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1 Introduction

Impurities are ubiquitous in real materials and are non-negligible in reliable realistic calcula-
tions of the low-temperature properties of solids. The impurities are randomly distributed on
a macroscopic scale and their impact on thermodynamic, spectral, and transport properties of
solids is an important topic of experimental and theoretical research. Advanced experimental
techniques allow now for a rather precise determination of the chemical composition of het-
erogeneous materials, which, on the other hand, increases demands on the precision of the
theoretical description of materials with randomness.
Lax [1, 2] was the first to simulate scattering from a random potential by a self-consistently
determined homogeneous effective medium. The idea of an effective medium went far beyond
the rigid-band or virtual-crystal approximation standardly used at that time. The coherent em-
bedding into a homogeneous environment, when transferred to the context of random alloys,
has become the corner-stone of what later has become known as the coherent potential approx-
imation (CPA). The idea of Lax was further extended by Davies and Langer by considering
multiple single-site scatterings [3].
The equations for the genuine coherent potential approximation were introduced independently
by Soven [4] and Taylor [5]. The multiple-scattering approach was applied in Ref. [4] to elec-
trons on random lattices, while in Ref. [5] it was applied to lattice vibrations of imperfect crys-
tals. The method of coherent potential was extensively studied and applied in various situations
during the late sixties and in the seventies of the last century. The progress in the descrip-
tion of random media via multiple single-site scatterings was made possible by two principal
theoretical developments. First, sophisticated many-body perturbation techniques using Green
functions made it possible to avoid a cumbersome description of random media via an inhomo-
geneous differential Schrödinger equation. Second, the development of computers capable of
determining numerically exactly reasonably large clusters opened the way to the application of
the coherent potential methodology to real materials beyond the model level.
The coherent potential approximation has several attractive features. It was shown to be the
best single-site approximation [6] and the coherent potential has the proper analytic properties
in the complex energy plane, consistent with causality of the averaged Green function [7, 8].
Finally, transport properties of disordered systems can also be determined within this single-
site approximation [9]. The early approaches to CPA were reviewed in Ref. [10].
The coherent potential approximation remained for long singled out from other approximations
due to its analytic structure and accuracy in the determination of thermodynamic and transport
properties. Direct cluster extensions of the single-site multiple-scatterings failed in keeping
causality of the Green function [11]. At that time the only causal cluster extension, the so-called
traveling cluster approximation [12, 13], was unhandy for applications in realistic settings.
A new impetus in our understanding of CPA in a broader context came in the late eighties
and early nineties of the last century with the concept of the Dynamical Mean-Field Theory
(DMFT). First, a functional-integral generalization of CPA enabled to understand the concept
of coherent potential as a single-site approximation with self-consistently summed single-loop
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contributions of the many-body perturbation expansion of the thermodynamic potential [14,15].
Second, these diagrams were then shown to determine the exact solution of models of interact-
ing electrons on a hypercubic lattice in the limit of infinite-dimension [16]. Consequently, CPA
then appeared to be an exact solution of models of the disordered Fermi lattice gas in the limit
to infinite dimensions within DMFT [15, 17]. Since then, CPA is understood as a special case
of DMFT applied to disordered systems. Not only this, DMFT and CPA are interconnected in
systematic ways to improve upon these local approximations built on many-body diagrammatic
approaches.

2 Quantum mechanics of a particle in a
static random environment

2.1 Lattice model with a random atomic potential

Both electron correlations and randomness in configurations of impurities or in the chemical
composition are always present to some extent in real materials. It is wise to separate them
first to understand their individual impact on the behavior of the electrons. Hence, the easiest
model of disorder in metals, crystalline solids with available conduction electrons, is a Fermi
gas of moving light particles scattered on heavy, immobile ions, the atomic potential of which
fluctuates from site to site. Since there are no electron correlations present, we have a quantum
mechanical problem of a test particle scattered on randomly distributed atomic potentials of ions
ordered in a regular lattice structure. The generic quantum mechanical Hamiltonian of such an
electron can be written as

Ĥ =
∑

nm

|m〉Wmn 〈n|+
∑

n

|n〉Vn 〈n| = Ŵ + V̂ , (1)

where Wmn = W (Rm −Rn) with Wnn = 0 is the hopping amplitude of the electron between
lattice sites Rm and Rn and |n〉, |m〉 stand for Wannier states at the respective lattice sites.
One usually resorts to hopping only between nearest neighbors. The local potential Vn acquires
values due to the atomic occupation of the lattice site Rn. In case of a binary alloy with atoms
of type A and B the probability distribution of the atomic potential is

g(V ) = xAδ(V − VA) + xBδ(V − VB) , (2)

with xA = NA/N = c and xB = 1 − c are densities of atoms A and B, respectively, and N
being the number of the electrons/lattice sites. We assume that the lattice sites are occupied
independently according to the distribution g(V ) given by eq. (2).
Fluctuations in the values of the atomic potential strongly influence the motion of the electron.
Since the operators of the hopping Ŵ and the potential V̂ do not commute, the Schrödinger
equation for the electron in a randomly distributed scattering potential is not exactly solvable
for extended systems. Eigenvalues of the Hamiltonian (1) are random numbers. We hence have
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to determine the distribution of the eigenvalues of the random Hamiltonian to draw conclusions
about the behavior of the test particle in the random environment.
The fundamental quantity in the description of the quantum particle is the resolvent defined for
an arbitrary complex energy z outside the real axis as

Gmn(z) =

〈
m

∣∣∣∣
[
z1− Ŵ − V̂

]−1
∣∣∣∣n
〉
. (3)

The distribution of the eigenenergies (density of states) then is

ρ(E) = − 1

πV

∑

n

ImGnn(E + i0+) , (4)

with V = Nv, and v is the volume of the elementary cell. This distribution generally depends on
the size of the random system as well as on the boundary conditions for solving the Schrödinger
equation. This dependence is removed by configurational averaging.

2.2 Configurational averaging: coherent potential and T-matrix operator

Configurational averaging is a tool for restoring translational invariance in random systems. It
enables us to develop systematic approximations to the physical quantities of interest. Random-
ness introduces fluctuations into the physical quantities, since the eigenvalues of the random
Hamiltonian are spread over an interval on the real axis. Summing over configurations takes
account of the fluctuations only on average and hence not all averaged quantities are relevant.
For instance, the averaged Hamiltonian, the energy, is only of a little value. Moreover, products
of random variables differ from the product of their averages and vertex corrections for products
of random variables must be introduced.
Each averaged quantity is characterized by a translationally invariant function containing, on
average, the impact of randomness on this function. The coherent potential for the averaged
resolvent is defined from the following equation

〈G〉av = Ĝ =
[
z1− σ̂(z)− Ŵ

]−1

. (5)

The exact coherent potential σ̂(z) =
∑

n,m |n〉σnm(z) 〈m| is, in general, a non-local operator
on the lattice, but we resort to single-site approximations with only a diagonal coherent potential
σ̂(z) =

∑
n |n〉σn(z) 〈n|.

