Introduction to the Hubbard Model

R. Eder

Karlsruhe Institute of Technology, Institut für Festkörperphysik
Prelude: 3d transition metals and their compounds

What makes the 3d transition metals special: small radius of their 3d shell

The small spatial extent of the 3d shell enhances the Coulomb repulsion between electrons strongly.

To study the motion of conduction electrons under the influence of this strong Coulomb repulsion, Hubbard, Gutzwiller, and Kanamori more or less simultaneously introduced a simplified model, nowadays known as the Hubbard model.

After the discovery of the copper oxide superconductors and after Zhang and Rice showed that these materials can be described by the 2D Hubbard model, there was renewed interest in the Hubbard model.
The Hubbard model is highly oversimplified:

- All atoms besides the transition metal atoms are ignored.
- The five-fold degeneracy of the 3d orbital is neglected - one s-like orbital/site.

\[
H = \sum_{i,j} \sum_{\sigma} t_{i,j} c_{i,\sigma}^\dagger c_{j,\sigma} + U \sum_i n_{i,\uparrow} n_{i,\downarrow}
\]

\[
= \sum_{k,\sigma} \epsilon_k c_{k,\sigma}^\dagger c_{k,\sigma} + U \sum_i n_{i,\uparrow} n_{i,\downarrow}
\]

\[
\epsilon_k = \frac{1}{N} \sum_{i,j} t_{i,j} e^{i\mathbf{k} \cdot (\mathbf{R}_i - \mathbf{R}_j)}
\]
\[H = \sum_{i,j} \sum_{\sigma} t_{i,j} c_{i,\sigma}^\dagger c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} \]

\[= \sum_{k,\sigma} \epsilon_k c_{k,\sigma}^\dagger c_{k,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} \]

\[\epsilon_k = \frac{1}{N} \sum_{i,j} t_{i,j} e^{i k \cdot (R_i - R_j)} \]

An important additional parameter in this model is the density of electrons.

We call \(N \) the number of sites, \(N_e = N_{\uparrow} + N_{\downarrow} \) the number of electrons - densities are denoted by \(n \): \(n_{\uparrow} = N_{\uparrow}/N \).

For copper oxide superconductors the important range of densities is \(1 \geq n_e \geq 0.7 \) and \(U/t \approx 10 \).

\(n_e = 1 \) means \(n_{\uparrow} = n_{\downarrow} = \frac{1}{2} \) - i.e. a metal with a half-filled band for noninteracting electrons.

In contrast to this the cuprates are insulators for \(n_e = 1 \) - i.e. Mott insulators.
Reminder Green’s Functions and Self Energy

The imaginary time Green’s function is (with \(c(\tau) = e^{\tau(H-\mu N)} c e^{-\tau(H-\mu N)} \))

\[
G_{\sigma}(k, \tau) = -\langle T c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle_{th} = -\Theta(\tau) \langle c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle_{th} + \Theta(-\tau) \langle c_{k,\sigma}^\dagger c_{k,\sigma}(\tau) \rangle_{th}
\]

\(G(\tau) \) has the Fourier transform (with \(i\omega_\nu \): (Fermionic) Matsubara frequencies)

\[
G(\tau) = \frac{1}{\beta} \sum_{\nu = -\infty}^{\infty} e^{-i\omega_\nu \tau} G(i\omega_\nu)
\]

\[
G(i\omega_\nu) = \int_0^\beta d\tau \; e^{i\omega_\nu \tau} G(\tau)
\]

\[
\omega_\nu = \frac{(2\nu + 1)\pi}{\beta}
\]

The Fourier coefficient \(G_{\sigma}(k, i\omega_\nu) \) is given by the Lehmann representation (where \(H|j\rangle = E_j|j\rangle \)):

\[
G_{\sigma}(k, i\omega_\nu) = \frac{1}{Z} \sum_{i,j} \frac{e^{-\beta(E_i-\mu N_i)} + e^{-\beta(E_j-\mu N_j)}}{i\omega_\nu + \mu - (E_j - E_i)} |\langle i | c_{k,\sigma} | j \rangle|^2
\]
Lehmann representation of $G_\sigma(k, i\omega_\nu)$:

$$G_\sigma(k, i\omega_\nu) = \frac{1}{Z} \sum_{i,j} \frac{e^{-\beta(E_i - \mu N_i)} + e^{-\beta(E_j - \mu N_j)}}{i\omega_\nu + \mu - (E_j - E_i)} |\langle i| c_{k,\sigma}|j\rangle|^2$$

$G_\sigma(k, i\omega_\nu)$ can be analytically continued - $G_\sigma(k, \omega + i0^+)$ is (the Fourier transform of) the retarded real-time Green's function - this gives the combined photoemission and inverse photoemission spectrum of the system

$$A(k, \omega) = -\frac{1}{\pi} \lim_{\epsilon \to 0} \mathcal{I} G_\sigma(k, \omega + i\epsilon) = Z_k^{-} \delta(\omega - E_k^{-}) + Z_k^{+} \delta(\omega - E_k^{+})$$

The poles of $G_\sigma(k, \omega)$ give the ionization and electron affinity energies - i.e. the quasiparticle energies

The self-energy is defined by the Dyson equation

$$\left(\omega + \mu - \epsilon_k - \Sigma(k, \omega)\right) G(k, \omega) = 1.$$
Lehmann representation of \(G(k, \omega) \) \((n \text{ runs over pairs } (i, j))\):

\[
G(k, \omega) = \frac{1}{Z} \sum_{i,j} \frac{e^{-\beta(E_i - \mu N_i)} + e^{-\beta(E_j - \mu N_j)}}{\omega + \mu - (E_j - E_i)} \left| \langle i | c_{k,\sigma} | j \rangle \right|^2 = \sum_n \frac{\alpha_n}{\omega - \omega_n}
\]

with \(\alpha_n, \omega_n \text{ real} \Rightarrow \text{For real } \omega \ G(\omega) \text{ looks like this:} \)

