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1 Introduction: DMFT and beyond

In this lecture we give an introduction to the theoretical description of strongly correlated mate-
rials based on non-local extensions of dynamical mean-field theory (DMFT). This scheme com-
bines the numerically exact DMFT solution of an effective impurity problem with an analytical
non-local perturbation scheme. The frequency-dependent effective-impurity DMFT problem is
solved within the continuous-time quantum Monte Carlo (CT-QMC) scheme [1]. Therefore the
perturbation theory needs to be formulated in the action path integral formalism. We give a
brief introduction to the path integral over fermionic Grassmann fields and formulate a general
scheme for expansion around the DMFT solution using a special dual space transformation. We
discuss a general way to include nonlocal correlations beyond DMFT for generalized Hubbard
models, based on the dual-fermion [2] and the dual-boson approach [3].
Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [4]. It is determined
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transforming the hopping parameters to k-space, where
we obtain the normal “band structure” εk with band width W . If, on the other hand, only the
local part of the Hamiltonian is kept, i.e., the Hubbard interaction HU with interaction strength
U and the local term of Ht is given by an on-site energy ε0 only, the diagonalization of the
Hamiltonian is trivial again and reduces to the diagonalization of a single “Hubbard atom”.
The great success of the DMFT approach is related to its ability to numerically interpolate
between these two limits [5]. For the half-filled Hubbard model on an infinite-dimensional
Bethe lattice DMFT gives the exact description of the Mott-transition [6] between the weak-
coupling (U/W � 1) metallic state and the strong-coupling (U/W � 1) insulating param-
agnetic state [7]. In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the
self-consistent solution of an effective Anderson impurity problem with a single interacting
Hubbard atom (interaction strength U ) in a non-interacting fermionic bath, which mimics the
rest of the crystal. This impurity model, which is fully determined by the local hybridization
function ∆ν on fermionic Matsubara frequencies iνn is solved by the numerically exact CT-
QMC scheme and exact the local Green function gν is obtained. The DMFT self-consistency
condition for the hybridization function equates the local part of the lattice Green function and
the impurity Green function ∑

k

(
g−1ν +∆ν − εk

)−1
= gν ,

which shows that DMFT minimizes, in local sense, the |εk −∆ν | distance.
We can now think about how to incorporate nonlocal correlations beyond DMFT: since the
Hubbard and the Anderson-impurity model share the same interaction part, we can think of the
Hubbard model as the impurity model plus a residual term ∝ εk −∆ν and treat this perturba-
tively. Since this term is frequency dependent we need a novel perturbation theory based on the
action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [8] of an optimal reference system, but with a crucial difference. Here,
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Fig. 1: Schematic representation of the reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by afermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

not an interacting homogeneous electron gas, but an effective impurity model, tailored to the
problem of strong correlations, serves as the reference system, see Fig. 1. Since at zeroth or-
der of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, we are
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path integral can also be used to formulate the DMFT itself [5, 9]. Now, the separation
of local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied to
the single-particle (εk − ∆ν)-term [2]. This provides us with a new action. Moreover, it is
formally possible to integrate-out the original local degrees of freedom and in this way generate
an effective action in the transformed, so-called dual-fermion representation [2]. Note that inte-
grating out the local degrees of freedom is not just a formal step but can be achieved in practice,
by solving the impurity problem within the numerically exact CT-QMC method.

The dual action consists of a bare dual propagator (the non-local part of the DMFT Green func-
tion) G̃0

k,ν = [g−1ν + ∆ν − εk]−1 − gν , and a local but frequency-dependent effective potential
related to scattering processes of two, three, and more dual particles on the impurity site. The
simplest two-particle dual potential coincides with the fully connected part of the screened im-
purity interaction vertex γωνν′ , which can be calculated with the impurity CT-QMC solver as a
function of bosonic (ω) and fermionic (ν, ν ′) Matsubara frequencies. Normally, correlations
between three particles on the DMFT impurity site are much weaker than two-particle corre-
lations and can be ignored. The same applies to higher-order terms. One can think of the
dual-fermion formalism as an expansion in the order of local multi-particle correlation func-



10.4 Alexander Lichtenstein

tions. This means that “bare” interactions between dual fermions are related with the connected
part of the screened impurity vertex. Standard diagrammatic techniques can be applied for cal-
culations of the bold dual propagator G̃k,ν , which allows to obtain the nonlocal self-energy for
the original fermions [2] and to describe nonlocal correlations beyond the DMFT.
The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation (1). In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on average

over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by, e.g., ladder summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Path-integral for fermions

We first introduce a formalism of path-integration over fermionic fields [10]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [11]. Due to the Pauli
principle the many-body Hilbert space is spanned only by two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ†i operators
with anticommutation relations {ĉi, ĉ†j} = δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 (1)

ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 .