The coherent potential contains the fluctuations due to the random character of the scattering
potential only in an averaged manner. We introduce a configurationally-dependent T-matrix
operator T(z) containing the fluctuations missing in the coherent potential

G(z) =
〈
Ĝ(z)

〉
av

+
〈
Ĝ(z)

〉
av
T(z)

〈
Ĝ(z)

〉
av
. (6)

The T matrix is generally a nonlocal operator and, similarly to the coherent potential, we can
introduce local T matrices

Tn(z) =
Vn − σn(z)

1− (Vn − σn(z))Gnn(z)
(7)
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that depend on the lattice coordinate Rn only and contain all multiple single-site scatterings on
the fluctuations of the atomic potential Vn relatively with respect to the coherent potential of the
effective medium σn(z).
The full T matrix can be represented via the local ones and wave operators Qn(z) as

T(z) =
∑

n

Tn(z)

[
1 + 〈G(z)〉av

∑

m 6=n
Qm(z)

]
, (8)

Qn(z) = Tn(z) +

[
1 + 〈G(z)〉av

∑

m 6=n
Qm(z)

]
. (9)

Successive substitution of the wave operators leads to a representation of the T matrix via a
multiple-scattering series with the local T matrices connected by the averaged resolvent

T(z) =
∑

n

Tn(z) +
∑

n6=m
Tn(z) 〈Gnm(z)〉av Tm(z)

+
∑

n6=m 6=l
Tn(z) 〈Gnm(z)〉av Tm(z) 〈Gml(z)〉av Tl(z) + . . . . (10)

This is a typical excluded-volume problem that is difficult to solve beyond the first few terms of
the series.
The averaged T matrix vanishes in the exact solution. This means, that the coherent potential
captures all the fluctuations of the random atomic potential. Since we resorted to a single-site
coherent potential, we cannot guarantee vanishing of the full T matrix but only of its local part.
The vanishing of the local T matrix

〈Tn(z)〉av =

〈
Vn − σ(z)

1− (Vn − σ(z)) 〈Gnn(z)〉av

〉

av

= 0 (11)

is the Soven equation for the coherent potential σn(z) = σ(z). Averaging restores translational
invariance, hence the coherent potential is independent of the lattice coordinate.
The Soven equation for the coherent potential can be solved only iteratively. Due to the correct
analytic properties of the coherent potential we can guarantee the convergence of the following
iteration procedure for real energies liml→∞ σ(l)(E+) = σ(E+)

Imσ(l+1)(E+) =

[
1− |G

(l)(E+)|2
〈|G(l)(E+)|2〉

]〈
1

|1 +G(l)(E+) (σ(l)(E+)− Vn)|2
〉

av

Imσ(l)(E+) ,

(12)
where we denoted E+ = E + i0+, 〈|G(z)|2〉 = ImG(z)/Imσ(z) =

∫
dε ρ(ε)|z − ε− σ(z)|−2

and ρ(ε) is the density of states of the electrons on the homogeneous lattice. A negative sign
of the imaginary part of the coherent potential is guaranteed during the iterations. The analytic
properties of CPA must not be broken during the iterative process of the numerical solution in
order to stay within the physical phase space.
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3 Many-body approach to disordered electron systems

3.1 Thermodynamic limit and translational invariance

The concept of an effective medium and a coherent potential was derived with quantum me-
chanics of particles, that is, for Fermi or Bose gases without inter-particle interactions. The
construction of the best local approximation is, however, an appealing approach that can be
used in a broader context, namely in the statistical mechanics of many-body systems.
The equilibrium properties of macroscopic many-body systems are extracted from the thermo-
dynamic limit. It means that the volume V of the system is sent to infinity. The differences
between positions of the individual sites vanish and translational invariance is restored in the
thermodynamic limit. We can use the Fourier transform from the direct lattice to momentum
space and use the Bloch waves as the elementary quantum states that form a complete orthonor-
mal basis of the states with which we can describe the random system in the thermodynamic
limit.
We use second quantization and extend the quantum-mechanical Hamiltonian, eq. (1), to the
Anderson disordered model in Fock space by means of fermionic creation and annihilation
operators c†i and ci respectively

Ĥ = −t
∑

〈ij〉
c†icj +

∑

i

Vi c
†ci =

∑

k

ε(k) c†(k)c(k) +
∑

i

Vic
†
ici , (13)

where ε(k) =
∑

iWi0 exp(iRi · k) is the dispersion relation of the Fermi gas on the lattice,
c†(k) = V −1

∑
i c
†
i exp(iRi ·k), and 〈ij〉 denotes nearest-neighbor lattice sites with coordinates

Ri and Rj .
The existence of the equilibrium state in the thermodynamic limit depends on the validity of
the ergodic hypothesis, which means that the particle passes almost everywhere in the phase
space after sufficiently long time. Then spatial averaging equals configurational averaging, at
least for local quantities that can be proved to possess the so-called self-averaging property. For
example,

ρ(E) = − 1

πV

∑

i

ImGii(E+) = − 1

π
〈ImGii(E+)〉av = − 1

πV

∑

k

ImG(k, E+) (14)

holds in the thermodynamic limit. The averaged Green function in the thermodynamic limit can
then be represented as

〈〈
k

∣∣∣∣
1

z1− Ĥ

∣∣∣∣k′
〉〉

av

= G(k, z)δ(k− k′) =
δ(k− k′)

z − ε(k)−Σ(k, z)
, (15)

with |k〉 = c†(k)|Ω〉 and |Ω〉 the vacuum (cyclic) vector in the Fock space. The delta function in
the numerator stands for momentum conservation in translationally invariant systems. The self-
energy Σ(k, z) contains the entire contribution from the random potential to the one-particle
propagator G(k, z). It is a many-body generalization of the coherent potential. The thermody-
namic limit and the ergodic hypothesis not only restore translational invariance in the random
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system but they also allow us to use the perturbation expansion in the inhomogeneous/random
potential so that configurational averaging can be performed term by term in the perturbation
expansion. We can then work only with the averaged Green functions and use the many-body
diagrammatic and renormalization techniques of homogeneous systems.

3.2 Green functions and relations between them

The fundamental tool for obtaining quantitative results in disordered systems is a renormalized
perturbation theory in the random potential. The perturbation theory works only with transla-
tionally invariant averaged Green functions and its basic object is the one-particle Green func-
tion of eq. (15). It contains the necessary information about the equilibrium thermodynamic and
spectral properties. If we are interested in the response to weak perturbations we need to take
into account also the averaged two-particle Green function. If we remove the delta function due
to conservation of the total momentum, we can define the two-particle Green function in the
basis of Bloch waves as

G
(2)
kk′(z1, z2;q) =

〈〈
q + k,k

∣∣∣∣
1

z1 − Ĥ
⊗ 1

z2 − Ĥ

∣∣∣∣k′,q + k′
〉〉

av

≡
〈〈

k + q

∣∣∣∣
1

z1 − Ĥ

∣∣∣∣k′ + q

〉〈
k′
∣∣∣∣

1

z2 − Ĥ

∣∣∣∣k
〉〉

av

, (16)

where ⊗ denotes the direct product of operators.
The full two-particle Green function can further be represented via a vertex function Γ

G
(2)
kk′(z1, z2;q) = Gk+q(z1)Gk(z2)× [δ(k− k′) + Γkk′(z1, z2;q)Gk′+q(z1)Gk′(z2)] . (17)

The two-particle vertex Γ represents a disorder-induced correlation between simultaneously
propagated pairs of particles. It measures the net impact of the pair scatterings on the random
potential.
The vertex Γ can further be simplified by introducing an irreducible vertex Λ playing the role of
a two-particle self-energy. The irreducible and the full vertex are connected by a Bethe-Salpeter
equation. Unlike the one-particle irreducibility, the two-particle irreducibility is ambiguous
when we go beyond single-site scatterings [18]. Two-particle irreducibilities are characterized
by different Bethe-Salpeter equations. Here we introduce only the Bethe-Salpeter equation in
the electron-hole scattering channel

Γkk′(z1, z2;q) = Λkk′(z1, z2;q) +
1

N

∑

k′′

Λkk′′(z1, z2;q)Gk′′+q(z1)Gk′′(z2)Γk′′k′(z1, z2;q).

(18)
We use this Bethe-Salpeter equation to introduce the irreducible vertex Λ that is important for
controlling the consistency of approximations, more precisely, whether they comply with the
exact relations between one- and two-particle Green functions.
There are no direct connections between the configurationally dependent one- and two-particle
Green functions in disordered systems without inter-particle interactions. This is no longer true
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for the averaged Green functions. When constructing approximations one has to comply with
the exact relations expressed as Ward identities that are microscopic conditions for macroscopic
conservation laws to hold.
The basic conservation law in quantum systems is conservation of probability, that is complete-
ness of the basis formed by the Bloch waves. A first relation between the averaged one- and
two-particle Green functions follows from a simple identity for operator (matrix) multiplication

1

z1 − Ĥ
1

z2 − Ĥ
=

1

z2 − z1

[
1

z1 − Ĥ
− 1

z2 − Ĥ

]
. (19)

If we average both sides of this identity we obtain the Velický-Ward identity [9]

1

N

∑

k′

G
(2)
kk′(z1, z2;0) =

1

z2 − z1

[G(k, z1)− G(k, z2)] . (20)

It holds, provided the Bloch waves form a complete basis in the one-particle representation
space. It means that the effect of the random potential is only a rotation in the Hilbert space of
states of the homogeneous system.
There is another identity connecting the irreducible one and two-particle functions, Σ and Λ. It
is a microscopic condition that guarantees the validity of the macroscopic continuity equation.
By analyzing the perturbation contributions to one- and two-particle functions Vollhardt and
Wölfle proved the following Vollhardt-Wölfle-Ward identity [19]

Σ(k+, z+)−Σ(k−, z−) =
1

N

∑

k′

Λkk′(z+, z−;q)
[
G(k′+, z+)−G(k′−, z−)

]
, (21)

where we denoted k± = k ± q/2. Identity (21) is related to eq. (20), however, the two Ward
identities are identical neither in the derivation nor in the applicability and validity domains.
The latter holds for nonzero transfer momentum q, i. e., for an inhomogeneous perturbation,
while the former only for q = 0. On the other hand, the former is nonperturbative while the
latter is proved only perturbatively.