![Graph of the Lehmann representation of the Green function](attachment:image.png)
Near a zero ζ_i:

$$G(\omega) \approx -\beta_i (\omega - \zeta_i)$$

The Dyson equation:

$$G^{-1}(\omega) = \omega + \mu - \epsilon_k - \Sigma(\omega)$$

$$\Rightarrow \Sigma(\omega) = -G^{-1}(\omega) + \omega + \mu - \epsilon_k = \frac{1/\beta_i}{\omega - \zeta_i} + \ldots$$

$\Sigma(\omega)$ has simple poles at the zeros of the Green’s function, ζ_i

Luttinger has shown that $\Sigma(\omega)$ can be written as (with $\sigma_i = 1/\beta_i > 0$, V_{HF}: Hartree-Fock potential)

$$\Sigma(\omega) = V_{HF} + \sum_i \frac{\sigma_i}{\omega - \zeta_i}$$
The Hubbard dimer - solution by exact diagonalization

• We consider the Hubbard model on a dimer - i.e. a two-atom system with atoms 1 and 2

\[H = -t \sum_{\sigma} \left(c_{1,\sigma}^\dagger c_{2,\sigma} + c_{2,\sigma}^\dagger c_{1,\sigma} \right) + U \sum_{i=1}^{2} n_{i,\uparrow} n_{i,\downarrow}. \]

• This can be solved by exact diagonalization

• Generate all states of the Hilbert space with given electron numbers \(N_\uparrow \) and \(N_\downarrow \) on \(N \) lattice sites

\[n_{\text{Basis}} = \begin{pmatrix} N \\ N_\uparrow \end{pmatrix} \cdot \begin{pmatrix} N \\ N_\downarrow \end{pmatrix} \]

• Set up the Hamilton matrix in this basis and diagonalize it numerically

• Obtain physical observables from the solution
\[H = -t \sum_{\sigma} \left(c_{1,\sigma}^{\dagger} c_{2,\sigma} + c_{2,\sigma}^{\dagger} c_{1,\sigma} \right) + U \sum_{i=1}^{2} n_{i,\uparrow} n_{i,\downarrow} \]

- The dimer Hamiltonian is invariant under the exchange of the two sites \(1 \leftrightarrow 2 \)
- We can therefore classify states also by their parity \(P = \pm 1 \) under this exchange
- We may also view the dimer as ‘2-site ring with periodic boundary conditions’ and hopping integral \(\frac{t}{2} \)

\[\begin{array}{c}
\text{1} \quad \text{2}
\end{array} \quad \begin{array}{cc}
\text{1} & \text{2}
\end{array} \]

- Exchange of the sites is equivalent to translation by one lattice site
- A Bloch state \(\psi_k \) with momentum \(k \) obeys \(T_1 \psi_k = e^{i\pi} \psi_k \)

\[P = 1 \text{ is equivalent to } k = 0, \quad P = -1 \text{ is equivalent to } k = \pi \]
• We start with the sector $N_\uparrow = N_\downarrow = 1$ - ‘half filling’ and nonmagnetic

• The normalized basis states with $P = \pm 1$ are

$$|1\pm\rangle = \frac{1}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{2,\downarrow}^\dagger \pm c_{2,\uparrow}^\dagger c_{1,\downarrow}^\dagger \right) |0\rangle$$

$$|2\pm\rangle = \frac{1}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{1,\downarrow}^\dagger \pm c_{2,\uparrow}^\dagger c_{2,\downarrow}^\dagger \right) |0\rangle$$

• $|1_+\rangle$ is spin singlet, $|1_-\rangle$ is triplet (with $S^z = 0$), $|2_+\rangle$ and $|2_-\rangle$ are singlets

• The action of the kinetic term is

$$H_t |1_+\rangle = -t \sum_\sigma \left(c_{1,\sigma}^\dagger c_{2,\sigma} + c_{2,\sigma}^\dagger c_{1,\sigma} \right) \frac{1}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{1,\downarrow}^\dagger + c_{2,\uparrow}^\dagger c_{2,\downarrow}^\dagger \right) |0\rangle$$

$$= \frac{-t}{\sqrt{2}} \left((c_{2,\uparrow}^\dagger c_{2,\downarrow}^\dagger + c_{1,\uparrow}^\dagger c_{1,\downarrow}^\dagger) + (c_{1,\uparrow}^\dagger c_{1,\downarrow} + c_{2,\uparrow}^\dagger c_{2,\downarrow}) \right) |0\rangle$$

$$= \frac{-2t}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{1,\downarrow} + c_{2,\uparrow}^\dagger c_{2,\downarrow} \right) = -2t |2_+\rangle$$
• We start with the sector $N^+_\uparrow = N^+_\downarrow = 1$ - `half filling' and nonmagnetic

• The normalized basis states with $P = \pm 1$ are

\[
|1\pm\rangle = \frac{1}{\sqrt{2}} \left(c^\dagger_{1,\uparrow} c^\dagger_{2,\uparrow} \pm c^\dagger_{2,\uparrow} c^\dagger_{1,\downarrow} \right) |0\rangle \\
|2\pm\rangle = \frac{1}{\sqrt{2}} \left(c^\dagger_{1,\uparrow} c^\dagger_{1,\downarrow} \pm c^\dagger_{2,\uparrow} c^\dagger_{2,\downarrow} \right) |0\rangle
\]

• $|1_+\rangle$ is spin singlet, $|1_-\rangle$ is triplet (with $S^z = 0$), $|2_+\rangle$ and $|2_-\rangle$ are singlets

• The action of the kinetic term is

\[
H_t |1_\rangle = -t \sum_\sigma \left(c^\dagger_{1,\sigma} c_{2,\sigma} + c^\dagger_{2,\sigma} c_{1,\sigma} \right) \frac{1}{\sqrt{2}} \left(c^\dagger_{1,\uparrow} c^\dagger_{2,\downarrow} - c^\dagger_{2,\uparrow} c^\dagger_{1,\downarrow} \right) |0\rangle \\
= \frac{-t}{\sqrt{2}} \left((c^\dagger_{2,\uparrow} c^\dagger_{2,\downarrow}) + (c^\dagger_{1,\uparrow} c^\dagger_{1,\downarrow}) \right) \left((c^\dagger_{1,\uparrow} c^\dagger_{2,\downarrow}) - (c^\dagger_{2,\uparrow} c^\dagger_{1,\downarrow}) \right) |0\rangle \\
= 0
\]
We had

\[H_t \left| 1_+ \right\rangle = -2t \left| 2_+ \right\rangle \Rightarrow \langle 2_+ | H_t | 1_+ \rangle = -2t \]

\[H_t \left| 1_- \right\rangle = 0 \Rightarrow \langle 2_- | H_t | 1_- \rangle = 0 \]

