since the definition of a Bloch state ψk with momentum k is TR ψk = eikR ψk it
follows that P = 1 is equivalent to k = 0, whereas P = −1 means k = π. In the following we
will always consider parity and momentum as interchangeable.
The Hilbert space can be decomposed into sectors with fixed electron number Ne, z-component
of spin Sz, and parity P . We first consider the sector withNe = 2 and Sz = 0, i.e., two electrons
with opposite spin, which is equivalent to ‘half filling’. The basis states with P = ±1 are:

|1±〉 =
1√
2

(
c†1,↑c

†
2,↓ ± c

†
2,↑c
†
1,↓

)
|0〉,

|2±〉 =
1√
2

(
c†1,↑c

†
1,↓ ± c

†
2,↑c
†
2,↓

)
|0〉. (14)

For the ground state with P = +1 we make the ansatz |ψ0〉 = u|1+〉 + v|2+〉. The relevant
matrix elements are 〈1+|H|2+〉 = −2t, 〈1+|H|1+〉 = 0 and 〈2+|H|2+〉 = U , so that the ground
state energy E0 and the coefficients u and v can be obtained by solving the eigenvalue problem(

0 −2t

−2t U

)(
u

v

)
= E0

(
u

v

)
.
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We find E0 = U
2
−W with W =

√(
U
2

)2
+ 4t2 and

u = −

√
W + U

2

2W
, v =

−2t√
2W (W + U

2
)
. (15)

Both |1+〉 and |2+〉 are spin singlets so that |ψ0〉 is a singlet as well. For the states with P = −1

we have 〈1−|H|2−〉 = 0, whence the eigenstates are |1−〉with energy 0 and |2−〉with energy U .
|1−〉 is a spin triplet and the remaining two members of the triplet are c†1,↑c

†
2,↑|0〉 and c†1,↓c

†
2,↓|0〉.

Both states are in fact the only basis states in the sectors Ne = 2, Sz = ±1 and P = −1

and hence are eigenstates by construction with energy 0. In the limit U/t → ∞ we have
W → U

2
+ 4t2

U
. The low energy spectrum of the dimer with two electrons then consists of four

states: the spin singlet with energy −4t2

U
and the three members of the triplet with energy 0. We

can thus describe the dimer by an effective low energy Hamiltonian of the form

H = J
(
S1 · S2 −

n1n2

4

)
where ni =

∑
σ c
†
i,σci,σ is the operator of electron number and Si = 1

2

∑
σ,σ′ c

†
i,στσ,σ′ci,σ the

operator of electron spin at site i (τ denotes the vector of Pauli matrices) and J = 4t2

U
– this is

nothing but the Heisenberg antiferromagnet.
We can also construct states with Ne = 1, 3 and given parity and z-spin σ = ±1

2
:

|3±, σ〉 =
1√
2

(
c†1,σ ± c

†
2,σ

)
|0〉,

|4±, σ〉 =
1√
2

(
c†1,σc

†
2,↑c
†
2,↓ ± c

†
2,σc

†
1,↑c
†
1,↓

)
|0〉.

Since these states are the only ones in their respective (Ne, Sz, P ) sector they are again eigen-
states by construction and indeed H|3±, σ〉 = ∓t|3±, σ〉 and H|4±, σ〉 = (U ± t)|4±, σ〉. The
energies of the single-electron states can be written in the familiar form εk = 2 t

2
cos(k) ex-

pected for a two-site ring with periodic boundary conditions and hopping integral t
2
. Having

found all eigenstates |j〉 and their energies Ej we can write down the Green function G(k, ω)

using the Lehmann representation (10). Thereby we simplify matters by taking the limit of
low temperature and assuming that the chemical potential µ has been chosen such that the
thermal occupation factor e−βEj/Z is unity for |j〉 = |ψ0〉 and zero for all other states (this
can be achieved by setting, e.g., µ = U

2
). Defining electron operators with definite parity by

c±,σ = 1√
2
(c1,σ ± c2,σ) we find

c±,σ|ψ0〉 =
1

2

(
c†1,σ ± c

†
2,σ

)(
u
(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+ v

(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

))
|0〉

=
±u+ v√

2
|3±, σ̄〉,

c†±,σ|ψ0〉 =
∓u+ v√

2
|4±, σ〉,
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Fig. 2: Single particle spectral function and imaginary part of the self-energy for the Hubbard
model with U/t = 10, δ-functions have been replaced by Lorentzians. Left: for the dimer, right
for the 16 and 18-site cluster with periodic boundary conditions (reprinted with permission
from [10], Copyright 2011 by the American Physical society). The dots correspond to ζk =
U
2
− µ− εk.

and using (15) for u and v we find the squared matrix elements

|〈3±, σ̄|c±,σ|ψ0〉|2 =
1

2
± t

W
, |〈4±, σ|c†±,σ|ψ0〉|2 =

1

2
∓ t

W
.

Using (10) the Fourier transform of the Green function G±(ω) = −
〈
T c±(τ)c†±

〉
is

G±(ω) =
1
2
± t

W

ω + µ− (E0 ± t)
+

1
2
∓ t

W

ω + µ− (U ± t− E0)
.

Here the first term corresponds to |j〉 = |ψ0〉, whereas the second term corresponds to |i〉 = |ψ0〉
in (10). Equating G−1

± (ω) = ω + µ± t−Σ±(ω) we can now solve for the self energy:

Σ±(ω) =
U

2
+

(
U
2

)2

ω + µ∓ 3t− U
2

.

Σ±(ω) is indeed consistent with the general form (12) and the additive constant U/2 is indeed
the Hartree-Fock potential. For the dimer Σ±(ω) has only a single pole of strength (U/2)2

which does have a substantial dispersion, in that its positions for k = 0 and k = π differ by
a full 6t. Plots of A(k, ω) and the imaginary part of Σ(k, ω) are given in Figure 2. The part
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of A(k, ω) for ω < 0 gives the photoemission spectrum (PES) whereas the part for ω > 0

is the inverse photoemission spectrum (IPES). PES and IPES form two ‘bands’ separated by
an energy gap of ≈ U – these are the lower and upper Hubbard band. The pole of the self
energy is within the Hubbard gap and its dispersion is downward as one goes from k = 0 to
k = π, that means ‘inverted’ as compared to that of the energy εk. Interestingly, some of the
features observed in the dimer generalize to larger systems. Figure 2 also showsA(k, ω) and the
imaginary part of Σ(k, ω) for the allowed momenta of the 16- and 18-site cluster which were
obtained by Lanczos diagonalization [10]. In A(k, ω) one can again recognize the lower and
upper Hubbard band – for the larger clusters these ‘bands’ consist not only of sharp peaks but
contain extended incoherent continua. As was the case for the dimer, Σ(k, ω) has an isolated
peak of strength ∝ (U/2)2 within the Hubbard gap. Over a large part of the Brillouin zone this
peak has a smooth dispersion which closely follows the ‘inverted’ band dispersion, ζk = U

2
−εk.

4 Spin density wave theory

Next, we discuss spin density wave theory which is a mean-field theory and which is reasonably
successful in describing the antiferromagnetic phase of the Hubbard model. By comparing the
result of applying both sides to the four possible states of a single atom – |0〉, | ↑〉, | ↓〉 and | ↑↓〉
– it is easy to verify that

U ni,↑ni,↓ =
niU

2
− 2U

3
S2
i .

This equation shows that the system can lower its Coulomb energy by forming magnetic mo-
ments, 〈S2

i 〉 6= 0, where 〈. . . 〉 denotes the expectation value. These magnetic moments may
be either static – so that 〈Si〉 6= 0 – or fluctuating, i.e., 〈Si〉 = 0. An example for fluctuating
moments is provided by the Hubbard dimer discussed above. Namely for the ground state |ψ0〉
of the dimer

Sz1 |ψ0〉 = Sz1

(
u√
2

(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+

v√
2

(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

))
=

u

2
√

2

(
c†1,↑c

†
2,↓ − c

†
2,↑c
†
1,↓

)
S2

1 |ψ0〉 =
3u

4
√

2

(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
,

so that indeed 〈ψ0|Sz1 |ψ0〉 = 0 but 〈ψ0|S2
1 |ψ0〉 = 3u2

4
(it is easy to shows that 〈ψ0|Sx1 |ψ0〉 =

〈ψ0|Sy1 |ψ0〉 = 0 as well and everything also holds true for site 2).
Spin density wave theory, on the other hand, assumes static moments, 〈Si〉 6= 0. Based on the
results for the Hubbard dimer, which showed that the spins have antiferromagnetic correlations,
we expect that these static magnetic moments prefer to be antiparallel on neighboring sites. For
a 2D square lattice this requirement defines the Néel state: we choose

〈ni,↑〉 =
ne
2

+
m

2
eiQ·Ri

〈ni,↓〉 =
ne
2
− m

2
eiQ·Ri

⇒ 〈ni〉 = ne and 〈Szi 〉 =
m

2
eiQ·Ri .
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HereQ = (π, π) and the exponential eiQ·Ri is +1 (−1) if the sum of x- and y-component of the
site i is even (odd) which defines the sublattices A (with eiQ·Ri = 1) and B (with eiQ·Ri = −1).
We consider the trivial decomposition ni,σ = 〈ni,σ〉+ δni,σ, where the operator δni,σ = ni,σ −
〈ni,σ〉 describes fluctuations of ni around its mean value The basic assumption of all mean-field
theories is that these fluctuations are ‘small’. Accordingly, when forming the product Uni,↑ni,↓
the ‘2nd order term’ δni,↑ · δni,↓ is discarded, so that the interaction term becomes

U
∑
i

ni,↑ni,↓ → U
∑
i

(
ni,↑ 〈ni,↓〉+ ni,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉

)
=

neU

2

∑
i,σ

ni,σ −
mU

2

∑
i

eiQ·Ri(ni,↑ − ni,↓)−NU
n2
e −m2

4
.

Switching to Fourier transformed operators the mean-field Hamiltonian KMF = HMF − µN
becomes

KMF =
∑
k,σ

ε̃k c
†
k,σck,σ −∆

∑
k

(
c†k+Q,↑ck,↑ − c

†
k+Q,↓ck,↓

)
−NU n2 −m2

4
, (16)

where ε̃k = εk + neU
2
− µ and ∆ = mU

2
. The term ∝ ∆ appears to be non-Hermitian at first

glance. However, by shifting the summation variable k→ k + Q and noting that k + 2Q = k

one can see that the term is in fact its own Hermitian conjugate.
The Hamiltonian (16) is quadratic in the Fermion operators and thus can be diagonalized by a
unitary transformation. In a second step, the value of m is determined by recomputing 〈ni,σ〉
from this solution and demanding self-consistency. We will now carry out this program thereby
following Gorkov’s re-derivation of BCS theory [11] in terms of the imaginary time Green
functions introduced in the first section.
We define the Green function Gσ(k, τ) = −〈T ck,σ(τ)c†k,σ〉 and with the Hamiltonian (16) its
equation of motion is

− ∂

∂τ
Gσ(k, τ) = δ(τ)〈{c†k,σ, ck,σ}〉 − 〈T [ck,σ(τ), KMF ]c†k,σ〉

= δ(τ) + ε̃k Gσ(k, τ)∓∆ G̃σ(k, τ) ,

where the upper sign holds for σ =↑ and we have introduced the anomalous Green function
G̃σ(k, τ) = −〈T ck+Q,σ(τ)c†k,σ〉. In a nonmagnetic system G̃σ(k, τ) would be zero due to
momentum conservation but in a magnetic system it can be different from zero. Its equation of
motion is

− ∂

∂τ
G̃σ(k, τ) = δ(τ)〈{c†k,σ, ck+Q,σ}〉 − 〈T [ck+Q,σ(τ), KMF ]c†k,σ〉

= ε̃k+Q G̃σ(k, τ)∓∆ Gσ(k, τ) .

The system of equations of motion therefore closes and upon Fourier transformation with re-
spect to τ – whereby −∂τ → iων – and becomes(

iων − ε̃k ±∆
±∆ iων − ε̃k+Q

) (
Gσ(k, iων)

G̃σ(k, iων)

)
=

(
1

0

)
. (17)
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Next we recall [12] that for any complex number a and any complex vector b:

(a1 + b · τ )(a1− b · τ ) = a2 − b2 ⇒ (a1 + b · τ )−1 =
a1− b · τ
a2 − b2

.

Defining

ζk =
1

2
(ε̃k + ε̃k+Q) , ηk =

1

2
(ε̃k − ε̃k+Q) , (18)

the 2×2 coefficient matrix H on the left hand side of (17) can be brought to the form a1+b ·τ
with a = iων − ζk and b = (±∆, 0,−ηk). Multiplying both sides of (17) by H−1 we obtain

Gσ(k, iων) =
iων − ε̃k+Q

(iων − ζk)2 −W 2
k

=
Z

(−)
k

iων − E(−)
k

+
Z

(+)
k

iων − E(+)
k

,

G̃σ(k, iων) =
∓∆

(iων − ζk)2 −W 2
k

=
∓∆

(iων − E(−)
k )(iων − E(+)

k )
, (19)

where W 2
k = η2

k +∆2 and we have introduced the quasiparticle energies and weights

E
(±)
k = ζk ±Wk Z

(±)
k =

1

2

(
1± ηk

Wk

)
. (20)

From the expression for G we obtain the single particle spectral function

A(k, ω) = Z
(−)
k δ(ω − E(−)

k ) + Z
(+)
k δ(ω − E(+)

k ).

Rather than a single band with dispersion εk and weight 1, SDW theory thus predicts two bands
with a reduced and k-dependent spectral weight. Figure (3) shows A(k, ω) obtained by evalu-
ating (19) for different values of ∆. Increasing ∆ opens a gap in the original band. For small
∆ the spectral weight of the bands has a substantial k-dependence and for the photoemission
spectrum (ω < 0) drops sharply upon crossing the noninteracting Fermi surface at (π

2
, π

2
). So

far we have carried out the first step, the solution of the mean-field Hamiltonian. In the second
step we have to recompute 〈Si〉 from this solution. We note that for any site i

ne = 〈ni,↑ + ni,↓〉 and m = 〈ni,↑ − ni,↓〉 eiQ·Ri .

We sum this over i, divide by N , and switch to Fourier transformed c-operators:

ne =
1

N

∑
k

〈
c†k,↑ck,↑ + c†k,↓ck,↓

〉
=

1

N

∑
k

(
G↑(k, τ = 0−) +G↓(k, τ = 0−)

)
=

2

N

∑
k

G↑(k, τ = 0−)

m =
1

N

∑
k

〈
c†k+Q,↑ck,↑ − c

†
k+Q,↓ck,↓

〉
=

1

N

∑
k

(
G̃↑(k, τ = 0−)− G̃↓(k, τ = 0−)

)
=

2

N

∑
k

G̃↑(k, τ = 0−) , (21)
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Fig. 3: Single particle spectral function A(k, ω) along (0, 0) → (π, π) as obtained by spin
density wave mean-field theory for different values of ∆ = mU

2
and half-filling. The original

band dispersion is that of eqn. (2) with t = 1 and t′ = 0. The part for ω < 0 (ω > 0) gives the
photoemission (inverse photoemission) spectrum.

where we shifted the summation variable k → k + Q and used (19) in the equation for m.
Inserting the Fourier expansion (9) and using (19) for the Green functions we obtain

ne =
2

N

∑
k

(
− 1

β

)∑
ν

eiων0+

(
−Z(−)

k

iων − E(−)
k

+
−Z(+)

k

iων − E(+)
k

)
,

m =
2

N

∑
k

(
− 1

β

)∑
ν

eiων0+ ∆

(iων − E(−)
k )(iων − E(+)

k )
.

We now replace the sum over Matsubara frequencies by a contour integration, which is a stan-
dard technique in field theory (see, e.g., section 25 of [6]). Namely for any function F (ω) which
is analytic along the imaginary axis we have

− 1

β

∑
ν

F (iων) =
1

2πi

∮
C
dω f(ω) F (ω)

where
f(ω) =

1

eβω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Fig. 4(a). This replacement makes use of the theorem of residues and the easily verified
fact that the Fermi function f(ω) has simple poles with residuum −1/β at all Matsubara fre-
quencies iων . Next we note that the integrals along the two clover-shaped contours in Fig. 4(b)
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(c)(b)(a)

Fig. 4: Since the integrals along the two contours in (b) are zero and the contributions from the
circular arcs vanish, the integral along the contour in (a) is equal to that over contour (c).

are zero, provided the integrand is analytic in the interior of the two curves. Since the Fermi
function f(ω) has all of its poles along the imaginary axis, whereas the Green function has its
poles on the real axis, both of which are outside of the curves in Fig. 4(b), this is certainly true.
Next, Jordan’s lemma can be invoked to establish that the integrals along the large semicircles
vanish. Here the Fermi function f(ω) guarantees that the contribution from the semicircle with
Re(ω) > 0 vanishes, whereas the factor eω0+ does the same for the semicircle with Re(ω) < 0

(which also shows that it was necessary to keep this factor). It follows that the integral along
the contour C in Fig. 4(a) is equal to that along the contour C ′ in Fig. 4(c) (note the inverted di-
rection of the curves in (c) as compared to (b)!). The contour in Fig. 4(c) encircles the real axis
clockwise – it follows from the theorem of residues that the contour integral is (−2πi) times
the sum of the residua of the respective f(ω)F (ω) at its two poles at E(±)

k . Using the definition
∆ = mU

2
we thus obtain

ne =
2

N

∑
k

(
Z

(−)
k f(E

(−)
k ) + Z

(+)
k f(E

(+)
k )
)

1 =
U

N

∑
k

1

2Wk

(
f(E−k )− f(E+

k )
)
.

It follows from (2) that ζk = 4t′ cos(kx) cos(ky) + U
2
− µ and ηk = −2t (cos(kx) + cos(ky)).

Moreover, ζk+Q = ζk and ηk+Q = −ηk, so that Wk+Q = Wk. Next, (20) shows that Z(±)
k+Q =

Z
(∓)
k , Z(±)

k+Q +Z
(±)
k = 1 and E(±)

k+Q = E
(±)
k . These relations makes it possible to restrict the sum

over momenta in (22) and (23) to the antiferromagnetic Brillouin zone (AFBZ) and we obtain

ne =
2

N

∑
k∈AFBZ

(
f(E

(−)
k ) + f(E

(+)
k )
)
, (22)

1 =
U

N

∑
k∈AFBZ

1

Wk

(
f(E−k )− f(E+

k )
)
. (23)

For given εk, U and ne we now have a complete description of the system. For a qualitative
discussion, let us assume that the lower band is completely occupied (i.e. f(E

(−)
k ) = 1) and the
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upper one completely empty (i.e. f(E
(+)
k ) = 0). Since the number of momenta in the AFBZ is

N
2

this implies ne = 1 – or ‘half-filling’. In the paramagnetic phase ne = 1 would correspond
to a half-filled band whereas SDW theory gives an antiferromagnetic insulator. Since ∆ = mU

2

we expect ∆/t→∞ as U/t→∞. It follows that Wk → ∆ so from (23) we obtain m→ 1 in
this limit, which means the fully polarized Néel state. For an electron density ne = 1− δ and in
the limit T → 0 the fraction of momenta in the AFBZ which are occupied is 1− δ as well – put
another way, we have hole pockets which cover a fraction of δ of the AFBZ, and consequently,
in the original zone scheme, also a fraction of δ of the full Brillouin zone. Interestingly, in a
doped semiconductor – with electron density ne = 2− δ – the hole pockets would cover only a
fraction of δ/2 of the Brillouin zone.
The equation for the temperature where m starts to deviate from zero – the so-called Néel
temperature TN – can be obtained by taking the limit m→ 0 whence Wk → |ηk|. Inserting this
one finds that TN is determined by the equation

1 = −U
N

∑
k

f(εk+Q)− f(εk)

εk+Q − εk
.

Note that the left hand side is guaranteed to be positive because f(ω) is a monotonously decreas-
ing function of its argument and that the temperature appears implicitly in the Fermi functions.
Let us assume that we keep the temperature constant and increase U starting from zero. We ask
under what conditions ordering sets in for an as low U as possible. In order for the k-sum to
be large, there must be many pairs (k,k +Q) such that their energies are close to one another
and such that both momenta are close to the Fermi surface – because only then the difference of
Fermi functions can be appreciable. This gives us the condition of Fermi surface nesting: the
ordering vectorQ must connect as long sections of the Fermi surface as possible.
For the general case the system of equations (22) and (23) can be solved by starting with some
value min, determining µ such that (22) gives the correct electron density, and then evaluating
mout from (23). By scanning min one can then determine the value where mout = min. Fig. 5
shows some results obtained in this way. A detailed discussion of the resulting phase diagram
of the Hubbard model for various band fillings and values of the hopping integrals t and t′ can
be found, e.g., in Refs. [14] – here we do not discuss this in detail.
As already mentioned the above derivation was originally invented by Gorkov to re-derive the
BCS theory of superconductivity [11] and can be easily generalized to any mean-field theory.
The formulation in terms of Green functions makes it easy to include the effects of disorder
or spatial variations and the various techniques applied above – such as the use of equations
of motion, expressing the order parameter in terms of the anomalous Green function and the
evaluation of sums by contour integration – are applied again and again in many papers on
advanced problems in superconductivity.
SDW theory describes some features of undoped cuprate superconductors and related com-
pounds correctly, but fails even qualitatively in many aspects. For example, the ‘parent com-
pound’ compounds La2CuO4 indeed is an antiferromagnetic insulator with a Néel temperature
of around 300 K. SDW theory also qualitatively reproduces the phenomenon of the ‘remnant
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Fig. 5: Dependence of the SDW gap on temperature T for different electron densities ne (left)
and on electron density ne for different temperatures T (center). Right: Fermi surface for an
electron density ne = 0.9. Parameter values are U/t = 4 and t′/t = 0.2.

Fermi surface’ [13]. The phrase describes the experimental observation that the intensity of
the quasiparticle band observed in ARPES experiments on undoped CuO-compounds such as
Sr2CuO2Cl2 drops sharply when crossing the noninteracting Fermi surface, precisely as seen
in the spectra in Fig. 3. However, to reproduce the sharpness of the drop seen in experiment
would require values of ∆ which would be much too small to reproduce the magnitude of the
insulating gap.
Moreover, contrary to the predictions of SDW theory the insulating gap does not go to zero at
the Néel temperature but is essentially temperature independent - which is the hallmark of a
true Mott-insulator. Moreover, for doped compounds such as La2−xBaxCuO4 static antiferro-
magnetic order disappears already for hole concentrations of a few percent whereby again the
Hubbard gap observed in the insulator persists with practically unchanged magnitude. What we
therefore really need to describe is a paramagnetic system with a Hubbard gap and this will be
the objective of the next section.

5 The Hubbard-I approximation

This is the ‘defining approximation’ of the Mott-insulator by which Hubbard for the first time
introduced central concepts of strongly correlated electron systems such as the two Hubbard
bands [1]. In the following we first give a sloppy re-derivation which is meant to clarify the
physical content of the Hubbard-I approximation and then present Hubbard’s rigorous deriva-
tion in terms of Green functions.
We consider the limit of finite U and ti,j = 0, N↑ = N↓ = N/2 so that Ne = N . The ground
state has one electron per lattice site and the energy is E = 0. Since the spin of the electron at
any given site is arbitrary this ground state is highly degenerate. We ignore this degeneracy and
assume that there is a unique state |Ψ0〉 which may be thought of as a suitable superposition of
all these degenerate states and which we assume to be ‘disordered’ – it will become clear in a
moment what this means.
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Next we assume that a small but finite ti,j is switched on. Then, an electron of spin σ can be
transferred from a site j to another site i resulting in an empty site at j and a double occupancy
at site i. The energy thereby increases by U . The hopping process is possible only if the electron
which was originally at the site i has the spin −σ and since our initial state |Ψ0〉 is ‘disordered’
the probability for this to be the case is 1/2 – which is the definition of ‘disordered’. We
now interpret the original state |Ψ0〉 as the vacuum – denoted by |0〉 – of our theory and the
state created by the hopping process as containing a Fermionic hole-like particle at j and a
Fermionic double-occupancy-like particle at site i: d†i,σh

†
j,−σ|0〉. The order of the Fermionic

operators in this state is due to the fact that in the original hopping term the annihilation operator
cj,σ which creates the hole stands to the right of the creation operator c†i,σ which creates the
double occupancy. Moreover we assign the negative spin to the operator which creates the hole
because replacement of, e.g., an ↑-electron by a hole decreases the z-spin by 1/2. We obtain
the following Hamiltonian to describe the holes and double occupancies:

Heff,1 =
1

2

∑
i,j

∑
σ

(
ti,j d

†
i,σh

†
j,−σ +H.c.

)
+ U

∑
i,σ

d†i,σdi,σ . (24)

Once a hole and a double occupancy have been created, each of these particles may be trans-
ported further by the hopping term. If we assume that the surplus or missing electron retains its
spin – which means that the double occupancies and holes propagate without ‘leaving a trace’
of inverted spins – for example a surplus ↑-electron can hop from site i to site j only if the spin
at site j is ↓ – we again have the probability 1/2 for this process. We therefore can write down
the second term terms for the effective Hamiltonian

Heff,2 =
1

2

∑
i,j

∑
σ

ti,j

(
d†i,σdj,σ − h

†
i,−σhj,−σ

)
. (25)

The negative sign of the hopping term for holes is due to the fact that the original hopping term
has to be rewritten as −ti,jcj,σc

†
i,σ to describe the propagation of a hole. Addition of (24) and

(25) and Fourier transformation gives

Heff =
∑
k,σ

((εk
2

+ U
)
d†k,σdk,σ −

εk
2
h†k,σhk,σ

)
+
∑
k,σ

εk
2

(
d†k,σh

†
−k,−σ +H.c.

)
, (26)

where εk is the Fourier transform of ti,j . Note that this now is a quadratic form where the
Coulomb interaction is described by the extra energy of U for the double-occupancy-like ‘par-
ticle’. Via the unitary transformation

γ−,k,σ = uk dk,σ + vk h
†
−k,−σ

γ+,k,σ = −vk dk,σ + uk h
†
−k,−σ (27)

this can be solved, resulting in the dispersion relations for the lower and upper Hubbard band

E
(±)
k =

1

2

(
εk + U ±

√
ε2
k + U2

)
. (28)
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In the limit U/t� 1 this simplifies to Ek,− = εk
2

, Ek,+ = εk
2

+U so that the original band with
dispersion εk is split into two bands, separated by a gap of U and each having half of the original
width. Qualitatively this is similar to the exact result for the Hubbard dimer. For the case of
particle-hole symmetry the chemical potential is U/2 so that the lower band is completely filled,
the upper one completely empty. Rather than being a metal – as expected for the situation of
a half-filled band – the presence of the Coulomb interaction turns the system into an insulator.
From the above we can see that this is the consequence of ‘expanding around’ the hypothetical
‘vacuum state’ |Ψ0〉 with one electron per site so that we obtain a dilute gas of hole-like and
double-occupancy-like particles which are created in pairs and propagate, whereby the double-
occupancies have a large ‘energy of formation’ of U .
Next, we derive these results in a more rigorous fashion thereby following Hubbard’s original
paper [1]. We split the electron operator into two components

ci,σ = ci,σni,−σ + ci,σ(1− ni,−σ) = d̂i,σ + ĉi,σ, (29)

which obey [d̂i,σ, HU ] = Ud̂i,σ and [ĉi,σ, HU ] = 0. Next we define the four Green functions

Gα,β(k, τ) = −
〈
T αk,σ(τ)β†k,σ

〉
, (30)

where α, β ∈ {ĉ, d̂}. These obey the equations of motion

− ∂

∂τ
Gα,β(~k, τ) = δ(τ)

〈{
β†k,σ, αk,σ

}〉
−
〈
T [αk,σ(τ), H] β†k,σ

〉
.

The commutators [αk,σ, HU ] are trivial but the commutators with the kinetic term Ht are in-
volved. After some algebra – thereby using the identity ni,σ=ni

2
+ σSzi - we find:

[ĉi,↑, Ht] =
∑
j

tij

[(
1− ne

2

)
cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )− 1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]
,

[d̂i,↑, Ht] =
∑
j

tij

[
ne
2
cj,↑ − (cj,↑S

z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c†j,↓ci,↓ci,↑

]
. (31)

The first term on the r.h.s describes the ‘simple’ propagation of the hole. The second term is
the contraction of the spin-1 operator Si and the spinor cj,σ into a spin-1/2 object. It describes
how a hole moves to site j but leaves behind a spin-excitation at site the i. Similarly, the third
term describes hopping combined with the creation of a density excitation at site j whereas the
last term describes the coupling of a pair-excitation (this would be important for negative U ).
The Hubbard-I approximation is obtained by keeping only the first term in each of the square
brackets on the respective right hand side – obviously a rather crude approximation. After
Fourier transformation we obtain

[ĉk,↑, H] ≈
(

1− ne
2

)
εk (ĉk,↑ + d̂k,↑) − µ ĉk,↑

[d̂k,↑, H] ≈ ne
2

εk (ĉk,↑ + d̂k,↑) + Ud̂k,↑ − µ d̂k,↑ .



Introduction to the Hubbard Model 6.17

Using the anticommutation relations {d̂†i,σ, d̂i,σ} = ni−σ, {ĉ†i,σ, ĉi,σ} = (1−ni−σ), {d̂†i,σ, ĉi,σ} =

{ĉ†i,σ, d̂i,σ} = 0 and putting 〈ni,σ〉 = ne
2

we obtain the Fourier transformed equations of motion:(
iων + µ− (1− ne

2
)εk −(1− ne

2
)εk

−ne
2
εk iων + µ− ne

2
εk − U

)(
Gĉ,ĉ Gĉ,d̂

Gd̂,ĉ Gd̂,d̂

)
=

(
1− ne

2
0

0 ne
2

)
.

We now use the identity (which holds for any 2× 2 matrix)(
a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)

to solve for the Green function matrix G(k, ω). Since ck,σ = ĉk,σ + d̂k,σ the usual electron
Green function G(k, ω) is G = Gĉ,ĉ +Gĉ,d̂ +Gd̂,ĉ +Gd̂,d̂, which can be brought to the form

G(k, ω) =
Z

(−)
k

ω − E(−)
k

+
Z

(+)
k

ω − E(+)
k

=
1

ω + µ− εk −Σ(ω)
(32)

whereby (with Wk =
√
U2 + ε2

k − 2(1− ne)εkU ):

E
(±)
k =

1

2
(U + εk ±Wk)− µ , Z

(±)
k =

1

2

(
1± εk − (1− ne)U

W

)
,

and the self-energy in Hubbard-I approximation is given by

Σ(ω) =
ne
2
U +

ne
2

(
1− ne

2

) U2

ω + µ− (1− ne
2

)U
.

The additive constant ne
2
U indeed is the Hartree-Fock potential and there is a single dispersion-

less pole whose strength is
(
U
2

)2 at half-filling, ne = 1
2
. The pole strength thus agrees with the

exact solution for the dimer but the lack of dispersion shows that the Hubbard-I approximation
would fail already for the Hubbard dimer.
If we specialize to half-filling and put ne = 1 the quasiparticle energies become

E
(±)
k =

1

2

(
U + εk ±

√
ε2
k + U2

)
− µ.

This is (up to the term µ) consistent with the result (28) obtained from the heuristic Hamiltonian
(26), thus demonstrating the equivalence of this simple picture with the Hubbard-I approxima-
tion. In order to fix the chemical potential for electron densities ne < 1 we write the operator
of electron number as

N̂e = 2
∑
i

ni,↑ni,↓ +
∑
i

(
ni,↑(1− ni,↓) + ni,↓(1− ni,↑)

)
=
∑
i,σ

(
d̂†i,σd̂i,σ + ĉ†i,σ ĉi,σ

)
.

The electron density ne thus can be expressed in terms of the Green functions (30) as

ne =
2

N

∑
k

(
Gd̂,d̂(k, τ = 0−) +Gĉ,ĉ(k, τ = 0−)

)
, (33)
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Fig. 6: Left: Single particle spectral function obtained from the Greens function (32) for two
different electron densities. The Fermi energy is zero. Right: X-ray luminescence spectra
for La2−xSrxCuO4 show the unoccupied part of the lower Hubbard-band (A) and the upper
Hubbard-band (B). With decreasing ne ≈ 1− x the upper Hubbard-band rapidly looses inten-
sity. Reprinted with permission from [15], Copyright 1991 by the American Physical society.

which is analogous to the expression (21) and can be evaluated by the same procedure. To
simplify matters we specialize to the limit t/U � 1 and close to half-filling, ne = 1 − δ with
δ � 1. The dispersion relation of the lower band then is

E
(−)
k ≈ 1 + δ

2
εk −

ε2
k

4U
+ . . .

where . . . denotes terms of higher order in the small quantities. For not too large t′ this has
its maximum at (π, π). Assuming that the upper band is high above the chemical potential, the
electron density becomes

ne =
2

N

∑
k

f(E
(−)
k )

(
1 + δ

2
− δε2

k

4U2
+ . . .

)
.

To discuss the Fermi surface we consider the limit T → 0. For half-filling ne = 1 so that
δ = 0 and the lower band must be completely filled – as one would expect for an insulator.
Neglecting the term ∝ U−2 we find that for δ > 0 the fraction of the Brillouin zone where the
lower Hubbard band is occupied is 1 − 2δ, or, put another way, there are hole pockets around
(π, π) whose volume is a fraction 2δ of the Brillouin zone. As a quantitative example, Figure
6 shows the spectral density obtained from the Green function (32) for U/t = 8 and different
band fillings, whereas Figure 7 shows the resulting Fermi surfaces and the dependence of the
Fermi surface volume on electron density. In Fig. 6 one can recognize the two Hubbard bands
separated by an appreciable energy gap. For ne = 0.9 – i.e. close to half-filling – the Fermi
energy intersects the lower Hubbard band close to (π, π) resulting in the hole pocket around
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Fig. 7: Left: Fermi surface for different electron densities. Right: Fermi surface volume as a
function of electron density ne.

X = (π, π) discussed above. An interesting feature seen in Fig. 6 is the transfer of spectral
weight from the upper to the lower Hubbard band upon hole doping: as the electron density ne
decreases the upper Hubbard band persists but looses weight, whereas the lower Hubbard band
becomes more intense. To understand this we note first that for ne ≤ 1 the upper Hubbard band
always belongs to the inverse photoemission or electron addition spectrum. Also, we have seen
in the simplified derivation that the upper band mainly has double-occupancy character.

As electrons are removed from the system, however, the probability that an added electron is
placed at an occupied site to create a double occupancy becomes smaller and consequently the
weight of the upper band diminishes. This doping dependent intensity of what would be the
conduction band in an ordinary semiconductor or insulator is one of the fingerprints of strong
correlations and can be observed experimentally in cuprate superconductors – an example is
shown in Fig. 6 [15]. It should be noted, however, that the Hubbard-I approximation consid-
erably underestimates the decrease of the intensity of the upper Hubbard band with doping.

Figure 7 also shows the dependence of the Fermi surface volume VFermi on electron density
ne. More precisely, this is the fraction of the Brillouin zone where the lower Hubbard band is
below EF , i.e. ‘occupied’. Also shown is VFermi for free electrons – where VFermi = ne/2. The
Hubbard-I approximation gives VFermi → 1 – that means a completely filled band – as ne → 1,
predicts VFermi = 1− 2δ = 2ne − 1 for ne slightly less than 1 and approaches the free electron
behavior for small ne. This leads to a peculiar nonlinear dependence VFermi(ne) which most
probably is unphysical.

Let us now compare the Hubbard-I approximation to numerical simulations. As we saw in our
simplified derivation, an important assumption of the Hubbard-I approximation is the ‘disor-
dered’ ground state. This is best realized at high temperatures, more precisely at a temperature
much higher than the characteristic energy of spin excitations, J = 4t2/U . Figure 8 shows the
result of a Quantum Monte-Carlo calculation of the spectral density for an 8 × 8 cluster at the
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Fig. 8: Right: Single particle spectral function A(k, ω) obtained by Quantum Monte-Carlo
simulations on an 8 × 8 cluster at kBT = t. Left: Fermi surface volume (34) deduced from
A(k, ω) versus electron density. The dashed line corresponds to free electrons. Reprinted with
permission from [16], Copyright 2000 by the American Physical society.

rather high temperature kBT = t. The 8 × 8 cluster has the allowed momenta (nπ
4
, mπ

4
) with

integer m and n and Fig. 8 shows the part of the spectral density near the chemical potential
µ for all allowed momenta in the irreducible wedge of the Brillouin zone for electron densities
close to ne = 1. Close to (π, π) a relatively well-defined peak passes through µ as (π, π) is
approached and forms a relatively small hole pocket around (π, π) – similar to the prediction of
the Hubbard-I approximation in Fig. 6 for ne = 0.9. To study VFermi an ‘occupation number’
nk of 1, 0.5 or 0 was assigned to each momentum k, depending of whether the dispersive peak
is below, more or less on, or above the chemical potential at k. The fractional Fermi surface
volume then is

VFermi =
1

64

∑
k

nk, (34)

where 64 is the number of momenta in the 8 × 8 cluster. The obtained estimate for VFermi is
also shown in Figure 8 as a function of electron density and indeed has a rough similarity to the
result for the Hubbard-I approximation.

6 The Gutzwiller wave function

This is the second ‘classic’ approximation for the Hubbard model. It starts from the Fermi sea
|FS〉 – i.e. the ground state forU = 0 – and reduces the number of double occupancies by acting
with a suitable projecting operator. More precisely the Gutzwiller wave function reads [3]

|ΦG〉 =
N∏
i=1

(1− λni,↑ni,↓) |FS〉,
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where λ is a variational parameter to be determined by minimizing the energy EG. To see what
this means, let us go back to the Hubbard dimer. There, the ground state for U = 0 is

‘|FS〉′ = c†+,↑c
†
+,↓ |0〉 =

1

2

[(
c†1,↑c

†
2,↓ + c†2,↑c

†
1,↓

)
+
(
c†1,↑c

†
1,↓ + c†2,↑c

†
2,↓

)]
|0〉.

The first term in the square bracket does not contain any double occupancy, so that this term is
annihilated by acting with ni,↑ni,↓ – this term therefore is simply reproduced by the Gutzwiller
projector. On the other hand, each contribution in the second term has one double occupancy
and thus gets a factor of 1 · (1− λ). The Gutzwiller wave function therefore is

|ΦG〉 =
1√
2
|1+〉+

1− λ√
2
|2+〉,

with |1+〉 and |2+〉 as defined in (14). Therefore, if we choose (with u, v in (15))

1− λ =
v

u
⇒ λ = 1− 2t

W + U
2

,

the Gutzwiller wave function is – up to a normalization factor – identical to the exact ground
state wave function of the dimer! From the above it also becomes apparent that the Gutzwiller
projector reduces the weight of states containing double occupancies.
We proceed to the infinite lattice and first rewrite the Fermi sea as a superposition of real space
configurations. Suppressing the spin index (and denoting permutations by σ) we have

M∏
j=1

c†kj |0〉 =
1

√
N
M

∑
i1,i2,i3,...iM

exp

(
i
M∑
j=1

kj ·Rij

)
M∏
j=1

c†ij |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

∑
σ

exp

(
i
M∑
j=1

kj ·Riσ(j)

)
M∏
j=1

c†iσ(j) |0〉

In the second line we used the fact that instead of summing over allM -tuples of indices we may
as well sum only over ordered M -tuples of indices and then sum over all M ! permutations σ of
the M indices.
Next, in each of the products

∏M
j=1 c

†
iσ(j)

we permute the c†i operators back to the ordered se-

quence c†i1c
†
i2
. . . c†iM . The permutation which brings σ(i) → i obviously is σ−1 and since the

Fermi sign of σ−1 is equal to that of σ we obtain

1
√
N
M

∑
i1>i2>i3···>iM

∑
σ

(−1)σ exp

(
i

M∑
j=1

kj ·Riσ(j)

)
c†i1c

†
i2
· · · c†iM |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

D(k1,k2, . . . ,kM |i1, i2, . . . iM) c†i1c
†
i2
· · · c†iM |0〉 ,

where the second line is the definition of the symbol D(kj|ij). From the above we see that the
Fermi sea may be thought of as a superposition of real space configurations

c†i1,↑c
†
i2,↑c

†
i3,↑ . . . c

†
iN↑ ,↑

c†j1,↓c
†
j2,↓c

†
j3,↓ . . . c

†
jN↓,↓

|0〉
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which are multiplied by two determinants D, one for each spin direction. Each of these real
space configurations has a certain number Nd of doubly occupied sites and therefore gets an
additional factor of (1 − λ)Nd < 1 in the Gutzwiller wave function so that states with a larger
number of double occupancies have a smaller weight as compared to the original Fermi sea.
Next, the Gutzwiller function can be decomposed into components with fixed Nd:

|ΦG〉 =
∑
Nd

|Φ(Nd)〉

where |Φ(Nd)〉 is the sum over all real-space configurations with Nd double occupancies, each
multiplied by its proper prefactor. The total norm 〈ΦG|ΦG〉 can be rewritten as the sum over Nd

terms of the form W (Nd) = 〈Φ(Nd)|Φ(Nd)〉 and we now consider which Nd gives the largest
contribution in this sum. To compute norms, we need to evaluate expressions such as

D∗(kj|ij) D(kj|ij) =
∑
σ,σ′

(−1)σ(−1)σ
′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)

= M ! +
∑
σ 6=σ′

(−1)σ(−1)σ
′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)
. (35)

where in the first term we have collected the M ! terms with σ = σ′. At this point, we make
an important approximation: (35) still has to be summed over i1, i2, i3 . . . iM . The terms for
σ 6= σ′ thereby have a rapidly oscillating phase and a large degree of cancellation will occur in
the summation. Accordingly we retain only the first term, i.e., we replace

D∗(kj|ij) D(kj|ij) ≈M !.

With this approximation the contribution of the states with Nd double occupancies becomes

W (Nd) =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd C(N↑, N↓, Nd) ,

where C(N↑, N↓, Nd) is the number of ways in whichN↑ electrons with spin ↑ andN↓ electrons
with spin ↓ can be distributed over theN lattice sites such as to generateNd double occupancies.
This is a straightforward combinatorical problem with the result

C(N↑, N↓, Nd) =
N !

Nd!(N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!
.

Next, we take the logarithm of W (Nd), use the Stirling formula log(N !) ≈ N log(N)−N and
differentiate with respect to Nd. Introducing the densities nd = Nd/N etc. we obtain

d

dNd

log (W (Nd)) = log

(
(1− λ)2 (n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)

)
,

d2

dN2
d

log (W (Nd)) = − 1

N

(
1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)
= − c

N
,
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where c > 0 in the last line is of order unity. The first of these equations gives us the nd
where the contribution to the norm, W (Nd) is a maximum. For the general case the formula is
somewhat involved, so we specialize to the case n↑ = n↓ = 1

2
where

nd,0 =
1− λ

2(2− λ)
. (36)

For the noninteracting case λ → 0 this gives nd,0 = 1/4 as it has to be. From the second
equation we find

log (W (Nd)) = log (W (Nd,0))− c

2N
(N −Nd,0)2 + . . .

W (Nd) = W (Nd,0) exp
(
− c

2N
(Nd −Nd,0)2

)
= W (Nd,0) exp

(
−Nc

2
(nd − nd,0)2

)
,

which shows that as a function of nd the weight W (Nd) is a Gaussian of width ∝ N−1/2.
This means, however, that in the thermodynamical limit only states with nd = nd,0 have an
appreciable weight in the Gutzwiller wave function and variation of λ simply shifts this sharp
peak of W (Nd) to a different nd,0 An immediate consequence is that the computation of the
expectation value of the interaction Hamiltonian becomes trivial, namely 〈HU〉 = N U nd,0.
The expectation value of the kinetic energy and is more involved. The above discussion showed
that the Gutzwiller wave function is composed of real-space configurations for which the num-
ber of double occupancies is close to a certain value Nd,0 which is smaller than for the nonin-
teracting Fermi sea. This means, however, that the expectation value of the kinetic energy is
smaller as well. Namely using again the operators d̂ and ĉ we have

c†i,σcj,σ = d̂†i,σd̂j,σ + ĉ†i,σd̂j,σ + d̂†i,σ ĉj,σ + ĉ†i,σ ĉj,σ .

If the number of double occupancies is decreased, the expectation value of the first term on
the r.h.s. clearly must decrease. Second, since the number of electrons is constant, reducing the
number of double occupancies necessarily results in a reduction of the number of empty sites by
the same number so that the expectation value of the last term on the r.h.s. also must decrease.
The Gutzwiller approximation assumes, that these effects can be taken into account by reducing
the expectation value of the kinetic energy of the uncorrelated Fermi sea by suitable renormal-
ization factors η:

〈ΦG|Ht|ΦG〉
〈ΦG|ΦG〉

=
∑
σ

ησ〈FS, σ|Ht|FS, σ〉

where |FS, σ〉 is the Fermi sea for σ-electrons (if N↑ = N↓ the two terms are of course iden-
tical). These renormalization factors ησ thereby are evaluated for an ‘auxiliary wave function’
in which the determinants D(k1,k2, . . . ,kM |i1, i2, . . . iM) are replaced by a constant (which
would have to be

√
M ! if the auxiliary wave function is supposed to have the same norm as

the Gutzwiller wave function) and where the Fermi sign is ignored in the calculation of all ma-
trix elements of the hopping term (this is because the Fermi sign is supposed to be taken care
of already by the filling of the uncorrelated Fermi sea according to the Pauli principle!). The
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evaluation of the η by combinatorical considerations is discussed in a very transparent way by
Ogawa, Kanda, and Matsubara [17]. Here we use an even simpler way of calculating η by intro-
ducing four ‘book-keeping kets’ for every site i: |i, 0〉, |i, ↑〉, |i, ↓〉 and |i, ↑↓〉. They represent
in an obvious way the four possible configurations of the site i. Then we define

Bi =
|i, 0〉+ α↑|i, ↑〉+ α↓|i, ↓〉+ β|i, ↑↓〉√

1 + α2
↑ + α2

↓ + β2
and |Ψ〉 =

∏
i

Bi |0〉

with real ασ and β. The state |Ψ〉 has norm 1 and if it were translated into a true state of
electrons, the numbers of electrons and double occupancies would be

〈Nσ〉 = N
α2
σ + β2

1 + α2
↑ + α2

↓ + β2
,

〈Nd〉 = N
β2

1 + α2
↑ + α2

↓ + β2
. (37)

These equations can be reverted to give

ασ =

√
nσ − nd

1− n↑ − n↓ + nd
and β =

√
nd

1− n↑ − n↓ + nd
. (38)

On the other hand |Ψ〉 does not correspond to a state with a fixed number of electrons so we
introduce

|Ψ ′〉 = P(N↑, N↓, Nd) |Ψ〉,

where the projection operator P projects onto the component of |Ψ〉 which has precisely 〈N↑〉
↑-electrons etc. Next, the representation of the electron annihilation operator ci,σ is

c̃i,σ = |i, 0〉 〈i, σ|+ |i,−σ〉 〈i, ↑↓ |.

Here a subtle detail should be noted: in the expression on the r.h.s. it is assumed that a double
occupancy always is converted into the state |i,−σ〉 with a positive sign. This would not be
the case for the true Fermion operator, where the sign would depend on the sequence of the
two electron creation operators on the doubly occupied site. This is precisely the neglect of the
Fermi sign that was mentioned above. Then, to estimate the reduction of the kinetic energy due
to the reduction of the number of doubly occupied and empty sites we evaluate

r(σ, n↑, n↓, nd) =
〈Ψ ′|c̃†i,σ c̃j,σ|Ψ ′〉
〈Ψ ′|Ψ ′〉

. (39)

So far our auxiliary wave function has not brought about much simplification because the pres-
ence of the projection operator P makes the computation of r very tedious. It is straightforward
to see, however, that if |〈Ψ〉 is decomposed into components of fixed N↑, N↓ and Nd only those
components with values of N↑, N↓ and Nd which deviate by at most N−1/2 from the average
values (37) have an appreciable weight. This means, however, that P simply can be dropped so
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that we replace |Ψ ′〉 → |Ψ〉 in (39). Then, since |Ψ〉 is normalized the denominator in (39) can
be dropped. Moreover, since |Ψ〉 is a product state the expectation value of the two operators
factorizes and since all sites are equivalent and the coefficients ασ and β are real the expectation
values of c̃†i,σ and c̃j,σ are identical so that

r(σ, n↑, n↓, nd) = 〈Ψ |c̃†i,σ|Ψ〉2 =

(
ασ + α−σβ

1 + α2
↑ + α2

↓ + β2

)2

=
(√

nσ − nd
√

1− n↑ − n↓ + nd +
√
nd
√
n−σ − nd

)2

,

where the second line has been obtained by inserting (38). In this way we have expressed
r(nσ, nd) in terms of nd which in turn is given as a function of λ by (36). Lastly, we divide r by
its value for U → 0, where nd = n↑ · n↓, so as to obtain the proper limiting value of η = 1 for
U = 0, and finally get

η(σ, n↑, n↓, nd) =

(√
nσ − nd

√
1− n↑ − n↓ + nd +

√
nd
√
n−σ − nd√

nσ(1− nσ)

)2

. (40)

In varying the energy it is actually easier to switch from λ to nd as variational parameter. Spe-
cializing to the paramagnetic case n↑ = n↓ the energy per site thus becomes

eG = η(nσ, nd) t0 + nd U, (41)

where eG = EG/N and t0 is the (kinetic) energy of the Fermi sea per site. Using (40) this is
now readily minimized with respect to nd.
The Gutzwiller wave function gives us, strictly speaking, only the ground state energies and
some ground state expectation values, but not a band structure. However, we may consider
states like

|ΦG(k)〉 =
∏
i

(1− λni,↑ni,↓)ck,↑ |FS〉,

i.e., a state with one hole in the Fermi sea (it is understood that k is an occupied momentum).
The Fermi sea with a hole has energy EFS − εk. It thus might seem plausible that the energy
of |ΦG(k)〉 is EG − ε̃k i.e., the energy of the Gutzwiller wave function minus the ‘quasiparticle
energy’. Performing the variational procedure for |ΦG(k)〉 amounts to replacing eG → eG− 1

N
ε̃k

t0 → t0 − 1
N
εk, n↑ → n↑ − 1

N
, and nd → nd + 1

N
δnd where δnd is the as yet unknown shift of

nd. Inserting into (41) and expanding we find

e− 1

N
ε̃k =

(
η − 1

N

∂η

∂n↑
+

1

N

∂η

∂nd
δnd

)(
t0 −

1

N
εk

)
+ nd U +

1

N
δnd U.

The terms of zeroth order in 1/N cancel due to (41) and collecting the first order terms gives

ε̃k = ηεk + t0
∂η

∂n↑
−
(
∂η

∂nd
t0 + U

)
δnd.



6.26 Robert Eder

ε k
-E

F

k

kF

Free electrons
Quasiparticle

n k

k

kF

Free electrons
Gutzwiller

 0

 0.5

 1

 0  0.5  1

η

ne
Fig. 9: Dispersion relation (left) and momentum distribution function (middle) obtained from
the Gutzwiller wave function compared to the free electron case. The right part shows the
dependence η(ne) for the half-filled two-dimensional Hubbard model with U/t = 16.

The last term on the r.h.s. vanishes because the expression in the bracket is deG
dnd

. The second
term on the r.h.s. gives the change of the kinetic energy of all other electrons due to removal
of the single electron. This is a k-independent shift which can be absorbed into a shift of EF .
The quasiparticle dispersion ε̃k therefore follows the original dispersion, but renormalized by
the factor η < 1. This is an effect known as ‘correlation narrowing’.
Next we consider the ground state momentum distribution function, i.e., the ground state ex-
pectation value nk = 2〈c†k,↑ck,↑〉. This can be obtained from the ground state energy by means
of the Hellmann-Feynman theorem: nk = ∂EG

∂εk
. More generally, it is the functional derivative

of the ground state energy with respect to εk, that means under a change tij → tij + δtij so that
εk → εk + δεk the change of the ground state energy is

eG → eG + 2
∑
k

nk δεk .

From (41) we obtain the variation of eG as

δeG = 2η
∑
k

n
(0)
k δεk + δnd

(
∂η

∂nd
t0 + U

)
.

where n(0)
k = Θ(EF − εk) is the momentum distribution of the Fermi sea. Again, the second

term on the r.h.s. vanishes due to the extremum condition for nd so that nk = η n
(0)
k . This

cannot be entirely correct, however, because we have the sum-rule 2
∑

k nk = Ne and since
this is fulfilled by n(0)

k and η < 1 it cannot be fulfilled for nk. The solution is that the ‘missing
nk’ takes the form of a k-independent additive constant which then has to be (1− η)ne

2
. In fact,

for any εk which can be represented by hopping integrals ti,j one has
∑

k εk = 0 so that such
a k-independent additive constant would not contribute to the variation of eG. The momentum
distribution obtained by the Gutzwiller approximation thus has a step of magnitude η at the
position of the original Fermi surface. Let us now consider in some more detail the case nσ = 1

2

where the Mott-insulator should be realized for large U/t. We find from (40)

η(nd) = 16nd

(
1

2
− nd

)
.
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Minimizing (41) this gives

nd =
1

4
− U

32|t0|
,

whereby we have taken into account that t0 < 0 for a half-filled band. Starting from the
noninteracting value 1

4
, nd decreases linearly with U and reaches zero at the critical value Uc =

8|t0|. For nd = 0 we have η = 0, so that the bandwidth of the quasiparticles becomes zero,
i.e., the band mass diverges, and the step in the momentum distribution vanishes as well. This
is commonly interpreted as a metal-to-insulator transition as a function of increasing U , the
so-called Brinkman-Rice transition [18]. Brinkman and Rice also could show that the magnetic
susceptibility diverges at the transition as one would expect it for a diverging effective mass.
Let us now consider the two-dimensional model with nearest neighbor hopping −t. Then,
t0 = −1.621 t so that the critical Uc = 12.969 t. Figure 9 then shows the dependence of η on
ne for U/t = 16 i.e., for U > Uc. As ne → 1 the renormalization factor η → 0 so that both, the
bandwidth and the step in nk vanish for the half-filled band. The Hubbard-I approximation and
the Gutzwiller wave function thus give completely different predictions about what happens
when the half-filled band case is approached by increasing the electron density for constant
U/t: whereas the Hubbard-I approximation predicts the lower Hubbard band with (almost)
constant bandwidth and a hole-pocket-like Fermi surface with a volume ∝ (1− ne) so that the
Fermi surface vanishes at ne → 1, the Gutzwiller wave function predicts a Fermi surface with
a volume equal to that obtained for free electrons, but with a vanishing bandwidth and spectral
weight as ne → 1.

7 Summary and discussion

Since a generally accepted theory of the lightly doped 2-dimensional Hubbard model does not
seem to exist so far so that also the cuprate superconductors are not really understood as yet,
maybe the best one can do at present is to outline the problems that would have to be resolved.
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The first one of these is the Fermi surface close to half-filling. As we have seen the Hubbard-I
approximation and the Gutzwiller wave function predict completely different behavior close to
half-filling: a hole-like Fermi surface with a volume ∝ nh = 1− ne in the lower Hubbard-band
whose volume tends to zero as ne → 1 versus a free-electron-like Fermi surface with volume
ne
2

formed by a band whose mass diverges as ne → 1. A possible compromise between the two
approximations could be as shown in Figure 10: near ne = 1 there are hole pockets with a vol-
ume that is strictly proportional to the hole number nh = 1− ne – i.e. the doped Hubbard-band
– and then at some critical density a phase transition occurs to a phase where the Fermi surface
volume is ne/2. This might be the true behavior which Hubbard-I approximation ‘tries to re-
produce’. Viewed this way, the ‘pseudogap phase’ of cuprate superconductors actually should
be identified with the hole-pocket phase and the quantum critical point which is surrounded
by the superconducting dome corresponds to the transition to the free-electron-like Fermi sur-
face. A theory which is supposed to describe this, first of all, must reproduce the two Hubbard
bands – otherwise the hole-doped lower Hubbard band cannot be captured. Next, the two dif-
ferent phases would have to be reproduced which is a considerable problem because there is no
obvious order parameter for the transition between a paramagnetic small Fermi surface and a
paramagnetic large Fermi surface.
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7.2 Peter Prelovšek

1 Introduction

Models of strongly correlated systems have been one of the most intensively studied theoretical
subjects in the last two decades, stimulated at first by the discovery of compounds supercon-
ducting at high-temperatures and ever since by the emergence of various novel materials and
phenomena which could be traced back to strongly correlated electrons in these systems. Re-
cently, cold atoms in optical lattices offer a different realization of strongly correlated quantum
entities, whereby these systems can be even tuned closer to theoretical models.
One of the most straightforward methods to numerically deal with the lattice (discrete) models
of correlated particles, which are inherently many-body (MB) quantum systems, is exact diag-
onalization (ED) of small-size systems. In view of the absence of well-controlled analytical
methods, the ED method has been employed intensively to obtain results for static and dynami-
cal properties of various models with different aims: a) to search and confirm novel phenomena
specific to strongly correlated systems, b) to test theoretical ideas and analytical results, c) to
get reference results for more advanced numerical techniques.
MB quantum lattice models of interacting particles are characterized by the dimension of the
Hilbert space given by the number of basis states Nst ∝ KN that is in turn exponentially
increasing with the lattice sizeN , whereK is the number of local quantum states. It is therefore
clear that ED methods can treat fully only systems with limited Nst, i.e., both K and N must
be quite modest.
Among the ED approaches the full ED within the Hilbert space of the model Hamiltonian,
yielding all eigenenergies and eigenfunctions, is the simplest to understand, most transparent,
and easy to implement. In principle it allows the evaluation of any ground state (g.s.) property as
well as finite temperature T > 0 static or dynamic quantities, at the expense of a very restricted
Nst. In spite of that, it represents a very instructive approach and also remains essentially the
only practical method when all exact levels are needed, e.g., for studies of level statistics.
Lanczos-based ED methods have already a long history of applications since Cornelius Lanc-
zos [1] proposed the diagonalization of sparse matrices using the iterative procedure, allowing
for much bigger Hilbert spacesNst relative to full ED. The Lanczos diagonalization technique is
at present a part of standard numerical linear algebra procedures [2,3] and as such in solid state
physics mainly used to obtain the g.s. energy and wavefunction and the corresponding expec-
tation values. The approach has been quite early-on extended to calculation of the dynamical
response functions within the g.s. [4]. The method has been in the last 20 years extensively
used in connection with models related to high-Tc materials, for which we can refer to an ear-
lier overview [5].
Here we focus on recent developments of ED-based and Lanczos-based methods. The ba-
sics of the Lanczos method are presented in Sec. 2 and its application for g.s. properties in
Sec. 3. One of the already established generalizations is the finite-temperature Lanczos method
(FTLM) [6–8], reviewed in Sec. 4, which allows for the evaluation of T > 0 static and dynamic
properties within simplest models. Several extensions and modifications of the latter have been
introduced more recently, in particular the low-temperature Lanczos method (LTLM) [9] and
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the microcanonical Lanczos method (MCLM) [10], particularly applicable within the high-T
regime. Recently, there is also quite an intensive activity on studies of real-time evolution of
correlated systems, both under equilibrium and non-equilibrium conditions that can be simu-
lated using the ED and Lanczos-based methods, as discussed in Sec. 5.

2 Exact diagonalization and Lanczos method

2.1 Models, geometries, and system sizes

ED-based methods are mostly restricted to simple models with only few local quantum states
K per lattice site in order to reach reasonable system sizes N . Consequently, there are only
few classes of MB models that so far exhaust the majority of ED and Lanczos-method stud-
ies, clearly also motivated and influenced by the challenging physics and relevance to novel
materials and related experiments.
To get some feeling for the available sizes reachable within ED-based approaches, it should be
kept in mind that in full ED routines the CPU time scales with the number of operations Op ∝
N3
st, while the memory requirement is related to the storage of the whole Hamiltonian matrix

and all eigenvectors, i.e., Mem ∝ N2
st. This limits, at the present stage of computer facilities,

the full ED method to Nst < 2. 104 MB states. On the other hand, using Lanczos-based
iterative methods for the diagonalization of sparse matrices (Hamiltonians), CPU and memory
requirements scale as Op,Mem ∝ Nst, at least in their basic application, to calculate the g.s.
and its wavefunction. In present-day applications this allows the consideration of much larger
basis sets, i.e., Nst < 109. Still, lattice sizes N reached using the Lanczos technique remain
rather modest, compared to some other numerical approaches such as DMRG and quantum-
Monte-Carlo QMC methods, if the full Hilbert basis space relevant for the model is used.
The simplest nontrivial class of MB lattice models are spin models, the prototype being the
anisotropic Heisenberg model for coupled S = 1/2 spins,

H =
∑
〈ij〉α

Jααij Sαi S
α
j , (1)

where the sum 〈ij〉 runs over pairs of lattice sites with an arbitrary interaction Jααij (being in
principle anisotropic) and Sαi are the components of the local S = 1/2 operator. The model
has just K = 2 quantum states per lattice site and therefore allows for biggest possible N in
the ED-based approaches, where Nst ∝ 2N basis states. To reduce Nst as many symmetries
and good quantum numbers as practically possible are used to decompose the Hamiltonian into
separate blocks. Evident choices are sectors with the (z-component of) total spin Sztot and the
wavevector q for systems with periodic boundary conditions, but also rotational symmetries of
particular lattices have been used. In this way system sizes up to N ∼ 36 (for the largest and
most interesting sector Sztot = 0) have been reached so far using the Lanczos technique without
any basis reduction.
On the basis of this simple model one can already discuss the feasibility of Lanczos-based
methods with respect to other numerical quantum MB methods. For the g.s. of 1D spin systems
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more powerful methods allowing for much bigger systems are DMRG and related approaches.
For unfrustrated models in D > 1 QMC methods are superior for the evaluation of static quan-
tities at any T . Still, Lanczos-based methods become competitive or at least are not superseded
for frustrated spin models (where QMC can run into the minus-sign problem) or for dynamical
properties at T > 0.
Next in complexity and very intensively studied is the t-J model, representing strongly corre-
lated itinerant electrons with an antiferromagnetic (AFM) interaction between their spins

H = −
∑
〈ij〉s

(
tij c̃

†
jsc̃is + H.c.

)
+ J

∑
〈ij〉

Si · Sj , (2)

where due to the strong on-site repulsion doubly occupied sites are forbidden and one is dealing
with projected fermion operators c̃is = cis(1 − ni,−s). The model can be considered as a good
microscopic model for superconducting cuprates, which are doped Mott insulators, and has
therefore been one of the most studied models using the Lanczos method [5]. For a theoretical
and experimental overview of Mott insulators and metal-insulator transitions see Ref. [11]. It
has K = 3 quantum states per lattice site and, besides Sztot and q, also the number of electrons
Ne (or more appropriately the number of holes Nh = N − Ne) are the simplest quantum
numbers to implement. Since the model reveals an interesting physics in D > 1, the effort
was in connection with high-Tc cuprates mostly concentrated on the 2D square lattice. Here
the alternative numerical methods have more drawbacks (e.g., the minus sign problem in QMC
methods due to the itinerant character of the fermions) so that Lanczos-based methods are still
competitive, in particular for getting information on T > 0 dynamics and transport. The largest
systems considered with the Lanczos method so far are 2D square lattices with N = 32 sites
and Nh = 4 holes [12].
Clearly, one of the most investigated problems within the MB community is the standard single-
band Hubbard model, which has K = 4 states per lattice site. Due to the complexity Nst ∝ 4N

the application of ED and Lanczos-based method is already quite restricted reaching so far
N = 20 sites [13] requiring already Nst ∼ 109 basis states. The model is also the subject
of numerous studies using more powerful QMC method and various cluster dynamical-mean-
field-theory (DMFT) methods for much larger lattices so Lanczos-based approaches have here
more specific goals.
Since reachable lattices sizes for the above mentioned models are rather small it is important to
properly choose their geometries. This is not a problem for 1D models, but becomes already
essential for 2D lattices, analyzed in connection with novel materials, in particular high-Tc
cuprates and related materials. In order to keep periodic boundary conditions for 2D square
lattices the choice of Pythagorean lattices with N = λ2x + λ2y with λx, λy [14] has significantly
extended available sizes. Some frequently used ones are presented in Fig. 1. Taking into account
only even N , such lattices include N = 8, 10, 16, 18, 20, 26, 32, and 36 sites. While the unit
cells of such lattices are squares, it has been observed that they are not always optimal with
respect to the number of next-nearest and further nearest neighbors. It has been claimed and
partly tested that better result are obtained with slightly deformed lattices (still with periodic
boundary conditions) which at the same time offer an even larger choice of sizes [15].
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Fig. 1: Some tilted clusters used in 2D square-lattice studies

2.2 Lanczos diagonalization technique

The Lanczos technique is a general procedure to transform and reduce a symmetric Nst × Nst

matrixA to a symmetricM×M tridiagonal matrix TM . From the chosen initialNst-dimensional
vector v1 one generates an orthogonal basis of {v1, · · · ,vM} vectors which span the Krylov
space {v1,Av1, · · · ,AM−1v1} [1–3, 16].
In usual applications for the quantum MB system defined with Hamiltonian H the Lanczos
algorithm starts with a normalized vector |φ0〉, chosen as a random vector in the relevant
Hilbert space with Nst basis states. The procedure generates orthogonal Lanczos vectors LM =

{|φm〉 | m = 0 . . .M} spanning the Krylov space {|φ0〉, H|φ0〉, · · · , HM |φ0〉}. Steps are as
follows: H is applied to |φ0〉 and the resulting vector is split in components parallel to |φ0〉, and
normalized |φ1〉 orthogonal to it, respectively,

H|φ0〉 = a0|φ0〉+ b1|φ1〉. (3)

Since H is Hermitian, a0 = 〈φ0|H|φ0〉 is real, while the phase of |φ1〉 can be chosen so that b1
is also real. In the next step H is applied to |φ1〉,

H|φ1〉 = b′1|φ0〉+ a1|φ1〉+ b2|φ2〉, (4)

where |φ2〉 is orthogonal to |φ0〉 and |φ1〉. It follows also b′1 = 〈φ0|H|φ1〉 = b1. Proceeding
with the iteration one gets in i steps

H|φi〉 = bi|φi−1〉+ ai|φi〉+ bi+1|φi+1〉, 1 ≤ i ≤M, (5)

where in Eq. (5) by construction there are no terms involving |φi−2〉 etc. By stopping the it-
eration at i = M and setting bM+1 = 0, the Hamiltonian can be represented in the basis of
orthogonal Lanczos functions |φi〉 as the tridiagonal matrix HM with diagonal elements ai,
i = 0 . . .M , and off-diagonal ones bi, i = 1 . . .M . Such a matrix is easily diagonalized using
standard numerical routines to obtain approximate eigenvalues εj and corresponding orthonor-
mal eigenvectors |ψj〉,

|ψj〉 =
M∑
i=0

vji|φi〉, j = 0 . . .M. (6)
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It is important to realize that |ψj〉 are (in general) not exact eigenfunctions of H , but show a
remainder. On the other hand, it is evident from the diagonalization of HM that matrix elements

〈ψi|H|ψj〉 = εjδij, i, j = 0 . . .M, (7)

are diagonal independently of LM (but provided i, j ≤ M ), although the values εj can be only
approximate.
If in the equation (5) bM+1 = 0, we have found an (M + 1)-dimensional eigenspace where HM

is already an exact representation of H . This inevitably happens when M = Nst − 1, but for
M < Nst − 1 it can only occur if the starting vector is orthogonal to some invariant subspace
of H which we avoid by choosing the input vector |φ0〉 as a random one.
It should be recognized that the Lanczos approach is effective only for sparse Hamiltonians,
characterized by the connectivity of each basis state with Kn � Nst basis states. All prototype
discrete tight-binding models discussed in Sec. 2.1 are indeed of such a type in the local MB
basis. Estimating the computation requirements, the number of operations Op needed to per-
form M Lanczos iterations scales as Op ∝ KnMNst. The main restriction is still in memory
requirements due to the large Nst. A straightforward application of Eq. (5) would require the
fast storage of all |φi〉, i = 0 . . .M , i.e., also the memory capacity Mem ∝ MNst. However,
for the evaluation of the eigenvalues alone during the iteration, Eq. (5), only three |φi〉 are suc-
cessively required, so this leads to Mem ∝ 3Nst. If the Hamiltonian matrix is not evaluated on
the fly, then also Mem ∝ KnNst for the nonzero Hamilton matrix elements is needed.
The Lanczos diagonalization is in essence an iterative power method which is known to con-
verge fast for the extreme lower and upper eigenvalues [2, 3]. In physical application most
relevant is the search for the g.s. energy E0 and the corresponding wavefunction |Ψ0〉. Typi-
cally, M > 50 are enough to reach very high accuracy for both. It is evident that for such
modest M � Nst one cannot expect any reliable results for eigenstates beyond the few at the
bottom and the top of the spectrum. On the other hand, the Lanczos procedure is subject to
roundoff errors, introduced by the finite-precision arithmetics which usually only becomes se-
vere at larger M > 100 after the convergence of extreme eigenvalues, and is seen as the loss of
orthogonality of the vectors |φi〉. It can be remedied by successive reorthogonalization [2,3,16]
of new states |φ′i〉, plagued with errors, with respect to previous ones. However this procedure
requires Op ∼ M2Nst operations, and can become computationally more demanding than the
Lanczos iterations themselves. This effect also prevents one from using the Lanczos method,
e.g., to efficiently tridiagonalize large dense matrices [3].

3 Ground state properties and dynamics

After |Ψ0〉 is obtained, the static properties of the g.s. can be evaluated in principle for any
operator A as

Ā0 = 〈Ψ0|A|Ψ0〉. (8)

Clearly, the procedure (8) is effective for large a basis only if the operator A is sparse in the
same basis, as is the case for most operators of interest.
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It is an important advantage of the Lanczos procedure that dynamical g.s. functions can easily
be calculated [4]. Let us consider the dynamical (autocorrelation) response function

C(ω) = 〈Ψ0|A†
1

ω+ + E0 −H
A|Ψ0〉 (9)

for the observable given by the operator A, where ω+ = ω + iδ with δ > 0. To calculate C(ω)

one has to run a second Lanczos procedure with a new initial function |φ̃0〉,

|φ̃0〉 =
1

α
A|Ψ0〉, α =

√
〈Ψ0|A†A|Ψ0〉. (10)

Starting with |φ̃0〉 one generates another Lanczos subspace L̃M̃ = {|φ̃j〉, j = 0, M̃} with
(approximate) eigenvectors |ψ̃j〉 and eigenenergies ε̃j . The matrix for H in the new basis is
again a tridiagonal one with ãj and b̃j elements, respectively. Terminating the Lanczos proce-
dure at a given M̃ , one can evaluate Eq. (9) as a resolvent of the HM̃ matrix expressed in the
continued-fraction form [17, 4, 5],

C(ω) =
α2

ω+ + E0 − ã0 −
b̃21

ω+ + E0 − ã1 −
b̃22

ω+ + E0 − ã2 − . . .

, (11)

terminating with b̃M̃+1 = 0, although other termination functions can also be employed and can
be well justified.
We note that frequency moments of the spectral function

µl = − 1

π

∫ ∞
−∞

ωl ImC(ω) dω = 〈Ψ0|A†(H − E0)
lA|Ψ0〉 = α2〈φ̃0|(H − E0)

l|φ̃0〉 (12)

are exact for given |Ψ0〉 provided l ≤ M̃ , since the operator H l, l < M̃ , is exactly reproduced
within the Lanczos (or corresponding Krylov) space L̃M̃ .
Finally, C(ω) (11) can be presented as a sum of j = 0, M̃ poles at ω = ε̃j − E0 with corre-
sponding weights wj . As a practical matter we note that in analogy to Eq. (6)

wj = |〈ψ̃j|A|Ψ0〉|2 = α2|〈ψ̃j|φ̃0〉|2 = α2ṽ2j0 , (13)

hence no matrix elements need to be evaluated within this approach. In contrast to the autocor-
relation function (11), the procedure allows also the treatment of general correlation functions
CAB(ω), with B 6= A†. In this case matrix elements 〈Ψ0|B|ψ̃j〉 have to be evaluated explicitly.
It should be also mentioned that at least the lowest poles of C(ω), Eq. (11), should coincide
with eigenenergies ω = Ei − E0 if |φ̃0〉 is not orthogonal to |Ψ0〉. However, using M̃ > 50,
spurious poles can emerge (if no reorthogonalization is used) which, however, carry no weight
as is evident from exact moments (12).
In this chapter we do not intend to present an overview of applications of the full ED and
Lanczos-type studies of g.s. static and dynamical properties of correlated systems. There have
been numerous such investigations even before the high-Tc era, intensified strongly with studies
of prototype models relevant for high-Tc cuprates [5] and other novel materials with correlated
electrons. Although a variety of models has been investigated they are still quite restricted in
the number of local degrees and sizes.
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4 Static properties and dynamics at T > 0

Before describing the finite temperature Lanczos method (FTLM) we should note that the Lanc-
zos basis is a very useful and natural basis for evaluating matrix elements of the type

Wkl = 〈n|HkBH lA|n〉, (14)

where |n〉 is an arbitrary normalized vector, and A,B are general operators. One can calculate
this expression exactly by performing two Lanczos procedures with M = max(k, l) steps. The
first one, starting with the vector |φ0〉 = |n〉, produces the Lanczos basis LM along with ap-
proximate eigenstates |ψj〉 and εj . The second Lanczos procedure is started with the normalized
vector |φ̃0〉 ∝ A|φ0〉 = A|n〉, Eq. (10), and generates L̃M with corresponding |ψ̃j〉 and ε̃j . We
can now define projectors onto limited subspaces

PM =
M∑
i=0

|ψi〉〈ψi|, P̃M =
M∑
i=0

|ψ̃i〉〈ψ̃i|. (15)

Provided that (l, k) < M projectors PM and P̃M span the whole relevant basis for the operators
Hk and H l, respectively, so that one can rewrite Wkl in Eq. (14) as

Wkl = 〈φ0|PMHPMH . . .HPMBP̃MH . . . P̃MHP̃MA|φ0〉. (16)

Since H is diagonal in the basis |ψj〉 and |ψ̃j〉, respectively, one can write finally

Wkl =
M∑
i=0

M∑
j=0

〈φ0|ψi〉〈ψi|B|ψ̃j〉〈ψ̃j|A|φ0〉 (εi)
k(ε̃j)

l. (17)

It is important to note that expression (17) for the matrix element is exact, independently of how
(in)accurate the representation |ψi〉, εi and |ψ̃j〉, εj , respectively, are for true system eigenvalues.
The only condition is that number of Lanczos steps is sufficient, i.e., M > (l, k).

4.1 Finite-temperature Lanczos method: Static quantities

A straightforward calculation of the canonical thermodynamic average of an operatorA at finite
temperature T > 0 (in a finite system) requires the knowledge of all eigenstates |Ψn〉 and
corresponding energies En, obtained, e.g., by the full ED of H

〈A〉 =
Nst∑
n=1

e−βEn〈Ψn|A|Ψn〉
/ Nst∑

n=1

e−βEn , (18)

where β = 1/kBT . Such a direct evaluation is both CPU time and storage demanding for larger
systems and is at present accessible only for Nst ∼ 20000.
In a general orthonormal basis |n〉 for finite system with Nst basis states one can express the
canonical expectation value 〈A〉 as

〈A〉 =
Nst∑
n=1

〈n|e−βHA|n〉
/ Nst∑

n=1

〈n|e−βH |n〉, (19)
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The FTLM for T > 0 is based on the evaluation of the expectation value in Eq. (19) for each
starting |n〉 using the Lanczos basis. We note that such a procedure guarantees the correct high-
T expansion series (for given finite system) to high order. Let us perform the high-T expansion
of Eq. (19),

〈A〉 = Z−1
Nst∑
n=1

∞∑
k=0

(−β)k

k!
〈n|HkA|n〉,

Z =
Nst∑
n=1

∞∑
k=0

(−β)k

k!
〈n|Hk|n〉. (20)

Terms in the expansion 〈n|HkA|n〉 can be calculated exactly using the Lanczos procedure with
M ≥ k steps (using |φn0 〉 = |n〉 as the starting function) since this is a special case of the
expression (14). Using relation (17) with l = 0 and B = 1, we get

〈n|HkA|n〉 =
M∑
i=0

〈n|ψni 〉〈ψni |A|n〉(εni )k. (21)

Working in a restricted basis k ≤M , we can insert the expression (21) into sums (20), extending
them to k > M . The final result can be expressed as

〈A〉 = Z−1
Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |A|n〉,

Z =
Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |n〉, (22)

and the error of the approximation is O(βM+1).
Evidently, within a finite system Eq. (22), expanded as a series in β, reproduces exactly the high-
T series to the orderM . In addition, in contrast to the usual high-T expansion, Eq. (22) remains
accurate also for T → 0. Let us assume for simplicity that the g.s. |Ψ0〉 is nondegenerate. For
initial states |n〉 not orthogonal to |Ψ0〉, already at modest M ∼ 50 the lowest eigenstate |ψn0 〉
converges to |Ψ0〉. We thus have for β →∞,

〈A〉 =
Nst∑
n=1

〈n|Ψ0〉〈Ψ0|A|n〉
/ Nst∑

n=1

〈n|Ψ0〉〈Ψ0|n〉 = 〈Ψ0|A|Ψ0〉/〈Ψ0|Ψ0〉, (23)

where we have taken into account the completeness of the set |n〉. Thus we obtain just the usual
g.s. expectation value of operator A.
The computation of static quantities (22) still involves the summation over the complete set of
Nst states |n〉, which is clearly not feasible in practice. To obtain a useful method, a further
essential approximation replaces the full summation over |n〉 by a partial one over a much
smaller set of random states [18, 19]. Such an approximation is analogous to Monte Carlo
methods and leads to a statistical error which can be well estimated and is generally quite small.
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Let us first consider only the expectation value (19) with respect to a single random state |r〉,
which is a linear combination of basis states

|r〉 =
Nst∑
n=1

ηrn|n〉, (24)

where the ηrn are assumed to be distributed randomly. Then the random quantity can be ex-
pressed as

Ãr =
〈r|e−βHA|r〉
〈r|e−βH |r〉

=
Nst∑

n,m=1

η∗rnηrm〈n|e−βHA|m〉
/ Nst∑

n,m=1

η∗rnηrm〈n|e−βH |m〉. (25)

Assuming that due to the random sign (phase), offdiagonal terms with η∗rnηrm, m 6= n cancel
on average for large Nst, we remain with

Ār =
Nst∑
n=1

|ηrn|2〈n|e−βHA|n〉
/ Nst∑

n=1

|ηrn|2〈n|e−βH |n〉. (26)

We can express |ηrn|2 = 1/Nst + δrn. The random deviations δrn should not be correlated with
matrix elements 〈n|e−βH |n〉 = Zn and 〈n|e−βHA|n〉 = ZnAn, therefore Ār is close to 〈A〉 with
an statistical error related to the effective number of terms Z̄ in the thermodynamic sum, i.e.