3.3 Feynman diagrams and multiple-occupancy corrections

The contribution from the scatterings of the electron on the random potential can be represented
diagrammatically in analogy with many-body perturbation theory. There is, however, an impor-
tant difference between the two perturbation expansions. The former is static, contains only
elastic scatterings where energy is conserved. There are no closed loops in its diagrammatic
representation. The individual particles are characterized by a fixed energy or Matsubara fre-
quency in the many-body formalism. Since the perturbation theory of random systems is static
we have to introduce the so-called multiple-occupancy corrections if we want to keep unre-
stricted summations over the lattice sites in the representations of physical quantities [20]. We
demonstrate this on Green functions.
The standard diagrammatic representation of scatterings of particles on the random potential is
an oriented solid line for the particle, a cross (vertex) for the lattice coordinate of the random
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ijk ijk ik

ik ij i

Fig. 1: Averaging of contributions up to third order in the random potential of the one-particle
Green function. A prime means that the multiple sums do not contain any repeating indices, i.e,
each vertex is on a different lattice site (i 6= j 6= k). Adapted from Ref. [21].

∑

ik

′

i ki

=
∑

ik i ki

− c
∑

i i ii

Fig. 2: Transformation of restricted multiple summations to unrestricted ones with multiple-
occupation corrections exemplified in third order of the perturbation expansion. Here c is the
concentration of the sites with the random potential. The first diagram on the right-hand side is
proportional to c2 while the second diagram only to c.

potential and dashed lines connecting the vertex with the solid line. The number of lines starting
at the vertex stands for the power of the random potential. Since the random values of the
potential are independently distributed at each lattice site, we average separately each vertex
of the diagrammatic expansion. When summing over the lattice sites we have to avoid any
repetition of lattice indices in the multiple sums as shown in Fig. 1. This restriction in multiple
summations makes the perturbation expansion difficult to sum and is equivalent to the excluded
volume problem of the T-matrix expansion in (10).
One has to transform the restricted multiple summations to unrestricted ones to be able to reach
any nonperturbative results containing multiple scatterings. The transformation from restricted
to unrestricted sums is performed by means of multiple-occupancy corrections that subtract
events when any two or more lattice sites in the multiple sum are equal, as exemplified in
Fig. 2. Counting of the multiple-occupancy corrections becomes more and more cumbersome
with increasing order of the perturbation expansion.
Only after we have transformed the restricted sums to unrestricted ones, we can introduce renor-
malizations of the particle lines in the diagrammatic representation of the perturbation expan-
sion. The renormalization of the one-particle propagator is expressed via the Dyson equation
and the self-energyΣ, see Fig. 3. All the multiple-occupancy corrections are contained in the
self-energy. Its third order is diagrammatically represented as

⌃ii(z) =

i

+ (1 � c)
i i

+ (1 � c)
X

j i ij
+ (1 � 3c + 2c2)

i ii
+ . . . (22)

It is, however, impossible to sum up the multiple-occupancy corrections to infinite order.
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�

i j =
�

i j +
∑

i′j′
i ji′ j ′Σ ,

Fig. 3: Diagrammatic representation of the renormalization of the one-electron propagator via
the Dyson equation. Note that the sum over the primed indices is unrestricted.

The diagrams with multiple-occupancy corrections offer a possibility to directly renormalize all
particle lines in the diagram, that is, to replace the bare propagators with the full averaged ones.
Inability of finding an analytic expression for the full sum for the self-energy to infinite order
reflects the fact that we cannot construct a generating functional consisting of only the renor-
malized propagators, even in the local mean-field approximation, CPA. It was a breakthrough to
find an analytic expression for the Soven equation in terms of the full local averaged propagator
G and the self-energy Σ.
Once we got rid of the restricted summations over lattice sites we can use the Fourier trans-
form to momenta or wave vectors in which the Dyson equation becomes algebraic and easy
to solve. The renormalization of the perturbation expansion is not as easy for the two-particle
Green function. The averaged two-particle Green function with three independent momenta is
diagrammatically represented as

G
(2)
kk′(z1, z2;q) =

�

G(2)

z2,k

z1,k + q

z2,k
′

z1,k
′ + q

. (23)

The two-particle renormalization is contained in the two-particle irreducible vertex Λ and a
Bethe-Salpeter equation, a two-particle analogy of the Dyson equation. Its diagrammatic repre-
sentation reads

G(2)

k

k + q

k′

k′ + q

=

k + q

k

+

k + q k′′ + q

k k′′

Λ G(2)

k′

k′ + q

, (24)

where we sum over the double-primed momentum. We introduced in Sec. 3.2 the full two-
particle vertex which obeys an analogous Bethe-Salpeter equation where the absolute term is
the irreducible vertex Λ, eq. (18). Its expansion to third order of the perturbation expansion with
the multiple-occupancy corrections is

Λii,ii (z1, z2) = (1 − c)

i

i

+ (1 − 3c + 2c2)

i i

i

+ (1 − 3c + 2c2)

i i

i

+ . . . ,

(25)
The particle lines can again be directly renormalized and replaced by the full averaged one-
particle Green function.
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4 Generating functional for CPA and DMFT

4.1 Functional-integral representation of the thermodynamic potential

The concept of the best single-site approximation can be generalized beyond the quantum me-
chanics of disordered systems. The best way to do so is to use a functional integral with which
we can describe classical, quantum, disordered, and interacting systems in a unified way. We
start with the functional-integral representation of the general partition sum of an interacting
and/or disordered system [22]

Z
[
G(0)−1

]
=

∫
DϕDϕ∗ exp

(
−ϕ∗ηG(0)−1

ϕ+ h∗ϕ+ ϕ∗h+ U [ϕ, ϕ∗]
)
, (26)

where ϕ and ϕ∗ are fluctuating commuting or anticommuting Gaussian fields, G(0)−1 is essen-
tially the dispersion relation of the model represented as an inverse of the free propagator of
one-body excitations. The sign η = ±1 depends on whether we deal with bosonic (commuting)
or fermionic (anticommuting) fluctuating fields, respectively. Further, h is an external source
and U is an interaction or a random potential, i.e., a non-quadratic or inhomogeneous function
of the fluctuating fields. In eq. (26) we suppressed all internal degrees of freedom of the local
fluctuating fields that depend upon particular models under consideration. The thermodynamic
potential as a functional of G(0)−1 then is

Ω
[
G(0)−1

]
= − 1

β
lnZ

[
G(0)−1

]
, (27)

where β = 1/kBT .
It was the idea of Baym [23] to replace the functional dependence of the thermodynamic poten-
tial on the bare propagator by a new representation with a renormalized propagator G. The full
propagator G may be defined from the thermodynamic potential itself:

G = − δ
2βΩ

δh∗δh
= η
(
〈ϕϕ∗〉 − 〈ϕ〉 〈ϕ∗〉

)
= η

(
δβΩ

δG(0)−1 −
δβΩ

δh∗
δβΩ

δh

)
. (28)

We now introduce the full propagator G as a new variable into the thermodynamic potential by
a substitution

G(0)−1
= G−1 +Σ , (29)

whereΣ is the self-energy. We used here the Dyson equation to relate the bare and renormalized
propagators. The self-energy Σ is an accompanying variable that also enters the functional
representation of the thermodynamic potential. We can treat the renormalized quantities G and
Σ as independent variables in the thermodynamic potential. The new functional must, however,
not depend on variations of the new variables G and Σ in order to keep the thermodynamic
relations fulfilled. To secure vanishing of variations of the thermodynamic potential with respect
to G and Σ we have to modify the functional-integral representation, since the variation with
respect to G(0)−1 does not vanish. We must add a contribution being a function of only Σ and
a contribution being a function of only G. If we denote them ΩΣ and ΩG we must fulfill the
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following equations to keep variations of the total free energy Ω = ΩΣ + ΩG + Ω
(
G(0)−1

)

independent of Σ and G
δβΩΣ

δΣ
=
δβΩG

δG−1
= − δβΩ

δG(0)−1 .