We recall

\[|1_{\pm} \rangle = \frac{1}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{2,\downarrow}^\dagger \pm c_{2,\uparrow}^\dagger c_{1,\downarrow}^\dagger \right) |0\rangle \]

\[|2_{\pm} \rangle = \frac{1}{\sqrt{2}} \left(c_{1,\uparrow}^\dagger c_{1,\downarrow}^\dagger \pm c_{2,\uparrow}^\dagger c_{2,\downarrow}^\dagger \right) |0\rangle \]

so that

\[\langle 1_{\pm} | H_U | 1_{\pm} \rangle = 0 \]

\[\langle 2_{\pm} | H_U | 2_{\pm} \rangle = U \]

Writing \(|\psi_{\pm} \rangle = u|1_{\pm} \rangle + v|2_{\pm} \rangle \) the coefficients \((u, v)\) are obtained from the eigenvalue problems

\[
\begin{pmatrix}
0 & -2t \\
-2t & U
\end{pmatrix}
\begin{pmatrix}
u_+
\end{pmatrix}
= E_+
\begin{pmatrix}
u_+
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 \\
0 & U
\end{pmatrix}
\begin{pmatrix}
u_-
\end{pmatrix}
= E_-
\begin{pmatrix}
u_-
\end{pmatrix}
\]
For negative parity the state with lower energy is $|1_-\rangle$ with energy $E = 0$ - this $|1_-\rangle$ is a triplet.

The other two members of the triplet are $c_{1,\uparrow}^\dagger c_{2,\uparrow}^\dagger |0\rangle$ and $c_{1,\downarrow}^\dagger c_{2,\downarrow}^\dagger |0\rangle$ - these are the only states in the sectors $N_e = 2$, $S_z = \pm 1$ and $P = -1 \Rightarrow$ eigenstates by construction, energy $E = 0$.

For positive parity the eigenvalue problem was

$$\begin{pmatrix} 0 & -2t \\ -2t & U \end{pmatrix} \begin{pmatrix} u_+ \\ v_+ \end{pmatrix} = E_+ \begin{pmatrix} u_+ \\ v_+ \end{pmatrix}$$

The lower state - which is a singlet - has energy

$$E_0 = \frac{U}{2} - \sqrt{\left(\frac{U}{2}\right)^2 + 4t^2} \quad \text{as} \quad \frac{U}{t} \to \infty \quad \frac{U}{2} - \left(\frac{U}{2} + \frac{4t^2}{U}\right) = -\frac{4t^2}{U} = -J$$

The ground state is a singlet the first excited state a triplet with excitation energy $J = \frac{4t^2}{U} \ll t$ (for $U/t \gg 1$).
To calculate the Green’s function we need the eigenstates with 1 or 3 electrons, $S_z = \sigma = \pm \frac{1}{2}$ and parity ± 1 (we recall: $P = 1$ means $k = 0$, $P = -1$ means $k = \pi$):

$$
|3_{\pm}, \sigma\rangle = \frac{1}{\sqrt{2}} \left(c_{1,\sigma}^\dagger \pm c_{2,\sigma}^\dagger \right) |0\rangle,
$$

$$
|4_{\pm}, \sigma\rangle = \frac{1}{\sqrt{2}} \left(c_{1,\sigma}^\dagger c_{2,\uparrow}^\dagger c_{2,\downarrow}^\dagger \pm c_{2,\sigma}^\dagger c_{1,\uparrow}^\dagger c_{1,\downarrow}^\dagger \right) |0\rangle.
$$

- These states are the only ones in their respective (N_e, S_z, P) sector ⇒ eigenstates by construction
- Their energies are (with $\epsilon_k = -t \cos(k)$)

$$
H |3_{\pm}, \sigma\rangle = \mp t |3_{\pm}, \sigma\rangle = \epsilon_k |3_{\pm}, \sigma\rangle
$$

$$
H |4_{\pm}, \sigma\rangle = (U \pm t) |4_{\pm}, \sigma\rangle = (U - \epsilon_k) |4_{\pm}, \sigma\rangle
$$
We thus know all eigenstates $|j\rangle$ with $N_e = 0, 1, 2, 3, 4$ as well as their energies E_j.

We can now evaluate the Green's function using the Lehmann representation $(k = 0, \pi)$:

$$G(k, \omega) = \frac{1}{Z} \sum_{i,j} e^{-\beta(E_i - \mu N_i)} + e^{-\beta(E_j - \mu N_j)} \frac{1}{\omega + \mu - (E_j - E_i)} |\langle i | c_k | j \rangle|^2$$

with

$$c_{k,\sigma} = \frac{1}{\sqrt{2}} (c_{1,\sigma} \pm c_{2,\sigma})$$

From the Green's function we can then obtain the self-energy $\Sigma(k, \omega)$ from the Dyson equation

$$(\omega + \mu - \epsilon_k - \Sigma(k, \omega)) G(k, \omega) = 1.$$

For simplicity we consider the limit of low temperature and assume that μ is chosen such that the thermal occupation factor $e^{-\beta(E_j - \mu N_j)}/Z$ is 1 for the ground state with 2 electrons and 0 otherwise (this can in fact be achieved by choosing $\mu = \frac{U}{2}$ and $T \ll J$).
In this limit we can actually give analytical expressions for G and Σ

\[
G(k, \omega) = \frac{\frac{1}{2} - \frac{\epsilon_k}{W}}{\omega + \mu - (E_0 - \epsilon_k)} + \frac{\frac{1}{2} + \frac{\epsilon_k}{W}}{\omega + \mu - (U - \epsilon_k - E_0)}
\]

\[
E_0 = \frac{U}{2} - W
\]

\[
W = \sqrt{\left(\frac{U}{2}\right)^2 + 4t^2}
\]

