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1 Introduction

Models of strongly correlated systems have been one of the most intensively studied theoretical
subjects in the last two decades, stimulated at first by the discovery of compounds supercon-
ducting at high-temperatures and ever since by the emergence of various novel materials and
phenomena which could be traced back to strongly correlated electrons in these systems. Re-
cently, cold atoms in optical lattices offer a different realization of strongly correlated quantum
entities, whereby these systems can be even tuned closer to theoretical models.
One of the most straightforward methods to numerically deal with the lattice (discrete) models
of correlated particles, which are inherently many-body (MB) quantum systems, is exact diag-
onalization (ED) of small-size systems. In view of the absence of well-controlled analytical
methods, the ED method has been employed intensively to obtain results for static and dynami-
cal properties of various models with different aims: a) to search and confirm novel phenomena
specific to strongly correlated systems, b) to test theoretical ideas and analytical results, c) to
get reference results for more advanced numerical techniques.
MB quantum lattice models of interacting particles are characterized by the dimension of the
Hilbert space given by the number of basis states Nst ∝ KN that is in turn exponentially
increasing with the lattice sizeN , whereK is the number of local quantum states. It is therefore
clear that ED methods can treat fully only systems with limited Nst, i.e., both K and N must
be quite modest.
Among the ED approaches the full ED within the Hilbert space of the model Hamiltonian,
yielding all eigenenergies and eigenfunctions, is the simplest to understand, most transparent,
and easy to implement. In principle it allows the evaluation of any ground state (g.s.) property as
well as finite temperature T > 0 static or dynamic quantities, at the expense of a very restricted
Nst. In spite of that, it represents a very instructive approach and also remains essentially the
only practical method when all exact levels are needed, e.g., for studies of level statistics.
Lanczos-based ED methods have already a long history of applications since Cornelius Lanc-
zos [1] proposed the diagonalization of sparse matrices using the iterative procedure, allowing
for much bigger Hilbert spacesNst relative to full ED. The Lanczos diagonalization technique is
at present a part of standard numerical linear algebra procedures [2,3] and as such in solid state
physics mainly used to obtain the g.s. energy and wavefunction and the corresponding expec-
tation values. The approach has been quite early-on extended to calculation of the dynamical
response functions within the g.s. [4]. The method has been in the last 20 years extensively
used in connection with models related to high-Tc materials, for which we can refer to an ear-
lier overview [5].
Here we focus on recent developments of ED-based and Lanczos-based methods. The ba-
sics of the Lanczos method are presented in Sec. 2 and its application for g.s. properties in
Sec. 3. One of the already established generalizations is the finite-temperature Lanczos method
(FTLM) [6–8], reviewed in Sec. 4, which allows for the evaluation of T > 0 static and dynamic
properties within simplest models. Several extensions and modifications of the latter have been
introduced more recently, in particular the low-temperature Lanczos method (LTLM) [9] and
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the microcanonical Lanczos method (MCLM) [10], particularly applicable within the high-T
regime. Recently, there is also quite an intensive activity on studies of real-time evolution of
correlated systems, both under equilibrium and non-equilibrium conditions that can be simu-
lated using the ED and Lanczos-based methods, as discussed in Sec. 5.

2 Exact diagonalization and Lanczos method

2.1 Models, geometries, and system sizes

ED-based methods are mostly restricted to simple models with only few local quantum states
K per lattice site in order to reach reasonable system sizes N . Consequently, there are only
few classes of MB models that so far exhaust the majority of ED and Lanczos-method stud-
ies, clearly also motivated and influenced by the challenging physics and relevance to novel
materials and related experiments.
To get some feeling for the available sizes reachable within ED-based approaches, it should be
kept in mind that in full ED routines the CPU time scales with the number of operations Op ∝
N3
st, while the memory requirement is related to the storage of the whole Hamiltonian matrix

and all eigenvectors, i.e., Mem ∝ N2
st. This limits, at the present stage of computer facilities,

the full ED method to Nst < 2. 104 MB states. On the other hand, using Lanczos-based
iterative methods for the diagonalization of sparse matrices (Hamiltonians), CPU and memory
requirements scale as Op,Mem ∝ Nst, at least in their basic application, to calculate the g.s.
and its wavefunction. In present-day applications this allows the consideration of much larger
basis sets, i.e., Nst < 109. Still, lattice sizes N reached using the Lanczos technique remain
rather modest, compared to some other numerical approaches such as DMRG and quantum-
Monte-Carlo QMC methods, if the full Hilbert basis space relevant for the model is used.
The simplest nontrivial class of MB lattice models are spin models, the prototype being the
anisotropic Heisenberg model for coupled S = 1/2 spins,

H =
∑
〈ij〉α

Jααij Sαi S
α
j , (1)

where the sum 〈ij〉 runs over pairs of lattice sites with an arbitrary interaction Jααij (being in
principle anisotropic) and Sαi are the components of the local S = 1/2 operator. The model
has just K = 2 quantum states per lattice site and therefore allows for biggest possible N in
the ED-based approaches, where Nst ∝ 2N basis states. To reduce Nst as many symmetries
and good quantum numbers as practically possible are used to decompose the Hamiltonian into
separate blocks. Evident choices are sectors with the (z-component of) total spin Sztot and the
wavevector q for systems with periodic boundary conditions, but also rotational symmetries of
particular lattices have been used. In this way system sizes up to N ∼ 36 (for the largest and
most interesting sector Sztot = 0) have been reached so far using the Lanczos technique without
any basis reduction.
On the basis of this simple model one can already discuss the feasibility of Lanczos-based
methods with respect to other numerical quantum MB methods. For the g.s. of 1D spin systems
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more powerful methods allowing for much bigger systems are DMRG and related approaches.
For unfrustrated models in D > 1 QMC methods are superior for the evaluation of static quan-
tities at any T . Still, Lanczos-based methods become competitive or at least are not superseded
for frustrated spin models (where QMC can run into the minus-sign problem) or for dynamical
properties at T > 0.
Next in complexity and very intensively studied is the t-J model, representing strongly corre-
lated itinerant electrons with an antiferromagnetic (AFM) interaction between their spins

H = −
∑
〈ij〉s

(
tij c̃

†
jsc̃is + H.c.