Using equations (28) and (29) we easily obtain

βΩΣ = η
(

tr ln
[
G(0)−1 −Σ

]
+m∗

[
G(0)−1 −Σ

]
m
)
, (30)

βΩG = −η
(

tr lnG−1 +m∗G−1m
)
, (31)

where we have introduced new renormalized variables

m = −δβΩ
δh∗

, m∗ = −δβΩ
δh

. (32)

We use the above definitions and obtain a new representation of the thermodynamic potential

− βΩ[m;G−1, Σ] = −η tr ln
[
G(0)−1 −Σ

]
+ η tr lnG−1 − βΩ[h;G−1 +Σ]

−m∗η
[
G(0)−1 −Σ

]
m+m∗η G−1m, (33)

The thermodynamic potential Ω[m;G−1, Σ] in eq. (33) is stationary (extremal) with respect to
all its renormalized variables m,Σ, and G. The stationarity with respect to the variables m,m∗

leads to trivial equations. We can, however, turn these variables dynamic if we use a substitution
in the functional integral (26) ϕ = φ + m, where the new fluctuating field φ has vanishing first
moment 〈φ〉 = 0. We then obtain from eqs. (26) and (29)

− βΩ [m,H;G,Σ] = −η tr ln
[
G(0)−1 −Σ

]
+ η tr lnG−1 − βF

[
m,H;G−1 +Σ

]

−m∗η G(0)−1
m+H∗m+m∗H . (34)

Now, the new free energy as a functional of m,H and [G−1 +Σ] reads

−βF
[
m,H;G−1 +Σ

]
=

ln

∫
DφDφ∗ exp

(
−φ∗η

[
G−1 +Σ

]
φ+H∗φ+ φ∗H + U [φ+m,φ∗ +m∗]

)
, (35)

where the new external sources H and H∗ are new variational parameters, the Legendre conju-
gates to m∗ and m, respectively. The variational parameters and functions m,H,Σ, and G are
determined from the saddle-point equations for stationarity of βΩ

δβΩ

δH
=
δβΩ

δm
=
δβΩ

δG
=
δβΩ

δΣ
= 0 . (36)

Expressions (34)-(36) are exact in any spatial dimension for any model, classical or quantum.
The thermodynamic potential from eq. (34) is not yet in the Baym form with the Luttinger-
Ward functional. Although it is a functional of only renormalized quantities, the diagrammatic
representation of βΩ contains the sum of all connected non-renormalized diagrams with the
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bare propagator G(0) = (G−1 + Σ)−1. The thermodynamic potential (34) is suitable for an
exact solution and for the cases where the result cannot be generated by a sum of simple skeleton
diagrams. If we have to rely on sums of classes of particular diagrams it is more practical to
define a new functional

Ψ [m,H;Σ] = η tr lnG−1 − βΩ
[
m,H;G−1 +Σ

]
, (37)

that is, due to the stationarity equations (36), independent of the one-body propagator G. We
have no diagrammatic representation for the functional Ψ. But if we perform a Legendre trans-
form from Ψ to a functional of the propagator G

Φ [m,H;G] = Ψ [m,H;Σ] + η trΣG , (38)

it will be a sum of all connected diagrams free of self-insertions, i.e., skeleton diagrams only.
Inserting eqs. (37) and (38) into (34) we obtain the Baym free-energy functional

−βΩ̃ [m,H;G] = −η tr ln
[
G(0)−1−Σ

]
−η trΣG+Φ [m,H;G]−m∗η G(0)−1

m+H∗m+m∗H.

(39)
Both free-energy functionals (34) and (39) are exact. They are connected by a double Legen-
dre transform (37), (38). While representation (34) is applicable without restrictions, the direct
application of the Baym functional is restricted to cases where we are able to find a diagram-
matic representation of the functional Φ. We then speak of Φ-derivable approximations. Not
all approximations are Φ-derivable. The simplest example for a non-Φ-derivable theory is a
0-dimensional lattice (single site or atomic solution), including CPA and DMFT.
We considered a homogeneous system of interacting particles. It is, however, easy to extend
this description to systems with randomness. If the non-quadratic term, becomes random, we
simply perform configurational averaging of the free energy F [m,H;G−1 +Σ] of eq. (35).
The thermodynamic functional is self-averaging and hence it equals its averaged value in the
thermodynamic limit.

4.2 The limit of infinite lattice dimensions

We have not yet made any assumption on the form of the interacting term in the functional
representation of the thermodynamic potential. A special class of problems are those with a
local interaction in the tight-binding representation of statistical systems in crystalline solids
for which the limit to high spatial dimensions reduces the lattice to an impurity model.
The fundamental condition in limiting the lattice models to infinite spatial dimensions is the
necessity to keep the total energy of the system proportional to volume. This means that we
must rescale appropriately the non-local terms in the Hamiltonian. In the case of fermions the
fluctuating fields are Grassmannian variables in representation (26) and 〈ϕ〉 ≡ 0. The leading-
order contribution of the non-local part of the generic Hamiltonian from eq. (13), the kinetic
energy, is

Ekin = −t
∑

〈ij〉σ

〈
c†iσcjσ

〉
av

= −it
∑

〈ij〉σ
Gij,σ(0+) ∝ 2dN t2 , (40)
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where Gij,σ(t) = −i〈T [ciσ(t)c†jσ(0)]〉 is the time-dependent Green’s function, eventually the
averaged Green’s function [24]. The scaling of the hopping amplitude between the nearest
neighbors on a hypercubic lattice with 2d nearest neighbors follows from eq. (40)

t = t∗/
√

2d . (41)

It was derived for the first time by Metzner and Vollhardt in Ref. [16] in the context of the
Hubbard model.
The general functional-integral representation of the thermodynamic potential with the renor-
malized one-electron Green function and the self-energy, eq. (35), offers a direct way to find
the generating functional of the solution of a model with local interaction/disorder in infinite
dimensions, DMFT. The scaling of the hopping term, eq. (41), leads to

G = Gdiag
[
d0
]

+Goff
[
d−1/2

]
, (42)

Σ = Σdiag
[
d0
]

+Σoff
[
d−3/2

]
. (43)

The functional integral (35) turns local in the limit d =∞. It still may be a functional (infinite-
dimensional) integral if the number of the local degrees of freedom is infinite. In the case of
quantum itinerant models the local degrees of freedom are spin and Matsubara frequencies.
The Matsubara frequencies are coupled in the Hubbard model [24]. They are decoupled in the
case of the Fermi gas in a random potential with the Hamiltonian (13). The functional integral
(35) then reduces to a product of simple integrals for individual Matsubara frequencies. These
integrals can be explicitly performed and inserting the result in eq. (39) we obtain a generating
functional for the Coherent Potential Approximation of spinless particles [15]

Ω [Gn, Σn]

N = −
∞∑

n=−∞

eiωn0+

β



∞∫

−∞

dε ρ∞(ε) ln [iωn+ µ−Σn− ε] + 〈ln [1 +Gn (Σn− Vi)]〉av


 .