\[
\Sigma(k, \omega) = \frac{U}{2} + \frac{\left(\frac{U}{2}\right)^2}{\omega + \mu + 3\epsilon_k - \frac{U}{2}} = V_{HF} + \sum_{i=1}^{1} \frac{\sigma_i}{\omega - \zeta_i}
\]
In this limit we can actually give analytical expressions for G and Σ

\[
G(k, \omega) = \frac{1}{2} - \frac{\epsilon_k}{W} \frac{1}{\omega + \mu - (E_0 - \epsilon_k)} + \frac{1}{2} + \frac{\epsilon_k}{W} \frac{1}{\omega + \mu - (U - \epsilon_k - E_0)} \xrightarrow{U/t \to \infty} \frac{1}{2} - \frac{2\epsilon_k}{U} \frac{1}{\omega + \frac{U}{2} + \epsilon_k} + \frac{1}{2} + \frac{2\epsilon_k}{U} \frac{1}{\omega - \frac{U}{2} + \epsilon_k}
\]

\[
E_0 = \frac{U}{2} - W \xrightarrow{U/t \to \infty} -\frac{4t^2}{U}
\]

\[
W = \sqrt{\left(\frac{U}{2}\right)^2 + 4t^2} \xrightarrow{U/t \to \infty} \frac{U}{2} + \frac{4t^2}{U}
\]

\[
\Sigma(k, \omega) = \frac{U}{2} + \frac{\left(\frac{U}{2}\right)^2}{\omega + \mu + 3\epsilon_k - \frac{U}{2}} \xrightarrow{U/t \to \infty} \frac{U}{2} + \frac{\left(\frac{U}{2}\right)^2}{\omega + 3\epsilon_k}
\]
Dimer spectrum compared to spectra of half-filled 16- and 18-site clusters ($U/t = 10$, Dots: $-\epsilon_k$)
To see the implications of this let us consider just a single pole:

\[\Sigma(\omega) = \frac{\sigma}{\omega - \zeta} \]

The equation for poles of the Green’s function (=energies of electron states) reads: \(\omega - \epsilon_k = \Sigma(\omega) \)
To see the implications of this let us consider just a single pole:

$$\Sigma(\omega) = \frac{\sigma}{\omega - \zeta}$$

The equation for poles of the Green’s function (=energies of electron states) reads: $$\omega - \epsilon_k = \Sigma(\omega)$$
To see the implications of this let us consider just a single pole:

\[\Sigma(\omega) = \frac{\sigma}{\omega - \zeta} \]

The equation for poles of the Green's function (=energies of electron states) reads: \(\omega - \epsilon_k = \Sigma(\omega) \)
To see the implications of this let us consider just a single pole:

\[\Sigma(\omega) = \frac{\sigma}{\omega - \zeta} \]

The equation for poles of the Green's function (=energies of electron states) reads:

\[\omega - \epsilon_k = \Sigma(\omega) \]

\[\omega_1 - \omega_2 = \sqrt{(\epsilon_k - \zeta)^2 + 4\sigma} \approx \sqrt{4\sigma} \Rightarrow \sigma \approx \frac{U^2}{2} \]
Dimer spectrum compared to spectra of 16- and 18-site clusters \((U/t = 10)\)
Summary, Hubbard Dimer

- At - or close to - half-filling: **antiferromagnetic spin correlations**, electrons on neighboring sites prefer to couple their spins to a singlet, or be antiparallel.
- Spin excitations with **new low energy scale** \(J = \frac{4t^2}{U} \ll t \)
- Photoemission/inverse photoemission spectrum shows **Hubbard gap of order** \(U \)
- This is ‘pushed open’ by a **single pole of the self-energy** with residuum \(\propto U^2 \)
- ‘Gap-opening pole’ has **substantial dispersion** - \(k \)-dependent self-energy
- Conjecture: residuum of ‘gap-opening pole’ would be natural order parameter for paramagnetic MIT:
The Hubbard-I approximation

- We consider the Hubbard model at half-filling, $N_e = N$, and the nonmagnetic case $N_\uparrow = N_\downarrow = N/2$
- We set $t = 0$, U finite
- The GS has one electron/site and is highly degenerate

 $n_{\text{deg}} = \binom{N}{N/2}$

- We ignore this degeneracy and assume that there is a single ground state $|\Psi_0\rangle$
- $|\Psi_0\rangle$ may be thought of as a superposition of all the degenerate states with one electron per site
- Our main assumption is that $|\Psi_0\rangle$ is 'disordered'
- Next we assume that a finite $t \ll U$ is switched on
- This will result in charge fluctuations
Charge fluctuations as Fermionic Particles

\[H = \sum_{i,j} \sum_{\sigma} \frac{t_{i,j}}{2} \left(d_{i,\sigma}^\dagger h_{j,\sigma}^\dagger + H.c. \right) + \sum_{i,j} \sum_{\sigma} \frac{t_{i,j}}{2} \left(d_{i,\sigma}^\dagger d_{j,\sigma} - h_{i,\sigma}^\dagger h_{j,\sigma} \right) + U \sum_{i,\sigma} d_{i,\sigma}^\dagger d_{i,\sigma} \]
Fourier transformation gives

\[
H = \sum_{k,\sigma} \left(\left(\frac{\epsilon_k}{2} + U \right) d_{k,\sigma}^\dagger d_{k,\sigma} - \frac{\epsilon_k}{2} h_{k,\sigma}^\dagger h_{k,\sigma} \right) + \sum_{k,\sigma} \frac{\epsilon_k}{2} \left(d_{k,\sigma}^\dagger h_{-k,-\sigma}^\dagger + H.c. \right)
\]

This is a quadratic form which can be solved by a unitary transformation

\[
\begin{align*}
\gamma_{-k,\sigma} &= u_k d_{k,\sigma} + v_k h_{-k,-\sigma}^\dagger \\
\gamma_{+k,\sigma} &= -v_k d_{k,\sigma} + u_k h_{-k,-\sigma}^\dagger
\end{align*}
\]

Demanding...

\[
[H, \gamma_{\alpha,k,\sigma}^\dagger] = E_k \gamma_{\alpha,k,\sigma}^\dagger
\]