)
+ J

∑
〈ij〉

Si · Sj , (2)

where due to the strong on-site repulsion doubly occupied sites are forbidden and one is dealing
with projected fermion operators c̃is = cis(1 − ni,−s). The model can be considered as a good
microscopic model for superconducting cuprates, which are doped Mott insulators, and has
therefore been one of the most studied models using the Lanczos method [5]. For a theoretical
and experimental overview of Mott insulators and metal-insulator transitions see Ref. [11]. It
has K = 3 quantum states per lattice site and, besides Sztot and q, also the number of electrons
Ne (or more appropriately the number of holes Nh = N − Ne) are the simplest quantum
numbers to implement. Since the model reveals an interesting physics in D > 1, the effort
was in connection with high-Tc cuprates mostly concentrated on the 2D square lattice. Here
the alternative numerical methods have more drawbacks (e.g., the minus sign problem in QMC
methods due to the itinerant character of the fermions) so that Lanczos-based methods are still
competitive, in particular for getting information on T > 0 dynamics and transport. The largest
systems considered with the Lanczos method so far are 2D square lattices with N = 32 sites
and Nh = 4 holes [12].
Clearly, one of the most investigated problems within the MB community is the standard single-
band Hubbard model, which has K = 4 states per lattice site. Due to the complexity Nst ∝ 4N

the application of ED and Lanczos-based method is already quite restricted reaching so far
N = 20 sites [13] requiring already Nst ∼ 109 basis states. The model is also the subject
of numerous studies using more powerful QMC method and various cluster dynamical-mean-
field-theory (DMFT) methods for much larger lattices so Lanczos-based approaches have here
more specific goals.
Since reachable lattices sizes for the above mentioned models are rather small it is important to
properly choose their geometries. This is not a problem for 1D models, but becomes already
essential for 2D lattices, analyzed in connection with novel materials, in particular high-Tc
cuprates and related materials. In order to keep periodic boundary conditions for 2D square
lattices the choice of Pythagorean lattices with N = λ2x + λ2y with λx, λy [14] has significantly
extended available sizes. Some frequently used ones are presented in Fig. 1. Taking into account
only even N , such lattices include N = 8, 10, 16, 18, 20, 26, 32, and 36 sites. While the unit
cells of such lattices are squares, it has been observed that they are not always optimal with
respect to the number of next-nearest and further nearest neighbors. It has been claimed and
partly tested that better result are obtained with slightly deformed lattices (still with periodic
boundary conditions) which at the same time offer an even larger choice of sizes [15].
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Fig. 1: Some tilted clusters used in 2D square-lattice studies

2.2 Lanczos diagonalization technique

The Lanczos technique is a general procedure to transform and reduce a symmetric Nst × Nst

matrixA to a symmetricM×M tridiagonal matrix TM . From the chosen initialNst-dimensional
vector v1 one generates an orthogonal basis of {v1, · · · ,vM} vectors which span the Krylov
space {v1,Av1, · · · ,AM−1v1} [1–3, 16].
In usual applications for the quantum MB system defined with Hamiltonian H the Lanczos
algorithm starts with a normalized vector |φ0〉, chosen as a random vector in the relevant
Hilbert space with Nst basis states. The procedure generates orthogonal Lanczos vectors LM =

{|φm〉 | m = 0 . . .M} spanning the Krylov space {|φ0〉, H|φ0〉, · · · , HM |φ0〉}. Steps are as
follows: H is applied to |φ0〉 and the resulting vector is split in components parallel to |φ0〉, and
normalized |φ1〉 orthogonal to it, respectively,

H|φ0〉 = a0|φ0〉+ b1|φ1〉. (3)

Since H is Hermitian, a0 = 〈φ0|H|φ0〉 is real, while the phase of |φ1〉 can be chosen so that b1
is also real. In the next step H is applied to |φ1〉,

H|φ1〉 = b′1|φ0〉+ a1|φ1〉+ b2|φ2〉, (4)

where |φ2〉 is orthogonal to |φ0〉 and |φ1〉. It follows also b′1 = 〈φ0|H|φ1〉 = b1. Proceeding
with the iteration one gets in i steps

H|φi〉 = bi|φi−1〉+ ai|φi〉+ bi+1|φi+1〉, 1 ≤ i ≤M, (5)

where in Eq. (5) by construction there are no terms involving |φi−2〉 etc. By stopping the it-
eration at i = M and setting bM+1 = 0, the Hamiltonian can be represented in the basis of
orthogonal Lanczos functions |φi〉 as the tridiagonal matrix HM with diagonal elements ai,
i = 0 . . .M , and off-diagonal ones bi, i = 1 . . .M . Such a matrix is easily diagonalized using
standard numerical routines to obtain approximate eigenvalues εj and corresponding orthonor-
mal eigenvectors |ψj〉,

|ψj〉 =
M∑
i=0

vji|φi〉, j = 0 . . .M. (6)
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It is important to realize that |ψj〉 are (in general) not exact eigenfunctions of H , but show a
remainder. On the other hand, it is evident from the diagonalization of HM that matrix elements

〈ψi|H|ψj〉 = εjδij, i, j = 0 . . .M, (7)

are diagonal independently of LM (but provided i, j ≤ M ), although the values εj can be only
approximate.
If in the equation (5) bM+1 = 0, we have found an (M + 1)-dimensional eigenspace where HM

is already an exact representation of H . This inevitably happens when M = Nst − 1, but for
M < Nst − 1 it can only occur if the starting vector is orthogonal to some invariant subspace
of H which we avoid by choosing the input vector |φ0〉 as a random one.
It should be recognized that the Lanczos approach is effective only for sparse Hamiltonians,
characterized by the connectivity of each basis state with Kn � Nst basis states. All prototype
discrete tight-binding models discussed in Sec. 2.1 are indeed of such a type in the local MB
basis. Estimating the computation requirements, the number of operations Op needed to per-
form M Lanczos iterations scales as Op ∝ KnMNst. The main restriction is still in memory
requirements due to the large Nst. A straightforward application of Eq. (5) would require the
fast storage of all |φi〉, i = 0 . . .M , i.e., also the memory capacity Mem ∝ MNst. However,
for the evaluation of the eigenvalues alone during the iteration, Eq. (5), only three |φi〉 are suc-
cessively required, so this leads to Mem ∝ 3Nst. If the Hamiltonian matrix is not evaluated on
the fly, then also Mem ∝ KnNst for the nonzero Hamilton matrix elements is needed.
The Lanczos diagonalization is in essence an iterative power method which is known to con-
verge fast for the extreme lower and upper eigenvalues [2, 3]. In physical application most
relevant is the search for the g.s. energy E0 and the corresponding wavefunction |Ψ0〉. Typi-
cally, M > 50 are enough to reach very high accuracy for both. It is evident that for such
modest M � Nst one cannot expect any reliable results for eigenstates beyond the few at the
bottom and the top of the spectrum. On the other hand, the Lanczos procedure is subject to
roundoff errors, introduced by the finite-precision arithmetics which usually only becomes se-
vere at larger M > 100 after the convergence of extreme eigenvalues, and is seen as the loss of
orthogonality of the vectors |φi〉. It can be remedied by successive reorthogonalization [2,3,16]
of new states |φ′i〉, plagued with errors, with respect to previous ones. However this procedure
requires Op ∼ M2Nst operations, and can become computationally more demanding than the
Lanczos iterations themselves. This effect also prevents one from using the Lanczos method,
e.g., to efficiently tridiagonalize large dense matrices [3].