(44)
This representation of the CPA grand potential for fixed chemical potential µ was derived as
the exact grand potential for the model of disordered electrons in d = ∞. Apart from the
scaling of the nearest-neighbor hopping amplitude (41) we did not use any particular property
of the perturbation theory. The limit to infinite dimensions was performed on hypercubic d-
dimensional lattices for which the density of states in infinite dimensions reads

ρ∞(ε) =
1√
2πt∗

exp
(
−ε2/2t∗2

)
. (45)

The grand potential (44) with the density of states (45) is the exact solution for the Hamiltonian
of the Anderson disordered model, eq. (13), in d =∞. It serves as a good local approximation
for finite-dimensional systems if the appropriate density of states is used. Notice that CPA
makes sense only for lattice models with well separated nearest neighbors. It has no meaning
for continuous models where multiple scatterings on continuously spread scatterers cannot be
singled out and lose relevance.
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5 Interacting disordered electrons – Falicov-Kimball model

5.1 Equilibrium thermodynamic properties

The quantum itinerant models in infinite dimensions (DMFT) can be solved analytically only
if the Matsubara frequencies are decoupled and the local functional integral (35) reduces to a
product of integrals for individual Matsubara frequencies. This is not the case for the Hubbard
model of interacting electrons [24]. But a modification of the Hubbard Hamiltonian, the so-
called Falicov-Kimball model, decouples the Matsubara frequencies. Its easiest spinless form
is defined by the Hamiltonian [25]

ĤFK = −t
∑

〈ij〉
c†icj +

∑

i

εi f
†
i fi +

∑

i

c†ici
(
Vi + Uf †i fi

)
. (46)

This Hamiltonian, in comparison with the Hubbard model, loses some important properties. A
great deal of quantum dynamics goes lost in (46), since its equilibrium state is not a Fermi-
liquid. The Falicov-Kimball model proved, nevertheless, invaluable in the construction of an
analytic mean-field theory in strong coupling of the Hubbard-type models.
The first exact solution of this quantum itinerant model in d = ∞ was derived by Brandt
and Mielsch [26]. The full grand potential with the renormalized variational parameters was
constructed in Ref. [27]. The spinless Falicov-Kimball Hamiltonian (46) does not contain any
nonlocal interaction or hybridization and hence no scaling of the coupling term is necessary.
The functional Ω[G−1

α + Σα] is an atomic solution the partition function of which contains a
sum over two possible states of the local electrons. The dynamic electrons have a frequency-
dependent local propagator (G−1

αn +Σαn)
−1. We obtain the grand potential

2β

N Ω [G,Σ] = −
∑

α=±

〈
ln
[
1 + eβ(µα−εi−Ei,−α)

]〉
av

(47)

−
∞∑

n=−∞
eiωn0+


∑

α=±
〈ln[1+Gn,α (Σn,α− Vi)]〉av+

∞∫

−∞

dερ∞(ε)ln
[
(iωn+µ+−Σn,+)(iωn+µ−−Σn,−)−ε2

]



with

Ei,α = − 1

β

∞∑

n=−∞
eiωn0+ ln

[
1 +Gn,α (Σn,α − Vi − U)

1 +Gn,α (Σn,α − Vi)

]
. (48)

We used a subscript α to allow for a low-temperature charge order with different sublattices.
Conditions on stationarity of the grand potential (47) lead to defining equations for the varia-
tional parameters Gαn and Σαn. We obtain, after a few manipulations,

Gn,α =

∞∫

−∞

dε ρ∞(ε)
(iωn + µ−α −Σn,−α)

(iωn + µ+ −Σn,+) (iωn + µ− −Σn,−)− ε2
, (49a)

1 =

〈
ni,−α

1 +Gn,α (Σn,α − Vi − U)
+

1− ni,−α
1 +Gn,α (Σn,α − Vi)

〉

av

, (49b)
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where

ni,α =
1

1 + exp (β (εi + Ei,−α − µα))
(49c)

is the averaged number of static particles in the Falicov-Kimball model. We see that the vari-
ational parameters Gαn and Σαn now depend explicitly on the Matsubara frequencies and the
thermodynamics of the model contains a portion of quantum many-body fluctuations. The equa-
tions of motion are algebraic and the variational variables Gαn and Σαn depend only on a single
Matsubara frequency ωn.
It can easily be shown that if we consider a random-alloy with diagonal disorder where the
constituent A with the atomic energy U has concentration x and the constituent B with con-
centration 1 − x has the atomic energy 0, then the Falicov-Kimball model in d = ∞ coincides
with CPA of such an alloy. The Falicov-Kimball Hamiltonian defines a semiclassical model
with reduced dynamical quantum fluctuations. The dynamical fluctuations are restricted, since
we have only one species of dynamical electrons. They interact with static electrons, i.e., they
are scattered on static impurity potentials distributed in the lattice. Unlike the static disorder
of alloys the localized electrons of the Falicov-Kimball model serving as random scatterers for
the mobile electrons are thermally equilibrated, which introduces a nontrivial thermodynamics.
The semiclassical character of the Falicov-Kimball model becomes evident from the fact that
the partition function of this model can be obtained in any dimension as a static approximation
in a special functional-integral representation [28].
Equations (49a) and (49b) coincide with the well-known Hubbard-III approximation [29] if we
neglect the static electrons and replace the density of static particles by the density of the dy-
namic ones. Then equation (49c) must be forgotten and replaced by a sum rule. The analogy
between the model of random alloys and the Hubbard-III approximation, discovered in Ref. [6],
led at the end of the seventies of the last century to numerous attempts to improve on the weak-
coupling Hartree-Fock theory by using the “alloy analogy” reasoning [30]. However, mean-field
theories constructed in this way and based on the Hubbard-III approximation become thermo-
dynamically inconsistent and lead to unphysical behavior [31]. The Hubbard-III approximation
was made thermodynamically consistent by adding a new variational parameter [32].

5.2 Response to external perturbations

The equation for the self-energy of the mobile electrons of the d = ∞ Falicov-Kimball model
for fixed densities of the local electrons resembles the Soven equation. There is, however, a sig-
nificant difference when we turn to response functions describing the reaction of the equilibrium
state to weak external perturbations. The response functions are derived from the two-particle
Green function. The Falicov-Kimball model, unlike the Anderson disordered model, displays a
low-temperature critical behavior and a phase transition to a checker-board phase. This differ-
ence can be demonstrated on the local two-particle vertex of the two solutions. In both cases,
due to conservation of energy, the two-particle vertex contains only two independent variables,
Matsubara frequencies. The full local vertex of the Falicov-Kimball model in d =∞measuring
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Fig. 4: Graphical representation of eq. (50). The dashed lines within the boxes indicate charge
propagation from the incoming to the corresponding outgoing line. The vertex for the disordered
Fermi gas contains only the left diagram.

correlations between two conduction electrons can be decomposed into two distinct contribu-
tions

ΓMF
mn,kl = δm,l δn,k γm,n + δm,n δk,l ϕm,k , (50)

where the integer indices denote fermionic Matsubara frequencies. The full vertex is shown
in Fig. 4, where we indicated the way the corners of the vertices are connected by an internal
electron line. The CPA vertex is just its first term, γm,n, that is relevant for transport properties
(electrical conductivity). The second vertex, ϕm,n, determines the thermodynamic response and
the low-temperature critical behavior.
The thermodynamic vertex ϕm,n can be represented via an irreducible one, κm,n, from a local
Bethe-Salpeter equation

ϕm,n = κm,n +
1

β

∑

l

κm,lG
2
l ϕl,n . (51)

The irreducible vertex satisfies a Ward identity κm,n = δΣm/δGn as is evident from the con-
nection of the corners of vertex ϕm,n in Fig. 4.
It is more complicated to represent vertex γm,n via an irreducible one. To do so and to derive the
corresponding Ward identity we replicate the creation and annihilation operators and introduce
external perturbations into the thermodynamic description via a generalized grand potential of
a replicated system Ων(µ1, µ2, . . . µν ;∆) with ν chemical potentials µ1, µ2, . . . , µν [33]. An
external perturbation ∆ is used to couple different replicas and to break the initial replica inde-
pendence. We then can write

Ων(µ1, µ2, . . . µν ;∆) = − 1

β

〈
ln tr exp

[
−β

ν∑

i,j=1

(
Ĥ

(i)
FKM δij − µiN̂ (i)δij +∆Ĥ(ij)

)]〉

av

, (52)

where we assigned to each replica characterized by energy (chemical potential) µi a separate
Hilbert space and denoted by∆Ĥ(ij) =