Ār = 〈A〉(1 +O(1/
√
Z̄)), (27)

Z̄ = eβE0

∑
n

Zn =
Nst∑
n=1

〈n|e−β(H−E0)|n〉. (28)

Note that for T →∞ we have Z̄ → Nst and therefore at large Nst a very accurate average (28)
can be obtained even from a single random state [18, 19]. On the other hand, at finite T < ∞
the statistical error of Ãr increases with decreasing Z̄.
To reduce statistical errors, in particular at modest T > 0, within the FTLM we sum in addition
over R different randomly chosen |r〉, so that in the final application Eq. (22) leads to

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j=0

e−βε
r
j 〈r|ψrj 〉〈ψrj |A|r〉,

Z =
Nst

R

R∑
r=1

M∑
j=0

e−βε
r
j |〈r|ψrj 〉|2. (29)

Random states |r〉 = |φr0〉 serve as initial functions for the Lanczos iteration, resulting in M
eigenvalues εrj with corresponding |ψrj 〉. The relative statistical error is reduced by sampling
(both for 〈A〉 and Z) and behaves as

δ〈A〉/〈A〉 = O(1/
√
RZ̄). (30)
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For a general operatorA the calculation of |ψrj 〉 and the corresponding matrix elements 〈ψrj |A|r〉
is needed. On the other hand, the computational effort is significantly reduced if A is a con-
served quantity, i.e., [H,A] = 0, and can be diagonalized simultaneously with H . Then

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j=0

e−βε
r
j |〈r|ψrj 〉|2Arj . (31)

In this case the evaluation of eigenfunctions is not necessary since the element 〈r|ψrj 〉 = vrj0,
Eq. (6), is obtained directly from the eigenvectors of the tridiagonal matrix Hr

M . There are
several quantities of interest which can be evaluated in this way, in particular thermodynamic
properties such as internal energy, specific heat, entropy, as well as uniform susceptibilities
etc. [7, 8].
Taking into account all mentioned assumptions, the approximation 〈A〉 (29) yields a good esti-
mate of the thermodynamic average at all T . For low T the error is expected to be of the order
ofO(1/

√
R), while for high T the error is expected to scale even asO(1/

√
NstR). Since argu-

ments leading to these estimates are not always easy to verify, it is essential to test the method
for particular cases.

4.2 Finite-temperature Lanczos method: Dynamical response

The essential advantage of the FTLM with respect to other methods is in the calculation of dy-
namical quantities. Let us consider the dynamical susceptibility as given by the autocorrelation
function C(ω) (the procedure for a general correlation function CAB(ω) is given in Ref. [7]),

χ′′(ω) = π(1− e−βω)C(ω), C(ω) =
1

π
Re

∫ +∞

0

dt eiωtC(t), (32)

with
C(t) = 〈A†(t)A(0)〉 =

1

Z

∑
n

〈n|e(−β+it)HA†e−iHtA|n〉. (33)

Expanding the exponentials in analogy to static quantities, Eq. (20), we get

C(t) = Z−1
Nst∑
n=1

∞∑
k,l=0

(−β + it)k

k!

(−it)l

l!
〈n|HkA†H lA|n〉. (34)

The expansion coefficients in Eq. (34) can be again obtained via the Lanczos method, as dis-
cussed in Sec. 4.1. Performing two Lanczos iterations with M steps, starting from the nor-
malized vectors |φn0 〉 = |n〉 and |φ̃n0 〉 ∝ A|n〉, respectively, we calculate the coefficients Wkl

following equation (17). We again note that (within the full basis |n〉) the series are, via the
Wkl, exactly evaluated within the Lanczos basis up to order l, k ≤M . The latter yields through
Eq. (34) a combination of (β, t) expansion, i.e., a combination of a high-T and short-t (in fre-
quency high-ω) expansion to very high order. Extending and resumming the series in k and l
into exponentials, we get in analogy with Eq. (22)

C(t) = Z−1
Nst∑
n=1

M∑
i,j=0

e−βε
n
i eit(ε

n
i −ε̃nj )〈n|ψni 〉〈ψni |A†|ψ̃nj 〉〈ψ̃nj |A|n〉. (35)
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Finally replacing the full summation with the random sampling from the FTLM recipe for the
correlation function, we obtain

C(ω) =
Nst

ZR

R∑
r=1

M∑
i,j=1

e−βεi〈r|ψri 〉〈ψri |A†|ψ̃rj 〉〈ψ̃rj |r〉δ(ω − ε̃rj + εri ). (36)

We check the nontrivial T = 0 limit of the above expression. If the |n〉 are not orthogonal to the
g.s., |Ψ0〉, then for large enoughM the lowest-lying state converges to εn0 ∼ E0 and |ψn0 〉 ∼ |Ψ0〉,
respectively. In this case we have

C(ω, T = 0) ≈ Nst

R

R∑
r=1

M∑
j=0

〈Ψ0|A†|ψ̃nj 〉〈ψ̃nj |A|r〉〈r|Ψ0〉δ(ω + E0 − ε̃nj ) (37)

At T ∼ 0 one needs in general M � 100 so that at least the low-lying states relevant to
Eq. (37) approach |ψ̃nj 〉 → |Ψj〉 and ε̃nj → Ej . Also a considerable number of samples R > 1

is required to get correct also amplitudes of separate peaks in the spectrum of Eq. (37), which
are a subject to statistical errors due to the incomplete projection on the different random |r〉 in
〈ψ̃nj |A|r〉〈r|Ψ0〉. Similar statistical errors can in fact appear also for static quantities in Eq. (29).

4.3 Finite temperature Lanczos method: Implementation

Most straightforward is the implementation of the FTLM for static quantities, Eq. (29). In
particular for conserved quantities, Eq. (31), the computation load is essentially that of the g.s.
Lanczos iteration, repeated R times, and only minor changes are needed within the usual g.s.
Lanczos code.
On the other hand, for the dynamical correlation function (36) the memory requirement as well
as the CPU time is dominated mostly by the evaluation of the matrix element 〈ψri |A†|ψ̃rj 〉 where
the operations scale as Op ∝ RM2Nst and memory as Mem ∝ MNst. This effectively limits
the application of the FTLM to 50 < M < 500 where the lower bound is determined by the
convergence of the g.s. |Ψ0〉. Still, it should be noted that the calculation can be done simultane-
ously (without any additional cost) for all desired T , since matrix elements are evaluated only
once. Evidently, one should use as much as possible symmetries of the Hamiltonian, e.g., Ne,
Sztot, q to reduce the effective Nst by splitting the sampling over different symmetry sectors.
The effect of finite M is less evident. Since M ∼ 100 is enough to converge well a few lowest
levels, it is also generally satisfactory for reliable dynamical correlation functions at low T . At
high T , however, one can observe very regular oscillations which are an artifact of the Lanczos
iterations with M � Nst. Namely, the procedure generates between the extreme eigenvalues a
spectrum of quasi-states with quite equidistant level spacing ∆ε ∼ ∆E/M , where ∆E is the
full energy span of MB eigenstates. The effect is well visible in Fig. 2 where the high-T result
for the spin structure factor S(q = π, ω) os the 1D Heisenberg model, Eq. (1), is presented for
various M . It is evident that for the presented case (N = 24 and ∆E ∼ 16J) M > 200 is
sufficient to obtain smooth spectra even for high T � J . However, larger M are advisable if
sharper structures persist at high T .
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Fig. 2: High-T spin structure factor S(q = π, ω) for the 1D Heisenberg model, as calculated
with different numbers of Lanczos steps M .

The role of random sampling R is less important for intermediate and high T since the relative
error is largely determined via Z̄ as evident from Eq. (28). Larger R� 1 is necessary only for
the correct limit T → 0 (for given system size) and for off-diagonal operators A.
One can claim that the FTLM in general obtains for all reachable systems results which are at
any T very close to exact (full ED) results for the same finite (givenN ) system and the accuracy
can be improved by increasing M and R. Still, it remains nontrivial but crucial to understand
and have in control finite size effects.
At T = 0 both static and dynamical quantities are calculated from the g.s. |Ψ0〉, which can be
quite dependent on the size and the shape of the system. At least in 1D for static quantities the
finite-size scaling N → ∞ can be performed in a controlled way, although in this case more
powerful methods as, e.g., DMRG are mostly available. In higher dimensional lattices, e.g.,
in 2D systems, finite-size scaling is practically impossible due to the very restricted choice of
small sizes and different shapes. Also g.s. (T = 0) dynamical quantities are often dominated by
few (typically Np < M ) peaks which are finite-size dependent [5]. On the other hand, T > 0

generally introduces the thermodynamic averaging over a large number of eigenstates. This
directly reduces finite-size effects for static quantities, whereas for dynamical quantities spectra
become denser. From Eq. (36) it follows that we get in spectra at elevated T > 0 typically
Np ∝ RM2 different peaks resulting in nearly continuous spectra. This is also evident from the
example of a high-T result in Fig. 2.
It is plausible that finite-size effects at T > 0 become weaker. However, it should be recognized
that there could exist several characteristic length scales in the physical (and model) system,
e.g. the antiferromagnetic (AFM) correlation length ξ, the transport mean free path ls etc. These
lengths generally decrease with increasing T and results for related quantities get a macroscopic
relevance provided that ξ(T ), ls(T ) < L where L ∝ N1/D is the linear size of the system.
However, there exist also anomalous cases, e.g., in an integrable system ls can remain infinite
even at T →∞ [20, 21].
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Fig. 3: Finite-size temperature Tfs vs. hole doping ch in the 2D t-J model with J/t = 0.3, as
calculated with the FTLM in a system of N = 18 sites [7].

As a simple criterion for finite size effects one can use the normalized thermodynamic sum
Z̄(T ), Eq. (28), which provides the effective number of MB states contributing at chosen T
(note that for a system with a nondegenerate g.s. Z̄(T = 0) = 1). A finite-size temperature Tfs
can be thus defined with the relation Z̄(Tfs) = Z∗ where in practice the range 10 < Z∗ < 50 is
reasonable. Clearly, the FTLM is best suited just for systems with a large density of low lying
MB states, i.e., for large Z̄ at low T .
Since Z̄(T ) is directly related to the entropy density s and the specific heat Cv of the system,
large Z̄ at low T is the signature of frustrated quantum MB systems, which are generally difficult
to cope with using other methods (e.g., the QMC method). Typically examples of such strongly
correlated electrons with an inherent frustration are the doped AFM and the t-J model, Eq. (2),
in the strong correlation regime J < t. As an example, we present in Fig. 3 the variation of Tfs
in the 2D t-J model with the hole doping ch = Nh/N , as calculated for different Z∗ = 30–
300 for the fixed system of N = 18 sites and J/t = 0.3 as relevant for high-Tc cuprates. It
is indicative that Tfs reaches a minimum for intermediate (optimum) doping ch = c∗h ∼ 0.15,
where we are able to reach Tfs/t ∼ 0.1. Away from the optimum doping Tfs is larger, i.e., low-
energy spectra are quite sparse both for the undoped AFM and even more so for the effectively
noninteracting electrons far away from half-filling (for nearly empty or full band).

4.4 Low-temperature Lanczos method

The standard FTLM suffers at T → 0 from statistical errors due to finite sampling R, both for
static quantities, Eqs. (29), (30), as well as for dynamical correlations, Eqs. (36), (37). The
discrepancy can be easily monitored by the direct comparison with the g.s. Lanczos method,
Eqs. (8), (11). To avoid this problem, a variation of the FTLM method, called Low-temperature
Lanczos method (LTLM) has been proposed [9] which obtains correct g.s. result (for finite
systems) independent of the sampling R.
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The idea of LTLM is to rewrite Eq. (19) in a symmetric form

〈A〉 =
1

Z

Nst∑
n=1

〈n|e−βH/2Ae−βH/2|n〉, (38)

and insert the Lanczos basis in analogy with the FTLM, Eq. (19), now represented with a double
sum

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j,l=0

e−β(ε
r
j+ε

r
l )/2〈r|ψrj 〉〈ψrj |A|ψrl 〉〈ψrl |r〉, (39)

The advantage of the latter form is that it satisfies the correct T = 0 limit provided that the g.s.
is well converged, i.e., |ψr0〉 ∼ |Ψ0〉. It then follows from Eq. (39),

〈A〉 =
R∑
r=1

〈r|Ψ0〉〈Ψ0|A|Ψ0〉〈Ψ0|r〉
/ R∑

r=1

〈Ψ0|r〉〈r|Ψ0〉 = 〈Ψ0|A|Ψ0〉, (40)

for any chosen set of |r〉. For the dynamical correlations C(t) one can in a straightforward way
derive the corresponding expression in the Lanczos basis

C(ω) =
Nst

ZR

R∑
r=1

M∑
i,j,l=0

e−β(ε
r
i+ε

r
l )/2〈r|ψri 〉〈ψri |A†|ψ̃rlj 〉〈ψ̃rlj |A|ψrl 〉〈ψrl |r〉 δ(ω − ε̃rlj +

1

2
(εri + εrl )).

(41)
It is again evident that for T → 0 the sampling does not influence results, being correct even
for R = 1 if the g.s. |Ψ0〉 is well converged for all starting |r〉. The payoff is in an additional
summation over the new Lanczos basis sets |ψ̃rlj 〉, which needs to be started from each A|ψrl 〉
in Eq. (41) separately. Since the LTLM is designed for lower T , one can effectively restrict
summations in (i, l) in Eq. (41) to much smaller M ′ � M , where only lowest states with
εri , ε

r
l ∼ E0 contribute [9], and in addition use smaller M1 �M for the basis |ψ̃rlj 〉 .

An alternative version for a Lanczos-type approach [22] to dynamical quantities is not to start
the second Lanczos run from A|r〉 [7] or from A|ψrl 〉 [9], but from

|Ãr〉 =
M∑
l=0

A|ψrl 〉e−βε
r
l /2〈ψrl |r〉. (42)

In this way one obtains with the second Lanczos run the Lanczos eigenstates |ψ̃rk〉, which cover
the relevant Hilbert space for starting random vector |r〉 and the inverse temperature β. The
resulting dynamical autocorrelation function is

C(ω) =
Nst

RZ

R∑
r=1

M∑
i,k=0

e−βε
r
i /2〈r|ψri 〉〈ψri |A†|ψ̃rk〉〈ψ̃rk|Ãr〉 δ(ω − ε̃rk + εri ). (43)

In this way the sufficiency of only one random vector in the T = 0 limit is reproduced, while at
T > 0 the algorithm has the same time efficiency as the FTLM, but with much smaller random
sampling needed to reach the same accuracy (at least for low T ). However, the price paid is that
results for each T need to be calculated separately, while within the FTLM all T (or T up to a
certain value within the LTLM) are evaluated simultaneously.
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4.5 Microcanonical Lanczos method

While most investigations in strongly correlated systems focus on the low-T regime, there are
systems where dynamical properties are nontrivial even at high T . A well known such case
is the spin diffusion constant Ds(T ) in the isotropic Heisenberg model, Eq. (1), whose value
is not known, and even its existence at any T > 0 is uncertain. Similar although somewhat
less controversial is the case of transport quantities, both for integrable or generic nonintegrable
models. Whereas the FTLM seems well adapted for studies of transport response functions,
oscillations due to a limited M can compromise the crucial low-ω resolution, cf. Fig. 2.
At elevated T it is therefore an advantage to use the microcanonical Lanczos method (MCLM)
[10], employing the fact from statistical physics that in the thermodynamic limit (for large
system) the microcanonical ensemble should yield the same results as the canonical one. Short-
comings of the MCLM are due to the fact that in finite systems statistical fluctuations are much
larger within the microcanonical ensemble. Still, reachable finite-size systems have a very high
density of states in the core of the MB spectrum as probed by high T . Hence, statistical fluc-
tuations are at high T effectively smoothed out in contrast to low-T properties dominated by a
small number of low lying MB states.
The implementation of the MCLM is quite simple and straightforward. One first determines
the target energy λ = 〈H〉(T ) which represents the microcanonical energy equivalent to the
canonical average energy for chosen T and system size N . Since λ is a parameter within the
MCLM, one can relate it to T by performing either FTLM (simplified due to H being a con-
served quantity) on the same system, or extrapolating full ED results (with linear dependence
on N ) on small lattices. Next we find a representative microcanonical state |Ψλ〉 for the energy
λ. One convenient way within the Lanczos-type approach is to use the new operator

V = (H − λ)2. (44)

Performing Lanczos iterations with the operator V yields again the extremum eigenvalues, in
particular the lowest one close to V ∼ 0. In contrast to the g.s. procedure, the convergence to a
true eigenstate cannot be reached in system sizes of interest even with M1 � 100. The reason
is the extremely small eigenvalue spacing of the operator V , scaling as ∆Vn ∝ (∆E/Nst)

2,
with ∆E being the whole energy span within the given system. Fortunately such a convergence
is not necessary (nor even desired) since the essential parameter is the small energy uncertainty
σE , given by

σ2
E = 〈Ψλ|V |Ψλ〉. (45)

For small energy spread σE/∆E < 10−3 typically M1 ∼ 1000 is needed. Again, to avoid
storing M1 Lanczos wavefunctions |φi〉 the Lanczos procedure is performed twice as described
in Sec. 2.2, i.e., the second time with known tridiagonal matrix elements to calculate finally
|Ψλ〉 in analogy with Eq. (6). The latter is then used to evaluate any static expectation average
〈A〉 or the dynamical correlation function as in Eq. (9),

C(ω, λ) = 〈Ψλ|A†
1

ω+ + λ−H
A|Ψλ〉. (46)
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The latter is evaluated again using Lanczos iterations with M2 steps starting with the initial
wavefunction |φ̃0〉 ∝ A|Ψλ〉 and C(ω, λ) is represented in terms of a continued fraction. Since
the MB levels are very dense and correlation functions smooth at T � 0, large M2 � 100 are
needed but as well easily reachable to achieve high-ω resolution in C(ω, λ).
It is evident that the computer requirement for the MCLM both regarding the CPU and memory
are essentially the same as for the g.s. dynamical calculations except that typically M1,M2 �
100. In particular, requirements are less demanding than using the FTLM with M > 100. A
general experience is that for systems with large Nst � 10000 the MCLM dynamical results
agree very well with FTLM results for the same system. It should also be noted that the actual
frequency resolution δω inC(ω, λ), Eq. (46), is limited by δω ∼ σE which is, however, straight-
forward to improve by increasing M1,M2 with typical values M1,M2 > 1000. One can also
improve the MCLM results for any T by performing an additional sampling over initial ran-
dom starting |φ0〉 as well as over λ with a probability distribution p(λ) simulating the canonical
ensemble in a finite-size system, i.e., by replacing Eq. (46) with

C(ω) =
∑
λ

p(λ)C(ω, λ). (47)

4.6 Statical and dynamical quantities at T > 0: Applications

The FTLM has been designed to deal with the simplest tight-binding models of strongly corre-
lated electrons, at the time mostly with challenging microscopic electronic models of high-Tc
superconductors [6, 7], where besides superconductivity there is a variety of anomalous non-
Fermi-liquid-like properties even in the normal state. Clearly of interest in this connection are
prototype MB models as the Heisenberg model, Eq. (1), the t-J model, Eq. (2), and the Hubbard
model on the 2D square lattice. The unfrustrated Heisenberg model can be numerically studied
on much bigger lattices with QMC and related methods. The 2D Hubbard model was and still
is mostly subject of DMFT and QMC studies, since at half-filling or close to it the Lanczos
methods are quite restricted due to the large Nst even for modest sizes N ∼ 16. Therefore one
focus of Lanczos-based approaches was on the t-J model being, with some generalizations, a
microscopic representation of electronic properties of high-Tc cuprates.
Thermodynamic quantities such as chemical potential µ, entropy density s, specific heat Cv are
the easiest to implement within the FTLM. Their T - and (hole) doping ch-dependence within the
t-J model on a 2D square lattice (calculated for up to N = 26 sites) reveal the very anomalous
behavior of doped Mott insulators [23] (as evident already from Fig. 3), confirmed also by
results for the more complete Hubbard model [24].
The advantages of the FTLM and also its feasibility for the 2D t-J model are even more evident
in numerous studies of spin- and charge-dynamics at T > 0 [7], which show good agreement
with neutron scattering and NMR [25, 26], optical conductivity σ(ω) and resistivity ρ(T ) [27],
as well as some other anomalous properties of the cuprates [8]. As an example of a transport
quantity hardly accessible by other methods we present in Fig. 4 the universal planar resistivity
ρ(T ), as extracted from the dynamical conductivity σ(ω → 0) = 1/ρ, within the t-J model
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Fig. 4: Normalized 2D resistivity chρ vs. T/t within the t-J model with J/t = 0.3 for different
hole concentrations ch [27].

for different doping levels ch [27]. The result in Fig. 4 clearly show a linear dependence below
the pseudogap temperature T ∗ dependent on doping ch. Another characteristic signature is a
saturation (plateau) of ρ(T ) at low doping and the universal trend at high T .
Spectral properties as manifested in the single-particle spectral functionsA(k, ω) are at the core
of the understanding of cuprates, as well as of strongly correlated electrons in general. Here,
even g.s. and low-T properties are a challenge for numerical studies whereby the FTLM can
be viewed as a controlled way to get reliable (macroscopic-like) T → 0 result, in contrast to
quite finite-size plagued results obtained via the g.s. Lanczos procedure [5]. Using the FTLM at
T ∼ Tfs with twisted boundary conditions we can simulate a continuous wavevector k. Using in
addition coarse graining averaging one can reach results forA(k, ω) [28,29] giving insights into
electron vs. hole doped angle-resolved photoemission experiments, quasiparticle relaxation,
and waterfall-like effects. A characteristic result of such studies is in Fig. 5 for the single-
particle density of states N (ω) =

∑
kA(k, ω) [28]. Here, the strength of the FTLM is visible

in the high ω resolution within the most interesting low-ω window. Interesting and reproducible
are also nontrivial spectral shapes as the sharp peak close to ω < 0 and a broad shoulder for
ω � 0. Most important is, however, the evident pseudogap (observed also experimentally in
cuprates) visible at ω ∼ 0 in the low-doping regime.
Besides the challenging models for cuprates there have been also studies of static and dynamical
properties of multiband and multiorbital models which either reduce to the generalized t-J
model [30] or to Kondo lattice models [31, 32]. While the increasing number of local basis
states K clearly limits the applicability of ED-based methods, they are competitive in treating
nontrivial frustrated spin models less suitable for QMC and other methods, however closely
related to the physics of novel materials. Moreover, frustrated models are characterized by a
large entropy density s and related low Tfs, essential conditions for the feasibility of FTLM
results. Examples of such systems are the Shastry-Sutherland model [33, 34], the 2D J1-J2
model [35], and properties of frustrated magnetic molecules [36–38].
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Fig. 5: Density of states N (ω) for different dopings ch within the extended t-J model with
n.n.n. hopping t′ = −0.3t and t′ = 0, respectively [28].

Another class of problems which can be quite effectively dealt with using the FTLM and MCLM
approaches is the fundamental as well as experimentally relevant problem of transport in 1D
systems of interacting fermions as realized, e.g., in quasi-1D spin-chain materials [39]. It has
been recognized that the transport response at any T > 0 crucially differs between integrable
and nonintegrable systems. Since the 1D isotropic as well as anisotropic Heisenberg model,
Eq. (1), is integrable it opens a variety of fundamental questions of anomalous transport in
such systems, the effects of perturbative terms and impurities. Such fundamental questions
on transport and low-ω dynamic response remain nontrivial even at high T [20, 21], hence the
MCLM is the most feasible and straightforward method. It has been in fact first probed on
the anomalous transport in 1D insulators [40] but furtheron used to study interaction-induced
transport at T > 0 in disordered 1D systems [41, 42], in particular in relation to challenging
problems of many-body localization [43, 44] being inherently the question of low-frequency
dynamics at T →∞.

In Fig. 6 we present as an example MCLM result for the dynamical spin conductivity in the
anisotropic Heisenberg model, Eq. (1), where Jzz 6= Jxx = Jyy = J in the Ising-like (with
the spin gap in the g.s.) regime ∆ = Jzz/J > 1. Results for the high-T dynamical spin
conductivity Tσ(ω) are shown for various next-neighbor (anisotropic) couplings α = Jzz2 /J .
The first message is that the MCLM is well adapted for the high ω resolution (here using M1 =

M2 = 2000) and reaching large N = 30 (Nst ∼ 5.106 in a single Sz = 0, q sector). Another
conclusion is that the dynamics of such systems is very anomalous. For the integrable case
α = 0 we find σ0 = σ(0) ∼ 0 but also an anomalous finite-size peak at ωp ∝ 1/N [40]. At
the same time breaking integrability with α > 0 appears to lead to σ0 > 0 still approaching an
‘ideal’ insulator (insulating at all T ) for a weak perturbation σ0(α→ 0)→ 0 [45].
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5 Real-time dynamics using the Lanczos method

Research in the field of non-equilibrium dynamics of complex quantum systems constitutes
a formidable theoretical challenge. When dealing with ED approaches or calculations in a
reduced basis, the time evolution of the time-dependent Shrödinger equation,

i
∂Ψ(t)

∂t
= H(t)Ψ(t), (48)

can be efficiently obtained using the time-dependent Lanczos technique, as originally described
in Ref. [46] and later applied and analyzed in more detail [47]. One of the straightforward
reasons is that most commonly the Lanczos method is used to compute the g.s. of MB Hamil-
tonian. Generalizing the method to time-dependent calculation represents only a minor change
to already existing codes. Even though the method is most suitable for the time evolution of
the time-independent Hamiltonian, it can nevertheless be applied even to the time-dependent
case. The time evolution of |Ψ(t)〉 is then calculated by a step-wise propagation in time t by
small time increments δt, generating at each step a Lanczos basis of dimension M (typically
M < 10), to follow the evolution

|Ψ(t+ δt)〉 ' e−iH(t)δt|Ψ(t)〉 '
M∑
l=1

e−iεlδt|ψl〉〈ψl|Ψ(t)〉, (49)

where |ψl〉, εl, l = 0 . . .M are Lanczos eigenfunctions and eigenvalues, respectively, obtained
via the Lanczos iteration started with |φ0〉 = |Ψ(t)〉. The advantage of the time-evolution
method following Eq. (49) is that it preserves the normalization of |Ψ(t + δt) for arbitraryly
large δt. The approximation of finite M in Eq. (49) is also correct at least to the M -th Taylor-
expansion order in δt. It is, however, important to stress that δt should be chosen small enough
to properly take into account the time-dependence of H(t). E.g., when driving the system with
a constant external electric field, δt/tB ∼ 10−3 where tB is the Bloch oscillation period [48,45].
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So far, investigations of correlated systems under the influence of a driving electric field in 1D
using Lanczos time-evolution focused on generic systems, like the metallic and Mott-insulating
regime of interacting spinless fermions [48, 45]. Even though rather small systems can be
studied it has been established that a steady state can be reached without any additional coupling
to a heat bath, provided that the Joule heating of the system is properly taken into account.

6 Discussion

Exact diagonalization based methods, both the full ED and the Lanczos-type ED approach, are
very extensively employed in the investigations of strongly correlated MB quantum systems in
solids and elsewhere. The reason for their widespread use are several: a) unbiased approach to
the MB problem without any simplifications or approximations, independent of the complexity
of the MB system, b) relative simplicity of generating the codes for various models and ob-
servables, c) easy and straightforward testing of codes, d) direct interpretation of the obtained
quantum MB states and their possible anomalous structure and properties, e) high pedagogical
impact as a quick and at the same time very nontrivial introduction into the nature of MB quan-
tum physics. Also the Lanczos-based methods described in this review, i.e., the g.s. Lanczos
method for static and dynamic quantities, and the somewhat more elaborate FTLM, MCLM,
LTLM and EDLFS, require rather modest programming efforts in comparison with more com-
plex numerical methods, e.g., QMC- and DMRG-based methods, as described in other chapters.
Clearly, the main drawback of ED methods is the smallness of lattice sizes N limited by the
number of basis states (at present Nst < 109) that can be treated with a Lanczos iteration
procedure. The achievable N with ED methods appears quite modest in comparison with some
established and recently developed numerical methods, such as QMC, DMRG, matrix-product-
states methods, etc. Still, in spite of the intensive developments and advances of novel numerical
methods in last two decades, there are several aspects of strong-correlation physics, where ED-
based methods are so far either the only feasible or at least superior ones. In this chapter we
have focused mostly on Lanczos-based methods and applications where they are competitive
and get nontrivial results with a macroscopic validity:
a) MB g.s. and its properties: for frustrated and complex models mostly so far do not offer
alternative powerful methods at least beyond D = 1 systems, where DMRG is efficient.
b) T > 0 static properties evaluated with as the FTLM and the LTLM are most powerful and
reliable for frustrated and complex system, in particular in systems with high degeneracies of
MB states and large entropy at low T ,
c) T > 0 Lanczos methods for dynamical quantities, such as FTLM and MCLM, yield for
many models and geometries results superior to other methods or, in several cases, even the
only accessible results. Particular advantages are the high ω resolution at all T beyond the finite
size limit T > Tfs, macroscopic-like results at low T with proper T → 0 scaling, and the
possibility of detailed studies of systems with nontrivial dynamics at any, in particular high T .
d) The Lanczos technique is the natural application for methods with a restricted MB basis sets
and DMRG-type targeting, as well as for the real-time evolution of strongly correlated systems.
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8.2 Florian Gebhard

1 Introduction
Density Functional Theory (DFT) is the workhorse of electronic structure theory. Based on the
Hohenberg-Kohn and Kohn-Sham theorems [1], the ground-state properties of an interacting
many-electron system are calculated from those of an effective single-particle problem that can
be solved numerically. An essential ingredient in DFT is the so-called exchange-correlation
potential which, however, is unknown and sensible approximations must be devised, e.g., the
local (spin) density approximation, L(S)DA. In this way, the electronic properties of metals
were calculated systematically [2]. Unfortunately, the L(S)DA leads to unsatisfactory results
for transition metals and their compounds. The electrons in the narrow 3d, or 4f/5f , bands
experience correlations that are not covered by current exchange-correlation potentials.
For a more accurate description of electronic correlations in narrow bands, Hubbard-type mod-
els [3, 4] have been put forward. However, simplistic model Hamiltonians can describe limited
aspects of real materials at best, while, at the same time, they reintroduce the full complexity
of the many-body problem. Recently, new methods were developed that permit the (numerical)
analysis of multi-band Hubbard models and, moreover, can be combined with DFT, specifi-
cally, the LDA+U method [5], the LDA+DMFT (Dynamical Mean-Field Theory) [6,7], and the
Gutzwiller variational approach [8–11]. The LDA+U approach treats atomic interactions on a
mean-field level so that it is computationally cheap but it ignores true many-body correlations.
The DMFT becomes formally exact for infinite lattice coordination number, Z → ∞, but it
requires the self-consistent solution of a dynamical impurity problem that is numerically very
demanding. The Gutzwiller DFT is based on a variational treatment of local many-body corre-
lations. Expectation values can be calculated for Z → ∞ without further approximations, and
the remaining computational problem remains tractable.
In this chapter, we present a formal derivation of the Gutzwiller DFT as a generic extension of
the DFT. Our formulae apply for general Gutzwiller-correlated wave functions and reproduce
expressions used previously [9, 10] as special cases. We provide results for nickel in the face-
centered cubic (fcc) structure and for iron in its body-centered cubic (bcc) ground state. The
Gutzwiller DFT results for the lattice constant, the magnetic spin-only moment, and the bulk
modulus agree very well with experiments. Moreover, the quasi-particle bandstructure from
Gutzwiller DFT is in satisfactory agreement with data from Angle-Resolved Photo-Emission
Spectroscopy (ARPES). As found earlier [8–10], the Gutzwiller DFT overcomes the limitations
of DFT for the description of transition metals.
In Sect. 2 we recall the derivation of Density Functional Theory (DFT) as a variational approach
to the many-body problem and its mapping to an effective single-particle reference system
(Kohn-Sham scheme). In Sect. 3 we extend our derivation to many-particle reference systems.
We formulate the Gutzwiller density functional whose minimization leads to the Gutzwiller–
Kohn-Sham Hamiltonian. The theory is worked out in the limit of large coordination number,
Z → ∞, where explicit expressions for the Gutzwiller density functional are available. In
Sect. 4 we present results for fcc nickel (Z = 12) and for bcc iron (Z = 8). Summary and
conclusions, Sect. 5, close our presentation. Some technical details are deferred to the appendix.
This work is based on Refs. [12, 13]. Further on, excerpts are taken without explicit citations.
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2 Density Functional Theory

We start our presentation with a concise derivation of Density Functional Theory that can readily
be extended to the Gutzwiller Density Functional Theory.

2.1 Many-particle Hamiltonian and Ritz variational principle

The non-relativistic many-particle Hamiltonian for electrons with spin σ =↑, ↓ reads (~ ≡ 1)

Ĥ = Ĥband + Ĥint ,

Ĥband =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m
+ U(r)

)
Ψ̂σ(r) ,

Ĥint =
∑
σ,σ′

∫
dr

∫
dr′ Ψ̂ †σ(r)Ψ̂ †σ′(r

′)V (r− r′) Ψ̂σ′(r
′)Ψ̂σ(r) (1)

with

V (r− r′) =
1

2

e2

|r− r′|
. (2)

The electrons experience the periodic potential of the ions, U(r), and their mutual Coulomb
interaction, V (r − r′). The total number of electrons is N = N↑ + N↓. According to the Ritz
variational principle, the ground state of a Hamiltonian Ĥ can be obtained from the minimiza-
tion of the energy functional

E [{|Ψ〉}] = 〈Ψ |Ĥ|Ψ〉 (3)

in the subset of normalized states |Ψ〉 in the Hilbert space with N electrons, 〈Ψ |Ψ〉 = 1.

2.2 Levy’s constrained search

The minimization of the energy functional (3) is done in two steps, the constrained search [14],
Sect. 2.2.1, and the minimization of the density functional, Sect. 2.2.2. To this end, we consider
the subset of normalized states |Ψ (n)〉 with fixed electron densities nσ(r),

nσ(r) = 〈Ψ (n)|Ψ̂ †σ(r)Ψ̂σ(r)|Ψ (n)〉 . (4)

In the following we accept ‘physical’ densities only, i.e., those nσ(r) for which states |Ψ (n)〉 can
actually be found. For the subset of states |Ψ (n)〉 we define the electronic Hamiltonian

Ĥe = Ĥkin + V̂xc , (5)

Ĥkin =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m

)
Ψ̂σ(r) , (6)

V̂xc =
∑
σ,σ′

∫
dr

∫
dr′ V (r− r′)

[
Ψ̂ †σ(r)Ψ̂ †σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)

−Ψ̂ †σ(r)Ψ̂σ(r)nσ′(r′)− Ψ̂ †σ′(r
′)Ψ̂σ′(r

′)nσ(r) + nσ(r)nσ′(r′)
]
. (7)
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Here, we extracted the Hartree terms from the Coulomb interaction Hint in eq. (1) so that V̂xc

contains only the so-called exchange and correlation contributions. In the subset of normalized
states |Ψ (n)〉 we define the functional

F
[
{nσ(r)} ,

{
|Ψ (n)〉

}]
= 〈Ψ (n)|Ĥe|Ψ (n)〉 . (8)

For fixed densities nσ(r), the Hamiltonian Ĥe defines an electronic problem where the periodic
potential of the ions and the Hartree interaction are formally absent.

2.2.1 Constrained search

The formal task is to find the minimum of the energy functional F in (8) with respect to |Ψ (n)〉,

F̄ [{nσ(r)}] = Min{|Ψ (n)〉}F
[
{nσ(r)} ,

{
|Ψ (n)〉

}]
. (9)

Recall that the electron densities nσ(r) are fixed in this step. We denote the resulting optimal
many-particle state by |Ψ (n)

0 〉. Thus, we may write

F̄ [{nσ(r)}] = F
[
{nσ(r)} ,

{
|Ψ (n)

0 〉
}]

= 〈Ψ (n)
0 |Ĥe|Ψ (n)

0 〉 . (10)

For later use, we define the corresponding functionals for the kinetic energy

K [{nσ(r)}] = 〈Ψ (n)
0 |Ĥkin|Ψ (n)

0 〉 (11)

and the exchange-correlation energy

Exc [{nσ(r)}] = 〈Ψ (n)
0 |V̂xc|Ψ (n)

0 〉 (12)

so that
F̄ [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}] . (13)

2.2.2 Density functional, ground-state density, and ground-state energy

After the constrained search as a first step, we are led to the density functional that determines
the ground-state energy and densities (Hohenberg-Kohn theorem [1])

D [{nσ(r)}] = F̄ [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
= K [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}] + Exc [{nσ(r)}] (14)

with the ionic and Hartree energy contributions

U [{nσ(r)}] =
∑
σ

∫
dr U(r)nσ(r) ,

VHar [{nσ(r)}] =
∑
σ,σ′

∫
dr

∫
dr′ V (r− r′)nσ(r)nσ′(r′) . (15)

According to the Ritz variational principle, the ground-state energy E0 is found from the mini-
mization of this functional over the densities nσ(r),

E0 = Min{nσ(r)}D [{nσ(r)}] . (16)

The ground-state densities n0
σ(r) are those where the minimum of D [{nσ(r)}] is obtained.
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2.3 Single-particle reference system

We consider the subset of single-particle product states |Φ(n)〉 that are normalized to unity,
〈Φ(n)|Φ(n)〉 = 1. As before, the upper index indicates that they all lead to the same (physical)
single-particle densities nsp

σ (r),

nsp
σ (r) = 〈Φ(n)|Ψ̂ †σ(r)Ψ̂σ(r)|Φ(n)〉 . (17)

As our single-particle Hamiltonian we consider the kinetic-energy operator Ĥkin, see eq. (6).
For fixed single-particle densities nsp

σ (r) we define the single-particle kinetic-energy functional

Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
= 〈Φ(n)|Ĥkin|Φ(n)〉 . (18)

2.3.1 Constrained search

As in Sect. 2.2, we carry out a constrained search in the subset of states |Φ(n)〉. The task
is the minimization of the kinetic-energy functional Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
. We denote the

optimized single-particle product state by |Φ(n)
0 〉 so that we find the density functional for the

kinetic energy as

F̄sp [{nsp
σ (r)}] = 〈Φ(n)

0 |Ĥkin|Φ(n)
0 〉 ≡ Ksp [{nsp

σ (r)}] . (19)

2.3.2 Single-particle density functional

As the density functional Dsp [{nsp
σ (r)}] that corresponds to the single-particle problem we

define

Dsp [{nsp
σ (r)}] = Ksp [{nsp

σ (r)}] + U [{nsp
σ (r)}] + VHar [{nsp

σ (r)}] + Esp,xc [{nsp
σ (r)}] (20)

with the kinetic energy term from (19), the contributions from the external potential and the
Hartree terms U [{nsp

σ (r)}] and VHar [{nsp
σ (r)}] from eq. (15), and a single-particle exchange-

correlation potential Esp,xc [{nsp
σ (r)}] that we will specify later. The functional (20) defines our

single-particle reference system.

2.3.3 Noninteracting V -representability

In order to link the many-particle and single-particle approaches we make the assumption of
non-interacting V -representability [1]: For any given (physical) density nσ(r) we can find a
subset of normalized single-particle product states |Φ(n)〉 with N electrons such that

nsp
σ (r) = nσ(r) . (21)

Moreover, we demand that the density functionalsD [{nσ(r)}] (14) for the interacting electrons
and Dsp [{nσ(r)}] (20) for the single-particle problem agree with each other [15],

Dsp [{nσ(r)}] = D [{nσ(r)}] . (22)



8.6 Florian Gebhard

Then, the single-particle problem leads to the same ground-state density n0
σ(r) and ground-state

energy E0 as the interacting-particle Hamiltonian because the density variation is done with the
same density functional (Kohn-Sham theorem) [1].
The condition (22) is equivalent to

Ksp [{nσ(r)}] + Esp,xc [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}] (23)

because the interaction with the external potential and the Hartree term only depend on the
densities that are presumed equal for the interacting problem and the non-interacting reference
system, see eq. (21). Eq. (23) then leads to an exact expression for the single-particle exchange-
correlation energy

Esp,xc [{nσ(r)}] = K [{nσ(r)}]−Ksp [{nσ(r)}] + Exc [{nσ(r)}] . (24)

This is our defining equation for Esp,xc [{nσ(r)}] in eq. (20).

2.4 Kohn-Sham Hamiltonian

In the following we address the single-particle energy functional directly, i.e., the Ritz varia-
tional problem without a prior constrained search,

E [{nσ(r)} , {|Φ〉}] = 〈Φ|Ĥkin|Φ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + Esp,xc [{nσ(r)}] . (25)

For the extension to the Gutzwiller Density Functional Theory in Sect. 3, we expand the field
operators in a basis,

Ψ̂σ(r) =
∑
i

〈r|i, σ〉ĉi,σ , Ψ̂ †σ(r) =
∑
i

ĉ†i,σ〈i, σ|r〉 , (26)

where the index i represents a combination of site (or crystal momentum) index and an orbital
index. For a canonical basis we must have completeness and orthogonality,∑

i,σ

|i, σ〉〈i, σ| = 1̂ , 〈i, σ|j, σ′〉 = δi,jδσ,σ′ . (27)

When we insert (26) into (6), we obtain the operator for the kinetic energy in a general single-
particle basis,

Ĥkin =
∑
i,j,σ

Ti,j;σ ĉ
†
i,σ ĉj,σ , (28)

where the elements of the kinetic-energy matrix T̃σ are given by

Ti,j;σ =

∫
dr ξ∗i,σ(r)

(
−∆r

2m

)
ξj,σ(r) , (29)

with ξi,σ(r) = 〈r|i, σ〉.
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2.4.1 Energy functional

We introduce the single-particle density matrix ρ̃. Its elements in the general single-particle
basis read

ρ(i,σ),(j,σ) = 〈Φ|ĉ†j,σ ĉi,σ|Φ〉 ≡ ρi,j;σ . (30)

Then, the densities are given by

nσ(r) =
∑
i,j

ξ∗i,σ(r)ξj,σ(r)ρj,i;σ . (31)

Using these definitions, we can write the energy functional in the form

E [{nσ(r)} , ρ̃] =
∑
i,j

∑
σ

Ti,j;σρj,i;σ +U [{nσ(r)}] + VHar [{nσ(r)}] +Esp,xc [{nσ(r)}] . (32)

The fact that |Φ〉 are normalized single-particle product states is encoded in the matrix relation

ρ̃ · ρ̃ = ρ̃ . (33)

This is readily proven by using a unitary transformation between the operators ĉi,σ and the
single-particle operators b̂k,σ that generate |Φ〉, see appendix A.1.1.
When we minimize E [{nσ(r)} , ρ̃] with respect to ρ̃ we must take the condition (33) into ac-
count using a matrix Ω̃ of Lagrange multipliers Ωl,m;σ. Moreover, we use the Lagrange multi-

pliers κσ(r) to ensure eq. (31). Altogether we address GDFT ≡ GDFT

[
ρ̃, Ω̃, {nσ(r)} , {κσ(r)}

]
GDFT = E [{nσ(r)} , ρ̃]−

∑
l,m,σ

Ωl,m;σ

(∑
p

ρl,p;σρp,m;σ − ρl,m;σ

)
−
∑
σ

∫
dr κσ(r)

(
nσ(r)−

∑
i,j

ξ∗i,σ(r)ξj,σ(r)ρj,i;σ

)
. (34)

2.4.2 Minimization

When we minimize GDFT in eq. (34) with respect to nσ(r) we find

κσ(r) = U(r) + VHar(r) + vsp,xc,σ(r) , (35)

VHar(r) ≡
∑
σ′

∫
dr′ 2V (r− r′)n0

σ′(r′) , (36)

vsp,xc,σ(r) ≡ ∂Esp,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

=
∂
[
K
[
{nσ′(r′)}

]
−Ksp

[
{nσ′(r′)}

]
+ Exc

[
{nσ′(r′)}

]]
∂nσ(r)

∣∣∣∣∣∣
nσ(r)=n0

σ(r)

, (37)

where VHar(r) is the Hartree interaction and vsp,xc,σ(r) is the single-particle exchange-correla-
tion potential.
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The minimization with respect to ρ̃ is outlined in appendix A.1.2, see also Ref. [16]. It leads to
the Kohn-Sham single-particle Hamiltonian

ĤKS =
∑
i,j,σ

TKS
i,j;σ ĉ

†
i,σ ĉj,σ , (38)

where the elements of the Kohn-Sham Hamilton matrix T̃KS
σ are given by

TKS
i,j;σ =

∂E [{nσ(r)} , ρ̃]

∂ρj,i;σ
+

∫
dr κσ(r)ξ∗i,σ(r)ξj,σ(r) . (39)

Explicitly,

TKS
i,j;σ =

∫
dr ξ∗i,σ(r)hKS

σ (r)ξj,σ(r) , (40)

hKS
σ (r) ≡ −∆r

2m
+ V KS

σ (r) , (41)

V KS
σ (r) ≡ κσ(r) = U(r) + VHar(r) + vsp,xc,σ(r) . (42)

Here, we defined the ‘Kohn-Sham potential’ V KS
σ (r) that, in our derivation, is identical to the

Lagrange parameter κσ(r).
The remaining task is to find the basis in which the Kohn-Sham matrix T̃KS

σ is diagonal, for
a translationally invariant system, see appendix A.1.3. This gives the dispersion εn(k) of the
Kohn-Sham quasi-particles.

3 DFT for many-particle reference systems

The Kohn-Sham potential (37) cannot be calculated exactly because the functionals in eq. (24)
are not known. Therefore, assumptions must be made about the form of the single-particle
exchange-correlation potential, e.g., the Local Density Approximation [1]. Unfortunately, such
approximations are often not satisfactory, e.g., for transition metals. Consequently, more so-
phisticated many-electron approaches must be employed to improve the Kohn-Sham approach.

3.1 Hubbard Hamiltonian and Hubbard density functional
3.1.1 Multi-band Hubbard model

A better description of transition metals and their compounds can be achieved by supplementing
the single-particle reference system resulting from Ĥkin in Sect. 2.3 by a multi-band Hubbard
interaction. Then, our multi-band reference system follows from

ĤH = Ĥkin + V̂loc − V̂dc , (43)

where V̂loc describes local interactions between electrons in Wannier orbitals on the same site R.
The local single-particle operator V̂dc accounts for the double counting of their interactions in
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the Hubbard term V̂loc and in the single-particle exchange-correlation energy Esp,xc. We assume
that V̂loc and V̂dc do not depend on the densities nσ(r) explicitly.
For the local interaction we set

V̂loc =
∑
R

V̂loc(R) ,

V̂loc(R) =
1

2

∑
(c1,σ1),...,(c4,σ4)

U
(c1,σ1),(c2,σ2)
(c3,σ3),(c4,σ4) ĉ

†
R,c1,σ1

ĉ†R,c2,σ2 ĉR,c3,σ3 ĉR,c4,σ4 . (44)

Note that only electrons in the small subset of correlated orbitals (index c) experience the two-
particle interaction V̂loc: When there are two electrons in the Wannier orbitals φR,c3,σ3(r) and
φR,c4,σ4(r) centered around the lattice site R, they are scattered into the orbitals φR,c1,σ1(r)

and φR,c2,σ2(r), centered around the same lattice site R; for the definition of basis states, see
appendix A.1.3. Typically, we consider c = 3d for the transition metals and their compounds.
The interaction strengths are parameters of the theory; for a comprehensive symmetry analysis,
see Ref. [17]. Later, we shall employ the spherical approximation so that U ······ for d-electrons can
be expressed in terms of three Racah parameters A, B, and C. Fixing C/B makes it possible
to introduce an effective Hubbard parameter U and an effective Hund’s-rule coupling J , see
Sect. 3.4 and appendix A.2. Due to screening, the effective Hubbard interaction U is smaller
than its bare, atomic value. In general, U and J are chosen to obtain good agreement with
experiment, see Sect. 4.

3.1.2 Hubbard density functional

According to Levy’s constrained search, we must find the minimum of the functional

FH

[
{nσ(r)} ,

{
|Ψ (n)〉

}]
= 〈Ψ (n)|ĤH|Ψ (n)〉 (45)

in the subset of normalized states with given (physical) density nσ(r), see eq. (4). The minimum
of FH

[
{nσ(r)} ,

{
|Ψ (n)〉

}]
over the states |Ψ (n)〉 is the ground state |Ψ (n)

H,0〉 of the Hamiltonian
ĤH for fixed densities nσ(r). In analogy to Sect. 2.3, we define the Hubbard density functional

DH [{nσ(r)}] = KH [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
+Vloc [{nσ(r)}]− Vdc [{nσ(r)}] + EH,xc [{nσ(r)}] , (46)

where

KH [{nσ(r)}] = 〈Ψ (n)
H,0|Ĥkin|Ψ (n)

H,0〉 , Vloc/dc [{nσ(r)}] = 〈Ψ (n)
H,0|V̂loc/dc|Ψ (n)

H,0〉 , (47)

and EH,xc [{nσ(r)}] is the exchange-correlation energy for ĤH. As in Sect. 2.3, the Hubbard
density functional agrees with the exact density functional if we choose

EH,xc [{nσ(r)}] = K [{nσ(r)}]−KH [{nσ(r)}] + Exc [{nσ(r)}]
− (Vloc [{nσ(r)}]− Vdc [{nσ(r)}]) . (48)

Then, the Hubbard approach provides the exact ground-state densities and ground-state energy
of our full many-particle Hamiltonian (Hohenberg-Kohn–Hubbard theorem). Of course, our
derivation relies on the assumption of Hubbard V -representability of the densities nσ(r).
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3.1.3 Hubbard single-particle potential

When we directly apply Ritz’ principle, we have to minimize the energy functional

E [{nσ(r)} , {|Ψ〉}] = 〈Ψ |ĤH|Ψ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] . (49)

We include the constraints eq. (4) and the normalization condition using the Lagrange parame-
ters κσ(r) and E0 in the functional GH ≡ GH [{|Ψ〉} , {nσ(r)} , {κσ(r)} , E0]

GH = E [{nσ(r)} , {|Ψ〉}]−E0 (〈Ψ |Ψ〉 − 1)−
∑
σ

∫
dr κσ(r)

(
nσ(r)− 〈Ψ |Ψ̂ †σ(r)Ψ̂σ(r)|Ψ〉

)
.

(50)
As in Sect. 2.4, see eqs. (35) and (42), the variation of GH with respect to nσ(r) gives the
single-particle potential

V H
σ (r) ≡ U(r) + VHar(r) + vH,xc,σ(r) ,

vH,xc,σ(r) ≡ ∂EH,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

. (51)

The Hubbard-model approach is based on the idea that typical approximations for the exchange-
correlation energy, e.g., the local-density approximation, are better suited for the Hubbard
model than for the Kohn-Sham approach,

EH,xc [{nσ(r)}] ≈ ELDA,xc [{nσ(r)}] . (52)

Indeed, as seen from eq. (48), in the Hubbard exchange-correlation energy EH,xc the exchange-
correlation contributions in the exact Exc are reduced by the Hubbard term Vloc [{nσ(r)}] −
Vdc [{nσ(r)}], reflecting a more elaborate treatment of local correlations.
Unfortunately, the minimization of (49) with respect to |Ψ〉 constitutes an unsolvable many-
particle problem. Indeed, the ground state |Ψ0〉 is the solution of the many-particle Schrödinger
equation with energy E0, (

Ĥ0 + V̂loc − V̂dc

)
|Ψ0〉 = E0|Ψ0〉 (53)

with the single-particle Hamiltonian

Ĥ0 =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
Ψ̂σ(r) . (54)

The ‘Kohn-Sham–Hubbard equations’ (53) can be used as starting point for further approxi-
mations, for example, the Dynamical Mean-Field Theory (DMFT). In the following we will
address the functional in eq. (49) directly.

3.2 Gutzwiller density functional

In the widely used LDA+U approach [5], the functional in eq. (49) is evaluated and (approxi-
mately) minimized by means of single-particle product wave functions. However, this approach
treats correlations only on a mean-field level. In the more sophisticated Gutzwiller approach,
we consider the functional in eq. (49) in the subset of Gutzwiller-correlated variational many-
particle states.
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3.2.1 Gutzwiller variational ground state

In order to formulate the Gutzwiller variational ground state [4,8], we consider the atomic states
|Γ 〉R that are built from the correlated orbitals. The local Hamiltonians take the form

V̂loc/dc(R) =
∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)|Γ 〉RR〈Γ ′| =

∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)m̂R;Γ,Γ ′ , (55)

where |Γ 〉R contains |ΓR| electrons. Here, we introduced

E
loc/dc
Γ,Γ ′ (R) = R〈Γ |V̂loc/dc(R)|Γ ′〉R (56)

and the local many-particle operators m̂R;Γ,Γ ′ = |Γ 〉RR〈Γ ′|.
The Gutzwiller correlator and the Gutzwiller variational states are defined as

P̂G =
∏
R

∑
Γ,Γ ′

λΓ,Γ ′(R)m̂R;Γ,Γ ′ , |ΨG〉 = P̂G|Φ〉 . (57)

Here, |Φ〉 is a single-particle product state, and λΓ,Γ ′(R) defines the matrix λ̃(R) of, in general,
complex variational parameters.

3.2.2 Gutzwiller functionals

We evaluate the energy functional (49) in the restricted subset of Gutzwiller variational states,

E [{nσ(r)} , {|ΨG〉}] =
∑

R,b,R′,b′,σ

T(R,b),(R′,b′);σρ
G
(R′,b′),(R,b);σ + V G

loc − V G
dc

+U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] ,

V G
loc/dc =

∑
R

∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)mG

R;Γ,Γ ′ . (58)

Note that we work with the orbital Wannier basis, see appendix A.1.3,

T(R,b),(R′,b′);σ =

∫
dr φ∗R,b,σ(r)

(
−∆r

2m

)
φR′,b′,σ(r) . (59)

The elements of the Gutzwiller-correlated single-particle density matrix are

ρG
(R′,b′),(R,b);σ =

〈ΨG|ĉ†R,b,σ ĉR′,b′,σ|ΨG〉
〈ΨG|ΨG〉

=
〈Φ|P̂ †Gĉ

†
R,b,σ ĉR′,b′,σP̂G|Φ〉
〈Φ|P̂ †GP̂G|Φ〉

, (60)

and the densities become

nσ(r) =
∑

R,b,R′,b′

φ∗R,b,σ(r)φR′,b′,σ(r)ρG
(R′,b′),(R,b);σ . (61)

The expectation values for the atomic operators are given by

mG
R;Γ,Γ ′ =

〈ΨG|m̂R;Γ,Γ ′|ΨG〉
〈ΨG|ΨG〉

=
〈Φ|P̂ †Gm̂R;Γ,Γ ′P̂G|Φ〉
〈Φ|P̂ †GP̂G|Φ〉

. (62)
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The diagrammatic evaluation of ρG
(R′,b′),(R,b);σ and of mG

R;Γ,Γ ′ shows that these quantities are
functionals of the non-interacting single-particle density matrices ρ̃, see eq. (30), and of the
variational parameters λΓ,Γ ′(R). Moreover, it turns out that the local, non-interacting single-
particle density matrix C̃(R) with the elements

Cb,b′;σ(R) ≡ ρ(R,b),(R,b′);σ (63)

plays a prominent role in the Gutzwiller energy functional, in particular, for infinite lattice
coordination number. Therefore, we may write

E [{nσ(r)} , {|ΨG〉}] ≡ EG
[
ρ̃,
{
λ̃(R)

}
, {nσ(r)} ,

{
C̃(R)

}]
. (64)

In the Lagrange functional we shall impose the relation (63) with the help of the Hermitian
Lagrange parameter matrix η̃ with entries η(R,b),(R,b′);σ. Lastly, for the analytical evaluation of
eq. (64) it is helpful to impose a set of (real-valued) local constraints (l = 1, 2, . . . , Ncon)

gl,R

[
λ̃(R), C̃(R)

]
= 0 , (65)

which we implement with real Lagrange parameters Λl(R); explicit expressions are given in
eqs. (74) and (75).
In the following, we abbreviate i = (R, b) and j = (R′, b′). Consequently, in analogy with
Sect. 2.4, we address

GG
DFT ≡ GG

DFT

[
ρ̃, {nσ(r)} ,

{
C̃(R)

}
,
{
λ̃(R)

}
Ω̃, {κσ(r)} , {η̃(R)} , {Λl(R)}

]
(66)

as our Lagrange functional,

GG
DFT = EG

[
ρ̃,
{
λ̃(R)

}
, {nσ(r)} ,

{
C̃(R)

}]
−
∑
l,m,σ

Ωl,m;σ (ρ̃ · ρ̃− ρ̃)m,l;σ

−
∑
σ

∫
dr κσ(r)

(
nσ(r)−

∑
i,j

φ∗i,σ(r)φj,σ(r)ρG
j,i;σ

)
(67)

+
∑
l,R

Λl(R)gl,R −
∑

R,b,b′,σ

ηb,b′;σ(R)
(
Cb′,b;σ(R)− ρ(R,b′),(R,b);σ

)
,

cf. eq. (34). Here, we took the condition (61) into account using Lagrange parameters κσ(r) be-
cause the external potential, the Hartree term and the exchange-correlation potential in eq. (58)
depend on the densities.

3.2.3 Minimization of the Gutzwiller energy functional

The functional GG
DFT in eq. (67) has to be minimized with respect to nσ(r), C̃(R), λ̃(R), and

ρ̃. The variation with respect to the Lagrange parameters κσ(r), η̃(R), Λl(R), and Ω̃ gives the
constraints (61), (63), (65), and (33), respectively.
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1. As in the derivation of the exact Schrödinger equation (53), the variation of GG
DFT with

respect to nσ(r) generates the single-particle potential,

κσ(r) = V H
σ (r) , (68)

see eqs. (42) and (51).

2. The minimization with respect to C̃(R) gives

ηb,b′;σ(R) =
∂EG

∂Cb′,b;σ(R)
+
∑
l

Λl(R)
∂gl,R

∂Cb′,b;σ(R)

+
∑
i,j,σ′

∫
dr V H

σ′ (r)φ∗i,σ′(r)φj,σ′(r)
∂ρG

j,i;σ′

∂Cb′,b;σ(R)
. (69)

3. The minimization with respect to the Gutzwiller correlation parameters λ̃(R) results in

0 =
∂EG

∂λΓ,Γ ′(R)
+
∑
l,m,σ

∫
dr V H

σ (r)φ∗l,σ(r)φm,σ(r)
∂ρG

m,l,σ

∂λΓ,Γ ′(R)

+
∑
l

Λl(R)
∂gl,R

∂λΓ,Γ ′(R)

=
∑
l,m,σ

h0
l,m;σ

∂ρG
m,l,σ

∂λΓ,Γ ′(R)
+
∂
(
V G

loc − V G
dc

)
∂λΓ,Γ ′(R)

+
∑
l

Λl(R)
∂gl,R

∂λΓ,Γ ′(R)
, (70)

h0
l,m;σ ≡

∫
dr φ∗l,σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
φm,σ(r) (71)

for all λΓ,Γ ′(R). Note that, in the case of complex Gutzwiller parameters, we also have to
minimize with respect to (λΓ,Γ ′(R))∗. Using these equations we calculate the Lagrange
parameters Λl(R) that are needed in eq. (69).

4. The minimization of GG
DFT with respect to ρ̃ generates the Landau–Gutzwiller quasi-

particle Hamiltonian, see appendix A.1.2,

ĤG
qp =

∑
i,j,σ

hG
i,j;σ ĉ

†
i,σ ĉj,σ (72)

with the entries

hG
i,j;σ =

∂EG

∂ρj,i;σ
+
∑
l,m,σ′

∫
dr V H

σ′ (r)φ∗l,σ′(r)φm,σ′(r)
∂ρG

m,l,σ′

∂ρj,i;σ
+
∑

R,b,b′,σ′

ηb,b′;σ′(R)
∂ρ(R,b′),(R,b);σ′

∂ρj,i;σ

=
∑
l,m,σ′

h0
l,m;σ′

∂ρG
m,l,σ′

∂ρj,i;σ
+
∂
(
V G

loc − V G
dc

)
∂ρj,i;σ

+
∑
R,b,b′

δj,(R,b′)δi,(R,b)ηb,b′;σ(R), (73)

where we used eqs. (58) and (71).

The single-particle state |Φ〉 is the ground state of the Hamiltonian (72) from which the
single-particle density matrix ρ̃ follows.
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The minimization problem outlined in steps (i)–(iv) requires the evaluation of the energy EG

in eq. (58). In particular, the correlated single-particle density matrix ρ̃G, eq. (60), must be
determined.
All equations derived in this section are completely general. They can, at least in principle,
be evaluated by means of a diagrammatic expansion method [18–21]. The leading order of the
expansion corresponds to an approximation-free evaluation of expectation values for Gutzwiller
wave functions in the limit of large lattice coordination number. This limit, also known as
“Gutzwiller Approximation”, will be studied in the rest of this chapter.

3.3 Gutzwiller density functional for infinite lattice coordination number

For Z → ∞, the Gutzwiller-correlated single-particle density matrix and the Gutzwiller prob-
abilities for the local occupancies can be calculated explicitly without further approximations;
for a formal proof, see Ref. [21]. In this section we make no symmetry assumptions (transla-
tional invariance, crystal symmetries). Note, however, that the equations do not cover the case
of spin-orbit coupling; for the latter, see Refs. [22, 23].

3.3.1 Local constraints

As shown in Refs. [8, 24] it is convenient for the evaluation of Gutzwiller wave functions to
impose the following (local) constraints∑

Γ,Γ1,Γ2

λ∗Γ,Γ1
(R)λΓ,Γ2(R)〈m̂R;Γ1,Γ2〉Φ = 1 (74)

and ∑
Γ,Γ1,Γ2

λ∗Γ,Γ1
(R)λΓ,Γ2(R)〈m̂R;Γ1,Γ2 ĉ

†
R,b,σ ĉR,b′,σ〉Φ = 〈ĉ†R,b,σ ĉR,b′,σ〉Φ , (75)

where we abbreviated 〈Â〉Φ ≡ 〈Φ|Â|Φ〉. Note that, for complex constraints, the index l in (65)
labels real and imaginary parts separately.

3.3.2 Atomic occupancies

In the limit of infinite lattice coordination number, the interaction and double-counting energy
can be expressed solely in terms of the local variational parameters λ̃(R) and the local density
matrix C̃(R) of the correlated bands in |Φ〉,

V G
loc/dc =

∑
R

∑
Γ1,...,Γ4

λ∗Γ2,Γ1
(R)E

loc/dc
Γ2,Γ3

(R)λΓ3,Γ4(R)〈m̂R;Γ1,Γ4〉Φ . (76)

The remaining expectation values 〈m̂R;Γ1,Γ4〉Φ are evaluated using Wick’s theorem. Explicit
expressions are given in Refs. [8, 25].
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3.3.3 Correlated single-particle density matrix

The local part of the correlated single-particle density matrix is given by

ρG
(R,b′),(R,b);σ =

∑
Γ1,...,Γ4

λ∗Γ2,Γ1
(R)λΓ3,Γ4(R)〈m̂R;Γ1,Γ2 ĉ

†
R,b,σ ĉR,b′,σm̂R;Γ3,Γ4〉Φ ≡ CG

b′,b;σ(R). (77)

It can be evaluated using Wick’s theorem. As can be seen from eq. (77), it is a function of the
variational parameters λΓ,Γ ′(R) and of the local non-interacting single-particle density matrix
C̃(R).
For R 6= R′, we have for the correlated single-particle density matrix

ρG
(R′,b′),(R,b);σ =

∑
a,a′

qa,σb,σ (R)
(
qa

′,σ
b′,σ (R′)

)∗
ρ(R′,a′),(R,a);σ (78)

with the orbital-dependent renormalization factors qa,σb,σ (R) for the electron transfer between
different sites. Explicit expressions in terms of the variational parameters λ̃(R) and of the local
non-interacting single-particle density matrix C̃(R) are given in Refs. [8, 25].

3.3.4 Implementation for translational invariant systems

For a system that is invariant under translation by a lattice vector and contains only one atom per
unit cell, all local quantities become independent of the site index, e.g., λΓ,Γ ′(R) ≡ λΓ,Γ ′ for
the Gutzwiller variational parameters. Since k from the first Brillouin zone is a good quantum
number, we work with the (orbital) Bloch basis, see appendix A.1.3.
The minimization of the energy functional with respect to the single-particle density matrix
leads to the Gutzwiller–Kohn-Sham Hamiltonian. In the orbital Bloch basis φk,b,σ(r), see ap-
pendix A.1.3, the corresponding quasi-particle Hamiltonian reads,

ĤG
qp =

∑
k,b,b′,σ

hG
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ , (79)

see eq. (72). The Landau-Gutzwiller quasi-particle dispersion εG
n,σ(k) follows from the diago-

nalization of hG
b,b′;σ(k). For explicit expressions for hG

b,b′;σ(k) and the actual numerical imple-
mentation within QUANTUMESPRESSO, see Refs. [12, 13].

3.4 Local Hamiltonian and double counting for transition metals

For a Gutzwiller DFT calculation we need to specify the Coulomb parameters in the local
Hamiltonian and the form of the double-counting operator in eqs. (43) and (44).

3.4.1 Cubic symmetry and spherical approximation

In many theoretical studies one uses a local Hamiltonian with only density-density interactions,

V̂ dens
loc =

1

2

∑
c,σ

U(c, c)n̂c,σn̂c,σ̄ +
1

2

∑
c(6=)c′

∑
σ,σ′

Ũσ,σ′(c, c′)n̂c,σn̂c′,σ′ . (80)
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Here, we introduced ↑̄ =↓ (↓̄ =↑) and Ũσ,σ′(c, c′) = U(c, c′)− δσ,σ′J(c, c′), where U(c, c′) and
J(c, c′) are the local Hubbard and Hund’s-rule exchange interactions. An additional and quite
common approximation is the use of orbital-independent Coulomb parameters,

U(c, c) ≡ U , and U(c, c′) ≡ U ′, J(c, c′) ≡ J for c 6= c′. (81)

For a system of five correlated 3d orbitals in a cubic environment as in nickel and iron, however,
the Hamiltonian (80) is incomplete [26]. The full Hamiltonian reads

V̂ full
loc = V̂ dens

loc + V̂ n.dens.
loc , (82)

where

V̂ n.dens.
loc =

1

2

∑
c( 6=)c′

J(c, c′)
(
ĉ†c,↑ĉ

†
c,↓ĉc′,↓ĉc′,↑ + h.c.

)
+

1

2

∑
c(6=)c′;σ

J(c, c′)ĉ†c,σ ĉ
†
c′,σ̄ ĉc,σ̄ ĉc′,σ

+

[∑
t;σ,σ′

(T (t)− δσ,σ′A(t))n̂t,σ ĉ
†
u,σ′ ĉv,σ′

+
∑
t,σ

A(t)
(
ĉ†t,σ ĉ

†
t,σ̄ ĉu,σ̄ ĉv,σ + ĉ†t,σ ĉ

†
u,σ̄ ĉt,σ̄ ĉv,σ

)
+

∑
t( 6=)t′(6=)t′′

∑
e,σ,σ′

S(t, t′; t′′, e)ĉ†t,σ ĉ
†
t′,σ′ ĉt′′,σ′ ĉe,σ + h.c.

]
. (83)

Here, t = ζ, η, ξ and e = u, v are indices for the three t2g orbitals with symmetries ζ = xy,
η = xz, and ξ = yz, and the two eg orbitals with symmetries u = 3z2 − r2 and v = x2 −
y2, respectively. The parameters A(t), T (t), S(t, t′; t′′, e) in eq. (83) are of the same order
of magnitude as the exchange interactions J(c, c′) and, hence, there is no a-priori reason to
neglect V n.dens.

loc . Of all the parameters U(c, c′), J(c, c′), A(t), T (t), S(t, t′; t′′, e) only ten are
independent in cubic symmetry, see appendix A.2 and Ref. [17].
When we assume that all 3d-orbitals have the same radial wave-function (‘spherical approxi-
mation’), all parameters are determined by, e.g., the three Racah parameters A,B,C, see ap-
pendix A.2. For comparison with other work, we introduce the average Coulomb interaction
between electrons in the same 3d-orbitals, U =

∑
c U(c, c)/5 = A + 4B + 3C, the average

Coulomb interaction between electrons in different orbitals, U ′ =
∑

c<c′ U(c, c′)/10 = A −
B +C, and the average Hund’s-rule exchange interaction, J =

∑
c<c′ J(c, c′)/10 = 5B/2 +C

that are related by the symmetry relation U ′ = U − 2J , see appendix A.2. Due to this symme-
try relation, the three values of U , U ′, and J do not determine the Racah parameters A,B,C
uniquely. Therefore, we make use of the relation C/B = 4 which is a reasonable assumption
for metallic nickel [8, 26]. In this way, the three Racah parameters and, consequently, all pa-
rameters in V̂ full

loc are functions of U and J , A = U − 32J/13, B = 2J/13, C = 8J/13. This
permits a meaningful comparison of our results for all local Hamiltonians.

3.4.2 Double counting corrections

There exists no systematic (let alone rigorous) derivation of the double-counting corrections in
eq. (43). A widely used form for this operator has first been introduced in the context of the
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LDA+U method. Its expectation value is given by

V G
dc =

U

2
n̄(n̄− 1)− J

2

∑
σ

n̄σ(1− n̄σ) , (84)

where n̄σ ≡
∑Nc

c=1C
G
c,c;σ, n̄ ≡ n̄↑ + n̄↓, and Nc is the number of correlated orbitals (Nc = 5 for

nickel). Moreover, U = (U + 4U ′)/5 and J = U − U ′ + J . Here,

CG
c,c;σ =

〈ΨG|ĉ+
R,c,σ ĉR,c,σ|ΨG〉
〈ΨG|ΨG〉

= 〈Φ|ĉ+
R,c,σ ĉR,c,σ|Φ〉 (85)

is the σ-electron density for the correlated 3d orbital c in the Gutzwiller wavefunction. Note
that the second equality only holds in the limit of infinite dimensions for our eg-t2g orbital
structure [12].

3.4.3 Size of optimal atomic parameters

Before we proceed, we briefly comment on our optimal Coulomb parameters for nickel and
iron because they are substantially larger than the parameters used in other studies [27–31].
For example, for iron the values U = 2 eV . . . 3 eV and J = 0.8 eV . . . 1.0 eV are used, e.g., to
describe the high-temperature regime with the transition from fcc iron to bcc iron and the Curie
transition from non-magnetic to magnetic bcc iron, while more recent LDA+DMFT studies
employ larger values, Ū = 4.3 eV, J̃ = 1.0 eV [32].
First of all, we note that the large spread of values of (U, J) in the literature is due to the strong
sensitivity of these parameters to the energy window used for projecting, or downfolding, the
full electronic structure to an effective many-body model [33]. It is well known that the bare
Hubbard parameters U are of the order of 20 eV, or larger [3]. They apply for instantaneous
charge excitations of an isolated atom, which are strongly screened in a solid. In Fe, for ex-
ample, the screening reduces U to ∼ 3 eV for d-only models [34, 35]. Our self-consistent DFT
method is based on a projective technique to construct Wannier functions. In the present cal-
culations, we chose a large energy window, which ensures a very good localization of the 3d

orbitals, and a minimal dependence of the basis set on atomic positions. This large energy win-
dow translates into larger values of U, J [36]. Other calculations can typically afford to retain
fewer bands.
Second, we note that the Hubbard-U in our Gutzwiller treatment parameterizes the interac-
tion of two electrons in the same orbital, see appendix A.2. In other approaches, this quantity
describes some orbital average. For example, Pourovskii et al. [32] use the Slater-Condon pa-
rameter F (0) = Ū , where Ū = (U + 4U ′)/5, and U ′ = A−B+C = U − 2J is the inter-orbital
Coulomb repulsion. Naturally, the intra-orbital U is larger than an average over intra-orbital
and inter-orbital Coulomb repulsions. Likewise, we work with the average Hund’s-rule coupling
J = 5B/2+C, see appendix A.2, whereas J̃ ≡ (F (2) +F (4))/14 = 7B/2+7C/5 = 7J/5 [32].
Therefore, F (0) = 4.3 eV and J̃ = 1.0 eV correspond to J = 0.71 eV and U = Ū + 8J̃/7 =

5.4 eV with J/U = 0.13. We note in passing that we work with C/B = 4 whereas others use
F (2)/F (4) = 8/5 which corresponds to C/B = 175/47 ≈ 3.7 [37].
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Lastly, in our Gutzwiller calculations, we use parameters such as U and J to ‘match’ selected
experimental quantities. In this way, we compensate approximations in the model setup, e.g.,
the neglect of non-local correlations in Hubbard-type models, and in the model analysis, e.g.,
the limit of infinite dimensions or an approximate variational ground state. For example, in
Gutzwiller calculations, the optimal Coulomb parameters must be chosen somewhat smaller
when the full atomic interaction is replaced by density-density interactions only [35]. Similarly,
larger U -values are found to be optimal when the impurity solver in Quantum-Monte-Carlo is
rotationally invariant [27]. Our substantial Hubbard interaction leads to noticeable bandwidth
renormalizations and an increase of the quasi-particle masses at the Fermi energy, as seen in
experiment [38, 39].

4 Results for transition metals

In this section we compile recent results for nickel and iron as obtained from the Gutzwiller
DFT [12, 13].

4.1 Nickel

As a variational approach, the Gutzwiller DFT is expected to be most suitable for the calcula-
tion of ground-state properties such as the lattice constant, the magnetic moment, or the Fermi
surface of a Fermi liquid. Although more speculative than the ground-state calculations, it is
also common to interpret the eigenvalues of the Gutzwiller–Kohn-Sham Hamiltonian εG

n,σ(k) as
the dispersion of the single-particle excitations [40].

4.1.1 Lattice constant, magnetic moment, and bulk modulus of nickel

In Fig. 1, we show the lattice constant and the magnetic moment as a function of U (1 eV ≤
U ≤ 14 eV) for four different values of J/U (J/U = 0, 0.05, 0.075, 0.10). As is well known,
the DFT-LDA underestimates the lattice constant, aLDA

0 = 6.47 aB is considerably smaller
than the experimental value of a0 = 6.66 aB where aB = 0.529177 Å is the Bohr radius.
Fig. 1 shows that the Hubbard interaction U increases the lattice constant whereby the Hund’s-
rule exchange J diminishes the slope. Apparently, a good agreement with the experimental
lattice constant requires substantial Hubbard interactions, U > 10 eV. The increase of the
lattice parameter as a function of the Hubbard interaction is readily understood because the 3d

bandwidth is reduced by electronic correlations so that the 3d electrons contribute less to the
metallic binding.
Fig. 1 shows the well-known fact that DFT-LDA reproduces the experimental value for the spin-
only magnetic moment mso very well, mLDA

so = 0.58µB vs. mexp
so = 0.55µB. However, when

the DFT-LDA calculation is performed for the experimental value of the lattice constant, the
magnetic moment is grossly overestimated. As seen in Fig. 1, the Gutzwiller DFT allows us
to reconcile the experimental findings both for the lattice constant and the magnetic moment if
we work in the parameter range 11 eV < U < 14 eV and 0.05 < J/U < 0.07. Note that a
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Fig. 1: Lattice constant (left) and magnetic moment (right) of nickel as a function of U , for four
different values of J/U ; dashed horizontal lines: experimental values.

‘fine-tuning’ of parameters is not required to obtain a reasonable agreement between theory and
experiment for the lattice constant and spin-only magnetic moment.
For nickel, detailed information about the quasi-particle bands is available. The quasi-particle
dispersion at various high-symmetry points in the Brillouin zone is more sensitive to the precise
values of U and J . As we shall show below in more detail, we obtain a satisfactory agreement
with ARPES data for the choice (Uopt = 13 eV, Jopt = 0.9 eV) with an uncertainty of±1 in the
last digit. For our optimal values we show in Fig. 2 the ground-state energy per particleE(a)/N

as a function of the fcc lattice constant a together with a second-order polynomial fit. The
minimum is obtained at a0 = 6.63aB, in good agreement with the experimental value aexp

0 =

6.66aB. For the magnetic spin-only moment we obtain mso = 0.52µB, in good agreement with
the experimental value mexp

so = 0.55µB.
From the curvature of E(a)/N at a = a0 we can extract the bulk modulus. The bulk modulus
at zero temperature is defined as the second-derivative of the ground-state energy with respect
to the volume,

K = V0
d2E(V )

dV 2

∣∣∣∣
V=V0

. (86)

This implies the Taylor expansion E(V ) = E(V0) + (KV0/2)(V/V0− 1)2 + . . . for the ground-
state energy as a function of the volume V = a3 (Birch-Murnaghan fit). For the ground-state
energy per particle we can thus write E(a)/N = E(a0)/N + e2(a/aB − a0/aB)2 + . . . with

e2 =
9

8
Ka3

B(a0/aB) , (87)

where we took into account that the fcc unit cell hosts four atoms, V0 = Na3
0/4. The fit leads

to K = 169 GPa, in good agreement with the experimental value, K = 182 GPa [41]. It is
a well-known fact that the DFT-LDA overestimates the bulk modulus of nickel. Indeed, DFT-
LDA gives KLDA = 245 GPa.