Moreover, the density operator and the Pauli principle take the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci:

ĉi |c〉 = ci |c〉 . (2)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from below and one can rewrite one of equation from Eq. (1) in the
following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the following multiplication rules [12]:

cicj = −cjci and c2i = 0 . (3)
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It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators

{c, ĉ} = {c, ĉ†} = 0 .

An arbitrary function of a Grassmann variable can be represented only by its first two Taylor
coefficients

f(c) = f0 + f1c . (4)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑

i ciĉ
†
i |0〉 . (5)

Let us show this for the simple case of one fermionic state:

ĉ |c〉 = ĉ(1− cĉ†) |0〉 = ĉ (|0〉 − c |1〉) = −ĉc |1〉 = c |0〉 = c |c〉 . (6)

One can also define a “left” coherent state 〈c| as the left-eigenstates of creations operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .

Note that new eigenvalues c∗i is just another Grassmann number and not a complex conjugate
of ci. The left coherent state can be obtained similarly to Eq. (5) as following

〈c| = 〈0| e−
∑

i ĉic
∗
i .

A general function of two Grassmann variables, analogously to Eq. (4), can be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (7)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with the “right-order” in such a derivative and remember the anti-
commutation rules, i.e.

∂

∂c2
c1c2 = −c1 .

For the case of a general two-variable function in Eq. (7) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(f01 − f11c∗) = −f11 = −

∂

∂c

∂

∂c∗
f(c∗, c) .

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists with the following rules [12]:∫

1 dc = 0 and
∫
c dc = 1
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which just show that integration over a Grassmann variable is equivalent to differentiation∫
... dc→ ∂

∂c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states is

〈c|c〉 = e
∑

i c
∗
i ci ,

which is easy to see for the case of one state

〈c|c〉 = (〈0| − 〈1| c∗) (|0〉 − c |1〉) = 1 + c∗c = ec
∗c.

An important property of coherent states is related to resolution of the unity operator∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉 〈c| = 1̂ =

∫∫
dc∗ dc

|c〉 〈c|
〈c|c〉

.

For simplicity we demonstrate this relation only for one fermion state:∫∫
dc∗ dc e−c

∗c |c〉 〈c| =
∫∫

dc∗ dc (1− c∗c) (|0〉 − c |1〉) (〈0| − 〈1| c∗) =

−
∫∫

dc∗ dc c∗c (|0〉 〈0|+ |1〉 〈1|) =
∑
n

|n〉 〈n| = 1̂ .

Matrix elements of normally ordered operators are very easy to calculate in a coherent basis by
operating of ĉ† to the states on the right and ĉ to the left ones

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 = H(c∗, c) e
∑

i c
∗
i ci (8)

Within the manifold of coherent states we can map the fermionic operators to functions of
Grassmann variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trance-formula” for arbitrary fermionic operators in normal
order (in one fermion notation):

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗ dc e−c

∗c 〈n| c〉 〈c| Ô |n〉 =

=

∫∫
dc∗ dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉 〈n| c〉 =
∫∫

dc∗ dc e−c
∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states comes from the commutation of the (c∗)
and (c) coherent states in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are now ready to write a partition function or the grand-canonical quantum ensemble with
H = Ĥ − µN̂ and inverse temperature β. We have to use the N -slices Trotter decomposition
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for the partition function in the interval [0, β) with imaginary times τn = n∆τ = nβ/N (n =

1, ..., N ), and insert N -times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗ dc e−c

∗c 〈−c| e−βH |c〉

=

∫
ΠN
n=1dc

∗
n dcn e

−∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
n dcn exp

(
−∆τ

N∑
n=1

[c∗n (cn − cn−1) /∆τ +H (c∗n, cn−1)]

)
.

In the continuum limit (N 7→ ∞)

∆τ

N∑
n=1

... 7→
∫ β

0

dτ ...

cn − cn−1
∆τ

7→ ∂τ

ΠN−1
n=0 dc

∗
n dcn 7→ D [c∗, c]

with antiperiodic boundary conditions for the fermionic Grassmann variables on an imaginary
time c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)

we end up with the standard path integral formulation of the quantum partition function

Z =

∫
D [c∗, c] exp

(
−
∫ β

0

dτ [c∗(τ)∂τc(τ) +H (c∗(τ), c(τ))]

)
. (9)

For later discussion we mention the Gaussian path integral for a non-interacting “quadratic”
fermionic action. For an arbitrary matrix Mij and Grassmann vectors J∗i and Ji one can calcu-
late analytically the following integral

Z0 [J
∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj+

∑N
i=1(c∗i Ji+J∗i ci) = det [M ] e−

∑N
i,j=1 J

∗
i (M

−1)ijJj .

To prove this relation one needs first to complete the square in order to eliminate J∗i and Ji and
expand the exponential function (only the N -th oder is non-zero):

e−
∑N

i,j=1 c
∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N

.