... leads to the eigenvalue problem

\[
\begin{pmatrix}
\frac{\epsilon_k}{2} & \frac{\epsilon_k}{2} \\
\frac{\epsilon_k}{2} & \frac{\epsilon_k}{2} + U
\end{pmatrix}
\begin{pmatrix}
u_k \\
v_k
\end{pmatrix}
= E_k
\begin{pmatrix}
u_k \\
v_k
\end{pmatrix}
\]
This is readily solved to give the energies of the two Hubbard bands

\[E_{k,\pm} = \frac{1}{2} \left(\epsilon_k + U \pm \sqrt{\epsilon_k^2 + U^2} \right) \quad \text{as} \quad U/t \to \infty \]

\[\begin{cases} \frac{\epsilon_k}{2} + U \\ \frac{\epsilon_k}{2} \end{cases} \]

Example: \(U/t = 10 \)

Particle-hole-symmetry: \(\mu = U/2 = 5 \)

Comparison with Hartree-approximation:

\[E_k = \frac{U}{2} + \epsilon_k \]
Charge fluctuations as Fermionic Particles

\[H = \sum_{i,j} \sum_{\sigma} \frac{t_{i,j}}{2} \left(d_{i,\sigma}^{\dagger} h_{j,-\sigma}^{\dagger} + H.c. \right) + \sum_{i,j} \sum_{\sigma} \frac{t_{i,j}}{2} \left(d_{i,\sigma}^{\dagger} d_{j,\sigma} - h_{i,-\sigma}^{\dagger} h_{j,-\sigma} \right) + U \sum_{i,\sigma} d_{i,\sigma}^{\dagger} d_{i,\sigma} \]
Rigorous Derivation: Equation of motion method

We split the electron annihilation operator into the part which reduces the number of double occupancies by one and the part which leaves the number of double occupancies constant

\[
c_{i,\uparrow} = c_{i,\uparrow} n_{i,\downarrow} + c_{i,\uparrow}(1 - n_{i,\downarrow}) = \hat{d}_{i,\uparrow} + \hat{c}_{i,\uparrow}
\]

\(\hat{d}_{i,\uparrow}\) and \(\hat{c}_{i,\uparrow}\) are called Hubbard operators
Accordingly these operators obey

\[[\hat{d}_{i,\sigma}, H_U] = U \hat{d}_{i,\sigma} \quad [\hat{c}_{i,\sigma}, H_U] = 0 \]

The time ordered Green’s functions for these operators is (with \(\alpha, \beta \in \{\hat{c}, \hat{d}\} \))

\[G_{\alpha,\beta}(k,t) = -i \langle T \alpha_{k,\sigma}(t) \beta_{k,\sigma}^\dagger \rangle \]

These obey the equations of motion

\[i \partial_t G_{\alpha,\beta}(k,t) = \delta(t) \langle \{ \beta_{k,\sigma}^\dagger, \alpha_{k,\sigma} \} \rangle - i \langle T [\alpha_{k,\sigma}, H](t) \beta_{k,\sigma}^\dagger \rangle. \]
Consider the hopping term between the sites i and j: $T_{i,j} = t_{i,j} \sum_\sigma \left(c_{i,\sigma}^\dagger c_{j,\sigma} + c_{j,\sigma}^\dagger c_{i,\sigma} \right)$ with

$$[c_{i,\sigma}, T_{i,j}] = t_{i,j} c_{j,\sigma}$$

$$[c_{i,\sigma}^\dagger, T_{i,j}] = -t_{i,j} c_{j,\sigma}^\dagger$$

Then (remember: $\hat{c}_{i,\uparrow} = c_{i,\uparrow} (1 - n_{i,\downarrow}) = c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger$)

$$[\hat{c}_{i,\uparrow}, T_{i,j}] = [c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger, T_{i,j}]$$

$$= c_{i,\uparrow}^\dagger c_{i,\downarrow} [c_{i,\downarrow}^\dagger, T_{i,j}] + c_{i,\uparrow}^\dagger [c_{i,\downarrow}, T_{i,j}] c_{i,\downarrow}^\dagger + [c_{i,\uparrow}, T_{i,j}] c_{i,\downarrow} c_{i,\downarrow}^\dagger$$

$$= t_{i,j} (-c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger c_{j,\downarrow}^\dagger + c_{i,\uparrow}^\dagger c_{j,\downarrow} c_{i,\downarrow}^\dagger + c_{j,\uparrow} c_{i,\downarrow} c_{i,\downarrow}^\dagger)$$

$$= t_{i,j} (-c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger c_{j,\downarrow}^\dagger + c_{i,\downarrow}^\dagger c_{i,\uparrow} c_{j,\downarrow} + c_{j,\uparrow} (1 - n_{i,\downarrow}))$$

$$= t_{i,j} (-c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger c_{j,\downarrow}^\dagger + S_i^+ c_{j,\downarrow} + c_{j,\uparrow} (1 - n_{i,\downarrow}))$$

$$= t_{i,j} (-c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger c_{j,\downarrow}^\dagger + S_i^+ c_{j,\downarrow} + c_{j,\uparrow} (1 - (n_i/2 - S_i^z)))$$

$$= t_{i,j} (-c_{i,\uparrow}^\dagger c_{i,\downarrow}^\dagger c_{j,\downarrow}^\dagger + (S_i^- c_{j,\downarrow} + S_i^z c_{j,\uparrow}) + c_{j,\uparrow} ((1 - \langle n_i \rangle/2) - (n_i/2 - \langle n_i \rangle/2))$$
Collecting terms and writing \(\langle n_i \rangle = n_e \) we find

\[
[\hat{c}_{i,\uparrow}, H_t] = \sum_j t_{ij} \left[(1 - \frac{n_e}{2}) c_{j,\uparrow} + (c_{j,\uparrow} S_i^z + c_{j,\downarrow} S_i^-) - \frac{1}{2} c_{j,\uparrow} (n_i - n_e) + c_{j,\downarrow} c_{i,\downarrow} c_{i,\uparrow} \right]
\]

\[
[\hat{d}_{i,\uparrow}, H_t] = \sum_j t_{ij} \left[\frac{n_e}{2} c_{j,\uparrow} - (c_{j,\uparrow} S_i^z + c_{j,\downarrow} S_i^-) + \frac{1}{2} c_{j,\uparrow} (n_i - n_e) - c_{j,\downarrow} c_{i,\downarrow} c_{i,\uparrow} \right]
\]