∑
kl∆

(ij)
kl ĉ

(i)†
k ĉ

(j)
l an external perturbation to be set zero

at the end. The thermodynamic potential Ων(µ1, ν2, . . . µν ;∆) is a generating functional for
averaged products of Green functions up to ν-th order. In practice, we will use linear-response
theory with one- and two-particle Green functions, i. e., Ων(µ1, µ2, . . . µν ;∆) is expanded up to
∆2. Therefore it is sufficient to introduce only two replicas.
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The external disturbance ∆ mixes different replicas, and propagators in the replicated space
are matrices in the replica indices. Since we are interested only in the averaged two-particle
functions, we can represent the propagator by a two-by-two matrix

Ĝ−1(k1, z1,k2, z2;∆) =

(
z1 − ε(k1)−Σ11(∆) ∆ −Σ12(∆)

∆ −Σ21(∆) z2 − ε(k2)−Σ22(∆)

)
, (53)

where ε(k) is the lattice dispersion relation and the self-energy elements Σab generally depend
on both energies z1, z2.
The local two-particle vertex is a solution of a Bethe-Salpeter equation with an irreducible two-
particle vertex λ and local propagators. We easily find that the Bethe-Salpeter equation in the
mean-field approximation reduces to an algebraic one

γ(z1, z2) =
λ(z1, z2)

1− λ(z1, z2)G(z1)G(z2)
. (54)

The irreducible vertex λ is determined in equilibrium (∆ = 0) from an equation consistent with
the Ward identity, eq. (21) with local propagators,

λm,n =
1

GmGn

(
1−

〈[
ni,−α

1 +Gn,α (Σn,α − Vi − U)
+

1− ni,−α
1 +Gn,α (Σn,α − Vi)

]

×
[

ni,−α
1 +Gn,α (Σn,α − Vi − U)

+
1− ni,−α

1 +Gn,α (Σn,α − Vi)

]〉−1

av

)
. (55)

We can easily verify that this equation coincides with the CPA solution for the irreducible vertex
λ(z1, z2) [9, 35].

6 Transport properties within CPA

6.1 Non-local two-particle vertex and electrical conductivity

There is no ambiguity in the mean-field construction of local one- and two-particle functions.
But a mean-field treatment has a physical relevance only if it is able to produce nonlocal corre-
lation functions, the long-range fluctuations of which may significantly influence the thermody-
namic and dynamical behavior. There is, however, no unique way to generate the two-particle
vertex with non-local contributions within the local (mean-field) approach. The simplest and
most straightforward way is to use the Bethe-Salpeter equation with the CPA irreducible vertex
λ, eq. (55), and to replace the product of the local propagators with a convolution of the full
nonlocal one-electron propagators G(k, z). Such a Bethe-Salpeter equation then remains alge-
braic in momentum representation and results in a two-particle vertex with only one transfer
momentum. We obtain

Γ±(z1, z2;q±) =
λ(z1, z2)

1− λ(z1, z2)χ±(z1, z2;q±)
, (56)
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where we denoted the two-particle bubble

χ±(z1, z2;q) =
1

N

∑

k

G(k, z1)G(q± k, z2) . (57)

The ambiguity in this definition of the full mean-field vertex is in the type of nonlocal multiple
scatterings we include in the Bethe-Salpeter equation. They are here denoted by the superscript
±. The plus sign corresponds to multiple scatterings of electron-hole pairs, while the minus
sign to pairs of electrons. In case of elastic scatterings the electron-hole and electron-electron
bubbles produce numerically the same result. However, the difference between the two types of
pair scatterings lies in the respective transfer momentum q±. Using the notation for momenta
in the two-particle Green function from eq. (23) we have q+ = q for the electron-hole pair
scatterings and q− = q + k + k′ for scatterings of two electrons. The nonlocal vertex in CPA
is that from eq. (56) and the electron-hole bubble with q+. We discuss this ambiguity more in
the next subsection.
We now turn our attention to the electrical conductivity. Using the Kubo formula we obtain a
simple representation of the longitudinal conductivity at zero temperature [40]

σαα =
e2

2πN2

∑

kk′

vα(k) vα(k′)
[
GAR

kk′ − ReGRR
kk′
]
, (58)

with the values of the two-particle Green function at the Fermi energy. We used an abbreviation
GAR

kk′ = GAR
kk′(0, 0;0) and

GAR
kk′(ω, ω

′;q) = G
{2}
kk′(ω − i0+, ω′ + i0+; q),

GRR
kk′(ω, ω

′;q) = G
{2}
kk′(ω + i0+, ω′ + i0+; q) .

We decompose the conductivity tensor (58) into two parts by replacing the two-particle Green
function by the representation given in eq. (17) with the two-particle vertex Γ . We then have a
sum of two terms

σαα =
e2

πN

∑

k

|vα(k)|2
∣∣ImGR(k)

∣∣2 + ∆σαα , (59)

where the first term is the standard one-electron or Drude conductivity at zero temperature. The
second term is the genuine two-particle contribution and is called vertex correction. It is pro-
portional to the appropriate matrix element of the two-particle vertex that, at zero temperature,
reads

∆σαα =
e2

2πN2

∑

kk′

vα(k) vα(k′)
(∣∣GR

k

∣∣2∆ΓAR
kk′
∣∣GR

k′
∣∣2 − Re

[(
GR

k

)2
∆ΓRR

kk′
(
GR

k′
)2
])
. (60)

It is not the full two-particle vertex that is important for the electrical conductivity, but only its
odd part ∆Γ . That is, only the part of the vertex function depending, on bipartite lattices, on
odd powers of the fermionic momenta k and k′ contributes to the electrical conductivity. Hence,
CPA does not contain vertex corrections to the electrical conductivity, since the two-particle
vertex ΓCPA

kk′ (ω, ω′;q) = Γ (ω, ω′;q) does not depend on the incoming fermionic momenta
k,k′.
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6.2 Gauge invariance and electron-hole symmetry

Electrical conductivity is a form of a response of the charged system to an electromagnetic per-
turbation. An important feature of the interaction of the charged system with an electromagnetic
field is gauge invariance that must be guaranteed in the response functions. There are two fun-
damental response functions to the electromagnetic field, one based on the current-current and
the other on the density-density correlation functions. The former is used in the Kubo formula
for the electrical conductivity, eq. (58), and the latter for determination of charge diffusion.
There is a number of more or less heuristic arguments in the literature that relate the density
response with the conductivity [34]. They use macroscopic gauge invariance and charge con-
servation for particles exposed to an electromagnetic field. A microscopic quantum derivation
was presented in Ref. [35].
Gauge invariance is used to relate the external scalar potential with the electric field E = −∇ϕ.
The current-density generated by a harmonic external field then is

j(q, ω) = σ(q, ω) · E(q, ω) = −iσ(q, ω) · q ϕ(q, ω) , (61)

where σ(q, ω) denotes the tensor of the electrical conductivity. Charge conservation is ex-
pressed by a continuity equation. In equilibrium we can use the operator form of the continuity
equation that follows from the Heisenberg equations of motion for the current and density op-
erators. For Hamiltonians with a quadratic dispersion relation we have

e∂tn̂(x, t) + ∇ · ĵ(x, t) = 0 . (62)

The energy-momentum representation of the continuity equation in the ground-state solution is

− iωe δn(q, ω) + iq · j(q, ω) = 0 . (63)

We have to use a density variation of the equilibrium density, i. e., the externally induced density
δn(q, ω) = n(q, ω) − n0 in the continuity equation with the averaged values of the operators.
From the above equations and for linear response δn(q, ω) = −eχ(q, ω)ϕ(q, ω) we obtain in
the isotropic case

σ = lim
ω→0

lim
q→0

−ie2ω

q2
χ(q, ω) , (64)

where at zero temperature

χ(q, ω) =−
∫ 0

−ω

dx

2πi

〈
GAR

kk′(x, x+ ω;q)−GRR
kk′(x, x+ ω;q)

〉
k,k′

+

∫ 0

−∞

dx

π
Im
〈
GRR

kk′(x, x+ ω;q)
〉
k,k′ (65)

is the density response function. Relation (64) is often taken as granted for the whole range
of the disorder strength and used for the definition of the zero-temperature conductivity when
describing the Anderson localization transition [36, 37].
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Fig. 5: Graphical representation of time-reversal symmetry of the two-particle vertex when the
lower electron line is reversed.