Finally, different permutations of c∗i and cj , and integration over the Grassmann variables gives
the detM -answer. As a small exercise we will check such an integral for first two many-particle
dimensions. For N = 1 it is trivial:∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c] (−c∗1M11c1) =M11 = detM
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and for N = 2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

1

2!

∫
D [c∗c] (−c∗1M11c1 − c∗1M12c1 − c∗2M21c1 − c∗2M22c2)

2 =M11M22 −M12M21 = detM .

For the shift (change) of variables in the path integral one uses the following transformation
with unit Jacobian: c→ c−M−1J and

c∗Mc− c∗J − J∗c =
(
c∗ − J∗M−1)M (

c−M−1J
)
− J∗M−1J .

Using the Gaussian path integral it is very easy to calculate any correlation function of a non-
interaction action (Wick-theorem):〈

cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J
∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

=M−1
ij

〈cicjc∗kc∗l 〉0 =
1

Z0

δ4Z0 [J
∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

=M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions in imaginary time. The Gaussian path integral over
bosonic fields is equal to inverse of the M -matrix determinant [10].

3 Functional approach

We introduce a general functional approach which will cover the Density-Functional Theory
(DFT), Dynamical Mean-Field Theory (DMFT), and Baym-Kadanoff (BK) theories [9, 13].
Let us start from the full many–body Hamiltonian describing electrons moving in the periodic
external potential of ions V (r) with the chemical potential µ and interacting via the Coulomb
repulsion U(r− r′) = 1/|r− r′|. We use the atomic units ~ = m = e = 1. In the field-operator
representation the Hamiltonian has the form

H =
∑
σ

∫
dr ψ̂†σ(r)

(
−1

2
52 + V (r)− µ

)
ψ̂σ(r) (10)

+
1

2

∑
σσ′

∫
dr

∫
dr′ ψ̂†σ(r)ψ̂

†
σ′(r

′)U(r− r′) ψ̂σ′(r
′)ψ̂σ(r).

We can always use the single-particle orthonormal basis set in solids φn(r) for example Wannier
orbitals with a full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, σ), and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

φn(r) ĉn (11)

ψ̂†(r) =
∑
n

φ∗n(r) ĉ
†
n .
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=
c G- +

Fig. 2: Representation of the full two-particle Green function in terms trivial products of single-
particle Green functions and the full vertex function Γ .

Going from fermionic operators to Grassmann variables {c∗n, cn}, we can write the functional
integral representation of the partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D [c∗, c] e−S (12)

S =
∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3 , (13)

where the one- and two-electron matrix elements are defined as

t12 =

∫
drφ∗1(r)

(
−1

2
52 + V (r)− µ

)
φ2(r) (14)

U1234 =

∫
dr

∫
dr′ φ∗1(r)φ

∗
2(r
′)U(r− r′)φ3(r)φ4(r

′)

and we use the following short definition of the sum:∑
1

... ≡
∑
im

∫
dτ ... (15)

The one-electron Green function is defined via a simple non-zero correlation function for fermions

G12 = −〈c1c∗2〉S = − 1

Z

∫
D [c∗, c]c1c

∗
2 exp(−S). (16)

The main problem of strongly interacting electronic systems is related to the fact that the higher
order correlation functions do not separate into a product of lower order correlation functions.
For example the two-particle Green function or generalized susceptibility (X) is defined in the
following form [14]

X1234 = 〈c1c2c∗3c∗4〉S =
1

Z

∫
D[c∗, c] c1c2c∗3c∗4 exp(−S), (17)

and can be expressed graphically through the Green functions and the full vertex function Γ1234

[15] (see Fig. (2))

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 . (18)

In the case of non-interacting electron systems, the high-order correlations X are reduced to the
antisymmetrized product of lower-order correlationsG, which would correspond to the first two
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terms (Hartree and Fock like), with the vertex function Γ in Eq. (18) equal to zero. In strongly
correlated electron systems the last part with the vertex is dominant and even diverges close to
electronic phase transitions.
The Baym–Kadanoff functional [13] gives the one–particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym–Kadanoff) we modify the action by introducing a source term J in the following form

S[J ] = S +
∑
12

c∗1J12c2 . (19)

The partition function Z, or equivalently the free energy of the system F, then becomes a func-
tional of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D [c∗, c]e−S

′[J ] . (20)

Variation with respect to this source function gives all correlation functions, for example the
Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (21)

If we use the definition of the generalized susceptibility as the second variation of the F [J ]
functional instead of Z[J ] we will get only the connected part of correlation the X-function
which is represented by the last term in Eq. (18).
The Baym–Kadanoff functional can be obtained by Legendre transform from variable J to G

F [G] = F [J ]− Tr (JG) . (22)