The various terms describe

Coherent propagation from \(i \to j \) with reduced hopping element

Hopping \(i \to j \) while leaving a spin excitation at \(i \)

Hopping \(i \to j \) while leaving a density excitation at \(i \)

Hopping \(i \to j \) while leaving a pair excitation at \(i \) (important only for \(U < 0 \))

The Hubbard-I approximation corresponds to a rather crude truncation:

\[
[\hat{c}_{i,\uparrow}, H_t] = \sum_j t_{ij} (1 - \frac{n_e}{2}) c_{j,\uparrow} = (1 - \frac{n_e}{2}) \sum_j t_{ij} (\hat{c}_{j,\uparrow} + \hat{d}_{j,\uparrow})
\]

\[
[\hat{d}_{i,\uparrow}, H_t] = \sum_j t_{ij} \frac{n_e}{2} c_{j,\uparrow} = \frac{n_e}{2} \sum_j t_{ij} (\hat{c}_{j,\uparrow} + \hat{d}_{j,\uparrow})
\]
Spatial Fourier transformation and adding the commutator with H_U gives

$$[\hat{c}_{k,\uparrow}, H] = (1 - \frac{n_e}{2}) \epsilon_k (\hat{c}_{k,\uparrow} + \hat{d}_{k,\uparrow})$$
$$[\hat{d}_{k,\uparrow}, H] = \frac{n_e}{2} \epsilon_k (\hat{c}_{k,\uparrow} + \hat{d}_{k,\uparrow}) + U \hat{d}_{k,\uparrow}$$

The anticommutators are (remember: $\hat{c}^\dagger_{i,\sigma} = c^\dagger_{i,\sigma} (1 - n_i - \sigma)$)

$$\{\hat{c}^\dagger_{i,\sigma}, \hat{c}_{i,\sigma}\} = \{c^\dagger_{i,\sigma}, c_{i,\sigma}\} (1 - n_{i-\sigma})^2 = 1 - n_{i-\sigma}$$
$$\{\hat{d}^\dagger_{i,\sigma}, \hat{d}_{i,\sigma}\} = n_{i-\sigma}$$

Now we have every ingredient to set up the equations of motion

$$i \partial_t G_{\alpha,\beta}(\vec{k}, t) = \delta(t) \langle \{\beta^\dagger_{k,\sigma}, \alpha_{k,\sigma}\} \rangle - i \langle T[\alpha_{k,\sigma}, H](t) \beta^\dagger_{k,\sigma} \rangle.$$

For example $\alpha = \hat{d}$, $\beta = \hat{d}$:

$$i \partial_t G_{\hat{d},\hat{d}}(\vec{k}, t) = \delta(t) \langle n_{-\sigma} \rangle + \frac{n_e}{2} \epsilon_k \left(G_{\hat{c},\hat{d}}(\vec{k}, t) + G_{\hat{d},\hat{d}}(\vec{k}, t) \right) + U G_{\hat{d},\hat{d}}(\vec{k}, t)$$
After Fourier transformation with respect to time \((i\partial_t \to \omega)\) we obtain the system of equations

\[
\begin{pmatrix}
\omega - (1 - \frac{n_e}{2}) \epsilon_k , & -(1 - \frac{n_e}{2}) \epsilon_k \\
-\frac{n_e}{2} \epsilon_k , & \omega - \frac{n_e}{2} \epsilon_k - U
\end{pmatrix}
\begin{pmatrix}
G_{\hat{c},\hat{c}} & G_{\hat{c},\hat{d}} \\
G_{\hat{d},\hat{c}} , & G_{\hat{d},\hat{d}}
\end{pmatrix}
= \begin{pmatrix}
1 - \frac{n_e}{2} , 0 \\
0 , \frac{n_e}{2}
\end{pmatrix}
\]

Now we can use

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^{-1}
= \frac{1}{ad - bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
\]

... to solve for the \(2 \times 2\) matrix \(G(k, \omega)\)

Since \(c_{k,\sigma} = \hat{c}_{k,\sigma} + \hat{d}_{k,\sigma}\) the electron Green’s function

\[G(k, t) = -i \langle T c_{k,\sigma}(t) \ c_{k,\sigma}^{\dagger} \rangle,\]

can be obtained as \(G = G_{\hat{c},\hat{c}} + G_{\hat{c},\hat{d}} + G_{\hat{d},\hat{c}} + G_{\hat{d},\hat{d}}\)
After some algebra this can be brought to the familiar-looking form...

\[G(k, \omega) = \frac{1}{\omega - \epsilon_k - \Sigma(\omega)} \]

...where the \(k \)-independent self-energy \(\Sigma(\omega) \) is given by

\[\Sigma(\omega) = \frac{n_e}{2} U + \frac{n_e}{2} \left(1 - \frac{n_e}{2}\right) \frac{U^2}{\omega - (1 - \frac{n_e}{2}) U} \]

\[= V_{HF} + \frac{\sigma}{\omega - \zeta} \]

\[\Rightarrow \text{Sum of Hartree-Fock potential and a single term with a pole - as established by Luttinger} \]
First check: Comparison to exact spectra for the dimer

Simply use ‘dimer dispersion’ $\epsilon_k = -t \cos(k)$ and the Hubbard-I self-energy for $n_e = 1$ in the Dyson equation

![Exact spectrum diagram](image)

![Hubbard-I spectrum diagram](image)
After fixing the chemical potential we obtain the spectral function (here: $T \rightarrow 0$)

Note the transfer of spectral weight upon decreasing electron density

(Experimental data on La$_{2-x}$Sr$_x$CuO$_4$ by C.T. Chen et al., Phys. Rev. Lett. 66, 104 (1991))
For small doping the Fermi surface is a small pocket around (π,π) - the Fermi surface volume depends on electron density in a strange nonlinear way - this is a well-known deficiency of the Hubbard-I approximation.
Comparison to $A(k, \omega)$ obtained by QMC on an 8×8 cluster, $U/t = 8$, $n_e = 1$