8.20 Florian Gebhard

6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67
lattice constant / Bohr

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

en
er

gy
 / 

eV

Fig. 2: Ground-state energy per particle E0(a)/N relative to its value at a = 6.63aB as a func-
tion of the fcc lattice parameter a/aB in units of the Bohr radius aB for (Uopt = 13 eV, Jopt =
0.9 eV). Full line: second-order polynomial fit.

4.1.2 Quasi-particle bands of nickel

In Fig. 3 we show the quasi-particle band structure of fcc nickel for (Uopt = 13 eV, Jopt =

0.9 eV). The most prominent effect of the Gutzwiller correlator is the reduction of the 3d

bandwidth. From a paramagnetic DFT-LDA calculation one can deduce W LDA = 4.5 eV [42–
44], whereas we find W = 3.3 eV, in agreement with experiment.
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Fig. 3: Quasi-particle band structure of fcc nickel along high-symmetry lines in the first Bril-
louin zone for (Uopt = 13 eV, Jopt = 0.9 eV). Left: majority spin; Right: minority spin. The
Fermi energy is at EG

F = 0.
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Symmetry Experiment Gutzwiller-DFT
〈Γ1〉 8.90± 0.30 8.95[0.08]
〈Γ25′〉 1.30± 0.06 1.51[0.65]
〈Γ12〉 0.48± 0.08 0.73[0.15]
〈X1〉 3.30± 0.20 3.37[0.27]
〈X3〉 2.63± 0.10 2.87[0.68]
X2↑ 0.21± 0.03 0.26
X2↓ 0.04± 0.03 0.14
X5↑ 0.15± 0.03 0.32

∆eg(X2) 0.17± 0.05 0.12
∆t2g(X5) 0.33± 0.04 0.60
〈L1〉 3.66± 0.10 3.49[0.61]
〈L3〉 1.43± 0.07 1.58[0.38]
L3↑ 0.18± 0.03 0.37
〈L2′〉 1.00± 0.20 0.14[0.06]
〈Λ3;1/2〉 0.50[0.21± 0.02] 0.64[0.30]

Table 1: Quasi-particle band energies for fcc nickel with respect to the Fermi energy in eV at
various high-symmetry points (counted positive for occupied states). 〈. . .〉 indicates the spin
average, error bars in the experiments without spin resolution are given as ±. Theoretical
data show the spin average and the exchange splittings in square brackets. Λ3;1/2 denotes the
point half-way on the Λ-line that links the points Γ and L. The first column gives experimental
data compiled in [8], the second column gives the result from Gutzwiller DFT at (Uopt =
13 eV, Jopt = 0.9 eV).

A more detailed comparison of the quasi-particle band structure with experiment is given in ta-
ble 1. The overall agreement between experiment and theory is quite satisfactory. In particular,
only one hole ellipsoid is found at the X-point, in agreement with experiment and in contrast to
the DFT-LDA result [8].

We comment on two noticeable discrepancies between theory and experiment. First, the energy
of the band L2′ at the L-point deviates by a factor of five. This is an artifact that occurs already
at the DFT-LDA level and is not cured by the Gutzwiller approach. Since the level has pure
3p character around the L point, the origin of the discrepancy is related to the uncertainties in
the partial charge densities n3d, n3p,3s in the 3d and 3p/3s bands. Second, the Gutzwiller DFT
prediction for the exchange splitting ∆t2g(X5) of the t2g bands at the X-point is a factor of two
larger than in experiment. This deviation is related to the fact that, quite generally, all bands
are slightly too low in energy. This can be cured by decreasing U and increasing J but this
deteriorates the values for the lattice constant and the magnetic moment. We suspect that the
deviations are partly due to the use of a heuristic double-counting correction and the neglect
of the spin-orbit coupling. Moreover, we expect the results for the band structure to improve
when we replace the “poor-man’s Wannier” orbitals for the correlated 3d electrons by more
sophisticated localized wave functions.
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4.2 Iron

The ground state of iron poses a difficult problem because the local-density approximation to
density functional theory predicts a face-centered cubic (fcc) or a hexagonal closed-packed
(hcp) ground state [45, 46]. Gutzwiller-DFT finds the correct (magnetic) body-centered cubic
crystal structure without resorting to generalized gradient corrections (GGA) [47, 48].

4.2.1 Lattice constant, magnetic moment, and bulk modulus of iron

When we use (U = 9 eV, J = 0.54 eV) for iron, we find the lattice parameter a = 5.39aB =

2.85 Å and the magnetic moment m = 2.24µB that agree very well with the experimental
values, aexp = 5.42aB = 2.87 Å [49] and µexp = 2.22µB [50]. In Fig. 4 we show the ground-
state energy per atom, e(v) = E(V )/N , as a function of the unit-cell volume v = V/N = a3/2

in the vicinity of the optimal value v0 = a3/2 = 78.3a3
B = 11.6 Å

3
.

As is seen, the magnetic bcc iron phase is energetically favorable over the non-magnetic hcp
phase, as found experimentally. Within the Gutzwiller DFT this effect is seen to be the con-
sequence of electronic correlations, not of generalized gradient corrections (GGA) to the LDA
functional. Moreover, Fig. 4 suggests that a transition from magnetic bcc iron to non-magnetic
hcp iron is possible upon reducing the lattice volume. Such a pressure-induced first-order phase
transition is indeed observed experimentally at pexp

c = 10 . . . 15 GPa [51] at room temperature.
In Gutzwiller-DFT the critical pressure is higher, pc ≈ 40 GPa, where entropy effects from
magnons and phonons are not included.
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Fig. 4: Energy per atom e(v) in units of eV as a function of the unit-cell volume v in units of
a3

B for non-magnetic and ferromagnetic bcc iron and non-magnetic hcp iron for U = 9 eV and
J = 0.54 eV, and ambient pressure. The energies are shifted by the same constant amount.
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Fig. 5: Comparison between DFT(GGA) bands (black, dashed lines) and bands from
Gutzwiller-DFT (red, full lines) for (U = 9.0 eV, J = 0.54 eV) for ferromagnetic bcc iron.
For clarity, we do not discriminate between majority and minority spin bands. The Fermi en-
ergy is at EF = 0 (dashed horizontal line).

In Gutzwiller-DFT we find a bulk modulus of B = 165 GPa, in very good agreement with the
experimental value, Bexp = (170 ± 4) GPa [52, 49]. The LDA+Gutzwiller value substantially
improves the DFT(LDA) value of BLDA = 227 GPa, it is slightly better than the values from
DFT(GGA) studies,BGGA = (190±10) GPa [49], and agrees with the value obtained in DMFT
calculations, BDMFT = 168 GPa [32].

4.2.2 Quasi-particle bands of ferromagnetic bcc iron

We show the bandstructure for ferromagnetic bcc iron from Gutzwiller-DFT for (U = 9.0 eV,
J = 0.54 eV) in comparison with those from (scalar relativistic) DFT(GGA) calculations in
Fig. 5. The DFT(GGA) provides the same equilibrium lattice parameter as used in Gutzwiller-
DFT, a = 5.39aB. The correlations in the Gutzwiller approach lead to an additional bandwidth
reduction of the d bands across the Brillouin zone. The uncorrelated, 4sp-type parts of the
quasi-particle bands deep below the Fermi energy do not differ much, e.g., the lowest 4sp-type
majority bands at the Γ point, about 9 eV below the Fermi energy.
The bandwidth reduction in iron is not as strong as in nickel. Nevertheless, for selected symme-
try points, the discrepancies between the quasi-particle bands from DFT and Gutzwiller-DFT
are quite large, see Fig. 5. For example, at the H-point in the Brillouin zone we find a bandwidth
reduction for the majority band by 36%, from HLDA

low,↑ = 5.38 eV down to HG-DFT
low,↑ = 3.94 eV,

in good agreement with experiment, Hlow,↑ = 3.8 eV [53]. Likewise, at the N-point in the
Brillouin zone there is a majority spin band at Nlow,↑ = 4.5 eV below the Fermi energy in ex-
periment [53], in comparison with NLDA

low,↑ = 5.47 eV in DFT(LDA) and NG-DFT
low,↑ = 3.90 eV in

Gutzwiller-DFT. A comparison of the Landau-Gutzwiller quasi-particle bands and experimental
ARPES data close to the Fermi energy can be found in Ref. [13].
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5 Summary and outlook
In this work, we presented a detailed derivation of the Gutzwiller Density Functional The-
ory. Unlike previous studies, our formalism covers all conceivable cases of symmetries and
Gutzwiller wave functions. Moreover, our theory is not based on the ‘Gutzwiller approxima-
tion’ which corresponds to an evaluation of expectation values in the limit of infinite lattice
coordination number. It is only in the last step that we resort to this limit.
In particular, our derivation consists of three main steps.

1. The density functional of the full many-particle system is related to that of a reference sys-
tem with local Coulomb interactions in the correlated orbitals. This generalizes the widely
used Kohn-Sham scheme, where a single-particle reference system is used, to the Kohn-
Sham–Hubbard approach that may be analyzed by sophisticated many-particle methods.

2. In this work, the energy functional of the Hubbard-type reference system is (approxi-
mately) evaluated by means of Gutzwiller variational wave functions.

3. Analytical results for the Gutzwiller energy functional are derived in the limit of large
coordination number.

We studied the electronic properties of ferromagnetic nickel and iron. The Gutzwiller DFT
resolves the main deficiencies of DFT(LDA) in describing ground-state properties such as the
lattice constant, the magnetic moment, or the bulk modulus of nickel and iron. In particular,
Gutzwiller-DFT gives the proper bcc ground-state structure for iron, without resorting to gener-
alized gradient corrections. Note that our approach requires relatively large values for the local
Coulomb interaction, U = O(10 eV), to obtain good agreement with experiments.
Our results for the quasi-particle band structure are satisfactory. A perfect agreement with
ARPES data would be surprising because we calculate these quantities based on Fermi-liquid
assumptions that are strictly valid only in the vicinity of the Fermi surface. The quasi-particle
energies strongly depend on the orbital occupations that are influenced by the double-counting
corrections. We consider the arbitrariness of the double-counting corrections as the main short-
coming of the Gutzwiller DFT in its present form that should be addressed in future studies.
The method presented in this work can be developed further in various directions. On the level
of the Gutzwiller approximation, a number of implementations is still on the agenda, e.g., the
inclusion of spin-orbit coupling or the study of phonons. To tackle unconventional supercon-
ductivity as seen, e.g., in the cuprates, one has to go beyond the Gutzwiller approximation, see
Refs. [18–20] for the single-band model and Ref. [21] for multi-band models. These approaches
can be combined with the DFT as explained in Sect. 3. Finally, a time-dependent Gutzwiller
method can be used for the calculation of two-particle Green functions, see Refs. [54–56],
and references therein. As a long-term perspective, a combination of these methods and the
Hubbard-Kohn-Sham Hamiltonian would permit a first-principles calculation of important ex-
perimental quantities such as the magnetic susceptibility.
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A Appendix

A.1 Single-particle systems
A.1.1 Single-particle density matrix

With the help of a single-particle basis |k〉 in which a given single-particle operator Ĥsp is
diagonal, an eigenstate can be written as

|Φ〉 =
∏
k

′
b̂†k|vac〉 , (88)

where the prime indicates that N single-particle states are occupied in |Φ〉. The single-particle
density matrix is diagonal in |Φ〉,

ρk,k′ ≡ 〈Φ|b̂†kb̂k′ |Φ〉 = δk,k′fk , (89)

and the entries on the diagonal obey f 2
k = fk because we have fk = 0, 1. Therefore, we have

shown that
ρ̃ · ρ̃ = ρ̃ . (90)

Since the operators ĉ†i for any other single-particle basis and the operators b̂†k are related via a
unitary transformation, eq. (33) holds generally for single-particle density matrices for single-
particle product states.

A.1.2 Minimization with respect to the single-particle density matrix

We consider a general real functionE(ρ̃) of a non-interacting density matrix ρ̃with the elements

ρi,j = 〈Φ|ĉ†j ĉi|Φ〉 . (91)

The fact that ρ̃ is derived from a single-particle product wave function |Φ〉 is equivalent to the
matrix equation (90). Hence, the minimum of E(ρ̃) in the ‘space’ of all non-interacting density
matrices is determined by the condition

∂

∂ρj,i
L(ρ̃) = 0 , (92)

where we introduced the ‘Lagrange functional’

L(ρ̃) ≡ E(ρ̃)−
∑
l,m

Ωl,m

(∑
p

ρm,pρp,l − ρm,l
)

(93)

and the matrix Ω̃ of Lagrange parameters Ωl,m. Eq. (92) leads to the matrix equation

H̃ = ρ̃ · Ω̃ + Ω̃ · ρ̃− Ω̃ (94)

for the ‘Hamilton matrix’ H̃ with the elements

Hi,j =
∂

∂ρj,i
E(ρ̃) . (95)
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Equation (94) is satisfied if eq. (90) holds and if

[H̃, ρ̃] = 0 . (96)

Hence, H̃ and ρ̃ must have the same basis of (single-particle) eigenvectors and, consequently,
we find an extremum of E(ρ̃) if we choose |Φ〉 as an eigenstate of

Ĥsp =
∑
i,j

Hi,j ĉ
†
i ĉj . (97)

Usually, |Φ〉 can be chosen as the ground state of Ĥsp.

A.1.3 Basis sets

In the following we assume that the potential is lattice periodic,

V KS
σ (r) = U(r) + VHar(r) + vsp,xc,σ(r) = V KS

σ (r + R) , (98)

where R is a lattice vector. The Fourier components are finite for reciprocal lattice vectors G
only,

V KS
G,σ =

1

V

∫
dr V KS

σ (r)e−iG·r , (99)

where V is the crystal volume. As a consequence of the lattice periodicity, the crystal momen-
tum k from the first Brillouin zone is a good quantum number.
As seen from eq. (41), the Kohn-Sham Hamiltonian is diagonalized for the single-particle states
ψk,n,σ(r) = 〈r|k, n, σ〉 that obey the Kohn-Sham equations [1] (n: band index)

hKS
σ (r)ψk,n,σ(r) = εn,σ(k)ψk,n,σ(r) . (100)

In its eigenbasis, the Kohn-Sham Hamiltonian takes the form

ĤKS =
∑
k,n,σ

εn,σ(k)b̂†k,n,σ b̂k,n,σ . (101)

Its ground state is given by
|Φ0〉 =

∏
σ

∏
k,n

′
b̂†k,n,σ|vac〉 , (102)

where the N levels lowest in energy are occupied as indicated by the prime at the product,
εn,σ(k) ≤ EF,σ. Then,

fk,n,σ = 〈Φ0|b̂†k,n,σ b̂k,n,σ|Φ0〉 = Θ (EF,σ − εn,σ(k)) (103)

is unity for occupied levels up to the Fermi energy EF,σ, and zero otherwise.
From eq. (26), the field operators read

Ψ̂σ(r) =
∑
k,n

ψk,n,σ(r)b̂k,n,σ , Ψ̂ †σ(r) =
∑
k,n

ψ∗k,n,σ(r)b̂†k,n,σ . (104)
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Therefore, the ground-state density is readily obtained as

n0
σ(r) = 〈Φ0|Ψ̂ †σ(r)Ψ̂σ(r)|Φ0〉 =

∑
k,n

fk,n,σ|ψk,n,σ(r)|2 = 〈r|
∑
k

ρ̂(0)
σ (k)|r〉 ,

ρ̂(0)
σ (k) =

∑
n

fk,n,σ|k, n, σ〉〈k, n, σ| , (105)

see also eq. (31). Since this quantity enters the Kohn-Sham Hamiltonian, its solution must be
achieved self-consistently.
In order to make contact with many-particle approaches based on Hubbard-type models, we
need to identify orbitals that enter the local two-particle interaction. Implemented plane-wave
codes provide the transformation coefficients F(k,n),(R,b);σ from Bloch eigenstates |k, n, σ〉 to
orbital Wannier states |R, b, σ〉,

|R, b, σ〉 =
∑
k,n

F(k,n),(R,b);σ|k, n, σ〉 , F(k,n),(R,b);σ = 〈k, n, σ|R, b, σ〉 . (106)

The Wannier orbitals
φR,b,σ(r) = 〈r|R, b, σ〉 (107)

are maximal around a lattice site R and the orbital index b resembles atomic quantum numbers,
e.g., b = 3s, 3p, 3d. In the orbital Wannier basis the field operators are given by

Ψ̂ †σ(r) =
∑
R,b

φ∗R,b,σ(r)ĉ†R,b,σ , Ψ̂σ(r) =
∑
R,b

φR,b,σ(r)ĉR,b,σ , (108)

and the Kohn-Sham Hamiltonian in the orbital Wannier basis becomes

ĤKS =
∑

R,b,R′,b′,σ

TKS
(R,b),(R′,b′);σ ĉ

†
R,b,σ ĉR′,b′,σ (109)

with the overlap matrix elements

TKS
(R,b),(R′,b′);σ =

∫
dr φ∗R,b,σ(r)hKS

σ (r)φR′,b′,σ(r) , (110)

see eq. (41). These matrix elements appear in a tight-binding representation of the kinetic
energy in Hubbard-type models.
We also define the orbital Bloch basis,

φk,b,σ(r) =

√
1

L

∑
R

eik·RφR,b,σ(r) ,

φR,b,σ(r) =

√
1

L

∑
k

e−ik·Rφk,b,σ(r) , (111)

where k is from the first Brillouin zone and L is the number of lattice sites. The field operators
are given by

Ψ̂ †σ(r) =
∑
k,b

φ∗k,b,σ(r)ĉ†k,b,σ , Ψ̂σ(r) =
∑
k,b

φk,b,σ(r)ĉk,b,σ . (112)
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In the orbital Wannier basis, the Kohn-Sham single-particle Hamiltonian reads

ĤKS =
∑

k,b,b′,σ

TKS
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ ,

TKS
b,b′;σ(k) =

∫
dr φ∗k,b,σ(r)hKS

σ (r)φk,b′,σ(r) . (113)

A.2 Atomic Hamiltonian in cubic symmetry

We choose the Hubbard parameters U(u, v), U(ζ, ζ), U(ξ, η), U(ζ, u), U(ζ, v), the four Hund’s-
rule couplings J(u, v), J(ξ, η), J(ζ, u), J(ζ, v), and the two-particle transfer matrix element
S(η, ξ; ζ, u) as our ten independent Coulomb matrix elements in cubic symmetry. The other
matrix elements in eq. (83) can be expressed as [26, 17]

U(u, u) = U(v, v) = U(u, v) + 2J(u, v) ,

U(ξ, u) = U(η, u) = (U(ζ, u) + 3U(ζ, v))/4 ,

U(ξ, v) = U(η, v) = (3U(ζ, u) + U(ζ, v))/4 ,

J(ξ, u) = J(η, u) = (J(ζ, u) + 3J(ζ, v))/4 ,

J(ξ, v) = J(η, v) = (3J(ζ, u) + J(ζ, v))/4 ,

T (η;u, v) = −T (ξ;u, v) =
√

3(U(ζ, u)− U(ζ, v))/4 ,

A(η;u, v) = −A(ξ;u, v) =
√

3(J(ζ, u)− J(ζ, v))/4 ,

S(ξ, η; ζ, u) = S(η, ξ; ζ, u) ,

S(ζ, ξ; η, u) = −2S(η, ξ; ζ, u) ,

S(ξ, η; ζ, v) = −
√

3S(η, ξ; ζ, u) ,

S(ζ, ξ; η, u) =
√

3S(η, ξ; ζ, u) . (114)

If we further assume that the radial part of the t2g-orbitals and the eg-orbitals are identical
(‘spherical approximation’), we may express all matrix elements in terms of three parameters,
e.g., the Racah parameters A, B, and C that are related to the Slater-Condon parameters by
A = F (0)−F (4)/9, B = (F (2)−5F (4)/9)/49, and C = 5F (4)/63; inversely, F (0) = A+7C/5,
F (2) = 49B + 7C, F (4) = 63C/5. In particular,

U(u, v) = A− 4B + C ,

J(u, v) = 4B + C ,

U(ζ, ζ) = A+ 4B + 3C ,

U(ξ, η) = A− 2B + C ,

J(ξ, η) = 3B + C ,

U(ζ, u) = A− 4B + C ,

U(ζ, v) = A+ 4B + C ,

J(ζ, v) = C ,

J(ζ, u) = 4B + C ,

S(η, ξ; ζ, u) = −
√

3B . (115)
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The average Coulomb interaction between electrons in same orbitals is given by

U =
1

5

∑
c=ξ,η,ζ,u,v

U(c, c) = A+ 4B + 3C , (116)

the average Coulomb interaction between electrons in different orbitals is given by

U ′ =
1

10

∑
c,c′=ξ,η,ζ,u,v;c<c′

U(c, c′) = A−B + C , (117)

and the average Hund’s-rule coupling becomes

J =
1

10

∑
c,c′=ξ,η,ζ,u,v;c<c′

J(c, c′) =
5

2
B + C . (118)

These three quantities are not independent but related by the symmetry relation U ′ = U −
2J . This means that by choosing two of these parameters (e.g., U and J) the three Racah
parameters, and therefore all the parameters in Eq. (80) are not uniquely defined. Hence, we use
the additional relation C/B = 4 which is a reasonable assumption for transition metals [26]. It
corresponds to F (2)/F (4) = 55/36 = 1.53, in agreement with the estimate F (2)/F (4) ≈ 1.60 =

8/5 by de Groot et al. [37].
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9.2 Eva Pavarini

1 Introduction

One of the early successes of quantum mechanics was explaining the difference between metals
and insulators. The core of this theory is the independent-electron picture. In the latter, the
electronic states of a given periodic system, a crystal, are described via a set of bands filled
following the Pauli principle. As a result, two cases are possible: in the first, each band is
either completely filled or totally empty (band insulator), and in the second, some of the bands
are only partially filled (conventional metal). In a system in which all bands are either full or
empty, a finite energy is required to bring one electron from the ground state to the lowest-lying
excited state. Indeed, an insulator can be viewed as a system with an energy gap in the excitation
spectrum. The energy gap is not uniquely defined, since it has a different nature depending on
the experimental tool used to measure it. Photoemission and inverse photoemission probe the
spectral function. The latter yields the charge gap

Ec
gap = E0(N + 1) + E0(N − 1)− 2E0(N),

where E0(N) is the ground-state energy for N electrons. This is the difference between the
ionization energy, I = E0(N − 1)− E0(N) and electronic affinity, A = E0(N)− E0(N + 1).
In the independent-electron picture, at T = 0

E0(N) = 2
∑

mk

εmk Θ(−εmk + εF ),

where m is an index labelling different bands, εmk the band dispersion, εF the Fermi level and
Θ(x) the Heaviside step function. Thus the charge gap is basically identical to the difference

Eo
gap = E1(N)− E0(N).

where E1(N) is the energy of the N -electron first excited state (Fig. 1). The energy difference
Eo

gap can be directly probed in experiments which do not change the number of electrons, e.g.,
absorption spectroscopy. In the presence of a gap, the finite-temperature properties are typically
characterized by an activation energy∆E. For example, the static optical conductivity of a band
insulator has, in first approximation, the low-temperature form

σ(T ) ∼ σ0(T )e−∆E/2kBT ,

where ∆E is the band gap and σ0(T ) a prefactor. The size of the gap varies from system to
system, giving rise to different behaviors and appearances. Representative examples of band
insulators are two well known materials with the same crystal structure and yet rather different
properties, diamond and silicon. Diamond is transparent thanks to its large gap (∼ 5.5 eV).
Silicon has a smaller gap (∼ 1.1 eV), a gray color and could be taken at a first glance for
a metal. A conventional metal behaves very differently than a band insulator, however. In a
conventional metal, since some bands are partially empty, it is possible to excite electrons with
infinitesimal energy. Thus, e.g., the conductivity is finite even at T = 0

σ(0) ∼ ne2τ

me

,
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k k

E1(N)

E0(N)

Fig. 1: The band gap Eo
g = E1(N)− E0(N) in the independent-electron picture. Left: direct

gap. Right: indirect gap. Silicon and diamond both have an indirect gap. Blue: top of the filled
valence band. Red: bottom of the empty conduction band.

where n is the electron density and τ the average time between two collisions. Classical ex-
amples of conventional metals are gold, silver, and copper. They are all characterized by shiny
metallic colors. Have we then explained all matter via the rather simple independent-electron
band theory? One could naively think that this is, indeed, the case. Reality, however, has al-
ways surprises in store. It became clear early on that the independent-electron theory is not the
complete story. Some transition-metal oxides, which were supposed to be good metals in the
independent-electron picture, turned out to be either insulators or very bad conductors. It was
soon understood that a possible cause of the anomalous behavior could be the electron-electron
Coulomb repulsion; the latter could localize electrons giving rise to a metal-insulator transition
(MIT). That things are very different when the electronic Coulomb interaction is taken into ac-
count can be seen already in Fig. 2, which shows the charge gap for an idealized atom made by
a single level εd < 0 occupied by one electron. If we assume that the electrons do not interact
(U = 0), the charge gap is zero

Ec
gap = [E0(2)− E0(1)] + [E0(0)− E0(1)] = εd − εd = 0.

If, however, electrons repel each other (U 6= 0), the gap is finite

Ec
gap = U.

Let us define strongly-correlated systems the materials whose behavior qualitatively differs from
the independent-electron picture because of the electron-electron repulsion. While the theory
of conventional metals and band insulators is rather straightforward, the theory of the MIT
in strongly-correlated systems has kept theoreticians busy for almost a century, and still the
problem is only partially solved. This happens because, when the independent-electron picture
fails, we are confronted with the hardness of the quantum many-body problem. The latter can
already be grasped by looking at the classical N body problem (Fig. 3), describing masses
interacting via gravity. When only one body is present, there is no interaction, and the problem
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Fig. 2: The charge gap for an idealized atom described by a level εd < 0 occupied by one
electron (N = 1). Left: When two electrons are on the same level, the system has energy
2εd + U , where U is the electron-electron repulsion. Right: Non-interacting-electron picture.

is trivial. For two bodies we can find the analytical solution by working in the center of mass
and relative coordinates system. The general three-body problem is a major challenge [1] and
it can lead to chaotic behavior; the complexity of the N -body problem grows dramatically
with the number of bodies involved [2]. Quantum effects further add to the complications,
and the exact solution of the many-body problem is totally out of reach. Even if we cannot
count on the exact diagonalization of the full many-body Hamiltonian, however, this does not
imply the end of physics. We can still explain the origin of specific co-operative behaviors,
such as the nature of the insulating or metallic state; we need, however, to first identify the
core nature of the phenomenon along with the relevant effective entities involved, and then
build the corresponding effective theory. A natural question arises at this point. Although we
know that it eventually fails for strongly-correlated systems, the independent-electron picture
is very appealing for its simplicity. Furthermore it works rather well for many systems, at
least in first approximation; we have already mentioned among insulators silicon and diamond,
and among metals gold, silver or copper. Could we then perhaps explain strongly-correlated
insulators without leaving the independent-electron picture, via, e.g, a Coulomb-induced one-
electron potential of some type? Or do we really need a more complex theory, in which true
many-body effects – those that cannot be reduced to a simple potential – are key? Let us call a
system for which the first picture applies Slater insulator and one for which the second picture
is relevant Mott insulator. The answer to the question above is important also in view of the
fact that, while solving exactly the many-body problem is basically impossible, we do have
very advanced tools to solve material-specific one-electron-like Hamiltonians. These are ab-
initio methods based on density-functional theory (DFT) in the local-density approximation or
its simple extensions. Is it possible to find a simple potential that captures the essential nature of
the MIT and can be easily embedded in DFT-based codes? The DFT+U method [3] is one of the
most important attempts in this direction; in this approach Coulomb repulsion effects are treated
at the static mean-field level and they are then essentially reduced to a spin-, site- and orbital-
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Fig. 3: The increasing complexity of the classical N-body problem. One body: no interaction.
Two bodies: we can find the solution analytically. Shown is a solution describing a lighter body
rotating about a heavier body. Three-body: chaotic solutions are possible.

dependent potential. The resulting MIT is of the Slater type, and it occurs at the onset of long-
range magnetic order. Unfortunately, correlated insulators typically do not behave in this way,
however. Although most of them have a magnetic ground state, above the magnetic transition
temperature TN they usually remain insulators; furthermore, they typically behave as local-
moment paramagnets with Curie-Weiss magnetic susceptibilities. Instead, in the non-magnetic
phase DFT+U yields metallic Pauli-like paramagnets. This shows that some crucial aspects
are missing in DFT+U . Which ones, however? To answer to this question, one can use an
alternative approach. This consist in giving up the band picture and DFT completely, switch to
simple representative models and try to solve them beyond the static mean-field level via many-
body techniques. Even in simple models, however, truly strongly-correlated phenomena, which
escape a static mean-field description, remain a challenge. An example is the Kondo effect,
which was solved only after decades of struggle, and the solution lead to the developments
of new theoretical approaches such as the numerical renormalization group. In the case of
the metal-insulator transition, the breakthrough was the dynamical mean-field theory (DMFT)
[4–8]. This method was at first designed to solve the one-band Hubbard model. It consists in
mapping the lattice Hubbard model into a self-consistent quantum-impurity model, described
for example by the Anderson Hamiltonian. The DMFT technique succeeds in describing the
Coulomb-driven transition from paramagnetic metal to local-moment paramagnetic insulator.
Furthermore, it can be used for solving material-specific Hubbard models built from DFT-based
calculations; this is the DFT+DMFT approach. In this lecture, after an introduction to the
Hubbard and the Anderson Hamiltonian, we will discuss some of the basic ideas behind both the
DFT+U and the DFT+DMFT method. We will compare the very different pictures of the metal-
insulator transition emerging from the two approaches, the first of the Slater and the second of
the Mott type. As a concluding remark, it is important to remember that band, Slater, and
Mott insulators do not exhaust all possible types of insulators. Electron localization can, e.g.,
also occur because of disorder alone. This phenomenon is known as Anderson localization [9].
Although the latter is a very important and interesting effect, we will not discuss it in this lecture.
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Fig. 4: Band structure of the one-band tight-binding model (hypercubic lattice). The hopping
integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At half filling
(n = 1) the Fermi level is at zero energy. The k points are Γ = (0, 0, 0), X = (π/a, 0, 0),
M = (π/a, π/a, 0), and Z = (0, 0, π/a).

2 The Hubbard model

2.1 Introduction

The simplest lattice model describing a correlated system is the one-band Hubbard model

Ĥ = εd
∑

i

∑

σ

c†iσciσ

︸ ︷︷ ︸
Ĥd

−t
∑

〈ii′〉

∑

σ

c†iσci′σ

︸ ︷︷ ︸
ĤT

+U
∑

i

n̂i↑n̂i↓

︸ ︷︷ ︸
ĤU

= Ĥd + ĤT + ĤU , (1)

where εd is the on-site energy, t is the hopping integral between first-nearest neighbors 〈ii′〉, and
U the on-site Coulomb repulsion; c†iσ creates an electron in a Wannier state with spin σ centered
at site i, and n̂iσ = c†iσciσ.
In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Ĥd + ĤT =
∑

kσ

[
εd + εk

]
c†kσckσ.

The energy dispersion εk depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice of dimension d

εk = −2t
d∑

ν=1

cos(krνa),

where a is the lattice constant, and r1 = x, r2 = y, r3 = z. The energy εk does not depend on
the spin. In Fig. 4 we show εk in the one-, two- and three-dimensional cases. The corresponding
density of states is shown in Fig. 5.
In the opposite limit (t = 0) the Hubbard model describes a collection of isolated atoms. Each
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Fig. 5: Density of states (DOS) per spin, ρ(ε)/2, for a hypercubic lattice in one, two, and three
dimensions. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit different
types of Van-Hove singularities.

atom has four electronic many-body states

|N,S, Sz〉 N S E(N)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, ↑〉 = c†i↑|0〉 1 1/2 εd

|1, 1
2
, ↓〉 = c†i↓|0〉 1 1/2 εd

|2, 0, 0〉 = c†i↑c
†
i↓|0〉 2 0 2εd + U

where E(N) is the total energy, N the total number of electrons and S the total spin. We can
express the atomic Hamiltonian Ĥd + ĤU in a form in which the dependence on N̂i, Ŝi, and Ŝiz
is explicitly given

Ĥd + ĤU = εd
∑

i

n̂i + U
∑

i

[
−
(
Ŝiz

)2

+
n̂2
i

4

]
,

where Ŝiz = (n̂i↑ − n̂i↓)/2 is the z component of the spin operator and n̂i =
∑

σ n̂iσ = N̂i.
In the large t/U limit and at half filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

ĤS =
1

2
Γ
∑

〈ii′〉

[
Si · Si′ −

1

4
n̂in̂i′

]
. (2)

The coupling Γ can be calculated by using second-order perturbation theory. For a state in
which two neighbors have opposite spin, |↑, ↓ 〉 = c†i↑c

†
i′↓|0〉, we obtain the energy gain

∆E↑↓ ∼ −
∑

I

〈 ↑, ↓ |ĤT |I〉〈I
∣∣∣∣

1

E(2) + E(0)− 2E(1)

∣∣∣∣ I〉〈I|ĤT | ↑, ↓ 〉 ∼ −
2t2

U
.
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Here |I〉 ranges over the excited states with one of the two neighboring sites doubly occupied
and the other empty, | ↑↓, 0〉 = c†i↑c

†
i↓|0〉, or |0, ↑↓ 〉 = c†i′↑c

†
i′↓|0〉; these states can be occupied

via virtual hopping processes. For a state in which two neighbors have parallel spins, | ↑, ↑ 〉 =

c†i↑c
†
i′↑|0〉, no virtual hopping is possible because of the Pauli principle, and ∆E↑↑ = 0. Thus

1

2
Γ ∼ (∆E↑↑ −∆E↑↓) =

1

2

4t2

U
. (3)

The exchange coupling Γ = 4t2/U is positive, i.e., antiferromagnetic.
Canonical transformations [10] provide a scheme for deriving the effective spin model system-
atically at any perturbation order. Let us consider a unitary transformation of the Hamiltonian

ĤS = eiŜĤe−iŜ = Ĥ +
[
iŜ, Ĥ

]
+

1

2

[
iŜ,
[
iŜ, Ĥ

] ]
+ . . . .

We search for a transformation operator that eliminates, at a given order, hopping integrals
between states with a different number of doubly-occupied states. To do this, first we split the
kinetic term ĤT into a component Ĥ0

T that does not change the number of doubly-occupied
states and two terms that either increase it (Ĥ+

T ) or decrease it (Ĥ−T ) by one

ĤT = −t
∑

〈ii′〉

∑

σ

c†iσci′σ = Ĥ0
T + Ĥ+

T + Ĥ−T ,

where

Ĥ0
T = −t

∑

〈ii′〉

∑

σ

n̂i−σ c
†
iσci′σ n̂i′−σ − t

∑

〈ii′〉

∑

σ

[
1− n̂i−σ

]
c†iσci′σ

[
1− n̂i′−σ

]
,

Ĥ+
T = −t

∑

〈ii′〉

∑

σ

n̂i−σ c
†
iσci′σ

[
1− n̂i′−σ

]
,

Ĥ−T =
(
Ĥ+
T

)†
.

The term Ĥ0
T commutes with ĤU . The remaining two terms fulfill the commutation rules

[Ĥ±T , ĤU ] = ∓UĤ±T .

The operator Ŝ can be expressed as a linear combination of powers of the three operators
Ĥ0
T , Ĥ

+
T , and Ĥ−T . The actual combination, which gives the effective spin model at a given

order, can be found via a recursive procedure [10]. At half filling and second order, however,
we can simply guess the form of Ŝ that leads to the Hamiltonian (2). By defining

Ŝ = − i

U

(
Ĥ+
T − Ĥ−T

)

we obtain

ĤS = ĤU + Ĥ0
T +

1

U

( [
Ĥ+
T , Ĥ

−
T

]
+
[
Ĥ0
T , Ĥ

−
T

]
+
[
Ĥ+
T , Ĥ

0
T

] )
+O(U−2).
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Fig. 6: Left: Crystal structure of HgBa2CuO4 showing the two-dimensional CuO2 layers.
Spheres represent atoms of Cu (blue), O (red), Ba (yellow), and Hg (grey). Right: A CuO2

layer. The hopping integral t between neighboring Cu sites is t ∼ 4t2pd/∆dp, where tpd is the
hopping between Cu d and O p states and ∆dp = εd − εp their charge-transfer energy.

If we restrict the Hilbert space of ĤS to the subspace with one electron per site (half filling), no
hopping is possible without increasing the number of doubly-occupied states; hence, only the
term Ĥ−T Ĥ

+
T contributes. After some algebra, we obtain ĤS = Ĥ

(2)
S +O(U−2) with

Ĥ
(2)
S =

1

2

4t2

U

∑

ii′

[
Si · Si′ −

1

4
n̂in̂i′

]
.

The Hubbard model (1) is rarely realized in nature in this form. To understand real materials
one typically has to take into account orbital degrees of freedom, long-range hopping integrals,
and sometimes longer-range Coulomb interactions or perhaps even more complex many-body
terms. Nevertheless, there are very interesting systems whose low-energy properties are, to
first approximation, described by (1). These are strongly-correlated organic crystals [11] (one-
dimensional case) and high-temperature superconducting cuprates [12], in short HTSCs (two-
dimensional case). An example of HTSC is HgBa2CuO4, whose structure is shown in Fig. 6. It
is made of CuO2 planes well divided by BaO-Hg-BaO blocks. The x2−y2-like states stemming
from the CuO2 planes can be described via a one-band Hubbard model. The presence of a
x2 − y2-like band at the Fermi level is a common feature of all HTSCs.
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2.2 The Hubbard dimer

The Hubbard model cannot be solved exactly. It is thus interesting to consider an even simpler
model, for which we can find analytically eigenvectors and eigenvalues. This is the Hubbard
dimer, whose Hamiltonian is given by

Ĥ = εd
∑

iσ

niσ − t
∑

σ

[
c†1σc2σ + c†2σc1σ

]
+ U

∑

i=1,2

n̂i↑n̂i↓. (4)

2.2.1 Exact diagonalization

Hamiltonian (4) commutes with the number of electron operator N̂ , the total spin Ŝ and Ŝz. In
the atomic limit, the eigenstates states can be therefore classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

[
c†1↑c

†
2↓ + c†1↓c

†
2↑

]
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

[
c†1↑c

†
2↓ − c†1↓c†2↑

]
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 3εd + U

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = 1√
2

[|1, 1/2, σ〉1 − |1, 1/2, σ〉2] εd + t 2

|1, 1/2, σ〉− = 1√
2

[|1, 1/2, σ〉1 + |1, 1/2, σ〉2] εd − t 2

where dα(N) is the spin degeneracy of the α manifold. Let us now increase the total number of
electrons. For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0

states, and therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd + U 0

0 0 0 −
√

2t 0 2εd + U




.

The eigenvalues and the corresponding (normalized) eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

[|2, 0, 0〉1 + |2, 0, 0〉2] 2εd + 1
2

[U +∆(t, U)] 1

|2, 0, 0〉o = 1√
2

[|2, 0, 0〉1 − |2, 0, 0〉2] 2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

[|2, 0, 0〉1 + |2, 0, 0〉2] 2εd + 1
2

[U −∆(t, U)] 1

where

∆(t, U) =
√
U2 + 16t2,

and a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.

In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.
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Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1/2, σ〉+ = 1
2

[|1, 1/2, σ〉1 + |1, 1/2, σ〉2] 3εd + U + t 2

|3, 1/2, σ〉− = 1
2

[|1, 1/2, σ〉1 − |1, 1/2, σ〉2] 3εd + U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

2.2.2 Local Matsubara Green function

Let us now calculate the local Matsubara Green function for site i, defined as

Gii,σ(iνn) = −
∫ β

0

dτeiνnτ 〈T ciσ(τ)c†iσ(0)〉,

where T is the time-ordering operator and νn a fermionic Matsubara frequency. We use to this
end the Lehmann representation

Gii,σ(iνn) =
1

Z

∑

nn′N

e−β(En(N)−µN)

[
|〈n′N − 1|ciσ|nN〉|2

iνn − [En(N)− En′(N − 1)− µ]
(5)

+
|〈n′N + 1|c†iσ|nN〉|2

iνn − [En′(N + 1)− En(N)− µ]

]
,

where |nN〉 is the N -electron eigenstate with energy En(N), β = 1/kBT , µ is the chemical
potential, and Z the partition function. In order to calculate the Green function (5) we thus
need all eigenstates and their energies; from the eigenstates we have to compute the weights
wσi = |〈n′N ′|ôiσ|nN〉|2, where ôiσ is either ciσ or c†iσ. The Green function is by symmetry
identical for spin up and spin down, and for site 1 and site 2. Thus it is sufficient to perform the
calculation for i = 1 and σ =↑. In the atomic limit, the only non-zero terms are collected in
the table shown in the next page; in the first half of the table ô1↑ = c1↑ and N ′ = N , and in the
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second half of the table ô1↑ = c†1↑ and N ′ = N + 1

ô1↑|N,S, Sz〉 w↑1 En(N ′)− En′(N ′ − 1)

c1↑|1, 1/2, σ〉1 = δσ,↑|0〉 1 εd

c1↑|2, 1, 0〉 = 1√
2
c†2↓|0〉 1

2
εd

c1↑|2, 1, 1〉 = −c†2↑|0〉 1 εd

c1↑|2, 0, 0〉0 = 1√
2
c†2↓|0〉 1

2
εd

c1↑|2, 0, 0〉1 = c†1↓|0〉 1 εd + U

c1↑|3, 1/2, σ〉1 = δσ,↑c
†
2↑c
†
2↓|0〉 1 εd

c1↑|3, 1/2, σ〉2 = −c†2σc†1↓|0〉 1 εd + U

c1↑|4, 0, 0〉 = c†1↓c
†
2↑c
†
2↓|0〉 1 εd + U

c†1↑|0, 0, 0〉 = c†1↑|0〉 1 εd

c†1↑|1, 1/2, σ〉1 = δσ,↓c
†
1↑c
†
1σ|0〉 1 εd + U

c†1↑|1, 1/2, σ〉2 = c†1↑c
†
2σ|0〉 1 εd

c†1↑|2, 1, 0〉 = 1√
2
c†1↑c

†
1↓c
†
2↑|0〉 1

2
εd + U

c†1↑|2, 1,−1〉 = −c†2↓c†1↑c†1↓|0〉 1 εd + U

c†1↑|2, 0, 0〉0 = − 1√
2
c†1↑c

†
1↓c
†
2↑|0〉 1

2
εd + U

c†1↑|2, 0, 0〉2 = c†1↑c
†
2↑c
†
2↓|0〉 1 εd

c†1↑|3, 1/2, σ〉1 = δσ,↓c
†
1↑c
†
1σc
†
2↑c
†
2↓|0〉 1 εd + U

For t 6= 0 we have to recalculate the weights because the eigenstates are different. Let us first
exploit the mirror symmetry of the Hamiltonian, however; thanks to it, any hermitian quadratic
operator is diagonal in the basis of the bonding and anti-bonding state. Thus the local Green
function can be expressed as the average of the bonding and antibonding one

G11,σ(iνn) =
1

2
[G++,σ +G−−,σ]

where

G±±,σ(iνn) = −
∫ β

0

dτeiνnτ 〈T c±σ(τ)c†±σ(0)〉,
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and

c±σ =
1√
2

(c1↑ ∓ c2↑) .

For U = 0, the local Green function is thus simply

G0
11,σ(iνn) =

1

2

∑

α=±

1

iνn − (εα − µ)
=

1

iνn − (εd + F 0(iνn)− µ)
,

where ε± = εd ± t. The quantity

F 0(iνn) =
t2

iνn − (εd − µ)
,

is the so-called non-interacting hybridization function, and it can be seen as a self-energy for
the uncorrelated atomic level εd. Let us now suppose that we are in the opposite limit, the one in
which 4t � U , and hence E−(2, 0) ∼ Eo(2, 1). Furthermore, let us assume that kBT is much
lower than the energy difference Eo(2, 0) − E−(2, 0); this implies that the two higher-energy
states in the 2-electron sector can be neglected in calculating the Green function. In this limit
the local Matsubara Green function is given by

G11,σ(iνn) ∼ 1

4

∑

α=±

[
1

iνn − (εα − µ)
+

1

iνn − (εα + U − µ)

]

=
1

2

∑

α=±

1

iνn − (εα − µ+Σαα(iνn))
.

The bonding and antibonding self-energy are

Σαα(iνn) =
U

2
+
U2

4

1

iνn − (εα + 1
2
U − µ)

.

In the large frequency limit, as will become clear later, the exact self-energy equals the Hartree-
Fock self-energy for zero magnetization, U/2. The gap is given by

Ec
g = E0(N + 1) + E0(N − 1)− 2E0(N) ∼ U − 2t.

The formulas above show that the self-energy is different for the bonding and antibonding state.
By making the analogy with an infinite tight-binding chain with dispersion −2(t/2) cos ka, the
bonding state corresponds to k = 0 and the anti-bonding state to k = π/a. Thus, in the lattice
limit, our result reflects the fact that in general the self-energy depends on k. In addition, the
gap, which has the value U in the atomic limit, is reduced by the energy difference between
antibonding and bonding state, 2t; in the lattice limit, this difference becomes the band-width,
W . The reason of the gap reduction is that, once we remove or add one electron, it does not
cost Coulomb energy to move the hole/extra electron from one site to the other in the Hubbard
dimer. Finally, we can rewrite the local Green function in a form that will become useful later

G11,σ(iνn) =

[
1

iνn − (εd − µ+Σlσ(iνn) + Fσ(iνn))

]
. (6)
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In this expression Σl(iνn) is the local self-energy

Σl(iνn) =
1

2
(Σ++(iνn) +Σ−−(iνn)),

=
U2

4

1

iνn − (εd + 1
2
U − µ+ t2

(iνn−(εd+ 1
2
U−µ))

)
,

and Fσ(iνn) the hybridization function for the correlated dimer

Fσ(iνn) =
(t+∆Σl(iνn))2

iνn − (εd − µ+Σlσ(iνn))
.

The difference

∆Σlσ(iνn) =
1

2
(Σ++(iνn)−Σ−−(iνn))

=
U2

4

t

(iνn − (εd + 1
2
U − µ))2 − t2 ,

measures the strength of non-local effects. The sum Fl(iνn)+Σl(iνn) yields the total modifica-
tion of the isolated (t = 0) and uncorrelated (U = 0) level εd. Later we will compare expression
(6) to its analogous for another simple model, the Anderson molecule.

2.2.3 Long-range Coulomb interaction

A natural question that follows is: what happens if the Coulomb repulsion is longer range? For
a dimer, extending the Coulomb interaction to first neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

[
c†1σc2σ + c†2σc1σ

]
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σ 6=σ′
(V − 2JV − JV δσσ′)n̂1σn̂2σ′ − JV

∑

i6=i′

[
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

]
,

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian becomes

Ĥ2 =




2εd + V −3JV 0 0 0 0 0

0 2εd + V −3JV 0 0 0 0

0 0 2εd + V −3JV 0 0 0

0 0 0 2εd + V −JV −
√

2t −
√

2t

0 0 0 −
√

2t U −JV
0 0 0 −

√
2t −JV U




.

Thus, if JV = 0, apart from an irrelevant shift, the Hamiltonian at half-filling equals the Ĥ2

matrix that we obtained for V = 0, provided that in the latter U is replaced by U −V ; hence the
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V term effectively reduces the strength of the local Coulomb interaction and at the same time
enhances the exchange coupling, which becomes Γ ∼ 4t2/(U − V ). What about the charge
gap? Let us calculate the gap exactly, without assuming 4t � U as we have done previously.
This leads to the formula

Ec
g(V ) = −2t+ V +

√
(U − V )2 + 16t2.

Let us consider the case in which 4t/U is small. There are two interesting limits. The first,
V/U → 0, yield the previous result, Eg(V ) ∼ U − 2t. The second is V/U ∼ 1, which gives
Eg(V ) ∼ 2t+V. In this case the gap equals the one of an uncorrelated dimer with enhanced hop-
ping integrals, t→ t+V/2. In this limit, the elements of the matrices ĤN are basically identical
to those we obtained for U = V = JV = 0, apart for a shift on the diagonal; thus also the eigen-
states are close to those of the non-interacting dimer. Although for realistic lattices the effect of
V is more complex [11], the simple result above explains why actual strong-correlation effects
mostly appear when the local Coulomb coupling is large compared to longer-range terms.

2.2.4 Hartree-Fock approximation

Let us now compare the exact solution of the Hubbard dimer with the result of the Hartree-Fock
approximation. Here we return for simplicity to the case V = JV = 0. The Hartree-Fock
Hamiltonian can be obtained by replacing

ĤU = U
∑

i

n̂i↑n̂i↓ → ĤHF
U = U

∑

i

[n̂i↑n̄i↓ + n̂i↓n̄i↑ − n̄i↑n̄i↓], (7)

where n̄iσ is the HF expectation value of the operator n̂iσ. Thus we have

ĤHF =εd
∑

iσ

n̂iσ − t
∑

σ

[
c†1σc2σ + c†2σc1σ

]
+ U

∑

σ 6=σ′
[n̂1σn̄1σ′ + n̂2σn̄2σ′ ]− U

∑

i

n̄i↑n̄i↓.

It is convenient to introduce the quantities

ni = n̄i↑ + n̄i↓ n =
1

2
(n1 + n2) δn =

1

2
(n1 − n2)

mi =
1

2
(n̄i↑ − n̄i↓) m+ =

1

2
(m1 +m2) m− =

1

2
(m1 −m2)

Inverting these relations

n1↑ = (m+ +m−) + (n+ δn)/2 n1↓ = −(m+ +m−) + (n+ δn)/2

n2↑ = (m+ −m−) + (n− δn)/2 n2↓ = −(m+ −m−) + (n− δn)/2
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The Hartree-Fock version of the Hubbard dimer Hamiltonian equals the non-interacting Hamil-
tonian plus a shift of the on-site level. This shift depends on the site and the spin

ĤHF =
∑

iσ

(εd +∆iσ) n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
−∆0

∆0 = 2U

[
n2 + δn2

4
−m2

+ −m2
−

]

∆iσ = U

[
(−1)σ

(
m+ + (−1)i−1m−

)
+

1

2
(n+ (−1)i−1δn)

]
.

Thus we can write immediately the local Green function matrix for site 1. It is convenient to
use this time the site basis, hence, to calculate the matrix Gii′,σ(iνn). Then we have

G11,σ(iνn) =

[
iνn − (εd − µ+Σ11,σ(iνn)) t

t iνn − (εd − µ+Σ22,σ(iνn))

]−1

11

where

Σii,σ(iνn) = ∆iσ.

This shows that the self-energy is not dependent on the frequency, i.e., Hartree-Fock is a static
mean-field approach. The value of the parameters m+, m− and δn have to be found solving the
system of self-consistent equations given by

n̄iσ =
1

β

∑

n

e−iνn0−Gii,σ(iνn).

For ferromagnetic (F) and antiferromagnetic (AF) solutions we have, in the absence of charge
disproportionation, the following simplifications

∆F
1σ =U

(n
2

+ σm+

)
∆AF

1σ = U
(n

2
+ σm−

)

∆F
2σ =U

(n
2

+ σm+

)
∆AF

2σ = U
(n

2
− σm−

)

In the AF case, the self-energy depends on the site. In the lattice limit, this implies that the
interaction couples k states. Indeed, by rewriting the Green-function matrix in the basis of the
bonding (k = 0) and anti-bonding (k = π) creation/annihilation operators we have

Gσ(iνn) =
1

2

[
iνn − (εd − t− µ+ 1

2

∑
iΣiσ(iνn)) 1

2

∑
i(−1)i−1Σiσ(iνn)

1
2

∑
i(−1)i−1Σiσ(iνn) iνn − (εd + t− µ+ 1

2

∑
iΣiσ(iνn))

]−1

.

The diagonal terms are identical, hence

Σ++,σ(iνn) = Σ−−,σ(iνn) = Σl(iνn).

The off-diagonal terms Σ+−(iνn) and G+−(iνn) are not zero, however. This tells us that, by
introducing the HF correction, we can lower the symmetry of the system. Let us now calculate
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explicitly the eigenstates for different fillings. For this it is sufficient to diagonalize Ĥ1, the
Hamiltonian in the 1-electron sector; the many-electron states can be obtained by filling the
one-electron states via the Pauli principle. The Hamiltonian Ĥ1 can be written as Ĥ1 = Ĥ ′1 +

εdN̂ −∆0, and, in the AF case we then have

Ĥ ′1 =




U(1
2
n−m−) −t 0 0

−t U(1
2
n+m−) 0 0

0 0 U(1
2
n+m−) −t

0 0 −t U(1
2
n−m−)



.

This leads to the (normalized) states

|1〉l El(1)

|1〉3 = a2|1, 1/2, ↑〉1 − a1|1, 1/2, ↑〉2 ε0(1) +∆1(t, U)

|1〉2 = a1|1, 1/2, ↓〉1 − a2|1, 1/2, ↓〉2 ε0(1) +∆1(t, U)

|1〉1 = a1|1, 1/2, ↑〉1 + a2|1, 1/2, ↑〉2 ε0(1)−∆1(t, U)

|1〉0 = a2|1, 1/2, ↓〉1 + a1|1, 1/2, ↓〉2 ε0(1)−∆1(t, U)

where ε0(1) = εd + U(1/2 + 2m2
− − n2/2) and a2

1 = 1
2

(
1 + Um−

∆1(t,U)

)
. The charge gap at half

filling is

EHF
g = 2∆1(t, U) = 2

√
(m−U)2 + t2.

In general the Hartree-Fock gap tends to be larger than the exact value. If we assume that only
the ground state is occupied, solving the self-consistent equations yields the solutions

m− = 0 or m− =
1

2

√
1− 4t2

U2
.

Using this result we find EHF
g = U. It is useful to look more in detail at Ĥ ′2, with Ĥ2 =

Ĥ ′2 + εdN̂ −∆0; in the absence of charge disproportionation, it has the general form

Ĥ ′2 =




U 0 0 −2Um− 0 0

0 U(1− 2m+) 0 0 0 0

0 0 U(1 + 2m+) 0 0 0

−2Um− 0 0 U −
√

2t −
√

2t

0 0 0 −
√

2t U 0

0 0 0 −
√

2t 0 U
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If we search for an AF solution, the normalized Hartree-Fock eigenvalues and eigenvectors are

|2〉l El(2)

|2〉5 = 1√
2

[
|2, 0, 0〉0 + a2|2, 1, 0〉 − a1√

2
[|2, 0, 0〉1 + |2, 0, 0〉2]

]
ε0(2) + 2∆1(t, U)

|2〉4 = 1√
2

[|2, 0, 0〉1 − |2, 0, 0〉2] ε0(2)

|2〉3 = |2, 1, 1〉 ε0(2)

|2〉2 = |2, 1,−1〉 ε0(2)

|2〉1 = a1|2, 1, 0〉+ a2
1√
2

[|2, 0, 0〉1 + |2, 0, 0〉2] ε0(2)

|2〉0 = 1√
2

[
|2, 0, 0〉0 − a2|2, 1, 0〉+ a1√

2
[|2, 0, 0〉1 + |2, 0, 0〉2]

]
ε0(2)− 2∆1(t, U)

where ε0(2) = 2εd+U(1+2m2
−−n2/2), and a2

1 = t2/∆2
1(t, U). There are several observations

to make. The Hartree-Fock ground state has an overlap with the correct ground state, however
incorrectly mixes triplet and singlet states, thus breaking the rotational symmetry of the model.
For this reason, its energy, in the large U limit, is 2εd − 2t2/U and not 2εd − 4t2/U as in the
exact case. For a F solution, the eigenvalues and eigenvectors are

|2〉l El(2)

|2〉5 = |2, 1,−1〉 ε+
0 (2) + 2Um+

|2〉4 = 1√
2

[
|2, 0, 0〉0 − 1√

2
[|2, 0, 0〉1 + |2, 0, 0〉2]

]
ε+

0 (2) + 2t

|2〉3 = 1√
2

[|2, 0, 0〉1 − |2, 0, 0〉2] ε+
0 (2)

|2〉2 = |2, 1, 0〉 ε+
0 (2)

|2〉1 = 1√
2

[
|2, 0, 0〉0 + 1√

2
[|2, 0, 0〉1 + |2, 0, 0〉2]

]
ε+

0 (2)− 2t

|2〉0 = |2, 1, 1〉 ε+
0 (2)− 2Um+

where ε+
0 (2) = 2εd + U(1 + 2m2

+ − n2/2). The ferromagnetic Hartree-Fock correction thus
yields an incorrect sequence of levels; the ground state for large U/t, indicated as |2〉0 in the
table, has no overlap with the exact ground state of the Hubbard dimer. It is, instead, one of
the states of the first excited triplet. The energy difference between F- and AF-magnetic ground
state is

EAF − EF ∼ −
2t2

U
,

which is indeed the exact energy difference between antiferromagnetic and ferromagnetic state.
It does not correspond, however, to the actual singlet-triplet excitation energy, Γ ∼ 4t2/U .
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3 The Anderson model

3.1 Introduction

A magnetic impurity in a metallic host can be described by the Anderson model

ĤA =
∑

σ

∑

k

εknkσ +
∑

σ

εf n̂fσ + Un̂f↑n̂f↓

︸ ︷︷ ︸
Ĥ0

+
∑

σ

∑

k

[
Vkc

†
kσcfσ + h.c.

]

︸ ︷︷ ︸
Ĥ1

,

where εf is the impurity level (occupied by nf ∼ 1 electrons), εk is the dispersion of the metallic
band, and Vk the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then εf − µ = −U/2. The Kondo regime is characterized by the
parameter values εf � µ and εf + U � µ and by a weak hybridization, i.e., the hybridization
width, which is the imaginary part of the hybridization function for the Anderson model,

∆(ε) = π
1

Nk

∑

k

|Vk|2δ(εk − ε)

is such that ∆(µ) � |µ − εf |, |µ − εf − U |. The Anderson model is important in this lec-
ture because it is used as quantum-impurity model in dynamical mean-field theory. Through
the Schrieffer-Wolff canonical transformation [10] one can map the Anderson model onto the
Kondo model, in which only the effective spin of the impurity enters

ĤK = Ĥ ′0 + ΓSf · sc(0) = Ĥ ′0 + ĤΓ , (8)

where

Γ ∼ −2|VkF |2
[

1

εf
− 1

εf + U

]
> 0

is the antiferromagnetic coupling arising from the hybridization, Sf the spin of the impurity
(Sf = 1/2), and sc(0) is the spin-density of the conduction band at the impurity site. For
convenience we set the Fermi energy to zero; kF is a k vector at the Fermi level. The Schrieffer-
Wolff canonical transformation works as follows. We introduce the operator Ŝ that transforms
the Hamiltonian Ĥ into ĤS

ĤS = eŜĤe−Ŝ.

We search for an operator Ŝ such that the transformed Hamiltonian ĤS has no terms of first
order in Vk. Let us first split the original Hamiltonian ĤA into two pieces: Ĥ0, the sum of all
terms except the hybridization term, and Ĥ1, the hybridization term. Let us choose Ŝ linear in
Vk and such that

[Ŝ, Ĥ0] = −Ĥ1. (9)
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From Eq. (9) one finds that the operator Ŝ is given by

Ŝ =
∑

kσ

[
1− n̂f−σ
εk − εf

+
n̂f−σ

εk − εf − U

]
Vkc

†
kσcfσ − h.c..

The transformed Hamiltonian is complicated, as can be seen from explicitly writing the series
for a transformation satisfying Eq. (9)

ĤS = Ĥ0 +
1

2

[
Ŝ, Ĥ1

]
+

1

3

[
Ŝ,
[
Ŝ, Ĥ1

] ]
+ . . . .

In the limit in which the hybridization strength Γ is small this series can, however, be truncated
at second order. The resulting Hamiltonian has the form

ĤS = Ĥ0 + Ĥ2,

with
Ĥ2 = ĤΓ + Ĥdir +∆Ĥ0 + Ĥch.

The first term is the exchange interaction

ĤΓ =
1

4

∑

kk′

Γkk′

[∑

σ1σ2

c†k′σ1〈σ1|σ̂|σ2〉ckσ2 ·
∑

σ3σ4

c†fσ3〈σ3|σ̂|σ4〉cfσ4

]

where

Γkk′ = V ∗k Vk′

[
1

εk − εf
+

1

εk′ − εf
+

1

U + εf − εk
+

1

U + εf − εk′

]
.

Let us assume that the coupling Γkk′ is weakly dependent on k and k′; then by setting |k| ∼ kF ,
and |k′| ∼ kF we recover the antiferromagnetic contact coupling in Eq. (8).
The second term is a potential-scattering interaction

Ĥdir =
∑

kk′

[
Akk′ −

1

4
Γkk′n̂f

] ∑

σ

ĉ†k′σ ĉkσ,

where

Akk′ =
1

2
V ∗k Vk′

[
1

εk − εf
+

1

εk′ − εf

]
.

This term is spin-independent, and thus does not play a relevant role in the Kondo effect. The
next term merely modifies the Ĥ0 term

∆Ĥ0 = −
∑

kσ

[
Akk −

1

2
Γkk n̂f−σ

]
n̂fσ.

Finally, the last term is a pair-hopping interaction, which changes the charge of the f site by
two electrons and thus can be neglected if nf ∼ 1

∆Ĥch = −1

4

∑

kk′σ

Γkk′c
†
k′−σc

†
kσcfσcf−σ + h.c..

The essential term in Ĥ2 is the exchange term ĤΓ , which is the one that yields the antiferro-
magnetic contact interaction in the Kondo Hamiltonian (8).
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3.1.1 Poor man’s scaling

We can understand the nature of the ground state of the Kondo model by using a simple ap-
proach due to Anderson called poor man’s scaling [13] and an argument due to Nozières. First
we divide the Hilbert space into a high- and a low-energy sector. We define as high-energy states
those with at least one electron or one hole at the top or bottom of the band; the corresponding
constraint for the high-energy electronic level εq is D′ < εq < D or −D < εq < −D′,
where D′ = D − δD. Next we introduce the operator P̂H , which projects onto the high-energy
states, and the operator P̂L = 1̂ − P̂H , which projects onto states with no electrons or holes in
the high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do
this we rewrite the original Kondo Hamiltonian,

Ĥ ≡ Ĥ ′0 + ĤΓ ,

as the energy-dependent operator Ĥ ′, which acts only in the low-energy sector

Ĥ ′ = P̂LĤP̂L + δĤL = ĤL + δĤL,

δĤL = P̂LĤP̂H

(
ω − P̂HĤP̂H

)−1

P̂HĤP̂L.

Here ĤL is the original Hamiltonian, however in the space in which the high-energy states
have been downfolded; the term δĤL is a correction due to the interaction between low-energy
and (downfolded) high-energy states. Up to this point, the operator Ĥ ′ has the same spectrum
as the original Hamiltonian. To make use of this expression, however, we have to introduce
approximations. Thus, let us calculate δĤL using many-body perturbation theory. The first
non-zero contribution is of second order in Γ

δĤ
(2)
L ∼ P̂LĤΓ P̂H

(
ω − P̂HĤ ′0P̂H

)−1

P̂HĤΓPL .

There are two types of processes that contribute at the second order, an electron and a hole
process, depending on whether the downfolded states have (at least) one electron or one hole in
the high-energy region. Let us consider the electron process. We set

P̂H ∼
∑

qσ

c†qσ|FS〉〈FS|cqσ,

P̂L ∼
∑

kσ

c†kσ|FS〉〈FS|ckσ ,

where |εk| < D′ and
|FS〉 =

∏

kσ

c†kσ|0〉

is the Fermi sea, i.e., the many-body state corresponding to the metallic conduction band. Thus

δH
(2)
L = −1

2
Γ 2
∑

q

1

ω − εq
Sf · sc(0) + . . .

∼ 1

4
ρ(εF )Γ 2 δD

D
Sf · sc(0) + . . . .
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We find an analogous contribution from the hole process. The correction δH(2)
L modifies the

parameter Γ of the Kondo Hamiltonian as follows

Γ → Γ ′ = Γ + δΓ,

and

δΓ

δ lnD
=

1

2
ρ(εF )Γ 2, (10)

where
δ lnD = δD/D.

It can be seen that equation (10) has two fixed points

(i) Γ = 0 (weak coupling)

(ii) Γ →∞ (strong coupling)

By solving the scaling equation we find

Γ ′ =
Γ

1 + 1
2
ρ(εF )Γ ln D′

D

.

If the original coupling Γ is antiferromagnetic, the renormalized coupling constant Γ ′ diverges
(i.e., it scales to the strong coupling fixed point) for

D′ = De−2/Γρ(εF ).

We can define this value of D′ as the Kondo energy

kBTK = De−2/Γρ(εF ). (11)

The divergence at kBTK indicates that at low energy the interaction between the spins dom-
inates, and therefore the system forms a singlet in which the impurity magnetic moment is
screened. The existence of this strong coupling fixed point is confirmed by the numerical renor-
malization group of Wilson [14]. Nozières [15] has used this conclusion to show that the low-
temperature behavior of the system must be of Fermi liquid type. His argument is the following.
For infinite coupling Γ ′ the impurity traps a conduction electron to form a singlet state. For a
finite but still very large Γ ′, any attempt at breaking the singlet will cost a very large energy.
Virtual excitations (into the nf = 0 or nf = 2 states and finally the nf = 1 triplet state) are,
however, possible and they yield an effective indirect interaction between the remaining con-
duction electrons surrounding the impurity. This is similar to the phonon-mediated attractive
interaction in metals. The indirect electron-electron coupling is weak and can be calculated
in perturbation theory (1/Γ expansion). Nozières has shown that, to first approximation, the
effective interaction is between electrons of opposite spins lying next to the impurity. It is of
order D4/Γ 3 and repulsive, hence it gives rise to a Fermi liquid behavior with enhanced sus-
ceptibility [15].
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3.2 The Anderson molecule

As in the case of the Hubbard model, it is useful to look at a simpler case, the Anderson
molecule. The corresponding Hamiltonian is given by

Ĥ = εf n̂1σ + εsn̂2σ − tA
∑

σ

[
c†1σc2σ + c†2σc1σ

]
+ Un̂1↑n̂1↓. (12)

Also this Hamiltonian commutes with the number of electron operator N̂ , with the total spin Ŝ
and with Ŝz. Thus we can express the states in the atomic limit as

|N,S, Sz〉 N S E(N)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εf

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 0〉 = 1√
2

[
c†1↑c

†
2↓ + c†1↓c

†
2↑

]
|0〉 2 1 εf + εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εf + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εf + εs

|2, 0, 0〉0 = 1√
2

[
c†1↑c

†
2↓ − c†1↓c†2↑

]
|0〉 2 0 εf + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εf + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εf + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εf + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εf + 2εs + U

Again, for N = 2 electrons, the hopping integrals only couple the S = 0 states. The Hamilto-
nian looks like

Ĥ2 =




εf + εs 0 0 0 0 0

0 εf + εs 0 0 0 0

0 0 εf + εs 0 0 0

0 0 0 εf + εs −
√

2tA −
√

2tA

0 0 0 −
√

2tA 2εf + U 0

0 0 0 −
√

2tA 0 2εs






DFT+U vs DFT+DMFT 9.25

The ground-state is a singlet, as in the Kondo problem. In order to calculate its energy, let us
downfold the doubly-occupied states. We find

E0(ω) = ω = εf + εs −
2t2A

2εf + U − ω −
2t2A

2εs − ω
.

If we set ω = εf + εs −∆E, and εs ∼ 0 we have the solution

∆E ∼ −2t2A

[
1

εf
− 1

εf + U

]
≡ Γ.

We can define ∆E as Kondo energy for the Anderson molecule. There is an important differ-
ence with respect to the real Kondo model, namely that in that case the Kondo energy, defined
in Eq. (11), decreases exponentially with the inverse of Γ . The non-perturbative nature of the
problem is thus not captured by the Anderson dimer.

3.3 Anderson molecule vs Hubbard dimer

Let us now compare the Anderson molecule and the Hubbard dimer. The non-interacting Green
function for the Anderson molecule can be obtained directly from the non-interacting part of
the Hamiltonian

G−1
σ (iνn) =

(
iνn − εf + µ tA

tA iνn − εs + µ

)−1

.

By downfolding the s orbital we obtain

Gff,σ(iνn) =
1

iνn − (εf − µ+ F(iνn))
,

where F(iνn) is the non-interacting hybridization function for the Anderson molecule

F(iνn) =
t2A

iνn − (εs − µ)
= iνn − εf + µ− G−1

ff,σ(iνn).

Using the Dyson equation, we can then write the interacting local Green function as

Gff,σ(iνn) =
1

iνn − (εf − µ+ F(iνn) +Σff (iνn))
. (13)

The impurity Green function (13) and the local Green functionGii,σ(iνn) of the Hubbard dimer,
Eq. (6), have a similar form. In view of this observation, it is legitimate to ask ourselves the
following question: Can we reproduce some properties of the Hubbard dimer via an Anderson
molecule in which εf = εd, while εs and tA are free parameters? In the limit U = 0, indeed,
setting εs = εd and tA = t the two models are identical. For finite U , in general, they strongly
differ. Let us request first that the occupation numbers is the same for the two models at half
filling. This can be achieved with the choice

εs = εf + U/2.
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For this value of εs, the eigenstates in the N = 2 electron sector are identical for the Hubbard
dimer and the Anderson model. We can then in addition demand that at half-filling the gap is
the same for the two models. This leads to the condition

1

2

√
U2 + 16t2A = −2t+

√
U2 + 16t2

which for small t/U has the solution tA ∼
√

3
4
U. The message is that we could in principle

use the Anderson molecule as an approximate version of the Hubbard dimer; choosing the
parameters of the first ad hoc, we can reproduce some properties of the second, for example
occupation number and gap. Could we go beyond that, and reproduce the full local Green
function of the Hubbard dimer via an Anderson-like molecule? Comparing the local Green
functions of the two models, we can see that it would be possible under, e.g., the following
conditions

• the non-local part of the self-energy of the Hubbard dimer is negligible

• the local self-energy Σl(iνn) equals Σff (iνn)

• the hybridization function F(iνn) equals F (iνn)

As we have seen, for the Hubbard dimer the non-local part of the self-energy is finite and, in
general, non-negligible; thus already the first condition is not fulfilled. For the lattice Hubbard
model it can be shown, however, that diagrammatic perturbation theory greatly simplifies in the
limit of infinite dimensions, and the self-energy becomes local [4,6]. This important conclusion
is exploited in the DMFT approach.

4 DMFT and DFT+DMFT

4.1 Method

Although apparently simple, the Hubbard Hamiltonian (1) cannot be solved exactly except in
special cases. For the Hubbard dimer defined via the Hamiltonian (4), we have seen that some
properties can be reproduced via the even simpler Anderson molecule, Hamiltonian (12), pro-
vided that the parameters of the latter are chosen ad hoc. Can we do the same for the general
Hubbard and Anderson model? This idea is at the core of dynamical mean-field theory. DMFT
maps the correlated lattice problem described by the Hubbard model onto a correlated single-
impurity problem [8, 4–6], e.g., an effective Anderson-like model. The latter can be solved
exactly, differently than the original Hubbard model; to solve it we have to use numerical tech-
niques, for example quantum Monte Carlo. The Anderson model is defined via either the hy-
bridization function F(iνn) or the bath Green function G(iνn) = (iνn − εd + µ − F(iνn))−1.
Solving it yields the impurity Green function G(iνn). From the Dyson equation we can calcu-
late the impurity self-energy

Σ(iνn) = G−1(iνn)−G−1(iνn).
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Fig. 7: DFT+DMFT self-consistency loop. The DFT Hamiltonian is built in the basis of Bloch
states obtained from localized Wannier functions, for example in the local-density approxima-
tion (LDA); this gives HLDA

k . The set {ic} labels the equivalent correlated sites inside the unit
cell. The local Green-function matrix is at first calculated using an initial guess for the self-
energy matrix. The bath Green-function matrix is then obtained via the Dyson equation and
used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC), yielding the impurity Green-function ma-
trix. Through the Dyson equation the self-energy is then obtained, and the procedure is repeated
till self-consistency is reached.

Next, we assume that non-local contributions to the self-energy of the Hubbard model can be
neglected, and that the local self-energy equals the impurity self-energy. Then, the local Green
function is given by

Gic,ic(iνn) =
1

Nk

∑

k

[iνn − εk −Σ(iνn)]−1 .

Here Nk is the number of k points. Self-consistency is reached when the impurity Green func-
tion G(iνn) equals the actual local Green function Gic,ic(iνn)

Gic,ic(iνn) = G(iνn).

The main approximation adopted is that the self-energy of the Hubbard model is local; as al-
ready mentioned, it can be shown that the self-energy becomes indeed local in the infinite-
coordination-number limit [4, 6]. The DMFT approach can be extended to material-specific
multi-orbital Hamiltonians. In this case we replace

εk → H0
k,
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where H0
k is the non-interacting Hamiltonian. Furthermore, the local Green function and self-

energy become matrices in spin-orbital space. Typically, to build minimal material-specific
models, we use density-functional theory, for example in the local-density approximation. First
we construct a basis of localized Wannier functions that span the relevant bands and then use
this basis to build material-specific Hubbard models. The combination of DMFT with density-
functional theory, sketched above in short, defines the DFT+DMFT approach. The DMFT
self-consistency loop is shown in Fig. 7, where it is assumed that quantum Monte Carlo (QMC)
is used as the quantum-impurity solver. It has to be pointed out that the computational time
needed to solve a multiband quantum-impurity models with QMC increases rapidly with the
number of degrees of freedom. How rapidly depends on the specific QMC flavor used. Thus,
in practice, only few correlated orbitals/sites can be treated fully with DMFT. Furthermore,
increasing the number of degrees of freedom, eventually leads to the infamous sign problem. It
is thus very important to properly build minimal material-specific models.

4.2 Model building in DFT+DMFT

In the Born-Oppenheimer approximation, the non-relativistic electronic Hamiltonian for an
ideal crystal, Ĥe, can be written as the sum of a one-electron Ĥ0 and an interaction part ĤU

Ĥe = Ĥ0 + ĤU .

Let us assume that we have constructed a complete basis of Wannier functions ψinσ(r). Then,
in this basis, the one-electron term is given by

Ĥ0 = −
∑

σ

∑

ii′

∑

nn′

ti,i
′

n,n′c
†
inσci′n′σ,

where c†inσ (cinσ) creates (destroys) an electron with spin σ in orbital n at site i. The on-site
(i = i′) terms yield the crystal-field matrix while the i 6= i′ contributions are the hopping
integrals. This part of the Hamiltonian describes the attraction between electrons and nuclei,
the latter forming an ideal lattice. The electron-electron repulsion ĤU is instead given by

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U iji′j′

np n′p′c
†
inσc

†
jpσ′cj′p′σ′ci′n′σ.

For a given system, material-specific Wannier functions can be obtained via DFT-based calcu-
lations [7, 8]. This immediately gives hopping integrals and crystal-field splittings

ti,i
′

n,n′ = −
∫
drψinσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′n′σ(r),

where vR(r) is the self-consistent DFT reference potential. The bare Coulomb integrals can be
expressed in terms of Wannier functions as well

U iji′j′

np n′p′ =

∫
dr1

∫
dr2 ψinσ(r1)ψjpσ′(r2)

1

|r1 − r2|
ψj′p′σ′(r2)ψi′n′σ(r1).
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Here we have to be careful, however. The DFT potential includes in vR(r) also Coulomb effects,
via the long-range Hartree term and the exchange-correlation contribution; if we use, e.g., LDA
Wannier functions as one-electron basis, to avoid double counting we have to subtract from ĤU

the effects already included in the LDA. This means that we have to replace

ĤU → ∆ĤU = ĤU − ĤDC,

where ĤDC is the double-counting correction. Unfortunately we do not know which correlation
effects are exactly included in the LDA, and therefore the exact expression of ĤDC is also
unknown. The remarkable successes of the LDA suggest, however, that in many materials the
LDA is overall a good approximation, and therefore, in those systems at least, the term∆ĤU can
be neglected. What about strongly-correlated materials? Even in correlated systems, most likely
the LDA works rather well for the delocalized electrons or in describing the average or the long-
range Coulomb effects. Thus one can think of separating the electrons into uncorrelated and
correlated; only for the latter we do take the correction ∆ĤU into account explicitly, assuming
furthermore that ∆ĤU is local or almost local [7]. Typically, correlated electrons are those that
partially retain their atomic character, e.g., those that originate from localized d and f shells;
for convenience here we assume that in a given system they stem from a single atomic shell l
(e.g., d for transition-metal oxides or f for heavy-fermion systems) and label their states with
the atomic quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

np,n′p′ ∼
{
U l
mαmβm′αm

′
β

iji′j′ = iiii npn′p′ ∈ l
0 iji′j′ 6= iiii npn′p′ /∈ l

and ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given by the static mean-field
contribution of Ĥ l

U . There is a drawback in this procedure, however. By splitting electrons
into correlated and uncorrelated we implicitly assume that the main effect of the latter is the
renormalization or screening of parameters for the former, in particular of the Coulomb inter-
action. The calculation of screening effects remains, unfortunately, a challenge to date. Ap-
proximate schemes are the constrained LDA and the constrained random-phase approximation
(RPA) methods [7, 8]. Nevertheless, we have now identified the general class of models for
strongly-correlated systems, namely the generalized Hubbard model

Ĥe = ĤLDA + Ĥ l
U − Ĥ l

DC. (14)

It is often convenient to integrate out or downfold empty and occupied states and work directly
with a set of Wannier functions spanning the correlated bands only. In this case we have

ĤLDA = −
∑

ii′

∑

σ

∑

mαm′α

ti,i
′

mα,m′α
c†imασci′m′ασ =

∑

k

∑

σ

∑

mαm′α

[
HLDA

k

]
mα,m′α

c†kmασckm′ασ,

where the right-hand side is rewritten using as a one-electron basis Bloch functions ψkmασ

constructed from the Wannier functions ψimασ. The local screened Coulomb interaction is
instead given by

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′βc
†
imασ

c†imβσ′cim′βσ′
cim′ασ.
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Fig. 8: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

5 Metal-insulator transition

5.1 Hartree-Fock method

We have seen in section 2 the Hartree-Fock approximation for the Hubbard dimer. Here we
want to extend it to the Hubbard model, and compare the description of the metal-insulator
transition from Hartree-Fock to the one that emerges from DMFT. We assume that the system
is at half-filling (n = 1) and exclude charge-disproportionation phenomena (ni = n). Let us
first consider the ferromagnetic HF solution. The HF approximation of the Coulomb term in
the Hubbard model, as we have seen, consist in replacing the Coulomb term in the Hamiltonian
with the expression given in Eq. (7). For the F solution we rewrite it as

ĤHF
U =U

∑

i

[
−2mŜiz +m2 +

1

4
n2

]
,

were m = (n̄i↑ − n̄i↓)/2 = m+. For the Hubbard model, it is convenient to Fourier transform
the Hamiltonian to k space. We then adopt as one-electron basis the Bloch states

Ψkσ(r) =
1√
Ns

∑

i

eik·Ti Ψiσ(r),

where Ψiσ(r) is a Wannier function with spin σ, Ti a lattice vector, and Ns the number of lattice
sites. The term ĤHF

U depends on the spin operator Ŝiz, which can be written in k space as

Ŝiz =
1

Nk

∑

kq

e−iq·Ti
1

2

∑

σ

σc†kσck+qσ

︸ ︷︷ ︸
Sz(k,k + q)

=
1

Nk

∑

kq

e−iq·TiŜz(k,k + q).