We can use the standard decomposition of the free energy F into the single particle part and the
correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (23)

wereΣ is single particle self-energy and Φ[G] is the correlated part of the Baym–Kadanoff func-
tional that is equal to the sum of all two-particle irreducible diagrams. In the stationary point
this functional gives the free energy of the system. In practice, Φ[G] is not known for interacting
electron systems, which is similar to the problem in the density functional theory. Moreover,
this general functional approach reduces to density-functional theory, if one only uses the diag-
onal part in space-time of the Green function, which corresponds to the one-electron density

n1 = G12 δ12 = 〈c∗1c1〉S , (24)

with the Kohn-Sham potential VKS = Vext+VH+Vxc playing the role of the “constrained field”
J . Here Vext is external potential and VH is a Hartree potential. In principle, the exchange-
correlation potential Vxc is known only for the homogeneous electron gas, therefore in all prac-
tical applications one uses a so-called local density approximation to DFT. In this case the DFT
functional defined in the following way

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] , (25)
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where T0 is the kinetic energy of the non-interacting system. Finally, if we define the total
electron density as

n(r) =
∑
i

φ∗i (r)φi(r)

the local density approximation to DFT reads

T0[n] + Vext[n] =
∑
i

∫
drφ∗i (r)

(
−1

2
52 + Vext(r)− µ

)
φi(r) (26)

VH [n] =
1

2

∫
drn(r)U(r− r′)n(r′) (27)

Vxc[n] =

∫
drn(r)ε[n(r)] , (28)

where ε(n) is the exchange-correlation energy density for homogeneous electron gas, which
can be calculated with quantum Monte Carlo [16].
In the DFT scheme we lose information about the non-equal-time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourself only to the ground state energy of the many-electron system. Moreover, we also
lose also information about all collective excitations in solids, such as plasmons or magnons,
which can be obtained from the generalized susceptibility or from the second variation of the
free-energy.
One can probably find the Baym–Kadanoff interacting potential Φ[G] for simple lattice models
using the quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice sim-
ulations this numerically exact solution of electronic correlations is not possible. On the other
hand, one can obtain the solution of local interacting quantum problems in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of the many electron vertex and obtain in a self-consistent way an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [2] which help us to separate the local fluctuations in a many-body system and
show a perturbative way to go beyond the DMFT approximations.

4 Dual Fermion approach for non-local correlations

We will consider here the simplest local Hubbard-like interaction vertex U . A generalization
to the multi-orbital case is straightforward [17]. All equations will be written in matrix form,
giving the idea of how to generalize a DF scheme to the multiorbital case. The general strategy
for separating the local and non-local correlation effects is associated with the introduction of
auxiliary fermionic fields that couple separated local correlated impurities models back to the
lattice [2].
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We rewrite corresponding original action from Eq. (12) in Matsubara space as a sum of the
non-local one-electron contribution with energy spectrum εk and the local interaction part U :

S[c∗, c] = −
∑
kνσ

c∗kνσ(iν + µ− εk) ckνσ +
∑
i

U n∗i↑ni↓ , (29)

where ν = (2n + 1)π/β, (ω = 2nπ/β), n = 0,±1, ... are the fermionic (bosonic) Matsubara
frequencies, β is inverse temperature, and µ is a chemical potential. The index i labels the
lattice sites, m refers to different orbitals, σ is the spin projection, and the k-vectors are quasi-
momenta. In order to keep the notation simple, it is useful to introduce the combined index
α ≡ {m,σ}. In the following, translational invariance is assumed for simplicity, although a
real space formulation is straightforward. The local part of the action, SU, may contain any
type of local multi orbital interaction.
In order to formulate an expansion around the best possible auxiliary local action, a quantum
impurity problem is introduced

Sloc[c
∗, c] = −

∑
ν ,σ

c∗νσ (iν + µ−∆ν) cνσ + U n∗i↑ni↓ , (30)

where∆ν is the effective hybridization matrix describing the coupling of the impurity to an aux-
iliary fermionic bath. The main motivation for rewriting the lattice action in terms of a quantum
impurity model is that such a reference system can be solved numerically exactly for an arbi-
trary hybridization function with CT-QMC methods [1]. Using the locality of the hybridization
function ∆ν , the lattice action Eq. (29) can be rewritten exactly in terms of individual impurity
models and the effective one-electron coupling (εk −∆ν) between different impurities

S[c∗, c] =
∑
i

Sloc[c
∗
i , ci] +

∑
kνσ

c∗kνσ (εk −∆ν) ckνσ . (31)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to the
second term in Eq. (31) is very hard to treat, even perturbatively, since the impurity action is
non-Gaussian and on cannot use of Wick’s theorem. The main idea of a dual fermion transfor-
mation is the change of variables from (c∗, c) to weakly correlated Grassmann fields (f ∗, f) in
the path integral representation of the partition function, Eq. (12), followed by a simple pertur-
bation treatment. The new variables are introduced through the following Hubbard-Stratonovich
transformation

exp
(
c∗αbα(M

−1)αβbβcβ
)
=

1

detM

∫
D[f ∗, f ] exp

(
−f ∗αMαβfβ − c∗αbαfα − f ∗βbβcβ

)
. (32)