QMC at $k_B T = t$ - Fermi surface volume
Rough estimate for fractional Fermi surface volume

\[V_{Fermi} = \frac{1}{64} \sum_k n_k, \]

\[0 \quad 0.1 \quad 0.2 \quad 0.3 \]

\[V_F \]

\[1 \]

\[0 \quad 0.1 \quad 0.2 \quad 0.3 \]

\[1 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \]

\[(0,0) \]
Summary: the Hubbard-I approximation

- Basic physical idea: consider half-filled state as ‘vacuum’
 - interpret charge fluctuations as hole-like and double occupancy-like ‘particles’
- The particles have energies 0 and $U \Rightarrow$ two Hubbard-bands
- Self-energy has a single dispersionless ‘gap opening peak’ with residuum $\propto U^2$ (cave exact diagonalization!)
- At half-filling ($n_e = 1$): lower Hubbard band is filled completely
- Less than half-filling: lower Hubbard band is ‘hole doped’
- Fermi surface is a small hole pocket at the maximum of the lower Hubbard band (usually (π, π))
- Hole-pocket volume $\rightarrow 0$ as $n_e \rightarrow 1$ - MIT by vanishing carrier density
- Strange nonlinear dependence of Fermi surface volume on electron density
- Comparison with QMC: soso....
The Gutzwiller wave function

Basic idea: With increasing U/t the probability to find doubly occupied sites will decrease

This may be described by the following variational wave function

$$|\Phi_G\rangle = \prod_i (1 - \lambda n_i,\uparrow n_i,\downarrow) |FS\rangle$$

- $|FS\rangle$ is the free electron ground state i.e. the Fermi sea
- λ is a variational parameter - to be determined from $\langle \Phi_G | H | \Phi_G \rangle / \langle \Phi_G | \Phi_G \rangle \rightarrow min$

The operator $1 - \lambda n_\uparrow n_\downarrow$ acts like this

- $(1 - \lambda n_\uparrow n_\downarrow) |0\rangle = |0\rangle$
- $(1 - \lambda n_\uparrow n_\downarrow) |\uparrow\rangle = |\uparrow\rangle$
- $(1 - \lambda n_\uparrow n_\downarrow) |\downarrow\rangle = |\downarrow\rangle$
- $(1 - \lambda n_\uparrow n_\downarrow) |\uparrow\downarrow\rangle = (1 - \lambda) |\uparrow\downarrow\rangle$

A state with N_d double occupancies gets a factor of $(1 - \lambda)^{N_d} \ll 1$
Rewriting the Fermi sea $|FS\rangle$

We use (spin index suppressed!)

$$c_k^\dagger = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{ik \cdot R_j} c_j^\dagger$$

Then

$$\prod_{j=1}^{M} c_{k_j}^\dagger |0\rangle = \frac{1}{\sqrt{N}^M} \sum_{i_1, i_2, \ldots, i_M} e^{i \sum_{j=1}^{M} k_j \cdot R_{i_j}} c_{i_1}^\dagger c_{i_2}^\dagger \ldots c_{i_M}^\dagger |0\rangle$$

Here we sum over all M-tuples of site indices

We may as well sum over all ordered M-tuples and then sum over all permutations of M indizes

$$\prod_{j=1}^{M} c_{k_j}^\dagger |0\rangle = \frac{1}{\sqrt{N}^M} \sum_{i_1>i_2>i_3>\ldots>i_M} \sum_{\sigma} e^{i \sum_{j=1}^{M} k_j \cdot R_{i_{\sigma(j)}}} c_{i_{\sigma(1)}}^\dagger c_{i_{\sigma(2)}}^\dagger \ldots c_{i_{\sigma(M)}}^\dagger |0\rangle$$
We had

$$\prod_{j=1}^{M} c_{j_k}^\dagger |0\rangle = \frac{1}{\sqrt{N^M}} \sum_{i_1>i_2>i_3\ldots>i_M} \sum_{\sigma} e^{i \sum_{j=1}^{M} k_j \cdot R_{i_{\sigma(j)}}} c_{i_{\sigma(1)}}^\dagger c_{i_{\sigma(2)}}^\dagger \ldots c_{i_{\sigma(M)}}^\dagger |0\rangle$$

The product of creation operators can be brought back to the original ordered sequence

$$c_{i_{\sigma(1)}}^\dagger c_{i_{\sigma(2)}}^\dagger \ldots c_{i_{\sigma(M)}}^\dagger |0\rangle = (-1)^{\sigma'} c_{i_1}^\dagger c_{i_2}^\dagger \ldots c_{i_M}^\dagger |0\rangle$$

Since obviously $\sigma' = \sigma^{-1}$ we have $(-1)^{\sigma'} = (-1)^{\sigma}$ we finally have

$$\prod_{j=1}^{M} c_{j_k}^\dagger |0\rangle = \frac{1}{\sqrt{N^M}} \sum_{i_1>i_2>i_3\ldots>i_M} \sum_{\sigma} (-1)^{\sigma} e^{i \sum_{j=1}^{M} k_j \cdot R_{i_{\sigma(j)}}} c_{i_1}^\dagger c_{i_2}^\dagger c_{i_M}^\dagger |0\rangle$$

$$= \frac{1}{\sqrt{N^M}} \sum_{i_1>i_2>i_3\ldots>i_M} D(k_1, k_2, \ldots, k_M | i_1, i_2, \ldots, i_M) c_{i_1}^\dagger c_{i_2}^\dagger c_{i_M}^\dagger |0\rangle$$
Assuming this procedure carried out for both spin directions, the Fermi sea \(|FS\rangle \) therefore may be thought of as the superposition of all real space configurations

\[
D(k_1, \ldots, k_{N_{\uparrow}} | i_1, \ldots i_{N_{\uparrow}}) \ D(k'_{1}, \ldots, k'_{N_{\downarrow}} | j_1, \ldots j_{N_{\downarrow}}) \ c^\dag_{i_1, \uparrow} \cdots c^\dag_{i_{N_{\uparrow}}, \uparrow} \ c^\dag_{j_1, \downarrow} \cdots c^\dag_{j_{N_{\downarrow}}, \downarrow} |0\rangle
\]

In the Gutzwiller wave function each of these configurations gets an additional factor of \((1 - \lambda)^{N_d} < 1\) where \(N_d\) is the number of sites belonging to \(\{i_1, \ldots i_{N_{\uparrow}}\} \cap \{j_1, \ldots j_{N_{\downarrow}}\} \)

Why do we insist on ordered M-tuples \((i_1, \ldots i_{N_{\uparrow}})\) and \((j_1, \ldots j_{N_{\downarrow}})\)?