3 Ground state properties and dynamics

After |Ψ0〉 is obtained, the static properties of the g.s. can be evaluated in principle for any
operator A as

Ā0 = 〈Ψ0|A|Ψ0〉. (8)

Clearly, the procedure (8) is effective for large a basis only if the operator A is sparse in the
same basis, as is the case for most operators of interest.
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It is an important advantage of the Lanczos procedure that dynamical g.s. functions can easily
be calculated [4]. Let us consider the dynamical (autocorrelation) response function

C(ω) = 〈Ψ0|A†
1

ω+ + E0 −H
A|Ψ0〉 (9)

for the observable given by the operator A, where ω+ = ω + iδ with δ > 0. To calculate C(ω)

one has to run a second Lanczos procedure with a new initial function |φ̃0〉,

|φ̃0〉 =
1

α
A|Ψ0〉, α =

√
〈Ψ0|A†A|Ψ0〉. (10)

Starting with |φ̃0〉 one generates another Lanczos subspace L̃M̃ = {|φ̃j〉, j = 0, M̃} with
(approximate) eigenvectors |ψ̃j〉 and eigenenergies ε̃j . The matrix for H in the new basis is
again a tridiagonal one with ãj and b̃j elements, respectively. Terminating the Lanczos proce-
dure at a given M̃ , one can evaluate Eq. (9) as a resolvent of the HM̃ matrix expressed in the
continued-fraction form [17, 4, 5],

C(ω) =
α2

ω+ + E0 − ã0 −
b̃21

ω+ + E0 − ã1 −
b̃22

ω+ + E0 − ã2 − . . .

, (11)

terminating with b̃M̃+1 = 0, although other termination functions can also be employed and can
be well justified.
We note that frequency moments of the spectral function

µl = − 1

π

∫ ∞
−∞

ωl ImC(ω) dω = 〈Ψ0|A†(H − E0)
lA|Ψ0〉 = α2〈φ̃0|(H − E0)

l|φ̃0〉 (12)

are exact for given |Ψ0〉 provided l ≤ M̃ , since the operator H l, l < M̃ , is exactly reproduced
within the Lanczos (or corresponding Krylov) space L̃M̃ .
Finally, C(ω) (11) can be presented as a sum of j = 0, M̃ poles at ω = ε̃j − E0 with corre-
sponding weights wj . As a practical matter we note that in analogy to Eq. (6)

wj = |〈ψ̃j|A|Ψ0〉|2 = α2|〈ψ̃j|φ̃0〉|2 = α2ṽ2j0 , (13)

hence no matrix elements need to be evaluated within this approach. In contrast to the autocor-
relation function (11), the procedure allows also the treatment of general correlation functions
CAB(ω), with B 6= A†. In this case matrix elements 〈Ψ0|B|ψ̃j〉 have to be evaluated explicitly.
It should be also mentioned that at least the lowest poles of C(ω), Eq. (11), should coincide
with eigenenergies ω = Ei − E0 if |φ̃0〉 is not orthogonal to |Ψ0〉. However, using M̃ > 50,
spurious poles can emerge (if no reorthogonalization is used) which, however, carry no weight
as is evident from exact moments (12).
In this chapter we do not intend to present an overview of applications of the full ED and
Lanczos-type studies of g.s. static and dynamical properties of correlated systems. There have
been numerous such investigations even before the high-Tc era, intensified strongly with studies
of prototype models relevant for high-Tc cuprates [5] and other novel materials with correlated
electrons. Although a variety of models has been investigated they are still quite restricted in
the number of local degrees and sizes.
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4 Static properties and dynamics at T > 0

Before describing the finite temperature Lanczos method (FTLM) we should note that the Lanc-
zos basis is a very useful and natural basis for evaluating matrix elements of the type

Wkl = 〈n|HkBH lA|n〉, (14)

where |n〉 is an arbitrary normalized vector, and A,B are general operators. One can calculate
this expression exactly by performing two Lanczos procedures with M = max(k, l) steps. The
first one, starting with the vector |φ0〉 = |n〉, produces the Lanczos basis LM along with ap-
proximate eigenstates |ψj〉 and εj . The second Lanczos procedure is started with the normalized
vector |φ̃0〉 ∝ A|φ0〉 = A|n〉, Eq. (10), and generates L̃M with corresponding |ψ̃j〉 and ε̃j . We
can now define projectors onto limited subspaces

PM =
M∑
i=0

|ψi〉〈ψi|, P̃M =
M∑
i=0

|ψ̃i〉〈ψ̃i|. (15)

Provided that (l, k) < M projectors PM and P̃M span the whole relevant basis for the operators
Hk and H l, respectively, so that one can rewrite Wkl in Eq. (14) as

Wkl = 〈φ0|PMHPMH . . .HPMBP̃MH . . . P̃MHP̃MA|φ0〉. (16)

Since H is diagonal in the basis |ψj〉 and |ψ̃j〉, respectively, one can write finally

Wkl =
M∑
i=0

M∑
j=0

〈φ0|ψi〉〈ψi|B|ψ̃j〉〈ψ̃j|A|φ0〉 (εi)
k(ε̃j)

l. (17)

It is important to note that expression (17) for the matrix element is exact, independently of how
(in)accurate the representation |ψi〉, εi and |ψ̃j〉, εj , respectively, are for true system eigenvalues.
The only condition is that number of Lanczos steps is sufficient, i.e., M > (l, k).

4.1 Finite-temperature Lanczos method: Static quantities

A straightforward calculation of the canonical thermodynamic average of an operatorA at finite
temperature T > 0 (in a finite system) requires the knowledge of all eigenstates |Ψn〉 and
corresponding energies En, obtained, e.g., by the full ED of H

〈A〉 =
Nst∑
n=1

e−βEn〈Ψn|A|Ψn〉
/ Nst∑

n=1

e−βEn , (18)

where β = 1/kBT . Such a direct evaluation is both CPU time and storage demanding for larger
systems and is at present accessible only for Nst ∼ 20000.
In a general orthonormal basis |n〉 for finite system with Nst basis states one can express the
canonical expectation value 〈A〉 as

〈A〉 =
Nst∑
n=1

〈n|e−βHA|n〉
/ Nst∑

n=1

〈n|e−βH |n〉, (19)
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The FTLM for T > 0 is based on the evaluation of the expectation value in Eq. (19) for each
starting |n〉 using the Lanczos basis. We note that such a procedure guarantees the correct high-
T expansion series (for given finite system) to high order. Let us perform the high-T expansion
of Eq. (19),