In order to transform the exponential of the bilinear term in Eq. (31), we choose the matrix Mαβ

and scaling function bα in the following way [2]

M = g−1ν (∆ν − εk)−1 g−1ν , and b = g−1ν , (33)

where gν is the local, interacting Green function of the impurity problem:

gν = −〈cνc∗ν〉loc = −
1

Zloc

∫
D[c∗, c] c c∗ exp

(
− Sloc[c

∗, c]
)
. (34)
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Fig. 3: From the lattice model (left) to the real-space DMFT (middle) and following up with the
non-local DF perturbation (right)

With this choice, the lattice action transforms to

S[c∗, c, f ∗, f ] =
∑
i

Sisite +
∑
νkσ

f ∗νkσ[g
−1
ν (∆ν − εk)−1 g−1ν ]fνkσ . (35)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Sisite[c
∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑
σ

f ∗iνσ g
−1
ν ciνσ + c∗iνσ g

−1
ν fiνσ . (36)

Since gω is local, the sum over all states labeled by k could be replaced by the equivalent
summation over all sites by a change of basis in the second term. The crucial point is that
the coupling to the auxiliary fermions is purely local and Ssite decomposes into a sum of local
terms. The lattice fermions can therefore be integrated out from Ssite for each site i separately.
This completes the change of variables:∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) = Zloc exp

(
−
∑
ν σ

f ∗iνσ g
−1
ν fiνσ − Vi[f ∗i , fi]

)
. (37)

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].
The choice (33) ensures a particularly simple form of this potential. An explicit expression
is found by expanding both sides of Eq. (37) and equating the resulting expressions order by
order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex:

V [f ∗, f ] =
1

4
Σ{νσ}γ1234f

∗
1 f
∗
2 f4f3 , (38)

where the combined index 1 ≡ {νσ} comprises frequency, spin, and orbital degrees of freedom.
γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity
problem. It is given by

γ1234 = g−11 g−12

[
χ1234 − χ0

1234

]
g−13 g−14 , (39)
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Fig. 4: Diagrams contributing to the dual self-energy Σ̃

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c∗3c∗4〉loc =
1

Zloc

∫
D[c∗, c] c1c2c∗3c∗4 exp

(
− Sloc[c

∗, c]
)
. (40)

The disconnected part reads

χ0
1234 = g1g2(δ14δ23 − δ13δ24). (41)

The single- and two-particle Green functions can be calculated using the CT-QMC algorithms [1].
After integrating out the lattice fermions, the dual action depends on the new variables only

S̃[f ∗, f ] = −
∑
νkσ

f ∗νkσ[G̃
0
ω(k)]

−1fνkσ +
∑
i

Vi[f
∗
i , fi] (42)

and the bare dual Green function is found to be

G̃0
ν(k) =

(
g−1ν +∆ν − εk

)−1 − gν , (43)

which involves the local Green function gν of the impurity model.
Up to now, Eqs. (42) and (43) are merely a reformulation of the original problem. In practice,
approximate solutions are constructed by treating the dual problem perturbatively. Several di-
agrams that contribute to the dual self-energy are shown in Fig. 4. These are constructed from
the impurity vertices and the dual Green functions as lines. The first diagram is purely local,
while higher orders contain nonlocal contributions, e.g. the second diagram in Fig. 4. In prac-
tice, approximations to the self-energy are constructed in terms of skeleton diagrams. The lines
shown in Fig. 4 are therefore understood to be fully dressed propagators. The use of skeleton
diagrams is necessary to ensure the resulting theory to be conserving in the Baym-Kadanoff
sense [13], i.e., to fulfill the basic conservation laws for energy, momentum, spin, and particle
number. Finally, we can understand the general dual fermion scheme (Fig. 5) as a two-step
process for the k-dependent self-energy. First we need to find an optimal hybridization func-
tion ∆ν which defines an effective impurity model. Using the numerically exact Monte-Carlo
impurity solver we can obtained the local Green function gν which, together with the hopping
parameters, defines the non-local dual Green function G̃0

ν(k) and interaction vertex γων,ν′ which
can be used in renormalized dual perturbation theory [2]. The hybridization function ∆, which
so far has not been specified, allows to optimize the starting point of the perturbation theory and
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Fig. 5: General view of the dual-fermion approach: An effective impurity model is defined by
the hybridization function ∆ν . It can be exactly solved within the CT-QMC scheme, resulting
in a single particle Green function gν and a full connected vertex γων,ν′ with two fermionic (ν)
and one bosonic (ω) Matsubara frequencies. Based on this local information one can perform
an efficient lattice perturbation expansion for the dual Green function G̃0

ν(k).