The term ĤHF
U has the same periodicity as the lattice and does not couple states with different

k vectors. Thus only Ŝz(0) contributes, and the Hamiltonian can be written as

Ĥ =
∑

σ

∑

k

εkn̂kσ + U
∑

k

[
−2m Ŝz(k,k) +m2 +

n2

4

]

︸ ︷︷ ︸
ĤHF
U = U

∑
i[−2mŜiz +m2 + 1

4
n2]

,
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Fig. 9: Doubling of the cell due to antiferromagnetic order and the corresponding folding
of the Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic
Q2 = (π/a, π/a, 0) vector is also shown.

where for simplicity we set εd = 0. The HF correction splits the bands with opposite spin,
leading to new one-electron eigenvalues, εkσ = εk + 1

2
U − σUm. The separation between

εk↑−µ and εk↓−µ is 2mU , as can be seen in Fig. 8. The system remains metallic for U smaller
than the bandwidth W . In the small-t/U limit and at half filling we can assume that the system
is a ferromagnetic insulator and m = 1/2. The total energy of the ground state is then

EF =
1

Nk

∑

k

[εkσ − µ] =
1

Nk

∑

k

[
εk −

1

2
U

]
= −1

2
U.

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 9. We rewrite the Bloch states of the
original lattice as

Ψkσ(r) =
1√
2

[
ΨAkσ(r) + ΨBkσ(r)

]
, Ψαkσ(r) =

1√
Nsα

∑

iα

eiT
α
i ·k Ψiασ(r).

Here A and B are the two sublattices with opposite spins and T A
i and TB

i are their lattice
vectors; α = A,B. We take as one-electron basis the two Bloch functions Ψkσ and Ψk+Q2σ,
where Q2 = (π/a, π/a, 0) is the vector associated with the antiferromagnetic instability and the
corresponding folding of the Brillouin zone, also shown in Fig. 9. Then, in HF approximation,
setting m− = m, the Coulomb interaction is given by

ĤHF
U =

∑

i∈A

[
−2mŜiz +m2 +

n2

4

]
+
∑

i∈B

[
+2mŜiz +m2 +

n2

4

]
.

This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

Ĥ =
∑

k

∑

σ

εkn̂kσ +
∑

k

∑

σ

εk+Q2n̂k+Q2σ + U
∑

k

[
−2m Ŝz(k,k + Q2) + 2m2 +

n2

2

]

︸ ︷︷ ︸
static mean-field correction ĤHF

U

.
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Fig. 10: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: εk. Red: εk+Q2 = −εk. The high-symmetry lines are those of the large BZ in Fig. 9.

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

εk± − µ =
1

2
(εk + εk+Q2)±

1

2

√
(εk − εk+Q2)

2 + 4(mU)2. (15)

A gap opens where the bands εk and εk+Q2 cross, e.g., at the X point of the original Brillouin
zone (Fig. 10). At half filling and for mU = 0 the Fermi level crosses the bands at the X point;
thus the system is an insulator for any finite value of mU . In the small-t/U limit we can assume
that m = 1/2 and expand the eigenvalues in powers of εk/U . For the occupied states we find

εk− − µ ∼ −
1

2
U − ε2

k

U
= −1

2
U − 4t2

U

(εk
2t

)2

.

The ground-state total energy for the antiferromagnetic supercell is then 2EAF with

EAF = −1

2
U − 4t2

U

1

Nk

∑

k

(εk
2t

)2

∼ −1

2
U − 4t2

U

so that the energy difference per pair of spins between ferro- and antiferro-magnetic state is

∆EHF = EHF
↑↑ − EHF

↑↓ =
2

n〈ii′〉
[EF − EAF] ∼ 1

2

4t2

U
∼ 1

2
Γ, (16)

which is similar to the result obtained from the Hubbard model in many-body second order
perturbation theory, Eq. (3). We notice here the same problems that we already observed for
the Hubbard dimer. Despite the similarity with the actual solution, the spectrum of the Hartree-
Fock Hamiltonian has very little to do with the spectrum of the Hubbard Hamiltonian at half
filling. If we restrict ourselves to the AF solution, the first excited state in HF is at an energy
∝ U rather than ∝ Γ ; thus, we cannot use a single HF calculation to understand the magnetic
excitation spectrum of a given system. It is more meaningful to use HF to compare the total
energy of different states and determine in this way, within HF, the ground state. Even in this
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Fig. 11: Idealized correlated crystal, schematically represented by a half-filled single-band
Hubbard chain. Sketch of the real-part of the self-energy in the insulating phase, as described
by Hartree-Fock (left-hand side) and DMFT (right-hand side). In HF the self-energy is a spin-
and site-dependent potential (Slater insulator). In DMFT it is spin- and site-independent; it is,
however, dynamical and its real part diverges at zero frequency (Mott insulator). The imaginary
part of the self-energy is always zero in Hartree-Fock (i.e., quasiparticles have infinite lifetimes).

case, however, as we have seen for the Hubbard dimer, HF suffers from spin contamination,
i.e., singlet states and Sz = 0 triplet states mix. The energy difference per bond EHF

↑↑ − EHF
↑↓ in

Eq. (16) only resembles the exact result; the exact energy difference between triplet and singlet
state in the Hubbard dimer is a factor of two larger

∆E = ES=1 − ES=0 = Γ.

Thus, overall, HF is not the ideal approach to determine the onset of magnetic phase transitions.
The major problem of the HF approximation is, however, the description of the metal-insulator
transition. In HF the metal-insulator transition is, as we have seen, intimately related to long-
range magnetic order, i.e., it is a Slater rather than a Mott transition. If we write the HF correc-
tion in the form of a self-energy, the latter is a real, static but spin- and site-dependent potential.
More specifically, in the AF case at half filling we have for two neighboring sites i and j

ΣHF
iσ (ω) = U

[
1

2
+m

]
, ΣHF

jσ (ω) = U

[
1

2
−m

]
.

This spatial structure of the self-energy is what opens the gap shown in Fig. 10. For m = 0 the
self-energy is a mere energy shift – the same for all sites and spins – and does not change the
band structure or the properties of the system, which is then a conventional metal.
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5.2 HF vs DMFT

The main difference between DMFT and Hartree-Fock is that in DMFT the self-energy is fre-
quency dependent but local (i.e., site- or k-independent), while in HF is static but site dependent.
Let us discuss the DMFT description of the metal-insulator transition. The poles of the Green
function, i.e., the solutions of the equation

ω − εk −Σ ′(ω) = 0 ,

where Σ ′(ω) is the real part of the self-energy, yield the excitations of our system. For small
U , in the Fermi liquid regime, the Green function has a pole at zero frequency. Around it, the
DMFT self-energy for the Hubbard model has, on the real axis, the following form

Σ(ω) ∼ 1

2
U +

(
1− 1

Z

)
ω − i

2τQP
,

where the positive dimensionless number Z yields the mass enhancement,

m∗

m
∼ 1

Z
= 1− dΣ ′(ω)

dω

∣∣∣∣
ω→0

and the positive parameter τQP is the quasiparticles lifetime

1

τQP
∼ −2ZΣ ′′(0) ∝ (πkBT )2 + ω2.

At higher frequency the self-energy yields additional poles corresponding to the Hubbard bands.
For large U , in the insulating regime, the central quasiparticle peak disappears, and only the
Hubbard bands remain. The self-energy has approximately the form

Σ(ω) ∼ rU2

4

[
1

ω
− iπδ(ω)− ifU(ω)

]
,

where fU(ω) is a positive function that is zero inside the gap and r is a model-specific renor-
malization factor. Hence, the real-part of the self-energy diverges at zero frequency, and there
are no well defined low-energy quasiparticles. Furthermore, since we are assuming that the
system is paramagnetic, the self-energy and the Green function are independent of spin. Thus,
in DMFT the gap opens via the divergence at zero frequency in the real-part of the self-energy;
this happens already in a single-site paramagnetic calculation, i.e., we do not have to assume
any long-range magnetic order. What is then the relation between HF and DMFT? As can be
understood from the discussion above, HF is not the large-U limit of DMFT. Since the HF
self-energy is frequency independent, HF quasi-particles have infinite lifetime and bare masses
(Z = 1 and m∗ = m). These quasi-particles exist both in the metallic and in the insulating
regime. It can be shown, however, that the DMFT self-energy reduces to the HF self-energy in
the large-frequency limit. The main differences between HF and DMFT are pictorially shown
in Fig. 11 for an idealized one-dimensional crystal.
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5.3 DFT+U vs DFT+DMFT

The DFT+U method was the first systematic attempt to construct and solve ab-initio many-body
Hamiltonians [3]. The model building part is very similar in DFT+DMFT and DFT+U , except
that the latter was developed already fully embedded in density-functional theory, and therefore
it might appear different at a first glance. In DFT+U the Coulomb interaction is treated in static
mean-field theory, and therefore, as we can now understand, true many-body effects, such as
the frequency dependence of the self-energy, are lost. Let us first assume that Hamiltonian (14)
has the simplified form

ĤLDA + Û l − Ĥ l
DC = ĤLDA +

1

2
U
∑

i

∑

mσ 6=m′σ′
n̂imσn̂im′σ′ −

1

2
U
∑

i

∑

mσ 6=m′σ′
〈n̂imσ〉〈n̂im′σ′〉

︸ ︷︷ ︸
mean-field energy, EMF

.

Next, we treat the Coulomb interaction in static mean-field via the HF decoupling; we approx-
imate the mean-field energy in the expression above by the Hartree energy, taking for conve-
nience as the energy zero the atomic chemical potential µAT = U/2

EMF = EH − µATN
l =

1

2
UN lN l − 1

2
UN l.

Here N l =
∑

mσ〈n̂imσ〉 is the number of heavy electrons per site. The mean-field Hamiltonian
takes then the form

Ĥ = ĤLDA +
∑

imσ

tσmn̂imσ, with tσm = U

(
1

2
− 〈n̂imσ〉

)
.

The levels of the correlated electrons are shifted by−U/2 if occupied and by U/2 if empty, like
in the atomic limit of the half-filled Hubbard model. A total energy functional which shifts the
LDA orbital energies in this way is

ELDA+U[n] = ELDA[n] +
∑

i

[
1

2
U

∑

mσ 6=m′σ′
〈n̂imσ〉〈n̂im′σ′〉 − EDC

]
,

where the double-counting term is

EDC =
1

2
UN l(N l − 1)

and ELDA[n] is the total energy obtained using the spin-polarized version of the local-density
approximation for the exchange-correlation functional. Indeed

εLDA+U
imσ =

∂ELDA+U

∂〈n̂imσ〉
= εLDA

imσ + U

(
1

2
− 〈n̂imσ〉

)
= εLDA

imσ + tσm.

More generally, the DFT+U functional is given by a form of the type

ELDA+U[n] = ELDA[n] +
1

2

∑

iσ

∑

mm′m′′m′′′

Umm′′m′m′′′〈n̂σimm′〉〈n̂-σ
im′′m′′′〉

+
1

2

∑

iσ

∑

mm′m′′m′′′

[Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σimm′〉〈n̂σim′′m′′′〉 − EDC,
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where 〈n̂σimm′〉 = 〈c†imσcim′σ〉 is the density matrix, and 〈n̂imσ〉 = 〈n̂σimm〉. One of the most
common recipes for the double-counting correction is the fully-localized limit

EDC =
1

2
UavgN

l(N l − 1)− 1

2
Javg

∑

σ

N l
σ(N l

σ − 1),

where

Uavg =
1

(2l + 1)2

∑

m,m′

Umm′mm′ ,

Uavg − Javg =
1

2l(2l + 1)

∑

m,m′

(Umm′mm′ − Umm′m′m).

The corresponding one-electron DFT+U Hamiltonian is

Ĥ = ĤLDA +
∑

imm′σ

tσmm′c
†
imσcim′σ, (17)

where

tσmm′ =
∑

iσ

∑

m′′m′′′

Umm′′m′m′′′〈n̂-σ
im′′m′′′〉+ [Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σim′′m′′′〉

−
[
Uavg

(
N l − 1

2

)
− Javg

(
N l
σ −

1

2

)]
δm,m′ .

The second common recipe for the double-counting correction is the around mean-field limit;
here the double-counting energy is the mean-field energy for equally occupied orbitals

EDC = UavgN
l
↑N

l
↓ +

2l

2(2l + 1)
(Uavg − Javg)

(
N2
↑ +N2

↓
)
.

The corresponding one-electron LDA+U Hamiltonian is (17) with

tσmm′ =
∑

iσ

∑

m′′m′′′

Umm′′m′m′′′〈n̂-σ
im′′m′′′〉+ [Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σim′′m′′′〉

−
[
Uavg

(
N l − nσ

)
− Javg

(
N l
σ − nσ

)]
δm,m′ ,

where nσ = Nl/(2(2l + 1)) is the average occupation per spin. In DFT+DMFT the same
recipes are used for the double-counting correction; this is reasonable because the source of
double-counting is the same in the two methods. In DFT+U, differently than in static mean-
field for model Hamiltonians, ĤLDA is obtained self-consistently. The DFT+U correction in
(17) modifies the occupations of the correlated sector with respect to LDA. If we assume that
LDA describes uncorrelated electrons sufficiently well, the readjustments in the uncorrelated
sector can be calculated by making the total charge density and the reference potential consis-
tent within the LDA (charge self-consistency), however with the constraint given by (17). Using



DFT+U vs DFT+DMFT 9.37

-4

 0

 4

 Z Γ  X  P  N 

LDA
 e

ne
rg

y 
(e

V)

 

 

 

 Z Γ  X  P  N 

LDA+HF

   
 

Fig. 12: Left: LDA eg band structure of cubic KCuF3 calculated using the experimental mag-
netic unit cell with four formula units. Right: Static mean-field band structure, calculated for
the experimental orbital and spin order. Parameters: U = 7 eV and J = 0.9 eV.

the same procedure, charge self-consistency can of course also be achieved in DFT+DMFT cal-
culations. A difficulty is, however, the basis. DFT+U calculations are usually not performed in
a Wannier basis. They are typically based on the identification of an atomic sphere, a region
of space in which correlated electrons are well described by atomic-like orbitals; the DFT+U
correction is determined through projections onto such atomic orbitals. Thus DFT+U results are
essentially dependent on the choice of the set of correlated electrons and their atomic spheres.
If the correlated electrons are well localized, however, they retain to a good extent their atomic
character in a solid. Thus, within reasonable sphere choices, the dependence on the sphere size
is less crucial than could be expected. Still, from a theoretical point of view, there is an inconsis-
tency in this procedure. Orbitals defined only within the atomic spheres do not form a complete
basis (even for the correlated sector), and thus they do not really yield a many-body Hamilto-
nian of the form (14). One of the successes of DFT+U is that it describes well the magnetic
ground-state of Mott insulators. The method has however all defects of the HF approximation;
it opens a gap by making long-range order, eigenvalues are real, and quasi-particles have an
infinite lifetime. One further example of the failure of DFT+U is the description of the super-
exchange driven orbital-order transition. Let us consider the insulating perovskite KCuF3 as
representative material. Instead of the full DFT+U calculation, for simplicity we discuss the
calculation for the eg-band Hubbard model describing the low-energy states and do not perform
any charge self-consistency. For this Hamiltonian the double-counting correction is a mere shift
of the chemical potential and can be neglected. The model has the form

Ĥ=−
∑

m,m′,i,i′,σ

ti,i
′

mm′c
†
imσcim′σ + U

∑

i m

n̂im↑n̂im↓ +
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′

−J
∑

i m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
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Fig. 13: Left: LDA band structure of KCuF3, eg bands. Center: corresponding LDA+DMFT
correlated band structure in the orbitally-ordered phase [16]. Dots: poles of the Green function.
Right: Self-energy matrix in the basis of the natural orbitals. Full lines: real part. Dotted lines:
imaginary part. Parameters: U = 7 eV, J = 0.9 eV.

where m,m′ = 3z2− r2, x2 − y2. The last two terms describe the pair-hopping (Ummm′m′ =

Jm,m′ for real harmonics, while for spherical harmonics Ummm′m′ = 0) and spin-flip processes.
The question to be answered is: Can orbital order arise spontaneously for the ideal perovskite
cubic structure in which the eg orbitals are degenerate? KCuF3 is, in nature, an insulator, but
in LDA it turns out to be metallic and exhibits no orbital order. This can be seen in Fig. 12. In
DFT+U , in order to open the gap, we have first to double the cell. The gap opens only in the
presence of both spin and orbital order. This means that there is no phase in which the system
is non-magnetic but has a gap and exhibits orbital order. We could paraphrase this result by
saying that,1 in DFT+U

TN = TOO = TMI

where TN , TOO, TMI are the critical temperature at which the magnetic, orbital and metal-
insulator transition occur. For the magnetic orbitally ordered phase, the resulting electronic
structure is shown in Fig. 12. Let us now discuss the solution of the same problem with
DFT+DMFT. With this approach we obtain an insulating orbitally ordered solution even in
the absence of long-range magnetic order. DMFT describes the correct sequence of phenomena

TN < TOO < TMI .

In Fig. 13 we show the DFT+DMFT paramagnetic eg correlated band structure of KCuF3 in
the orbitally ordered phase. We can compare these bands with the static mean-field antiferro-
magnetic band structure in Fig. 12. The DFT+DMFT band gap is significantly smaller. The
imaginary part of the self-energy, which is zero in static mean-field theory, makes the Hubbard
bands partly incoherent. The real part of the self-energy of the half-filled orbital (Fig. 13),
which in static mean-field theory does not depend on ω, diverges at low frequencies.

1This, of course, oversimplifies the discussion, since DFT+U is a T = 0 method.
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6 Conclusions

In this lecture we have discussed two methods that can be used for describing the metal-insulator
transition in Hubbard-like models. The first method is the Hartree-Fock approach. Here the
Coulomb interaction part of the Hubbard Hamiltonian is treated at the static mean-field level.
The occupation matrix is determined self-consistently. The Hartree-Fock self-energy is equiva-
lent to a site-, orbital-, and spin-dependent potential. The metal-insulator transition occurs via
an enlargement of the unit cell and a lowering of the symmetry. In this approach, all states have
infinite lifetime and the masses of electrons are not renormalized. This is a Slater-type tran-
sition. The Hartree-Fock method is the basis of the DFT+U approach. Numerically, DFT+U
calculations are as fast as standard DFT calculations. Furthermore, in DFT+U , the Hartree-Fock
correction is embedded in the DFT formalism via a modification of the total-energy functional.
One drawback is that typically the correction is for orbitals defined within an atomic sphere,
and not Wannier function. This means that, strictly speaking, we could not use them alone
to directly construct generalized Hubbard models. The second approach examined in this lec-
ture is DMFT, dynamical mean-field theory. In DMFT the Hubbard model is mapped onto a
quantum-impurity model, for example the Anderson Hamiltonian. The latter is solved exactly
and yields the impurity self-energy. The hybridization function of the Anderson Hamiltonian is
determined self-consistently, requiring the local Green function equals the impurity Green func-
tion. The central approximation is that the self-energy of the Hubbard model is assumed to be
local. This approximation becomes progressively better with increasing coordination number;
in infinite dimensions, indeed, the self-energy is local. In DMFT the metal-insulator transition
has a very different nature than in Hartree-Fock. It occurs already above the magnetic transition
and it happens via a divergence of the low-frequency self-energy. Switching on the Coulomb
interaction leads at first to the formation of heavy quasi-particles with renormalized masses and
finite life-times. Eventually, when U is above a critical value, the self-energy and the masses
diverge, and the spectral function exhibits a gap. The metal-insulator transition described via
DMFT is of Mott type. In DMFT we neglect the momentum-dependence of the self-energy. As
we have seen in the case of the Hubbard dimer, such effects can be important; in particular they
become important in low dimensions. Straightforward extensions of DMFT to include some
non-local effects are cluster approaches, in real and k space. The bottleneck of DMFT is, how-
ever, the quantum impurity solver, typically quantum Monte Carlo. The computational time can
increase very rapidly with the number of orbitals and sites, and eventually the infamous sign
problem appears. The model and the cluster size has thus to be carefully chosen. The DMFT
approach can be used also for realistic Hamiltonians built via density-functional theory. This is
the DFT+DMFT approach. In both DFT+U and DMFT+U , a double-counting correction has
to be subtracted, since part of the Coulomb effects are already included in the DFT functional,
for example the LDA.
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1 Introduction: DMFT and beyond

In this lecture we give an introduction to the theoretical description of strongly correlated mate-
rials based on non-local extensions of dynamical mean-field theory (DMFT). This scheme com-
bines the numerically exact DMFT solution of an effective impurity problem with an analytical
non-local perturbation scheme. The frequency-dependent effective-impurity DMFT problem is
solved within the continuous-time quantum Monte Carlo (CT-QMC) scheme [1]. Therefore the
perturbation theory needs to be formulated in the action path integral formalism. We give a
brief introduction to the path integral over fermionic Grassmann fields and formulate a general
scheme for expansion around the DMFT solution using a special dual space transformation. We
discuss a general way to include nonlocal correlations beyond DMFT for generalized Hubbard
models, based on the dual-fermion [2] and the dual-boson approach [3].
Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [4]. It is determined
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transforming the hopping parameters to k-space, where
we obtain the normal “band structure” εk with band width W . If, on the other hand, only the
local part of the Hamiltonian is kept, i.e., the Hubbard interaction HU with interaction strength
U and the local term of Ht is given by an on-site energy ε0 only, the diagonalization of the
Hamiltonian is trivial again and reduces to the diagonalization of a single “Hubbard atom”.
The great success of the DMFT approach is related to its ability to numerically interpolate
between these two limits [5]. For the half-filled Hubbard model on an infinite-dimensional
Bethe lattice DMFT gives the exact description of the Mott-transition [6] between the weak-
coupling (U/W � 1) metallic state and the strong-coupling (U/W � 1) insulating param-
agnetic state [7]. In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the
self-consistent solution of an effective Anderson impurity problem with a single interacting
Hubbard atom (interaction strength U ) in a non-interacting fermionic bath, which mimics the
rest of the crystal. This impurity model, which is fully determined by the local hybridization
function ∆ν on fermionic Matsubara frequencies iνn is solved by the numerically exact CT-
QMC scheme and exact the local Green function gν is obtained. The DMFT self-consistency
condition for the hybridization function equates the local part of the lattice Green function and
the impurity Green function ∑

k

(
g−1ν +∆ν − εk

)−1
= gν ,

which shows that DMFT minimizes, in local sense, the |εk −∆ν | distance.
We can now think about how to incorporate nonlocal correlations beyond DMFT: since the
Hubbard and the Anderson-impurity model share the same interaction part, we can think of the
Hubbard model as the impurity model plus a residual term ∝ εk −∆ν and treat this perturba-
tively. Since this term is frequency dependent we need a novel perturbation theory based on the
action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [8] of an optimal reference system, but with a crucial difference. Here,
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Fig. 1: Schematic representation of the reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by afermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

not an interacting homogeneous electron gas, but an effective impurity model, tailored to the
problem of strong correlations, serves as the reference system, see Fig. 1. Since at zeroth or-
der of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, we are
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path integral can also be used to formulate the DMFT itself [5, 9]. Now, the separation
of local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied to
the single-particle (εk − ∆ν)-term [2]. This provides us with a new action. Moreover, it is
formally possible to integrate-out the original local degrees of freedom and in this way generate
an effective action in the transformed, so-called dual-fermion representation [2]. Note that inte-
grating out the local degrees of freedom is not just a formal step but can be achieved in practice,
by solving the impurity problem within the numerically exact CT-QMC method.

The dual action consists of a bare dual propagator (the non-local part of the DMFT Green func-
tion) G̃0

k,ν = [g−1ν + ∆ν − εk]−1 − gν , and a local but frequency-dependent effective potential
related to scattering processes of two, three, and more dual particles on the impurity site. The
simplest two-particle dual potential coincides with the fully connected part of the screened im-
purity interaction vertex γωνν′ , which can be calculated with the impurity CT-QMC solver as a
function of bosonic (ω) and fermionic (ν, ν ′) Matsubara frequencies. Normally, correlations
between three particles on the DMFT impurity site are much weaker than two-particle corre-
lations and can be ignored. The same applies to higher-order terms. One can think of the
dual-fermion formalism as an expansion in the order of local multi-particle correlation func-
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tions. This means that “bare” interactions between dual fermions are related with the connected
part of the screened impurity vertex. Standard diagrammatic techniques can be applied for cal-
culations of the bold dual propagator G̃k,ν , which allows to obtain the nonlocal self-energy for
the original fermions [2] and to describe nonlocal correlations beyond the DMFT.
The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation (1). In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on average

over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by, e.g., ladder summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Path-integral for fermions

We first introduce a formalism of path-integration over fermionic fields [10]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [11]. Due to the Pauli
principle the many-body Hilbert space is spanned only by two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ†i operators
with anticommutation relations {ĉi, ĉ†j} = δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 (1)

ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 .

Moreover, the density operator and the Pauli principle take the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci:

ĉi |c〉 = ci |c〉 . (2)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from below and one can rewrite one of equation from Eq. (1) in the
following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the following multiplication rules [12]:

cicj = −cjci and c2i = 0 . (3)
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It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators

{c, ĉ} = {c, ĉ†} = 0 .

An arbitrary function of a Grassmann variable can be represented only by its first two Taylor
coefficients

f(c) = f0 + f1c . (4)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑

i ciĉ
†
i |0〉 . (5)

Let us show this for the simple case of one fermionic state:

ĉ |c〉 = ĉ(1− cĉ†) |0〉 = ĉ (|0〉 − c |1〉) = −ĉc |1〉 = c |0〉 = c |c〉 . (6)

One can also define a “left” coherent state 〈c| as the left-eigenstates of creations operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .

Note that new eigenvalues c∗i is just another Grassmann number and not a complex conjugate
of ci. The left coherent state can be obtained similarly to Eq. (5) as following

〈c| = 〈0| e−
∑

i ĉic
∗
i .

A general function of two Grassmann variables, analogously to Eq. (4), can be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (7)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with the “right-order” in such a derivative and remember the anti-
commutation rules, i.e.

∂

∂c2
c1c2 = −c1 .

For the case of a general two-variable function in Eq. (7) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(f01 − f11c∗) = −f11 = −

∂

∂c

∂

∂c∗
f(c∗, c) .

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists with the following rules [12]:∫

1 dc = 0 and
∫
c dc = 1
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which just show that integration over a Grassmann variable is equivalent to differentiation∫
... dc→ ∂

∂c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states is

〈c|c〉 = e
∑

i c
∗
i ci ,

which is easy to see for the case of one state

〈c|c〉 = (〈0| − 〈1| c∗) (|0〉 − c |1〉) = 1 + c∗c = ec
∗c.

An important property of coherent states is related to resolution of the unity operator∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉 〈c| = 1̂ =

∫∫
dc∗ dc

|c〉 〈c|
〈c|c〉

.

For simplicity we demonstrate this relation only for one fermion state:∫∫
dc∗ dc e−c

∗c |c〉 〈c| =
∫∫

dc∗ dc (1− c∗c) (|0〉 − c |1〉) (〈0| − 〈1| c∗) =

−
∫∫

dc∗ dc c∗c (|0〉 〈0|+ |1〉 〈1|) =
∑
n

|n〉 〈n| = 1̂ .

Matrix elements of normally ordered operators are very easy to calculate in a coherent basis by
operating of ĉ† to the states on the right and ĉ to the left ones

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 = H(c∗, c) e
∑

i c
∗
i ci (8)

Within the manifold of coherent states we can map the fermionic operators to functions of
Grassmann variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trance-formula” for arbitrary fermionic operators in normal
order (in one fermion notation):

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗ dc e−c

∗c 〈n| c〉 〈c| Ô |n〉 =

=

∫∫
dc∗ dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉 〈n| c〉 =
∫∫

dc∗ dc e−c
∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states comes from the commutation of the (c∗)
and (c) coherent states in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are now ready to write a partition function or the grand-canonical quantum ensemble with
H = Ĥ − µN̂ and inverse temperature β. We have to use the N -slices Trotter decomposition
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for the partition function in the interval [0, β) with imaginary times τn = n∆τ = nβ/N (n =

1, ..., N ), and insert N -times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗ dc e−c

∗c 〈−c| e−βH |c〉

=

∫
ΠN
n=1dc

∗
n dcn e

−∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
n dcn exp

(
−∆τ

N∑
n=1

[c∗n (cn − cn−1) /∆τ +H (c∗n, cn−1)]

)
.

In the continuum limit (N 7→ ∞)

∆τ

N∑
n=1

... 7→
∫ β

0

dτ ...

cn − cn−1
∆τ

7→ ∂τ

ΠN−1
n=0 dc

∗
n dcn 7→ D [c∗, c]

with antiperiodic boundary conditions for the fermionic Grassmann variables on an imaginary
time c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)

we end up with the standard path integral formulation of the quantum partition function

Z =

∫
D [c∗, c] exp

(
−
∫ β

0

dτ [c∗(τ)∂τc(τ) +H (c∗(τ), c(τ))]

)
. (9)

For later discussion we mention the Gaussian path integral for a non-interacting “quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J∗i and Ji one can calcu-
late analytically the following integral

Z0 [J
∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj+

∑N
i=1(c∗i Ji+J∗i ci) = det [M ] e−

∑N
i,j=1 J

∗
i (M

−1)ijJj .

To prove this relation one needs first to complete the square in order to eliminate J∗i and Ji and
expand the exponential function (only the N -th oder is non-zero):

e−
∑N

i,j=1 c
∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N

.

Finally, different permutations of c∗i and cj , and integration over the Grassmann variables gives
the detM -answer. As a small exercise we will check such an integral for first two many-particle
dimensions. For N = 1 it is trivial:∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c] (−c∗1M11c1) =M11 = detM



10.8 Alexander Lichtenstein

and for N = 2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

1

2!

∫
D [c∗c] (−c∗1M11c1 − c∗1M12c1 − c∗2M21c1 − c∗2M22c2)

2 =M11M22 −M12M21 = detM .

For the shift (change) of variables in the path integral one uses the following transformation
with unit Jacobian: c→ c−M−1J and

c∗Mc− c∗J − J∗c =
(
c∗ − J∗M−1)M (

c−M−1J
)
− J∗M−1J .

Using the Gaussian path integral it is very easy to calculate any correlation function of a non-
interaction action (Wick-theorem):〈

cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J
∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

=M−1
ij

〈cicjc∗kc∗l 〉0 =
1

Z0

δ4Z0 [J
∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

=M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions in imaginary time. The Gaussian path integral over
bosonic fields is equal to inverse of the M -matrix determinant [10].

3 Functional approach

We introduce a general functional approach which will cover the Density-Functional Theory
(DFT), Dynamical Mean-Field Theory (DMFT), and Baym-Kadanoff (BK) theories [9, 13].
Let us start from the full many–body Hamiltonian describing electrons moving in the periodic
external potential of ions V (r) with the chemical potential µ and interacting via the Coulomb
repulsion U(r− r′) = 1/|r− r′|. We use the atomic units ~ = m = e = 1. In the field-operator
representation the Hamiltonian has the form

H =
∑
σ

∫
dr ψ̂†σ(r)

(
−1

2
52 + V (r)− µ

)
ψ̂σ(r) (10)

+
1

2

∑
σσ′

∫
dr

∫
dr′ ψ̂†σ(r)ψ̂

†
σ′(r

′)U(r− r′) ψ̂σ′(r
′)ψ̂σ(r).

We can always use the single-particle orthonormal basis set in solids φn(r) for example Wannier
orbitals with a full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, σ), and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

φn(r) ĉn (11)

ψ̂†(r) =
∑
n

φ∗n(r) ĉ
†
n .
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=
c G- +

Fig. 2: Representation of the full two-particle Green function in terms trivial products of single-
particle Green functions and the full vertex function Γ .

Going from fermionic operators to Grassmann variables {c∗n, cn}, we can write the functional
integral representation of the partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D [c∗, c] e−S (12)

S =
∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3 , (13)

where the one- and two-electron matrix elements are defined as

t12 =

∫
drφ∗1(r)

(
−1

2
52 + V (r)− µ

)
φ2(r) (14)

U1234 =

∫
dr

∫
dr′ φ∗1(r)φ

∗
2(r
′)U(r− r′)φ3(r)φ4(r

′)

and we use the following short definition of the sum:∑
1

... ≡
∑
im

∫
dτ ... (15)

The one-electron Green function is defined via a simple non-zero correlation function for fermions

G12 = −〈c1c∗2〉S = − 1

Z

∫
D [c∗, c]c1c

∗
2 exp(−S). (16)

The main problem of strongly interacting electronic systems is related to the fact that the higher
order correlation functions do not separate into a product of lower order correlation functions.
For example the two-particle Green function or generalized susceptibility (X) is defined in the
following form [14]

X1234 = 〈c1c2c∗3c∗4〉S =
1

Z

∫
D[c∗, c] c1c2c∗3c∗4 exp(−S), (17)

and can be expressed graphically through the Green functions and the full vertex function Γ1234

[15] (see Fig. (2))

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 . (18)

In the case of non-interacting electron systems, the high-order correlations X are reduced to the
antisymmetrized product of lower-order correlationsG, which would correspond to the first two
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terms (Hartree and Fock like), with the vertex function Γ in Eq. (18) equal to zero. In strongly
correlated electron systems the last part with the vertex is dominant and even diverges close to
electronic phase transitions.
The Baym–Kadanoff functional [13] gives the one–particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym–Kadanoff) we modify the action by introducing a source term J in the following form

S[J ] = S +
∑
12

c∗1J12c2 . (19)

The partition function Z, or equivalently the free energy of the system F, then becomes a func-
tional of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D [c∗, c]e−S

′[J ] . (20)

Variation with respect to this source function gives all correlation functions, for example the
Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (21)

If we use the definition of the generalized susceptibility as the second variation of the F [J ]
functional instead of Z[J ] we will get only the connected part of correlation the X-function
which is represented by the last term in Eq. (18).
The Baym–Kadanoff functional can be obtained by Legendre transform from variable J to G

F [G] = F [J ]− Tr (JG) . (22)

We can use the standard decomposition of the free energy F into the single particle part and the
correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (23)

wereΣ is single particle self-energy and Φ[G] is the correlated part of the Baym–Kadanoff func-
tional that is equal to the sum of all two-particle irreducible diagrams. In the stationary point
this functional gives the free energy of the system. In practice, Φ[G] is not known for interacting
electron systems, which is similar to the problem in the density functional theory. Moreover,
this general functional approach reduces to density-functional theory, if one only uses the diag-
onal part in space-time of the Green function, which corresponds to the one-electron density

n1 = G12 δ12 = 〈c∗1c1〉S , (24)

with the Kohn-Sham potential VKS = Vext+VH+Vxc playing the role of the “constrained field”
J . Here Vext is external potential and VH is a Hartree potential. In principle, the exchange-
correlation potential Vxc is known only for the homogeneous electron gas, therefore in all prac-
tical applications one uses a so-called local density approximation to DFT. In this case the DFT
functional defined in the following way

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] , (25)
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where T0 is the kinetic energy of the non-interacting system. Finally, if we define the total
electron density as

n(r) =
∑
i

φ∗i (r)φi(r)

the local density approximation to DFT reads

T0[n] + Vext[n] =
∑
i

∫
drφ∗i (r)

(
−1

2
52 + Vext(r)− µ

)
φi(r) (26)

VH [n] =
1

2

∫
drn(r)U(r− r′)n(r′) (27)

Vxc[n] =

∫
drn(r)ε[n(r)] , (28)

where ε(n) is the exchange-correlation energy density for homogeneous electron gas, which
can be calculated with quantum Monte Carlo [16].
In the DFT scheme we lose information about the non-equal-time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourself only to the ground state energy of the many-electron system. Moreover, we also
lose also information about all collective excitations in solids, such as plasmons or magnons,
which can be obtained from the generalized susceptibility or from the second variation of the
free-energy.
One can probably find the Baym–Kadanoff interacting potential Φ[G] for simple lattice models
using the quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice sim-
ulations this numerically exact solution of electronic correlations is not possible. On the other
hand, one can obtain the solution of local interacting quantum problems in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of the many electron vertex and obtain in a self-consistent way an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [2] which help us to separate the local fluctuations in a many-body system and
show a perturbative way to go beyond the DMFT approximations.

4 Dual Fermion approach for non-local correlations

We will consider here the simplest local Hubbard-like interaction vertex U . A generalization
to the multi-orbital case is straightforward [17]. All equations will be written in matrix form,
giving the idea of how to generalize a DF scheme to the multiorbital case. The general strategy
for separating the local and non-local correlation effects is associated with the introduction of
auxiliary fermionic fields that couple separated local correlated impurities models back to the
lattice [2].
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We rewrite corresponding original action from Eq. (12) in Matsubara space as a sum of the
non-local one-electron contribution with energy spectrum εk and the local interaction part U :

S[c∗, c] = −
∑
kνσ

c∗kνσ(iν + µ− εk) ckνσ +
∑
i

U n∗i↑ni↓ , (29)

where ν = (2n + 1)π/β, (ω = 2nπ/β), n = 0,±1, ... are the fermionic (bosonic) Matsubara
frequencies, β is inverse temperature, and µ is a chemical potential. The index i labels the
lattice sites, m refers to different orbitals, σ is the spin projection, and the k-vectors are quasi-
momenta. In order to keep the notation simple, it is useful to introduce the combined index
α ≡ {m,σ}. In the following, translational invariance is assumed for simplicity, although a
real space formulation is straightforward. The local part of the action, SU, may contain any
type of local multi orbital interaction.
In order to formulate an expansion around the best possible auxiliary local action, a quantum
impurity problem is introduced

Sloc[c
∗, c] = −

∑
ν ,σ

c∗νσ (iν + µ−∆ν) cνσ + U n∗i↑ni↓ , (30)

where∆ν is the effective hybridization matrix describing the coupling of the impurity to an aux-
iliary fermionic bath. The main motivation for rewriting the lattice action in terms of a quantum
impurity model is that such a reference system can be solved numerically exactly for an arbi-
trary hybridization function with CT-QMC methods [1]. Using the locality of the hybridization
function ∆ν , the lattice action Eq. (29) can be rewritten exactly in terms of individual impurity
models and the effective one-electron coupling (εk −∆ν) between different impurities

S[c∗, c] =
∑
i

Sloc[c
∗
i , ci] +

∑
kνσ

c∗kνσ (εk −∆ν) ckνσ . (31)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to the
second term in Eq. (31) is very hard to treat, even perturbatively, since the impurity action is
non-Gaussian and on cannot use of Wick’s theorem. The main idea of a dual fermion transfor-
mation is the change of variables from (c∗, c) to weakly correlated Grassmann fields (f ∗, f) in
the path integral representation of the partition function, Eq. (12), followed by a simple pertur-
bation treatment. The new variables are introduced through the following Hubbard-Stratonovich
transformation

exp
(
c∗αbα(M

−1)αβbβcβ
)
=

1

detM

∫
D[f ∗, f ] exp

(
−f ∗αMαβfβ − c∗αbαfα − f ∗βbβcβ

)
. (32)

In order to transform the exponential of the bilinear term in Eq. (31), we choose the matrix Mαβ

and scaling function bα in the following way [2]

M = g−1ν (∆ν − εk)−1 g−1ν , and b = g−1ν , (33)

where gν is the local, interacting Green function of the impurity problem:

gν = −〈cνc∗ν〉loc = −
1

Zloc

∫
D[c∗, c] c c∗ exp

(
− Sloc[c

∗, c]
)
. (34)
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Fig. 3: From the lattice model (left) to the real-space DMFT (middle) and following up with the
non-local DF perturbation (right)

With this choice, the lattice action transforms to

S[c∗, c, f ∗, f ] =
∑
i

Sisite +
∑
νkσ

f ∗νkσ[g
−1
ν (∆ν − εk)−1 g−1ν ]fνkσ . (35)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Sisite[c
∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑
σ

f ∗iνσ g
−1
ν ciνσ + c∗iνσ g

−1
ν fiνσ . (36)

Since gω is local, the sum over all states labeled by k could be replaced by the equivalent
summation over all sites by a change of basis in the second term. The crucial point is that
the coupling to the auxiliary fermions is purely local and Ssite decomposes into a sum of local
terms. The lattice fermions can therefore be integrated out from Ssite for each site i separately.
This completes the change of variables:∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) = Zloc exp

(
−
∑
ν σ

f ∗iνσ g
−1
ν fiνσ − Vi[f ∗i , fi]

)
. (37)

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].
The choice (33) ensures a particularly simple form of this potential. An explicit expression
is found by expanding both sides of Eq. (37) and equating the resulting expressions order by
order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex:

V [f ∗, f ] =
1

4
Σ{νσ}γ1234f

∗
1 f
∗
2 f4f3 , (38)

where the combined index 1 ≡ {νσ} comprises frequency, spin, and orbital degrees of freedom.
γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity
problem. It is given by

γ1234 = g−11 g−12

[
χ1234 − χ0

1234

]
g−13 g−14 , (39)
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Fig. 4: Diagrams contributing to the dual self-energy Σ̃

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c∗3c∗4〉loc =
1

Zloc

∫
D[c∗, c] c1c2c∗3c∗4 exp

(
− Sloc[c

∗, c]
)
. (40)

The disconnected part reads

χ0
1234 = g1g2(δ14δ23 − δ13δ24). (41)

The single- and two-particle Green functions can be calculated using the CT-QMC algorithms [1].
After integrating out the lattice fermions, the dual action depends on the new variables only

S̃[f ∗, f ] = −
∑
νkσ

f ∗νkσ[G̃
0
ω(k)]

−1fνkσ +
∑
i

Vi[f
∗
i , fi] (42)

and the bare dual Green function is found to be

G̃0
ν(k) =

(
g−1ν +∆ν − εk

)−1 − gν , (43)

which involves the local Green function gν of the impurity model.
Up to now, Eqs. (42) and (43) are merely a reformulation of the original problem. In practice,
approximate solutions are constructed by treating the dual problem perturbatively. Several di-
agrams that contribute to the dual self-energy are shown in Fig. 4. These are constructed from
the impurity vertices and the dual Green functions as lines. The first diagram is purely local,
while higher orders contain nonlocal contributions, e.g. the second diagram in Fig. 4. In prac-
tice, approximations to the self-energy are constructed in terms of skeleton diagrams. The lines
shown in Fig. 4 are therefore understood to be fully dressed propagators. The use of skeleton
diagrams is necessary to ensure the resulting theory to be conserving in the Baym-Kadanoff
sense [13], i.e., to fulfill the basic conservation laws for energy, momentum, spin, and particle
number. Finally, we can understand the general dual fermion scheme (Fig. 5) as a two-step
process for the k-dependent self-energy. First we need to find an optimal hybridization func-
tion ∆ν which defines an effective impurity model. Using the numerically exact Monte-Carlo
impurity solver we can obtained the local Green function gν which, together with the hopping
parameters, defines the non-local dual Green function G̃0

ν(k) and interaction vertex γων,ν′ which
can be used in renormalized dual perturbation theory [2]. The hybridization function ∆, which
so far has not been specified, allows to optimize the starting point of the perturbation theory and
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Fig. 5: General view of the dual-fermion approach: An effective impurity model is defined by
the hybridization function ∆ν . It can be exactly solved within the CT-QMC scheme, resulting
in a single particle Green function gν and a full connected vertex γων,ν′ with two fermionic (ν)
and one bosonic (ω) Matsubara frequencies. Based on this local information one can perform
an efficient lattice perturbation expansion for the dual Green function G̃0

ν(k).

should be chosen in an optimal way. The condition of the first diagram (Fig. 4) as well as all
local diagrams with higher order correlation functions in the expansion of the dual self-energy
to be equal to zero at all frequencies, fixes the hybridization. This eliminates the leading order
diagrammatic correction to the self-energy and establishes a connection to DMFT, which can
be seen as follows: Since the γ vertex is local, this condition amounts to demanding that the
local part of the dual Green function be zero∑

k

G̃ν(k) = 0 . (44)

The simplest nontrivial approximation is obtained by taking the leading-order correction, the
first diagram in Fig. 4, evaluated with the bare dual propagator (43). Using the expression for
the DMFT Green function [5]

GDMFT
ν (k) =

(
g−1ν +∆ν − εk

)−1
, (45)

it immediately follows that (44) evaluated with the bare dual Green function is exactly equiva-
lent to the DMFT self-consistency condition for ∆ω∑

k

GDMFT
ν (k) = gν . (46)

In the limit of infinitely large lattice connectivity the DMFT scheme becomes exact with the
local self-energy [5]. The DMFT approximation for real lattice models appears to be one of the
most successful many body schemes for realistic multi orbital systems [9]. Since it involves
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the exact solution of the many-body multi-orbital impurity model Eq. (34) all local quantum
fluctuations of different orbitals, spins, and charges are included in this scheme.
When diagrammatic corrections are taken into account and the first diagram is evaluated with
the dressed propagator G̃, the condition (44) will in general be violated. It can be enforced
by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite
partial series of all local diagrams starting from the first term in Fig. 4. These contributions are
effectively absorbed into the impurity problem. Note that such an expansion is not one around
DMFT, but rather around an optimized impurity problem.
The only difference between a DMFT and a DF calculation are the diagrammatic corrections
which are included into the dual Green function. To this end, the local impurity vertex γ has
to be calculated in addition to the Green function in the impurity solver step. Numerically, the
self-energy is obtained in terms of skeleton diagrams by performing a self-consistent renormal-
ization as described below. Once an approximate dual self-energy is found, the result may be
transformed back to a physical result in terms of lattice fermions using exact relations.
The action (42) allows for a Feynman-type diagrammatic expansion in powers of the dual po-
tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [14].
An extension of these rules to include generic n-particle interaction vertices is straightforward.
Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-
tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As
simplest example we can write schematically the first self-energy correction of the diagram in
Fig. 4 which contains a single closed loop

Σ̃
(1)
12 = −T

∑
34

γ1324G̃
loc
43 , (47)

where G̃loc = (1/Nk)
∑

k G̃(k) denotes the local part of the dual Green function. The second-
order contribution represented in Fig. 4 contains two equivalent lines and one closed loop and
hence is k-dependent

Σ̃
(2)
12 (k) = −

1

2

(
T

Nk

)2∑
k1k2

∑
345678

γ1345G̃57(k1)G̃83(k2)G̃46(k+ k2 − k1)γ6728 . (48)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform. After calculating the best possible
series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function
matrix for the original fermions using the following simple transformation [3]

Gν(k) =

[(
gν + gνΣ̃ν(k)gν

)−1
+∆ν − εk

]−1
, (49)

which is a useful generalization of the DMFT Green function (see Eq. (45)) to include the non-
local correlation effects. One can see that the dual self-energy plays the role of an effective
T -matrix for the exactly solvable local problem.
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5 Dual Boson approach for non-local interactions

Many important effects in the physics of correlated systems based on non-local interactions in
solids are related with the consistent description of collective excitation (plasmons, magnons,
orbitons etc.) which can strongly affect the original electronic degrees of freedom. Using the
first-principles constrained-RPA scheme [18] one can obtained non-local interaction parameters
for the correlated subspace screened by broad-bands of conducting electrons. The simplest
effective Hamiltonian for such an extended Hubbard model reads

S = −
∑
kνσ

c†kνσ(iν + µ− εk) ckνσ +
1

2

∑
qω

Uqn
∗
qωnqω . (50)

where the Grassmann variables c†qν (cqν) correspond to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ν, and we skip the spin-indices for
simplicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-
local long-range Coulomb interactions, respectively. The screened Coulomb interaction can be
a frequency dependent Uqω as in c-RPA, which does not produce any problems as one can see
later. For simplicity we include only charge fluctuations which are given by the complex bosonic
variable nqω =

∑
kνσ(c

∗
kνck+q,ν+ω − 〈c∗kνckν〉δqω). We do not include exchange interactions in

the Hamiltonian as well as local spin degrees of freedom, which can be done with some caution
for vector spin boson case [19]. Moreover we will consider only a one-band model but keep
the matrix form of all equations for simple generalization to cases of few orbitals (bands). The
chemical potential µ defines the average number of electrons per site. Finally, εk is the Fourier
transform of the hopping integral tij between different sites.
The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. In addition to the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for the consideration of strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions S(i)

ref defined by hybridization function ∆ν with screened local interaction U→ and a
non-local remaining part S̃

S =
∑
i

S
(i)
ref +∆S, (51)

which are given by the following explicit relations

Sref = −
∑
νσ

c†νσ(iν + µ−∆ν)cνσ +
1

2

∑
ω

Uω ρ∗ωρω ,

∆S =
∑
νkσ

c†νkσ(εk −∆ν)cνkσ +
1

2

∑
qω

(Uq − Uω) ρ∗qωρqω . (52)

The local bare interaction of the impurity model is then equal to Uω = Uω +Λω and it is easy to
see that Uq−Uω = Vq−Λω which makes the method independent of the U–V separation. The
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Fig. 6: General view on dual-fermion approach: effective impurity model defined by fermionic
hybridization function∆ν and bosonic screened interactions Λω. It can be exactly solved within
CT-QMC scheme, resulting in electronic local Green function gν and bosonic local susceptibil-
ity χω as well as full connected vertex γων,ν′ and electron-boson vertex λνω. Based on this local
information one can performed an efficient lattice perturbation expansion for the dual Green
function G̃kν and dual boson propagator W̃qω.

impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green function gν , susceptibility χω, and renormalized interactionWω as

gν = −〈cνc∗ν〉imp ,

χω = −〈ρωρ∗ω〉imp , (53)

Wω = Uω + UωχωUω ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of an efficient perturbation scheme for∆S in the action
formalism. In addition to the fermionic Hubbard-Stratonovich transformation Eq. (32) on the
first term (εk − ∆ν) c

†
νkσcνkσ, which give the dual fermion variables f †νkσ, fνkσ, we perform a

bosonic transformation√
det[Λω − Vq]e

1
2

∑
qω
ρ∗qω [Λω−Vq]ρqω

=

∫
D[φ] e

− 1
2

∑
qω
{φ∗qω [Λω−Vq]−1φqω+ρ

∗
ωφω+φ

∗
ωρω}

, (54)

and we use that Uω − Uq = Λω − Vq. Note that caution should be taken for convergence
problem of the integral over the new dual variable φ̃which does not affect the final equations [3].
Rescaling the bosonic fields φqω as φqωα

−1
ω and integrating out the original degrees of freedom

c† and c we arrive at the dual action

S̃ = −
∑
kν

f ∗kνG̃
−1
0 fkν −

1

2

∑
qω

φ∗qωW̃
−1
0 φqω + Ṽ (55)
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with the bare dual fermion-boson propagators

G̃0 = (G−1ref,ν +∆ν − εk)−1 − gν = GE − gν , (56)

W̃0 = α−1ω
(
[Uq − Uω)−1 − χω

]−1
α−1ω = WE −Wω , (57)

and the dual interaction term Ṽ . The explicit form of the dual interaction can be obtained by
expanding the c† and c dependent part of partition function in an infinite series and integrating
out these degrees of freedom. The two first terms in Ṽ are given by

Ṽ =
1

4

∑
νν′ω

γνν′ω f
∗
ν f
∗
ν′fν+ωfν′−ω +

∑
νω

(λνω f
∗
ν fν+ωφ

∗
ω + h.c.). (58)

We define the three-point electron-boson vertex λνω in the following way

λνω = g−1ν g−1ν+ωα
−1
ω 〈cνc∗ν+ωρω〉loc , (59)

where αω = Wω/Uω = (1 + Uωχω) is the local renormalization factor. The four-point vertex
function γνν′ω can be determined similarly to the dual fermion section. Then, the dual Green
function G̃kν = −〈fkνf ∗kν〉 and renormalized dual interaction W̃qω = −

〈
φqωφ

∗
qω

〉
, as well as

dual self-energy Σ̃kν and polarization operator Π̃qω, can be obtained diagrammatically [20].
These dual Green function have the following relation

G̃−1kν = G̃−10 − Σ̃kν , (60)

W̃−1
qω = W̃−1

0 − Π̃qω . (61)

Finally, the Green function Gkν and renormalized interaction Wqω of the original model can be
exactly expressed in terms of dual quantities as

G−1kν = G−1E −Σ ′kν , (62)

W−1
qω = W−1

E −Π
′

qω , (63)

where the non-local self-energy and polarization operator introduced beyond EDMFT are

Σ
′

kν =
Σ̃kν

1 + gνΣ̃kν

, (64)

Π
′

qω =
Π̃qω

1 +WωΠ̃qω

. (65)

The dual-boson self-consistency conditions reads [3]∑
k

Gkν = gν , (66)∑
q

Wqω =Wω . (67)

The DB relations up to this point are exact and derived without any approximations. It is
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Fig. 7: Second order approximation for dual-boson scheme with triangular electron-boson
vertex (λνω), dual-boson wavy line (W̃qω) and dual-fermion directed line (G̃kν): (Left) Electron
self-energy (Σ̃kν), (Right) Boson self-energy (Π̃qω).

worth mentioning, that the non-interacting dual theory (Ṽ = 0) is equivalent to EDMFT. How-
ever, even in the weakly-interacting limit of the original model, U → 0, the fermion-boson
vertex λνω is non-zero. Thus, the Dual Boson formalism explicitly shows, that corrections to
EDMFT are not negligible. Therefore, the dynamical mean-field level is insufficient for describ-
ing non-local bosonic excitations, because the interactions between the non-local fermionic and
bosonic degrees of freedom are always relevant. The simplest approximation for Σ̃kν and Π̃qω

related with second oder perturbation theory are presented in (Fig. 7). In principle one can
used so-called bold diagrammatic Monte Carlo method to perform the summation of the most
important contributions to the dual fermion and boson self-energy, similar to first attempts for
dual-fermion action [21].

6 Numerical results

We present now two examples of recent calculations using dual-fermion and dual-boson meth-
ods. First, we are able to conduct a realistic dual-fermion study of the interaction of electrons
and paramagnons in the strongly correlated sodium cobaltate NaxCoO2 close to the in-plane
ferromagnetic order at x = 0.7 [22]. Sodium cobaltate consists of triangular CoO2 planes,
subject to strong electronic correlations, that are held together by Na ions in between. Using a
tailored one-band description of the low-energy cobaltate physics, we derived a realistic DFT-
based dispersion, applied a proper Hubbard U = 5 eV and solved for the local and nonlocal
correlations by the dual-fermion framework (see [22] for details). And indeed, for x = 0.7 an
additional anti-bound state is detected close to Γ , split off from the renormalized quasiparticle
dispersion (Fig. 8a). In terms of physics, it corresponds to the interaction of renormalized elec-
trons with strong ferromagnetic fluctuations. The resulting emerging excitation is a so-called
spin polaron [22]. Hence besides refinements of the DMFT-determined electronic spectrum,
the inclusion of nonlocal correlations may be important to reveal more complex excitations
with possible relevance for future materials science.
The density of states at x = 0.67 (Fig. 8b), shows a striking difference between DMFT and
DF results. In DMFT, the quasiparticle peak is considerably larger and the QP weight Z is
significantly enhanced compared to the case of low doping. This is expected, since Z ≈ 1

should only hold far away from half-filling towards the opposite (band-insulating) endpoint
x = 1. We further see that the upper Hubbard band has completely dissolved in the DMFT
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Fig. 8: The NaxCoO2 system close to x = 0.7 for electron-paramagnon interactions. (Left) Ef-
fective one-band dispersion as obtained by the dual-fermion method. (Right) Spectral function
in the DMFT and DB scheme. Crosses mark a model spin-polaron dispersion (from [22]).

perspective. In DF, on the contrary, the QP peak close to Γ is strongly renormalized. The
spectral function additionally exhibits a broad sideband excitation at ω ∼ 0.3 − 0.4 eV. By
restricting the DF calculation to the charge channel only, this sideband excitation disappears.
This is a strong indication that this excitation is of magnetic origin.

Despite the successes ofGW+EDMFT [23,24], the method does not provide a completely valid
description of plasmons. This is due to an inconsistent treatment of the single and two-particle

 0

 1

-3 -2 -1  0  1  2  3
E

D
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U∗=2.1

U∗=2.6

Fig. 9: Inverse dielectric function (Left) and density of states (Right) of the extended 2d Hubbard
model with long-range Coulomb interaction as a function of momentum and energy, for three
different values of the effective on-site interaction U∗ (from [25]).
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properties, which breaks local charge conservation and gauge invariance. The problem gen-
erally occurs when working with renormalized Green functions [13], but does not include the
vertex corrections. In the case of the local, frequency-dependent self-energy of EDMFT, ver-
tex corrections from a local but frequency dependent irreducible vertex are necessary to fulfill
the Ward identity. In the dual boson approach, they can be included via non-local polarization
corrections, which are constructed diagrammatically. The resulting polarization vanishes in the
long wavelength limit at finite frequencies, as required by local charge conservation [3, 20].
It therefore becomes possible to study the effect of strong correlations on the plasmon spec-
tra. We showed that the two-particle excitations exhibit both renormalization of the dispersion
and spectral weight transfer [25]. Fig. 9 shows the inverse dielectric function −Im ε−1q (ω) of
2d surface plasmons in the presence of a long-range interaction U(q) = U + Vq. For weak
interactions one observes a broad particle-hole continuum and the expected

√
q dependence

of the 2d plasmon dispersion at small q. As the interaction increases, the plasmon dispersion
ω2
p(q) ≈ αV0q is renormalized (α is decreased). Two branches are clearly visible in the spec-

trum. The lower branch can be associated with particle-hole excitations between a Hubbard
band and the quasiparticle peak, while the upper branch stems from excitations between the
Hubbard bands. Spectral weight is transferred from the lower to the upper branch as the inter-
action increases. Above a critical effective onsite interaction of U∗ ∼ 2.4 the system is a Mott
insulator. In this state a two-particle excitation corresponds to the creation of a doublon and a
holon. Such an excitation is highly localized, leading to a weakly dispersing band at energy U∗.
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Institute of Physics, Czech Academy of Sciences
Na Slovance 2, CZ-182 21 Praha, Czech Republic

Contents
1 Introduction 2

2 Quantum mechanics of a particle in a static random environment 3
2.1 Lattice model with a random atomic potential . . . . . . . . . . . . . . . . . . 3
2.2 Configurational averaging: coherent potential and T-matrix operator . . . . . . 4

3 Many-body approach to disordered electron systems 6
3.1 Thermodynamic limit and translational invariance . . . . . . . . . . . . . . . . 6
3.2 Green functions and relations between them . . . . . . . . . . . . . . . . . . . 7
3.3 Feynman diagrams and multiple-occupancy corrections . . . . . . . . . . . . . 8

4 Generating functional for CPA and DMFT 11
4.1 Functional-integral representation of the thermodynamic potential . . . . . . . 11
4.2 The limit of infinite lattice dimensions . . . . . . . . . . . . . . . . . . . . . . 13

5 Interacting disordered electrons – Falicov-Kimball model 15
5.1 Equilibrium thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Response to external perturbations . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Transport properties within CPA 18
6.1 Non-local two-particle vertex and electrical conductivity . . . . . . . . . . . . 18
6.2 Gauge invariance and electron-hole symmetry . . . . . . . . . . . . . . . . . . 20

7 Beyond CPA 22
7.1 Vertex corrections to the electrical conductivity . . . . . . . . . . . . . . . . . 22
7.2 Making expansions beyond local approximations conserving . . . . . . . . . . 23

8 Conclusions 26

E. Pavarini, E. Koch, R. Scalettar, and R. Martin (eds.)
The Physics of Correlated Insulators, Metals, and Superconductors
Modeling and Simulation Vol. 7
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1 Introduction

Impurities are ubiquitous in real materials and are non-negligible in reliable realistic calcula-
tions of the low-temperature properties of solids. The impurities are randomly distributed on
a macroscopic scale and their impact on thermodynamic, spectral, and transport properties of
solids is an important topic of experimental and theoretical research. Advanced experimental
techniques allow now for a rather precise determination of the chemical composition of het-
erogeneous materials, which, on the other hand, increases demands on the precision of the
theoretical description of materials with randomness.
Lax [1, 2] was the first to simulate scattering from a random potential by a self-consistently
determined homogeneous effective medium. The idea of an effective medium went far beyond
the rigid-band or virtual-crystal approximation standardly used at that time. The coherent em-
bedding into a homogeneous environment, when transferred to the context of random alloys,
has become the corner-stone of what later has become known as the coherent potential approx-
imation (CPA). The idea of Lax was further extended by Davies and Langer by considering
multiple single-site scatterings [3].
The equations for the genuine coherent potential approximation were introduced independently
by Soven [4] and Taylor [5]. The multiple-scattering approach was applied in Ref. [4] to elec-
trons on random lattices, while in Ref. [5] it was applied to lattice vibrations of imperfect crys-
tals. The method of coherent potential was extensively studied and applied in various situations
during the late sixties and in the seventies of the last century. The progress in the descrip-
tion of random media via multiple single-site scatterings was made possible by two principal
theoretical developments. First, sophisticated many-body perturbation techniques using Green
functions made it possible to avoid a cumbersome description of random media via an inhomo-
geneous differential Schrödinger equation. Second, the development of computers capable of
determining numerically exactly reasonably large clusters opened the way to the application of
the coherent potential methodology to real materials beyond the model level.
The coherent potential approximation has several attractive features. It was shown to be the
best single-site approximation [6] and the coherent potential has the proper analytic properties
in the complex energy plane, consistent with causality of the averaged Green function [7, 8].
Finally, transport properties of disordered systems can also be determined within this single-
site approximation [9]. The early approaches to CPA were reviewed in Ref. [10].
The coherent potential approximation remained for long singled out from other approximations
due to its analytic structure and accuracy in the determination of thermodynamic and transport
properties. Direct cluster extensions of the single-site multiple-scatterings failed in keeping
causality of the Green function [11]. At that time the only causal cluster extension, the so-called
traveling cluster approximation [12, 13], was unhandy for applications in realistic settings.
A new impetus in our understanding of CPA in a broader context came in the late eighties
and early nineties of the last century with the concept of the Dynamical Mean-Field Theory
(DMFT). First, a functional-integral generalization of CPA enabled to understand the concept
of coherent potential as a single-site approximation with self-consistently summed single-loop
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contributions of the many-body perturbation expansion of the thermodynamic potential [14,15].
Second, these diagrams were then shown to determine the exact solution of models of interact-
ing electrons on a hypercubic lattice in the limit of infinite-dimension [16]. Consequently, CPA
then appeared to be an exact solution of models of the disordered Fermi lattice gas in the limit
to infinite dimensions within DMFT [15, 17]. Since then, CPA is understood as a special case
of DMFT applied to disordered systems. Not only this, DMFT and CPA are interconnected in
systematic ways to improve upon these local approximations built on many-body diagrammatic
approaches.

2 Quantum mechanics of a particle in a
static random environment

2.1 Lattice model with a random atomic potential

Both electron correlations and randomness in configurations of impurities or in the chemical
composition are always present to some extent in real materials. It is wise to separate them
first to understand their individual impact on the behavior of the electrons. Hence, the easiest
model of disorder in metals, crystalline solids with available conduction electrons, is a Fermi
gas of moving light particles scattered on heavy, immobile ions, the atomic potential of which
fluctuates from site to site. Since there are no electron correlations present, we have a quantum
mechanical problem of a test particle scattered on randomly distributed atomic potentials of ions
ordered in a regular lattice structure. The generic quantum mechanical Hamiltonian of such an
electron can be written as

Ĥ =
∑

nm

|m〉Wmn 〈n|+
∑

n

|n〉Vn 〈n| = Ŵ + V̂ , (1)

where Wmn = W (Rm −Rn) with Wnn = 0 is the hopping amplitude of the electron between
lattice sites Rm and Rn and |n〉, |m〉 stand for Wannier states at the respective lattice sites.
One usually resorts to hopping only between nearest neighbors. The local potential Vn acquires
values due to the atomic occupation of the lattice site Rn. In case of a binary alloy with atoms
of type A and B the probability distribution of the atomic potential is

g(V ) = xAδ(V − VA) + xBδ(V − VB) , (2)

with xA = NA/N = c and xB = 1 − c are densities of atoms A and B, respectively, and N
being the number of the electrons/lattice sites. We assume that the lattice sites are occupied
independently according to the distribution g(V ) given by eq. (2).
Fluctuations in the values of the atomic potential strongly influence the motion of the electron.
Since the operators of the hopping Ŵ and the potential V̂ do not commute, the Schrödinger
equation for the electron in a randomly distributed scattering potential is not exactly solvable
for extended systems. Eigenvalues of the Hamiltonian (1) are random numbers. We hence have
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to determine the distribution of the eigenvalues of the random Hamiltonian to draw conclusions
about the behavior of the test particle in the random environment.
The fundamental quantity in the description of the quantum particle is the resolvent defined for
an arbitrary complex energy z outside the real axis as

Gmn(z) =

〈
m

∣∣∣∣
[
z1− Ŵ − V̂

]−1
∣∣∣∣n
〉
. (3)

The distribution of the eigenenergies (density of states) then is

ρ(E) = − 1

πV

∑

n

ImGnn(E + i0+) , (4)

with V = Nv, and v is the volume of the elementary cell. This distribution generally depends on
the size of the random system as well as on the boundary conditions for solving the Schrödinger
equation. This dependence is removed by configurational averaging.

2.2 Configurational averaging: coherent potential and T-matrix operator

Configurational averaging is a tool for restoring translational invariance in random systems. It
enables us to develop systematic approximations to the physical quantities of interest. Random-
ness introduces fluctuations into the physical quantities, since the eigenvalues of the random
Hamiltonian are spread over an interval on the real axis. Summing over configurations takes
account of the fluctuations only on average and hence not all averaged quantities are relevant.
For instance, the averaged Hamiltonian, the energy, is only of a little value. Moreover, products
of random variables differ from the product of their averages and vertex corrections for products
of random variables must be introduced.
Each averaged quantity is characterized by a translationally invariant function containing, on
average, the impact of randomness on this function. The coherent potential for the averaged
resolvent is defined from the following equation

〈G〉av = Ĝ =
[
z1− σ̂(z)− Ŵ

]−1

. (5)

The exact coherent potential σ̂(z) =
∑

n,m |n〉σnm(z) 〈m| is, in general, a non-local operator
on the lattice, but we resort to single-site approximations with only a diagonal coherent potential
σ̂(z) =

∑
n |n〉σn(z) 〈n|.

The coherent potential contains the fluctuations due to the random character of the scattering
potential only in an averaged manner. We introduce a configurationally-dependent T-matrix
operator T(z) containing the fluctuations missing in the coherent potential

G(z) =
〈
Ĝ(z)

〉
av

+
〈
Ĝ(z)

〉
av
T(z)

〈
Ĝ(z)

〉
av
. (6)

The T matrix is generally a nonlocal operator and, similarly to the coherent potential, we can
introduce local T matrices

Tn(z) =
Vn − σn(z)

1− (Vn − σn(z))Gnn(z)
(7)
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that depend on the lattice coordinate Rn only and contain all multiple single-site scatterings on
the fluctuations of the atomic potential Vn relatively with respect to the coherent potential of the
effective medium σn(z).
The full T matrix can be represented via the local ones and wave operators Qn(z) as

T(z) =
∑

n

Tn(z)

[
1 + 〈G(z)〉av

∑

m 6=n
Qm(z)

]
, (8)

Qn(z) = Tn(z) +

[
1 + 〈G(z)〉av

∑

m 6=n
Qm(z)

]
. (9)

Successive substitution of the wave operators leads to a representation of the T matrix via a
multiple-scattering series with the local T matrices connected by the averaged resolvent

T(z) =
∑

n

Tn(z) +
∑

n6=m
Tn(z) 〈Gnm(z)〉av Tm(z)

+
∑

n6=m 6=l
Tn(z) 〈Gnm(z)〉av Tm(z) 〈Gml(z)〉av Tl(z) + . . . . (10)

This is a typical excluded-volume problem that is difficult to solve beyond the first few terms of
the series.
The averaged T matrix vanishes in the exact solution. This means, that the coherent potential
captures all the fluctuations of the random atomic potential. Since we resorted to a single-site
coherent potential, we cannot guarantee vanishing of the full T matrix but only of its local part.
The vanishing of the local T matrix

〈Tn(z)〉av =

〈
Vn − σ(z)

1− (Vn − σ(z)) 〈Gnn(z)〉av

〉

av

= 0 (11)

is the Soven equation for the coherent potential σn(z) = σ(z). Averaging restores translational
invariance, hence the coherent potential is independent of the lattice coordinate.
The Soven equation for the coherent potential can be solved only iteratively. Due to the correct
analytic properties of the coherent potential we can guarantee the convergence of the following
iteration procedure for real energies liml→∞ σ(l)(E+) = σ(E+)

Imσ(l+1)(E+) =

[
1− |G

(l)(E+)|2
〈|G(l)(E+)|2〉

]〈
1

|1 +G(l)(E+) (σ(l)(E+)− Vn)|2
〉

av

Imσ(l)(E+) ,

(12)
where we denoted E+ = E + i0+, 〈|G(z)|2〉 = ImG(z)/Imσ(z) =

∫
dε ρ(ε)|z − ε− σ(z)|−2

and ρ(ε) is the density of states of the electrons on the homogeneous lattice. A negative sign
of the imaginary part of the coherent potential is guaranteed during the iterations. The analytic
properties of CPA must not be broken during the iterative process of the numerical solution in
order to stay within the physical phase space.
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3 Many-body approach to disordered electron systems

3.1 Thermodynamic limit and translational invariance

The concept of an effective medium and a coherent potential was derived with quantum me-
chanics of particles, that is, for Fermi or Bose gases without inter-particle interactions. The
construction of the best local approximation is, however, an appealing approach that can be
used in a broader context, namely in the statistical mechanics of many-body systems.
The equilibrium properties of macroscopic many-body systems are extracted from the thermo-
dynamic limit. It means that the volume V of the system is sent to infinity. The differences
between positions of the individual sites vanish and translational invariance is restored in the
thermodynamic limit. We can use the Fourier transform from the direct lattice to momentum
space and use the Bloch waves as the elementary quantum states that form a complete orthonor-
mal basis of the states with which we can describe the random system in the thermodynamic
limit.
We use second quantization and extend the quantum-mechanical Hamiltonian, eq. (1), to the
Anderson disordered model in Fock space by means of fermionic creation and annihilation
operators c†i and ci respectively

Ĥ = −t
∑

〈ij〉
c†icj +

∑

i

Vi c
†ci =

∑

k

ε(k) c†(k)c(k) +
∑

i

Vic
†
ici , (13)

where ε(k) =
∑

iWi0 exp(iRi · k) is the dispersion relation of the Fermi gas on the lattice,
c†(k) = V −1

∑
i c
†
i exp(iRi ·k), and 〈ij〉 denotes nearest-neighbor lattice sites with coordinates

Ri and Rj .
The existence of the equilibrium state in the thermodynamic limit depends on the validity of
the ergodic hypothesis, which means that the particle passes almost everywhere in the phase
space after sufficiently long time. Then spatial averaging equals configurational averaging, at
least for local quantities that can be proved to possess the so-called self-averaging property. For
example,

ρ(E) = − 1

πV

∑

i

ImGii(E+) = − 1

π
〈ImGii(E+)〉av = − 1

πV

∑

k

ImG(k, E+) (14)

holds in the thermodynamic limit. The averaged Green function in the thermodynamic limit can
then be represented as

〈〈
k

∣∣∣∣
1

z1− Ĥ

∣∣∣∣k′
〉〉

av

= G(k, z)δ(k− k′) =
δ(k− k′)

z − ε(k)−Σ(k, z)
, (15)

with |k〉 = c†(k)|Ω〉 and |Ω〉 the vacuum (cyclic) vector in the Fock space. The delta function in
the numerator stands for momentum conservation in translationally invariant systems. The self-
energy Σ(k, z) contains the entire contribution from the random potential to the one-particle
propagator G(k, z). It is a many-body generalization of the coherent potential. The thermody-
namic limit and the ergodic hypothesis not only restore translational invariance in the random
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system but they also allow us to use the perturbation expansion in the inhomogeneous/random
potential so that configurational averaging can be performed term by term in the perturbation
expansion. We can then work only with the averaged Green functions and use the many-body
diagrammatic and renormalization techniques of homogeneous systems.

3.2 Green functions and relations between them

The fundamental tool for obtaining quantitative results in disordered systems is a renormalized
perturbation theory in the random potential. The perturbation theory works only with transla-
tionally invariant averaged Green functions and its basic object is the one-particle Green func-
tion of eq. (15). It contains the necessary information about the equilibrium thermodynamic and
spectral properties. If we are interested in the response to weak perturbations we need to take
into account also the averaged two-particle Green function. If we remove the delta function due
to conservation of the total momentum, we can define the two-particle Green function in the
basis of Bloch waves as

G
(2)
kk′(z1, z2;q) =

〈〈
q + k,k

∣∣∣∣
1

z1 − Ĥ
⊗ 1

z2 − Ĥ

∣∣∣∣k′,q + k′
〉〉

av

≡
〈〈

k + q

∣∣∣∣
1

z1 − Ĥ

∣∣∣∣k′ + q

〉〈
k′
∣∣∣∣

1

z2 − Ĥ

∣∣∣∣k
〉〉

av

, (16)

where ⊗ denotes the direct product of operators.
The full two-particle Green function can further be represented via a vertex function Γ

G
(2)
kk′(z1, z2;q) = Gk+q(z1)Gk(z2)× [δ(k− k′) + Γkk′(z1, z2;q)Gk′+q(z1)Gk′(z2)] . (17)

The two-particle vertex Γ represents a disorder-induced correlation between simultaneously
propagated pairs of particles. It measures the net impact of the pair scatterings on the random
potential.
The vertex Γ can further be simplified by introducing an irreducible vertex Λ playing the role of
a two-particle self-energy. The irreducible and the full vertex are connected by a Bethe-Salpeter
equation. Unlike the one-particle irreducibility, the two-particle irreducibility is ambiguous
when we go beyond single-site scatterings [18]. Two-particle irreducibilities are characterized
by different Bethe-Salpeter equations. Here we introduce only the Bethe-Salpeter equation in
the electron-hole scattering channel

Γkk′(z1, z2;q) = Λkk′(z1, z2;q) +
1

N

∑

k′′

Λkk′′(z1, z2;q)Gk′′+q(z1)Gk′′(z2)Γk′′k′(z1, z2;q).

(18)
We use this Bethe-Salpeter equation to introduce the irreducible vertex Λ that is important for
controlling the consistency of approximations, more precisely, whether they comply with the
exact relations between one- and two-particle Green functions.
There are no direct connections between the configurationally dependent one- and two-particle
Green functions in disordered systems without inter-particle interactions. This is no longer true
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for the averaged Green functions. When constructing approximations one has to comply with
the exact relations expressed as Ward identities that are microscopic conditions for macroscopic
conservation laws to hold.
The basic conservation law in quantum systems is conservation of probability, that is complete-
ness of the basis formed by the Bloch waves. A first relation between the averaged one- and
two-particle Green functions follows from a simple identity for operator (matrix) multiplication

1

z1 − Ĥ
1

z2 − Ĥ
=

1

z2 − z1

[
1

z1 − Ĥ
− 1

z2 − Ĥ

]
. (19)

If we average both sides of this identity we obtain the Velický-Ward identity [9]

1

N

∑

k′

G
(2)
kk′(z1, z2;0) =

1

z2 − z1

[G(k, z1)− G(k, z2)] . (20)

It holds, provided the Bloch waves form a complete basis in the one-particle representation
space. It means that the effect of the random potential is only a rotation in the Hilbert space of
states of the homogeneous system.
There is another identity connecting the irreducible one and two-particle functions, Σ and Λ. It
is a microscopic condition that guarantees the validity of the macroscopic continuity equation.
By analyzing the perturbation contributions to one- and two-particle functions Vollhardt and
Wölfle proved the following Vollhardt-Wölfle-Ward identity [19]

Σ(k+, z+)−Σ(k−, z−) =
1

N

∑

k′

Λkk′(z+, z−;q)
[
G(k′+, z+)−G(k′−, z−)

]
, (21)

where we denoted k± = k ± q/2. Identity (21) is related to eq. (20), however, the two Ward
identities are identical neither in the derivation nor in the applicability and validity domains.
The latter holds for nonzero transfer momentum q, i. e., for an inhomogeneous perturbation,
while the former only for q = 0. On the other hand, the former is nonperturbative while the
latter is proved only perturbatively.