〈A〉 = Z−1
Nst∑
n=1

∞∑
k=0

(−β)k

k!
〈n|HkA|n〉,

Z =
Nst∑
n=1

∞∑
k=0

(−β)k

k!
〈n|Hk|n〉. (20)

Terms in the expansion 〈n|HkA|n〉 can be calculated exactly using the Lanczos procedure with
M ≥ k steps (using |φn0 〉 = |n〉 as the starting function) since this is a special case of the
expression (14). Using relation (17) with l = 0 and B = 1, we get

〈n|HkA|n〉 =
M∑
i=0

〈n|ψni 〉〈ψni |A|n〉(εni )k. (21)

Working in a restricted basis k ≤M , we can insert the expression (21) into sums (20), extending
them to k > M . The final result can be expressed as

〈A〉 = Z−1
Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |A|n〉,

Z =
Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |n〉, (22)

and the error of the approximation is O(βM+1).
Evidently, within a finite system Eq. (22), expanded as a series in β, reproduces exactly the high-
T series to the orderM . In addition, in contrast to the usual high-T expansion, Eq. (22) remains
accurate also for T → 0. Let us assume for simplicity that the g.s. |Ψ0〉 is nondegenerate. For
initial states |n〉 not orthogonal to |Ψ0〉, already at modest M ∼ 50 the lowest eigenstate |ψn0 〉
converges to |Ψ0〉. We thus have for β →∞,

〈A〉 =
Nst∑
n=1

〈n|Ψ0〉〈Ψ0|A|n〉
/ Nst∑

n=1

〈n|Ψ0〉〈Ψ0|n〉 = 〈Ψ0|A|Ψ0〉/〈Ψ0|Ψ0〉, (23)

where we have taken into account the completeness of the set |n〉. Thus we obtain just the usual
g.s. expectation value of operator A.
The computation of static quantities (22) still involves the summation over the complete set of
Nst states |n〉, which is clearly not feasible in practice. To obtain a useful method, a further
essential approximation replaces the full summation over |n〉 by a partial one over a much
smaller set of random states [18, 19]. Such an approximation is analogous to Monte Carlo
methods and leads to a statistical error which can be well estimated and is generally quite small.
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Let us first consider only the expectation value (19) with respect to a single random state |r〉,
which is a linear combination of basis states

|r〉 =
Nst∑
n=1

ηrn|n〉, (24)

where the ηrn are assumed to be distributed randomly. Then the random quantity can be ex-
pressed as

Ãr =
〈r|e−βHA|r〉
〈r|e−βH |r〉

=
Nst∑

n,m=1

η∗rnηrm〈n|e−βHA|m〉
/ Nst∑

n,m=1

η∗rnηrm〈n|e−βH |m〉. (25)

Assuming that due to the random sign (phase), offdiagonal terms with η∗rnηrm, m 6= n cancel
on average for large Nst, we remain with

Ār =
Nst∑
n=1

|ηrn|2〈n|e−βHA|n〉
/ Nst∑

n=1

|ηrn|2〈n|e−βH |n〉. (26)

We can express |ηrn|2 = 1/Nst + δrn. The random deviations δrn should not be correlated with
matrix elements 〈n|e−βH |n〉 = Zn and 〈n|e−βHA|n〉 = ZnAn, therefore Ār is close to 〈A〉 with
an statistical error related to the effective number of terms Z̄ in the thermodynamic sum, i.e.

Ār = 〈A〉(1 +O(1/
√
Z̄)), (27)

Z̄ = eβE0

∑
n

Zn =
Nst∑
n=1

〈n|e−β(H−E0)|n〉. (28)

Note that for T →∞ we have Z̄ → Nst and therefore at large Nst a very accurate average (28)
can be obtained even from a single random state [18, 19]. On the other hand, at finite T < ∞
the statistical error of Ãr increases with decreasing Z̄.
To reduce statistical errors, in particular at modest T > 0, within the FTLM we sum in addition
over R different randomly chosen |r〉, so that in the final application Eq. (22) leads to

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j=0

e−βε
r
j 〈r|ψrj 〉〈ψrj |A|r〉,

Z =
Nst

R

R∑
r=1

M∑
j=0

e−βε
r
j |〈r|ψrj 〉|2. (29)

Random states |r〉 = |φr0〉 serve as initial functions for the Lanczos iteration, resulting in M
eigenvalues εrj with corresponding |ψrj 〉. The relative statistical error is reduced by sampling
(both for 〈A〉 and Z) and behaves as

δ〈A〉/〈A〉 = O(1/
√
RZ̄). (30)
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For a general operatorA the calculation of |ψrj 〉 and the corresponding matrix elements 〈ψrj |A|r〉
is needed. On the other hand, the computational effort is significantly reduced if A is a con-
served quantity, i.e., [H,A] = 0, and can be diagonalized simultaneously with H . Then

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j=0

e−βε
r
j |〈r|ψrj 〉|2Arj . (31)

In this case the evaluation of eigenfunctions is not necessary since the element 〈r|ψrj 〉 = vrj0,
Eq. (6), is obtained directly from the eigenvectors of the tridiagonal matrix Hr

M . There are
several quantities of interest which can be evaluated in this way, in particular thermodynamic
properties such as internal energy, specific heat, entropy, as well as uniform susceptibilities
etc. [7, 8].
Taking into account all mentioned assumptions, the approximation 〈A〉 (29) yields a good esti-
mate of the thermodynamic average at all T . For low T the error is expected to be of the order
ofO(1/

√
R), while for high T the error is expected to scale even asO(1/

√
NstR). Since argu-

ments leading to these estimates are not always easy to verify, it is essential to test the method
for particular cases.

4.2 Finite-temperature Lanczos method: Dynamical response

The essential advantage of the FTLM with respect to other methods is in the calculation of dy-
namical quantities. Let us consider the dynamical susceptibility as given by the autocorrelation
function C(ω) (the procedure for a general correlation function CAB(ω) is given in Ref. [7]),

χ′′(ω) = π(1− e−βω)C(ω), C(ω) =
1

π
Re

∫ +∞

0

dt eiωtC(t), (32)

with
C(t) = 〈A†(t)A(0)〉 =

1

Z

∑
n

〈n|e(−β+it)HA†e−iHtA|n〉. (33)

Expanding the exponentials in analogy to static quantities, Eq. (20), we get

C(t) = Z−1
Nst∑
n=1

∞∑
k,l=0

(−β + it)k

k!