should be chosen in an optimal way. The condition of the first diagram (Fig. 4) as well as all
local diagrams with higher order correlation functions in the expansion of the dual self-energy
to be equal to zero at all frequencies, fixes the hybridization. This eliminates the leading order
diagrammatic correction to the self-energy and establishes a connection to DMFT, which can
be seen as follows: Since the γ vertex is local, this condition amounts to demanding that the
local part of the dual Green function be zero∑

k

G̃ν(k) = 0 . (44)

The simplest nontrivial approximation is obtained by taking the leading-order correction, the
first diagram in Fig. 4, evaluated with the bare dual propagator (43). Using the expression for
the DMFT Green function [5]

GDMFT
ν (k) =

(
g−1ν +∆ν − εk

)−1
, (45)

it immediately follows that (44) evaluated with the bare dual Green function is exactly equiva-
lent to the DMFT self-consistency condition for ∆ω∑

k

GDMFT
ν (k) = gν . (46)

In the limit of infinitely large lattice connectivity the DMFT scheme becomes exact with the
local self-energy [5]. The DMFT approximation for real lattice models appears to be one of the
most successful many body schemes for realistic multi orbital systems [9]. Since it involves
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the exact solution of the many-body multi-orbital impurity model Eq. (34) all local quantum
fluctuations of different orbitals, spins, and charges are included in this scheme.
When diagrammatic corrections are taken into account and the first diagram is evaluated with
the dressed propagator G̃, the condition (44) will in general be violated. It can be enforced
by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite
partial series of all local diagrams starting from the first term in Fig. 4. These contributions are
effectively absorbed into the impurity problem. Note that such an expansion is not one around
DMFT, but rather around an optimized impurity problem.
The only difference between a DMFT and a DF calculation are the diagrammatic corrections
which are included into the dual Green function. To this end, the local impurity vertex γ has
to be calculated in addition to the Green function in the impurity solver step. Numerically, the
self-energy is obtained in terms of skeleton diagrams by performing a self-consistent renormal-
ization as described below. Once an approximate dual self-energy is found, the result may be
transformed back to a physical result in terms of lattice fermions using exact relations.
The action (42) allows for a Feynman-type diagrammatic expansion in powers of the dual po-
tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [14].
An extension of these rules to include generic n-particle interaction vertices is straightforward.
Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-
tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As
simplest example we can write schematically the first self-energy correction of the diagram in
Fig. 4 which contains a single closed loop

Σ̃
(1)
12 = −T

∑
34

γ1324G̃
loc
43 , (47)

where G̃loc = (1/Nk)
∑

k G̃(k) denotes the local part of the dual Green function. The second-
order contribution represented in Fig. 4 contains two equivalent lines and one closed loop and
hence is k-dependent

Σ̃
(2)
12 (k) = −

1

2

(
T

Nk

)2∑
k1k2

∑
345678

γ1345G̃57(k1)G̃83(k2)G̃46(k+ k2 − k1)γ6728 . (48)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform. After calculating the best possible
series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function
matrix for the original fermions using the following simple transformation [3]

Gν(k) =

[(
gν + gνΣ̃ν(k)gν

)−1
+∆ν − εk

]−1
, (49)

which is a useful generalization of the DMFT Green function (see Eq. (45)) to include the non-
local correlation effects. One can see that the dual self-energy plays the role of an effective
T -matrix for the exactly solvable local problem.
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5 Dual Boson approach for non-local interactions

Many important effects in the physics of correlated systems based on non-local interactions in
solids are related with the consistent description of collective excitation (plasmons, magnons,
orbitons etc.) which can strongly affect the original electronic degrees of freedom. Using the
first-principles constrained-RPA scheme [18] one can obtained non-local interaction parameters
for the correlated subspace screened by broad-bands of conducting electrons. The simplest
effective Hamiltonian for such an extended Hubbard model reads

S = −
∑
kνσ

c†kνσ(iν + µ− εk) ckνσ +
1

2

∑
qω

Uqn
∗
qωnqω . (50)

where the Grassmann variables c†qν (cqν) correspond to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ν, and we skip the spin-indices for
simplicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-
local long-range Coulomb interactions, respectively. The screened Coulomb interaction can be
a frequency dependent Uqω as in c-RPA, which does not produce any problems as one can see
later. For simplicity we include only charge fluctuations which are given by the complex bosonic
variable nqω =

∑
kνσ(c

∗
kνck+q,ν+ω − 〈c∗kνckν〉δqω). We do not include exchange interactions in

the Hamiltonian as well as local spin degrees of freedom, which can be done with some caution
for vector spin boson case [19]. Moreover we will consider only a one-band model but keep
the matrix form of all equations for simple generalization to cases of few orbitals (bands). The
chemical potential µ defines the average number of electrons per site. Finally, εk is the Fourier
transform of the hopping integral tij between different sites.
The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. In addition to the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for the consideration of strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions S(i)

ref defined by hybridization function ∆ν with screened local interaction U→ and a
non-local remaining part S̃