Relation (64) between the static optical conductivity and the density response holds if the latter
function displays the so-called diffusion pole. One can prove by using the Vollhardt-Wölfle-
Ward identity, eq. (21), that in the limit q → 0 and ω → 0 [35]

χ(q, ω)
.
=

DnF q
2

−iω +D q2
, (66)

where D is the static diffusion constant. Inserting eq. (66) into eq. (64), we end up with the
Einstein relation between the diffusion constant and the conductivity σ = e2DnF , where nF is
the electron density at the Fermi energy. This relation holds in CPA with the Drude conductiv-
ity [35].

The coherent potential approximation delivers good results for the one-particle quantities but
it fails to take into account back-scatterings that are responsible for the vertex corrections in
the electrical conductivity. It also fails to maintain electron-hole symmetry at the level of two-
particle functions. Electron-hole symmetry or equivalently time-reversal is an important feature
of electron systems without spin- and orbital-dependent scatterings. According to this invari-
ance the physical (measurable) results should not depend on the orientation of the electron
propagators. Changing the orientation of the electron line is equivalent to the spatial inversion
in the momentum space. The electron-hole symmetry for the one- and two-particle propagators
means

G(k, z) = G(−k, z) , (67a)

Γkk′(z+, z−;q) = Γkk′(z+, z−;−q− k− k′) = Γ−k′−k(z+, z−;q + k + k′) . (67b)

The spatial inversion was applied only to one fermion propagator in the two-particle vertex, the
upper in the first equality and the lower in the second. The latter transformation is graphically
represented in Fig. 5. This is an exact relation which is, however, broken in CPA as discussed
in Refs. [38, 33]. One has to go beyond the local mean-field approximation to correct this
deficiency.
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7 Beyond CPA

7.1 Vertex corrections to the electrical conductivity

Dynamical mean-field theory contains all single-site scatterings. To go beyond, one has to
avoid the repetition of lattice indices as in the expansion of the T matrix in eq. (10). The bare
expansion parameter is then the off-diagonal one-electron propagator from mean-field theory.
It is given by

Ḡ(k, ζ) =
1

ζ − ε(k)
−
∫
dε ρ(ε)

ζ − ε , (68)

with ζ = z−Σ(z) where the local self-energy Σ(z) is that of the mean-field solution. The off-
diagonal two-particle bubble describes the simplest non-local contribution. It is the convolution
of the off-diagonal one-electron propagators. We have

χ̄(ζ, ζ ′;q) =
1

N

∑

k

Ḡ(k, ζ) Ḡ(k + q, ζ ′) = χ(ζ, ζ ′;q)−G(ζ)G(ζ ′) , (69)

where χ(ζ, ζ ′;q) is the full two-particle bubble. The frequency indices are external parameters
and we suppress them when they are not necessary to specify the particular type of one- or
two-electron propagators.
The asymptotic limit of the full two-particle vertex in high spatial dimensions contains beyond
the local mean-field vertex γ also non-local contributions from the electron-hole and electron-
electron ladders. They are different in their off-diagonal part [38, 33]. The asymptotic two-
particle vertex consistent with the electron-hole symmetry can, in leading order, be represented
as

Γkk′(q) = γ

[
1 + γ

(
χ̄(q)

1− γ χ̄(q)
+

χ̄(Q)

1− γ χ̄(Q)

)]
= γ +∆Γkk′(q) , (70)

where we denoted by Q = q + k + k′ the momentum conserved in the electron-electron
scattering channel. Notice that the contribution from the electron-hole channel with χ̄(q) is
part of the two-particle vertex from CPA and can be derived from the Velický-Ward identity [9].
The two-particle vertex from CPA does not carry the full 1/d correction to the local vertex and
moreover it is not electron-hole symmetric on the two-particle level [38].
A consistent extension of the local mean-field two-particle vertex must contain both non-local
contributions from the electron-hole and electron-electron channels as given in eq. (70). It is not
appropriate to calculate the electrical conductivity from the decomposition in eq. (59), since the
vertex corrections can outweight the Drude term and the conductivity may get negative [39].
The actual expansion around CPA should be done for the electron-hole irreducible vertex Λ
from the Bethe-Salpeter equation (18). Actually, only the vertex correction Λ = Λ − λ is the
object of the perturbation expansion around CPA. The two-particle Green function with only
the off-diagonal part of the vertex corrections can be represented as [39]

G
ab

kk′(q) = Gb
k+q

[
δ(k− k′) +G

a

k Γ
ab
kk′(q)G

b

k′+q

]
Ga

k′ , (71)
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where superscripts a, b stand for R,A where appropriate. It is a solution of a Bethe-Salpeter
equation with the irreducible vertex Λ̄ab

G
ab

kk′(q) = Gb
k+q

[
1− Λ̂ab(q)?

]−1

kk′
Ga

k′ . (72)

We use the constrained two-electron Green function G
ab

in the calculation of the electrical
conductivity. From the Bethe-Salpeter equation (72) we straightforwardly obtain

σαβ =
e2

2πN2

∑

kk′

vα(k)

[
GA

k

[
1− Λ̂RA?

]−1

kk′
GR

k′ − Re

(
GR

k

[
1− Λ̂RR?

]−1

kk′
GR

k′

)]
vβ(k′). (73)

The expansion around CPA with the off-diagonal propagators will now be applied on the ir-
reducible vertex Λ̄ in the above equation, accompanied by a non-perturbative matrix inversion
as to not break non-negativity of the conductivity [39]. The leading-order contribution to the
vertex Λ̄ab in high spatial dimensions is

Λ
ab

kk′(q) = γab
[
1 +

γabχab(k + k′ + q)

1− γab χab(k + k′ + q)

]
. (74)

The off-diagonal propagator G is the fundamental parameter in the expansion around the mean-
field limit. It prevents from double counting of multiple local scatterings from the mean-field
solution and it also makes the calculation of corrections to the mean-field result numerically
more stable. It is preferable to use the full local mean-field vertex γab instead of the irreducible
one, λab, in all formulas of the expansion around mean field, since the latter contains a pole in
the RR (AA) channel that is compensated in the perturbation expansion by the former vertex.
Notice that the leading-order vertex corrections calculated from the expansion of the right-hand
side of eq. (73) coincide with the leading corrections to the mean-field conductivity derived in
Ref. [40].

7.2 Making expansions beyond local approximations conserving

The problem of the perturbation expansions is that they break exact relations. Sometimes the
deviations from the exact relations are not drastic and do not qualitatively alter the physical
behavior. Unfortunately, this is not the case for disordered systems. The Einstein relation (64)
between the diffusion constant and the electrical conductivity is of fundamental importance. It
holds, however, only if the Vollhardt-Wölfle-Ward identity (21) is obeyed. Each perturbation
expansion for two-particle quantities breaks this identity in that a causal self-energy Σ cannot
be made compatible with a given approximate two-particle irreducible vertex Λ by fulfilling
eq. (21) [41]. Approximations where eq. (21) is broken are no longer conserving and the validity
of the continuity equation (62) cannot be guaranteed.
To make the perturbation theory for two-particle functions consistent and conserving we first
reconcile the two-particle irreducible vertex in the diagrammatic expansion with the one-electron
self-energy via the Ward identity in the best possible way. The full dynamical Ward identity can
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neither be used to determine the one-particle self-energy from the two-particle irreducible ver-
tex nor vice versa, since the vertex contains more information than the self-energy. The Ward
identity poses a restriction on the form of the two-particle irreducible vertex and generally
serves only as a consistency check and a guarantee that the macroscopic conservation laws are
obeyed. The Ward identity (21) for ω = 0 and q = 0 can nevertheless be used to determine the
imaginary part of the self-energy from the electron-hole irreducible vertex via

ImΣR
k (E) =

1

N

∑

k′

ΛRAkk′(E; 0,0) ImGR
k′(E) , (75a)

since both sides of this identity contain the same number of degrees of freedom and the equation
for the imaginary part of the self-energy can consistently be resolved for each energy E and
momentum k. The corresponding real part of the self-energy is then found from the Kramers-
Kronig relation

ReΣR
k (E) = Σ∞ + P

∫ ∞

−∞

dω

π

ImΣR
k (ω)

ω − E (75b)

that ensures analyticity and causality of the self-energy in the plane of complex energies beyond
the real axis.
Since we know that the full dynamical Ward identity cannot be fulfilled by the irreducible vertex
from the perturbation expansion we introduce a new physical irreducible vertex that we denote
by L. It will be connected with vertex Λ from the perturbation theory but will be made to obey
the full Ward identity, that is,

∆ΣRA
k (E;ω,q) =

1

N

∑

k′

LRAk+,k′+
(E,ω;q)∆GRA

k′ (E;ω,q) (76)

holds. Here we introduced the discontinuities ∆GRA
k (E;ω,q) = GR

k+
(E+) − GA

k−(E−) and
∆ΣRA

k (E;ω,q) = ΣR
k+

(E+)−ΣA
k−(E−), and denoted k± = k± q/2, E± = E ± ω/2.