(−it)l

l!
〈n|HkA†H lA|n〉. (34)

The expansion coefficients in Eq. (34) can be again obtained via the Lanczos method, as dis-
cussed in Sec. 4.1. Performing two Lanczos iterations with M steps, starting from the nor-
malized vectors |φn0 〉 = |n〉 and |φ̃n0 〉 ∝ A|n〉, respectively, we calculate the coefficients Wkl

following equation (17). We again note that (within the full basis |n〉) the series are, via the
Wkl, exactly evaluated within the Lanczos basis up to order l, k ≤M . The latter yields through
Eq. (34) a combination of (β, t) expansion, i.e., a combination of a high-T and short-t (in fre-
quency high-ω) expansion to very high order. Extending and resumming the series in k and l
into exponentials, we get in analogy with Eq. (22)

C(t) = Z−1
Nst∑
n=1

M∑
i,j=0

e−βε
n
i eit(ε

n
i −ε̃nj )〈n|ψni 〉〈ψni |A†|ψ̃nj 〉〈ψ̃nj |A|n〉. (35)
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Finally replacing the full summation with the random sampling from the FTLM recipe for the
correlation function, we obtain

C(ω) =
Nst

ZR

R∑
r=1

M∑
i,j=1

e−βεi〈r|ψri 〉〈ψri |A†|ψ̃rj 〉〈ψ̃rj |r〉δ(ω − ε̃rj + εri ). (36)

We check the nontrivial T = 0 limit of the above expression. If the |n〉 are not orthogonal to the
g.s., |Ψ0〉, then for large enoughM the lowest-lying state converges to εn0 ∼ E0 and |ψn0 〉 ∼ |Ψ0〉,
respectively. In this case we have

C(ω, T = 0) ≈ Nst

R

R∑
r=1

M∑
j=0

〈Ψ0|A†|ψ̃nj 〉〈ψ̃nj |A|r〉〈r|Ψ0〉δ(ω + E0 − ε̃nj ) (37)

At T ∼ 0 one needs in general M � 100 so that at least the low-lying states relevant to
Eq. (37) approach |ψ̃nj 〉 → |Ψj〉 and ε̃nj → Ej . Also a considerable number of samples R > 1

is required to get correct also amplitudes of separate peaks in the spectrum of Eq. (37), which
are a subject to statistical errors due to the incomplete projection on the different random |r〉 in
〈ψ̃nj |A|r〉〈r|Ψ0〉. Similar statistical errors can in fact appear also for static quantities in Eq. (29).

4.3 Finite temperature Lanczos method: Implementation

Most straightforward is the implementation of the FTLM for static quantities, Eq. (29). In
particular for conserved quantities, Eq. (31), the computation load is essentially that of the g.s.
Lanczos iteration, repeated R times, and only minor changes are needed within the usual g.s.
Lanczos code.
On the other hand, for the dynamical correlation function (36) the memory requirement as well
as the CPU time is dominated mostly by the evaluation of the matrix element 〈ψri |A†|ψ̃rj 〉 where
the operations scale as Op ∝ RM2Nst and memory as Mem ∝ MNst. This effectively limits
the application of the FTLM to 50 < M < 500 where the lower bound is determined by the
convergence of the g.s. |Ψ0〉. Still, it should be noted that the calculation can be done simultane-
ously (without any additional cost) for all desired T , since matrix elements are evaluated only
once. Evidently, one should use as much as possible symmetries of the Hamiltonian, e.g., Ne,
Sztot, q to reduce the effective Nst by splitting the sampling over different symmetry sectors.
The effect of finite M is less evident. Since M ∼ 100 is enough to converge well a few lowest
levels, it is also generally satisfactory for reliable dynamical correlation functions at low T . At
high T , however, one can observe very regular oscillations which are an artifact of the Lanczos
iterations with M � Nst. Namely, the procedure generates between the extreme eigenvalues a
spectrum of quasi-states with quite equidistant level spacing ∆ε ∼ ∆E/M , where ∆E is the
full energy span of MB eigenstates. The effect is well visible in Fig. 2 where the high-T result
for the spin structure factor S(q = π, ω) os the 1D Heisenberg model, Eq. (1), is presented for
various M . It is evident that for the presented case (N = 24 and ∆E ∼ 16J) M > 200 is
sufficient to obtain smooth spectra even for high T � J . However, larger M are advisable if
sharper structures persist at high T .
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Fig. 2: High-T spin structure factor S(q = π, ω) for the 1D Heisenberg model, as calculated
with different numbers of Lanczos steps M .

The role of random sampling R is less important for intermediate and high T since the relative
error is largely determined via Z̄ as evident from Eq. (28). Larger R� 1 is necessary only for
the correct limit T → 0 (for given system size) and for off-diagonal operators A.
One can claim that the FTLM in general obtains for all reachable systems results which are at
any T very close to exact (full ED) results for the same finite (givenN ) system and the accuracy
can be improved by increasing M and R. Still, it remains nontrivial but crucial to understand
and have in control finite size effects.
At T = 0 both static and dynamical quantities are calculated from the g.s. |Ψ0〉, which can be
quite dependent on the size and the shape of the system. At least in 1D for static quantities the
finite-size scaling N → ∞ can be performed in a controlled way, although in this case more
powerful methods as, e.g., DMRG are mostly available. In higher dimensional lattices, e.g.,
in 2D systems, finite-size scaling is practically impossible due to the very restricted choice of
small sizes and different shapes. Also g.s. (T = 0) dynamical quantities are often dominated by
few (typically Np < M ) peaks which are finite-size dependent [5]. On the other hand, T > 0

generally introduces the thermodynamic averaging over a large number of eigenstates. This
directly reduces finite-size effects for static quantities, whereas for dynamical quantities spectra
become denser. From Eq. (36) it follows that we get in spectra at elevated T > 0 typically
Np ∝ RM2 different peaks resulting in nearly continuous spectra. This is also evident from the
example of a high-T result in Fig. 2.
It is plausible that finite-size effects at T > 0 become weaker. However, it should be recognized
that there could exist several characteristic length scales in the physical (and model) system,
e.g. the antiferromagnetic (AFM) correlation length ξ, the transport mean free path ls etc. These
lengths generally decrease with increasing T and results for related quantities get a macroscopic
relevance provided that ξ(T ), ls(T ) < L where L ∝ N1/D is the linear size of the system.
However, there exist also anomalous cases, e.g., in an integrable system ls can remain infinite
even at T →∞ [20, 21].
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Fig. 3: Finite-size temperature Tfs vs. hole doping ch in the 2D t-J model with J/t = 0.3, as
calculated with the FTLM in a system of N = 18 sites [7].