S =
∑
i

S
(i)
ref +∆S, (51)

which are given by the following explicit relations

Sref = −
∑
νσ

c†νσ(iν + µ−∆ν)cνσ +
1

2

∑
ω

Uω ρ∗ωρω ,

∆S =
∑
νkσ

c†νkσ(εk −∆ν)cνkσ +
1

2

∑
qω

(Uq − Uω) ρ∗qωρqω . (52)

The local bare interaction of the impurity model is then equal to Uω = Uω +Λω and it is easy to
see that Uq−Uω = Vq−Λω which makes the method independent of the U–V separation. The
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Fig. 6: General view on dual-fermion approach: effective impurity model defined by fermionic
hybridization function∆ν and bosonic screened interactions Λω. It can be exactly solved within
CT-QMC scheme, resulting in electronic local Green function gν and bosonic local susceptibil-
ity χω as well as full connected vertex γων,ν′ and electron-boson vertex λνω. Based on this local
information one can performed an efficient lattice perturbation expansion for the dual Green
function G̃kν and dual boson propagator W̃qω.

impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green function gν , susceptibility χω, and renormalized interactionWω as

gν = −〈cνc∗ν〉imp ,

χω = −〈ρωρ∗ω〉imp , (53)

Wω = Uω + UωχωUω ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of an efficient perturbation scheme for∆S in the action
formalism. In addition to the fermionic Hubbard-Stratonovich transformation Eq. (32) on the
first term (εk − ∆ν) c

†
νkσcνkσ, which give the dual fermion variables f †νkσ, fνkσ, we perform a

bosonic transformation√
det[Λω − Vq]e

1
2

∑
qω
ρ∗qω [Λω−Vq]ρqω

=

∫
D[φ] e

− 1
2

∑
qω
{φ∗qω [Λω−Vq]−1φqω+ρ

∗
ωφω+φ

∗
ωρω}

, (54)

and we use that Uω − Uq = Λω − Vq. Note that caution should be taken for convergence
problem of the integral over the new dual variable φ̃which does not affect the final equations [3].
Rescaling the bosonic fields φqω as φqωα

−1
ω and integrating out the original degrees of freedom

c† and c we arrive at the dual action

S̃ = −
∑
kν

f ∗kνG̃
−1
0 fkν −

1

2

∑
qω

φ∗qωW̃
−1
0 φqω + Ṽ (55)
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with the bare dual fermion-boson propagators

G̃0 = (G−1ref,ν +∆ν − εk)−1 − gν = GE − gν , (56)

W̃0 = α−1ω
(
[Uq − Uω)−1 − χω

]−1
α−1ω = WE −Wω , (57)

and the dual interaction term Ṽ . The explicit form of the dual interaction can be obtained by
expanding the c† and c dependent part of partition function in an infinite series and integrating
out these degrees of freedom. The two first terms in Ṽ are given by

Ṽ =
1

4

∑
νν′ω

γνν′ω f
∗
ν f
∗
ν′fν+ωfν′−ω +

∑
νω

(λνω f
∗
ν fν+ωφ

∗
ω + h.c.). (58)

We define the three-point electron-boson vertex λνω in the following way

λνω = g−1ν g−1ν+ωα
−1
ω 〈cνc∗ν+ωρω〉loc , (59)

where αω = Wω/Uω = (1 + Uωχω) is the local renormalization factor. The four-point vertex
function γνν′ω can be determined similarly to the dual fermion section. Then, the dual Green
function G̃kν = −〈fkνf ∗kν〉 and renormalized dual interaction W̃qω = −

〈
φqωφ

∗
qω

〉
, as well as

dual self-energy Σ̃kν and polarization operator Π̃qω, can be obtained diagrammatically [20].
These dual Green function have the following relation

G̃−1kν = G̃−10 − Σ̃kν , (60)

W̃−1
qω = W̃−1

0 − Π̃qω . (61)

Finally, the Green function Gkν and renormalized interaction Wqω of the original model can be
exactly expressed in terms of dual quantities as

G−1kν = G−1E −Σ ′kν , (62)

W−1
qω = W−1

E −Π
′

qω , (63)

where the non-local self-energy and polarization operator introduced beyond EDMFT are

Σ
′

kν =
Σ̃kν

1 + gνΣ̃kν

, (64)

Π
′

qω =
Π̃qω

1 +WωΠ̃qω

. (65)

The dual-boson self-consistency conditions reads [3]∑
k

Gkν = gν , (66)∑
q

Wqω =Wω . (67)

The DB relations up to this point are exact and derived without any approximations. It is
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Fig. 7: Second order approximation for dual-boson scheme with triangular electron-boson
vertex (λνω), dual-boson wavy line (W̃qω) and dual-fermion directed line (G̃kν): (Left) Electron
self-energy (Σ̃kν), (Right) Boson self-energy (Π̃qω).

worth mentioning, that the non-interacting dual theory (Ṽ = 0) is equivalent to EDMFT. How-
ever, even in the weakly-interacting limit of the original model, U → 0, the fermion-boson
vertex λνω is non-zero. Thus, the Dual Boson formalism explicitly shows, that corrections to
EDMFT are not negligible. Therefore, the dynamical mean-field level is insufficient for describ-
ing non-local bosonic excitations, because the interactions between the non-local fermionic and
bosonic degrees of freedom are always relevant. The simplest approximation for Σ̃kν and Π̃qω

related with second oder perturbation theory are presented in (Fig. 7). In principle one can
used so-called bold diagrammatic Monte Carlo method to perform the summation of the most
important contributions to the dual fermion and boson self-energy, similar to first attempts for
dual-fermion action [21].