3.3 Feynman diagrams and multiple-occupancy corrections

The contribution from the scatterings of the electron on the random potential can be represented
diagrammatically in analogy with many-body perturbation theory. There is, however, an impor-
tant difference between the two perturbation expansions. The former is static, contains only
elastic scatterings where energy is conserved. There are no closed loops in its diagrammatic
representation. The individual particles are characterized by a fixed energy or Matsubara fre-
quency in the many-body formalism. Since the perturbation theory of random systems is static
we have to introduce the so-called multiple-occupancy corrections if we want to keep unre-
stricted summations over the lattice sites in the representations of physical quantities [20]. We
demonstrate this on Green functions.
The standard diagrammatic representation of scatterings of particles on the random potential is
an oriented solid line for the particle, a cross (vertex) for the lattice coordinate of the random
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ijk ijk ik

ik ij i

Fig. 1: Averaging of contributions up to third order in the random potential of the one-particle
Green function. A prime means that the multiple sums do not contain any repeating indices, i.e,
each vertex is on a different lattice site (i 6= j 6= k). Adapted from Ref. [21].

∑

ik

′

i ki

=
∑

ik i ki

− c
∑

i i ii

Fig. 2: Transformation of restricted multiple summations to unrestricted ones with multiple-
occupation corrections exemplified in third order of the perturbation expansion. Here c is the
concentration of the sites with the random potential. The first diagram on the right-hand side is
proportional to c2 while the second diagram only to c.

potential and dashed lines connecting the vertex with the solid line. The number of lines starting
at the vertex stands for the power of the random potential. Since the random values of the
potential are independently distributed at each lattice site, we average separately each vertex
of the diagrammatic expansion. When summing over the lattice sites we have to avoid any
repetition of lattice indices in the multiple sums as shown in Fig. 1. This restriction in multiple
summations makes the perturbation expansion difficult to sum and is equivalent to the excluded
volume problem of the T-matrix expansion in (10).
One has to transform the restricted multiple summations to unrestricted ones to be able to reach
any nonperturbative results containing multiple scatterings. The transformation from restricted
to unrestricted sums is performed by means of multiple-occupancy corrections that subtract
events when any two or more lattice sites in the multiple sum are equal, as exemplified in
Fig. 2. Counting of the multiple-occupancy corrections becomes more and more cumbersome
with increasing order of the perturbation expansion.
Only after we have transformed the restricted sums to unrestricted ones, we can introduce renor-
malizations of the particle lines in the diagrammatic representation of the perturbation expan-
sion. The renormalization of the one-particle propagator is expressed via the Dyson equation
and the self-energyΣ, see Fig. 3. All the multiple-occupancy corrections are contained in the
self-energy. Its third order is diagrammatically represented as

⌃ii(z) =

i

+ (1 � c)
i i

+ (1 � c)
X

j i ij
+ (1 � 3c + 2c2)

i ii
+ . . . (22)

It is, however, impossible to sum up the multiple-occupancy corrections to infinite order.



11.10 Václav Janiš

�

i j =
�

i j +
∑

i′j′
i ji′ j ′Σ ,

Fig. 3: Diagrammatic representation of the renormalization of the one-electron propagator via
the Dyson equation. Note that the sum over the primed indices is unrestricted.

The diagrams with multiple-occupancy corrections offer a possibility to directly renormalize all
particle lines in the diagram, that is, to replace the bare propagators with the full averaged ones.
Inability of finding an analytic expression for the full sum for the self-energy to infinite order
reflects the fact that we cannot construct a generating functional consisting of only the renor-
malized propagators, even in the local mean-field approximation, CPA. It was a breakthrough to
find an analytic expression for the Soven equation in terms of the full local averaged propagator
G and the self-energy Σ.
Once we got rid of the restricted summations over lattice sites we can use the Fourier trans-
form to momenta or wave vectors in which the Dyson equation becomes algebraic and easy
to solve. The renormalization of the perturbation expansion is not as easy for the two-particle
Green function. The averaged two-particle Green function with three independent momenta is
diagrammatically represented as

G
(2)
kk′(z1, z2;q) =

�

G(2)

z2,k

z1,k + q

z2,k
′

z1,k
′ + q

. (23)

The two-particle renormalization is contained in the two-particle irreducible vertex Λ and a
Bethe-Salpeter equation, a two-particle analogy of the Dyson equation. Its diagrammatic repre-
sentation reads

G(2)

k

k + q

k′

k′ + q

=

k + q

k

+

k + q k′′ + q

k k′′

Λ G(2)

k′

k′ + q

, (24)

where we sum over the double-primed momentum. We introduced in Sec. 3.2 the full two-
particle vertex which obeys an analogous Bethe-Salpeter equation where the absolute term is
the irreducible vertex Λ, eq. (18). Its expansion to third order of the perturbation expansion with
the multiple-occupancy corrections is

Λii,ii (z1, z2) = (1 − c)

i

i

+ (1 − 3c + 2c2)

i i

i

+ (1 − 3c + 2c2)

i i

i

+ . . . ,

(25)
The particle lines can again be directly renormalized and replaced by the full averaged one-
particle Green function.
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4 Generating functional for CPA and DMFT

4.1 Functional-integral representation of the thermodynamic potential

The concept of the best single-site approximation can be generalized beyond the quantum me-
chanics of disordered systems. The best way to do so is to use a functional integral with which
we can describe classical, quantum, disordered, and interacting systems in a unified way. We
start with the functional-integral representation of the general partition sum of an interacting
and/or disordered system [22]

Z
[
G(0)−1

]
=

∫
DϕDϕ∗ exp

(
−ϕ∗ηG(0)−1

ϕ+ h∗ϕ+ ϕ∗h+ U [ϕ, ϕ∗]
)
, (26)

where ϕ and ϕ∗ are fluctuating commuting or anticommuting Gaussian fields, G(0)−1 is essen-
tially the dispersion relation of the model represented as an inverse of the free propagator of
one-body excitations. The sign η = ±1 depends on whether we deal with bosonic (commuting)
or fermionic (anticommuting) fluctuating fields, respectively. Further, h is an external source
and U is an interaction or a random potential, i.e., a non-quadratic or inhomogeneous function
of the fluctuating fields. In eq. (26) we suppressed all internal degrees of freedom of the local
fluctuating fields that depend upon particular models under consideration. The thermodynamic
potential as a functional of G(0)−1 then is

Ω
[
G(0)−1

]
= − 1

β
lnZ

[
G(0)−1

]
, (27)

where β = 1/kBT .
It was the idea of Baym [23] to replace the functional dependence of the thermodynamic poten-
tial on the bare propagator by a new representation with a renormalized propagator G. The full
propagator G may be defined from the thermodynamic potential itself:

G = − δ
2βΩ

δh∗δh
= η
(
〈ϕϕ∗〉 − 〈ϕ〉 〈ϕ∗〉

)
= η

(
δβΩ

δG(0)−1 −
δβΩ

δh∗
δβΩ

δh

)
. (28)

We now introduce the full propagator G as a new variable into the thermodynamic potential by
a substitution

G(0)−1
= G−1 +Σ , (29)

whereΣ is the self-energy. We used here the Dyson equation to relate the bare and renormalized
propagators. The self-energy Σ is an accompanying variable that also enters the functional
representation of the thermodynamic potential. We can treat the renormalized quantities G and
Σ as independent variables in the thermodynamic potential. The new functional must, however,
not depend on variations of the new variables G and Σ in order to keep the thermodynamic
relations fulfilled. To secure vanishing of variations of the thermodynamic potential with respect
to G and Σ we have to modify the functional-integral representation, since the variation with
respect to G(0)−1 does not vanish. We must add a contribution being a function of only Σ and
a contribution being a function of only G. If we denote them ΩΣ and ΩG we must fulfill the
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following equations to keep variations of the total free energy Ω = ΩΣ + ΩG + Ω
(
G(0)−1

)

independent of Σ and G
δβΩΣ

δΣ
=
δβΩG

δG−1
= − δβΩ

δG(0)−1 .

Using equations (28) and (29) we easily obtain

βΩΣ = η
(

tr ln
[
G(0)−1 −Σ

]
+m∗

[
G(0)−1 −Σ

]
m
)
, (30)

βΩG = −η
(

tr lnG−1 +m∗G−1m
)
, (31)

where we have introduced new renormalized variables

m = −δβΩ
δh∗

, m∗ = −δβΩ
δh

. (32)

We use the above definitions and obtain a new representation of the thermodynamic potential

− βΩ[m;G−1, Σ] = −η tr ln
[
G(0)−1 −Σ

]
+ η tr lnG−1 − βΩ[h;G−1 +Σ]

−m∗η
[
G(0)−1 −Σ

]
m+m∗η G−1m, (33)

The thermodynamic potential Ω[m;G−1, Σ] in eq. (33) is stationary (extremal) with respect to
all its renormalized variables m,Σ, and G. The stationarity with respect to the variables m,m∗

leads to trivial equations. We can, however, turn these variables dynamic if we use a substitution
in the functional integral (26) ϕ = φ + m, where the new fluctuating field φ has vanishing first
moment 〈φ〉 = 0. We then obtain from eqs. (26) and (29)

− βΩ [m,H;G,Σ] = −η tr ln
[
G(0)−1 −Σ

]
+ η tr lnG−1 − βF

[
m,H;G−1 +Σ

]

−m∗η G(0)−1
m+H∗m+m∗H . (34)

Now, the new free energy as a functional of m,H and [G−1 +Σ] reads

−βF
[
m,H;G−1 +Σ

]
=

ln

∫
DφDφ∗ exp

(
−φ∗η

[
G−1 +Σ

]
φ+H∗φ+ φ∗H + U [φ+m,φ∗ +m∗]

)
, (35)

where the new external sources H and H∗ are new variational parameters, the Legendre conju-
gates to m∗ and m, respectively. The variational parameters and functions m,H,Σ, and G are
determined from the saddle-point equations for stationarity of βΩ

δβΩ

δH
=
δβΩ

δm
=
δβΩ

δG
=
δβΩ

δΣ
= 0 . (36)

Expressions (34)-(36) are exact in any spatial dimension for any model, classical or quantum.
The thermodynamic potential from eq. (34) is not yet in the Baym form with the Luttinger-
Ward functional. Although it is a functional of only renormalized quantities, the diagrammatic
representation of βΩ contains the sum of all connected non-renormalized diagrams with the
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bare propagator G(0) = (G−1 + Σ)−1. The thermodynamic potential (34) is suitable for an
exact solution and for the cases where the result cannot be generated by a sum of simple skeleton
diagrams. If we have to rely on sums of classes of particular diagrams it is more practical to
define a new functional

Ψ [m,H;Σ] = η tr lnG−1 − βΩ
[
m,H;G−1 +Σ

]
, (37)

that is, due to the stationarity equations (36), independent of the one-body propagator G. We
have no diagrammatic representation for the functional Ψ. But if we perform a Legendre trans-
form from Ψ to a functional of the propagator G

Φ [m,H;G] = Ψ [m,H;Σ] + η trΣG , (38)

it will be a sum of all connected diagrams free of self-insertions, i.e., skeleton diagrams only.
Inserting eqs. (37) and (38) into (34) we obtain the Baym free-energy functional

−βΩ̃ [m,H;G] = −η tr ln
[
G(0)−1−Σ

]
−η trΣG+Φ [m,H;G]−m∗η G(0)−1

m+H∗m+m∗H.

(39)
Both free-energy functionals (34) and (39) are exact. They are connected by a double Legen-
dre transform (37), (38). While representation (34) is applicable without restrictions, the direct
application of the Baym functional is restricted to cases where we are able to find a diagram-
matic representation of the functional Φ. We then speak of Φ-derivable approximations. Not
all approximations are Φ-derivable. The simplest example for a non-Φ-derivable theory is a
0-dimensional lattice (single site or atomic solution), including CPA and DMFT.
We considered a homogeneous system of interacting particles. It is, however, easy to extend
this description to systems with randomness. If the non-quadratic term, becomes random, we
simply perform configurational averaging of the free energy F [m,H;G−1 +Σ] of eq. (35).
The thermodynamic functional is self-averaging and hence it equals its averaged value in the
thermodynamic limit.

4.2 The limit of infinite lattice dimensions

We have not yet made any assumption on the form of the interacting term in the functional
representation of the thermodynamic potential. A special class of problems are those with a
local interaction in the tight-binding representation of statistical systems in crystalline solids
for which the limit to high spatial dimensions reduces the lattice to an impurity model.
The fundamental condition in limiting the lattice models to infinite spatial dimensions is the
necessity to keep the total energy of the system proportional to volume. This means that we
must rescale appropriately the non-local terms in the Hamiltonian. In the case of fermions the
fluctuating fields are Grassmannian variables in representation (26) and 〈ϕ〉 ≡ 0. The leading-
order contribution of the non-local part of the generic Hamiltonian from eq. (13), the kinetic
energy, is

Ekin = −t
∑

〈ij〉σ

〈
c†iσcjσ

〉
av

= −it
∑

〈ij〉σ
Gij,σ(0+) ∝ 2dN t2 , (40)
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where Gij,σ(t) = −i〈T [ciσ(t)c†jσ(0)]〉 is the time-dependent Green’s function, eventually the
averaged Green’s function [24]. The scaling of the hopping amplitude between the nearest
neighbors on a hypercubic lattice with 2d nearest neighbors follows from eq. (40)

t = t∗/
√

2d . (41)

It was derived for the first time by Metzner and Vollhardt in Ref. [16] in the context of the
Hubbard model.
The general functional-integral representation of the thermodynamic potential with the renor-
malized one-electron Green function and the self-energy, eq. (35), offers a direct way to find
the generating functional of the solution of a model with local interaction/disorder in infinite
dimensions, DMFT. The scaling of the hopping term, eq. (41), leads to

G = Gdiag
[
d0
]

+Goff
[
d−1/2

]
, (42)

Σ = Σdiag
[
d0
]

+Σoff
[
d−3/2

]
. (43)

The functional integral (35) turns local in the limit d =∞. It still may be a functional (infinite-
dimensional) integral if the number of the local degrees of freedom is infinite. In the case of
quantum itinerant models the local degrees of freedom are spin and Matsubara frequencies.
The Matsubara frequencies are coupled in the Hubbard model [24]. They are decoupled in the
case of the Fermi gas in a random potential with the Hamiltonian (13). The functional integral
(35) then reduces to a product of simple integrals for individual Matsubara frequencies. These
integrals can be explicitly performed and inserting the result in eq. (39) we obtain a generating
functional for the Coherent Potential Approximation of spinless particles [15]

Ω [Gn, Σn]

N = −
∞∑

n=−∞

eiωn0+

β



∞∫

−∞

dε ρ∞(ε) ln [iωn+ µ−Σn− ε] + 〈ln [1 +Gn (Σn− Vi)]〉av


 .

(44)
This representation of the CPA grand potential for fixed chemical potential µ was derived as
the exact grand potential for the model of disordered electrons in d = ∞. Apart from the
scaling of the nearest-neighbor hopping amplitude (41) we did not use any particular property
of the perturbation theory. The limit to infinite dimensions was performed on hypercubic d-
dimensional lattices for which the density of states in infinite dimensions reads

ρ∞(ε) =
1√
2πt∗

exp
(
−ε2/2t∗2

)
. (45)

The grand potential (44) with the density of states (45) is the exact solution for the Hamiltonian
of the Anderson disordered model, eq. (13), in d =∞. It serves as a good local approximation
for finite-dimensional systems if the appropriate density of states is used. Notice that CPA
makes sense only for lattice models with well separated nearest neighbors. It has no meaning
for continuous models where multiple scatterings on continuously spread scatterers cannot be
singled out and lose relevance.
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5 Interacting disordered electrons – Falicov-Kimball model

5.1 Equilibrium thermodynamic properties

The quantum itinerant models in infinite dimensions (DMFT) can be solved analytically only
if the Matsubara frequencies are decoupled and the local functional integral (35) reduces to a
product of integrals for individual Matsubara frequencies. This is not the case for the Hubbard
model of interacting electrons [24]. But a modification of the Hubbard Hamiltonian, the so-
called Falicov-Kimball model, decouples the Matsubara frequencies. Its easiest spinless form
is defined by the Hamiltonian [25]

ĤFK = −t
∑

〈ij〉
c†icj +

∑

i

εi f
†
i fi +

∑

i

c†ici
(
Vi + Uf †i fi

)
. (46)

This Hamiltonian, in comparison with the Hubbard model, loses some important properties. A
great deal of quantum dynamics goes lost in (46), since its equilibrium state is not a Fermi-
liquid. The Falicov-Kimball model proved, nevertheless, invaluable in the construction of an
analytic mean-field theory in strong coupling of the Hubbard-type models.
The first exact solution of this quantum itinerant model in d = ∞ was derived by Brandt
and Mielsch [26]. The full grand potential with the renormalized variational parameters was
constructed in Ref. [27]. The spinless Falicov-Kimball Hamiltonian (46) does not contain any
nonlocal interaction or hybridization and hence no scaling of the coupling term is necessary.
The functional Ω[G−1

α + Σα] is an atomic solution the partition function of which contains a
sum over two possible states of the local electrons. The dynamic electrons have a frequency-
dependent local propagator (G−1

αn +Σαn)
−1. We obtain the grand potential

2β

N Ω [G,Σ] = −
∑

α=±

〈
ln
[
1 + eβ(µα−εi−Ei,−α)

]〉
av

(47)

−
∞∑

n=−∞
eiωn0+


∑

α=±
〈ln[1+Gn,α (Σn,α− Vi)]〉av+

∞∫

−∞

dερ∞(ε)ln
[
(iωn+µ+−Σn,+)(iωn+µ−−Σn,−)−ε2

]



with

Ei,α = − 1

β

∞∑

n=−∞
eiωn0+ ln

[
1 +Gn,α (Σn,α − Vi − U)

1 +Gn,α (Σn,α − Vi)

]
. (48)

We used a subscript α to allow for a low-temperature charge order with different sublattices.
Conditions on stationarity of the grand potential (47) lead to defining equations for the varia-
tional parameters Gαn and Σαn. We obtain, after a few manipulations,

Gn,α =

∞∫

−∞

dε ρ∞(ε)
(iωn + µ−α −Σn,−α)

(iωn + µ+ −Σn,+) (iωn + µ− −Σn,−)− ε2
, (49a)

1 =

〈
ni,−α

1 +Gn,α (Σn,α − Vi − U)
+

1− ni,−α
1 +Gn,α (Σn,α − Vi)

〉

av

, (49b)
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where

ni,α =
1

1 + exp (β (εi + Ei,−α − µα))
(49c)

is the averaged number of static particles in the Falicov-Kimball model. We see that the vari-
ational parameters Gαn and Σαn now depend explicitly on the Matsubara frequencies and the
thermodynamics of the model contains a portion of quantum many-body fluctuations. The equa-
tions of motion are algebraic and the variational variables Gαn and Σαn depend only on a single
Matsubara frequency ωn.
It can easily be shown that if we consider a random-alloy with diagonal disorder where the
constituent A with the atomic energy U has concentration x and the constituent B with con-
centration 1 − x has the atomic energy 0, then the Falicov-Kimball model in d = ∞ coincides
with CPA of such an alloy. The Falicov-Kimball Hamiltonian defines a semiclassical model
with reduced dynamical quantum fluctuations. The dynamical fluctuations are restricted, since
we have only one species of dynamical electrons. They interact with static electrons, i.e., they
are scattered on static impurity potentials distributed in the lattice. Unlike the static disorder
of alloys the localized electrons of the Falicov-Kimball model serving as random scatterers for
the mobile electrons are thermally equilibrated, which introduces a nontrivial thermodynamics.
The semiclassical character of the Falicov-Kimball model becomes evident from the fact that
the partition function of this model can be obtained in any dimension as a static approximation
in a special functional-integral representation [28].
Equations (49a) and (49b) coincide with the well-known Hubbard-III approximation [29] if we
neglect the static electrons and replace the density of static particles by the density of the dy-
namic ones. Then equation (49c) must be forgotten and replaced by a sum rule. The analogy
between the model of random alloys and the Hubbard-III approximation, discovered in Ref. [6],
led at the end of the seventies of the last century to numerous attempts to improve on the weak-
coupling Hartree-Fock theory by using the “alloy analogy” reasoning [30]. However, mean-field
theories constructed in this way and based on the Hubbard-III approximation become thermo-
dynamically inconsistent and lead to unphysical behavior [31]. The Hubbard-III approximation
was made thermodynamically consistent by adding a new variational parameter [32].

5.2 Response to external perturbations

The equation for the self-energy of the mobile electrons of the d = ∞ Falicov-Kimball model
for fixed densities of the local electrons resembles the Soven equation. There is, however, a sig-
nificant difference when we turn to response functions describing the reaction of the equilibrium
state to weak external perturbations. The response functions are derived from the two-particle
Green function. The Falicov-Kimball model, unlike the Anderson disordered model, displays a
low-temperature critical behavior and a phase transition to a checker-board phase. This differ-
ence can be demonstrated on the local two-particle vertex of the two solutions. In both cases,
due to conservation of energy, the two-particle vertex contains only two independent variables,
Matsubara frequencies. The full local vertex of the Falicov-Kimball model in d =∞measuring
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Fig. 4: Graphical representation of eq. (50). The dashed lines within the boxes indicate charge
propagation from the incoming to the corresponding outgoing line. The vertex for the disordered
Fermi gas contains only the left diagram.

correlations between two conduction electrons can be decomposed into two distinct contribu-
tions

ΓMF
mn,kl = δm,l δn,k γm,n + δm,n δk,l ϕm,k , (50)

where the integer indices denote fermionic Matsubara frequencies. The full vertex is shown
in Fig. 4, where we indicated the way the corners of the vertices are connected by an internal
electron line. The CPA vertex is just its first term, γm,n, that is relevant for transport properties
(electrical conductivity). The second vertex, ϕm,n, determines the thermodynamic response and
the low-temperature critical behavior.
The thermodynamic vertex ϕm,n can be represented via an irreducible one, κm,n, from a local
Bethe-Salpeter equation

ϕm,n = κm,n +
1

β

∑

l

κm,lG
2
l ϕl,n . (51)

The irreducible vertex satisfies a Ward identity κm,n = δΣm/δGn as is evident from the con-
nection of the corners of vertex ϕm,n in Fig. 4.
It is more complicated to represent vertex γm,n via an irreducible one. To do so and to derive the
corresponding Ward identity we replicate the creation and annihilation operators and introduce
external perturbations into the thermodynamic description via a generalized grand potential of
a replicated system Ων(µ1, µ2, . . . µν ;∆) with ν chemical potentials µ1, µ2, . . . , µν [33]. An
external perturbation ∆ is used to couple different replicas and to break the initial replica inde-
pendence. We then can write

Ων(µ1, µ2, . . . µν ;∆) = − 1

β

〈
ln tr exp

[
−β

ν∑

i,j=1

(
Ĥ

(i)
FKM δij − µiN̂ (i)δij +∆Ĥ(ij)

)]〉

av

, (52)

where we assigned to each replica characterized by energy (chemical potential) µi a separate
Hilbert space and denoted by∆Ĥ(ij) =

∑
kl∆

(ij)
kl ĉ

(i)†
k ĉ

(j)
l an external perturbation to be set zero

at the end. The thermodynamic potential Ων(µ1, ν2, . . . µν ;∆) is a generating functional for
averaged products of Green functions up to ν-th order. In practice, we will use linear-response
theory with one- and two-particle Green functions, i. e., Ων(µ1, µ2, . . . µν ;∆) is expanded up to
∆2. Therefore it is sufficient to introduce only two replicas.
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The external disturbance ∆ mixes different replicas, and propagators in the replicated space
are matrices in the replica indices. Since we are interested only in the averaged two-particle
functions, we can represent the propagator by a two-by-two matrix

Ĝ−1(k1, z1,k2, z2;∆) =

(
z1 − ε(k1)−Σ11(∆) ∆ −Σ12(∆)

∆ −Σ21(∆) z2 − ε(k2)−Σ22(∆)

)
, (53)

where ε(k) is the lattice dispersion relation and the self-energy elements Σab generally depend
on both energies z1, z2.
The local two-particle vertex is a solution of a Bethe-Salpeter equation with an irreducible two-
particle vertex λ and local propagators. We easily find that the Bethe-Salpeter equation in the
mean-field approximation reduces to an algebraic one

γ(z1, z2) =
λ(z1, z2)

1− λ(z1, z2)G(z1)G(z2)
. (54)

The irreducible vertex λ is determined in equilibrium (∆ = 0) from an equation consistent with
the Ward identity, eq. (21) with local propagators,

λm,n =
1

GmGn

(
1−

〈[
ni,−α

1 +Gn,α (Σn,α − Vi − U)
+

1− ni,−α
1 +Gn,α (Σn,α − Vi)

]

×
[

ni,−α
1 +Gn,α (Σn,α − Vi − U)

+
1− ni,−α

1 +Gn,α (Σn,α − Vi)

]〉−1

av

)
. (55)

We can easily verify that this equation coincides with the CPA solution for the irreducible vertex
λ(z1, z2) [9, 35].

6 Transport properties within CPA

6.1 Non-local two-particle vertex and electrical conductivity

There is no ambiguity in the mean-field construction of local one- and two-particle functions.
But a mean-field treatment has a physical relevance only if it is able to produce nonlocal corre-
lation functions, the long-range fluctuations of which may significantly influence the thermody-
namic and dynamical behavior. There is, however, no unique way to generate the two-particle
vertex with non-local contributions within the local (mean-field) approach. The simplest and
most straightforward way is to use the Bethe-Salpeter equation with the CPA irreducible vertex
λ, eq. (55), and to replace the product of the local propagators with a convolution of the full
nonlocal one-electron propagators G(k, z). Such a Bethe-Salpeter equation then remains alge-
braic in momentum representation and results in a two-particle vertex with only one transfer
momentum. We obtain

Γ±(z1, z2;q±) =
λ(z1, z2)

1− λ(z1, z2)χ±(z1, z2;q±)
, (56)
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where we denoted the two-particle bubble

χ±(z1, z2;q) =
1

N

∑

k

G(k, z1)G(q± k, z2) . (57)

The ambiguity in this definition of the full mean-field vertex is in the type of nonlocal multiple
scatterings we include in the Bethe-Salpeter equation. They are here denoted by the superscript
±. The plus sign corresponds to multiple scatterings of electron-hole pairs, while the minus
sign to pairs of electrons. In case of elastic scatterings the electron-hole and electron-electron
bubbles produce numerically the same result. However, the difference between the two types of
pair scatterings lies in the respective transfer momentum q±. Using the notation for momenta
in the two-particle Green function from eq. (23) we have q+ = q for the electron-hole pair
scatterings and q− = q + k + k′ for scatterings of two electrons. The nonlocal vertex in CPA
is that from eq. (56) and the electron-hole bubble with q+. We discuss this ambiguity more in
the next subsection.
We now turn our attention to the electrical conductivity. Using the Kubo formula we obtain a
simple representation of the longitudinal conductivity at zero temperature [40]

σαα =
e2

2πN2

∑

kk′

vα(k) vα(k′)
[
GAR

kk′ − ReGRR
kk′

]
, (58)

with the values of the two-particle Green function at the Fermi energy. We used an abbreviation
GAR

kk′ = GAR
kk′(0, 0;0) and

GAR
kk′(ω, ω

′;q) = G
{2}
kk′(ω − i0+, ω′ + i0+; q),

GRR
kk′(ω, ω

′;q) = G
{2}
kk′(ω + i0+, ω′ + i0+; q) .

We decompose the conductivity tensor (58) into two parts by replacing the two-particle Green
function by the representation given in eq. (17) with the two-particle vertex Γ . We then have a
sum of two terms

σαα =
e2

πN

∑

k

|vα(k)|2
∣∣ImGR(k)

∣∣2 + ∆σαα , (59)

where the first term is the standard one-electron or Drude conductivity at zero temperature. The
second term is the genuine two-particle contribution and is called vertex correction. It is pro-
portional to the appropriate matrix element of the two-particle vertex that, at zero temperature,
reads

∆σαα =
e2

2πN2

∑

kk′

vα(k) vα(k′)
(∣∣GR

k

∣∣2∆ΓAR
kk′

∣∣GR
k′

∣∣2 − Re
[(
GR

k

)2
∆ΓRR

kk′

(
GR

k′

)2
])
. (60)

It is not the full two-particle vertex that is important for the electrical conductivity, but only its
odd part ∆Γ . That is, only the part of the vertex function depending, on bipartite lattices, on
odd powers of the fermionic momenta k and k′ contributes to the electrical conductivity. Hence,
CPA does not contain vertex corrections to the electrical conductivity, since the two-particle
vertex ΓCPA

kk′ (ω, ω′;q) = Γ (ω, ω′;q) does not depend on the incoming fermionic momenta
k,k′.
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6.2 Gauge invariance and electron-hole symmetry

Electrical conductivity is a form of a response of the charged system to an electromagnetic per-
turbation. An important feature of the interaction of the charged system with an electromagnetic
field is gauge invariance that must be guaranteed in the response functions. There are two fun-
damental response functions to the electromagnetic field, one based on the current-current and
the other on the density-density correlation functions. The former is used in the Kubo formula
for the electrical conductivity, eq. (58), and the latter for determination of charge diffusion.
There is a number of more or less heuristic arguments in the literature that relate the density
response with the conductivity [34]. They use macroscopic gauge invariance and charge con-
servation for particles exposed to an electromagnetic field. A microscopic quantum derivation
was presented in Ref. [35].
Gauge invariance is used to relate the external scalar potential with the electric field E = −∇ϕ.
The current-density generated by a harmonic external field then is

j(q, ω) = σ(q, ω) · E(q, ω) = −iσ(q, ω) · q ϕ(q, ω) , (61)

where σ(q, ω) denotes the tensor of the electrical conductivity. Charge conservation is ex-
pressed by a continuity equation. In equilibrium we can use the operator form of the continuity
equation that follows from the Heisenberg equations of motion for the current and density op-
erators. For Hamiltonians with a quadratic dispersion relation we have

e∂tn̂(x, t) + ∇ · ĵ(x, t) = 0 . (62)

The energy-momentum representation of the continuity equation in the ground-state solution is

− iωe δn(q, ω) + iq · j(q, ω) = 0 . (63)

We have to use a density variation of the equilibrium density, i. e., the externally induced density
δn(q, ω) = n(q, ω) − n0 in the continuity equation with the averaged values of the operators.
From the above equations and for linear response δn(q, ω) = −eχ(q, ω)ϕ(q, ω) we obtain in
the isotropic case

σ = lim
ω→0

lim
q→0

−ie2ω

q2
χ(q, ω) , (64)

where at zero temperature

χ(q, ω) =−
∫ 0

−ω

dx

2πi

〈
GAR

kk′(x, x+ ω;q)−GRR
kk′(x, x+ ω;q)

〉
k,k′

+

∫ 0

−∞

dx

π
Im
〈
GRR

kk′(x, x+ ω;q)
〉
k,k′

(65)

is the density response function. Relation (64) is often taken as granted for the whole range
of the disorder strength and used for the definition of the zero-temperature conductivity when
describing the Anderson localization transition [36, 37].
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Γ

k

k + q

k′

k′ + q

=

k′ k

= Γ

k′ k

= Γ

−k′

k + q

−k

k′ + q

Fig. 5: Graphical representation of time-reversal symmetry of the two-particle vertex when the
lower electron line is reversed.

Relation (64) between the static optical conductivity and the density response holds if the latter
function displays the so-called diffusion pole. One can prove by using the Vollhardt-Wölfle-
Ward identity, eq. (21), that in the limit q → 0 and ω → 0 [35]

χ(q, ω)
.
=

DnF q
2

−iω +D q2
, (66)

where D is the static diffusion constant. Inserting eq. (66) into eq. (64), we end up with the
Einstein relation between the diffusion constant and the conductivity σ = e2DnF , where nF is
the electron density at the Fermi energy. This relation holds in CPA with the Drude conductiv-
ity [35].

The coherent potential approximation delivers good results for the one-particle quantities but
it fails to take into account back-scatterings that are responsible for the vertex corrections in
the electrical conductivity. It also fails to maintain electron-hole symmetry at the level of two-
particle functions. Electron-hole symmetry or equivalently time-reversal is an important feature
of electron systems without spin- and orbital-dependent scatterings. According to this invari-
ance the physical (measurable) results should not depend on the orientation of the electron
propagators. Changing the orientation of the electron line is equivalent to the spatial inversion
in the momentum space. The electron-hole symmetry for the one- and two-particle propagators
means

G(k, z) = G(−k, z) , (67a)

Γkk′(z+, z−;q) = Γkk′(z+, z−;−q− k− k′) = Γ−k′−k(z+, z−;q + k + k′) . (67b)

The spatial inversion was applied only to one fermion propagator in the two-particle vertex, the
upper in the first equality and the lower in the second. The latter transformation is graphically
represented in Fig. 5. This is an exact relation which is, however, broken in CPA as discussed
in Refs. [38, 33]. One has to go beyond the local mean-field approximation to correct this
deficiency.
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7 Beyond CPA

7.1 Vertex corrections to the electrical conductivity

Dynamical mean-field theory contains all single-site scatterings. To go beyond, one has to
avoid the repetition of lattice indices as in the expansion of the T matrix in eq. (10). The bare
expansion parameter is then the off-diagonal one-electron propagator from mean-field theory.
It is given by

Ḡ(k, ζ) =
1

ζ − ε(k)
−
∫
dε ρ(ε)

ζ − ε , (68)

with ζ = z−Σ(z) where the local self-energy Σ(z) is that of the mean-field solution. The off-
diagonal two-particle bubble describes the simplest non-local contribution. It is the convolution
of the off-diagonal one-electron propagators. We have

χ̄(ζ, ζ ′;q) =
1

N

∑

k

Ḡ(k, ζ) Ḡ(k + q, ζ ′) = χ(ζ, ζ ′;q)−G(ζ)G(ζ ′) , (69)

where χ(ζ, ζ ′;q) is the full two-particle bubble. The frequency indices are external parameters
and we suppress them when they are not necessary to specify the particular type of one- or
two-electron propagators.
The asymptotic limit of the full two-particle vertex in high spatial dimensions contains beyond
the local mean-field vertex γ also non-local contributions from the electron-hole and electron-
electron ladders. They are different in their off-diagonal part [38, 33]. The asymptotic two-
particle vertex consistent with the electron-hole symmetry can, in leading order, be represented
as

Γkk′(q) = γ

[
1 + γ

(
χ̄(q)

1− γ χ̄(q)
+

χ̄(Q)

1− γ χ̄(Q)

)]
= γ +∆Γkk′(q) , (70)

where we denoted by Q = q + k + k′ the momentum conserved in the electron-electron
scattering channel. Notice that the contribution from the electron-hole channel with χ̄(q) is
part of the two-particle vertex from CPA and can be derived from the Velický-Ward identity [9].
The two-particle vertex from CPA does not carry the full 1/d correction to the local vertex and
moreover it is not electron-hole symmetric on the two-particle level [38].
A consistent extension of the local mean-field two-particle vertex must contain both non-local
contributions from the electron-hole and electron-electron channels as given in eq. (70). It is not
appropriate to calculate the electrical conductivity from the decomposition in eq. (59), since the
vertex corrections can outweight the Drude term and the conductivity may get negative [39].
The actual expansion around CPA should be done for the electron-hole irreducible vertex Λ
from the Bethe-Salpeter equation (18). Actually, only the vertex correction Λ = Λ − λ is the
object of the perturbation expansion around CPA. The two-particle Green function with only
the off-diagonal part of the vertex corrections can be represented as [39]

G
ab

kk′(q) = Gb
k+q

[
δ(k− k′) +G

a

k Γ
ab
kk′(q)G

b

k′+q

]
Ga

k′ , (71)
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where superscripts a, b stand for R,A where appropriate. It is a solution of a Bethe-Salpeter
equation with the irreducible vertex Λ̄ab

G
ab

kk′(q) = Gb
k+q

[
1− Λ̂ab(q)?

]−1

kk′
Ga

k′ . (72)

We use the constrained two-electron Green function G
ab

in the calculation of the electrical
conductivity. From the Bethe-Salpeter equation (72) we straightforwardly obtain

σαβ =
e2

2πN2

∑

kk′

vα(k)

[
GA

k

[
1− Λ̂RA?

]−1

kk′
GR

k′ − Re

(
GR

k

[
1− Λ̂RR?

]−1

kk′
GR

k′

)]
vβ(k′). (73)

The expansion around CPA with the off-diagonal propagators will now be applied on the ir-
reducible vertex Λ̄ in the above equation, accompanied by a non-perturbative matrix inversion
as to not break non-negativity of the conductivity [39]. The leading-order contribution to the
vertex Λ̄ab in high spatial dimensions is

Λ
ab

kk′(q) = γab
[
1 +

γabχab(k + k′ + q)

1− γab χab(k + k′ + q)

]
. (74)

The off-diagonal propagator G is the fundamental parameter in the expansion around the mean-
field limit. It prevents from double counting of multiple local scatterings from the mean-field
solution and it also makes the calculation of corrections to the mean-field result numerically
more stable. It is preferable to use the full local mean-field vertex γab instead of the irreducible
one, λab, in all formulas of the expansion around mean field, since the latter contains a pole in
the RR (AA) channel that is compensated in the perturbation expansion by the former vertex.
Notice that the leading-order vertex corrections calculated from the expansion of the right-hand
side of eq. (73) coincide with the leading corrections to the mean-field conductivity derived in
Ref. [40].

7.2 Making expansions beyond local approximations conserving

The problem of the perturbation expansions is that they break exact relations. Sometimes the
deviations from the exact relations are not drastic and do not qualitatively alter the physical
behavior. Unfortunately, this is not the case for disordered systems. The Einstein relation (64)
between the diffusion constant and the electrical conductivity is of fundamental importance. It
holds, however, only if the Vollhardt-Wölfle-Ward identity (21) is obeyed. Each perturbation
expansion for two-particle quantities breaks this identity in that a causal self-energy Σ cannot
be made compatible with a given approximate two-particle irreducible vertex Λ by fulfilling
eq. (21) [41]. Approximations where eq. (21) is broken are no longer conserving and the validity
of the continuity equation (62) cannot be guaranteed.
To make the perturbation theory for two-particle functions consistent and conserving we first
reconcile the two-particle irreducible vertex in the diagrammatic expansion with the one-electron
self-energy via the Ward identity in the best possible way. The full dynamical Ward identity can
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neither be used to determine the one-particle self-energy from the two-particle irreducible ver-
tex nor vice versa, since the vertex contains more information than the self-energy. The Ward
identity poses a restriction on the form of the two-particle irreducible vertex and generally
serves only as a consistency check and a guarantee that the macroscopic conservation laws are
obeyed. The Ward identity (21) for ω = 0 and q = 0 can nevertheless be used to determine the
imaginary part of the self-energy from the electron-hole irreducible vertex via

ImΣR
k (E) =

1

N

∑

k′

ΛRAkk′(E; 0,0) ImGR
k′(E) , (75a)

since both sides of this identity contain the same number of degrees of freedom and the equation
for the imaginary part of the self-energy can consistently be resolved for each energy E and
momentum k. The corresponding real part of the self-energy is then found from the Kramers-
Kronig relation

ReΣR
k (E) = Σ∞ + P

∫ ∞

−∞

dω

π

ImΣR
k (ω)

ω − E (75b)

that ensures analyticity and causality of the self-energy in the plane of complex energies beyond
the real axis.
Since we know that the full dynamical Ward identity cannot be fulfilled by the irreducible vertex
from the perturbation expansion we introduce a new physical irreducible vertex that we denote
by L. It will be connected with vertex Λ from the perturbation theory but will be made to obey
the full Ward identity, that is,

∆ΣRA
k (E;ω,q) =

1

N

∑

k′

LRAk+,k′+
(E,ω;q)∆GRA

k′ (E;ω,q) (76)

holds. Here we introduced the discontinuities ∆GRA
k (E;ω,q) = GR

k+
(E+) − GA

k−
(E−) and

∆ΣRA
k (E;ω,q) = ΣR

k+
(E+)−ΣA

k−
(E−), and denoted k± = k± q/2, E± = E ± ω/2.

The vertexLRAk+,k′+
(E,ω;q) is not directly accessible in diagrammatic approximations. The two-

particle vertex functions in perturbation expansion are represented by classes of diagrams with
sums over momenta in the whole two-particle Hilbert space. The output of the diagrammatic
expansion is an irreducible vertex Λkk′(E;ω,q) that does not generically comply with the Ward
identity (76) if the self-energy ΣR/A

k (E) is non-local, that is, depends on momentum k. Vertex
corrections that take into account the impact of the Ward identity on the irreducible vertex for
the given self-energy then must be introduced beyond the standard diagrammatic approach to
make the theory conserving. We therefore distinguish the physical vertex ΓRA obeying the
Bethe-Salpeter equation with the irreducible vertex LRA from the vertex Γ̃RA determined from
the perturbative vertex ΛRA via the corresponding Bethe-Salpeter equation (18).
We can make the approximations for the two-particle vertex Λkk′(E;ω,q) conserving by appro-
priately correcting its action in the momentum space. It is namely sufficient to correctly replace
the values of vertex Λ on a subspace on which its action is already predefined by the self-energy
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via the Ward identity. For this purpose we introduce a new correcting function measuring the
deviation of the given vertex ΛRA from the Ward identity [42]

Rk(E;ω,q) =
1

N

∑

k′

ΛRAk+k′+
(E;ω,q)∆Gk′(E;ω,q) − ∆Σk(E;ω,q) . (77)

This function vanishes in the metallic phase for ω = 0 and q = 0 due to the definition of the
self-energy (75). It is identically zero if the vertex Λkk′(E;ω,q) obeys the Ward identity. With
the aid of function Rk(E;ω,q) we construct a conserving electron-hole irreducible vertex [42]

LRAk+k′+
(E;ω,q) = ΛRAk+k′+

(E;ω,q)− 1

〈∆G(E;ω,q)2〉

[
∆Gk(E;ω,q)Rk′(E;ω,q)

+Rk(E;ω,q)∆Gk′(E;ω,q) − ∆Gk(E;ω,q)∆Gk′(E;ω,q)

〈∆G(E;ω,q)2〉 〈R(E;ω,q)∆G(E;ω,q)〉
]

(78)

that is manifestly compliant with the full Ward identity (76) for arbitrary ω and q. To shorten
the expression, we abbreviated the k sums: 〈∆G(E;ω,q)2〉 = N−1

∑
k∆Gk(E;ω,q)2 and

〈R(E;ω,q)∆G(E;ω,q)〉 = N−1
∑

kRk(E;ω,q)∆Gk(E;ω,q).
Function LRA is the desired physical irreducible vertex to be used in determining the physical
vertex ΓRA from which all relevant macroscopic quantities will be calculated. The conserving
vertex Γkk′(E;ω,q), determined from the Bethe-Salpeter equation with the conserving irre-
ducible vertex Lkk′(E;ω,q), generally differs from vertex Γ̃ (E;ω,q) obtained from the per-
turbative vertex Λkk′(E;ω,q). The two vertices are equal only when the difference function
Rk(E;ω,q) vanishes. Our construction guarantees that this happens for ω = 0 and q = 0, i.e.,

Γ̃RA
kk′ (E; 0,0) = ΓRA

kk′ (E; 0,0) , (79)

since the self-energy is determined from the two-particle vertex via eqs. (75). This means that
the vertex ΛRAkk′(E;ω,q) is directly related to the measurable macroscopic quantities only for
ω = 0, q = 0.
The physical irreducible vertex Lab(E;ω,q) can in this way be constructed to any approximate
irreducible Λab(E;ω,q) from diagrammatic perturbation theory. The continuity equation is
then saved and the density response displays a diffusion pole with a diffusion constant. The
isotropic diffusion constant is then expressed via a Kubo-like formula with the full two-particle
vertex [42]

πnFD =
1

N2

∑

k,k′

[
(q̂ · vk)|GR

k |2
[
Nδk,k′ + ΓRA

kk′ |GR
k′|2
]

×
[
ImGR

k′q̂ · vk′ + Im
(
GR

k′q̂ · ∇k′Σ
R
k′

)]
ImΣR

k′

]
, (80)

where q̂ is the unit vector pointing in the direction of the drifting electric force. All the fre-
quency variables are set zero, at the Fermi energy. This exact expression is the starting point for
the derivation of consistent approximations for the diffusion constant needed to reach quantita-
tive results.
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8 Conclusions

The coherent potential approximation was introduced and developed in the late sixties of the
last century. Initially it was restricted to the quantum mechanical problem of a particle in a
random lattice. The concept of a homogeneous coherent potential simulating the effect of the
fluctuating environment so that locally and in the long-time limit there is no difference between
the averaged and fluctuating environment proved useful beyond single-particle systems.
The first step in giving the coherent potential a more general meaning was understanding the
approximation in terms of Feynman diagrams. Using the functional integral as a generator of
Feynman diagrams then allowed for transfering CPA to many-body systems with arbitrary local
interaction or site-independent disorder. It appeared that CPA is another form of the cavity field
in which all single-loop corrections to tree diagrams are summed. The final framing of CPA was
achieved by introducing DMFT as the exact solution in the limit of quantum itinerant models in
infinite lattice dimensions.
The coherent potential approximation, its consistency and correct analytic behavior emerged
within DMFT in a new light as an exact solution in a special limit. The equations determin-
ing the coherent potential deliver also a mean-field solution of interacting models with elastic
scattering, i.e., where the energy is conserved during scattering events. Moreover, the thermo-
dynamic formulation of the CPA equations for the disordered Anderson and Falicov-Kimball
models revealed differences in the solutions of the two models for their response functions. It
also gave a proper understanding of the Hubbard-III approximation, rectifying its inconsistency.
The coherent potential approximation, unlike DMFT for the Hubbard model, is analytically
solvable. This is a huge advantage, since it allows for the full analytic control of the mean-
field behavior, including quantum criticality. Last but not least, CPA as a simpler DMFT may
also serve as a test arena for the reliability of approximations devised for the Hubbard model
where it is otherwise uncontrolled. The major restriction in the applicability of CPA is that the
equilibrium states are not Fermi liquids and their analytic properties are not directly transferable
to heavy-fermion systems.
Local mean-field approximations in whatever formulation are consistent only for the local vari-
ables or one-particle properties. Once we need to calculate the response of the extended system
to an external perturbation, we must go beyond DMFT. The non-local two-particle functions are
not uniquely defined in DMFT, since the limit to infinite dimensions is not interchangeable with
functional derivatives [22]. Then either the Ward identity or electron-hole symmetry is broken
for non-local response functions.
The ambiguity in the mean-field definition of non-local two-particle Green functions reflects a
severe problem of expansions around DMFT. In particular in the case of CPA, the expansion
around it fails to reproduce the Ward identity that is needed for the existence of the diffusion
pole in the density response function and the validity of macroscopic conservation laws. We
proposed a solution to this problem in disordered systems which opens a new and more consis-
tent framework to study systematically the vanishing of diffusion and Anderson localization. A
full solution of this problem for strongly correlated Fermi liquids is still to be found.



DMFT & CPA 11.27

Acknowledgment
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[14] V. Janiš, Czechoslovak J. Phys. B 36, 1107 (1986)
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1 Introduction and overview

Magnetic interactions in a metal involving localized magnetic moments give rise to a wealth of
phenomena, ranging from the Kondo effect to magnetic ordering and quantum phase transitions.
We give a brief overview of such phenomena before, in the main part of these lecture notes, we
will focus on a detailed description of the interplay of interactions that tend to quench the local
moments or that tend order them.

When a magnetic ion is placed in a metallic host, the Kondo effect [1, 2] occurs: Conduction
electrons at the Fermi level, i.e., at zero excitation energy, are in resonance with a flip of the
two-fold degenerate spin ground state of the magnetic ion. As the temperature T is lowered,
the electrons become confined to the Fermi surface, so that more and more electrons contribute
to this resonant quantum spin-flip scattering, leading to a diverging spin scattering amplitude.
Hence, when the spin exchange coupling J0 between the localized moments and the itinerant
conduction electrons is antiferromagnetic, a many-body spin-singlet state between the impurity
spin and the conduction electron spins is formed below a characteristic temperature, the Kondo
temperature TK . This, however, means that electrons that do not contribute to the singlet bound
state, experience merely potential scattering rather than spin scattering, i.e., the impurity spin
is effectively removed from the system. This effect is called spin screening. The scattering rate
and other physical quantities thus settle smoothly to constant values, leading to Fermi-liquid
behavior for T � TK [2]. The Kondo temperature is found to be exponentially small in the
exchange coupling, TK = D0 exp[−1/(2N(0)J0)], with the density of states at the Fermi level
N(0) and the conduction band width D0. The entirety of complex phenomena sketched above,
involving the increase of the spin scattering amplitude implying anomalous transport properties,
followed by spin screening and the formation of a narrow, but smooth resonance of width TK
in the electronic spectrum at the Fermi energy, comprises the Kondo effect.

When there are several or many localized magnetic moments in a metal, for instance arranged
on a lattice, the same spin-exchange coupling J0 that induces the Kondo effect, induces also a
magnetic interaction between the localized spins: The local moments can exchange their spins,
mediated by two conduction electrons scattering from and traveling between the impurity sites.
Since this effective, long-range spin-exchange coupling K involves two elementary scattering
events between electron and und impurity spins, it is of order K ∝ N(0)J2

0 . It can be ferro-
or antiferromagnetic due to the long-range, spatial oscillations of the conduction electron den-
sity correlations. This conduction-electron-mediated spin interaction was first considered by
Ruderman and Kittel [3], Kasuya [4] and Yosida [5] and is therefore called RKKY interaction.
The RKKY interaction usually dominates the magnetic dipole-dipole coupling as well as the
direct exchange coupling between neighboring local moments because of the short spatial ex-
tent of these couplings or the exponentially small overlap of the local moment wave functions
on neighboring lattice sites.

In a Kondo lattice, the local Kondo coupling and the RKKY interaction favor different ground
states. The Kondo coupling leads to a paramagnetic Fermi liquid state without local moments.
In this state, the local orbitals, whose spectrum has a Kondo resonance at the Fermi energy,
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Fig. 1: Doniach’s phenomenological phase diagram for the phase transition between an RKKY-
induced, magnetically ordered phase and the Kondo screened, paramagnetic phase. The phase
transition occurs when the RKKY coupling K of a local moment to all surrounding moments
becomes equal to the Kondo singlet binding energy TK (black circle). While the RKKY coupling
is K ∼ N(0)J2

0 , the Kondo energy TK = D0 exp[−1/(2N(0)J0)] is exponentially small in the
bare, local spin exchange coupling J . Therefore, the RKKY coupling always dominates for
small values of J0.

hybridize with each other and eventually become lattice coherent at low temperatures to form
Bloch-like quasiparticle states. As a result, a narrow band crossing the Fermi energy is formed.
Its bandwidth is controlled by the Kondo resonance width TK . It thus gives rise to an exponen-
tially strong effective mass enhancement of roughly m∗/m ≈ exp[1/(2N(0)J0)], which lends
the name “heavy Fermi liquid” to this state [6].
By contrast, the RKKY interaction tends to induce magnetic order of the local moments. It
was pointed out early on by Doniach [7] that, therefore, the Kondo spin screening of the local
moments should eventually break down and give way to magnetic order, when the RKKY cou-
pling energy becomes larger than the characteristic energy scale for Kondo singlet formation,
the Kondo temperature TK , see Fig. 1. Thus, one expects a T = 0 quantum phase transition
(QPT) to occur [6], with the local spin exchange coupling J0 as the control parameter. If and
how the Kondo breakdown occurs at a magnetic QPT is, however, controversial. In fact, several
QPT scenarios in heavy-fermion systems are conceivable.
(1) The heavy Fermi liquid, like any other Fermi liquid, may undergo a spin density-wave
(SDW) instability, leading to critical fluctuations of the bosonic magnetic order parameter but
leaving the fermionic, heavy quasiparticles intact. This scenario is well described by the pio-
neering works of Hertz, Moriya, and Millis [8–10].
(2) The local fluctuations of the magnetization, coupling to the nearly localized, heavy quasi-
particles, may become critical (divergent) and thereby destroy the heavy Fermi liquid (local
quantum criticality) [11, 12].
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(3) At the phase transition the Kondo effect and, hence, the heavy-fermion band vanish, which
leads to an abrupt change of the Fermi surface (Fermi volume collapse). It has been pro-
posed [13] that the Fermi surface fluctuations associated with this change may self-consistently
destroy the Kondo singlet state.
(4) Most recently, a scenario of critical quasiparticles has been put forward, characterized by a
diverging effective mass and a singular quasiparticle interaction which is self-consistently gen-
erated by the nonlocal order-parameter fluctuations of an impending SDW instability [14–16].
Intriguing in its generality and similar in spirit to Landau’s Fermi liquid theory, this scenario
does, however, not invoke Kondo physics and, thus, does not address the specific problems
associated with the Kondo destruction like Fermi volume collapse or the possibility of small,
localized magnetic moments in the magnetically ordered phase.

While the Hertz-Millis-Moriya scenario (1) is described by a critical field theory of the bosonic,
magnetic order parameter alone, the complete understanding of the breakdown scenarios (2),
(3), and (4) would require a field theory for the fermionic degrees of freedom forming the Kondo
effect and the heavy quasiparticles, coupled to the bosonic order parameter field. In lack of such
a complete theory, these scenarios presume that specific fluctuations: (2) local fluctuations, (3)
Fermi surface fluctuations, or (4) antiferromagnetic fluctuations, become soft for certain values
of the system parameters and, thus, dominate the QPT. Therefore, the conditions for these
scenarios to be realized are controversial.

In these lecture notes we consider the interplay of Kondo screening and RKKY interaction
within the Kondo lattice model. We derive the phenomena of the single-impurity Kondo model
in section 2, thereby introducing important concepts and techniques, like the fermionic repre-
sentation spin, universality, and the analytic (perturbative) renormalization group. Section 3
presents the oscillatory RKKY coupling, calculated as a second-order spin exchange process,
mediated by the conduction electrons. In section 4 we show how the Kondo singlet formation
as well as the RKKY interaction can be incorporated on the same footing in an analytic renor-
malization group treatment, leading to a universal Kondo destruction as function of the RKKY
coupling parameter. We conclude in section 5 with a discussion how this theory may set the
stage for a more complete quantum field theory of heavy-fermion QPTs with Kondo breakdown.

2 Kondo effect and renormalization group

In this section we recollect the essential physics of a single Kondo impurity in a metal and
provide the calculational tools for their derivation. We consider the single-impurity Kondo
model

H =
∑
k,σ

εk c
†
kσckσ + J0 Ŝ · ŝ (1)

where ckσ, c†kσ denote the conduction (c-) electron operators with momentum k and dispersion
εk. Ŝ is the impurity spin operator at site x = 0, which is locally coupled to the spins of the
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conduction electrons on that site, ŝ, via a Heisenberg exchange coupling J0. We have

ŝ =
∑

k,k′, σ,σ′

c†kσ σσσ′ ck′σ′ , (2)

with σ = (σx, σy, σz)
T the vector of Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (3)

In Eq. (2) the conduction spin eigenvalue 1/2 has been absorbed in the coupling constant J0,
by convention, and we use units ~ = 1 throughout. The local spins Ŝ will henceforth be termed
f -spins, as they are typically realized in heavy fermion systems by the rare-earth 4f electrons.

2.1 Pseudo-fermion representation of spin

A field theoretical treatment, like the standard functional integral or Wick’s theorem and many-
body perturbation theory, requires that the corresponding field operators obey canonical com-
mutation rules, i.e., their (anti)commutators must be proportional to the unit operator. However,
the spin operators Ŝ obey the SU(2) algebra. In order to overcome this difficulty, we use the
fermionic representation of spin, first introduced by Abrikosov [17]. For each of the basis states
spanning the impurity spin Hilbert space, |σ〉, σ =↑, ↓, fermionic creation and destruction op-
erators f †σ, fσ are introduced according to |σ〉 = f †σ|vac〉, where |vac〉 denotes the vacuum state
(no impurity spin present). The impurity spin operator S then reads,

Ŝ =
1

2

∑
τ,τ ′

f †τ σττ ′ fτ ′ . (4)

That is, the operator on the right-hand side and Ŝ have identical matrix elements in the physical
spin Hilbert space. However, repeated action of the fermionic operators would permit unphysi-
cal double occupancy or no occupancy of the spin states | ↑ 〉, | ↓ 〉. The dynamics are restricted
to the physical spin space by imposing the operator constraint

Q̂ =
∑
σ

f †iτfiτ = 1. (5)

Eqs. (4), (5) constitute the exact pseudo-fermion representation of the spin s = 1/2.
The impurity-spin operator and, hence, the equation of motion with the Hamiltonian (1) are
symmetric under the local U(1) gauge transformation

fτ → e−iφ(t)fτ , i
d

dt
→ i

d

dt
− ∂φ(t)

∂t
, (6)

with an arbitrary, time-dependent phase φ(t). It is closely related to the conservation of the
pseudo-fermion number Q̂.
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Projection onto the physical Hilbert space. The exact projection of the dynamics onto the
physical sector of Fock space with Q = 1, is performed by the following procedure. Consider
first the grand canonical ensemble with respect to Q, defined by the statistical operator

ρ̂G =
1

ZG
e−β(H+λQ), (7)

where ZG = tr[exp{−β(Ĥ + λQ̂)}] is the grand canonical partition function, −λ the associ-
ated chemical potential, and β = 1/kBT the inverse temperature. The trace extends over the
complete Fock space, including summation over Q = 0, 1, 2. The grand canonical expectation
value of an observable Â acting on the impurity spin space is defined as

〈Â〉G(λ) = tr[ρ̂GÂ]. (8)

The physical expectation value of Â, 〈Â〉, must be evaluated in the canonical ensemble with
fixed Q = 1. It can be obtained from the grand canonical expectation value as [17],

〈Â〉 :=
trQ=1

[
Âe−βĤ

]
trQ=1

[
e−βĤ

] = lim
λ→∞

tr
[
Âe−β[Ĥ+λ(Q̂−1)]]

tr
[
Q̂e−β[Ĥ+λ(Q̂−1)]

] = lim
λ→∞

〈Â〉G(λ)
〈Q̂〉G(λ)

(9)

Here, all terms of the grand canonical traces in the numerator and in the denominator with
Q > 1 are projected away by the limit λ → ∞. In the denominator, the operator Q̂ makes all
terms with Q = 0 vanish. In the numerator, the observable Â acts on the impurity spin space
and hence is a power of Ŝ, Eq. (4), which vanishes in the Q = 0 subspace. Therefore, in the
numerator and in the denominator precisely the canonical traces over the physical sector Q = 1

remain, as required. It follows that any impurity-spin correlation function can be evaluated as a
pseudo-fermion correlation function in the unrestricted Fock space, where Wick’s theorem and
the decomposition in terms of Feynman diagrams with pseudo-fermion propagators are valid,
and taking the limit λ → ∞ at the end of the calculation. Note that for the c electron spin,
Eq. (2), the Q = 1 projection is not needed, because for the noninteracting c-electrons doubly
occupied or empty states are allowed.
Diagrammatic rules. We will now show that the limit λ → ∞ translates into simple dia-
grammatic rules for the evaluation of impurity Green and correlation functions. We denote the
local c electron Green function at the impurity site by Gcσ(iωn) and the bare, grand canonical
pseudo-fermion Green function by GG

fσ(iωn)

Gcσ(iωn) =
∑
k

1

iωn − εk
(10)

GG
fσ(iωn) =

1

iωn − λ
, (11)

with the fermionic Matsubara frequencies ωn = π
β
(2n + 1). Consider first limλ→0〈Q̂〉G(λ).

Using standard, complex contour integration, we obtain

〈Q̂〉G(λ) =
∑
σ

1

β

∑
ωn

GG
fσ(iωn) = −

∑
σ

∮
dz

2πi
f(z)GG

fσ(z)

= −
∑
σ

∫ +∞

−∞

dε

2πi
f(ε)

[
GG
fσ(ε+ i0)−GG

fσ(ε− i0)
]
, (12)
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where f(ε) = 1/(eβε + 1) is the Fermi function, and the ε-integral extends along the branch
cut of GG

fσ(z) at the real frequency axis, Im z = 0. We can now perform a specific gauge
transformation of the operators, fτ → e−iλtfτ . It implies, by virtue of Eq. (6), a shift of all
pseudo-fermion energies in a diagram by ε → ε + λ. It eliminates λ from the pseudo-fermion
propagator and casts it into the argument of the Fermi function. Thus, we have

〈Q̂〉G(λ) = −
∑
σ

∫ +∞

−∞

dε

π
f(ε+ λ) ImGfσ(ε+ i0)

λ→∞−→ e−βλ
∑
σ

∫ +∞

−∞

dε

π
e−βε ImGfσ(ε+ i0), (13)

where Gfσ(ε+ i0) ≡ GG
fσ(ε+ λ+ i0) = 1/(ε+ i0) is independent of λ.

The result Eq. (13) can be generalized by explicit calculation to arbitrary Feynman diagrams
involving f - and c-Green functions: (i) Each complex contour integral includes one distribution
function f(z). The integral can be written as the sum of integrals along the branch cuts at the
real energy axis of all propagators appearing in the diagram. (ii) Consider now one term of this
sum. The argument of the distrubution function f(ε) in that term is real and always equal to the
argument ε of that propagatorG along whose branch cut the integration extends. (iii) The above
energy-shift gauge transformation applies to all pseudo-fermion energies ω in the diagram and,
thus, cancels the parameter λ in all pseudo-fermion propagators, GG

fσ(ω) → Gfσ(ω). (iv) If in
the considered term the integral is along a pseudo-fermion branch cut, this gauge transformation
also shifts the argument of the distribution function, f(ε)→ f(ε+ λ), by virtue of (ii), i.e., the
pseudo-fermion branch cut integral vanishes ∼ e−βλ, as in Eq. (13). If the integral is along a
c-electron branch cut, the argument of f(ε) is not affected by the gauge transformation, and the
integral does not vanish.
This derivation can be summarized in the following diagrammatic rules for (Q = 1)-projected
expectation values:

(1) In a diagrammatic part that consists of a product of c- and f -Greens’s functions, only the
integrals along the c-electron branch cuts contribute.

(2) A closed pseudo-fermion loop contains only pseudo-fermion branch cut integrals and thus
carries a factor e−βλ.

(3) Each diagram contributing to the projected expectation value of an impurity spin observ-
able, 〈Â〉, contains exactly one closed pseudo-fermion loop per impurity site, because
the factor of e−βλ cancels in the numerator and denominator of Eq. (9), and higher order
loops vanish by virtue of rule (2).

We note in passing that the pseudo-fermion representation can be generalized in a straight-
forward way to higher local spins than S = 1/2 by choosing in Eq. (4) a respective higher-
dimensional representation of the spin matrices and defining the constraint Q̂ = 1 as before,
with a summation over all possible spin orientations τ . It can also be extended to include local
charge fluctuations by means of the slave boson representation [18–21].
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Fig. 2: Conduction electron-impurity spin vertex γ̂cf of the single-impurity Kondo model up to
2nd order in the spin exchange coupling J0. Conduction electron propagators are denoted by
solid, pseudo-fermion propagators by dashed lines. γ̂2,d and γ̂2,x represent the 2nd-order direct
and exchange terms, respectively. The external lines are drawn for clarity and are not part of
the vertex.

2.2 Perturbation theory

It is instructive to analyze the scattering of a conduction electron from a spin impurity in per-
turbation theory, because this will visualize the physical origin of its singular behavior. The
perturbation theory can be efficiently evaluated with the formalism developed in section 2.1.
With the Kondo Hamiltonian Eq. (1) the conduction-electron–impurity-spin vertex γ̂cf can be
read off from the diagrams in Fig. 2. Denoting the vector of Pauli matrices acting in c-electron
spin space by σ = (σx, σy, σz)T and the vector of Pauli matrices in f -spin space by s =

(sx, sy, sz)T , γ̂cf reads in first and second order of J0

γ̂
(1)
cf =

1

2
J0 (s · σ) (14)

γ̂
(2,d)
cf = −1

4
J2
0

∑
a,b=x,y,z

(
sbσb

)
(saσa)

1

β

∑
ωn

Gc(iωn)Gf (iΩm − iωn)|λ→∞ (15)

γ̂
(2,x)
cf = +

1

4
J2
0

∑
a,b=x,y,z

(
sbσa

) (
saσb

) 1

β

∑
ωn

Gc(iωn)Gf (iΩm + iωn)|λ→∞, (16)

where matrix multiplications in the f - and c-spin spaces are implied, and the sum
∑

a=x,y,z

represents the scalar product in position space. The relative minus sign between γ̂(2,d)cf and γ̂(2,x)cf

arises because of the extra fermion loop in the exchange term γ̂
(2,x)
cf . Note that the order of the

Pauli matrices in Eqs. (15), (16) is crucial. It is determined by their order along the c-electron
or f -particle lines running through the diagram. Thus, in γ̂(2,x)cf the order of c-electron Pauli
matrices is reversed with respect to γ̂(2,d)cf .

The spin-dependent part of γ̂(2,d)cf , γ̂(2,x)cf can be evaluated using the SU(2) spin algebra, σaσb =∑
c=x,y,z iε

abcσc + δab1 for a, b = x, y, z, where 1 is the unit operator in spin space, εabc the
totally antisymmetric unit tensor and δab the Kronecker-δ

d :
∑

a,b=x,y,z

sbsa ⊗ σbσa = −2 s · σ + 31⊗ 1 (17)

x :
∑

a,b=x,y,z

sbsa ⊗ σaσb = 2 s · σ + 31⊗ 1 (18)



Kondo Effect and RKKY Interaction 12.9

For scattering at the Fermi energy (Ω = 0), the energy-dependent factors in Eqs. (15), (16) are

d :
1

β

∑
ωn

Gc(iωn)G
G
f (−iωn)|λ→∞ =

∮
dz

2πi
[1− f(z)]Gc(z)G

G
f (−z)|λ→∞

= N(0)

∫ D0

−D0

dε
1− f(ε)

ε
(19)

x :
1

β

∑
ωn

Gc(iωn)G
G
f (iωn)|λ→∞ = −

∮
dz

2πi
f(z)Gc(z)G

G
f (z)|λ→∞

= −N(0)

∫ D0

−D0

dε
f(ε)

ε
, (20)

where we have assumed the Fermi energy in the center of the band of half bandwidth D0, with
a flat conduction electron density of states N(0) = ImGc(0 − i0)/π. We see (cf. Fig. 2) that
in the direct term (d) the intermediate electron must scatter into an unoccupied state, 1− f(ε),
while in the exchange term (x) the intermediate electron comes from an occupied state, f(ε)
and then leaves the impurity. Collecting all terms, we obtain γ̂cf = γ̂

(1)
cf + γ̂

(2d)
cf + γ̂

(2x)
cf as

γ̂cf =
1

2
J0 (s · σ)

[
1 +N(0)J0

∫ D0

−D0

dε
1− 2f(ε)

ε
+O(J2

0 )

]
≈ 1

2
J0 (s · σ)

[
1 + 2N(0)J0 ln

(
D0

T

)
+O(J2

0 )

]
(21)

The calculation clearly shows the physical origin of the logarithmic behavior: the presence of
a sharp Fermi edge in the phase space available for scattering, i.e., in the integrals of Eqs. (19),
(20), and quantum spin-flip scattering with the nontrivial SU(2) algebra. If the reversed order
of Pauli matrices in the exchange term would not introduce a minus sign in the spin channel,
Eq. (18), the logarithmic terms would cancel, like in the potential scattering channel, instead of
adding up. It is also important that the impurity is localized, because otherwise an integral over
the exchanged momentum (recoil) would smear the logarithmic singularity.
Eq. (21) exhibits a logarithmic divergence for low temperatures T . It signals a breakdown
of perturbation theory when the 2nd-order contribution to γ̂cf becomes equal to the 1st-order
contribution. This happens at a characteristic temperature scale, which can be read off from
Eq. (21), the Kondo temperature

TK = D0 e
−1/(2N(0)J0). (22)

Below TK perturbative calculations about the weak-coupling state break down. To describe
the complex physics outlined in the introduction, more sophisticated techniques, predominantly
numerical or exact solution methods, are required. The logarithmic behavior of the perturbation
expansion, however, sets the stage for the development of the renormalization group method, to
be developed in the next section, and which is particularly useful for analytically studying the
interplay of Kondo screening and RKKY interaction.
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Fig. 3: Universality and perturbative renormalization group. (a) T-matrix resummation of
the c –f vertex. The sum contains, for each conduction electron-pseudo-fermion bubble (direct
diagram) shown, the exchange diagram, which is not shown for clarity. (b) Scheme for the
cutoff reduction D → D − δD.

2.3 Renormalization group

Since the logarithm is a scale invariant function, there is the possibility that the resummation
of a logarithmic perturbation expansion leads to universal behavior in the sense that variables
like energy ω, temperature T , etc. can be expressed in units of a single scale, TK , in such a
way that all physical quantities are functions of the dimensionless variables, ω/TK , T/TK , etc.
only and do not explicitly depend on the microscopic parameters of the Hamiltonian, like J0,
D0, and N(0). For the Kondo model, this extremely remarkable property can be visualized by a
T-matrix-like, partial resummation of the c –f vertex, as sketched in Fig. 3(a). The resummation
results in a geometric series for the total c –f vertex or the effective coupling constant J̃

N(0)J̃ = 2N(0)J0

[
1 + 2N(0)J0 ln

(
D0

T

)
+

(
2N(0)J0 ln

(
D0

T

))2

+ . . .

]
(23)

=
2N(0)J0

1− 2N(0)J0 ln
(
D0

T

) =
1

ln
(

T
TK

) , (24)

which converges for T > TK . It is seen that, as a consequence of the logarithmic behavior, in
the last expression the microscopic parameters J0, D0, and N(0) indeed conspire to form the
Kondo temperature TK of Eq. (22) as the only scale in the problem. This universal behavior is
inherited by physical quantities, like relaxation rates, transport properties, etc., since they can be
expressed in terms of the total c –f vertex. Although the above is only a heuristic argument and
other contributions, not contained in the partial summation, could break the universality, it has
been shown independently by the Bethe ansatz solution [22] and by numerical renormalization
group (NRG) (for a recent review see [23]) that universality in the above sense indeed holds for
the Kondo problem.
Universality is the starting point for the renormalization group method whose essence we dis-
cuss next. Let all physical quantities An = hn(ω/T

∗, T/T ∗) of a system depend on energy ω
and temperature T in a universal way, with universal functions hn and some (yet unknown)
characteristic scale T ∗, which depends on the microscopic parameters of the Hamiltonian,
J0, D0, N(0). The fact that the An depend on these parameters only implicitly through T ∗
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implies that different values of this parameter set realize the same physical system (defined by
its observables An) if only the different parameter set values lead to the same scale T ∗. In
particular, systems with low and with high values of the conduction bandwidth or cutoff D0

must be equivalent if the coupling constant J0 is adjusted appropriately. In the Kondo problem
we are mostly interested in the low-energy behavior, where the perturbation theory fails. This
regime corresponds to electrons with a low bandwidth, scattering near the Fermi energy. By
virtue of the above argument, this low-energy regime is connected with the high bandwidth
regime, where perturbative calculations are possible. In the renormalization group method,
this relation is established iteratively. Starting from an initial high-energy cutoff D0, the cut-
off is stepwise reduced to low energies, calculating at each step how the coupling constant J
of the Hamiltonian must be changed, such that the physical observables An remain constant,
see Fig. 3(b). This defines a running cutoff D with initial value D0 and a “renormalized” or
“running” coupling constant J(D) with initial value J0. The running coupling constant, as part
of the Hamiltonian, defines a change of the Hamiltonian itself. More generally, the cutoff re-
duction may even generate new types of interaction operators in the Hamiltonian, implied by
the requirement that physical observables be invariant. The repeated operations on the Hamil-
tonian, defined in this way, form a semigroup (without existence of the inverse operation), the
renormalization group (RG). The change of the Hamiltonian by the successive cutoff reduction
is called renormalization group flow.
We can now perform the renormalization of the Kondo Hamiltonian (or coupling constant J)
explicitly in a perturbative way, following Anderson [24]. To that end, it is convenient to intro-
duce the dimensionless, bare coupling g0 = N(0)J0 and running coupling g = N(0)J . We also
define the projector PδD of the conduction electron energy onto the intervals [−D,−D+ δD]∪
[D − δD,D] by which the conduction band is reduced in one RG step as well as the projector
(1−PδD) onto the remaining conduction energy interval, cf. Fig. 3(b). To impose the invariance
of physical quantities under the RG flow, it is sufficient to keep the total conduction-electron–
pseudo-fermion vertex γ̂cf invariant, since all physical quantities are derived from it within the
Kondo model. γ̂cf is defined by the following T-matrix equation

γ̂cf = γ̂
(1)
cf + γ̂

(1)
cf G γ̂cf . (25)

Here, the bare vertex γ̂
(1)
cf is defined as in Eq. (14), G denotes schematically the product of

Gc and Gf propagators connecting two bare vertices γ̂(1)cf in the direct and exchange diagrams
(cf. Fig. 2), and integration over the conduction electron energy in G is implied. Eq. (25) can
be rewritten as

γ̂cf = γ̂
(1)
cf + γ̂

(1)
cf [PδDG] γ̂cf + γ̂

(1)
cf [(1−PδD)G] γ̂cf (26)

= γ̂
(1)
cf + γ̂

(1)
cf [PδDG]

{
γ̂
(1)
cf + γ̂

(1)
cf [(PδD + (1−PδD))G] γ̂cf

}
+ γ̂

(1)
cf [(1−PδD)G] γ̂cf

= γ̂
(1)
cf

′
+ γ̂

(1)
cf

′
[(1−PδD)G] γ̂cf + O(P 2

δD),

with

γ̂
(1)
cf

′
= γ̂

(1)
cf + γ̂

(1)
cf [PδDG] γ̂

(1)
cf =: γ̂

(1)
cf + δγ̂

(1)
cf . (27)
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In the first line of Eq. (26), the integral over the intermediate conduction electron energy has
been split into the infinitesimal high-energy part PδD and the remaining part (1−PδD). In the
second line, the high-energy part of the equation has been iterated once, and in the third line,
only terms up to linear order in PδD have been retained, and all terms have been appropriately
rearranged. As seen from the third line, the total vertex γ̂cf obeys again a T-matrix equation,
however with a reduced conduction bandwidth, (1−PδD). Moreover, γ̂cf remains invariant by
this procedure, exactly if the bare vertex is changed to γ̂(1)cf as defined in Eq. (27). This is the
vertex renormalization we are seeking. Note that this expression is a perturbative, because in
Eq. (26) we have iterated the T-matrix equation only once (1-loop approximation). Higher-
order iterations, leading to higher-order renormalizations in γ̂

(1)
cf are possible. Note that the

vertex renormalization δγ̂(1)cf in Eq. (27) corresponds just to the 2nd-order perturbation theory
expression calculated in Eq. (21), see also Fig. 2. Thus, one can read off from these equations
the renormalization of the dimensionless coupling constant g under cutoff reduction −δD as

dg = − d

dD

[
g2
∫ D

−D
dε

1− 2f(ε)

ε

]
δD = −2g2

D
δD. (28)

Usually one takes the logarithmic derivative which ensures that the differential range −δD by
which the cutoff is reduced is proportional to the cutoff itself: δD = Dd(lnD). Thus

dg

d lnD
= −2g2. (29)

This is the differential renormalization group equation (of 1-loop order). The function on the
right-hand side, β(g) = −2g2, which controls the running coupling constant renormalization,
is called the β-function of the RG. The RG equation can be integrated in a straightforward way
with the initial condition g(D0) = g0 to give

g(D) =
g0

1− 2g0 ln(D/D0)
. (30)

It is seen that this solution becomes again divergent for antiferromagnetic g0 > 0 when the
running cutoff reaches the Kondo scale, D → TK = D0 exp [−1/(2g0)], a consequence of
the perturbative RG treatment above. However, this divergence allows the conclusion that the
ground state of the single-impurity Kondo model is a spin-singlet state between the impurity
spin and the spin cloud of the surrounding conduction electron spins as outlined in the intro-
duction. Moreover, it allows for a more general definition of the Kondo spin screening scale
TK , namely the value of the running cutoff D where the coupling constant diverges and the
singlet starts to be formed. This will be used for the analysis of the Kondo-RKKY interplay in
section 4.