As a simple criterion for finite size effects one can use the normalized thermodynamic sum
Z̄(T ), Eq. (28), which provides the effective number of MB states contributing at chosen T
(note that for a system with a nondegenerate g.s. Z̄(T = 0) = 1). A finite-size temperature Tfs
can be thus defined with the relation Z̄(Tfs) = Z∗ where in practice the range 10 < Z∗ < 50 is
reasonable. Clearly, the FTLM is best suited just for systems with a large density of low lying
MB states, i.e., for large Z̄ at low T .
Since Z̄(T ) is directly related to the entropy density s and the specific heat Cv of the system,
large Z̄ at low T is the signature of frustrated quantum MB systems, which are generally difficult
to cope with using other methods (e.g., the QMC method). Typically examples of such strongly
correlated electrons with an inherent frustration are the doped AFM and the t-J model, Eq. (2),
in the strong correlation regime J < t. As an example, we present in Fig. 3 the variation of Tfs
in the 2D t-J model with the hole doping ch = Nh/N , as calculated for different Z∗ = 30–
300 for the fixed system of N = 18 sites and J/t = 0.3 as relevant for high-Tc cuprates. It
is indicative that Tfs reaches a minimum for intermediate (optimum) doping ch = c∗h ∼ 0.15,
where we are able to reach Tfs/t ∼ 0.1. Away from the optimum doping Tfs is larger, i.e., low-
energy spectra are quite sparse both for the undoped AFM and even more so for the effectively
noninteracting electrons far away from half-filling (for nearly empty or full band).

4.4 Low-temperature Lanczos method

The standard FTLM suffers at T → 0 from statistical errors due to finite sampling R, both for
static quantities, Eqs. (29), (30), as well as for dynamical correlations, Eqs. (36), (37). The
discrepancy can be easily monitored by the direct comparison with the g.s. Lanczos method,
Eqs. (8), (11). To avoid this problem, a variation of the FTLM method, called Low-temperature
Lanczos method (LTLM) has been proposed [9] which obtains correct g.s. result (for finite
systems) independent of the sampling R.
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The idea of LTLM is to rewrite Eq. (19) in a symmetric form

〈A〉 =
1

Z

Nst∑
n=1

〈n|e−βH/2Ae−βH/2|n〉, (38)

and insert the Lanczos basis in analogy with the FTLM, Eq. (19), now represented with a double
sum

〈A〉 =
Nst

ZR

R∑
r=1

M∑
j,l=0

e−β(ε
r
j+ε

r
l )/2〈r|ψrj 〉〈ψrj |A|ψrl 〉〈ψrl |r〉, (39)

The advantage of the latter form is that it satisfies the correct T = 0 limit provided that the g.s.
is well converged, i.e., |ψr0〉 ∼ |Ψ0〉. It then follows from Eq. (39),

〈A〉 =
R∑
r=1

〈r|Ψ0〉〈Ψ0|A|Ψ0〉〈Ψ0|r〉
/ R∑

r=1

〈Ψ0|r〉〈r|Ψ0〉 = 〈Ψ0|A|Ψ0〉, (40)

for any chosen set of |r〉. For the dynamical correlations C(t) one can in a straightforward way
derive the corresponding expression in the Lanczos basis

C(ω) =
Nst

ZR

R∑
r=1

M∑
i,j,l=0

e−β(ε
r
i+ε

r
l )/2〈r|ψri 〉〈ψri |A†|ψ̃rlj 〉〈ψ̃rlj |A|ψrl 〉〈ψrl |r〉 δ(ω − ε̃rlj +

1

2
(εri + εrl )).

(41)
It is again evident that for T → 0 the sampling does not influence results, being correct even
for R = 1 if the g.s. |Ψ0〉 is well converged for all starting |r〉. The payoff is in an additional
summation over the new Lanczos basis sets |ψ̃rlj 〉, which needs to be started from each A|ψrl 〉
in Eq. (41) separately. Since the LTLM is designed for lower T , one can effectively restrict
summations in (i, l) in Eq. (41) to much smaller M ′ � M , where only lowest states with
εri , ε

r
l ∼ E0 contribute [9], and in addition use smaller M1 �M for the basis |ψ̃rlj 〉 .

An alternative version for a Lanczos-type approach [22] to dynamical quantities is not to start
the second Lanczos run from A|r〉 [7] or from A|ψrl 〉 [9], but from

|Ãr〉 =
M∑
l=0

A|ψrl 〉e−βε
r
l /2〈ψrl |r〉. (42)

In this way one obtains with the second Lanczos run the Lanczos eigenstates |ψ̃rk〉, which cover
the relevant Hilbert space for starting random vector |r〉 and the inverse temperature β. The
resulting dynamical autocorrelation function is

C(ω) =
Nst

RZ

R∑
r=1

M∑
i,k=0

e−βε
r
i /2〈r|ψri 〉〈ψri |A†|ψ̃rk〉〈ψ̃rk|Ãr〉 δ(ω − ε̃rk + εri ). (43)

In this way the sufficiency of only one random vector in the T = 0 limit is reproduced, while at
T > 0 the algorithm has the same time efficiency as the FTLM, but with much smaller random
sampling needed to reach the same accuracy (at least for low T ). However, the price paid is that
results for each T need to be calculated separately, while within the FTLM all T (or T up to a
certain value within the LTLM) are evaluated simultaneously.
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4.5 Microcanonical Lanczos method

While most investigations in strongly correlated systems focus on the low-T regime, there are
systems where dynamical properties are nontrivial even at high T . A well known such case
is the spin diffusion constant Ds(T ) in the isotropic Heisenberg model, Eq. (1), whose value
is not known, and even its existence at any T > 0 is uncertain. Similar although somewhat
less controversial is the case of transport quantities, both for integrable or generic nonintegrable
models. Whereas the FTLM seems well adapted for studies of transport response functions,
oscillations due to a limited M can compromise the crucial low-ω resolution, cf. Fig. 2.
At elevated T it is therefore an advantage to use the microcanonical Lanczos method (MCLM)
[10], employing the fact from statistical physics that in the thermodynamic limit (for large
system) the microcanonical ensemble should yield the same results as the canonical one. Short-
comings of the MCLM are due to the fact that in finite systems statistical fluctuations are much
larger within the microcanonical ensemble. Still, reachable finite-size systems have a very high
density of states in the core of the MB spectrum as probed by high T . Hence, statistical fluc-
tuations are at high T effectively smoothed out in contrast to low-T properties dominated by a
small number of low lying MB states.
The implementation of the MCLM is quite simple and straightforward. One first determines
the target energy λ = 〈H〉(T ) which represents the microcanonical energy equivalent to the
canonical average energy for chosen T and system size N . Since λ is a parameter within the
MCLM, one can relate it to T by performing either FTLM (simplified due to H being a con-
served quantity) on the same system, or extrapolating full ED results (with linear dependence
on N ) on small lattices. Next we find a representative microcanonical state |Ψλ〉 for the energy
λ. One convenient way within the Lanczos-type approach is to use the new operator

V = (H − λ)2. (44)

Performing Lanczos iterations with the operator V yields again the extremum eigenvalues, in
particular the lowest one close to V ∼ 0. In contrast to the g.s. procedure, the convergence to a
true eigenstate cannot be reached in system sizes of interest even with M1 � 100. The reason
is the extremely small eigenvalue spacing of the operator V , scaling as ∆Vn ∝ (∆E/Nst)