The vertexLRAk+,k′+
(E,ω;q) is not directly accessible in diagrammatic approximations. The two-

particle vertex functions in perturbation expansion are represented by classes of diagrams with
sums over momenta in the whole two-particle Hilbert space. The output of the diagrammatic
expansion is an irreducible vertex Λkk′(E;ω,q) that does not generically comply with the Ward
identity (76) if the self-energy ΣR/A

k (E) is non-local, that is, depends on momentum k. Vertex
corrections that take into account the impact of the Ward identity on the irreducible vertex for
the given self-energy then must be introduced beyond the standard diagrammatic approach to
make the theory conserving. We therefore distinguish the physical vertex ΓRA obeying the
Bethe-Salpeter equation with the irreducible vertex LRA from the vertex Γ̃RA determined from
the perturbative vertex ΛRA via the corresponding Bethe-Salpeter equation (18).
We can make the approximations for the two-particle vertex Λkk′(E;ω,q) conserving by appro-
priately correcting its action in the momentum space. It is namely sufficient to correctly replace
the values of vertex Λ on a subspace on which its action is already predefined by the self-energy
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via the Ward identity. For this purpose we introduce a new correcting function measuring the
deviation of the given vertex ΛRA from the Ward identity [42]

Rk(E;ω,q) =
1

N

∑

k′

ΛRAk+k′+
(E;ω,q)∆Gk′(E;ω,q) − ∆Σk(E;ω,q) . (77)

This function vanishes in the metallic phase for ω = 0 and q = 0 due to the definition of the
self-energy (75). It is identically zero if the vertex Λkk′(E;ω,q) obeys the Ward identity. With
the aid of function Rk(E;ω,q) we construct a conserving electron-hole irreducible vertex [42]

LRAk+k′+
(E;ω,q) = ΛRAk+k′+

(E;ω,q)− 1

〈∆G(E;ω,q)2〉

[
∆Gk(E;ω,q)Rk′(E;ω,q)

+Rk(E;ω,q)∆Gk′(E;ω,q) − ∆Gk(E;ω,q)∆Gk′(E;ω,q)

〈∆G(E;ω,q)2〉 〈R(E;ω,q)∆G(E;ω,q)〉
]

(78)

that is manifestly compliant with the full Ward identity (76) for arbitrary ω and q. To shorten
the expression, we abbreviated the k sums: 〈∆G(E;ω,q)2〉 = N−1

∑
k∆Gk(E;ω,q)2 and

〈R(E;ω,q)∆G(E;ω,q)〉 = N−1
∑

kRk(E;ω,q)∆Gk(E;ω,q).
Function LRA is the desired physical irreducible vertex to be used in determining the physical
vertex ΓRA from which all relevant macroscopic quantities will be calculated. The conserving
vertex Γkk′(E;ω,q), determined from the Bethe-Salpeter equation with the conserving irre-
ducible vertex Lkk′(E;ω,q), generally differs from vertex Γ̃ (E;ω,q) obtained from the per-
turbative vertex Λkk′(E;ω,q). The two vertices are equal only when the difference function
Rk(E;ω,q) vanishes. Our construction guarantees that this happens for ω = 0 and q = 0, i.e.,

Γ̃RA
kk′ (E; 0,0) = ΓRA

kk′ (E; 0,0) , (79)

since the self-energy is determined from the two-particle vertex via eqs. (75). This means that
the vertex ΛRAkk′(E;ω,q) is directly related to the measurable macroscopic quantities only for
ω = 0, q = 0.
The physical irreducible vertex Lab(E;ω,q) can in this way be constructed to any approximate
irreducible Λab(E;ω,q) from diagrammatic perturbation theory. The continuity equation is
then saved and the density response displays a diffusion pole with a diffusion constant. The
isotropic diffusion constant is then expressed via a Kubo-like formula with the full two-particle
vertex [42]

πnFD =
1

N2

∑

k,k′

[
(q̂ · vk)|GR

k |2
[
Nδk,k′ + ΓRA

kk′ |GR
k′|2
]

×
[
ImGR

k′q̂ · vk′ + Im
(
GR

k′q̂ · ∇k′Σ
R
k′
)]

ImΣR
k′
]
, (80)

where q̂ is the unit vector pointing in the direction of the drifting electric force. All the fre-
quency variables are set zero, at the Fermi energy. This exact expression is the starting point for
the derivation of consistent approximations for the diffusion constant needed to reach quantita-
tive results.
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8 Conclusions

The coherent potential approximation was introduced and developed in the late sixties of the
last century. Initially it was restricted to the quantum mechanical problem of a particle in a
random lattice. The concept of a homogeneous coherent potential simulating the effect of the
fluctuating environment so that locally and in the long-time limit there is no difference between
the averaged and fluctuating environment proved useful beyond single-particle systems.
The first step in giving the coherent potential a more general meaning was understanding the
approximation in terms of Feynman diagrams. Using the functional integral as a generator of
Feynman diagrams then allowed for transfering CPA to many-body systems with arbitrary local
interaction or site-independent disorder. It appeared that CPA is another form of the cavity field
in which all single-loop corrections to tree diagrams are summed. The final framing of CPA was
achieved by introducing DMFT as the exact solution in the limit of quantum itinerant models in
infinite lattice dimensions.
The coherent potential approximation, its consistency and correct analytic behavior emerged
within DMFT in a new light as an exact solution in a special limit. The equations determin-
ing the coherent potential deliver also a mean-field solution of interacting models with elastic
scattering, i.e., where the energy is conserved during scattering events. Moreover, the thermo-
dynamic formulation of the CPA equations for the disordered Anderson and Falicov-Kimball
models revealed differences in the solutions of the two models for their response functions. It
also gave a proper understanding of the Hubbard-III approximation, rectifying its inconsistency.
The coherent potential approximation, unlike DMFT for the Hubbard model, is analytically
solvable. This is a huge advantage, since it allows for the full analytic control of the mean-
field behavior, including quantum criticality. Last but not least, CPA as a simpler DMFT may
also serve as a test arena for the reliability of approximations devised for the Hubbard model
where it is otherwise uncontrolled. The major restriction in the applicability of CPA is that the
equilibrium states are not Fermi liquids and their analytic properties are not directly transferable
to heavy-fermion systems.
Local mean-field approximations in whatever formulation are consistent only for the local vari-
ables or one-particle properties. Once we need to calculate the response of the extended system
to an external perturbation, we must go beyond DMFT. The non-local two-particle functions are
not uniquely defined in DMFT, since the limit to infinite dimensions is not interchangeable with
functional derivatives [22]. Then either the Ward identity or electron-hole symmetry is broken
for non-local response functions.
The ambiguity in the mean-field definition of non-local two-particle Green functions reflects a
severe problem of expansions around DMFT. In particular in the case of CPA, the expansion
around it fails to reproduce the Ward identity that is needed for the existence of the diffusion
pole in the density response function and the validity of macroscopic conservation laws. We
proposed a solution to this problem in disordered systems which opens a new and more consis-
tent framework to study systematically the vanishing of diffusion and Anderson localization. A
full solution of this problem for strongly correlated Fermi liquids is still to be found.
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[24] V. Janiš and D. Vollhardt, Int. J. Mod. Phys. B 6, 731 (1992)



DMFT & CPA 11.29

[25] L.M. Falicov and J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)

[26] U. Brandt and C. Mielsch, Z. Phys. B Condens. Matter 75, 365 (1989)
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