3 RKKY interaction in paramagnetic and half-metals

In this section we derive the expressions for the RKKY interaction. To be general, we will allow
for an arbitrary spin polarization of the conduction band and then specialize for the paramag-
netic case (vanishing magnetization) and the half-metallic case (complete magnetization). Thus,
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we consider now the Kondo lattice Hamiltonian of localized spins Ŝi at the lattice positions ri

H =
∑
k,σ

εk c
†
kσckσ + J0

∑
i

Ŝi · ŝi . (31)

Usually, the static limit is considered in order to derive a Hamiltonian coupling operator. We
will later consider the question of dynamical correlations as well, as it arises in the interplay with
the Kondo effect. The interaction Hamiltonian for the conduction electrons and the localized
f -spin Sj at a site j 6= i,

H
(cf)
j = J0Ŝj · ŝj , (32)

acts as a perturbation for the localized f -spin at a site i (and vice versa). Performing standard
thermal perturbation theory by expanding the time evolution operator in the interaction picture,
T̂ exp[−

∫ β
0
dτHcf

j (τ)] up to linear order in J0, one obtains for the interaction operator of the
f -spin at site i up to O(J2

0 )

H
(2)
ij = J0 Ŝi · ŝi − J2

0 〈(Ŝi · ŝi)(Ŝj · ŝj)〉c
∣∣∣
ω=0

. (33)

Here, 〈(. . . )〉c := trc{e−βH(. . . )}/ZG, denotes the thermal trace over the conduction electron
Hilbert space, and the static limit, ω = 0, has been taken. Using Wick’s theorem with respect
to the conduction electron operators, the second term in Eq. (33) can be written as

HRKKY
ij = −J

2
0

4

∑
α,β=x,y,z

∑
σσ′

Ŝαi σ
α
σσ′σ

β
σ′σ Ŝ

β
j Π

σσ′

ij (0), (34)

where Ŝαi , α = x, y, z, are the components of the impurity spin, σα the Pauli matrices, and
Πσσ′
ij the conduction electron density propagator between the sites i and j as depicted diagram-

matically in Fig. 4(a). It has the general form,

Πσσ′

ij (iω) = − 1

β

∑
εn

Gji σ(iεn + iω)Gij σ′(iεn) . (35)

In the static limit it reads

Πσσ′

ij (0) = −
∫
dε f(ε)[Aij σ(ε)ReGij σ′(ε) + Aij σ′(ε)ReGij σ(ε)] ,

whereAij σ(ε) = −ImGij σ(ε+i0)/π. Performing the spin contractions in Eq. (34) and defining
the longitudinal and the transverse polarization functions, respectively, as

Π
||
ij(0) =

1

2

∑
σ

Πσσ
ij (0) = −

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij σ(ε) (36)

Π⊥ij (0) =
1

2

∑
σ

Πσ−σ
ij (0) = −

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij−σ(ε) , (37)

one obtains the RKKY interaction Hamiltonian,

HRKKY =
∑
i 6=j

HRKKY
ij = −

∑
i,j

[
K
||
ij Ŝ

z
i Ŝ

z
j −K⊥ij

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)]



12.14 Johann Kroha

0 2 4 6
x / 2π-0

.0
0
0
5

0
0
.0

0
0
5

0
.0

0
1

0
.0

0
1
5

Π
(x

) 
/ 
N

(0
)

σ´

J
cf

J
cf

b)
ε + ω

ε

σ

(a) (b)

Fig. 4: (a) Diagram for the spin-dependent conduction electron polarization functionΠσσ′
ij (ω),

generating the RKKY interaction. The solid lines represent conduction electron propagators.
(b) Oscillatory behavior of Πσσ′

ij (0) in a paramagnetic metal with isotropic dispersion as a
function of distance x = 2kF |ri − rj|, Eq. (45)

where the sums run over all (arbitrarily distant) lattice sites i, j, i 6= j of localized spins Ŝi and

Ŝj , and

K
||
ij =

1

2
J2
0Π
||
ij(0) , K⊥ij =

1

2
J2
0Π
⊥
ij (0) , (38)

are the longitudinal and transverse RKKY couplings, respectively. The spin being a vector op-
erator, the interaction Hamiltonian HRKKY

ij has a tensor structure and is, in general, anisotropic
for a magnetized conduction band, as seen from Eq. (38).
We now present explicitly the expressions for the special cases of a paramagnet and of a half-
metal. For a paramagnetic conduction band we have Gij σ = Gij,−σ, independent of spin.
Hence, the RKKY coupling is isotropic, and we have the paramagnetic RKKY Hamiltonian,

HRKKY
PM = −

∑
(i,j)

KPM
ij Ŝi · Ŝj , (39)

with

KPM
ij = −J

2
0

2

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij σ(ε) . (40)

For a half-metal, i.e., for a completely spin-magnetized conduction band with majority spin
σ =↑ we have Aij ↓(ε) = 0, Thus, the half-metallic RKKY Hamiltonian reads

HRKKY
FM = −

∑
(i,j)

[
K
FM ||
ij Ŝzi Ŝ

z
j +KFM ⊥

ij

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)]
, (41)

with

K
FM ||
ij = −J

2
0

2

∫
dε f(ε)Aij ↑(ε) ReGij ↑(ε) (42)

KFM ⊥
ij = −J

2
0

2

∫
dε f(ε)Aij ↑(ε) ReGij ↓(ε) . (43)
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The missing spin summation in Eqs. (42) and (43) as compared to Eq. (40) indicates that in the
completely magnetized band only the majority spin species contributes to the coupling. Note,
however, that the transverse coupling KFM⊥

ij is still non-zero even in the ferromagnetically
saturated case because of virtual (off-shell) minority spin contributions represented by the real
part ReGij ↓(ε) in Eq. (43).

The RKKY coupling is long-ranged and has in general complex, oscillatory behavior in space,
because it depends on details of the conduction band structure via the position dependent
Green functions Gji σ(ω) in Eq. (35). For an isotropic system in d = 3 dimensions, the re-
tarded/advanced conduction electron Green function Grσ(ε ± i0) and the paramagnetic polar-
ization Πσσ′

r (ω) at temperature T = 0 are calculated in position space as,

Grσ(ε± i0) = −πN(ε)
e±ik(εF+ε)r

k(εF + ε)r
(44)

Πσσ′

r (ω + i0) =

[
N(0)

sin(x)− x cos(x)
4x4

+ O

((
ω

εF

)2
)]

(45)

± i

[
1

π
N(0)

1− cos(x)

x2
ω

εF
+ O

((
ω

εF

)3
) ]

Here, εF and kF are the Fermi energy and Fermi wavenumber, respectively, and r = |ri − rj|,
x = 2kF r. For illustration, Fig. 4(b) shows the static polarization Πσσ′

r (0) as a function of x for
the isotropic case.

4 Interplay of Kondo screening and RKKY interaction

We now turn to the interplay of the two interactions on a Kondo lattice, Eq. (31). First, it is
crucial to remember that the RKKY interaction between different f -spins is not a direct spin
exchange interaction, but mediated by the conduction band [3–5] and generated in second order
by the same spin coupling J0 that is also responsible for the local Kondo spin screening, as
shown in the previous section. The essential difference can be seen from the example of a two-
impurity Kondo system, S1, S2: With a direct impurity-impurity coupling, K S1 ·S2, this model
can exhibit a dimer singlet phase where the dimer is decoupled from the conduction electrons.
The dimer singlet and the local Kondo singlet phase are then separated by a quantum critical
point (QCP), controlled by K [25,26]. By contrast, when the inter-impurity coupling is created
by the RKKY interaction only, i.e. generated by J0, a decoupled dimer singlet phase is not pos-
sible. Instead, the impurity spins must remain coupled to the conduction sea. We show below
that the Kondo singlet formation at T = 0 breaks down at a critical strength of the RKKY cou-
pling even if magnetic ordering is suppressed, i.e. without a 2nd-order quantum phase transition
and without critical fluctuations. If magnetic ordering occurs, critical ordering fluctuations will
be present in addition to, but independently of the RKKY-induced Kondo breakdown.
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Fig. 5: (a) f -spin–c-electron vertex Γ̂cf , composed of the onsite vertex J at site i and the RKKY-
induced contributions from surrounding sites j 6= i to leading order in the RKKY coupling,
γ
(d)
RKKY (direct term) and γ(x)RKKY (exchange term). (b) 1-loop diagrams for the perturbative

RG. Solid lines: electron Green functions Gc, dashed lines: pseudo-fermion propagators Gf of
the local f -spins. The red bubbles represent the full f -spin susceptibility at sites j.

4.1 The concept of a selfconsistent renormalization group

The problem of local Kondo screening or breakdown on a Kondo lattice amounts to calculating
the vertex for scattering of c-electrons from a local f -spin and analyzing its divergence (Kondo
screening of the f -spin, cf. section 2.3) or non-divergence (Kondo breakdown) under RG. In the
case of multiple Kondo sites or a Kondo lattice, this vertex Γ̂cf acquires nonlocal contributions
in addition to the local coupling J0, because a c-electron can scatter from a distant Kondo
site j 6= i, and the spin flip at that site is transferred to the f -spin at site i via the RKKY
interaction. On the other hand, the RKKY vertex Γ̂ff coupling two f -spins has no logarithmic
RG flow, since the recoil (momentum integration) of the itinerant conduction electrons prevents
an infrared divergence of the RKKY interaction. Thus, Γ̂ff remains in the weak coupling
regime, and RKKY-induced magnetic ordering must be a secondary effect, not controlled by
the RG divergence of a coupling constant.

The diagrams contributing to Γ̂cf to leading order in the RKKY coupling are shown in Fig. 5(a).
As seen from the figure, a nonlocal scattering process necessarily involves the exact, local dy-
namical f -spin susceptibility χf (iΩn) on site j. The resulting c –f vertex Γ̂cf has the structure
of a nonlocal Heisenberg coupling in spin space, see Appendix A.1. The exchange diagram,
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γ
(x)
RKKY in Fig. 5(a), contributes only a sub-leading logarithmic term as compared to the direct

term γ
(d)
RKKY , see Appendix A.2. In particular, it does not alter the universal TK(y) suppression

derived below. It can, therefore, be neglected. To leading (linear) order in the RKKY coupling,
Γ̂cf thus reads (in Matsubara representation)

Γ̂cf =
[
Jδi,j + γ

(d)
RKKY (rij, iΩn)

]
Si · sj (46)

=
[
Jδij + 2JJ2

0 (1− δij) Π(rij, iΩn) χ̃f (iΩn)
]
Si · sj ,

where rij = xi−xj the distance vector between the sites i and j, andΩ is the energy transferred
in the scattering process. Π(rij, iΩn) is the c-electron density correlation function between sites
i and j [bubble of solid lines in Fig. 5(a)] and χ̃f (iΩn) := χf (iΩn)/(gLµB)

2, with gL the Landé
factor and µB the Bohr magneton. Note that Eq. (46) contains the running coupling J at site
i which will be renormalized under RG, while at the site j, where the c-electron scatters, the
bare coupling J0 appears, since all vertex renormalizations on that site are already included in
the exact susceptibility χf . Higher order terms, as for instance generated by the RG [see below,
Fig. 5(b)], lead to nonlocality of the incoming and outgoing coordinates of the scattering c-
electrons, xj , xj′ , but the f -spin coordinate xi remains strictly local, since the pseudo-fermion
propagator Gf (iνn) = 1/iνn is local [20]. For this reason, speaking of Kondo singlet formation
on a single Kondo site is well defined even on a Kondo lattice, and so is the local susceptibility
χf of a single f -spin. The corresponding Kondo scale TK on a site j is observable, e.g., as
the Kondo resonance width measured by STM spectroscopy on one Kondo ion of the Kondo
lattice. The temperature dependence of the single-site f -spin susceptibility is known from the
Bethe ansatz solution [22] in terms of the Kondo scale TK . It has a T = 0 value χf (0) ∝ 1/TK
and crosses over to the 1/T behavior of a free spin for T > TK . These features can be modeled
in the retarded/advanced, local, dynamical f -spin susceptibility χf (Ω ± i0) as

χf (Ω ± i0) =
(gLµB)

2W

πTK
√

1 + (Ω/TK)2

(
1± 2i

π
arsinh

Ω

TK

)
(47)

where W is the Wilson ratio, and the imaginary part is implied by the Kramers-Kronig relation.
Deriving the one-loop RG equation for a multi-impurity or lattice Kondo system proceeds as in
section 2.3, however for the c –f vertex Γ̂cf , including RKKY-induced nonlocal contributions.
The one-loop spin vertex function is shown diagrammatically in Fig. 5(b). Using Eq. (46), the
sum of these two diagrams is up to linear order in the RKKY coupling,

Y (rij, iωn) = −J T
∑
iΩm

[
Jδij + γ

(d)
RKKY (rij, iΩm) + γ

(d)
RKKY (rij,−iΩm)

]
(48)

× [Gc(rij, iωn − iΩm)−Gc(rij, iωn + iΩm)] Gf (iΩm).

Here, ω is the energy of incoming conduction electrons and Gc(rij, iωn + iΩm) the single-
particle c-electron propagator from the incoming to the outgoing site.
For the low-energy physics, the vertex renormalization for c-electrons at the Fermi surface is
required. This means setting the energy iω → ω = 0 + i0 and Fourier transforming the total
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vertex Y (rij, iω) with respect to the incoming and outgoing c-electron coordinates, xj , xi, and
taking its Fourier component for momenta at the Fermi surface, kF . Note that at the Fermi
energy Y (kF , 0) is real, even though the RKKY-induced, dynamical vertex γ(d)RKKY (±iΩm) ap-
pearing in Eq. (48) is complex-valued. This ensures the total vertex operator of the renormalized
Hamiltonian to be Hermitian. By analytic continuation, the Matsubara summation in Eq. (48)
becomes an integration over the intermediate c-electron energy from the lower and upper band
cutoff ∓D to the Fermi energy (Ω = 0). The coupling constant renormalization is then ob-
tained by requiring that Y (kF , 0) is invariant under an infinitesimal reduction of the running
band cutoff D (cf. section 2.3). Note that the band cutoff appears in both, the intermediate elec-
tron propagator Gc and in Π . However, differentiation of the latter does not contribute to the
logarithmic RG flow. This leads to the 1-loop lattice RG equation for the local coupling [27]

dg

d lnD
= −2g2

(
1− y g20

D0

TK

1√
1 + (D/TK)2

)
, (49)

with the bare band cutoff D0. The first term in Eq. (49) is the onsite contribution to the β-
function, while the second term represents the RKKY contribution. It is seen that χf , as in
Eq. (47), induces a soft cutoff on the scale TK and the characteristic 1/TK dependence to the
RG flow of this contribution, where TK is the Kondo scale on the surrounding Kondo sites. The
dimensionless coefficient

y = −8W

π2
Im
∑
j 6=i

e−ikF rij

N(0)2
GR
c (rij, Ω = 0)Π(rij, Ω = 0) (50)

arises from the Fourier transform Y (kF , 0) and parameterizes the RKKY coupling strength.
The summation in Eq. (50) runs over all positions j 6= i of Kondo sites in the system. It is
important to note that y is generically positive, even though the RKKY correlations Π(rij, 0)

may be ferro- or antiferromagnetic. For instance, for an isotropic and dense system with lattice
constant a (kFa� 1), the summation in Eq. (50) can be approximated by an integral, and with
the substitution x = 2kF |rij|, y can be expressed as

y ≈ 2W

(kFa)3

∫ ∞
kF a

dx (1− cosx)
x cosx− sinx

x4
> 0 . (51)

As a consequence, the RKKY correlations reduce the g-renormalization in Eq. (49), irrespective
of the sign of Π(rij, 0), as one would physically expect.
The Kondo scale for singlet formation on site i is defined as the running cutoff value where
the c –f coupling g diverges. An important feature of the lattice RG equation (49) is that the
Kondo screening scale on surrounding sites j 6= i appears as a parameter in the β-function for
the renormalization on site i. By equivalence of all Kondo sites, the Kondo scales TK on all
sites i and j must be equal. This leads to the fact that the divergence scale TK of the lattice
RG equation must be determined self-consistently and will imply an implicit equation for the
local screening scale TK = TK(y) on a Kondo lattice, which will depend on the RKKY param-
eter y. The equivalence of the c –f vertices on all Kondo sites is reminiscent of a dynamical
mean-field theory treatment, however, it goes beyond the latter in taking the long-range RKKY
contributions into account.
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Fig. 6: (a) Graphical solution of Eq. (55): black, solid curve: right-hand side of Eq. (55),
blue line: left-hand side for y < yc, red line: left-hand side for y = yc (where red line and
black curve touch). It proves that there is a critical coupling yc beyond which Eq. (55) has
no solution, and TK(yc)/TK(0) = 1/e. (b) Universal dependence of TK(y)/TK(0) on the
normalized RKKY parameter y/yc, solution of Eq. (55). The inset shows the critical RKKY
parameter yc for various single-ion Kondo temperatures TK(0), Eq. (57).

4.2 Integration of the RG equation

The RG equation Eq. (49) is readily integrated by separation of variables,

−
∫ g

g0

dg

g2
= 2

∫ lnD

lnD0

d lnD′ − 2yg20
D0

TK

∫ D/TK

D0/TK

dx

x

1√
1 + x2

, (52)

or
1

g
− 1

g0
= 2 ln

(
D

D0

)
− yg20

D0

TK
ln

(√
1 + (D/TK)2 − 1√
1 + (D/TK)2 + 1

)
, (53)

where we have used D0/TK � 1 in the last expression. The Kondo scale is defined as the value
of the running cutoff D where g diverges, i.e., g →∞ when D → TK . This yields the defining
equation for the Kondo scale TK ≡ TK(y),

− 1

g0
= 2 ln

(
TK(y)

D0

)
− yg20

D0

TK(y)
ln

(√
2− 1√
2 + 1

)
.

Using the definition of the single-impurity Kondo temperature, −1/g0 = 2 ln (TK(0)/D0), the
defining, implicit equation for TK(y) can finally be written as

TK(y)

TK(0)
= exp

(
−y α g20

D0

TK(y)

)
, (54)

with α = ln(
√
2 + 1).

4.3 Universal suppression of the Kondo scale

By the rescaling, u = TK(y)/(yαg
2
0D0), yc = TK(0)/(αeg

2
0D0), Eq. (54) takes the universal

form (e is Euler’s constant),
y

eyc
u = e−1/u . (55)
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Fig. 7: Comparison of the theory (red curve), Eq. (55), with STM spectroscopy experiments
on a tunable two-impurity Kondo system (data points, Ref. [29]). The data points represent the
Kondo scale TK as extracted from the STM spectra by fitting a split Fano line shape of width
TK to the experimental spectra, see [29] for experimental details.

Its solution can be expressed in terms of the LambertW function [28] as u(y) = −1/W (−y/eyc).
Fig. 6(a) visualizes solving Eq. (55) graphically. It shows that Eq. (55) has solutions only for
y ≤ yc. This means that yc marks a Kondo breakdown point beyond which the RG does not
scale to strong coupling, i.e., a Kondo singlet is not formed for y > yc even at the lowest
energies. Using the above definitions, the RKKY-induced suppression of the Kondo lattice tem-
perature reads, TK(y)/TK(0) = u(y)y/(eyc) = −y/[eycW (−y/eyc)]. It is shown in Fig. 6(b).
In particular, at the breakdown point it vanishes discontinuously and takes the finite, universal
value (see Fig. 6(a)),

TK(yc)

TK(0)
=

1

e
≈ 0.368 . (56)

We emphasize that the RKKY parameter y depends on details of the conduction band structure
and of the spatial arrangement of Kondo sites. Sub-leading contributions to Γcf may modify the
form of the cutoff function in the RG Eq. (49) and thus the nonuniversal parameter α. However,
all this does not affect the universal dependence TK(y) on y given by Eq. (55).
The critical RKKY parameter, as defined before Eq. (55), can be expressed solely in terms of
the single-ion Kondo scale,

yc =
4

αe
τK(lnτK)

2 , (57)

with τK = TK(0)/D0. Note that [via TK(0) = D0 exp(−1/2g0) and N(0) = 1/(2D0)] this is
equivalent to Doniach’s breakdown criterion [7], N(0)ycJ

2
0 = TK(0), up to a factor of O(1).

However, the present theory goes beyond the Doniach scenario in that it predicts the behavior
of TK(y).
The present theory applies directly to two-impurity Kondo systems, where magnetic ordering
does not play a role, and can be compared to corresponding STM experiments [29, 30]. In
Ref. [29], the Kondo scale has been extracted as the line width of the (hybridization-split)
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Kondo-Fano resonance. In this experimental setup, the RKKY parameter y is proportional to
the overlap of tip and surface c-electron wave functions and, thus, depends exponentially on the
tip-surface separation z, y = yc exp(−(z − z0)/ξ). Identifying the experimentally observed
breakdown point, z = z0, with the Kondo breakdown point, the only adjustable parameters
are a scale factor ξ of the z coordinate and TK(0), the resonance width at large separation,
z = 300 pm. The agreement between theory and experiment is striking, as shown in Fig. 7.
In particular, at the breakdown point TK(yc)/TK(0) coincides accurately with the prediction,
Eq. (56), without any adjustable parameters.

5 Conclusion

We have derived a perturbative renormalization group theory for the interference of Kondo sin-
glet formation and RKKY interaction in Kondo lattice and multi-impurity systems, assuming
that magnetic ordering is suppressed, e.g. by frustration. Eqs. (54) or (55) represent a mathe-
matical definition of the energy scale for Kondo singlet formation in a Kondo lattice, i.e., of the
Kondo lattice temperature, TK(y). The theory predicts a universal suppression of TK(y) and a
breakdown of complete Kondo screening at a critical RKKY parameter, y = yc. At the break-
down point, the Kondo scale takes a finite, universal value, TK(yc)/TK(0) = 1/e ≈ 0.368, and
vanishes discontinuously for y > yc. In the Anderson lattice, by contrast to the Kondo lattice,
the locality of the f -spin does no longer strictly hold, but our approach should still be valid
in this case. The parameter-free, quantitative agreement of this behavior with different spec-
troscopic experiments [29, 30] strongly supports that the present theory captures the essential
physics of the Kondo-RKKY interplay.
The results may have profound relevance for heavy-fermion magnetic QPTs. In an unfrustrated
lattice, the partially screened local moments existing for y > yc must undergo a second-order
magnetic ordering transition at sufficiently low temperature. This means that the bare c-electron
correlation or polarization functionΠ must be replaced by the full c-correlation function χc and
will imply a power-law divergence of the latter in Eq. (46). We have checked the effect of such
a magnetic instability, induced either by the ordering of remanent local moments or by a c-
electron SDW instability: The breakdown ratio TK(yc)/TK(0) will be altered, but must remain
nonzero. The reason is that the inflection point of the exponential on the right-hand side of
Eq. (55) (see Fig. 6) is not removed by such a divergence and, therefore, the solution ceases
to exist at a finite value of TK(yc). This points to an important conjecture about a possible,
new quantum critical scenario with Kondo destruction: The Kondo spectral weight may vanish
continuously at the QCP, while the Kondo energy scale TK(y) (resonance width) remains finite.
Such a scenario may reconcile apparently contradictory experimental results in that it may fulfill
dynamical scaling, even though TK(yc) is finite at the QCP.
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Appendix

A f -spin – conduction-electron vertex Γ̂cf

Here we present some details on the calculation of the elementary c-electron–f -spin vertex Γ̂cf
It is defined via the Kondo lattice Hamiltonian,

H =
∑
k,σ

εk c
†
kσckσ + J0

∑
i

Ŝi · ŝi , (58)

The direct (d) and exchange (x) parts of the RKKY-induced vertex can be written as the product
of a distance and energy dependent function Λ(d/x)

RKKY and an operator in spin space, Γ̂ (d/x),

γ̂
(d/x)
RKKY = Λ

(d/x)
RKKY (rij, iΩ) Γ̂ (d/x) (59)

A.1 Spin structure

Denoting the vector of Pauli matrices acting in c-electron spin space by σ = (σx, σy, σz)T and
the vector of Pauli matrices in f -spin space by s = (sx, sy, sz)T , the RRKY-induced vertex
contributions read in spin space,

Γ̂
(d)
αβ,κλ =

∑
a,b,c=x,y,z

2∑
γ,δ,µ,ν=1

(
σaδγs

a
κλ

) (
σbγδs

b
νµ

) (
σcαβs

c
µν

)
(60)

Γ̂
(x)
αβ,κλ =

∑
a,b,c=x,y,z

2∑
γ,δ,µ,ν=1

(
σaδγs

a
κλ

) (
σbαδs

b
νµ

) (
σcγβs

c
µν

)
(61)

with c-electron spin indices α, β, γ, δ, and f -spin indices κ, λ, µ, ν, as shown in Fig. 8(a). The
spin summations can be performed using the spin algebra (a, b = x, y, z),

2∑
γ=1

σaαγσ
b
γβ =

∑
c=x,y,z

iεabcσcαβ + δab1αβ , (62)

where 1 is the unit operator in spin space, εabc the totally antisymmetric tensor and δab the
Kronecker-δ. This results in a nonlocal Heisenberg coupling between sites i and j,

Γ̂
(d)
αβ,κλ = 4

∑
a=x,y,z

(
σaαβs

a
κλ

)
(63)

Γ̂
(x)
αβ,κλ = −2

∑
a=x,y,z

(
σaαβs

a
κλ

)
. (64)
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Fig. 8: Direct (d) and exchange (x) diagrams of the RKKY-induced contributions to the c –f
vertex: (a) spin labelling, (b) energy labelling.

A.2 Energy dependence

With the energy variables as defined in Fig. 8(b), the energy dependent functions in Eq. (59)
read in Matsubara representation

Λ
(d)
RKKY (rij, iΩm) = JJ2

0Π(rij, iΩm)χ̃f (iΩm)

Λ
(x)
RKKY (rij, iωn, iΩm) = −JJ2

0T
∑
iεm

Gc(rij, iωn + iεm)Gc(rij, iωn + iΩm + iεm)χ̃f (iεm)

where

Π(rij, iΩm) = −T
∑
εn

Gc(rij, iεn)Gc(rij, iεn + iΩm) (65)

and χ̃f (iεm) = χf (iεm)/(gLµB)
2, with χf (iεm) the full, single-impurity f -spin susceptibility,

Eq. (47).
For the renormalization of the total c –f vertex for c-electrons at the Fermi energy, the contri-
butions Λ(d)

RKKY , Λ(d)
RKKY must be calculated for real frequencies, iΩ → Ω + i0, iω → ω + i0,

and for electrons at the Fermi energy, i.e., ω = 0. In this limit, only the real parts of Λ(d)
RKKY ,

Λ
(d)
RKKY contribute to the vertex renormalization, as seen below. In order to analyze their im-

portance for the RG flow, we will expand them in terms of the small parameter TK/D0. In the
following, the real part of a complex function will be denoted by a prime ’ and the imaginary
part by a double-prime ”.

Direct contribution. Since in Λ(d)
RKKY , Π(iΩm) and χ̃f (iΩm) appear as a product and χ̃f (Ω)

cuts off the energy transfer Ω at the scale TK � εF ≈ D0, the electron polarization Π(Ω)

contributes only in the limit Ω � εF where it is real-valued, as seen in Eq. (45). Using Eq. (45)
and Eq. (47), the real part of the direct RKKY-induced vertex contribution reads,

Λ
(d)
RKKY

′(rij, Ω + i0) = JJ2
0R(rij)AN(0)

D0

TK

1√
1 + (Ω/TK)2

+ O

((
Ω

D0

)2
)
, (66)

where

R(rij) =
sin(x)− x cos(x)

4x4
, x = 2kF r (67)

is a spatially oscillating function.
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Exchange contribution. In order to analyze the size of Λ(x)
RKKY

′ in terms of TK/D0, it is suf-
ficient to evaluate it for a particle-hole symmetric conduction band and for rij = 0, since the
TK/D0 dependence is induced by the on-site susceptibility χ̃f (iΩ). The dependence on TK/D0

can be changed by the frequency convolution involved in Λ(x)
RKKY

′, but does not depend on de-
tails of the conduction band and distance dependent terms. (The general calculation is possible
as well, but considerably more lengthy.) We use the short-hand notation for the momentum-
integrated c-electron Green function, Gc(r = 0, ω ± i0) = G(ω) = G′(ω) + iG′′(ω), and
assume a flat density of states N(ω), with the upper and lower band cutoff symmetric about εF ,
i.e.,

GR/A′′(ω) = ∓ π

2D0

Θ(D0 − |ω|) (68)

GR/A′(ω) =
1

2D0

ln

∣∣∣∣D0 + ω

D0 − ω

∣∣∣∣ = ω

D2
0

+ O
((

ω

D0

))
. (69)

Furthermore, at T = 0 the Fermi and Bose distribution functions are, f(ε) = −b(ε) = Θ(−ε).
Λ

(x)
RKKY

′(0, 0, Ω + i0) then reads,

Λ
(x)
RKKY

′(rij = 0, ω = 0 + i0, Ω + i0) =

−JJ2
0

{∫
dε

π

[
f(ε)GA′′(ε)GR′(ε+Ω) + f(ε+Ω)GA′(ε)GA′′(ε+Ω)

]
χ̃Rf
′(ε) (70)

−
∫
dε

π

[
f(ε)GR′(ε)GR′(ε+Ω)− f(ε+Ω)GA′′(ε)GA′′(ε+Ω)

]
χ̃Rf
′′(ε)

}
.

With the above definitions, the four terms in this expression are evaluated in an elementary way,
using the substitution εF/TK = x = sinhu,∫

dε

π
f(ε)GA′′(ε)GR′(ε+Ω)χ̃Rf

′(ε)

= AN(0)
TK
D0

1−
√

1 +

(
D0

TK

)2

+
Ω

TK
arsinh

(
D0

TK

)
= AN(0)

[
−1 + Ω

D0

ln

(
D0

TK

)
+ O

(
TK
D0

)]
(71)

∣∣∣∣∫ dε

π
f(ε+Ω)GA′(ε)GA′′(ε+Ω)χ̃Rf

′(ε)

∣∣∣∣
= AN(0)

TK
D0

∣∣∣∣∣∣
√

1 +

(
Ω

TK

)2

−

√
1 +

(
D0 +Ω

TK

)2

∣∣∣∣∣∣
≤ AN(0) + O

(
TK
D0

)
(72)

∫
dε

π
f(ε)GR′(ε)GR′(ε+Ω)χ̃Rf

′′(ε)

= − 4

π2
AN(0)

(
1

2
+

Ω

D0

)
ln

(
D0

TK

)
+ O

((
TK
D0

)0
)

(73)
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∫
dε

π
f(ε+Ω)GA′′(ε)GA′′(ε+Ω)χ̃Rf

′′(ε)

=
π

4
AN(0)

[
−arsinh

(
Ω

TK

)
+ arsinh

(
min

(
Ω

TK
,
D0 +Ω

TK

))]
≤ π

4
AN(0) + O

(
TK
D0

)
. (74)

Comparing Eqs. (70)–(74) with Eq. (66) shows that all terms of Λ(x)
RKKY

′(Ω) are sub-leading
compared to Λ(d)

RKKY
′(Ω) by at least a factor (TK/D0) ln(TK/D0) for all transferred energies

Ω. Hence, it can be neglected in the RG flow. Combining the results of spin and energy
dependence, Eqs. (59), (63), and (66), one obtains the total RKKY-induced c –f vertex as,

γ̂
(d)
RKKY (rij, iΩ) = 2 (1− δij)Π(rij, iΩ)χf (iΩ)Si · sj (75)

or

Reγ̂
(d)
RKKY (rij, Ω + i0) = 2JJ2

0AN(0) (1− δij)R(rij)
D0

TK

1√
1 + (Ω/TK)2

Si · sj. (76)
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[14] P. Wölfle and E. Abrahams, Phys. Rev. B 84, 041101 (2011)

[15] E. Abrahams, J. Schmalian, and P. Wölfle, Phys. Rev. B 90, 045105 (2014)
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13.2 Michele Fabrizio

1 A brief recall of Landau-Fermi-liquid theory

Landau’s Fermi-liquid theory [1] explains why interacting fermions, despite repelling each other
by Coulomb interaction, almost always display thermodynamic and transport properties simi-
lar to those of non-interacting particles, which is, e.g., the reason of success of the Drude-
Sommerfeld description of normal metals in terms of free-electrons.
The microscopic justification of Landau’s Fermi-liquid theory, see, e.g., Ref. [2], is a beautiful
and elegant realization of what we would now denote as a renormalizable field theory. I will
not go through all details of such a theory, but just emphasize a few aspects linked to the main
subject of the present notes.
Step zero of Landau’s Fermi-liquid theory is the assumption1 that the fully interacting single-
particle Green function close to the Fermi level, ||k − kF || � kF and |ε| � εF , includes a
coherent and an incoherent component, namely

G(iε,k) ' Gcoh.(iε,k) +Gincoh.(iε,k) =
Zk

iε− εk
+Gincoh.(iε,k) , (1)

where ε are Matsubara frequencies, εk is measured with respect to the Fermi energy εF , and
Zk ≤ 1 is the so-called quasi-particle residue. The Green function continued in the complex
frequency plane iε → z ∈ C has therefore the simple pole singularity of Gcoh.(z,k) plus,
generically, a branch cut on the real axis brought byGincoh.(z,k). By definition the discontinuity
on the real axis is G(z = ε + i0+,k)−G(z = ε− i0+,k) = −2πiN (ε,k), where N (ε,k) is
the single-particle density of states, which therefore reads, according to Eq. (1),

N (ε,k) = Zk δ
(
ε− εk

)
+Nincoh.(ε,k) . (2)

Since N (ε,k) has unit integral over ε, the incoherent component has weight 1 − Zk. The
meaning of Eq. (2) is that an electron added to the system transforms, with weight Zk, into
a quasi-particle excitation that propagates with dispersion εk, but also into a bunch of other
excitations that do not propagate coherently. The distinction between coherent and incoherent
becomes sharper analyzing the analytic behavior, in the mathematical sense of a distribution, of
the product

R(iε,k; iω,q) ≡ G(iε+ iω,k+ q)G(iε,k) , (3)

that enters the calculation of low-temperature linear response functions, in the low-frequency,
iω = ω + i0+ with ω � εF , and long-wavelength, |q| � kF , limit, the measurable quantities
which are the ultimate goal of the theory. Indeed, one finds by elementary calculations that

R(iε,k; iω,q) = Gcoh.(iε+ iω,k+ q)Gcoh.(iε,k) +Rincoh.(iε,k; iω,q)

' − ∂f (εk)

∂εk
δ (iε) Z2

k

εk+q − εk
iω − εk+q + εk

+Rincoh.(iε,k; iω,q)

≡ Rcoh.(iε,k; iω,q) +Rincoh.(iε,k; iω,q) .

(4)

1This assumption can be actually verified order by order in perturbation theory, which however does not guar-
antee that the perturbation series is convergent.
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Fig. 1: Left panel: diagrammatic representation of the interaction vertex Γ in the particle-
hole channel with frequency and momentum transferred ω and q, respectively. Right panel:
diagrammatic representation of the Bethe-Salpeter equation. Γ0 is the irreducible vertex, and
the product of the two internal Green functions, the two tick lines, is by definition the distribution
R.

The crucial point that distinguishesRcoh.(iε,k; iω,q) fromRincoh.(iε,k; iω,q) is that the former
is evidently non-analytic in the origin, ω = q = 0, while the latter is assumed to be analytic. In
other words, while the limiting value of Rincoh.(iε,k; iω,q) at ω = q = 0 is unique,

lim
ω→0

lim
q→0

Rincoh.(iε,k; iω,q) = lim
q→0

lim
ω→0

Rincoh.(iε,k; iω,q) ≡ Rincoh.(iε,k) , (5)

that of Rcoh.(iε,k; iω,q) is instead not unique and depends how the limit is taken:

lim
ω→0

lim
q→0

Rcoh.(iε,k; iω,q) ≡ Rω
coh.(iε,k) = 0 ,

lim
q→0

lim
ω→0

Rcoh.(iε,k; iω,q) ≡ Rq
coh.(iε,k) =

∂f (εk)

∂εk
δ (iε) Z2

k ,
(6)

where the two different limits are conventionally indicated by the superscripts ω and q. It thus
follows that

Rω(iε,k) = Rincoh.(iε,k) ,

Rq(iε,k) = Rq
coh.(iε,k) +Rincoh.(iε,k) .

(7)

The next important step within Landau’s Fermi-liquid theory is to absorb the completely un-
known Rincoh.(iε,k) into few parameters. I will not repeat thoroughly what is well explained in
many other places, but just sketch how it works in the case of the Bethe-Salpeter equation that
relates the reducible vertex in the particle-hole channel Γ to the irreducible one Γ0 and to R,
see Fig. 1. To simplify the notation, I will not explicitly indicate external and internal variables,
frequencies and momenta, and indicate by � the summation over the internal ones. With those
conventions the Bethe-Salpeter equation reads

Γ = Γ0 + Γ0 �R� Γ , (8)
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so that Γ ω = Γ0 + Γ0 � Rω � Γ ω and Γ q = Γ0 + Γ0 � Rq � Γ q with the same Γ0, since by
construction Γ0 is analytic at ω = q = 0. Solving for Γ0 one readily finds that

Γ = Γ ω + Γ ω �
(
R−Rω

)
� Γ = Γ q + Γ q �

(
R−Rq

)
� Γ , (9)

where

R−Rω ' − ∂f (εk)

∂εk
δ (iε) Z2

k

εk+q − εk
iω − εk+q + εk

,

R−Rq ' − ∂f (εk)

∂εk
δ (iε) Z2

k

iω

iω − εk+q + εk
,

(10)

do not involve anymore Rincoh., at the expense of introducing two unknown objects, Γ ω and Γ q.
Those are actually not independent since, e.g.,

Γ q = Γ ω + Γ ω �
(
Rq −Rω

)
� Γ q . (11)

Conventionally one uses Γ ω and define the Landau’s f -parameters through2

fkp = Zk Zp Γ
ω(0,k; 0,p; 0,p; 0,k) , (12)

where I reintroduced the external variables according to figure 1. Exploiting Ward’s identities
one can derive the known Fermi-liquid expressions, in terms of the above-defined f -parameters
and of the unknown dispersion εk, of the linear response functions at small ω and q for all
conserved quantities, for which we refer, e.g., to Ref. [2].

2 Ordinary Kondo physics at the Mott transition

Commonly one cannot model the incoherent background and therefore the best one can do is in-
voking Landau’s Fermi-liquid theory to get rid ofRincoh. andGincoh.. There is however a situation
where we can proceed a bit further. Let us imagine to be in a strongly correlated metal phase
close to a Mott transition, i.e., a metal-to-insulator transition driven by the electron-electron
repulsion. In this circumstance we can grasp what the incoherent background represents. In-
deed, in the Mott insulating phase the low-energy coherent component of the Green function,
Gcoh., has disappeared, while the incoherent Gincoh. must describe the atomic-like excitations of
the insulator. I shall assume that the insulator has low-energy degrees of freedom, which can-
not involve the charge, since its fluctuations are suppressed, but may involve the spin and/or, if
present, the orbital degrees of freedom. We can thus imagine that, in the metal phase contiguous
to the Mott insulator, Gincoh. still describes the same atomic-like excitations, though coexisting
with low-energy quasiparticle excitations. I shall indicate Gcoh.(iε, εk)/Zk = 1/

(
iε − εk

)
and

Gincoh./(1−Z) with solid and dashed lines, respectively, see Fig. 2. Accordingly, the irreducible
vertex becomes Z(1−Z)Γ0. Among all irreducible scattering processes that couple among each

2Note that the two expressions in Eq. (10) are finite only at ε = 0, so that one only needs the vertex at zero
Matsubara frequency in the calculation of linear response functions.
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Gcoh./Z Gincoh./(1 � Z)

Fig. 2: Coherent and incoherent components of the Green function, and the irreducible scatter-
ing vertex among them that can transfer low frequency ω.

other coherent and incoherent components, the only one that can transfer low energy is that de-
picted in Fig. 2. Since charge fluctuations cost energy in the insulator, that scattering vertex
Z(1 − Z)Γ0 acts only in the spin and/or orbital channels. For instance, in the single-band
case that vertex should describe a spin exchange between itinerant quasiparticles and localized
moments. In other words, the strongly correlated metal close to the Mott transition should be-
have similarly to a Kondo lattice model, i.e., conduction electrons coupled by a spin exchange
J = Z(1 − Z)Γ0 to local moments, with the major difference that J is not an Hamiltonian
parameter but it is self-consistently determined by the fully interacting theory.
The above very crude arguments that suggest a similarity between the physics of the Kondo
effect and that of the Mott transition turn into a rigorous proof in lattices with infinite coordina-
tion number, z → ∞, a limit in which the so-called dynamical mean-field theory (DMFT) [3]
becomes exact. Within DMFT a lattice model is mapped onto an Anderson impurity model
coupled to a bath. The mapping is exact for z → ∞ provided a self-consistency condition
between the local Green function of the bath and the impurity Greens function is fulfilled. Even
though the mapping strictly holds only for z → ∞, the previous heuristic arguments point to
a more general validity, with the due differences coming from the fact that spatial fluctuations,
which can be neglected in infinitely coordinated lattices, grow in importance as the coordination
number decreases.
The obvious step further is therefore how to export the well-established knowledge of the Kondo
effect to the physics of the Mott transition. Here one has to face two problems:

1. Even when the two models are rigorously mappable onto each other, i.e., in the limit of
infinite coordination number, the mapping holds only under a self-consistency condition.
How does such a condition affect the physics?

2. When the lattice has finite coordination, spatial correlations cannot be neglected any-
more, e.g., the single-particle self-energy acquires momentum dependence. How does
the physics across the Mott transition change?

In what follows I will just touch the first issue, which is also the simpler, assuming a model in
an infinitely coordinated lattice.



13.6 Michele Fabrizio

� 6= 0 , U = 0

� = 0 , U 6= 0

U � � > 0

U/2�U/2

Fig. 3: Sketch of the impurity density of states in three limiting cases.

2.1 Role of the DMFT self-consistency condition

Let us start from the simplest case of the single-band Hubbard model at half-filling. Here the
mapping is simply that onto a single-orbital Anderson impurity model (AIM) with Hamiltonian

HAIM =
∑

kσ

εk c
†
kσckσ +

∑

kσ

Vk

(
c†kσdσ + d†σckσ

)
+

U

2

(
n− 1

)2
, (13)

where ckσ and dσ are the annihilation operators of the conduction and impurity electrons, re-
spectively, the bath dispersion εk is measured with respect to the chemical potential and finally
n =

∑
σ d
†
σdσ is the occupation of the impurity level. The model (13) depends actually on two

quantities: the Hubbard repulsion U and the so-called hybridization function

Γ (ε) = π
∑

k

|Vk|2 δ
(
ε− εk) . (14)

When U = 0 and Γ (ε) 6= 0, the impurity density of states (DOS),N (ε), which was a δ-function
centered at the chemical potential ε = 0 in the absence of hybridization with the bath, becomes
in its presence a Lorentzian of width Γ ' Γ (0), see top panel in Fig. 3. On the contrary, when
U 6= 0 and Γ (ε) = 0, the isolated impurity is singly occupied in its ground state, so that its
DOS, which measures at zero temperature the probability of removing, at ε < 0, or adding, at
ε > 0, an impurity electron, displays two δ-peaks at ε = ±U/2, see bottom panel in Fig. 3,
where U/2 is the energy cost of the empty or doubly occupied impurity states. Those side
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peaks are known as the Hubbard bands. When both U and Γ (ε) are non zero, the DOS actually
displays both features, namely a roughly Lorentzian peak at ε = 0, whose width is renormalized
downwards by U , Γ → Γ∗ = Z Γ with Z < 1, and two side-peaks centered at ε = ±U/2 that
are broadened by hybridization by an amount ∝ Γ , see middle panel in Fig. 3.

Remarkably, the central peak exists for any value of U , even if bigger than any other energy
scale. If U is very large, the impurity is singly occupied by either a spin up or down electron
and thus essentially behaves as a spin-1/2 local moment. Nonetheless, the system can still gain
hybridization energy by screening the impurity spin through the conduction electrons, what
is named the Kondo effect. As a result, a tiny fraction of the impurity DOS is promoted at
the chemical potential ε = 0 and gives rise to a very narrow peak, the so-called Kondo or
Abrikosov-Suhl resonance. Its width Γ∗ = Z Γ � Γ defines the so-called Kondo temperature
TK = Γ∗, above which screening is not anymore effective. In other words, for temperatures T >

TK the impurity behaves effectively as a free spin-1/2 and the Kondo resonance has disappeared.

This is, in brief, the physical behavior of the single-orbital AIM without any DMFT self-consis-
tency. The latter roughly amounts to requiring that the hybridization function, Γ (ε) of Eq. (14),
has a similar shape to the impurity DOS. Therefore, once self-consistency is imposed, the ef-
fective impurity model is defined by a Γ (ε) that also displays a peak of width Γ∗ at the Fermi
level, separated from two higher-energy Hubbard side-bands, see middle panel in Fig. 3. As U
increases the peak at the Fermi level of Γ (ε) thus becomes narrower and narrower until, at a
critical Uc, Kondo screening of the impurity spin by the conduction bath is not anymore sustain-
able and the Abrikosov-Suhl resonance disappears, i.e., Γ∗ → 0. Above Uc the impurity DOS,
which is also the local Green function of the lattice model, only displays two well separated
Hubbard bands; the system is therefore turned into a Mott insulator.

– The first important role of the self-consistency is thus to push down to finite U = Uc what in
the impurity model without self-consistency happens only at U =∞, i.e., the disappearance of
the Kondo resonance.

In the single-orbital AIM the impurity magnetic susceptibility, χimp. ∼ 1/Γ∗, grows more and
more as Γ∗ → 0. This suggests that the lattice model counterpart should develop some kind of
magnetic instability before the Mott transition. Such instability is forbidden in the Anderson
impurity model without DMFT self-consistency, since spin SU(2) cannot be locally broken, but
it might occur when self-consistency is enforced because a global spontaneous SU(2) symmetry
breaking is instead allowed. This is not at all unexpected. Indeed, local moments develop as the
metal moves close to the Mott transition; these moments must order one way or another to get
free of their ln 2 entropy.

– We can therefore argue that another important effect of self-consistency is to transform the
impurity instabilities into genuine bulk instabilities of the corresponding lattice model, which
may thus drive a transition a into symmetry broken phases prior or concurrently with the Mott
transition.
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Fig. 4: The two-impurity Anderson model. Each impurity is coupled by hybridization,
parametrized here by the hybridization function Γ (ε), with its own conduction bath. In addition
the two impurities are coupled among each other by an antiferromagnetic spin-exchange.

3 Exotic Kondo physics at the Mott transition

The last conjecture entails appealing scenarios which might be realized in lattice models that
map within DMFT onto impurity models with a richer phase diagram than the simple single-
orbital one. There is indeed a whole zoo of impurity models with varied physical properties. I
note that the metallic phase close to the Mott transition corresponds by DMFT self-consistency
to an Anderson impurity model with U � Γ∗ that suppresses valence fluctuations. In this
regime the model becomes equivalent to a Kondo model where the impurity effectively behaves
as a local moment with spin magnitude S, generically greater that 1/2, and eventually endowed
with additional internal degrees of freedom brought, e.g., by orbital degeneracy as in the case
of partially filled d or f shells.
Kondo models describing a spin-S impurity, with no other internal degrees of freedom, coupled
to k-channels of spin-1/2 conduction electrons are divided into: (1) k > 2S overscreened Kondo
models; (2) k = 2S screened Kondo models; and (3) k < 2S underscreened Kondo models.
Overscreened Kondo models are potentially interesting since they display instabilities in several
channels [4], yet they will never appear in DMFT since by construction a lattice model in
infinitely coordinated lattices maps unavoidably onto an impurity model in which the number
of degrees of freedom of the impurity is the same as that of the conduction bath, i.e., k = 2S in
the above example.

3.1 The two-impurity model

There is however another much more promising class of impurity models characterized by the
existence of internal degrees of freedom of the impurity besides the spin, and, more importantly,
by an additional Hamiltonian parameter J that is able to quench those degrees of freedom and
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thus competes against Kondo screening. Out of this competition a rich phase diagram emerges,
which generally includes a quantum critical point or a narrow crossover region that separates
the phase in which the impurity degrees of freedom are quenched by Kondo screening from
that in which quenching is due to J . The best-known representative of this class is the two-
impurity Anderson model [5], which I shall now discuss as the prototypical example. This
model is depicted in Fig. 4; it consists of two equivalent single-orbital AIMs in which the two
impurities are not only hybridized each to its own bath, but also coupled among each other by
an antiferromagnetic spin-exchange J . The Hamiltonian reads

H2AIM = HAIM-1 +HAIM-2 + J S1 · S2 , (15)

whereHAIM-a is the AIM Hamiltonian Eq. (13) of the impurity a = 1, 2, and

Sa =
1

2

∑

αβ

d†aα σ dbβ ,

its spin operator with σ =
(
σx, σy, σz

)
the Pauli matrices. The Hamiltonian (15) has three

relevant parameters, U , the hybridization function Γ (ε), by definition equal for each impurity,
and the exchange J . If J = 0, each impurity is Kondo screened by its bath on the energy scale
given by the Kondo temperature TK . If, on the contrary, Γ (ε) = 0 but J 6= 0, the impurities are
decoupled from the baths but coupled among each other into a spin-singlet configuration. Both
cases are stable in the sense that no degeneracy is left to be lifted. If all parameters are finite, the
Kondo screening, with scale TK , competes against the direct exchange J . Therefore, if TK � J ,
the system prefers to Kondo screen each impurity with its bath. On the contrary, if J � TK ,
the two impurities lock into a singlet state that is transparent to the conduction electrons. These
two limiting cases, which I shall denote as screened, TK � J , and unscreened, J � TK ,
correspond to two different phases separated by a genuine quantum critical point (QCP) at
TK ∼ J . Its critical properties have been uncovered in great detail [6]. Specifically, at the QCP
the model display logarithmically singular susceptibilities in several channels:

(1) the “antiferromagnetic” channel defined by the operators

∆AFM = S1 − S2 , (16)

(2) the “hybridization” channels

∆x =
∑

σ

(
d†1σd2σ +H.c.

)
, ∆y = i

∑

σ

(
d†1σd2σ −H.c.

)
, (17)

(3) the spin-singlet Cooper channel

∆ = d†1↑d
†
2↓ + d†2↑d

†
1↓ , (18)

and its hermitian conjugate ∆†.
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Fig. 5: Sketch of phase diagram at fixed J/U as function of U/Γ and doping 2 − n of the two
impurities away from half-filling.

On the contrary, the impurity charge susceptibility is not singular since charge fluctuations are
suppressed by the large U . As a consequence, the QCP is stable upon doping the impurity site,
which corresponds to changing the position of the impurity level so that n ≡ 〈n1+n2〉 6= 2. The
phase diagram is schematically shown in Fig. 5. One can observe that the QCP at half-filling,
n = 2, is actually the endpoint of a whole critical line that moves upwards in U/Γ at fixed J/U
away from half-filling. In other words, if one starts from the unscreened phase at half-filling
and dopes the impurity, at some doping the critical line will be crossed.
The dynamical behavior of the impurity DOS across the QCP has been uncovered quite in
detail [7, 8]. The vicinity of the QCP is controlled by two energy scales. One is smooth across
the transition; it was denoted as T+ in Ref. [7] and was found to be of the order max

(
TK , J

)
,

where TK is the Kondo temperature at J = 0. The other energy scale, T−, measures the
deviation from the QCP. I recall that the Kondo temperature TK at J = 0 is defined by Γ ≡ Γ (0)

and U according to

TK(Γ, U) = U

√
Γ

2U
exp

(
− πU

8Γ
− πΓ

2U

)
,

and decreases with decreasing Γ or increasing U . Let us for instance assume that J and U are
fixed while Γ varies. In this case the QCP is identified by Γ = Γc such that TK(Γc, U) ' J , and
T− ∝

(
Γ − Γc

)2, vanishing quadratically at the transition. It was found [7] that the impurity
DOS as obtained by numerical renormalization group is well fit at low energy by the expression

N±(ε) =
1

2πΓ

(
T 2
+

ε2 + T 2
+

±
T 2
−

ε2 + T 2
−

)
, (19)

where the + refers to the Kondo screened phase, Γ > Γc, and the − to the unscreened one,
Γ < Γc. Right at the QCP

Nc(ε) =
1

2πΓc

T 2
+

ε2 + T 2
+

. (20)
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Fig. 6: Low-energy DOS of the two-impurity Anderson model across the phase transition. The
calculation are done at U = 8, J = 0.00125 and the curves, from top to bottom, corresponds
to Γ = 0.44, 0.42, 0.4, 0.35, 0.3 in units the conduction bandwidth. The critical point is at
Γ = Γc ' 0.43956. In the screened phase a narrow Kondo resonance is present, red curve.
In the unscreened phase instead the DOS has a pseudo-gap. In the inset the DOS on a larger
scale is shown, where the Hubbard bands are visible [From Ref. [8]]. The colors of the curves
correspond to those in the main panel.

I note that the DOS in the screened phase is the sum of two Lorentzians, one of width T+ and a
much narrower one of width T− that vanishes at the QCP. Here only the broader peak remains.
On the unscreened side of the transition, the DOS is the difference of two Lorentzians, and its
value at the chemical potential vanishes – a pseudo-gap emerges by the disappearance of Kondo
screening. I further note that such a pseudo-gap is not to be confused with the much larger one
that separates the lower from the upper Hubbard band, see the inset of Fig. 6. The two are
indeed controlled by different energy scales, U the latter and T− � U the former.

When the impurity is doped, i.e., its occupation number n deviates from half-filling n = 2, the
low-energy DOS was found [7] to be still of the form Eq. (19),

N±(ε) =
cos2 ν

2πΓ

(
T 2
+ + µ2

±(
ε+ µ±

)2
+ T 2

+

± cos 2ν
T 2
−

ε2 + T 2
−

)
, (21)

where µ± = ±T+ sin 2ν measures the deviation away from half-filling. Remarkably, the nar-
rower Lorentzian remains peaked at the chemical potential, so that the pseudo-gap in the un-
screened phase is pinned at the Fermi level.



13.12 Michele Fabrizio

Fig. 7: Low-energy DOS of the two-impurity Anderson model Eq. (23) for U = 8, t⊥ = 0.05,
and, from top to bottom, Γ = 0.5, 0.47, 0.45, 0.4, 0.3 in units the conduction bandwidth. In the
inset the DOS on a larger scale is shown, where the Hubbard bands are visible [From Ref. [8]].
The colors of the curves correspond to those in the main panel.

3.1.1 Explicit symmetry breaking

Let us now discuss more in detail the role of the operators in Eq. (17), focusing in particular
on ∆x that describes a direct real hybridization among the impurities. This operator breaks the
U(1) orbital symmetry

d1σ → e+iϕ d1σ , c1kσ → e+iϕ c1kσ ,

d2σ → e−iϕ d2σ , c2kσ → e−iϕ c2kσ ,
(22)

of the original Hamiltonian (15), where daσ and cakσ are the annihilation operators of the a =

1, 2 impurity and conduction electrons, respectively. In the language of critical phenomena,
such U(1) symmetry breaking is therefore a relevant perturbation that spoils the QCP. In other
words, if the Hamiltonian were not invariant under that symmetry, there would not be anymore
a quantum phase transition but just a crossover between the screened and unscreened phases.
Suppose we consider the following Hamiltonian instead of that in Eq. (15)

H′2AIM = HAIM-1 +HAIM-2 − t⊥∆x . (23)

This Hamiltonian is not invariant under the U(1) symmetry in (22), therefore should not possess
the above QCP. On the other hand, if U � t⊥, H′2AIM of Eq. (23) can be mapped onto H2AIM

with J = 4t2⊥/U , which instead has the QCP. How can we reconcile this apparent paradox? The
answer is quite instructive. Indeed, H′2AIM of Eq. (23) does map onto H2AIM of Eq. (15) with
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J = 4t2⊥/U , but just at leading order in 1/U . What really prevents the system from encountering
the QCP are symmetry variant sub-leading terms, with coupling constant hx ∝ Γ 2 t⊥/U

2 � J ,
which actually correspond to a direct hybridization among the two conduction baths. In other
words, a hierarchy of energy scales emerges naturally at large U from the single t⊥: J , which
alone would drive the system across the phase transition, and a much smaller scale hx � J that
allows the system crossing from the screened phase to the unscreened one without eventually
passing through the QCP. In the language of critical phenomena, we could state that even though
the system does not cross the QCP, it gets very close to it. Practically, this implies that the
quantum phase transition turns into a very sharp crossover between screened and unscreened
phases that, for many purposes, is indistinguishable from a phase transition. In Fig. 7 the
impurity DOS of the Hamiltonian (23) is shown, with parameters U = 8 and t⊥ = 0.05, in
units of the conduction bandwidth, such that 4t2⊥/U is equal to the value of J in Fig. 6. We first
observe that in this case the DOS is always finite at ε = 0, though very small in the unscreened
phase. In addition we can note that, despite the opening of the incomplete pseudo-gap does not
occur through a phase transition, nonetheless it is extremely sharp.
In conclusion, we can thus interpret the above results as those of the model Eq. (15) at J =

4t2⊥/U in the presence of a small hx � J symmetry breaking field. From this perspective, inside
the unscreened phase J is responsible for the pseudo-gap opening, while the much smaller hx
for the partial filling of that same gap. A question immediately arises. How is it possible that the
unscreened phase, even though pseudo-gapped, namely despite the impurities have a vanishing
quasiparticle residue Z = 0, is able to respond so efficiently to the small symmetry breaking
field hx � J?

3.1.2 How can a pseudo-gap symmetry invariant phase develop a symmetry variant or-
der parameter?

This question has been addressed in Ref. [9] recognizing a curious analogy between this prob-
lem and that of disordered s-wave superconductors. I will briefly sketch this relationship since
I believe it reveals a basic feature that can be used in many other contexts.
The expression Eq. (19) of the low-energy DOS corresponds to the impurity Green function in
Matsubara frequencies

G(iε) = 1

2Γ

(
T+

iε+ iT+ sign(ε)
± T−

iε+ iT− sign(ε)

)
+ Gincoh.(iε) , , (24)

where± refers, as before, to the screened and unscreened phases, respectively, and Gincoh.(iε) is
the high-energy contribution from the Hubbard sidebands. In turn the Green function satisfies
the Dyson equation

G(iε)−1 = G0(iε)−1 −Σ(iε) = iε+ iΓ sign(ε)−Σ(iε) , (25)

where G0(iε) is the non-interacting Green function and Σ(iε) the impurity self-energy. We thus
find that the impurity self-energy at low-energy and in the unscreened phase has the following
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expression

Σ(iε) ' iε− i

4ε

T+T−
T+ − T−

− i

4

T+ + T−
T+ − T−

sign(ε)− i ε

T+ − T−
≡ iε− i ε

Z(iε)
,

(26)

and diverges at ε→ 0. The quasiparticle residue Z(iε) thus vanishes at ε = 0.
Let us consider instead a disordered metal in the normal phase, whose self-energy is

Σ(iε) =
i

2τ
sign(ε) ≡ iε− iε η(iε) , (27)

where τ is the relaxation time, and η(iε) diverges at ε→ 0, which, in analogy with Eq. (26), can
be interpreted as a vanishing quasiparticle residue. In the superconducting phase the self-energy
acquires anomalous components and must be written as a two by two matrix

Σ̂(iε) =

(
Σ11(iε) Σ12(iε)

Σ21(iε) Σ22(iε)

)
, (28)

where Σ22(iε) = −Σ11(−iε) and Σ21(iε) = Σ12(−iε)∗. Because of the perfect cancellation
of the disorder-induced corrections to the self-energy and to the vertex in the s-wave Cooper
channel, superconductivity regularizes the singularities brought by disorder below some low-
energy scale∆, the superconducting gap, leading to the following expressions of the self-energy
matrix elements

Σ11(iε) = iε− iε η
(
i
√
ε2 +∆2

)
,

Σ12(iε) = ∆η
(
i
√
ε2 +∆2

)
.

(29)

A famous consequence of Eq. (29), known as Anderson theorem, is that Tc is independent
of disorder strength, which readily follows from the BCS gap equation in the presence of an
attraction λ

1 = λ
T

V

∑

iε

∑

k

η
(
i
√
ε2 +∆2

)

(
ε2 +∆2

)
η
(
i
√
ε2 +∆2

)2
+ ε2k

. (30)

The authors of [9] argued, in analogy with disordered s-wave superconductors, that the correc-
tions brought by J to the self-energy and to the vertex in the∆x-channel of Eq. (17) cancel each
other also in the impurity model. If one then considers a model with Hamiltonian

H = H2AIM − hx∆x , (31)

see equations (15) and (17), with a symmetry breaking term hx � J , the impurity self-energy
also becomes a two by two matrix with elements Σab(iε), with a, b = 1, 2 labelling the impuri-
ties. Following the above arguments one should expect that hx brings about a low energy scale
∆ that cutoffs the singularities of Σ(iε) in Eq. (26) so that

Σ11(iε) = iε− iε Z
(
i
√
ε2 +∆2

)−1
= Σ22(iε) ,

Σ12(iε) = ∆Z
(
i
√
ε2 +∆2

)−1
= Σ21(iε) .

(32)
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This ansatz was shown to fit extremely well the numerical data obtained in Ref. [7] by directly
solving the model in Eq. (31) via the numerical renormalization group. This result demonstrates,
from a quite general perspective, how a pseudo-gapped symmetry invariant phase can nonethe-
less develop a sizeable symmetry breaking order parameter, which was used by the authors of
Ref. [9] to interpret the phase diagram of a model that maps by DMFT onto the two-impurity
model Eq. (15), which I describe below.

3.2 The lattice model counterpart of the two-impurity model

Let us consider the two band Hubbard model in a infinitely coordinated Bethe lattice with
Hamiltonian

H = − t√
z

2∑

a=1

∑

〈i,j〉σ

(
c†aiσcajσ +H.c.

)
+

U

2

∑

i

(
ni − 2

)2 − 2J
∑

i

(
T 2
i x + T 2

i y

)
, (33)

where z → ∞ is the coordination number, ni = n1i + n2i =
∑2

a=1

∑
σ c
†
aiσcaiσ is the charge

density at site i and Ti α, α = x, y, z, are the components of the orbital pseudo-spin Ti defined
through

Ti =
1

2

2∑

a,b=1

∑

σ

c†aiσ σab c
†
biσ , (34)

with σ the Pauli matrices. This model describes an e× E Jahn-Teller effect within the antiadi-
abatic approximation [10]. Alternatively, one may rewrite Eq. (33) as

H = − t√
z

2∑

a=1

∑

〈i,j〉σ

(
c†aiσcajσ+H.c.

)
+

U

2

∑

i

2∑

a=1

(
nai− 1

)2
+
∑

i

(
4JS1i ·S2i + V n1in2i

)
,

(35)

where V = U − J , which represents two Hubbard models coupled by an antiferromagnetic
exchange and by a charge repulsion.
Finally, if we interchange spin with orbital indices, the Hamiltonian (33) can also be written as

H = − t√
z

2∑

a=1

∑

〈i,j〉σ

(
c†aiσcajσ +H.c.

)
+

U

2

∑

i

(
ni − 2

)2 − 2J
∑

i

(
S2
i x + S2

i y

)
, (36)

where now Si α are the components of the total spin at site i, which is a two-band Hubbard
model with a single-ion anisotropy that favors the spin to lie in the x-y plane.
Let us for simplicity focus just on the Hamiltonian (33), or its equivalent representation (35).
The Hamiltonian contains three parameters, the conduction bandwidth W = 4t, the Hubbard
U and the exchange J . The latter mediates pairing in the s-wave channel of Eq. (18) that is
however contrasted by U . The net effect is a bare scattering amplitude in that pairing channel
A0 = ρ0

(
U−2J

)
, where ρ0 is the non-interacting DOS at the Fermi energy. At fixed J � W , as

we shall assume hereafter, mean-field theory predicts upon increasingU a BCS superconducting
domain that extends from U = 0, where pairing is maximum, to U = 2J , where pairing



13.16 Michele Fabrizio

disappears. Above 2J the ground state of the model (33) should turn into a normal metal. This
prediction is actually independent of the coordination number z > 2 and the electron density.

When z → ∞ this lattice model maps by DMFT onto the two-impurity model Eq. (15) with
the addition of a charge repulsion V among the impurities. This repulsion is irrelevant and
does not change the phase diagram of the impurity model, which thus remains similar to that in
Fig. 5. If DMFT self-consistency is imposed, as U increases at fixed J � W and at half-filling,
the lattice model is pushed towards a Mott transition, exactly like the single-band Hubbard
model of section 2. In the impurity language, this transition corresponds to TK → 0. However,
still in the metal phase before that happens, TK will become comparable to J , even though
the bare conduction bandwidth W � J . This is right the point where the impurity model
crosses its QCP. Already before that happens, the impurity susceptibilities in the channels of
equations (16), (17) and (18) will be strongly enhanced and thus may drive, through the self-
consistency, a true bulk instability. An instability in the first channel Eq. (16) translates in the
lattice model into an instability towards Néel antiferromagnetic order, with the two orbitals
occupied by opposite spin electrons. The instability in channel (17) corresponds instead to a
cooperative Jahn-Teller effect. However both (16) and (17) are particle-hole channels and thus
they require nesting of the Fermi surface to drive a bulk instability. On the contrary, the particle-
particle channel in Eq. (18) does not require any particular property of the Fermi surface to drive
a superconducting instability, but just a finite DOS at the chemical potential. It is thus tempting
to conclude that generically, i.e., in the absence of nesting and with finite DOS at the Fermi
level, there must exist another superconducting dome besides the weak coupling U < 2J � W

BCS one, right next to the Mott transition. This expectation was confirmed by a full DMFT
calculation in Ref. [10]. In Fig. 8 the superconducting gap of the model (33) is plotted at
electron density n = 2 as a function of U and for different values of J . I note that for the largest
J = 0.15, in units of the conduction bandwidth W , the gap is monotonically decreasing with
U and disappears at U ' 2J where the superconductor turns by a weakly first order transition
into a Mott insulator. This insulating phase is non-magnetic with all sites occupied by two
electrons, one on each orbital, coupled into a spin-singlet configuration; a local version of a
valence-bond crystal. Already for a weaker J = 0.1 the gap becomes non monotonous; it first
decreases then increases again before the first order Mott transition. For smaller J = 0.05 and
J = 0.02, the superconducting phase splits, as anticipated, into two well separated domains.
One appears at weak coupling and has a tiny BCS-like gap exponentially small in 1/J , see the
inset of Fig. 8. However, another bell-shaped superconducting dome emerges at strong coupling
next to the Mott transition and displays a huge gap if compared with the weak coupling BCS
one; a striking example of superconductivity boosted by strong correlations [11].

The physics of the impurity model (15) allows anticipating not only the phase diagram but also
the dynamical properties of the lattice model. Within DMFT one can prevent superconducting
symmetry breaking and thus access the unstable zero-temperature normal phase, whose single-
particle self-energy was found [10] to be well fitted by that of the impurity model, see Eq. (26).
Fig. 9 shows the impurity scales T+ and T− extracted by fitting the DMFT self-energy within
the unstable normal phase through Eq. (26). We can observe that the impurity critical point
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Fig. 8: Superconducting gap of the model (33) at electron density n = 2 as function of U and
for different values of J , in units of the conduction bandwidthW . In the inset the weak coupling
gap is zoomed. [From Ref. [10].]

Fig. 9: Impurity scales T+ and T−, see Eq. (26), extracted by the DMFT self-energy within
the unstable normal phase, in comparison with the superconducting gap that is obtained once
symmetry breaking is permitted. MI indicate the Mott insulating phase. [From Ref. [10].]

is encountered before the Mott transition and, once one permits superconducting symmetry
breaking, it corresponds to the maximum of the superconducting gap ∆. I remark that the
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δ away from half-filling. The insets show the dependence upon doping of the superconducting
gap ∆ and of the Drude weight D at U = 0.92W . [From Ref. [10].]

Mott insulator appears now when T+ = T− on the unscreened side of the impurity model, at
which point the two Lorentzians that define the low-energy DOS N−(ε), see Eq. (19), cancel
each other. This is evidently different from the single-band case, where, as I mentioned, the
transition occurs by the gradual disappearance of a Kondo-like resonance.
One can push the interpretation via the impurity model even further. Suppose we are in the Mott
insulator at half-filling n = 2, which, as mentioned, corresponds in the impurity model to the
unscreened phase with T+ = T−, and dope it, n → 2 − δ. According to Eq. (21) we should
expect that the insulator turns into a pseudo-gapped normal metal as soon as δ > 0. More-
over, upon increasing further the doping δ, the impurity model should cross its quantum critical
point, see Fig. 5, which should correspond in the lattice model after DMFT self-consistency to
reappearance of a superconducting dome. Once again this expectation was indeed confirmed.
Fig. 10 shows the final phase diagram at J = 0.05 as function of U/W and doping δ > 0. The
superconducting dome extends at finite doping into a whole region such that, starting from the
Mott insulator and doping it, one first finds a pseudo gapped normal phase that, upon further
doping, turns into a superconductor that eventually disappears at higher doping into a well-
behaved normal metal, i.e., not anymore pseudo gapped, see the insets of Fig. 10.

3.3 Landau-Fermi-liquid picture

It is impossible not to see striking similarities between the phase diagram in Fig. 10 and the
phenomenology of high-Tc copper oxides. This is even more evident by the behavior of the
Drude weight D, shown in the bottom inset of Fig. 10, which grows linearly in δ upon doping
the Mott insulator because of the linear-in-δ filling of the pseudo-gap.
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One may thus wonder whether and in which terms the predictive power of the impurity physics
transferred to lattice models could be extended even beyond the limits of applicability of DMFT,
namely even in realistic lattices with finite coordination number. I already mentioned how the
emergence of a Kondo-like physics close to the Mott transition can be inferred quite generally
from Landau-Fermi-liquid theory. It is therefore worth addressing how one can translate the
physics of the two-impurity model in the language of Landau’s Fermi-liquids. Since a local
Fermi-liquid description can be defined also for impurity models [12], it is convenient to start
with that and eventually extend it to bulk systems.
Concerning the impurity model Eq. (15), both screened and unscreened phases are Fermi-liquid
like. While this is evidently the case in the screened phase, where ordinary Kondo effect takes
place, it is by far less obvious in the unscreened one that is characterized by a singular impurity
self-energy. In Ref. [7] it was shown that the conventional definition [13]

ρqp =
N (0)

Z
,

of the quasiparticle DOS at the impurity site and at the Fermi energy, whereN (0) is the particle
DOS at Fermi and Z the quasiparticle residue, must be generalized to account for unscreened
Fermi-liquid phases into

ρqp =

∫
dε

π

∂f(ε)

∂ε
Im

(
G(ε+ i0+)

[
1− ∂∆(ζ)

∂ζ

∣∣∣∣
ζ=ε+i0+

− ∂Σ(ζ)

∂ζ

∣∣∣∣
ζ=ε+i0+

])
, (37)

where

∆(ζ) =

∫
dε

π

Γ (ε)

ζ − ε
' −i Γ (0) sign (Im ζ) ,

is the Hilbert transform of the hybridization function, G(ζ) and Σ(ζ) the impurity Green func-
tion and self-energy, respectively, continued to the complex frequency plane. In the screened
phase of the model Eq. (15) and for negligible ∂∆(ζ)/∂ζ one gets the conventional result

ρqp+ =
N+(0)

Z
=

1

2π

T+ + T−
T+ T−

.

In the pseudo-gap phase, even though Z vanishes, still ρqp in Eq. (37) has a well defined value
since the singularity in the self-energy is cancelled by the vanishing DOS

N−(ε) = −
1

π
ImG(ε+ i0+) ,

at ε = 0, leading to a finite quasiparticle DOS at the Fermi level

ρqp− =
1

π

T+ + T−
T+ T−

, (38)

despite the vanishing particle DOS. This is remarkable, since common wisdom would rather
suggest that a singular self-energy is incompatible with Landau’s Fermi-liquid theory.
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In addition, even though a local Fermi-liquid description does not apply right at the critical point
T− = 0, still one can approach it from either Fermi-liquid side of the transition. In particular,
it was explicitly verified [7] that the quasiparticle scattering amplitudes, defined in the screened
phase through

Ai ≡ Z2 ρqp Γi , (39)

where Γi is the interaction vertex in channel i, tend to finite values approaching the critical
point T− → 0, or equivalently Z → 0, in all three relevant channels of equations (16)-(18),
specifically A → 1 in channels (16) and (17), and A → −2 in channel (18). This confirms the
expectation that vertex corrections cancel exactly self-energy ones, as assumed in the previously
discussed Ref. [9].
Suppose we could export the above local Fermi-liquid results to the lattice model (33). As I
mentioned, the bare scattering amplitude in the s-wave Cooper channel Eq. (18) is

A0 = ρ0

(
U − 2J

)
,

where ρ0 is the non-interacting DOS at the Fermi energy. For Jρ0 � 1, as we assumed,
and close to the Mott transition, the amplitude A0 > 0 and thus one should not expect any
superconductivity. In reality, the quasiparticle amplitude in that channel reads

A = ρqp

(
Z2 ΓU − 2Z2 ΓJ

)
. (40)

The contribution from the charge channel Z2ΓU ∼ ZU becomes negligible approaching the
Mott transition; quasiparticles slow down and at the same time they undress from the strong
repulsion. Moreover, just because they spend more time on each site before hopping to neigh-
boring ones, the quasiparticles can take more advantage of the local J-term, so that it is well
conceivable that Z2ΓJ ∼ J is to a large extent unrenormalized by the proximity to a Mott tran-
sition, which once again entails cancellation of vertex and self-energy corrections. The outcome
is that approaching the Mott transition

A ∼ ρqp (ZU − 2J) ' ρ0

(
U − 2

J

Z

)
, (41)

changes sign from positive to negative, thus permitting a superconducting instability to set in
despite the bare value A0 does not, as indeed found by DMFT [9, 10]. Moreover, A may now
become of order O(1) when ρqp J ' ρ0J/Z ∼ 1, despite ρ0J � 1, suggesting that super-
conductivity is effectively pushed to the maximum Tc ∼ 0.055 g attainable at a given pairing
strength g, again consistent with DMFT results.
In the impurity model the maximum of A occurs right at the critical point, beyond which, in
the unscreened phase, A diminishes again [7]. Here, as I mentioned, one should not use any-
more Eq. (39) to define the scattering amplitudes [7]. This suggests that the simple expression
Eq. (41) is only valid in the counterpart of the screened phase and cannot be pushed till the Mott
transition, which would otherwise imply the unphysical result A ∼ 1/Z → ∞; some readjust-
ment must intervene before, which in the impurity model is the pseudo-gap opening that was
also observed as a stable phase in the lattice model Eq. (33) away from half-filling.
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4 Concluding remarks
In conclusion, the Landau-Fermi-liquid theory, in its original bulk formulation [1] as well as in
its local version [12, 13, 7], seems to be the natural framework for building a bridge between
the Kondo physics of impurity models and the Mott physics of lattice models, which connects
to each other not just gross spectral features, like the Kondo resonance to the quasiparticle
peak, but also more subtle properties of even greater impact, like the channels in which the
impurity shows enhanced susceptibility to those in which the lattice model develops a true bulk
instability. I have shown how this task can be explicitly accomplished in the case of the two-
impurity model Eq. (15) in connection with the lattice model Eq. (33) treated by DMFT, i.e.,
in the limit of infinite coordination number z → ∞. The same approach has also been used
to gain insights from the physics of a Cn−

60 impurity model [14] into a model for alkali doped
fullerides A3C60 that was studied by DMFT still in the z → ∞ limit [15], but whose results
reproduce quite well the physical properties of those molecular conductors. I further mention
that the phase diagram of the lattice model Eq. (33) in one dimension, i.e., the opposite extreme
to infinitely coordinated lattices, also recalls [16] the same impurity phase diagram of Fig. 5,
apart from some obvious differences.
It is therefore quite tempting to speculate that the relationship between impurity and lattice
models close to a Mott transition remains even beyond the limit of infinitely coordinated lat-
tices, with the due caution about spatial correlations. As previously discussed, this connection
can turn extremely fruitful if the impurity model upon increasing U crosses a critical point, or
gets very close to it, i.e., goes through a genuine phase transition or just a very sharp crossover.
Any critical point is generically unstable in several symmetry-lowering channels, which share
the property of being orthogonal to charge that is instead severely suppressed by U . We could
then argue that, in the corresponding lattice model upon approaching the Mott transition from
the metallic side, a spontaneous symmetry breaking should intervene in one of the impurity
instability channels. Which one dominates is going to be dictated by the spatial correlations
that it entails with respect to lattice structure and Hamiltonian parameters, besides its relevance
relative to all other instability channels of the impurity. For instance, the instability in a particle-
particle channel leading to superconductivity is less sensitive to the lattice structure than, e.g.,
a magnetic instability. However the coupling constant in the magnetic channel is inevitably
stronger than that in the pairing channel, especially as the system gets closer to the Mott tran-
sition. The outcome of such competing effects might be that superconductivity appears first
giving way to magnetism sooner or later depending on the degree of magnetic frustration, as
shown, e.g., for doped fullerides [15], or it may be defeated by magnetism and not appear at all.
Even in that case, superconductivity can re-emerge upon doping the magnetic insulator.
There is actually a plethora of impurity models whose rich phase diagrams could translate into
equally rich phase diagrams of corresponding lattice models. The issue is whether those lattice
models are realistic and can describe physical systems. For instance, clusters of Anderson im-
purities [8] could be used to interpret the results of cluster DMFT calculations [17], even though
the N -site extension of DMFT is only exact for N → ∞ and therefore finite N calculations
could be biased by the small cluster size.
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14.2 Luca de’ Medici

1 Introduction

The expression “Hund’s metal,” to the best of the author’s knowledge, was introduced in Ref. [1],
in the context of an ab-initio study of Fe-based superconductors (FeSC). It has met, since then,
quite some success [2,3] and today is commonly used, without a complete consensus on its pre-
cise meaning. A phase in which Hund’s coupling, the intra-atomic exchange energy, influences
crucially the metallic properties is probably a definition that encompasses the different current
uses of this buzzword. In this chapter we will use a more specific, and hopefully precise, defini-
tion. Indeed we will show that, due to Hund’s coupling, a metallic phase with specific features
arises consistently in realistic simulations of paramagnetic FeSC, in accord with experiments
where this has been tested (see Section 2). This phase is found beyond a crossover line in the
doping/interaction strength plane in the space of parameters, and is characterized by three main
features, compared to the “normal” metal realized before the same frontier:

1. enhanced electron correlations and masses,

2. high local spin configurations dominating the paramagnetic fluctuations,

3. selectivity of the electron correlation strength depending on the orbital character.