2,
with ∆E being the whole energy span within the given system. Fortunately such a convergence
is not necessary (nor even desired) since the essential parameter is the small energy uncertainty
σE , given by

σ2
E = 〈Ψλ|V |Ψλ〉. (45)

For small energy spread σE/∆E < 10−3 typically M1 ∼ 1000 is needed. Again, to avoid
storing M1 Lanczos wavefunctions |φi〉 the Lanczos procedure is performed twice as described
in Sec. 2.2, i.e., the second time with known tridiagonal matrix elements to calculate finally
|Ψλ〉 in analogy with Eq. (6). The latter is then used to evaluate any static expectation average
〈A〉 or the dynamical correlation function as in Eq. (9),

C(ω, λ) = 〈Ψλ|A†
1

ω+ + λ−H
A|Ψλ〉. (46)
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The latter is evaluated again using Lanczos iterations with M2 steps starting with the initial
wavefunction |φ̃0〉 ∝ A|Ψλ〉 and C(ω, λ) is represented in terms of a continued fraction. Since
the MB levels are very dense and correlation functions smooth at T � 0, large M2 � 100 are
needed but as well easily reachable to achieve high-ω resolution in C(ω, λ).
It is evident that the computer requirement for the MCLM both regarding the CPU and memory
are essentially the same as for the g.s. dynamical calculations except that typically M1,M2 �
100. In particular, requirements are less demanding than using the FTLM with M > 100. A
general experience is that for systems with large Nst � 10000 the MCLM dynamical results
agree very well with FTLM results for the same system. It should also be noted that the actual
frequency resolution δω inC(ω, λ), Eq. (46), is limited by δω ∼ σE which is, however, straight-
forward to improve by increasing M1,M2 with typical values M1,M2 > 1000. One can also
improve the MCLM results for any T by performing an additional sampling over initial ran-
dom starting |φ0〉 as well as over λ with a probability distribution p(λ) simulating the canonical
ensemble in a finite-size system, i.e., by replacing Eq. (46) with

C(ω) =
∑
λ

p(λ)C(ω, λ). (47)

4.6 Statical and dynamical quantities at T > 0: Applications

The FTLM has been designed to deal with the simplest tight-binding models of strongly corre-
lated electrons, at the time mostly with challenging microscopic electronic models of high-Tc
superconductors [6, 7], where besides superconductivity there is a variety of anomalous non-
Fermi-liquid-like properties even in the normal state. Clearly of interest in this connection are
prototype MB models as the Heisenberg model, Eq. (1), the t-J model, Eq. (2), and the Hubbard
model on the 2D square lattice. The unfrustrated Heisenberg model can be numerically studied
on much bigger lattices with QMC and related methods. The 2D Hubbard model was and still
is mostly subject of DMFT and QMC studies, since at half-filling or close to it the Lanczos
methods are quite restricted due to the large Nst even for modest sizes N ∼ 16. Therefore one
focus of Lanczos-based approaches was on the t-J model being, with some generalizations, a
microscopic representation of electronic properties of high-Tc cuprates.
Thermodynamic quantities such as chemical potential µ, entropy density s, specific heat Cv are
the easiest to implement within the FTLM. Their T - and (hole) doping ch-dependence within the
t-J model on a 2D square lattice (calculated for up to N = 26 sites) reveal the very anomalous
behavior of doped Mott insulators [23] (as evident already from Fig. 3), confirmed also by
results for the more complete Hubbard model [24].
The advantages of the FTLM and also its feasibility for the 2D t-J model are even more evident
in numerous studies of spin- and charge-dynamics at T > 0 [7], which show good agreement
with neutron scattering and NMR [25, 26], optical conductivity σ(ω) and resistivity ρ(T ) [27],
as well as some other anomalous properties of the cuprates [8]. As an example of a transport
quantity hardly accessible by other methods we present in Fig. 4 the universal planar resistivity
ρ(T ), as extracted from the dynamical conductivity σ(ω → 0) = 1/ρ, within the t-J model
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Fig. 4: Normalized 2D resistivity chρ vs. T/t within the t-J model with J/t = 0.3 for different
hole concentrations ch [27].

for different doping levels ch [27]. The result in Fig. 4 clearly show a linear dependence below
the pseudogap temperature T ∗ dependent on doping ch. Another characteristic signature is a
saturation (plateau) of ρ(T ) at low doping and the universal trend at high T .
Spectral properties as manifested in the single-particle spectral functionsA(k, ω) are at the core
of the understanding of cuprates, as well as of strongly correlated electrons in general. Here,
even g.s. and low-T properties are a challenge for numerical studies whereby the FTLM can
be viewed as a controlled way to get reliable (macroscopic-like) T → 0 result, in contrast to
quite finite-size plagued results obtained via the g.s. Lanczos procedure [5]. Using the FTLM at
T ∼ Tfs with twisted boundary conditions we can simulate a continuous wavevector k. Using in
addition coarse graining averaging one can reach results forA(k, ω) [28,29] giving insights into
electron vs. hole doped angle-resolved photoemission experiments, quasiparticle relaxation,
and waterfall-like effects. A characteristic result of such studies is in Fig. 5 for the single-
particle density of states N (ω) =

∑
kA(k, ω) [28]. Here, the strength of the FTLM is visible

in the high ω resolution within the most interesting low-ω window. Interesting and reproducible
are also nontrivial spectral shapes as the sharp peak close to ω < 0 and a broad shoulder for
ω � 0. Most important is, however, the evident pseudogap (observed also experimentally in
cuprates) visible at ω ∼ 0 in the low-doping regime.
Besides the challenging models for cuprates there have been also studies of static and dynamical
properties of multiband and multiorbital models which either reduce to the generalized t-J
model [30] or to Kondo lattice models [31, 32]. While the increasing number of local basis
states K clearly limits the applicability of ED-based methods, they are competitive in treating
nontrivial frustrated spin models less suitable for QMC and other methods, however closely
related to the physics of novel materials. Moreover, frustrated models are characterized by a
large entropy density s and related low Tfs, essential conditions for the feasibility of FTLM
results. Examples of such systems are the Shastry-Sutherland model [33, 34], the 2D J1-J2
model [35], and properties of frustrated magnetic molecules [36–38].
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Fig. 5: Density of states N (ω) for different dopings ch within the extended t-J model with
n.n.n. hopping t′ = −0.3t and t′ = 0, respectively [28].