6 Numerical results

We present now two examples of recent calculations using dual-fermion and dual-boson meth-
ods. First, we are able to conduct a realistic dual-fermion study of the interaction of electrons
and paramagnons in the strongly correlated sodium cobaltate NaxCoO2 close to the in-plane
ferromagnetic order at x = 0.7 [22]. Sodium cobaltate consists of triangular CoO2 planes,
subject to strong electronic correlations, that are held together by Na ions in between. Using a
tailored one-band description of the low-energy cobaltate physics, we derived a realistic DFT-
based dispersion, applied a proper Hubbard U = 5 eV and solved for the local and nonlocal
correlations by the dual-fermion framework (see [22] for details). And indeed, for x = 0.7 an
additional anti-bound state is detected close to Γ , split off from the renormalized quasiparticle
dispersion (Fig. 8a). In terms of physics, it corresponds to the interaction of renormalized elec-
trons with strong ferromagnetic fluctuations. The resulting emerging excitation is a so-called
spin polaron [22]. Hence besides refinements of the DMFT-determined electronic spectrum,
the inclusion of nonlocal correlations may be important to reveal more complex excitations
with possible relevance for future materials science.
The density of states at x = 0.67 (Fig. 8b), shows a striking difference between DMFT and
DF results. In DMFT, the quasiparticle peak is considerably larger and the QP weight Z is
significantly enhanced compared to the case of low doping. This is expected, since Z ≈ 1

should only hold far away from half-filling towards the opposite (band-insulating) endpoint
x = 1. We further see that the upper Hubbard band has completely dissolved in the DMFT
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Fig. 8: The NaxCoO2 system close to x = 0.7 for electron-paramagnon interactions. (Left) Ef-
fective one-band dispersion as obtained by the dual-fermion method. (Right) Spectral function
in the DMFT and DB scheme. Crosses mark a model spin-polaron dispersion (from [22]).

perspective. In DF, on the contrary, the QP peak close to Γ is strongly renormalized. The
spectral function additionally exhibits a broad sideband excitation at ω ∼ 0.3 − 0.4 eV. By
restricting the DF calculation to the charge channel only, this sideband excitation disappears.
This is a strong indication that this excitation is of magnetic origin.

Despite the successes ofGW+EDMFT [23,24], the method does not provide a completely valid
description of plasmons. This is due to an inconsistent treatment of the single and two-particle

 0
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Fig. 9: Inverse dielectric function (Left) and density of states (Right) of the extended 2d Hubbard
model with long-range Coulomb interaction as a function of momentum and energy, for three
different values of the effective on-site interaction U∗ (from [25]).
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properties, which breaks local charge conservation and gauge invariance. The problem gen-
erally occurs when working with renormalized Green functions [13], but does not include the
vertex corrections. In the case of the local, frequency-dependent self-energy of EDMFT, ver-
tex corrections from a local but frequency dependent irreducible vertex are necessary to fulfill
the Ward identity. In the dual boson approach, they can be included via non-local polarization
corrections, which are constructed diagrammatically. The resulting polarization vanishes in the
long wavelength limit at finite frequencies, as required by local charge conservation [3, 20].
It therefore becomes possible to study the effect of strong correlations on the plasmon spec-
tra. We showed that the two-particle excitations exhibit both renormalization of the dispersion
and spectral weight transfer [25]. Fig. 9 shows the inverse dielectric function −Im ε−1q (ω) of
2d surface plasmons in the presence of a long-range interaction U(q) = U + Vq. For weak
interactions one observes a broad particle-hole continuum and the expected

√
q dependence

of the 2d plasmon dispersion at small q. As the interaction increases, the plasmon dispersion
ω2
p(q) ≈ αV0q is renormalized (α is decreased). Two branches are clearly visible in the spec-

trum. The lower branch can be associated with particle-hole excitations between a Hubbard
band and the quasiparticle peak, while the upper branch stems from excitations between the
Hubbard bands. Spectral weight is transferred from the lower to the upper branch as the inter-
action increases. Above a critical effective onsite interaction of U∗ ∼ 2.4 the system is a Mott
insulator. In this state a two-particle excitation corresponds to the creation of a doublon and a
holon. Such an excitation is highly localized, leading to a weakly dispersing band at energy U∗.
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