These features grow both with increasing further the interaction strength and with proximity
to the half-filling of the conduction bands (thus with hole-doping in FeSC), where a Hund’s
coupling favored Mott insulator is realized. We will call this phase a Hund’s metal.
In Section 3 we will show that these features are not specific of the band structure of FeSC, be-
cause they arise consistently in models with featureless simplified densities of states. They are,
in fact, outcomes of the many-body physics dictated by the local electronic configurations of
the atomic orbitals that give rise to the conduction bands (the five orbitals of mainly Fe 3d char-
acter, in the case of FeSC). These configurations are shaped by the local coulomb interaction,
and in particular by the Hund’s coupling [4], as it is known from atomic physics.
The role in this physics of the fermiology, and more generally of the specific features of the
bare band structure in each particular case is comparatively lesser, and typically lumped in a
few local parameters: the orbital energies, the total and orbitally-resolved kinetic energy, etc.
This reduced influence implies the generality of this physics and its relevance for many materials
besides FeSC, which can be called Hund’s metals. A recently much investigated example is that
of the Ruthenates [3, 5].
In Section 4 we will then provide, through analytical arguments, some insights into the basic
mechanisms by which Hund’s coupling induces the above mentioned features.
Finally in Section 5 we will outline a recent additional feature of Hund’s metals, stemming plau-
sibly from the same mechanisms outlined in the previous section: the enhancement (culminat-
ing in a divergence) of the electronic compressibility in proximity to the crossover between the
Hund’s metal and the normal metallic phase. The divergence of the compressibility signals an
instability towards phase separation/charge-density waves. Its enhancement signals enhanced
quasiparticle interactions that can also favor instabilities. Both possibly link the Hund’s metal
crossover to high-Tc superconductivity.
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2 Hund’s metals in Fe-based superconductors:
experimental evidence and ab-initio studies

Many different families of iron-based superconductors have been synthesized [6], all bearing
as a central unit a buckled plane of Fe atoms disposed in a square array with ligands (As, P,
Se, or Te) in the middle of each square, alternatively slightly above or below the plane. The
so-called “122” family of FeSC (where FeAs layers are interleaved with buffer layers of Ba or
other alkaline earth or alkali elements) is particularly well suited to highlight the Hund’s metal
phenomenology, as defined above. Indeed these compounds can be synthesized in high-quality
single-crystals and cleaved easily to yield clean surfaces, all of which facilitates several experi-
mental techniques, such as angular-resolved photoemission spectroscopy (ARPES) for example.
As importantly, the mother compound BaFe2As2 (the chemical formula giving the name to the
family) can be engineered through many chemical substitutions, that allow to tune continuously
both the structural and the electronic properties so to map out finely a complex phase diagram.
There, the gross features are: a high-temperature metallic paramagnetic phase that has tetrago-
nal symmetry, becoming below some temperature either a tetragonal superconducting phase or
an orthorhombically distorted magnetic phase, depending on the exact composition.1

Pure BaFe2As2 becomes distorted and magnetic below ∼ 140 K, whereas both electron doping
(most commonly by partially substituting Fe with Co) and hole doping (substituting Ba with
K) lead to the suppression of this phase and the rise of superconductivity (reaching a maximum
Tc ∼ 23 K for Ba(Fe0.93Co0.07)2As2 and Tc ∼ 38 K for Ba0.6K0.4Fe2As2, respectively). The
hole doping can be continued until reaching another stoichiometric compound KFe2As2 (where
Tc ∼ 3 K). This is the most extended doping range that can be continuously obtained in a
single family of FeSC to date (the phase diagram on this range is schematically reproduced as
a background in Fig. 3).
Both the stoichiometric end members of the family have also been explored with isovalent
chemical substitutions that act on the structure at fixed doping. In particular the substitution K
→ Rb, Cs acts as a negative chemical pressure and lengthen the Fe–Fe distance.
Electronic structure, typically density-functional theory (DFT) calculations, show a complex of
5 conduction bands dispersing roughly W ∼ 4 eV. These bands are mainly of character coming
from all five Fe 3d orbitals, with some character of the ligand p-orbitals, and are populated by 6
electrons/Fe, in the stoichiometric parent compounds such as BaFe2As2. The same calculations
predict the dominant magnetic order (collinear antiferromagnetic in most of the compounds)
and show, in the paramagnetic phase a semi-metallic bandstructure where the Fermi surface
is made up of hole and electron pockets (respectively in the center and at the border of the
Brillouin zone), as is indeed verified in ARPES measurements. The nesting of such pockets is
responsible, in the mainstream view, for the low-temperature instabilities of the phase diagram,
i.e., magnetism and superconductivity [6]. This view based on itinerant electrons is indeed qual-
itatively quite successful, but substantial discrepancies between calculated and measured band

1There are some exceptions in some very small areas of the phase diagram: e.g. the two low-temperature phases
can actually coexist, or a non-magnetic distorted (nematic) phase can be realized.
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structures and magnetic moments, plus the difficulties arising in explaining materials trends as
far as the superconducting properties are concerned point in the direction of electronic many-
body correlations (basically neglected in DFT) playing a substantial role.
The most striking feature of these is the quasiparticle mass renormalization. It can be addressed
by several experimental probes: low-T specific heat, optical conductivity, ARPES, and quan-
tum oscillations, to name just the main ones. A collection of mass enhancement estimates by
all these probes in the 122-family from the literature is shown in Fig. 3. Let us, however, focus
first on the very fine measurement of the low-temperature slope (Sommerfeld coefficient) of
the temperature dependence of the specific heat in the normal phase, performed on the whole
122-family from Ref. [7],2 reported in Fig. 1. This coefficient reads γb = π2k2B/3N

∗(εF ) and
is directly proportional to the (quasi particle) density of states at the Fermi energy N∗(εF ) [9],
which itself is enhanced for enhanced masses (i.e., for reduced dispersion of the bands: in a
single band for instance one has N∗(εF ) = (m∗/mb)N(εF ), where m∗ and mb are the renor-
malized electron mass and the bare band mass, respectively). From the figure it is clear (blue
squares) that the Sommerfeld coefficient grows monotonically with diminishing electron den-
sity all across the family. The value reached for the end member KFe2As2 with density of
5.5 electrons/Fe is ∼ 100 mJ/mol K2, which approaches the ranges of heavy fermionic com-
pounds. Remarkably, a further raise happens upon isovalent substitution, in the series K, Rb,
Cs. These substitutions stretch the lattice parameters, thus reducing the bare electron hopping
amplitudes, enhancing further the effect of electron-electron interactions. This is however a
subleading effect, compared to the enhancement of correlations due to the doping. Indeed in
the progressive substitution Ba→ K there is actually a contraction of the Fe–Fe distance twice
as large as the aforementioned stretch. Still, the correlations increase enormously. Moreover a
different hole-doping substitution, Fe→ Cr, induces negligible changes in the Fe–Fe distance
and has the same trend of steadily increasing correlations (see, e.g., Ref. [10] and references
therein). DFT calculations are unable to reproduce this trend. Indeed the calculated value of the
Sommerfeld coefficient is of the order 10 mJ/mol K2 or slightly above, throughout the family.
Dynamical many-body correlations can be included with several methods. One of the most
popular is dynamical mean-field theory (DMFT). Here we report calculations within a method
similar in spirit (i.e., it is a local-mean field capturing the low-frequency part of a frequency-
dependent self-energy), but much cheaper in terms of computational resources, the Slave-Spin
Mean-Field (SSMF) [8]. This is particularly suited to address the quasiparticle properties and
their renormalizations in terms of local interactions. The advantage of a simplified method is
to be able to explore thoroughly the space of parameters (both compound-wise and interaction-
wise) to highlight the main trends.
Details about this method can be found, e.g., in Ref. [8], let us here just specify that it lumps the
effect of the many-body local interactions into a renormalization of the hopping probabilities,
in an orbitally resolved way. Indeed the starting point is a bare Hamiltonian, typically a tight-

2The extra points compared to the published plot, and relevant to the paramagnetic high-T phase in the zone of
the phase diagram where the low-T phase is magnetic, appear already as unpublished material in Ref. [8] and are
the result of a private communication with F. Hardy.
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Fig. 1: (Sommerfeld) coefficient of the linear-in-temperature contribution to the specific heat at
low temperature in the normal phase for the 122-family (under both electron and hole doping
in BaFe2As2 and isovalent substitution in KFe2As2). The calculations including local electronic
correlations (DFT+slave-spin mean-field, green circles) are done with a unique choice of in-
teraction parameters (U = 2.7 eV, J/U = 0.25) for the whole family. The discrepancy between
these calculations, that capture well the experimental data (blue squares), and those for un-
correlated electrons (black dots) shows that these compounds are indeed strongly correlated.
Moreover, correlations increase monotonically with hole doping, supporting the fact that a Mott
insulating state would be realized for half-filling (doping of 1 hole/Fe). Isovalent substitution in
KFe2As2 further strengthen this behavior due to an expansion of the in-plane lattice parameters
in the series K, Rb, Cs (adapted from Ref. [7], originally appearing in Ref. [8]).

binding fit of a DFT bandstructure, parametrized by the hopping amplitudes tlmij (where i and
j are the sites of the ionic lattice where the basis functions (typically localized Wannier-like
functions) are centered, and l andm are the orbitals giving rise to the treated conduction bands),
in which only the electrostatic effects of the electron-electron interactions are included. The
dynamical part of these interactions (where we specify the intra-orbital interaction U , the inter-
orbital interaction for anti-parallel spins U − 2J and the Hund’s exchange energy J , further
gained when electrons have parallel spins) treated in slave-spins yields renormalization factors
Zl < 1 that reduce the hopping amplitudes, leading to a new (quasiparticle) band structure
analogously parametrized3 by t̃lmij =

√
ZlZmt

lm
ij .

The Sommerfeld coefficient can thus be directly evaluated from the renormalized quasi particle
density of states and, as can be seen in Fig. 1, the DFT+SSMF calculations (obtained with
a single set of interaction parameters, and varying only the ab-initio structure and the total

3This formula holds when i 6= j. Local orbital energies for i = j are shifted by other effective orbital-dependent
parameters λl.
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electron density) capture the trend throughout the 122-family. This agreement with experiments
together with the clear failure of the bare DFT calculations shows unambiguously the degree of
electronic correlation of these compounds.
The same calculations explain easily the reason of this trend. Indeed the correlations increase
monotonically with reducing the electron density throughout the range 6.2 to 5.5 electrons/Fe.
The simulations show that when reaching 5 electrons/Fe (d5 configuration) a Mott insulator is
obtained. Thus in this picture electron masses increase until diverging for half-filled conduction
bands. This Mott insulator, as we will see, is strongly favored by Hund’s coupling and influences
a large part of the phase diagram, even for densities as large as 1 electron/Fe away from it (the
d6 configuration of the parent FeSC) as it is clear from the above data, and beyond. Moreover
BaMn2As2 (d5) and BaCo2As2 (d7) can also be synthesized and they are respectively a Mott
insulator and an uncorrelated metal, clearly in line with the present picture.
Another recent experimental study [10] confirms this Mott-Hund scenario through analysing
the formation of the local magnetic moment that fluctuate in the paramagnetic metal. Indeed,
the Mott insulating state is the loss of metallicity due to the local configurations becoming
energetically very unfavorable to the charge fluctuation necessary for electrons in a metal to
flow. In a Mott state where Hund’s coupling dominates this reduction of charge fluctuations
together with the tendency of electron spins to align favors the highest possible atomic spin
configurations. Thus upon approaching the half-filled Mott-Hund insulating state we expect to
see these high-spin configurations gradually prevailing and building up a large local moment.
In a non-magnetic phase these local moments do not form a static long range order and thus a
fast spectroscopic technique sensitive to the size and not the direction of these fluctuating mo-
ments is needed to characterize them. X-ray emission spectroscopy (XES) is such a technique.
Indeed it probes the energy of a photon emitted in a deexcitation from a valence state (in the
present case the Fe 3p) into a core hole previously created by incident radiation. The decaying
electron can have spin up or down and its energy is different in these two configurations when
a net magnetic moment is present in the near Fe 3d open shell. Thus the spectroscopical line
due to the photons emitted in the deexcitation splits, in a proportional way to the magnitude of
the local moment, which can be thus characterized.4 A measure of this splitting (the so called
IAD value [11, 10]) for hole-doped BaFe2As2 series is reported in Fig. 2 and compared with
that of the electron doped compound. Indeed a monotonic increase of the Fe 3d local moment
is observed with reducing density, throughout the phase diagram.
Calculations within DFT+SSMF (inset of Fig. 2) again show that this is a clear indication of
FeSC being in a zone of influence of the half-filled Mott insulating state. Indeed the estimate of
the local moment from this method shows, both in BaFe2As2 (d6 configuration) and in KFe2As2
(d5.5 configuration), a clear crossover as a function of the interaction strength U (at fixed J/U )
between a low-moment (at small U ) and a high-moment (at large U ) region. The frontier departs
from the critical U for the Mott transition at half-filling and moves very slightly to larger values

4Absolute measurements of the moment are made uneasy by the line shapes and intensities and by the pro-
portionality factor which is a screened exchange constant not readily obtained (see and [11, 10] and references
therein). This constant is however believed to vary slowly within the series of doped BaFe2As2 reported here.
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Fig. 2: Evolution of the Fe 3d local magnetic moment in the paramagnetic normal phase for
doped BaFe2As2 estimated with X-ray Emission Spectroscopy at room-temperature. IAD is the
result of a deconvolution method, yielding a value that scales with the Fe 3d local moment
[11, 10]. The local moment increases monotonically with hole doping (which is obtained with
two different chemical substitutions yielding very similar results) and in comparison with the
electron doped material, in line with the Mott-Hund scenario. Inset: DFT+Slave-Spin estimate
of the local moment in BaFe2As2 and KFe2As2 as a function of the interaction strength U : a
considerable increase is realized only when U is large enough to be in the Hund’s metal regime.
In the DFT limit (U=0) the moment is basically the same for the two compounds. (adapted from
Refs. [10] and [11])

with doping, the crossover becoming progressively smoother. From the data it is clear that an
increase in the local moment in going from BaFe2As2 to KFe2As2 as seen in the experiments is
only possible if the materials are in the large-moment zone.

The third experimental feature well captured by realistic theoretical calculations we want to
highlight is the orbital selectivity of the electron correlation strength. This is illustrated, across
the 122-family in the upper panel of Fig. 3. Indeed, several experimental probes are sensitive
to the mass enhancement and by collecting the various estimates (from specific heat, optical
conductivity, ARPES and quantum oscillations, and their comparison to DFT estimates – details
are given in Ref. [12]) one finds a substantial agreement on values between 2 and 3 for the
electron-doped side, and an increasing disagreement with hole doping.

This can be clearly interpreted in terms of increasingly differentiated correlation strengths lead-
ing, at strong hole doping, to the coexistence between strongly correlated and weakly correlated
electrons. These electrons enter differently in the different experimental quantities and this ex-
plains the diverging estimates. For example the increase of the Sommerfeld coefficient γ we
have already seen in this section is caused by an increase of the density of states, which is
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Fig. 3: Upper panel: experimental estimates of the mass enhancement in the 122-family from
the various probes indicated in the legend. As detailed in the main text the divergence of the
estimates between the various band-integrated techniques can be interpreted in terms of coex-
isting weakly and strongly correlated electrons, which is confirmed by the spread of the band-
resolved values of ARPES and quantum oscillations. Lower panel: orbitally-resolved mass
enhancement calculated within DFT+SSMF capturing the above mentioned behavior (adapted
from Ref. [12]).

a sum over the orbital index l of contributions ∼ (m∗/mb)l. The estimates of correlations
in optical conductivity instead is done comparing the measured low-frequency (Drude) spec-
tral weight D with the theoretical one calculated in DFT (which in a single band case is in-
versely proportional to the band mass). In the multi-band case the renormalized Drude weight
is then a sum of terms ∼ (mb/m

∗)l. If the mass renormalization were the same for all electrons
then the common renormalization factor would factorize and the two estimates of correlation
strength γ(measured)/γDFT and (D(measured)/DDFT )

−1 would coincide. Instead if the vari-
ous (m∗/mb)l differ, as it happens for series or parallels of resistances, γ will be dominated by
the largest mass enhancement, and D by the smallest.

Analogously, the renormalization of the whole bandstructure (labeled “ARPES whole” in Fig. 3),
this being an entangled complex where all orbital contributions mix, will be renormalized as the
least renormalized of the contributions.
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On the other hand ARPES can measure the renormalization in a band/orbital resolved fashion,
by comparing the slope of the dispersion (the Fermi velocity, v∗F = vF (mb/m

∗) for a single
band model) measured in different points of the Fermi surface of different orbital character to
that coming from band structure calculations. The estimates from these different measures are
reported as orange crosses in Fig. 3 and it is clear that they spread increasingly with hole-doping,
confirming the increasing differentiation of the correlation strength. This is further confirmed
by analogous band-resolved estimates from quantum oscillations (yellow crosses).
This differentiation unambiguously comes out of the same theoretical calculations that repro-
duce the values of the Sommerfeld coefficient in Fig. 1 and the increase of the local moment
in Fig. 2. Indeed in the lower panel of Fig. 3 the orbitally-resolved renormalization factors
(m∗/mb)l = Z−1l calculated in DFT+SSMF for doped BaFe2As2 (lines) and for KFe2As2
(squares)5 are shown. Clearly there is a crossover, roughly around the electron density of the
parent compound, between a region at electron doping in which the renormalization is similar
for all the electrons, and another at hole doping where the differentiation is strong. The differ-
entiation increases the closer the density approaches half-filling, where the Mott insulating state
is obtained.
Summarizing, the three features mentioned in the introduction, namely: i) strong correlations
due to a Mott insulating state realized for the half-filled system and increasing when approach-
ing this filling, ii) a correspondingly increasing local moment in the metallic paramagnetic
phase, and iii) a strong differentiation of the correlation strength among electrons of different or-
bital character, are all realized and clearly seen experimentally in the 122-family of FeSC. They
happen after a crossover roughly located around the filling of the parent compound BaFe2As2,
so that while the hole-doped side clearly shows these features, the electron-doped side has them
much less pronounced and fading into a more common uncorrelated metallic phase.
Calculations within DFT+SSMF correctly describe all this physics within an unbiased unique
choice of interaction parameters for the whole family, highlighting the paramount role played
by the filling of the conduction bands, and how the distance from the half-filled Hund’s induced
Mott insulator is a key quantity dominating the many-body physics in these compounds. The
same calculations show that the crossover between the normal and the Hund’s metal is a frontier
in the U /density plane departing from the Mott transition and moving slightly to higher U values
with doping, such that it can be crossed both by acting on the doping and on the interaction
strength U .
We take these features as defining the Hund’s metal, so that it appears, based on the above
analysis, that the parent compound with density of 6 electrons/Fe of the 122-FeSC family is
located in the proximity of the crossover. Isovalent doping [6] can be performed on BaFe2As2
too with the substitution As→ P which reduces the in-plane Fe–Fe distance. Albeit rich of fur-
ther phenomenology that we will not detail here, there is evidence that this substitution, acting
as positive pressure (equivalent to reducing U in our calculations), brings the metal towards a
weakly correlated phase, as again predicted by DFT+SSMF calculations.

5Calculations are done for a given DFT structure. The lines are obtained varying the electron filling for the
DFT structure of BaFe2As2. The squares are values calculated for the KFe2As2 structure.
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3 Model studies: generality of Hund’s metals main features

The goal of this section is to make a parallel analysis to the one performed in Sec. 2 on the main
features of Hund’s metals, which are apparent in the experiments on FeSC and well captured
by DFT+slave-spin calculations. The aim is to show that these features appear identically in
models with featureless bare Hamiltonians in the proximity of a Hund’s-induced half-filled
Mott insulator, and are thus the outcome of the local many-body physics dominated by Hund’s
coupling and relatively independent from the fermiology and the specifics of the band structures.
Let us thus focus on the multi-orbital Hubbard model of Hamiltonian

Ĥ =
∑

i 6=jlmσ

tlmij d
†
ilσdjmσ +

∑
ilσ

(εl − µ)ndilσ + Ĥint , (1)

where d†ilσ creates an electron in orbital l with spin σ on site i and we take tlmij = δlmt equal
for all bands as well as all orbitals degenerate εl = 0, ∀l (the total filling being tuned by the
chemical potential µ). The lattice geometry is such to have a semicircular bare density of states
(DOS) of half-width D = 2t for each band (Bethe lattice). The interaction Hamiltonian reads6

Ĥint = U
∑
l

nl↑nl↓ + U ′
∑
l 6=m

nl↑nm↓ + (U ′ − J)
∑
l<m,σ

nlσnmσ , (2)

where we make the with typical choice U ′ = U − 2J (a discussion on this prescription can be
found in [4]) and the three contributions mentioned in the previous section are easily read out.7

We solve this model within the slave-spin mean-field approach [8].
The important point we want to highlight here is that the main features of the Hund’s metal are
present already in a simple 2-orbital Hubbard model in the presence of Hund’s coupling.
Indeed as seen in the previous section, Hund’s coupling favors a Mott insulator at half-filling
(2 electrons in 2 orbitals, in this case), while the Mott transitions for the other possible integer
fillings (1 and 3 electrons in 2 orbitals – which are physically identical due to the particle-
hole symmetry of the semi-circular DOS) are sent to very high interaction strength. In Fig. 4
we report the critical interaction strength for the Mott transition calculated within SSMF8 and
indeed it is clear that for the customary value9 J/U = 0.25 the Mott transition at half-filling is
brought to much lower values of U compared to the J = 0 case, while the opposite happens at
the other integer fillings.

6The interaction Hamiltonian eq. (2) is an approximation of the more rigorous “Kanamori” Hamiltonian in
which, besides the density-density terms here considered, off-diagonal “spin-flip” and “pair-hopping” terms are
present. The approximation of dropping them is however quite customary for computational reasons.

7This is the same Hamiltonian form that is used in the DFT+SSMF simulations discussed in the previous
section. The only difference is in the choice of the tlmij which are fitted on a DFT bandstructure, yielding a 5-
orbital model in the case of typical FeSC.

8These calculations were done including spin-flip and pair-hopping terms, but are very close (and qualitatively
identical) to the result of the present model in which we neglect these terms.

9The typical ab-initio estimates for 3d transition metal compounds is rather J/U ' 0.12 ÷ 0.15, however it
was shown [8] that in the present approximation J/U = 0.25 is a suitable choice to reproduce DMFT results with
spin-flip and pair hopping at J/U ' 0.15, in the typical fillings of interest not far from half.
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as a function of Hund’s coupling J/U (adapted from Ref. [13]).

Identical trends are found for Hubbard models with 3 orbitals [4] or more [8]: at half-filling the
critical interaction strength Uc in the presence of a sizable Hund’s coupling (say J/U = 0.25)
is a fraction of the bandwidth, whereas for all other fillings it is several times the bandwidth.

Moreover the half-filled Mott insulator dominates the phase diagram, for U & Uc for an ex-
tended range of filling even quite far from half. As an example we report in Fig. 5 several
quantities calculated at fixed density that undergo a crossover as a function of U on a fron-
tier departing from the Uc at half-filling. These quantities are the mass enhancement (bottom
panel), the inter-orbital charge correlations 〈n1n2〉−〈n1〉〈n2〉 (where nl =

∑
σ n

d
ilσ, lower mid-

dle) and the local moment (upper middle). The top panel reports the inverse of the electronic
compressibility that we will discuss later in the chapter.

Obviously the mass enhancement and the local moment undergo the same kind of crossover
described in the previous section. The mass enhancement clearly goes from a hardly changing
value near 1 at low U to a much larger value increasing with U . Depending on the proximity to
half-filling (ntot = 2.0) the effect is more or less pronounced. The local moment undergoes a
rapid change of behavior from a low value increasing from the uncorrelated one at small U to a
saturated high-value at large U , here again the closer to the saturated value for the Mott insulator
the nearer the density is to half-filling. The analogy between the local moment behavior in the
model plotted in the upper-middle panels in Fig. 5 and the behavior calculated in the ab-initio
simulations for BaFe2As2 and KFe2As2 in Fig. 2 is obvious.

Analyzing the third feature, orbital selectivity, is more subtle here, since the model is perfectly
degenerate between orbitals 1 and 2, and thus the mass enhancement will be the same for the
two orbitals, by symmetry. The tendency towards orbital selective correlations can be however
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Fig. 5: Main quantities highlighting the crossover from normal (small U/D) to Hund’s metal
(large U/D) in the 2-orbital (left) and 3-orbital (right) Hubbard model with Hund’s coupling
J/U = 0.25, solved within slave-spin mean-field for several dopings in proximity of half-
filling: (inverse) electronic compressibility, total local moment, inter-orbital charge correlation
function, mass enhancement (from Ref. [14]). The analogy with the analogous quantities calcu-
lated in realistic simulations validated by experiments shows the robustness of the Hund’s metal
physics with respect to materials details.

highlighted by looking at the inter-orbital charge-charge correlations. This correlation func-
tion is obviously zero in the uncorrelated limit U = 0 and grows initially with the interaction
strength. However, in the proximity of the crossover it undergoes a quick suppression, testify-
ing the independence of the charge fluctuations between the two orbitals in the large U phase.
Charge excitations, which are ultimately responsible for the metallicity and the suppression of
which leads towards the Mott insulating state, being independent in each orbital allow for a
different individual proximity of each orbital to the Mott state. This has been termed “orbital
decoupling” [13, 4, 12, 15, 8]. Indeed the same correlation function is reported for BaFe2As2
in Refs. [12, 8] (obviously in a realistic case all pairs of orbitals will give rise to a different
correlation function) and the behavior over the whole phase diagram is completely analogous.
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Fig. 6: As in the left panel of Fig. 5 (2-orbital Hubbard model, J/U = 0.25) with total density
ntot = 2.15, but with a small crystal field splitting ε1−ε2 = 0.05D, in order to show the tendency
to orbital selectivity upon entering the large U region beyond the Hund’s metal crossover.

A more direct check of the link between the orbitally-decoupled charge excitations and the
orbital-selectivity of the correlation strength in the present model case can be obtained by in-
troducing a small crystal field splitting, e.g., ε1 − ε2 = 0.05D, i.e., 1/40th of the bandwidth.
As can be seen from Fig. 6 this results in a clear orbital selectivity of the mass enhancements,
starting at the crossover and growing quickly with U . The orbital closer to individual half-filling
(orbital 2, which is lowest in energy for a total filling ntot=1.85) is the most correlated of the
two, following the orbital-decoupling physics.

All the same crossovers can be observed with similar doping-dependent plots at constant U .
Moreover a completely analogous behavior is found in the 3-orbital Hubbard model (right pan-
els in Fig. 5) and for a larger number of orbitals [15]).

Thus in conclusion we have shown that the three features that we have taken as a definition of a
Hund’s metal and that are found in realistic simulations of FeSC and confirmed by experiments,
are also identically found in degenerate models with featureless semi-circular densities of states.
Irrespectively of the number of orbitals a Mott insulator is favored at half-filling by Hund’s
coupling (and is found for Uc of the order of the bandwidth or smaller for realistic Hund’s
coupling) and dominates a large range of the U–doping phase diagram for U & Uc. Identically
too, the crossover into the Hund’s metal phase happens on a frontier stemming from the Mott
transition point at half-filling and extending at finite doping for a large range of dopings even
far from half-filling.

This robustness is due to the local many body physics being the cause of these distinctive fea-
tures, and to the fact that the details of the bare band structure enter through few local pa-
rameters: crystal-field splitting, kinetic energy (i.e., the first moment of the density of states),
possibly orbitally resolved, etc. This is the reason why such a phenomenology can be common
to many different materials irrespectively of the details of the band structure (and of the Fermi
surface most notably), and can be righteously labeled a general behavior, the Hund’s metal
behavior.
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4 Analytical insights into Hund’s metal mechanisms

In this Section we will give analytical arguments that provide some insight into the Hund’s
metal phenomenology outlined thus far. These arguments are based on an analysis of the spec-
trum of the half-filled Mott insulator that was seen to influence a large zone of the U -doping
parameter space in the previous sections, and is here taken as responsible for the Hund’s metal
phenomenology.
The spectrum of a Mott insulator can be analyzed in terms of the excitations of the system in
the atomic limit, i.e., with all hoppings in eq. (1) set to zero, tlmij = 0. Indeed for the 2-orbital
model with ε1 = ε2 = 0 and µ = (3U − 5J)/2, which ensure half-filling for a particle-hole
symmetric DOS [8], the spectrum is (the zero of energy is arbitrarily fixed at the ground state
energy): 

| ↑↓, ↑↓〉|0, 0〉 E = 2U − 2J

| ↑↓, ↑〉| ↑↓, ↓〉|0, ↑〉|0, ↓〉
| ↑, ↑↓〉| ↓, ↑↓〉| ↑, 0〉| ↓, 0〉

E = U+J
2

| ↑↓, 0〉 |0, ↑↓〉 E = 3J

| ↑, ↓〉 | ↓, ↑〉 E = J

| ↑, ↑〉 | ↓, ↓〉 E = 0

(3)

The Coulomb repulsion U splits the sectors with the same total charge while J splits the half-
filled sector depending on the spin alignment of the two electrons and of them paying inter- or
intra-orbital repulsion. As a result the ground state is 6 times degenerate at J = 0, while the
high-spin doublet is selected for nonzero J .10

The ground state of the lattice system in the atomic limit will then be that in which every site
hosts two electrons in one of the high-spin configurations. The gap to overcome to establish
conduction in such a system amounts to the energy needed to move an electron from one site to
another and is thus the sum of the energies necessary for adding a particle on an atom and for
subtracting one on another , that is:

[E(n+ 1)− E(n)] + [E(n− 1)− E(n)] = E(n+ 1) + E(n− 1)− 2E(n), (4)

where E(n) is the atomic ground state with n particles. It can be directly read from the above
scheme, where both energy differences read (U + J)/2 so that the spectral function has two
delta-like features at ±(U + J)/2, and the total atomic gap reads ∆at = U + J .
Upon reintroduction of the hopping, these features in the spectrum broaden in two “Hubbard”
bands due to the delocalization of the charge excitations. Indeed at zero hopping there are many
degenerate excited states, one for each lattice site, since an extra electron (or an extra hole)
with a given orbital and spin flavor can be added on any site. The hopping connects them and

10The present discussion, besides a modification of the spectrum that has no impact, is equally valid for the
Kanamori Hamiltonian for which the ground state is a high-spin triplet.
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Fig. 7: Delocalization of charge excitations. In the absence of Hund’s coupling (J = 0) all
6 configurations with 2 electrons on a given site are degenerate (see eq. (3)). Thus both hopping
channels between two sites (light blue arrows) are allowed without an extra energy cost. For
finite J instead the only hopping allowed is in the channel where the extra electron was created,
since hopping in the other channel would produce a two-electron configuration with a doubly
occupied orbital, which has now a higher energy.

removes the degeneracy, spreading the states over a range roughly the bandwidth W, in analogy
with the case of a non-interacting electron.

It should be noticed that at J = 0 in a multi-orbital model (take for simplicity only diagonal
hopping in the orbital index) the spread is actually larger [16], of order ∼

√
MW , where M is

the number of orbitals. Indeed (see Fig. 7) from the site where the extra electron is created, say
in orbital 1 – and that thus hosts 3 electrons – not only hopping from orbital 1 but also hopping
from orbital 2 connects this state with another state of the same energy. This second hopping
process leaves behind a site with a doubly occupied orbital and the other empty, which at J = 0

is degenerate with all the other configurations of two electrons on a site.

However when J is nonzero this extra degeneracy is removed. Indeed the two-electron configu-
ration with orbital 1 doubly occupied left behind by the second hopping process at finite J is no
longer degenerate with the high-spin configurations of the atomic ground state. Thus an extra
electron created in orbital 1 can only delocalize through the hopping process in its own chan-
nel, i.e., the charge excitation cannot take advantage of the multi-orbital nature of the system to
delocalize and the width of the Hubbard bands becomes of order ∼ W again. This shrinking
was also verified within dynamical mean-field theory, where the spectral function for a Mott
insulator can be directly calculated and the width of the Hubbard bands measured [8].

All in all this means that the gap between the two Hubbard bands, which are ∆at apart is
∆ ' ∆at −W = U + J −W . This gap will then close at interaction strength Uc ' W − J ,
which is of size of order of the bandwidth or less, and decreasing with increasing J , perfectly
in line with what is found numerically [8].

This argument can be generalized to any number of orbitals and explains why the half-filled
Mott insulating state is favored by Hund’s coupling. Indeed the half-filled sector is the one with
a larger number of spare spins to align in order to gain exchange energy. Its distance in energy
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from all other sectors will grow with J and so will the Mott gap, needing thus a smaller U to
close.

The same kind of arguments can be applied to the Mott transition at other integer fillings [13],
where however the effect is opposite. For instance in the 2-orbital model for filling of 1 elec-
trons/site, the atomic ground state will be in the n = 1 sector. This sector is unaffected by
J , while the excited state with n + 1 particles will be the ground state of the atomic n = 2

sector. The energy of this state lowers with J , and thus J helps closing the gap in this case, thus
disfavoring the Mott transition.

The general outcome [13] is that the critical interaction strength for the Mott transition in a
system with M orbitals at large J goes like

Uc(n) ∝

 3J, ∀n 6= N (off half-filling)

−(M − 1)J, n =M (half-filling) ,
(5)

which explains why for values of U ∼ W as it happens in FeSC and in the related models with
sizable J/U , the Mott insulating state is only realized at half-filling.

This analytic arguments justifies the first two features of the Hund’s metals. Indeed the elec-
tronic correlation strength naturally grows with reducing doping from the Mott insulator. Also
the local moment is maximized in the half-filled Mott insulator, in which the ground state lies
in the sector with the highest possible spin configuration and charge fluctuations are minimized.
Upon doping this sector will mix increasingly with the other charge sectors, where lower spin
configurations are realized, and the resulting local moment will gradually decrease.

The argument above on J decoupling the hopping channels for the charge excitations in the
various orbitals is a support to the third Hund’s metal feature we have outlined, i.e., the role of
Hund’s coupling as an orbital decoupler in general, favoring orbital-selectivity in the proximity
of the half-filled Mott insulator. Indeed, in a system where the two orbitals differ, be it for the
energy ε1 6= ε2 or for the hopping integrals (or both), the Hubbard bands in the spectral function
will differ for the two orbitals [17]. This implies different gaps and can lead to orbitally-selective
Mott transitions, if U is such that the gap is open only for one of the orbitals, and closed for the
other. Analogously in the doped case the chemical potential can fall in the gap for one orbital
and in the Hubbard band for the other causing again selective localization. In a more realistic
case where off-diagonal hoppings are present and thus the character of the orbital mixes, one
can expect that orbital selective Mott phases turn into metallic phases with different correlation
strength, and this is indeed what is observed in simulations.

These arguments for independent gaps are just indicative for the electron correlations in the
metallic phase. There, indeed, more rigorous arguments for the low-energy long lived quasi-
particle excitations should be used. SSMF offers a framework where this can be done and a
low-energy analysis supporting the role of Hund’s coupling as an orbital decoupler was per-
formed in Ref. [8].
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5 Compressibility enhancement and quasiparticle interactions

In this last section it is worth mentioning some more recent work highlighting another fea-
ture connected with the normal to Hund’s metal crossover. This feature emerges clearly from
theoretical calculations: an enhancement (culminating in a divergence) of the electronic com-
pressibility near the crossover.

Indeed when investigating within SSMF the proximity of the half-filled Mott insulator in the
presence of Hund’s coupling, irrespectively of the number of orbitals, one encounters a zone
of negative compressibility [14]. This is illustrated in the upper panels of Fig. 8 where the
chemical potential µ as a function of the total density n is plotted, for the 2-orbital and the
3-orbital Hubbard model on the Bethe lattice with J/U = 0.25. Curves for various values of
U are plotted. The lowest value illustrates a case in which at half filling a metallic solution is
obtained, just below Uc for the Mott transition. All other values of U lead to a Mott insulator
at half-filling. A clear change of behavior of the µ vs. n curve appears for U > Uc. Indeed
upon approaching the Mott insulator the electronic compressibility κel = dn/dµ diverges (i.e.
µ(n) has a flat slope). At large doping the slope is positive, signaling a stable phase, while
in a zone near the Mott insulator the negative slope signals negative compressibility and thus
an unstable electronic fluid. In the 2-orbital model for all dopings below the one where the
divergence happens the system is unstable, giving rise to the purple instability zone in the phase
diagram depicted in the lower panel of Fig. 8. In the 3-orbital (Fig. 8, right panel) and in the 5-
orbital model (not shown, see supplementary material in Ref. [14]) instead the compressibility
becomes positive again before the filling reaches half. This gives rise to a different shape of the
instability zone (respectively in green and light blue for the 3- and 5-orbital model in the lower
panel of Fig. 8) that appears more like a “moustache.”

The striking feature is that in all cases the instability zone departs from the Mott transition point
at half-filling (symbols in the lower panel of Fig. 8). It is in fact easy to verify that the lower
frontier between the stable and unstable metal approximatively coincides with the crossover
into the Hund’s metal that we have described in this chapter. Indeed this is illustrated in the
upper panels in Fig. 5, which plot quantities at constant density as a function of U along the
scans of the phase diagram signaled in the lower panel of Fig. 8 by dashed lines. The (inverse)
electronic compressibility κ−1el is plotted and the instability is signaled by its vanishing. It is
easy to see that for the scans crossing the frontier the compressibility divergence happens in
correspondence (or immediately beyond) the crossover into the Hund’s metal phase. It is also
worth mentioning that in the proximity of the instability zone the compressibility of the stable
Hund’s metal remains enhanced. In particular this is shown from the scans reported in Fig. 5 at
larger dopings in both models: indeed even without diverging, the compressibility is strongly
enhanced (i.e. κ−1el is very small) in a zone starting with the Hund’s crossover.

The interest of this finding lies in the connection between enhanced or diverging compressibility
and superconductivity. Indeed the compressibility being the uniform and static charge-charge
response function, its divergence signals an instability of the system towards phase separation
(or more physically towards a charge density wave, when taking into account the long range
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Fig. 8: Upper panels: chemical potential vs. density curves for the 2-orbital (left) and 3-orbital
(right) Hubbard models with J/U = 0.25 calculated within DFT+SSMF. For U > Uc (the
critical interaction value for the Mott transition at half-filling, with Uc/D = 1.96 in the 2-
orbital model and Uc/D = 1.515 in the 3-orbital model) the curves show a negative slope,
indicating an unstable system for a range of doping inside a spinodal line (black dots) which is
the locus where the compressibility κel = dn/dµ diverges. In the 3-orbital model (and in the 5-
orbital model – not shown) a second spinodal line where the compressibility becomes positive
again delimits a region in the shape of a “moustache.” The instability regions for all these
models are reported (colored areas) in the lower panel, in the interaction-density plane. The
dashed lines represent the scans in the space of parameters corresponding to the calculations
reported in Fig. 5 (from Ref. [14]).
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Coulomb interaction neglected in the Hubbard model). A second order transition due to a phase
separation instability is a possible cause of Cooper pairing through quantum critical fluctuations
in its proximity. Moreover in a Fermi-liquid phase such as the one described in the SSMF the
compressibility reads [18]11

κel =
N(εF )/Z

1 + F s
0

, (6)

where N(εF ), the total bare density of states at the Fermi energy, coincides with the non-
interacting compressibility. F s

0 is the isotropic, spin-symmetric Landau parameter. It is seen
that when Z behaves smoothly as in our case, the divergence (or the strong enhancement) is
due to a negative Landau parameter approaching the value F s

0 = −1. The Landau parameter
embodies the effect of quasiparticle interactions and a negative F s

0 signals an attraction in the
particle-hole channel, which is known to favor superconductivity.
Moreover the enhanced compressibility signals also the enhancement of some quasiparticle
interaction vertices with bosonic excitations (like phonons for instance). Indeed for example for
the density-vertex Λ(q, ω), which plays a role in the interaction between electrons and phonons,
the following Ward identity holds [19]

Λ(q → 0, ω = 0) =
1/Z

1 + F s
0

. (7)

One can see that this vertex is enhanced in the same way as the compressibility. This enhance-
ment of quasiparticle-boson interactions can be a source of instabilities and in particular of an
instability in the Cooper channel, i.e., superconductivity.
One word is in order on the possible mechanism causing such a compressibility enhancement in
correspondence of the Hund’s metal crossover. We will only give a plausibility argument, that
needs to be verified in further studies: A doped Mott insulator typically has a shifted spectrum,
compared to the insulating case, in which the chemical potential has “jumped into” one of the
Hubbard bands. At low electron doping it lies typically at the bottom (and symmetrically, in
case of hole-doping) of this band. Now we have mentioned that the width of the Hubbard bands,
albeit in anM -orbital system orbital fluctuations would favor a value∼

√
MW , is brought back

to values of order W by Hund’s coupling, near half-filling. However, the mechanism behind
this shrinking that we have described in the previous section holds only near half-filling, and
it is natural to expect that with doping it becomes gradually ineffective, and the width of the
Hubbard bands is brought back to ∼

√
MW . Now if the Hubbard band swells with increasing

doping, the situation in which the chemical potential at a higher density has a lower value than
at a smaller density can naturally happen. This indeed coincides with a negative electronic
compressibility.
Finally it is worth going back to realistic calculations for FeSC to see if the compressibility
enhancement too survives in an ab-initio framework. In Fig. 9 we report the calculation done

11The formula reported here (where for instance the renormalized and bare densities of states are simply related
by N∗(εF ) = N(εF )/Z, with εF the bare Fermi energy) holds only in simple cases (single band, degenerate
identical bands). In the general case, however, proper generalizations can be made, and the considerations made in
this section hold valid.
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Fig. 9: Lower left panel: compressibility (color scale) in BaFe2As2 calculated within
DFT+SSMF (J/U=0.25) in the U -density plane. The saturated yellow color corresponds to
the unstable region (the pixelation is due to numerical discretization and is unphysical), sur-
rounded by an area of enhanced compressibility (red). Upper panels: compressibility plotted
along the cuts (dashed lines) for constant U = 2.7 eV and constant density n=6, relevant values
for BaFe2As2. Lower right panel: orbitally resolved mass enhancements, showing that the com-
pressibility enhancement happens near the Hund’s metal crossover, signaled by the correlations
become orbitally selective.

within DFT+SSMF for BaFe2As2. The “moustache” expected in the 5-orbital model is well
visible and actually goes through the realistic values for the interaction expected in this material
(U = 2.7 eV and J/U = 0.25) and used in all the calculations reported in this chapter that
successfully reproduce the phenomenology of the 122-family. The moustache (or its prolon-
gation where the divergence becomes a strong enhancement) goes through the right interaction
strength exactly for the zone of densities where the material shows both the superconductive
and the magnetic instabilities. From the plotted panels it is obvious that the enhancement once
again happens concomitantly with the crossover in the Hund’s metal regime, signaled by the
onset of orbital selectivity of the masses in the figure.

This is a possible confirmation of the role played by the enhancement of the quasiparticle inter-
action signaled by the compressibility peak in promoting the instabilities in general and maybe
high-Tc superconductivity in particular.
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6 Conclusions

In this chapter we have adopted a clear-cut definition of a Hund’s metal, as a metallic phase
emerging clearly in the phase diagram of Fe-based superconductors, signaled by three main
features: enhanced electron masses, local magnetic moments and orbital-selectivity, and all
growing with hole doping (in the case of these materials where the conduction bands are filled
more than half).
We have shown that experiments and theoretical simulations within density-functional theory +
slave-spin mean-field go hand in hand, pointing to the local electronic correlations triggered by
Hund’s coupling as the origin of this phenomenology.
Then we have shown that all the features of the Hund’s metal are found also in Hubbard models
with featureless band structures, thus proving the generality of this physics and its robustness
with respect to details of the materials. The only necessary condition is to be under the influ-
ence of a half-filled Mott insulator in the presence of sizable Hund’s coupling. A crossover line
between the normal and the Hund’s metal exist, where all the aforementioned features become
enhanced, it departs from the Mott transition point at half-filling and extends in the interac-
tion/doping plane.
We have then given some analytical arguments in order to gain insight into this phenomenology,
showing how Hund’s coupling favors the realization of a half-filled Mott insulator at values of
the interaction less than the bandwidth, and a mechanism lying at the basis of the “orbital decou-
pling” causing orbital-selective correlation strength. More on this can be found in Refs. [4, 8].
We have finally pointed out a relatively recent extra feature of the normal to Hund’s metal
crossover, which is the enhancement of the electronic compressibility. This culminates in a
zone of instability towards phase separation, departing from the Mott transition point at half-
filling and following the Hund’s metal frontier. This phenomenology is common, once again,
to models and realistic simulations, and it stems from the outlined Hund’s local correlation
physics. A Fermi-liquid analysis highlights the connection with an enhancement of quasipar-
ticle interactions, tracing a possible, hitherto unsuspected link between Hund’s physics and
high-Tc superconductivity. More on this can be found in Ref. [14] and in its supplementary
material.
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1 Introduction

The electron-phonon interaction is, besides the Coulomb interaction, one of the fundamental
interactions of quasiparticles in solids. It plays an important role for a variety of physical
phenomena. In particular in metals, low-energy electronic excitations are strongly modified
by the coupling to lattice vibrations, which influences, e.g., their transport and thermodynamic
properties. Electron-phonon coupling (EPC) also provides in a fundamental way an attractive
electron-electron interaction, which is always present and, in many metals, is the origin of the
electron pairing underlying the macroscopic quantum phenomenon of superconductivity.
This lecture addresses the consequences of electron-phonon coupling in both the normal and
the superconducting state of metals. In Section 2, the basic Hamiltonian describing the coupled
electron-phonon system is introduced. In Section 3, a closer look onto normal state effects in
a metal is taken, focusing on the renormalization of quasiparticles, which allows to experimen-
tally quantify the strength of the interaction. Section 4 is devoted to phonon-mediated super-
conductivity. First a derivation of the effective attractive interaction among electrons mediated
by phonon exchange is given. Then we analyze the role of electron-phonon coupling for su-
perconductivity in the context of the strong-coupling Migdal-Eliashberg theory in some detail.
In Section 5, we discuss the density-functional based technique to calculate electron-phonon
coupling quantities and present two examples to illustrate its predictive power. Throughout this
Chapter, only nonmagnetic states are considered and atomic units ~ = 2me = e2/2 = 1 as well
as kB = 1 are used.

2 Electron-phonon Hamiltonian

2.1 Electron-phonon vertex

The lowest-order process involving the electron-phonon interaction is the scattering of a single
electron by a simultaneous creation or annihilation of a single phonon, as diagrammatically
shown in Fig. 1. The probability for the scattering process is called the electron-phonon vertex
g. We will briefly sketch its derivation starting from rather general grounds. For more details
one can refer to the book of Grimvall [1].
Due to the large ratio of the ionic and electronic mass, the dynamics of the ions and the electrons
can be systematically expanded in terms of the small parameter κ = (m/M)1/4, which results
in a partial decoupling [2, 3]. To lowest order in κ, called the adiabatic or Born-Oppenheimer
approximation, the total wavefunction of the coupled electron-ion system can be written as a
product Ψ(r,R) = χ(R)ψ(r;R), where r and R denote the sets of electron and ion coordinates,
respectively. The electronic wavefunction obeys the equation

[Te + Vee +He−i(R)]ψn(r;R) = En(R)ψn(r;R) , (1)

where Te and Vee denote the kinetic energy and Coulomb interaction of the electron system,
respectively. Eq. (1) depends parametrically on the ionic positions R via the electron-ion inter-
action He−i.
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Fig. 1: Diagrammatic representation of the basic electron-phonon scattering process. Black
lines represent electrons, the blue zigzag line a phonon, and the red circle the screened vertex.

The electron-phonon vertex appears in first order beyond the adiabatic approximation. One can
show that it induces off-diagonal matrix elements among the electronic eigenstates ψn and has
the form

〈n|δRV |n′〉 . (2)

The operator δRV stands for the linear change of the potential felt by the electrons under a
displacement of an atom from its rest position: R = R0 + u. If the potential V is the bare
electron-ion potential V 0, then δRV = u ·∇V 0|R0 . Eq. (2) represents the bare vertex. However,
in solids, and in particular in metals, the bare electron-ion potential is screened by the other
electrons. Screening also alters the vertex significantly. Within linear response theory this
operator takes the form

δRV = u · ε−1∇V 0|R0 , (3)

where ε−1 is the inverse dielectric matrix [4], which is a measure of the screening. Note that in
Eq. (3), the screening operator does not commute with the gradient operation, and thus can not
be written in terms of the gradient of a screened potential.

2.2 Fröhlich Hamiltonian

We now aim to develop a systematic perturbative treatment of the mutual influence of the elec-
tronic and phononic subsystems in a solid. Thereby the question arises, what are the proper
noninteracting quasiparticles to start with. The correct answer requires to know the solution to
some extent. As we will see, electronic states are significantly influenced by lattice vibrations
mostly in close vicinity of the Fermi energy. It is therefore appropriate to start with electrons
moving in the static potential of a rigid ion lattice, without any renormalization by the lattice
vibrations. On contrast, the bare vibrations of the ion lattice would be a bad starting point,
because they are strongly altered by the screening of the electrons. This screening must be built
into the description of the harmonic lattice vibrations which defines the noninteracting phonons.
For the discussion of electron-phonon coupling effects in periodic solids, a good starting point
is the Fröhlich Hamiltonian, which reads in second quantization

H = He +Hph +He−ph . (4)



15.4 Rolf Heid

Here the electron system is described by noninteracting quasi-particles with dispersion εk.
These quasiparticles are considered to be the stationary solutions of band electrons in a per-
fect periodic lattice, and include already the renormalization from Coulomb interaction

He =
∑
kνσ

εkν c
†
kνσckνσ . (5)

Here ckνσ (c†kνσ) are the annihilation (creation) operators for an electronic state with momentum
k, band index ν, spin σ, and band energy εkν .
The lattice Hamiltonian is expressed in terms of quantized harmonic vibrations, and represents
noninteracting phonons

Hph =
∑
qj

ωqj

(
b†qjbqj +

1

2

)
, (6)

where bqj (b†qj) are the annihilation (creation) operators for a phonon with momentum q, branch
index j, and energy ωqj . Phonons are the quanta of the normal mode vibrations (for more details
see Appendix A). The operator of atom displacements is expressed in terms of the phonon
operators by

ulsα = eiqR
0
ls

1√
Nq

∑
qj

Aqj
sα

(
bqj + b†−qj

)
with Aqj

sα =
ηsα(qj)√
2Msωqj

. (7)

Atoms are characterized by two indices denoting the unit cell (l) and the atoms inside a unit
cell (s), respectively, with Ms the corresponding atom mass. α denotes Cartesian indices, and
ηsα(qj) is the eigenvector of the normal mode qj. The number of points in the summation over
q is Nq.
The third term describes the lowest-order coupling between electrons and phonons derived from
Eq. (3). Using the relationship Eq. (7) it has the form

He−ph =
∑
kνν′σ

∑
qj

gqjk+qν′,kνc
†
k+qν′σckνσ

(
bqj + b†−qj

)
. (8)

gqjk+qν′,kν is the electron-phonon matrix element and describes the probability amplitude for
scattering an electron with momentum k from band ν to a state with momentum k + q in
band ν ′ under the simultaneous absorption (emission) of a phonon with momentum q (−q) and
branch index j

gqjk+qν′,kν =
∑
sα

Aqj
sα〈k+ qν ′σ|δqsαV |kνσ〉 . (9)

Here again the screened first-order variation enters the matrix elements. They are independent
of spin for nonmagnetic ground states.
This general form of the Fröhlich Hamiltonian will be the starting point for the many-body
perturbation outlined in the next Sections. To simplify the treatment, we will use a compact
notation combining momentum and band/branch index into a single symbol: k = (kν), k′ =
(k′ν ′), and q = (qj). The EPC matrix elements are then denoted as

gqk′,k = gqjk′ν′,kνδk′,k+q , (10)

which implicitly takes into account momentum conservation.
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3 Normal-state effects

3.1 Green functions and perturbation

In this section we will discuss the effects of electron-phonon interaction in the normal state
of a metal. This will be done using many-body perturbation techniques [5–7]. The focus will
be on the renormalization of electronic and phononic quasiparticles, which provides ways to
experimentally gain information about the coupling strength. This will set the stage for the
discussion of phonon-mediated superconductivity in the next section.
The following treatment is based on the Fröhlich Hamiltonian Eq. (4), where H0 = He +Hph

denotes the Hamiltonian of the unperturbed quasiparticles and He−ph is perturbation linear in
the electron-phonon coupling. We will work with the imaginary-time Green functions

G(k, τ) = −〈Tτckσ(τ)c†kσ(0)〉 (11)

for the fermionic quasiparticles, where the field operators are given in a Heisenberg picture
using an imaginary time −iτ , ckσ(τ) = eHτckσe

−Hτ with −β < τ < β, β = 1/T . The Wick
operator Tτ reorders operators to increasing τ from right to left.
For the bosonic quasiparticles, the Green function of the displacement operators is defined as

Usα,s′α′(q, τ) = −〈Tτuqsα(τ)u−qs′α′(0)〉 =
∑
j

Aqj
sαA

−qj
s′α′D(qj, τ) , (12)

where D denotes the phonon Green function (q = (qj))

D(q, τ) = −〈Tτ (bq(τ) + b†−q(τ))(b−q(0) + b†q(0))〉 (13)

G(k, τ) andD(q, τ) can be defined as periodic functions in τ with symmetry propertiesG(k, τ+
β) = −G(k, τ) and D(k, τ +β) = D(k, τ), respectively. Their Fourier transforms are given by

G(k, iωn) =
1

2

∫ β

−β
dτ eiωnτG(k, τ) (14)

D(q, iνm) =
1

2

∫ β

−β
dτ eiνmτD(q, τ) , (15)

where ωn = (2n + 1)πT and νm = 2mπT , with n, m integer values, denote fermionic and
bosonic Matsubara frequencies, respectively.
Two further simplifications have been assumed: (i) because we are dealing with nonmagnetic
states only, the spin index in the electronic Green function can be suppressed; (ii) the perturba-
tion He−ph does not mix different electronic bands or phononic modes, such that the interacting
Green functions can still be represented by a single band/mode index.
The bare Green functions of the unperturbed Hamiltonian H0 = He +Hph are

G0(k, iωn) =
1

iωn − εk
(16)

D0(q, iνm) =
1

iνm − ωq
− 1

iνm + ωq
. (17)
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Fig. 2: Diagrammatic representation of the lowest-order contribution to the electron self-energy
from the electron-phonon coupling. Blue zigzag and black lines represent phonon and electron
propagators, respectively.

Electronic energies are measured with respect to the chemical potential. By applying many-
body perturbation theory to the Fröhlich Hamiltonian, the interacting Green functions are ex-
pressed by an infinite series of Feynman diagrams containing the bare Green functions and an
increasing number of electron-phonon vertices.
Partial resummation leads to the Dyson equations

G(k, iωn)
−1 = G0(k, iωn)

−1 −Σ(k, iωn) (18)

D(q, iνm)
−1 = G0(q, iνm)

−1 −Π(q, iνm) , (19)

which connects bare and renormalized Green functions via the electron and phonon self-energy,
Σ and Π , respectively. The self-energies are defined as the sum of all one-particle irreducible
Feynman diagrams, i.e., as the sum of all Feynman diagrams, which cannot be separated into
two distinct graphs by cutting a single electron or phonon line.
In the following we will discuss the most important contributions to the self-energies in more
detail.

3.2 Electron self-energy

The lowest-order diagram of the electron self-energy represents the virtual exchange of a phonon
as shown in Fig. 2

Σep(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′,kG0(k
′, iωn′)(gqk′,k)

∗D0(q, iωn′ − iωn) . (20)

After performing the Matsubara sum over ωn′ one obtains

Σep(k, iωn) =
1

Nq

∑
k′,q

|gqk′,k|
2

(
b(ωq) + f(εk′)

iωn + ωq − εk′
+
b(ωq) + 1− f(εk′)
iωn − ωq − εk′

)
. (21)

Σep depends on temperature T via the Fermi and Bose distribution functions, f(ε) = (eε/T +

1)−1 and b(ω) = (eω/T − 1)−1, respectively.
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To discuss the quasiparticle renormalization, we consider the retarded Green function, which is
obtained by analytic continuation to the real axis via iωn → ε+ iδ with an infinitesimal positive
δ. It is connected to the analytic continuation of the self-energy via the Dyson equation

G(k, ε) = (ε− εk −Σ(k, ε))−1 . (22)

If the self-energy is small enough, the spectral function Ak(ε) = −ImG(k, ε + iδ) consists of
a well defined peak at a shifted quasiparticle energy determined by the real part of Σ

εk = εk +ReΣ(k, εk) . (23)

The quasiparticle acquires a finite lifetime leading to a linewidth (full width at half maximum)

Γk = −2ImΣ(k, εk) , (24)

which is determined by the imaginary part.
It is straightforward to perform the analytic continuation of Σep(k, iωn → ε + iδ) in the form
given in Eq. (21) and to derive the expression for the imaginary part

ImΣep(k, ε) = −π
1

Nq

∑
k′,q

|gqk′,k|
2
(

δ(ε− εk′ + ωq)(b(ωq) + f(εk′))

+ δ(ε− εk′ − ωq)(b(ωq) + 1− f(εk′))
)
. (25)

This can be rewritten by introducing two spectral functions

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω − ωq)
∑
k′

|gqk′,k|
2δ(ε− εk′ ± ω) . (26)

They depend on the electronic state k via the EPC vertex. The imaginary part can then be cast
in the form

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2F+

k (ε, ω)[b(ω)+f(ω+ε)]+α
2F−k (ε, ω)[b(ω)+f(ω−ε)]

)
. (27)

The physical interpretation of this expression is as follows. When a quasiparticle hole is cre-
ated at a state k (ε < εF ), electrons can scatter from states with higher or lower energies,
respectively (see Fig. 3). By conservation of energy, the first process involves a simultaneous
emission of a phonon, while the second one is related to the absorption of a phonon. The prob-
ability is described by α2F−k and α2F+

k , respectively, weighted with the appropriate bosonic
and fermionic distribution functions. Both processes provide decay channels contributing addi-
tively to the linewidth (inverse lifetime) of the quasiparticle. A similar description holds when
a quasiparticle (electron) is created at energies above the Fermi level.
Very often, a simplification is made which is called the quasielastic approximation. Because the
electronic energy scale is typically much larger than the phonon energies, differences between
emission and absorption spectra are rather small, and it is well justified to ignore the phonon
energy ωq in the δ-function of (26), such that α2F±k ≈ α2Fk with

α2Fk(ε, ω) =
1

Nq

∑
q

δ(ω − ωq)
∑
k′

|gqk′,k|
2δ(ε− εk′) . (28)
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ε
F

Fig. 3: Illustration of the scattering processes contributing to the self-energy of a hole quasi-
particle with momentum k and band index ν. Electrons (red lines) can scatter virtually from
states with higher or lower energies under simultaneous emission or absorption of a phonon
(blue lines), respectively.

The self-energy then simplifies to

ImΣep(k, ε) = −π
∫ ∞

0

dω
(
α2Fk(ε, ω)[2b(ω) + f(ω + ε) + f(ω − ε)]

)
. (29)

It is instructive to evaluate this expression for the simple Einstein model, where only a single
dispersionless phonon mode with energy Ω couples to the electrons. In the limit T → 0 one
finds

ImΣep(k, ε)→ −πA(ε)
(
2−Θ(Ω − ε)−Θ(Ω + ε)

)
, (30)

where Θ(x) denotes the Heaviside step function, and A(ε) = 1/Nk

∑
k′,q |g

q
k′,k|2δ(ε− εk′) rep-

resents the density of states at energy ε weighted by scattering matrix elements. Typically A(ε)
is slowly varying on the scale of phonon energies. On contrast, Σep(ε) vanishes for energies
|ε| < Ω and shows a step at Ω, because of the presence of the step functions. This reflects the
fact that no phonon modes are available for decay when |ε| < Ω. ReΣep can be obtained via
the Kramers-Kronig relation

ReΣep(k, ε) =
1

π

∫
dε′

ImΣep(k, ε
′)

ε− ε′
. (31)

As shown in Fig. 4(a) it contains a maximum at ε = Ω and has a finite slope at ε → 0.
The resulting dispersion for the renormalized quasiparticle is sketched in Fig. 4(b). It shows
two characteristics: (i) the dispersion is strongly modified in the vicinity of εF in the range of
phonon energies, altering the Fermi velocity related to the slope of ReΣep(ε→ 0). (ii) A cusp
appears at ε = ±Ω.
For a more realistic phonon spectrum which covers continuously an energy range 0 ≤ ω ≤
ωmax, the step-like feature in ImΣep(ε) is washed out, but Σep(ε) still varies rapidly in the
energy range of the phonons. The cut in the renormalized dispersion is then replaced by a kink.
An example of an experimentally determined self-energy is given in Fig. 4(c) and (d).
The spectral function α2Fk contains the essential information related to the electron-phonon
coupling of the specific electronic state k = (kν). A convenient measure for the strength of the
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Fig. 4: Illustration of the renormalization of an electronic band coupling to an Einstein-
type phonon branch with energy Ω. (a) Real and imaginary part of the electron self-energy.
(b) Renormalized quasiparticle dispersion, showing a kink at the phonon frequency. (c) Real
and (d) imaginary part of the electron self-energy extracted from angle-resolved photoemission
spectroscopy measurements taken for an electronic surface band of the Cu(110) surface. After
Jiang et al. [8]

EPC is the dimensionless coupling parameter

λk = 2

∫
dω

α2Fk(εk, ω)

ω
. (32)

It characterizes the strength of the coupling of a specific electronic state to the whole phonon
spectrum, and depends both on the momentum and band character of the electronic state.
There are two relations which connect this parameter to experimentally accessible quantities.
The first is related to the real part of the self-energy for an electronic band crossing the Fermi
level:

λk =
∂ReΣep(k, ε)

∂ε

∣∣∣∣
ε=0,T=0

. (33)

Thus the coupling constant is given by the slope of ReΣep right at the Fermi energy in the
limit T → 0. λk is also called the mass-enhancement parameter, because the quasiparticle
velocity is changed to v∗F = vF/(1 + λk) and can be interpreted as an enhanced effective mass
m∗k = mk(1 + λk), where mk denotes the unrenormalized mass. Eq. (33) is often utilized in
ARPES measurements of bands crossing the Fermi level, which attempt to extract the energy
dependence of the real part of the self-energy.
A second route to determine the coupling constant of an electronic state is via the temperature
dependence of the linewidth

Γk = π

∫ ∞
0

dω
(
α2Fk(εk, ω)[2b(ω) + f(ω + εk) + f(ω − εk)]

)
. (34)
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Fig. 5: (a) and (b) Diagrammatic representation of the two second-order contributions to the
electron self-energy. Blue zigzag lines represent phonon and black lines electron propagators.
(c) and (d) Schematic drawing of the Fermi surface and the states contributing to the graphs (a)
and (b), respectively.

In Eq. (34), the T -dependence it contained solely in the Bose and Fermi distribution functions.
For T → 0, it approaches a finite value given by

Γk → 2π

∫ ωmax

0

dω α2Fk(εk, ω) . (35)

With increasing T , the linewidth increases for all energies. For temperatures larger than the
maximum phonon frequencies, this T -dependence becomes almost linear, and its slope is de-
termined by the average coupling parameter defined above

Γk ≈ 2πλkT . (36)

This relationship has been widely used to extract λk from measurements of Γk(T ), in particular
for surface electronic states.

3.3 Migdal’s theorem

So far we have discussed the influence of phonons on the electronic properties in lowest order
of the electron-phonon coupling. What about higher-order corrections? A very important an-
swer is given by the Migdal’s theorem, which is relevant for both the normal-state properties
discussed here and the Eliashberg theory of superconductivity presented in the next section. We
give only a very brief qualitative discussion here, more details can be found in literature [9,10,7].
Fig. 5 (a) and (b) show two next-order corrections to Σep. The first is a self-energy contribution
to an inner line and can be taken into account by using the full Green function G for the inter-
mediate state instead of G0. In contrast, the graph in Fig. 5(b) is a vertex correction. Migdal’s
theorem now states that vertex corrections are small compared to self-energy graphs and can be
neglected. More precisely, this is true for those parts of the renormalized Green function which
are sensitive to the phonons. Such contributions involve intermediate states whose energies are
close to each other.
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Π(ω)Im = Im ω

Fig. 6: (a) Diagrammatic representation of the imaginary part of the phonon self-energy up
to second order in the electron-phonon vertex. Blue zigzag lines represent phonon, black lines
electron propagators.

Fig. 5(c) and (d) show schematically the Fermi surfaces and the states which make a contribu-
tion to the graphs in Fig. 5(a) and (b), respectively. The first case contains only small energy
differences ε12 = ε1 − ε2 and ε13. In the second case, momentum conservation leads to a large
difference ε14. This unfavorable situation can only be avoided when one of the intermediate
phonon momenta becomes small. Migdal showed, that for normal metals the phase space for
such processes is very small, and the contribution from graph Fig. 5(d) is by a factor ωD/εF
smaller than that from graph (a), where ωD denotes the Debye frequency, εF the Fermi energy.
Thus ωD/εF represents a typical ratio of phononic and electronic energy scales which is of the
order of 0.1.

The phase space argument of Migdal’s theorem breaks down in two circumstances: (i) For a
significant part of processes both phonons have small q (both k2−k1 and k3−k2 are small). This
can happen in metals with very small Fermi surfaces, for example in low-doped semiconductors.
(ii) Metals with a one-dimensional Fermi surface topology (quasi-1D). In addition, Migdal’s
theorem becomes questionable in the case of metals with very small band widths, where the
ratio ωD/εF is not small any more.

According to Migdal’s theorem, Σep is well represented by the single graph shown in Fig. 2,
except that G0 is replaced by G, and other contributions can be neglected. According to ar-
guments given by Migdal and Holstein, this replacement again gives small corrections of the
order of ωD/εF [9, 11]. Thus to a good approximation it is justified to use G0, so the previous
formulas still hold. This approximation does not work anymore for the superconducting state,
as discussed in the next section.

However, the analysis given above rests on a simplified solution of the Dyson equation which
can break down for larger coupling. Then the renormalization becomes much more involved
and requires the solution of the Dyson equation in the complex plane [12]. The spectral function
develops a complex structure, which indicates the break-down of the quasiparticle picture.

3.4 Phonon self-energy and linewidth

The EPC also renormalizes the phononic quasiparticles. The measurement of the phonon
linewidth actually provides another way to gain experimental information about the coupling
strength. We will briefly sketch this approach here.

The finite linewidth or inverse lifetime of a phonon mode is connected to the imaginary part of
the phonon self-energy by γq = −2ImΠq(ω). The lowest-order diagram contributing to Πq(ω)
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is shown in Fig. 6

Πq(iνm) =
1

β

∑
n

1

Nk

∑
k,k′

|gqk′,k|
2 G0(k, iωn)G0(k

′ν ′, iωn + iνm)

=
1

Nk

∑
k′,k

|gqk′,k|
2 f(εk)− f(εk′)
iνm + εk − εk′

, (37)

leading after analytic continuation to the following expression for the linewidth (half-width at
half maximum)

γq = −2ImΠq(ωq) = 2π
1

Nk

∑
k′,k

|gqk′,k|
2
(
f(εk)− f(εk′)

)
δ(ωq + (εk − εk′)) . (38)

This expression contains the T -dependence via the Fermi distribution functions f . Because
phonon energies are typically small compared to electronic energies, the energy difference εk−
εk′ is also small, and one can approximate

f(εk)− f(εk′) ≈ f ′(εk)(εk − εk′)→ −f ′(εk)ωq (39)

with f ′ = df/dε. For T → 0, f ′(εk)→ −δ(εk), and by neglecting ωq inside the δ-function, the
expression further simplifies to

γq = 2πωq
1

Nk

∑
k′,k

|gqk′,k|
2 δ(εk) δ(εk′) . (40)

This approximate expression for the linewidth, first derived by Allen [13], is widely used in
numerical calculations. As will be discussed in the next section, γq in the form of Eq. (40)
enters directly the expression for the coupling strength of a phonon mode relevant for super-
conductivity. Thus measurements of the phonon linewidths, for example by inelastic neutron
or X-ray scattering experiments, provide information about the importance of a phonon mode
for the pairing. One has to keep in mind, however, that γq only represents the contribution from
EPC, while the experimental linewidth also contains other contributions like those from anhar-
monic decay processes. Furthermore, approximation (40) does not hold in the limit q → 0 for
metals, because the phonon frequency in Eq. (38) cannot be neglected anymore for intraband
contributions, which involve arbitrarily small energy differences εk − εk′ .

4 Phonon-mediated superconductivity

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin lies
in an instability of the Fermi liquid state that leads to a new ground state of correlated paired
electrons (Cooper pairs). In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [14]
have shown that this state is stabilized, whenever there exists an attractive interaction among two
electrons. Such an attractive interaction is always provided by the electron-phonon coupling,
which thus represents a natural source for pairing in any metal. EPC is known to be the pairing
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mechanism in most superconductors, which are commonly termed classical superconductors
to distinguish them from more exotic materials where other types of pairing mechanism are
suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. A more complete theory has been soon after worked out applying many-body techniques
(for reviews see, e.g., Refs. [15, 10, 16, 17]) . The resulting Eliashberg theory [18] extends the
framework of BCS into the strong coupling regime and allows a quantitative prediction of many
properties of the superconducting state. An important property of the superconducting state is
that the quasiparticle spectrum is gaped. The size of the gap plays the role of an order parameter.
In the following, we discuss the essential ingredients of the theory of strong-coupling phonon-
mediated superconductivity, also known as the Migdal-Eliashberg theory. First, we give a sim-
ple derivation of an effective electron-electron interaction mediated by phonons. Using many-
body techniques we then derive the superconducting gap equations and identify the important
quantities related to the electron-phonon coupling, which determine the superconducting prop-
erties.

4.1 Effective electron-electron interaction

The coupling of the electrons to the phonon system does introduce an effective electron-electron
interaction, which can act as a pairing interaction evoking the superconducting state. The gen-
eral approach using many-body techniques will be discussed below. Here a simple but instruc-
tive derivation of the effective interaction is given with the help of a properly chosen canonical
transformation. To simplify the discussion, we will consider the case of a single, spinless quasi-
particle band coupled to a single phonon (boson) mode. The Fröhlich Hamiltonian then reads
(gk,q ≡ gqk+q,k)

H =
∑
k

εk c
†
kck +

∑
q

ωq

(
b†qbq +

1

2

)
+
∑
kq

gk,q c
†
k+qck

(
bq + b†−q

)
. (41)

Let us consider the Hamiltonian
H = H0 + ηH1 , (42)

where H0 is the unperturbed Hamiltonian, H1 the perturbation, and η represents an expansion
coefficient, which is considered to be small. The idea is to perform a canonical transformation

H ′ = e−ηSHeηS (43)

and eliminate the first-order term in η by choosing the operator S appropriately. Expanding
Eq. (43) in a power series in η gives

H ′ = H + η[H,S] +
η2

2
[[H,S], S] +O(η3) (44)

= H0 + η(H1 + [H0, S]) + η2[H1, S] +
η2

2
[[H0, S], S] +O(η3) . (45)
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To eliminate the term linear in η one has to find an S which fulfills the condition

H1 + [H0, S] = 0 . (46)

Then the transformed Hamiltonian can be written as

H ′ = H0 +Heff +O(η3) with Heff =
η2

2
[H1, S] . (47)

This general approach is now applied to the Fröhlich Hamiltonian (41) with H0 = He + Hph

and ηH1 = He−ph. For the canonical operator we make the ansatz

S =
∑
kq

gk,q c
†
k+qck

(
xk,qbq + yk,qb

†
−q

)
. (48)

The parameters xk,q and yk,q will be determined in order to fulfill Eq. (46). Evaluating the
commutators gives

[He, S] =
∑
kq

gk,q (εk+q − εk)c†k+qck

(
xk,qbq + yk,qb

†
−q

)
(49)

[Hph, S] =
∑
kq

gk,q c
†
k+qck

(
−xk,qωqbq + yk,qω−qb

†
−q

)
. (50)

Using the relation ωq = ω−q this combines to

H1 + [H0, S] =
∑
kq

gk,qc
†
k+qck

( (
1 + (εk+q − εk − ωq)xk,q

)
bq (51)

+
(
1 + (εk+q − εk + ωq) yk,q

)
b†−q

)
. (52)

This expression vanishes when

xk,q = (εk − εk+q + ωq)
−1 and yk,q = (εk − εk+q − ωq)

−1 . (53)

The last step is to evaluate the effective interaction Eq. (47). The commutator [H1, S] has the
form [Aa,Bb] with A,B ∝ c†c containing products of fermion operators, and a, b ∝ xb + yb†

containing sums of boson operators. From the general relationship [Aa,Bb] = AB[a, b] +

[A,B]ab − [A,B][a, b] it is easy to see that there are three types of contributions. Keeping in
mind that [A,B] is again a product of the form c†c and [a, b] a c-number, the last term represents
a one-body electron operator, which actually can be shown to vanish. The second term describes
an effective coupling of an electron to two phonons, also called a non-linear coupling term.
We are interested in the first term, which is proportional to the product of two fermionic cre-
ation and two annihilation operators, c†cc†c, and thus represents an effective electron-electron
interaction. Explicitly it has the form

Heff =
η2

2

∑
kk′q

gk,q gk′,−q (yk′,−q − xk′,−q) c
†
k+qckc

†
k′−qck′ (54)

= η2
∑
kk′q

Veff(k,k
′,q) c†k+qckc

†
k′−qck′ (55)
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Fig. 7: Diagrammatic representation of the effective electron-electron interaction mediated by
the exchange of a phonon (blue zigzag line). Black lines indicate electronic states.

with
Veff(k,k

′,q) = gk,q gk′,−q
ωq

(εk′ − εk′−q)2 − ω2
q

. (56)

Heff describes the scattering of two electrons with momenta k and k′ into states with momenta
k+q and k′−q by the exchange of a virtual boson with momentum q. This process is sketched
in Fig. 7.
In the context of pairing in superconductors, the effective interaction between electrons with
momenta k and −k is of special importance. Using ε−k = εk and g−k,−q = g∗k,q one obtains

Veff(k,−k,q) = |gk,q|2
ωq

(εk − εk+q)2 − ω2
q

. (57)

This effective interaction is attractive (negative) for |εk − εk+q| < ωq and repulsive (positive)
for |εk − εk+q| > ωq. Eq. (57) shows that the electron-phonon coupling always introduces an
attractive interaction for electronic scattering processes involving small energies of the order of
phonon energies.

4.2 Nambu formalism

The superconducting state is a macroscopic quantum state, which is characterized by a coherent
occupation of Cooper pairs, i.e., states with (k ↑,−k ↓). In a many-body description, it is related
to the appearance of anomalous Green functions

F (k, τ) = −〈Tτck↑(τ)c−k↓(0)〉 F ∗(k, τ) = −〈Tτc†−k↓(τ)c
†
k↑(0)〉 (58)

originally introduced by Gor’kov [19]. In the normal state these anomalous Green functions
vanish. Starting from the Fröhlich Hamiltonian, one can set up a systematic perturbation ex-
pansion of the normal and anomalous Green functions, with the goal of obtaining a set of
self-consistent equations. A necessary step is a partial resummation of an infinite number of
diagrams, because the superconducting state can not be reached in any finite order of the per-
turbation.
A very convenient way to organize this algebra of diagrams has been introduced by Nambu [20].
One starts by defining the two-component operators

Ψk =

(
ck↑

c†−k↓

)
Ψ †k =

(
c†k↑ , c−k↓

)
(59)
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and a 2×2 Green function

G(k, τ) = −〈TτΨk(τ)Ψ †−k(0)〉 = −

(
〈Tτck↑(τ)c†k↑(0)〉 〈Tτck↑(τ)c−k↓(0)〉
〈Tτc†−k↓(τ)c

†
k↑(0)〉 〈Tτc

†
−k↓(τ)c−k↓(0)〉

)

=

(
G(k, τ) F (k, τ)

F ∗(k, τ) G(−k,−τ)

)
. (60)

In the following, underlined symbols indicate 2×2 matrices in spin space. Switching to the
Fourier transform gives

G(k, iωn) =
1

2

∫ β

−β
dτ eiωnτG(k, τ) =

(
G(k, iωn) F (k, iωn)

F ∗(k, iωn) −G(−k,−iωn)

)
. (61)

The next step is to rewrite the Fröhlich Hamiltonian in terms of Ψ, Ψ †. This is most easily done
by using the Pauli matrices

τ 0 =

(
1 0

0 1

)
, τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0

0 −1

)
. (62)

The non-interacting electronic part is rewritten as

He =
∑
kσ

εk c
†
kσckσ →

∑
k

εk Ψ
†
k τ 3 Ψk (63)

and the interaction part as

He−ph =
∑
kσ

∑
qj

gqk′k c
†
k′σckσ

(
bq + b†−q

)
→
∑
k

gqk′k Ψ
†
k′ τ 3 Ψk

(
bq + b†−q

)
. (64)

The bare Green function (related to He) takes the form

G0(k, iωn) =

(
G0(k, iωn) 0

0 −G0(−k,−iωn)

)
=

(
(iωn − εk)−1 0

0 (iωn + εk)
−1

)

=
(
iωn τ 0 − εk τ 3

)−1

. (65)

One can show that the Dyson equation retains its usual form

G−1(k, iωn) = G−1
0 (k, iωn)−Σ(k, iωn) (66)

with the inversion performed in the 2-dimensional spin space, where the self-energy Σ is now
a 2×2 matrix.
The diagrammatic expansion of the self-energy contains the same diagrams as in the normal
state, with the difference that Green functions and vertices are now represented by 2×2 matrices.
In particular gqk′k is replaced by gqk′k τ 3.
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4.3 Eliashberg theory

The Eliashberg theory is in essence the extension of the normal-state Migdal theory to the
superconducting state. Using Migdal’s theorem, the only important self-energy diagram is again
given by Fig. 2. Within the Nambu formulation this gives

Σ(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

gqk′k τ 3G(k
′, iωn′) τ 3 g

−q
kk′ D(q, iωn′ − iωn) . (67)

Using the Pauli matrices, Σ can be written in the general form

Σ(k, iωn) = iωn[1− Z(k, iωn)] τ 0 + χ(k, iωn) τ 3 + Φ(k, iωn) τ 1 + Φ(k, iωn) τ 2 (68)

with as yet unknown and independent real functions Z, χ, Φ, and Φ. From the Dyson equation
one finds

G−1(k, iωn) = iωnZ(k, iωn) τ 0 − (εk + χ(k, iωn)) τ 3 − Φ(k, iωn) τ 1 − Φ(k, iωn) τ 2 . (69)

The inverted Green function is then, using (a0τ 0 + ~a · ~τ)(a0τ 0 − ~a · ~τ) = (a2
0 − ~a2)τ 0,

G(k, iωn) =
(
iωnZ(k, iωn) τ 0 + (εk + χ(k, iωn)) τ 3 + Φ(k, iωn) τ 1 + Φ(k, iωn) τ 2

)
/D (70)

with D := detG−1 = (iωnZ)
2 − (εk + χ)2 − Φ2 − Φ2

. If one uses this expression for Eq. (67)
and separates it into the τ -components, one arrives at four self-consistent equations for the four
unknown functions Z, χ, Φ, and Φ

iωn(1− Z(k, iωn)) = −
1

β

∑
n′

1

Nq

∑
k′,q

|gqk′k|
2D(q, iωn′ − iωn)

iωn′Z(k′, iωn′)

D(k′, iωn′)
(71)

χ(k, iωn) = −
1

β

∑
n′

1

Nq

∑
k′,q

|gqk′k|
2D(q, iωn′ − iωn)

εk′ + χ(k′, iωn′)

D(k′, iωn′)
(72)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

|gqk′k|
2D(q, iωn′ − iωn)

Φ(k′, iωn′)

D(k′, iωn′)
(73)

Φ(k, iωn) =
1

β

∑
n′

1

Nq

∑
k′,q

|gqk′k|
2D(q, iωn′ − iωn)

Φ(k′, iωn′)

D(k′, iωn′)
. (74)

We note that because momentum conservation determines the phonon momentum, q = k′ − k,
the sum over q is actually only a sum over different phonon branches (j).
Quasiparticle properties are determined by the poles of the Green function after analytic con-
tinuation, i.e., from D(k, iωn → ε+ iδ) = 0. This gives

Ek =

√
(εk + χ)2

Z2
+
Φ2 + Φ

2

Z2
. (75)

The normal state corresponds to a solution Φ = Φ = 0. Z is the quasiparticle renormalization
factor, and χ describes shifts in the electron energies. The superconducting state is characterized
by a non-zero Φ or Φ. From Eq. (75) one can see that the gap function is given by

∆(k, iωn) =
Φ(k, iωn)− iΦ(k, iωn)

Z(k, iωn)
(76)
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and describes the energy gap in the quasiparticle spectrum. Φ and Φ obey the same equations
and are expected have the same functional form up to a common phase factor. This phase
factor becomes important in the description of Josephson junctions, but is irrelevant for the
thermodynamic properties of a homogeneous superconductor. In the following, we choose the
simple gauge Φ = 0.