Another class of problems which can be quite effectively dealt with using the FTLM and MCLM
approaches is the fundamental as well as experimentally relevant problem of transport in 1D
systems of interacting fermions as realized, e.g., in quasi-1D spin-chain materials [39]. It has
been recognized that the transport response at any T > 0 crucially differs between integrable
and nonintegrable systems. Since the 1D isotropic as well as anisotropic Heisenberg model,
Eq. (1), is integrable it opens a variety of fundamental questions of anomalous transport in
such systems, the effects of perturbative terms and impurities. Such fundamental questions
on transport and low-ω dynamic response remain nontrivial even at high T [20, 21], hence the
MCLM is the most feasible and straightforward method. It has been in fact first probed on
the anomalous transport in 1D insulators [40] but furtheron used to study interaction-induced
transport at T > 0 in disordered 1D systems [41, 42], in particular in relation to challenging
problems of many-body localization [43, 44] being inherently the question of low-frequency
dynamics at T →∞.

In Fig. 6 we present as an example MCLM result for the dynamical spin conductivity in the
anisotropic Heisenberg model, Eq. (1), where Jzz 6= Jxx = Jyy = J in the Ising-like (with
the spin gap in the g.s.) regime ∆ = Jzz/J > 1. Results for the high-T dynamical spin
conductivity Tσ(ω) are shown for various next-neighbor (anisotropic) couplings α = Jzz2 /J .
The first message is that the MCLM is well adapted for the high ω resolution (here using M1 =

M2 = 2000) and reaching large N = 30 (Nst ∼ 5.106 in a single Sz = 0, q sector). Another
conclusion is that the dynamics of such systems is very anomalous. For the integrable case
α = 0 we find σ0 = σ(0) ∼ 0 but also an anomalous finite-size peak at ωp ∝ 1/N [40]. At
the same time breaking integrability with α > 0 appears to lead to σ0 > 0 still approaching an
‘ideal’ insulator (insulating at all T ) for a weak perturbation σ0(α→ 0)→ 0 [45].
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Fig. 6: High-T dynamical spin conductivity Tσ(ω) within the anisotropic Heisenberg model in
the Ising-like regime,∆ = 1.5, and various next-neighbor interactions α = Jzz2 /J as calculated
with the MCLM on a chain of N = 30 sites.

5 Real-time dynamics using the Lanczos method

Research in the field of non-equilibrium dynamics of complex quantum systems constitutes
a formidable theoretical challenge. When dealing with ED approaches or calculations in a
reduced basis, the time evolution of the time-dependent Shrödinger equation,

i
∂Ψ(t)

∂t
= H(t)Ψ(t), (48)

can be efficiently obtained using the time-dependent Lanczos technique, as originally described
in Ref. [46] and later applied and analyzed in more detail [47]. One of the straightforward
reasons is that most commonly the Lanczos method is used to compute the g.s. of MB Hamil-
tonian. Generalizing the method to time-dependent calculation represents only a minor change
to already existing codes. Even though the method is most suitable for the time evolution of
the time-independent Hamiltonian, it can nevertheless be applied even to the time-dependent
case. The time evolution of |Ψ(t)〉 is then calculated by a step-wise propagation in time t by
small time increments δt, generating at each step a Lanczos basis of dimension M (typically
M < 10), to follow the evolution

|Ψ(t+ δt)〉 ' e−iH(t)δt|Ψ(t)〉 '
M∑
l=1

e−iεlδt|ψl〉〈ψl|Ψ(t)〉, (49)

where |ψl〉, εl, l = 0 . . .M are Lanczos eigenfunctions and eigenvalues, respectively, obtained
via the Lanczos iteration started with |φ0〉 = |Ψ(t)〉. The advantage of the time-evolution
method following Eq. (49) is that it preserves the normalization of |Ψ(t + δt) for arbitraryly
large δt. The approximation of finite M in Eq. (49) is also correct at least to the M -th Taylor-
expansion order in δt. It is, however, important to stress that δt should be chosen small enough
to properly take into account the time-dependence of H(t). E.g., when driving the system with
a constant external electric field, δt/tB ∼ 10−3 where tB is the Bloch oscillation period [48,45].
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So far, investigations of correlated systems under the influence of a driving electric field in 1D
using Lanczos time-evolution focused on generic systems, like the metallic and Mott-insulating
regime of interacting spinless fermions [48, 45]. Even though rather small systems can be
studied it has been established that a steady state can be reached without any additional coupling
to a heat bath, provided that the Joule heating of the system is properly taken into account.

6 Discussion

Exact diagonalization based methods, both the full ED and the Lanczos-type ED approach, are
very extensively employed in the investigations of strongly correlated MB quantum systems in
solids and elsewhere. The reason for their widespread use are several: a) unbiased approach to
the MB problem without any simplifications or approximations, independent of the complexity
of the MB system, b) relative simplicity of generating the codes for various models and ob-
servables, c) easy and straightforward testing of codes, d) direct interpretation of the obtained
quantum MB states and their possible anomalous structure and properties, e) high pedagogical
impact as a quick and at the same time very nontrivial introduction into the nature of MB quan-
tum physics. Also the Lanczos-based methods described in this review, i.e., the g.s. Lanczos
method for static and dynamic quantities, and the somewhat more elaborate FTLM, MCLM,
LTLM and EDLFS, require rather modest programming efforts in comparison with more com-
plex numerical methods, e.g., QMC- and DMRG-based methods, as described in other chapters.
Clearly, the main drawback of ED methods is the smallness of lattice sizes N limited by the
number of basis states (at present Nst < 109) that can be treated with a Lanczos iteration
procedure. The achievable N with ED methods appears quite modest in comparison with some
established and recently developed numerical methods, such as QMC, DMRG, matrix-product-
states methods, etc. Still, in spite of the intensive developments and advances of novel numerical
methods in last two decades, there are several aspects of strong-correlation physics, where ED-
based methods are so far either the only feasible or at least superior ones. In this chapter we
have focused mostly on Lanczos-based methods and applications where they are competitive
and get nontrivial results with a macroscopic validity:
a) MB g.s. and its properties: for frustrated and complex models mostly so far do not offer
alternative powerful methods at least beyond D = 1 systems, where DMRG is efficient.
b) T > 0 static properties evaluated with as the FTLM and the LTLM are most powerful and
reliable for frustrated and complex system, in particular in systems with high degeneracies of
MB states and large entropy at low T ,
c) T > 0 Lanczos methods for dynamical quantities, such as FTLM and MCLM, yield for
many models and geometries results superior to other methods or, in several cases, even the
only accessible results. Particular advantages are the high ω resolution at all T beyond the finite
size limit T > Tfs, macroscopic-like results at low T with proper T → 0 scaling, and the
possibility of detailed studies of systems with nontrivial dynamics at any, in particular high T .
d) The Lanczos technique is the natural application for methods with a restricted MB basis sets
and DMRG-type targeting, as well as for the real-time evolution of strongly correlated systems.
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