4.4 Isotropic gap equations

The Eliashberg equations (74) represent a complicated non-linear set of equations which couple
all momenta k with each other. We will now simplify them and derive the so-called isotropic
equations where only the frequency dependence remains. A very detailed derivation was given
by Allen and Mitrović [10]. Here we only briefly sketch the main steps. (i) We ignore changes
of the phonon quasiparticles and replace D by the unrenormalized Green function

D(q, iνm)→ D0(q, iνm) =

∫
dω δ(ω − ωq)

2ω

(iνm)2 − ω2
. (77)

It is then convenient to define the coupling function

α2F (k, k′, ω) = N(0)
∑
q

|gqk′k|
2 δ(ω − ωq) . (78)

Again, the sum extends only over the phonon branches j. N(0) = 1
Nk

∑
k δ(εk) denotes the

electronic density of states per spin at the Fermi energy. (ii) Similar to the normal state, the
electron-phonon self-energy evokes a significant renormalization of quasiparticles only in an
energy range ±ωD around the Fermi energy. It is therefore appropriate to consider the quanti-
ties Z and φ only at the Fermi energy. (iii) We consider only Fermi-surface averages of these
quantities. The justification comes from the observation that the superconducting gaps are often
very isotropic. Moreover, in real materials, defects are always present which tend to average
anisotropic gaps [21]. Under these conditions we can replace the quantities Z and φ by their
Fermi surface averages, e.g.

Z(iωn) =
1

Nk

∑
k

wkZ(k, iωn) (79)

with weights wk = δ(εk)/N(0). Similarly one replaces the coupling function α2F by its value
at the Fermi surface and averaged over both electron momenta

α2F (ω) =
1

N2
k

∑
kk′

wk wk′ α
2F (k, k′, ω)

=
1

N(0)

1

N2
k

∑
kk′

|gqk′k|
2 δ(εk) δ(εk′) δ(ω − ωq) , (80)

which defines the isotropic Eliashberg function.
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The only significant energy dependence comes from εk′ in the determinant D. Putting every-
thing together gives, for example,

Φ(iωn) = −
1

β

∑
n′

∫
dω

2ωα2F (ω)

(ωn − ωn′)2 + ω2
Φ(iωn′)

1

Nq

∑
k′

1

D(εk′ , iωn′)
(81)

with D(εk′ , iωn′) = −[(ωn′Z(iωn′)]2 + Φ(iωn′)2 + ε2
k′ ] The final k sum is converted into an

integral

1

Nq

∑
k′

1

D(εk′ , iωn′)
=

∫
dεN(ε)

1

D(ε, iωn′))
≈ −πN(0)√

[(ωn′Z(iωn′)]2 + Φ(iωn′)2
. (82)

In the last step, it was assumed that the electronic density of states N(ε) does not have a pro-
nounced ε dependence and can be replaced by its value at the Fermi energy. To simplify the
following discussion, we will drop the equation for χ thus ignoring the related, often small, shift
in the electronic energies. Indeed χ = 0 holds exactly in the limit of infinite band width [17].
Using ∆(iωn) = Φ(iωn)/Z(iωn), this finally results in the isotropic gap equations

ωn(1− Z(iωn)) = −π
1

β

∑
n′

Λ(ωn − ωn′)
ωn′√

ω2
n′ +∆(iωn′)2

∆(iωn)Z(iωn) = π
1

β

∑
n′

Λ(ωn − ωn′)
∆(iωn′)√

ω2
n′ +∆(iωn′)2

(83)

with the interaction kernel

Λ(νm) =

∫
dω

2ωα2F (ω)

ν2
m + ω2

. (84)

The set of non-linear equations (83) must be solved self-consistently for a given temperature T
and pairing function α2F . The kernel entering both equations is an even function of νm. It takes
its largest value at νm = 0

λ = Λ(0) = 2

∫
dω

α2F (ω)

ω
. (85)

λ is called the (isotropic) coupling constant and is a dimensionless measure of the average
strength of the electron-phonon coupling. Depending on its value, materials are characterized
as strong (λ > 1) or weak coupling (λ < 1) . Due to the factor 1/ω in the integral low-energy
modes contribute more to the coupling strength than high-energy modes.
The superconducting state is characterized by a solution with ∆(iωn) 6= 0. The largest T which
still allows such a solution defines the critical temperature Tc. Because α2F (ω) as defined in
Eq. (80) is a positive function, (83) always possess such a superconducting solution for low
enough temperatures, i.e., a finite Tc.
An important feature of the Eliashberg gap equations is that they only depend on normal-state
properties, which specify a particular material. These comprise the electronic band structure,
phonons, and the EPC vertex, quantities which are accessible to first principles techniques as
discussed in the next section.
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At this stage it is useful to make the connection to some normal-state quantities introduced in
the previous section. The isotropic Eliashberg function is related to the state-dependent spectral
function (28) via appropriate momentum averages at the Fermi energy

α2F (ω) =
∑
k

wkα
2Fk(ε = 0, ω) , (86)

while the isotropic coupling constant is given by

λ =
∑
k

wkλk . (87)

Similarly, α2F can be expressed in terms of the phonon linewidths derived in the limit T → 0,
Eq. (40), as

α2F (ω) =
1

2πN(0)

1

Nq

∑
q

γq
ωq
δ(ω − ωq) , (88)

which leads to the formula for the isotropic coupling constant

λ =
1

πN(0)

1

Nq

∑
q

γq
ω2
q

. (89)

The dimensionless prefactor γq/ωq in (88) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momentum.

4.4.1 Coulomb effects

Our derivation up to now was based on the Fröhlich Hamiltonian, where the electronic sub-
system is approximated by bands of noninteracting quasiparticles ignoring any Coulomb inter-
action. The largest consequences of the Coulomb interaction are supposed to be built into the
quantities εk (and similar into ωq). The residual Coulomb interaction among the quasiparticles
can, however, not be completely neglected in the discussion of phonon-mediated superconduc-
tivity. It has a repulsive character and tends to reduce or completely suppress the pairing. The
quantity analogous to the electron-phonon coupling constant λ is the Coulomb parameter

µ = N(0)〈〈VC(k, k′)〉〉FS , (90)

which is a Fermi surface average of the effective screened Coulomb interaction VC(k, k′). µ is
of the order of 1 and thus not a small parameter. But because the electronic timescale is usually
much smaller than the vibrational one, or equivalently electronic energies are much larger than
phononic ones, only a significantly reduced Coulomb parameter enters the Eliashberg equations.
It was shown by Morel and Anderson [22], that the Coulomb repulsion can be taken into account
by replacing the kernel in the equation for the gap function by

Λ(iωn − iωn′)→ [Λ(iωn − iωn′)− µ∗(ωc)]Θ(ωc − |ωn′|) . (91)
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A cutoff ωc is introduced which must be chosen to be much larger than phononic energies.
The effective Coulomb parameter or Morel-Anderson Coulomb pseudopotential obeys a scaling
relation

µ∗(ωc) =
µ

1 + µ ln(ε0/ωc)
. (92)

ε0 denotes a characteristic energy scale of the electronic system, where the average matrix ele-
ments of the Coulomb interaction becomes small (ε0 ≈ few εF ). In practice, µ∗ is commonly
treated as a phenomenological parameter of the order of ≈ 0.1 for normal metals. A more
satisfactory approach, which actually allows to incorporate the Coulomb effects from first prin-
ciples, is the density-functional theory of superconductors [23]. As this is the topic of a separate
lecture of this Autumn School, we will not discuss this method further.

4.4.2 Transition temperature Tc

The transition temperature Tc is solely determined by the material-dependent quantities α2F (ω)

and µ∗. A thorough numerical analysis of the isotropic gap equations was carried out by Allen
and Dynes [24], who used a standard spectrum for α2F but varied λ and µ∗ over a large pa-
rameter range. Their study revealed two important aspects. Firstly, they found that in a reduced
parameter space (λ < 2 and µ∗ < 0.15) Tc can be well approximated by a Tc formula proposed
originally by McMillan [25], but with a modified prefactor

Tc =
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (93)

The prefactor contains a properly defined average frequency of the phonon spectrum weighted
with the coupling strength

ωlog = exp

[∫
dω log(ω)W (ω)

]
, (94)

with the normalized weight function

W (ω) =
2

λ

α2F (ω)

ω
. (95)

This Tc formula is a significant refinement of the BCS formula Tc = 1.13ωD exp(−1/λ) derived
for the weak-coupling limit.
Secondly, while the Tc formula suggests that Tc approaches a finite value in the limit λ → ∞,
the isotropic gap equations do not possess a principle upper bound for Tc. Instead the asymptotic
relationship

Tc ∝
√
λ〈ω2〉 (96)

holds, where 〈ω2〉 is the second moment of W (ω).



15.22 Rolf Heid

5 Density functional theory approach

In the previous sections we have outlined the basic theory for the effects of EPC in the normal
and superconducting state. Central quantities are the screened EPC matrix elements, which are
not directly accessible from experiment. Thus it is desirable to have a computational scheme
which allows materials-dependent predictions. The most common approach is based on density
functional theory, which is briefly described in the following.
Density functional theory (DFT) goes back to the seminal works of Hohenberg, Kohn, and
Sham [26, 27] and has been outlined in various reviews [28–30]. It provides a framework to
map the complex many-body problem of interacting electrons moving in an external potential
vext(r) onto a fictitious system of noninteracting electrons. Their wavefunctions obey a single-
particle equation (Kohn-Sham equation) [27](

−∇2 + veff(r)
)
ψi(r) = εiψi(r) . (97)

The effective potential veff(r) is a functional of the density given as the sum of the external
potential and a screening potential

veff [n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (98)

The Hartree and exchange-correlation potentials vH and vXC are functionals of the density
defined as the functional derivative of the Hartree and exchange-correlation energies, EH [n] =∫
d3r
∫
d3r′ n(r)n(r′)/|r− r′| and EXC . The density is determined by the wavefunctions via

n(r) =
∑
i

fi |ψi(r)|2 , (99)

with fi the occupation number of the single-particle state ψi. Eqs. (97) and (99) have to be
solved self-consistently.
An expression for the EPC matrix elements is then derived within a linear-response scheme in
the following way. For a solid, vext represents the sum of ionic potentials felt by the electrons.
A small displacement of an atom evokes a perturbation in vext, which translates via the self-
consistent equations into a perturbation of veff(r)

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r− r′|
+

δ2EXC
δn(r)δn(r′)

. (100)

In first-order perturbation theory the variation of the single-particle wavefunctions is

δψi(r) =
∑
j( 6=i)

〈j|δveff |i〉
εi − εj

ψj(r) . (101)

Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i 6=j

fi − fj
εi − εj

〈j|δveff |i〉ψ∗i (r)ψj(r) . (102)



Electron-Phonon Coupling 15.23

Eqs. (100) and (102) must be solved self-consistently. The results are the first-order variation of
the density and the effective potential. The latter is then used for a calculation of the EPC matrix
elements for a periodic crystal in the following way. One considers a periodic displacement of
the ions from their equilibrium positions, Rls = R0

ls + uls of the form

ulsα = Uq
sαe

iqR0
ls + (Uq

sα)
∗e−iqR

0
ls , (103)

where l denotes the unit cell, s specifies the ion inside a unit cell, and α indicates Cartesian
coordinates. The wavevector q determines the periodicity. Applying the self-consistent pro-
cedure described above results in the linear response of the effective potential ∂veff(r)

∂Uq
sα

which is
then used to calculate the electron-phonon matrix elements

gqjk+qν′,kν =
∑
sα

Aqj
sα

〈
k+ qν ′

∣∣∣∣ ∂veff

∂Uq
sα

∣∣∣∣kν〉 . (104)

where again the transformation to the normal mode representation was performed (see Eq. (7)).
The self-consistency procedure automatically takes into account the important screening ef-
fects. Eq. (104) thus enables to calculate the screened EPC matrix elements on a microscopic
level, including their full momentum dependence and to resolve the contributions from different
electronic bands and phononic modes.
The same perturbational approach can also be used to calculate the harmonic phonon spectrum
without further approximations. This approach has been widely used to predict lattice dynam-
ical and EPC properties from first principles for a large variety of materials, and has proven to
be quite accurate in predicting the pairing strength in phonon-mediated superconductors.
We illustrate this first principles approach for two examples of superconductors with remarkable
properties, the high-pressure superconductor H3S and the multiband superconductor MgB2.
The current record holder with the highest superconducting transition temperature is hydrogen
sulfide with a Tc of 203 K [31]. This superconducting phase was reached by applying a huge
pressure of more than 200 GPa to a nominally H2S sample. It was soon recognized that the
superconducting phase is actually a high-pressure modification of H3S. Most remarkably, the
experimental discovery was preceded by theoretical predictions of such high Tc based on the
Eliashberg theory [32, 33]. DFT studies suggest that the high-pressure phase has a very simple
cubic lattice structure which might be slightly distorted into a rhombohedral structure at lower
pressures due to small shifts of the H atoms (see upper left panel in Fig. 8). Its electronic struc-
ture is characterized by strong covalent H–S bonds which support huge coupling constants of
λ ≈ 2, carried predominantly by the high-energy hydrogen vibrations. Therefore, also the ef-
fective phonon frequency ωlog is large, which in conjunction with a large λ leads to the high Tc
values. Fig. 8 shows the results of such a calculation for various pressures. Because a large part
of the coupling is carried by hydrogen, a large isotope shift of Tc is expected when replacing hy-
drogen by deuterium. Because of the light mass of hydrogen, anharmonicity likely is important
and may change some aspects of these predictions [34]. Nevertheless, these theoretical studies
lend strong support to the view that H3S is a phonon-mediated superconductor.
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Fig. 8: Upper left panel: predicted cubic structure of H3S at high pressures. Large spheres
denote S atoms, and small ones H atoms. The red circles indicate the small displacements
of H atoms from their ideal cubic positions in the rhombohedral structure predicted for lower
pressures. Right panels: variation of λ and ωlog as function of pressure, respectively. Lower left
panel: predicted Tc as calculated from the isotropic gap equations (with µ∗ =0.13) as function
of pressure. A large isotope shift is expected when replacing hydrogen with deuterium.

In the previous section, we have restricted our discussion to the isotropic case. Anisotropic
superconducting states can be handled using the full momentum dependence of the Eliashberg
function (78). This has been done rarely in the past, as the fully anisotropic gap equations are
difficult to solve. A special class of anisotropic superconductors are multiband superconductors,
which possess several Fermi surface sheets. The superconducting gap can vary among the
different sheets, but is approximately isotropic on a single sheet. In this case a partially averaged
pairing function is appropriate

α2Fνν′(ω) =
1

Nν′(0)

1

Nq

∑
qj,k

|gqjk+qν′,kν |
2 δ(ω − ωqj) δ(εkν) δ(εk+qν′) . (105)

The isotropic Eliashberg function is replaced by a matrix describing intraband and interband
pairing contributions.
A textbook example of such a multiband superconductor is MgB2. Here two types of electronic
states are present at the Fermi level, σ and π states, which are derived mainly from the boron p
states. Calculations of the band-resolved Eliashberg functions shown in Fig. 9 revealed that the
pairing interaction is predominantly driven by the intraband σ–σ contribution. It originates from
a strong coupling of σ states to in-plane B vibrations. This peculiar pairing interaction leads
to a superconducting state with gaps of different magnitude for the σ and π Fermi surfaces,
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Fig. 9: Left panel: Calculated band-resolved Eliashberg function for MgB2. The dominant
coupling originates from a large intraband σ–σ pairing interaction. Right panel: Calculated
gaps of the σ and π Fermi surfaces as function of temperature. The large gap resides on the σ
sheet. Symbols refer to experimental data [35–38]. Figures after [39].

whose signature could be found, e.g., in specific heat measurements. Combination of first
principles calculations and a two-band version of the Eliashberg equations were consistent with
the experimental Tc of 39 K and could reproduce the measured temperature variation of the two
gaps rather well (right panel of Fig. 9).

6 Summary

In this tutorial, an introduction to the theory of the electron-phonon interaction in metals was
given. Focus was put on the renormalization properties of electronic and vibronic quasiparticles
in the normal state, and on their role for the pairing interaction relevant for the superconducting
state. This strong-coupling or Eliashberg theory has been tremendously successful in predicting
material-dependent properties of various superconductors in great detail. Density functional
theory provides a rather accurate first principles computational scheme to calculate the relevant
electron-phonon vertex, which is one of the central quantities determining physical observables
like electron renormalization, phonon linewidth, or phonon-mediated pairing interaction. Yet
one has to keep in mind that the Eliashberg theory incorporates a variety of approximations. The
current theoretical challenge is to extend its framework to include the usually neglected aspects
of anharmonicity [40], and to quantify electron-phonon coupling effects in materials which are
characterized by small electronic energy scales [41] and/or strong electron correlations [42].
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Appendices

A Phonon quantization

Within the adiabatic approximation, statics and dynamics of the ions are governed by an effec-
tive potential

Ω(R) = Vii(R) + E0(R) , (106)

where E0(R) denotes the electronic ground-state energy for a given ion configuration R. The
effective potential Ω builds the starting point of the microscopic theory of lattice dynamics,
which has been outlined in a number of review articles [43–45].
Dynamical properties are derived by a systematic expansion of Ω for atom displacements u

around a chosen reference configuration, Ri = R0
i + ui, leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + . . . . (107)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term
of first order is the negative of the force acting on an atom in the reference configuration

Fiα = − ∂Ω

∂Riα

∣∣∣∣
0

= −Φα(i) . (108)

It vanishes if one chooses as reference the equilibrium configuration, which minimizes Ω. The
second-order coefficients are given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

. (109)

In periodic crystals, the atoms are characterized by two indices i = (ls), which denote the unit
cell (l) and the atoms inside a unit cell (s), respectively. For periodic boundary conditions, the
Fourier transform of the force constant matrix is related to the dynamical matrix

Dsαs′β(q) =
1√

MsMs′

∑
l

Φαβ(ls, 0s
′)e−iq(R0

ls−R
0
0s′ ) , (110)

which determines the equation for the normal modes or phonons,∑
s′β

Dsαs′β(q)ηs′β(qj) = ω2
qjηsα(qj) . (111)

ωqj and ηsα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and branch index j.
These quantities enter into the relationship between the atom displacements and the usual
phonon annihilation and creation operators, bqj and b†qj , describing quantized normal modes,
as given in Eq. (7).
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1 Introduction

Density functional theories (DFTs) have proved to be a very convenient approach to deal with
the many body problem in condensed matter. The original formulation of Hohenberg, Kohn,
and Sham [1, 2] as well as several of its extensions [3–7] are now largely applied to study
realistic systems and predict their properties with great success.

Density functional theories are all based on a Hohenberg-Kohn type of theorem that proves the
existence of a one-to-one mapping between a set of chosen densities and the relative external
potentials, implying that it is possible to achieve exact predictions of any observable without
having to deal with anything more complex than the density itself.

All the complexity of the many body problem is transferred to the construction of a (universal)
functional of the density. A DFT framework is practically useless until a good approximation for
the universal functional is available. Clearly the process of functional construction is far from
being straightforward. Also, for those used to diagrammatic methods, where approximations
are usually expressed in terms of including/excluding some specific process, DFT functionals
are sometimes rather obscure. Rarely one can deduce their domain of validity a priori from pure
theoretical considerations.

On the other hand the advantage of DFTs is that, once a valid approximation for the functional is
constructed, this functional is usually a simple object that can be easily evaluated implemented
and applied. DFT algorithms are quite simple, incredibly fast, and very little is required by the
user who can focus, instead, on the analysis of results.

Superconducting density functional theory (SCDFT) is an extension of DFT to account for the
very peculiar symmetry breaking that occurs in a superconductor [8, 9]. Proposed in 1988 [10]
by Oliveira Gross and Kohn it was later revisited [11, 12] to include the multi-component DFT
of Kreibich and Gross [13], adding in this way the effect of nuclear motion.

In this lecture it is assumed that the reader has already a basic knowledge of superconductivity
and the fundamentals of Green functions and field theory. There are excellent introductions to
superconductivity, like DeGennes [9] who discusses in great details BCS theory and the physics
of superconducting materials, while the book of Fetter and Walecka [14] is a great reference for
the many body formalism.

For what concerns the superconducting state and the topic of this lecture the main references that
have been used are the book of Vonsovsky, Izyumov, and Kurmaev [15] and for the SCDFT the-
ory the original research papers [10–12] as well as the PhD theses of Kurth [16], Lueders [17],
and Marques [18].



Superconducting DFT 16.3

2 Derivation of SCDFT

2.1 Hamiltonian

The starting point of SCDFT is the non relativistic Hamiltonian for interacting electrons and
nuclei.

H = He + Hen + Hn + Hext, (1)

where e stands for electrons, n for nuclei and ext for external fields.

He =
∑
σ

∫
dr ψ†σ (r)

[
−

1
2
∇2 − µ

]
ψσ (r) +

1
2

∑
σσ′

∫
drdr′ψ†σ (r)ψ†σ′

(
r′

) 1
|r − r′|

ψσ′
(
r′

)
ψσ (r)

(2)
where ψ are the electronic field operators, µ the chemical potential, and dr is an abbreviation
for the 3D volume differential.
Nuclei need to be considered explicitly (not just as source of an external potential like in con-
ventional DFT [1]) because in most known superconductors the ionic dynamics provides an
essential part of the superconducting coupling

Hn = −

∫
dRΦ† (R)

∇2

2M
Φ (R) +

1
2

∫
dRdR′Φ† (R)Φ†

(
R′

) Z
|R −R′|

Φ
(
R′

)
Φ (R) (3)

Hen = −
1
2

∑
σ

∫
dRdr ψ†σ (r)Φ† (R)

Z
|R − r|

Φ (R)ψσ (r) (4)

where Φ are ionic field operators, M the mass, and Z the atomic number (assuming a single
atom type to keep it simple).
The Hamiltonian still includes an external field that is necessary to break the phase symmetry
and allow for a superconducting condensation [9]. In fact the normal state is a stationary point,
and unless a continuous symmetry is broken in some way any perturbative approach based on
this Hamiltonian will not lead to a superconducting state in perfect analogy with the theory
of magnetism. From the knowledge of BCS [8, 19] and Eliashberg theory [15, 19, 20] it is
expected that the most convenient way to introduce a symmetry breaking term that leads to
superconductivity is to couple the system to an external superconductor1 that can tunnel Cooper
pairs in and out

H∆ext =

∫
drdr′ ∆∗ext (r, r) ψ↑ (r)ψ↓

(
r′

)
+ h.c. (5)

This form of the symmetry breaking field has the great advantage of being extremely simple
(involving only two field operators) and will prove also to be theoretically quite convenient. At
the same time it has the disadvantage of introducing in the original Hamiltonian a Cooper pair
source and sink such that the particle number is not fixed anymore.
In addition to the symmetry breaking external field in Eq. (5) one should also add an external
field coupling to the electronic density

Hvext =

∫
dr vext (r)

∑
σ

ψ†σ (r)ψσ (r) (6)

1The symmetry breaking will be assumed of singlet type throughout this lecture.
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and an external field that couples to the nuclei

HWext =

∫
Wext ({Ri})

∏
j

dR j Φ
†
(
R j

)
Φ

(
R j

)
. (7)

Unlike the electronic external potential, the ionic one couples all nuclei with each other (as
it depends on the set of positions {Ri}). This, not obvious, choice is made in order to be able,
eventually, to construct a non interacting system of ions that actually behave like phonons under
an external potential.

2.2 Hohenberg Kohn theorem

The SCDFT was introduced by Oliveira, Gross, and Kohn [10] as a generalization of finite
temperature DFT to include the extra density (χ – called anomalous or superconducting) that
couples with the proximity field ∆ext. In its modern form [11, 12] SCDFT is based on the three
densities

ρ (r) = Tr

%0

∑
σ

ψ†σ (r)ψσ (r)

 (8)

χ
(
r, r′

)
= Tr

[
%0 ψ↑ (r)ψ↓

(
r′

)]
(9)

Γ ({Ri}) = Tr

%0

∏
j

Φ†
(
R j

)
Φ

(
R j

) (10)

where %0 is the grand canonical density matrix (not to be confused with the electron density
ρ (r))

%0 =
e−β(H−µN)

Tr
[
eβ(H−µN)] , (11)

N being the particle number operator.
SCDFT is based on a generalized Hohenberg-Kohn theorem at finite temperature, that states

1. There is a one-to-one mapping between the set of densities ρ (r), χ (r, r′), and Γ ({Ri})
onto the set of external potentials vext (r), ∆ext (r, r′), and Wext ({Ri})

2. There is a variational principle so that it exists a functional Ω that

Ω
[
ρ0, χ0, Γ0

]
= Ω0 (12)

Ω
[
ρ , χ , Γ

]
> Ω0 for ρ, χ, Γ , ρ0, χ0, Γ0

where ρ0, χ0, and Γ0 are the ground state densities and Ω0 the grand canonical potential.

The proof is a generalization of the finite temperature DFT proof of Mermin [7]. It is still worth
to sketch it here. One defines the grand canonical functional as

Ω
[
%
]

= Tr
[
%

(
H − µN +

1
β

ln %
)]

(13)
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Fig. 1: Correspondence between potentials (v, ∆,W) and densities (ρ, χ, Γ) in SCDFT.

where % are density matrices. If % is the grand canonical density matrix (% → %0) then Ω
[
%0

]
is

in fact the grand canonical potential of the system − 1
β

ln
{
Tr

[
e−β(H−µN)

]}
≡ Ω0. From this, it is

straightforward to prove that, independently of the specific form of H, Ω
[
%0

]
< Ω

[
%
]

for any
% , %0 (refer to appendix A in Ref. [7]).
A second step is to prove by reductio ad absurdum that one set of densities can minimize two

different sets of external potentials. So let us assume that both vext, ∆ext,Wext and v′ext, ∆
′
ext,W

′
ext

lead to the same densities ρ, χ, Γ. Clearly H and H′ the two Hamiltonians corresponding to the
two sets of external potentials are different2 as are the corresponding density matrices % and %′.
By using the minimum principle one can write the following set of relations

Ω′ ≡Tr
{
%′0

[
H′ − µN

1
β

ln
(
%′0

)]}
< Tr

{
%0

[
H′ − µN

1
β

ln (%0)
]}

= Ω + Tr
{
%0

[(
Hv′ext

− Hvext

)
+

(
HΓ′ext

− HΓext

)
+

(
H∆′ext

− H∆ext

)]}
(14)

where the last equation uses the assumption that the two systems have the same densities. The
argument can be repeated starting from Ω, i.e., swapping primed and un-primed quantities,
leading to another inequality

Ω < Ω′ + Tr
{
%′0

[(
Hvext − Hv′ext

)
+

(
HΓext − HΓ′ext

)
+

(
H∆ext − H∆′ext

)]}
. (15)

Summing Eq. (14) and (15) and inconsistency emerges

Ω′ + Ω < Ω + Ω′. (16)

This implies that the assumption was absurd and two different sets of potentials can not lead to
the same set of densities. Establishing the one-to-one mapping between densities and potentials
is the first part of the Hohenberg-Kohn theorem for SCDFT.
To prove the second part one has to notice that, since all observables are obviously functionals of
the external potentials, they are also functionals of the densities (due to the one-to-one relation).
Since this includes the thermodynamic potential Ω, one can rewrite the minimum principle
proved above in terms of the densities (instead of using the density matrix) that is the second
and last point of the Hohenberg-Kohn theorem for SCDFT.

2This is because the external potentials couple differently with the field operators. With this in mind one can
easily extend the theorem to add extra densities and potentials [21, 22].
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The fact that all observables are functional of the densities and that H is the sum of internal
interactions (Eq. (1)) and couplings with external fields (Eqs. (5), (6), and (7)) allows to write
Ω

[
ρ, χ, Γ

]
as

Ω
[
ρ, χ, Γ

]
=F

[
ρ, χ, Γ

]
+

∫
dr vext (r) ρ (r) (17)

+

∫
Γ ({Ri}) Wext ({Ri})

∏
j

dR j +

∫
drdr′ ∆∗ext

(
r, r′

)
χ
(
r, r′

)
+ c.c.

which defines the universal functional F
[
ρ, χ, Γ

]
. This functional is called universal because,

not depending on the external potentials, it is system independent and uniquely fixed by the
choice of the Hamiltonian and the chosen set of densities. Still, one retains an explicit depen-
dence on the external potentials, because this coupling is necessary to bind the minimization to
a specific physical problem.

2.3 The Kohn-Sham system

As for conventional DFT, in order to move from an exact one-to-one mapping derived in the
previous section to a useful computational framework one needs to introduce the Kohn-Sham
system [2], a non-interacting system with external potentials such that it is minimized by the
same densities as the physical (interacting) one.
The thermodynamic potential of this support system is defined as

Ωs
[
ρ, χ, Γ

]
=Ts,e

[
ρ, χ, Γ

]
+ Ts,n

[
ρ, χ, Γ

]
−

1
β

S
[
ρ, χ, Γ

]
+

∫
dr vs (r) ρ (r) (18)

+

∫
Γ ({Ri}) Ws ({Ri})

∏
j

dR j +

∫
drdr′ ∆∗s

(
r, r′

)
χ
(
r, r′

)
+ c.c.

where T are kinetic energy functionals and S is the entropy functional; the Kohn-Sham “exter-
nal” potentials must be chosen as

vs (r) = vext (r) + vH (r) + vxc (r) (19)

∆s
(
r, r′

)
= ∆ext

(
r, r′

)
+ ∆xc

(
r, r′

)
Ws ({Ri}) = Wext ({Ri}) + WH ({Ri}) + Wxc ({Ri})

where the subscript H stands for Hartree terms3 and xc are the exchange-correlation potentials
defined as

vxc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δρ

(20)

∆xc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δχ

Wxc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δΓ

3An Hartree contribution to ∆s is not included because such a term does not exist in perturbation theory [15,19].
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where
Fxc

[
ρ, χ, Γ

]
= F

[
ρ, χ, Γ

]
− Ts,n

[
ρ, χ, Γ

]
− Ts,n

[
ρ, χ, Γ

]
+

1
β

S
[
ρ, χ, Γ

]
. (21)

With these definitions, it is easy to see by functional differentiation of Eq. (18) and (17) that
they are minimized by the same densities.
Having defined the Kohn-Sham potentials one can now write the Kohn-Sham equations for
SCDFT. The ionic equation has the familiar form∑

j

∇2
j

2M j
+ Ws ({Ri})

Φn ({Ri}) = EnΦn ({Ri}) , (22)

where M j is the mass of the atom with label j, En the eigenvalues and Φn the ionic eigenstates.
The electronic equations are obtained from the electronic Hamiltonian

Hs =
∑
σ

∫
dr ψ†σ (r)

[
−∇2

2
+ vs (r) − µ

]
ψσ (r) +

∫
drdr′

[
∆∗s

(
r, r′

)
ψ↑ (r)ψ↓

(
r′

)
+ h.c.

]
.

(23)
This Hamiltonian is non diagonal in the field operators because of the coupling induced by the
anomalous potential ∆∗s. It is diagonalized by a Bogoliubov-Valatin transformation [9]

ψσ (r) =
∑

i

[
ui (r) γiσ − sgn (σ) vi (r) γ†iσ

]
(24)

leading to the diagonalization conditions[
−
∇2

2
+ vs (r) − µ

]
ui (r) +

∫
∆s

(
r, r′

)
vi

(
r′

)
dr′ =Eiui (r) (25)

−

[
−
∇2

2
+ vs (r) − µ

]
vi (r) +

∫
∆∗s

(
r, r′

)
ui

(
r′

)
dr′ =Eivi (r) (26)

that are the electronic Kohn-Sham equation for SCDFT. Their mathematical form is well known
in superconductivity literature as the Bogoliubov-deGennes (BdG) equations [9] mostly used,
within the BCS model, to describe superconducting structures in real space. In SCDFT these
equations become exact for the calculation of the total energy and the densities

ρ (r) = 2
∑

i

[
|ui (r)|2 f (Ei) + |vi (r)|2 f (−Ei)

]
(27)

χ
(
r, r′

)
=

∑
i

ui (r) v∗i
(
r′

)
f (−Ei) − v∗i (r) ui

(
r′

)
f (Ei) . (28)

In absence of superconductivity both χ and ∆ are zero and Eq. (25) becomes the conventional
Kohn-Sham equation of DFT4[

−
∇2

2
+ vs (r) − µ

]
ϕnk (r) = ξnkϕnk (r) , (29)

In the same limit Eq. (26) would be a DFT Kohn-Sham like equation with inverted eigenvalues,
that can be seen as an equation for holes instead of electrons. The non-particle-conserving type
of superconducting coupling, as a matter of fact, connects these two equations.

4Actually slightly more general because it would still include the full effect of temperature and ionic motion
since it is still coupled with Eq. (22) via the potentials in (19) and (20).
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2.3.1 Transformation to momentum space

Eq. (29) can be solved in the superconducting state (i.e., keeping the non-zero χ in the functional
vs[ρ, χ, Γ]), introducing the corresponding eigenfunctions ϕnk (r). These would be different
from the conventional KS orbitals, but can be used as a basis set to express the BdG equations
in k space. Introducing the expansion

ui (r) =
∑
nk

ui,nk ϕnk (r) (30)

vi (r) =
∑
nk

vi,nk ϕnk (r) (31)

∆s
(
r, r′

)
=

∑
nn′kk′

∆s,nn′kk′ ϕnk (r)ϕn′k′
(
r′

)
(32)

inserting into Eqs. (25), (26) and using the orthogonality of the basis set gives

ξnk ui,nk +
∑
n′k′

∆s,nn′kk′ vi,n′k′ = Ei ui,nk (33)

−ξnk vi,nk +
∑
n′k′

∆∗s,nn′kk′ ui,n′k′ = Ei vi,nk

a form of the BdG equations particularly useful for introducing approximations.

2.4 Decoupling approximations

The SCDFT formalism developed so far is exact but useless unless one is able to derive a
valid approximation for the exchange correlation functional Fxc entering Eq. (20). However
the problem introduced in Sec. 2.1 is a very complicated one and cannot be tackled without
introducing key approximations to strip it to the bone. The goal of an ab-initio approach is
to introduce controlled (or at least controllable) approximations. Luckily in the problem of
interacting electrons and nuclei there is a lot of experience and many established approximations
that can be introduced give results of broad validity.
The most important approximations, that will be discussed in this section, are meant to decouple
as much as possible the many degrees of freedom (and densities) of the problem

1. Decouple electrons from ions separating the static and dynamic parts of the interaction,
including the latter in a perturbative fashion.

2. Decouple the high energy chemical scale (responsible for bonding) from low energy pair-
ing interactions (responsible for superconductivity).

2.4.1 Phonons and electron-phonon interaction

The formalism so far describes a set of interacting electrons and ions. This correlated electron-
nuclear dynamics is enormously complex and far from being satisfactorily solved. However,
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if one considers only systems close to their equilibrium it is reasonable to assume that atoms
are locked to a lattice position and only small oscillations can occur. The assumption allows to
treat ionic oscillations as a perturbation on a static field, greatly simplifying the problem. There
is some excellent literature (like [23–25]) discussing these issue in great detail. Here the focus
will be on the main approximations that are presently used in implementations of SCDFT.
A key approximation is to ignore the effect of superconductivity on the lattice dynamics and
on the electron-phonon interaction. This, as the superconducting transition is usually of second
order, is exact close to the critical temperature, where the superconducting density becomes
infinitesimally small. This allows to study the lattice dynamics in the normal state.
To compute phonons and the electron-phonon interaction one usually relies on conventional
Kohn-Sham density functional theory and the electron-phonon scattering matrix elements are
defined as

gνmk+q,nk =

√
~

2ωqν

〈
ϕmk+q

∣∣∣∣∆Vqν
sc f

∣∣∣∣ϕnk

〉
(34)

where k and q are the electron and phonon momenta, m and n Kohn-Sham band indices, ϕnk the
Kohn-Sham states, ν is the phonon branch, ωqν the phonon frequency and ∆Vqν

sc f the variation
in the Kohn-Sham potential due to the ionic displacement corresponding to the phonon mode.
By means of density functional perturbation theory [25] these matrix elements can be computed
accurately and at a reasonable computational cost for any bulk superconductor. The electron-
phonon interaction of the Kohn-Sham system reads

H̃e−ph =
∑
mnσ

∑
νkq

gνmk+q,nk

∑
σ

ψ†
σmk+q

ψσnkbνq =
∑
νq

√
~

2ωqν

∫
dr ∆Vqν

sc f (r)ψ†σ (r)ψσ (r) bνq ,

(35)
where ψ†

σnk and ψσnk are creation and destruction operators for Kohn-Sham states and bνq is a
phonon operator.
The step of approximating the dynamic part of Hen with H̃en can certainly be justified empir-
ically by its success in applications [26, 25] but is theoretically not very rigorous. The main
supporting argument is essentially that if the Kohn-Sham band structure is close to the inter-
acting one so will likely be their response to a lattice motion. Clearly if Kohn-Sham bands are
far off from the interacting ones (like in strongly correlated systems) the Kohn-Sham electron-
phonon coupling is also expected to be a poor approximation to the real one.

2.4.2 Band decoupling approximation

The electronic BdG Kohn-Sham equations (33) can be enormously simplified by assuming that
the superconducting condensation will be a small perturbation to the non-superconducting sys-
tem. As already pointed out in the previous section, since the superconducting transition is
usually of second order the assumption becomes exact close to TC so that it will not affect the
estimation of TC itself.
This assumption, first of all, implies that the superconducting transition will not induce a struc-
tural one, therefore ∆s (r, r) should maintain the original lattice periodicity and the k quantum
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number in Eq. (29) must be conserved [16, 17]. In other words the summations in equation
Eqs. (30) and (31) should only run over the band index n and not over k.

The summation over n means that the superconducting transition can still induce an hybridiza-
tion between different bands corresponding to the same k-point. However, unless bands are
degenerate (or close to degeneracy with respect to the energy scale set by ∆s that is of the order
10 meV) this hybridization must be extremely small. Therefore, apart for anomalous cases, one
can introduce a second and stronger approximation by ignoring this superconductivity induced
band hybridization effect. Then Eqs. (30) and (31) reduce to

ui (r) ≡ unk (r) = unkϕnk (r) (36)

ui (r) ≡ vnk (r) = vnkϕnk (r) ,

which implies ∆s,nn′kk′ → δnk,n′k′∆s,nk.

Inserting Eq. (36) into (33) one can formally solve these equations obtaining

unk =
1
√

2
sgn (Enk) eφnk

√
1 +

ξnk

|Enk|
(37)

vnk =
1
√

2

√
1 −

ξnk

|Enk|
(38)

with eφnk = ∆s (nk) / |∆s (nk)| and Enk = ±

√
ξ2

nk + |∆s (nk)|2. While the densities in Eq. (27)
and (28) take on the simple form

ρ (r) =
∑
nk

[
1 −

ξ2
nk

|Enk|
tanh

(
β |Enk|

2

)]
|ϕnk (r)|2 (39)

χ
(
r, r′

)
=

1
2

∑
nk

∆s (nk)
|Enk|

tanh
(
β |Enk|

2

)
ϕnk (r)ϕ∗nk

(
r′

)
. (40)

The whole superconducting problem is now reduced to the construction of the matrix elements
of the Kohn-Sham potential ∆s (nk) that are defined by the solution of Eq. (20). The explicit
dependence on χ in that equation can be substituted with a dependence on ∆s (using Eq. (40))

∆xc =
δFxc

[
ρ, χ

[
∆s, ρ, Γ

]
, Γ

]
δχ

(41)

The above equation is a closed (self-consistent) equation for the Kohn-Sham potential and is
usually called the SCDFT gap equation.

At this stage one needs some approximation for the Fxc
[
ρ, χ, Γ

]
functional. A simple functional

will be derived in the following sections by first creating a link between SCDFT and many body
perturbation theory.
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3 Connection between SCDFT and Eliashberg theory

A DFT exchange-correlation functional contains information on the interacting behavior of the
many body system. This type of information can be extracted from different approaches like
models, solvable exact limits of the theory, empirical data, perturbative methods and more. Per-
turbation methods have the advantage of allowing for a systematic improvement, it is formally
possible to reach arbitrary high accuracy, although in reality one is usually strongly limited by
computational costs and convergence issues.
Nevertheless it is nice to construct an exchange correlation functional starting from many body
perturbation theory and to keep exact control on what type of physics the functional will de-
scribe and what would be its limits.
It will be shown in Sec. 3.2 how to set up a link between many body perturbation theory and
SCDFT. The focus will be on a specific many body approximation for superconductivity that
goes under the name of Eliashberg theory and will be briefly reviewed in Sec. 3.1. Eventually,
in Sec. 3.3, the exact link will be studied for a model superconductor.

3.1 A survey on Eliashberg theory of superconductivity

This section gives a formal introduction to Eliashberg theory of superconductivity that is the
most popular theory used for superconductivity predictions, especially in the simplified form of
the McMillan equation [27].
One can start from the Hamiltonian, Eq. (1). After decoupling the lattice dynamics as discussed
in Sec. 2.4.1 only the electronic part and the electron-phonon interaction part H̃en introduced in
Sec. 2.4.1 are retained

H → He + Hee + H̃en + Hext (42)

where now Hext contains the anomalous coupling in Eq. (5) as well as the static electron-ion
coupling (as in normal DFT).5

H is then split in a zero-approximation H0 plus an interaction part HI . A convenient choice for
the zero approximation is Hext plus the Kohn-Sham Hamiltonian entering in Eq. (29)

Hs =
∑
σ

∫
dr ψ†σ (r)

[
−
∇2

2
+ vs (r) − µ

]
ψσ (r) , (43)

while everything else goes into HI . So

H0 = Hs + Hext (44)

HI = Hee + H̃en − HDC (45)

where the last term removes extra xc effects already included in Hs, therefore avoiding any
double counting

HDC =
∑
σ

∫
dr ψ†σ (r) vs (r)ψσ (r) . (46)

5Often in the literature on Eliashberg theory the external potential ∆ext (r, r′) is taken to be local (∆ext (r)) here
is introduced as non-local to be consistent with the SCDFT formalism.
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The reference Kohn-Sham system to which we refer here is that of normal DFT and not of
SCDFT (alternatively one could consider vs as the SCDFT limit for χ = 0, i.e., formally retain-
ing the effects of the multi-component formalism and its dependence on Γ).
Unfortunately conventional many body perturbation theory [14] can not be directly applied to
H0 + HI because the particle source in Eq. (5) introduces new processes forbidden in a particle
conserving theory.
There is a trick that allows to transform H back into a standard form: the Nambu-Gor’kov
formalism. One defines two new electronic field operators

ψ̄ (r) =

 ψ↑ (r)
ψ†
↓

(r)

 (47)

ψ̄† (r) =
(
ψ†
↑

(r) ψ↓ (r)
)
. (48)

that still obey Fermionic commutation rules. With these two-component fields ψ̄ one can rewrite
H0 and HI as

H0 =

∫
dr ψ̄† (r) H̄0

(
r, r′

)
ψ̄

(
r′

)
(49)

HI =

∫
dr ψ̄† (r)

∑
νq

√
~

2ωqν

∫
dr∆Vqν

sc f (r) σ̄3bνq − vs (r)

 ψ̄ (r)

+
1
2

∫
drdr′

[
ψ̄† (r) σ̄3ψ̄ (r)

] 1
|r − r′|

[
ψ̄†

(
r′

)
σ̄3ψ̄

(
r′

)]
. (50)

where σ̄3 is the Pauli matrix
 1 0

0 −1

 and H̄0 is defined as

H̄0
(
r, r′

)
=


[
−∇

2

2 + vs (r) − µ
]
δ (r − r′) ∆ext (r, r′)

∆∗ext (r, r′) −
[
−∇

2

2 + vs (r) − µ
]
δ (r − r′)

 . (51)

The Hamiltonian in this new form does not feature anymore source terms for the new field ψ̄,
therefore the perturbative expansion for HI will have exactly the same contributions (diagrams)
as in conventional perturbation theory. The difference is that Green functions and self energy
will have a 2× 2 matrix structure and vertices will carry the extra σ̄3 terms. The Green function
is defined as

Ḡ
(
τr, τ′r′

)
:= −


〈
TψH,↑ (τr)ψ†H,↑ (τ′r′)

〉 〈
Tψ†H,↑ (τr)ψH,↓ (τ′r′)

〉〈
Tψ†H,↓ (τr)ψ†H,↑ (τ′r′)

〉 〈
Tψ†H,↓ (τr)ψH,↓ (τ′r′)

〉 , (52)

where the H subscript refers to the Heisenberg picture, T is the time ordering operator for the
imaginary time coordinate τ and the 〈...〉 is used as short notation for the thermodynamic average
as in Eq. (8). Comparing with Eq. (8) one can show that normal and anomalous densities can
be easily extracted from Ḡ

ρ (r) = lim
τ′→τ+

lim
r′→r

Ḡ(11) (τr, τ′r′) = lim
r′→r

1
β

∑
i

Ḡ(11) (r, τ′r′, ωi
)

(53)

χ
(
r, r′

)
= lim

τ′→τ+
Ḡ(12) (τr, τ′r′) =

1
β

∑
i

Ḡ(12) (r, τ′r′, ωi
)

(54)
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where the (i j) superscript indicates the matrix component of Ḡ, and the second equality comes
from the transform from imaginary time to Matsubara frequencies (ωi) according to the standard
relation6 Ḡ (r, r′, ωi) =

∫
dτ eiωnτḠ (0, r, τr′).

Ḡ is obtained by solving the Dyson equation

Ḡ
(
r, r′, ωi

)
= Ḡ0

(
r, r′, ωi

)
+ Ḡ0

(
r, r′, ωi

)
Σ̄

(
r, r′, ωi

)
Ḡ

(
r, r′, ωi

)
, (55)

where Ḡ0 (r, r′, ωi) is the Green function corresponding to the non interacting Hamiltonian H0.
What is now left is to introduce an approximation for the self energy Σ̄. Leaving aside (for the
moment) contributions stemming from the double counting term HDC, the first order contribu-
tion is

Σ̄(1) = , (56)

where wavy lines are phonon propagators, dashed lines the (bare) Coulomb interaction and
arrowed lines are the Green functions. The first term is an Hartree-like phonon driven electron-
electron interaction. A careful analysis of this diagram shows that its contribution is rather
small, essentially introducing a shift (of the order of the phononic energy scale) on the eigen-
values of H0. Conventionally this contribution is not included in Eliashberg theory because it is
irrelevant in comparison to the intrinsic error one commits computing the eigenvalues of H0.7

The second term is the conventional Hartree diagram. It is exactly cancelled by a corresponding
term in vs since one assumes that the Kohn-Sham Hamiltonian leads to the same density of the
interacting system.
The third and forth terms are exchange-like diagrams that contain those electron-electron scat-
tering processes that are essential to superconductivity.
Quite clearly the first order set of diagrams in Σ̄(1) would not be sufficient to obtain any rea-
sonable result. Consider that electrons are now interacting only with the bare Coulomb inter-
action while in real materials (especially in metals) the electronic interaction is very effectively
screened. Like in GW theory [28, 29] it is possible to boost the order of the approximation
by dressing propagators and Green functions (the phonon propagator is already dressed as it is
computed externally). Therefore defining the following approximation

Σ̄ = ︸                                          ︷︷                                          ︸
Σ̄xc

− Σ̄DC (57)

where Σ̄DC is simply τ̄3vxc.
6To keep the formalism as simple as possible convergence factors eiωiη will be omitted [14].
7In the multi-component formalism discussed in Sec. 2.3 this term would be already included in vs (since in

Eq. (20) there is a functional dependence on the ionic density). However, Eliashberg theory usually starts from the
conventional Kohn-Sham Hamiltonian where vs is only a functional of the electronic density and ions only appear
as a static external potential.
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The computational cost to apply the approximation above would still be too expensive. Just
looking at the Coulomb diagram essentially corresponds to a self consistent GW approach in
the 2×2 Nambu-Gor’kov space! One should instead rely on the same approximations discussed
in Sec. 2.4.2, assuming that the electronic states are already well described by the Kohn-Sham
Hamiltonian and neglect inter-band hybridization. Essentially the self energy still is that of
Eq. (57) but the diagonal part of the second diagram is removed together with Σ̄DC (that was
inserted in the first place to avoid the double counting of xc terms).
In the basis of Kohn-Sham states this self energy then takes the form

Σ̄ (nk, ωi) = −
1
β

∑
j

∑
mq′

σ̄3Ḡ (nk, ωi) σ̄3

∑
ν

gνmk+q,nkDν

(
q, ωi − ω j

)
+ σ̄1W (nk,mk + q)

 ,
(58)

where ωi are the Matsubara frequencies, σ̄1 is the Pauli matrix
 0 1

1 0

, Dν

(
q, ωi − ω j

)
=

−2ωνq/
[(
ωi − ω j

)2
+ ω2

νq

]
is the phonon propagator and W the screened Coulomb interaction.

Ḡ (nk, ωi) is the Nambu-Gor’kov Green function that in momentum space is

Ḡ (nk, ωi) =

∫ β

0
dτ e−iωi(τ−τ′)

∫
drr′ ϕ∗nk (r) Ḡ

(
τr, τ′r′

)
ϕnk

(
r′

)
(59)

and is the solution of the Dyson equation

Ḡ (nk, ωi) = Ḡ0 (nk, ωi) + Ḡ0 (nk, ωi) Σ̄ (nk, ωi) Ḡ (nk, ωi) , (60)

where Ḡ (nk, ωi) is the Green function corresponding to the non interacting Hamiltonian H0.
The above equation is Eliashberg theory of superconductivity. Its solution is usually achieved
by first expanding this matrix equation into Pauli matrices and separating it into components.
The decomposition has the advantage to lead to a more explicit form of Ḡ and help the physical
interpretation. Ḡ is expressed as

Ḡ (nk, ωi) =

 iωiZ (nk, ωi) +
[
ξnk + χχ (nk, ωi)

]
φ (nk, ωi)

φ (nk, ωi) iωiZ (nk, ωi) −
[
ξnk + χχ (nk, ωi)

] 
[iωiZ (nk, ωi)]2

−
[
ξnk + χχ (nk, ωi)

]2
− φ2 (nk, ωi)

, (61)

where χχ (not to be confused with the superconducting order parameter) shifts the non interacting
energies, Z behaves as a mass term, and φ/Z is the function giving the superconducting gap (this
interpretation is evident by analytically continuing Ḡ to the real frequency axis iωi → ω). These
are now scalar functions and here they are assumed to be real valued.8

The interested reader can refer to more specialized literature with extra focus on application and
numerical implementation, like the classic Review of Carbotte [31] or the excellent review of
Ummarino in this same lecture series [32].

8One can show that for the Hamiltonian (1) the φ, Z and χχ functions satisfy a set of equations with real co-
efficients. In spite of this the solution could still be non trivially complex, as in the famous three crystal experi-
ment [30], but this unusual situation will be neglected.
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3.2 The Sham Schlüter connection

In Sec. 2 the SCDFT framework was derived and a set of quite general approximations was
introduced in order to decouple the superconducting and the normal state problem. In the pre-
vious section the Eliashberg theory of superconductivity was reviewed and derived in the same
approximations assumed for SCDFT.
Following the work of Marques [18], this section is devoted to set up a formal connection
between the two theories, by extending the Sham Schlüter connection to SCDFT.
The connection is based on a Dyson equation similar to Eq. (60), however instead of using the
normal state Kohn-Sham Hamiltonian H0 (Eq. (49)) as reference Hamiltonian for the perturba-
tion expansion, one should use the SCDFT Kohn-Sham system

H̄s
(
r, r′

)
=


[
−∇

2

2 + vs (r) − µ
]
δ (r − r′) ∆s (r, r′)

∆∗s (r, r′) −
[
−∇

2

2 + vs (r) − µ
]
δ (r − r′)

 (62)

leading to the following form of the Dyson equation

Ḡ (nk, ωi) = Ḡs (nk, ωi) + Ḡs (nk, ωi) Σ̄s (nk, ωi) Ḡ (nk, ωi) , (63)

that differs from Eq. (60) as Ḡs is the Green function of the SCDFT Kohn-Sham system and
Σ̄s (nk, ωi) is the self energy in which the double counting correction refers to SCDFT (not to
DFT as in Eq. (57))

Σ̄s = Σ̄xc − Σ̄
S C
DC , (64)

where Σ̄S C
DC reads

Σ̄S C
DC (nk) =

 vxc (nk) ∆xc (nk)
∆∗xc (nk) −vxc (nk)

 . (65)

Then one uses the fact that both Ḡ and Ḡs when inserted into Eq. (53) provide the exact density
of the system. It is easy to see that in the Kohn-Sham basis this implies∑

i

∑
nk

Ḡ(11) (nk, ωi) =
∑

i

∑
nk

Ḡ(11)
s (nk, ωi) ≡

∑
i

∑
nk

− (iωi + ξnk)
ω2

i + ξ2
nk + ∆2

s (nk)
(66)

∑
i

Ḡ(12) (nk, ωi) =
∑

i

Ḡ(12)
s (nk, ωi) ≡

∑
i

−∆s (nk)
ω2

i + ξ2
nk + ∆2

s (nk)
, (67)

where the second equality uses the explicit form of Gs that, belonging to a non interacting
system, is simply 1

iωi Ī−H̄s
, with Ī being the 2x2 identity matrix. These constraints used in Eq. (63)

lead obviously to a set of conditions for vxc and ∆xc.
However, if Σxc is assumed in the Eliashberg approximation, the diagonal part of Eq. (65) should
be dropped, as discussed in Sec. 3.1, and one single scalar condition is sufficient (all other matrix
components would be redundant)∑

i

[
Σ̄(11)

xc (nk, ωi) Ḡ(11)
s (nk, ωi) Ḡ(12) (nk, ωi) + Σ̄(11)

xc (nk, ωi) Ḡ(12)
s (nk,−ωi) Ḡ(11) (nk, ωi)

−Σ̄(21)
xc (nk, ωi) Ḡ(12)

s (nk, ωi) Ḡ(12) (nk, ωi) + Σ(12)
xc (nk, ωi) Ḡ(11)

s (nk,−ωi) Ḡ(11) (nk, ωi)
]

=
∑

i

[
∆xc (nk) Ḡ(11)

s (nk, ωi) Ḡ(11) (nk, ωi) − ∆∗xc (nk) Ḡ(12)
s (nk,−ωi) Ḡ(12) (nk, ωi)

]
. (68)
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This can be further simplified by the assumption that the order parameter and the gap functions
are real, which is usually the case even for unconventional superconductors, leading to the
following form of the connection

∆∗xc (nk) = 1
Ξ(nk)

1
β

[ ∑
i

Σ̄(11)
xc (nk, ωi) Ḡ(11)

s (nk,+ωi) Ḡ(12) (nk, ωi)

+
∑

i

Σ̄(11)
xc (nk, ωi) Ḡ(12)

s (nk,−ωi) Ḡ(11) (nk, ωi)

−
∑

i

Σ̄(21)
xc (nk, ωi) Ḡ(12)

s (nk,+ωi) Ḡ(12) (nk, ωi)

+
∑

i

Σ̄(12)
xc (nk, ωi) Ḡ(11)

s (nk,−ωi) Ḡ(11) (nk, ωi)
]
, (69)

where

Ξ (nk) =
1
β

∑
i

[
Ḡ(11)

s (nk, ωi) Ḡ(11) (nk, ωi) − Ḡ(12)
s (nk,−ωi) Ḡ(12) (nk, ωi)

]
. (70)

Equation (69) above is the Sham-Schlüter connection for SCDFT as derived by Marques [18].
For any given many body self energy it returns the anomalous Kohn-Sham potential of SCDFT
(∆xc) that, by construction, leads to the same anomalous density of the interacting system de-
scribed by that self energy (in this work always assumed in the Eliashberg approximation).
Note that the equation has to be seen as a self-consistent equation for ∆xc because it also enters
the right hand side in the definition of Ḡs (see Eq. (66)–(67)), this equation is equivalent to
Eq. (41), the gap equation of SCDFT, and its right hand side is therefore the functional deriva-
tive of Fxc with respect to the anomalous density. At the present stage it is not, however, an
explicit function but expressed numerically in terms of Matsubara frequencies as it depends on
Σ̄ and is not useful for material studies. On the other hand it is a perfect tool to get more insights
on the properties of the SCDFT Kohn-Sham system. This will be the topic of the next section
where the Sham-Schlüter connection will be analyzed numerically for a model system.

3.3 Analysis of a model

In this section Eliashberg equations and Sham-Schlüter connection will be solved numerically
for a simple system of electrons interacting only via an isotropic (momentum independent)
electron-phonon coupling provided by a single Einstein phonon mode.

gνmk+q,nk =

√
λωph

NF
, (71)

where NF is the density of states at the Fermi level, ωph is the energy of the Einstein mode and
λ is the BCS-like electron-phonon coupling. For this example it will be assumed that λ = 1 and
ωph = 60 meV . It is also assumed that the density of non-interacting states is constant

N (ξ) =
∑
n,k

δ (ξ − ξnk) = NF . (72)
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Fig. 2: Exact anomalous potential ∆ (ξ) corresponding to the Eliashberg approximation to
the self energy computed for a model pairing interaction. Colors encode the temperature as
indicated in the right-most panel.

Fig. 3: Exact Kohn-Sham anomalous potential ∆xc (ξ) corresponding to the Eliashberg approx-
imation to the self energy computed for a model pairing interaction.

This model is completely isotropic meaning that Green functions and potentials will loose their
dependence on nk and will only depend on ξnk the non interacting Kohn-Sham eigenenergy.
Via Eq. (58) the coupling defined above enters the Sham-Schlüter connection (69) that can be
solved numerically.9

The critical temperature TC of the model is 80 K. The interacting Green function (see Eq. (61)
is uniquely defined by the two functions ∆ (nk, ωi) and Z (nk, ωi), while in this particle hole
symmetric model χχ is zero. Furthermore, since the pairing in Eq. (71) is just a constant, Z and
∆ do not depend on ξnk either but only on ωi.
The superconducting gap ∆ (nk, ωi) is plotted in Fig. 2 as a function of the Matsubara frequency
ωi and temperature. This function decreases monotonically with |ωi| a fact that is directly linked
with the experimental evidence that the superconducting gap has its maximum close to the
Fermi level. Together with TC the gap at the Fermi level (∆ (ξ = 0, ω = 0)) is the most impor-
tant property of a superconductor because it is connected with the superconductor excitation
spectrum and therefore with its unique response properties. The temperature dependence of ∆
is show in the right panel of Fig. 2 and has a standard BCS-like behavior.
In conventional DFT we are used to assume that the single particle spectrum of the Kohn-Sham
system is quite similar to the interacting one and only in some pathological cases, like strongly
correlated materials, the differences are really large. However, in SCDFT the properties of ∆xc

9One can either proceed in two steps solving first the Dyson-Eliashberg equation (60) and then insert the
resulting components of Σ̄ and Ḡ into Eq. (69) that is eventually solved for ∆xc. Alternatively, one can also directly
solve Eq. (69) self consistently until convergence is achieved both for Σ̄, Ḡ, and Ḡs.
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are quite different from those of ∆ although formally ∆xc also plays the role of a superconducting
gap for the SCDFT Kohn-Sham system. Like ∆, ∆xc shows a sharp feature at low energy. The
width of this peak is broader but one should consider that the energy width on the imaginary
axis is not quite the same as on the physical axis. Moreover, and this is the most important
aspect, the Kohn-Sham gap has a dip close to the Fermi energy, showing a non-monotonic
behavior in energy. The dip is lower at low temperature so that in the zero temperature limit the
superconducting gap at the Fermi level is actually zero. A completely unphysical property.
Not a conceptual problem as such, but just a reminder of the limitations of the Kohn-Sham
system: the excitation spectrum of the superconducting Kohn-Sham system is not like that of
the real interacting superconductor. The correct way to obtain the superconducting gap (or any
other observable apart from density and total energy) in SCDFT is by constructing the functional
of the densities for that observable. In this case the gap functional ∆

[
ρ, χ, Γ

]
. This was done for

SCDFT [33, 34] but its construction would go beyond the goals of this lecture.

3.4 A simple SCDFT functional

As proved by Marques [18], the Sham-Schlüter connection can be used to derive a valid SCDFT
functional (LM2005 [11, 12]). The main conceptual step is that G and Gs, while in general
quite different, are connected by the sum rules (66) and (67) and it is likely not completely
inaccurate to perform the substitution G → Gs into the Sham-Schlüter connection, both on
explicit occurrences and on those coming from the G dependence of the self energy Σ̄xc in
Eq. (57). In this way the Sham-Schlüter connection becomes a closed equation in ∆xc, i.e., an
approximation for the SCDFT gap equation (41). In other word the substitution leads directly
to an explicit expression for Fxc (or rather its functional derivative ∆xc). The predictive power
of such a simple functional was then improved by a set of procedures the details of which
can be found in the original works [11, 12]. From a perturbative point of view this procedure
is equivalent to choosing a many body self energy in first order (like in Eq. (56)) not in the
non-interacting Green function Ḡ0 but in the SCDFT Kohn-Sham ones Ḡs.
It is extremely important to observe that upon this transformation of Eq. (69) all the Matsubara
summations can be carried out analytically. From this comes one of the main computational
advantages of the SCDFT scheme: it does not involve numerical Matsubara integrations. The
explicit form of ∆xc reads

∆xc (nk) = Z (nk)∆xc (nk) +
1
2

∑
n′k′
K

(
nk, n′k′

) tanh
(
β

2 En′k′
)

En′k′
∆xc

(
n′k′

)
, (73)

where the two kernels K andZ are

Z (nk) =
∑
n′k′

∑
ν

∣∣∣gνmk+q,nk

∣∣∣2 [
I′

(
ξnk, ξn′k′ , ωqν

)
+ I′

(
ξnk,−ξn′k′ , ωqν

)]
(74)

K
(
nk, n′k′

)
= W

(
nk, n′k′

)
−

∑
ν

∣∣∣gνn′k+q,nk

∣∣∣2 [
I (ξnk, ξn′k′ , ω) − I (ξnk,−ξn′k′ , ω)

]
tanh

(
β

2ξnk

)
tanh

(
β

2ξn′k′
) , (75)
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with k′ ≡ k + q, and where

I′
(
ξ, ξ′, ω

)
=

d
dξ

I(
(
ξ, ξ′, ω

)
(76)

I
(
ξ, ξ′, ω

)
= J

(
ξ, ξ′, ω

)
− J

(
ξ, ξ′,−ω

)
J
(
ξ, ξ′, ω

)
=

[
fβ (ξ) + bβ (ω)

] fβ (ξ′) − fβ (ξ − ω)
ξ − ξ′ − ω

fβ and bβ being Fermi and Bose functions. In Eq. (75) the screened Coulomb interaction W is
assumed to be static. More recent extension to this functional have included dynamical effects
as well [35]. Also this LM2005 functional is not particularly accurate in describing the effect of
the electron-phonon coupling, overestimating it at strong coupling and underestimating it in the
weak coupling limit, presently more accurate functionals exist [33]. However this functional
has the advantage of providing a gap function that does not feature the dip at the Fermi level
discussed in the previous section; instead ∆xc at the Fermi level is by experience quite close to
the physical superconducting gap.

It should be noted that Eq. (73) has the form of a BCS gap equation, however unlike the BCS
equation that relies on a model, this equation is derived from first principles and the kernels
are not adjustable parameters but functionals of the densities. This functional dependence is
implicit via a dependence on the Kohn-Sham orbitals and their matrix elements.

4 Example:
Superconductivity of a doped carbon-hydrogen nanotube

There is a relatively large literature presenting applications of SCDFT using different approxi-
mations and functionals. Ranging from the study of classic superconductors [12, 36], strongly
anisotropic systems [37–40], at high pressure [41, 34, 42], or investigations of different pairing
mechanisms [43, 44, 35, 45], to cite only a few.

As discussed in the first part of this lecture, an SCDFT investigation starts from the characteri-
zation of the normal state. The normal state information is then used to construct the exchange
correlation potential, or rather the kernels of the SCDFT gap equations (73). From the solution
of the gap equation it is then possible to extract a broad variety of observables and properties of
the superconductor.

To briefly exemplify this procedure it will be applied here to a realistic system, a crystal of hole
doped, hydrogenated, carbon nanotubes. The structure is shown in the center of Fig. 4. Similar
to graphane [46], it will be shown that this system also has a strong electron-phonon coupling
and that it features nicely inhomogeneous superconducting properties. The possibility of its
experimental synthesis however are not discussed here as neither the thermodynamic stability
nor the effect of zero point motion nor the physical doping mechanism will be addressed.
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Fig. 4: Left: Electronic bands (a) and density states (DOS - b) of an hydrogenated carbon nan-
otube. The colorscale in the band plot gives the atomic projection of the Kohn-Sham states on
atomic orbitals, from red (100% C) to green (65% H). The Fermi level of the undoped crystal
is at zero. A dashed line shows the position of the Fermi level used for the simulation, corre-
sponding to hole doping. Center (c): views of the nanotube structure, the dashed line indicates
the periodic unit cell of the crystal). Right: phonon density of states (d - also decomposed in H
and C components) and α2F (ω) function (e). The latter is an average of the electron-phonon
matrix elements (34) on the Fermi surface of the system (Eq. (77)).

4.1 Normal state properties

The first step to apply SCDFT is to compute the normal state properties of the system: its Kohn-
Sham eigenvalues and eigenstates, phonons, electron-phonon, and electron-electron coupling.
From the band structure plot in Fig. 4 one can see that the undoped system is an insulator. A
metallic state, a necessary precondition to superconductivity, could be realized, for example,
by introducing boron substitutional impurities at the carbon sites, however here the doping will
be simply induced by a rigid shift of the Fermi level (see Fig. 4a). While this over-simplified
approach will neglect important effects as Kohn anomalies [47], it is still expected to provide a
reasonable estimate of the superconducting coupling [46].
The phononic density of states is characterized by an high energy peak (350 meV) due to C-H
bond stretching modes, a mid-energy region of hydrogen rocking modes, and a low energy part
(below 150 meV) of C modes. The high-end of these carbon modes (C-C bond stretching) is
the most relevant for the electron-phonon coupling, as shown by the α2F(ω) function

α2F (ω) =
1

NF

∑
nkn′k′

∑
ν

∣∣∣gνnk,n′k′ ∣∣∣2 δ (ξnk) δ (ξn′k′) δ
(
ω − ωqν

)
(77)

with k′ ≡ k + q.
Electronic states and phonon matrix elements are computed on a regular grid in momentum
space, the size of which is set by convergence criteria and limited by the computational cost.
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Fig. 5: Left a): Temperature dependence of the average Kohn-Sham superconducting gap
(green line) and its distribution function P (∆) (red - arbitrary vertical scale). b) Density of
states (black), tunneling current (red - shifted upward, arbitrary units) and differential con-
ductance (green) as computed from Eq. (79). c) Difference of specific heat in the normal and
superconducting state as a function of temperature in isotropic and anisotropic approximation.
Center: real space anomalous potential ∆ (R, s) and order parameter χ (R, s) as a function of
the Cooper pair center of mass R. Top: xy cut of the tube, bottom: vertical cut of the tube.
Right f): the order parameter as a function of the electronic distance across the tube surface
(on the C layer). sz refers to the vertical distance on the tube and θ gives the position of the two
electrons on the xy plane as shown by the cartoon above the plot. The curve at the left of this
plot is the (R = 0, sz) cut highlighting the oscillatory behavior and its envelope function.

However Eq. (73) requires a very accurate sampling especially of the states close to the Fermi
level, because the kernels (74) are sharply peaked around ξ = 0. Therefore, an accurate inter-
polation scheme is necessary. As described in Ref [12] a convenient approach is to use a large
set of random k-points accumulated around the Fermi level and appropriately weighted. The
properties of the corresponding states are then obtained by interpolation from calculations on
regular grids: here a 10 × 10 × 20 grid is used for the electronic states, a 2 × 2 × 10 for the
convergence of the potential- and k-grids and a 1× 1× 2 for the q grid. Calculations were done
within the norm-conserving pseudopotential approximation [48,25]. Coulomb matrix elements
were computed with the Sham-Kohn approach [49], as described in Ref. [12].

4.2 Solution of the gap equation and superconducting properties

Solving the SCDFT gap equation (73) using the LM2005 functional gives a critical temperature
of 86 K. Fig. 5a) gives the temperature dependence of the average gap on the Fermi surface
(average of ∆xc (ξ = 0)) as well as its distribution function

P (∆) =
1

NF

∑
nk

δ (∆ − ∆xc (nk)) δ (ξnk) (78)
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showing that the Kohn-Sham gap is distributed on two peaks that at T = 0 are centered at about
12.8 and 18.5 meV. The larger gap corresponding to one band with higher C projection (easily
recognizable in Fig. 4) as a consequence of the fact that C modes have a stronger coupling than
H modes. This predicted multigap behavior is usually observable experimentally in different
ways [39, 50]. Tunneling spectroscopy, for example, probes rather directly the excitation spec-
trum: a tunneling current can be modeled as the convolution of the DOS of the superconductor
with that of the tip. In the simplest approximation [51]

I (V) ∼
∑
nk

[
fβ (ξnk) − fβ (ξnk + V)

]
Ns (ξnk + V) (79)

where Ns is the DOS in the superconducting state. It shown in Fig. 5b), where the current is
computed for T=10 K.
Although indirectly, thermodynamic measurements also give information about the gap distri-
bution function. This can be observed in the temperature dependence of the entropy or, more
conveniently, of the difference in specific heat

∆C = C −CN =
1
T

d
dT

(S − S N) , (80)

where the electronic entropy is

S = −2kB

∑
nk

{[
1 − fβ (Enk)

]
ln

(
1 − fβ (Enk)

)
+ fβ (Enk) ln

(
fβ (Enk)

)}
(81)

kB being the Boltzmann constant. S N is the corresponding quantity for the normal state (∆xc = 0).
∆C is shown in Fig. 5c), both for a completely anisotropic calculation and for an isotropic one.
In the anisotropic case ∆C tends to saturate towards TC.
A more fundamental property that can be extracted from the solution of Eq. (73) is the Kohn-
Sham potential ∆xc and especially χ, the superconducting order parameter (40), that is the central
object of theoretical superconductivity. These functions are discussed extensively in Ref. [38]
and are the most rigorous representation of the concept of a Cooper pair. Instead of the (r, r′)
dependence they are best plotted as a function of R = r+r′

2 and relative distance s = r − r′ as
these can be interpreted as center of mass coordinate and electron-electron distance of the pair.
The behavior of these functions is shown in the right side of Fig. 5. As discussed in Ref. [38] the
R dependence of ∆xc tends to highlight those regions in space most involved in the Coulomb
renormalization, in this case clearly the C–H bonding region. On the other hand χ is larger
where the phonon coupling is stronger, in the present case mainly involving the covalent C–C
bond of the tube surface.
As a function of s these function show a typical oscillatory behavior. The envelope of the
function has a maximum at s = 0 and slowly decreases on the scale of the superconductor’s
coherence length. Fig. 5f) shows χ for two electrons located on the surface of the carbon tube,
the oscillatory behavior is clearly visible as a function of sz, for vertical separation between the
two electrons.
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5 Summary and conclusion

SuperConducting Density Functional Theory was reviewed to focus on its relation to conven-
tional Eliashberg many body theory. Starting from the formal construction of the two theoretical
frameworks, a connection was set-up using the Sham-Schlüter method. This connection is used
to extract information on exact features of the Kohn-Sham system that reproduces the supercon-
ducting density in the Eliashberg approximation and to develop a simple functional for SCDFT.
The methodology was then applied to the study of a realistic system: a hole doped hydrogenated
carbon nanotube, that proves to be a strong superconductor with a critical temperature above
80 K. While this is the single most important number that characterizes the superconductivity,
there are many other properties that can be extracted from SCDFT at an affordable computa-
tional cost. In fact the theory gives access to a rich variety of observables as momentum and
position dependent properties like the gap distribution function or the local order parameter.
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favored by Hund’s coupling, 14.15

Mott transition, 1.15, 1.16, 1.23, 3.7,
4.23, 13.4

multiband superconductor, 15.23
multiple-occupancy corrections, 11.8, 11.9
multiplet, 4.6

N
Nambu-Gor’kov formalism, 16.12
NiO, 1.21–1.22
nonlocal vertex, 11.19

O
on-site Coulomb interactions, 5.5
optical spectral weight, 5.13, 5.19, 5.23
orbital decoupling, 14.12, 14.16
orbital-ordering, 4.21, 9.37

P
partition function, 10.9
path integral formalism, 10.2
Pauli matrices, 4.30
perturbation theory, 12.8

singular, 12.9
phonon linewidth, 15.12
phonon self-energy, 15.11
poor man’s scaling, 9.22
pseudo-fermion representation of spin,

12.5



I.4 Index

Q
quantum critical point, 5.17, 5.18, 13.9
quantum Hall e↵ect, 3.10
quantum Monte Carlo, 1.7, 1.9, 10.2,

10.11
quantum phase transition, 12.3
quasi-particle, 13.2

dispersion
iron, 8.23
nickel, 8.20

Kohn-Sham, 8.8
Landau-Gutzwiller, 8.13, 8.15
renormalization, 15.6

R
Racah parameter, 8.9, 8.16, 8.28
real-time dynamics, 7.20
renormalization group, 12.10

perturbative, 12.11
response functions, 11.16
Ritz variational principle, 8.3
RKKY interaction, 12.2, 12.12
Ruthenates, 14.2

S
SCDFT

functionals, 16.18
Kohn-Sham system, 16.6
Oliveira, Gross, Kohn theorem, 16.4

second quantization, 4.10
self-averaging property, 11.6
self-energy, 6.4, 16.13
selfconsistency, 12.18

and dynamical mean-field theory, 12.18,
13.7

Sham-Schlüter connection, 16.15
Slater insulator, 9.4
Slater-Condon parameter, 8.17, 8.28
slave-spin mean-field, 14.4
Sommerfeld coe�cient, 14.4
Soven equation, 11.5
spectral function, 7.7
spin liquid, 1.5, 1.23
spin screening, 12.2
spin-density wave, 2.6
spin-orbital entanglement, 5.26
spin-orbital superexchange, 5.11

at charge dilution, 5.31

at orbital dilution, 5.31
for KCuF3, 5.15
for LaMnO3, 5.18
for LaTiO3, 5.21
for LaVO3, 5.22
for NaTiO2, 5.27

spinon-orbiton separation, 5.28
staggered potential, 2.4
STM spectroscopy, 12.20
sum rule, 3.2, 3.9, 3.12
superconductivity, 15.12
superexchange, 4.13
superfluid density, 2.14
symmetry breaking, 13.12

T
T matrix, 11.5
t-J model, 5.2, 5.28, 5.29, 7.14
thermodynamic limit, 11.6
tight-binding Hamiltonian, 2.3
tilted clusters, 7.5
topological marker, 3.17
topological order, 1.23
transfer of spectral weight, 6.19
two-impurity Kondo problem, 12.15

V
V -representability

Hubbard, 8.9
non-interacting, 8.5

V2O3, 1.22
Velický-Ward identity, 11.8
Vollhardt-Wölfle-Ward identity, 11.8

W
Wannier functions, 3.14
width of the Hubbard bands, 14.15

X
X-ray emission spectronscopy and local

moments, 14.6
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