Because then each real-space configuration of electrons is included only once and all real space configurations are mutually orthogonal.
The Gutzwiller wave function can be decomposed into components with fixed number of double occupancies

\[|\Phi_G\rangle = \sum_{N_d} |\Phi(N_d)\rangle \]

\[|\Phi(0)\rangle = a + b + c + \ldots \]

\[|\Phi(1)\rangle = d + e + f + \ldots \]

\[|\Phi(2)\rangle = g + h + \ldots \]
The Gutzwiller wave function can be decomposed into components with fixed number of double occupancies

$$|\Phi_G\rangle = \sum_{N_d} |\Phi(N_d)\rangle$$

Since the overlap of any two states with different N_d is zero we have

$$\langle \Phi_G | \Phi_G \rangle = \sum_{N_d} \langle \Phi(N_d) | \Phi(N_d) \rangle = \sum_{N_d} W(N_d)$$

Question: Which N_d has the largest weight $W(N_d)$ in this sum?

$W(N_d)$ obviously is the probability distribution for the number of double occupancies in the Gutzwiller wave function.

Therefore the question may also be stated as: Which number of double occupancies is the most probable one?
Remember: $|\Phi(N_d)\rangle$ is the sum over all ordered N_\uparrow-tuples $i_1, i_2, \ldots, i_{N_\uparrow}$ and N_\downarrow-tuples $j_1, j_2, \ldots, j_{N_\downarrow}$ of

$$
D(k_1, \ldots, k_{N_\uparrow}|i_1, \ldots i_{N_\uparrow}) \; D(k'_{N_\uparrow}, \ldots, k'_{N_\downarrow}|j_1, \ldots j_{N_\downarrow}) \; c^\dagger_{i_1\uparrow} \cdots c^\dagger_{i_{N_\uparrow}\uparrow} c^\dagger_{j_1\downarrow} \cdots c^\dagger_{j_{N_\downarrow}\downarrow} |0\rangle
$$

such that $\{i_1, \ldots i_{N_\uparrow}\} \cap \{j_1, \ldots j_{N_\downarrow}\}$ comprises N_d sites - additional prefactor: $(1 - \lambda)^{N_d} \frac{1}{\sqrt{N_\uparrow + N_\downarrow}}$

Since any two configurations are orthogonal we only need $D^*(k_j|i_j) \; D(k_j|i_j)$

$$
D(k_1, k_2, \ldots, k_M|i_1, i_2, \ldots i_M) = \sum_\sigma (-1)^\sigma \ exp \left(i \sum_{j=1}^{M} k_j \cdot R_{i_\sigma(j)} \right)
$$

$$
D^*(k_j|i_j) \; D(k_j|i_j) = \sum_{\sigma, \sigma'} (-1)^\sigma (-1)^{\sigma'} \ exp \left(i \sum_{j=1}^{M} k_j \cdot (R_{i_\sigma(j)} - R_{i_{\sigma'}(j)}) \right)
$$

$$
= \sum_\sigma 1 + \sum_{\sigma \neq \sigma'} (-1)^\sigma (-1)^{\sigma'} \ exp \left(i \sum_{j=1}^{M} k_j \cdot (R_{i_\sigma(j)} - R_{i_{\sigma'}(j)}) \right)
$$

$$
= M!
$$
We want to calculate $\langle \Phi(N_d) | \Phi(N_d) \rangle$

Remember: $| \Phi(N_d) \rangle$ is the sum over all ordered N_\uparrow-tuples $i_1, i_2, \ldots i_{N_\uparrow}$ and N_\downarrow-tuples $j_1, j_2, \ldots j_{N_\downarrow}$ of

$$D(k_1, \ldots, k_{N_\uparrow}|i_1, \ldots i_{N_\uparrow}) \ D(k'_1, \ldots, k'_{N_\downarrow}|j_1, \ldots j_{N_\downarrow}) \ c_{i_1,\uparrow}^\dagger \ldots c_{i_{N_\uparrow},\uparrow}^\dagger \ c_{j_1,\downarrow}^\dagger \ldots c_{j_{N_\downarrow},\downarrow}^\dagger |0\rangle$$

such that $\{i_1, \ldots i_{N_\uparrow}\} \cap \{j_1, \ldots j_{N_\downarrow}\}$ comprises N_d sites - additional prefactor: $(1 - \lambda)^{N_d} \frac{1}{\sqrt{N_{\uparrow}^{N_\uparrow} + N_{\downarrow}^{N_\downarrow}}}$

We have just seen that

$$D^*(k_j|i_j) \ D(k_j|i_j) = M!$$

The total weight of all states with N_d double occupancies therefore is the norm of each state times the number of states

$$W(N_d) = \langle \Phi(N_d) | \Phi(N_d) \rangle = \frac{N_\uparrow! \ N_\downarrow!}{N_{\uparrow}^{N_\uparrow} + N_{\downarrow}^{N_\downarrow}} \ (1 - \lambda)^{2N_d} \ C(N_\uparrow, N_\downarrow, N_d)$$

$C(N_\uparrow, N_\downarrow, N_d)$: number of ways in which $N_\uparrow \uparrow$-electrons and $N_\downarrow \downarrow$-electrons can be distributed over the N lattice sites such as to generate N_d double occupancies
We seek: \(C(N_{\uparrow}, N_{\downarrow}, N_d) \): the number of ways in which \(N_{\uparrow} \) ↑-electrons and \(N_{\downarrow} \) ↓-electrons can be distributed over the \(N \) lattice sites such as to generate \(N_d \) double occupancies.

All in all we have \(N \) sites - these \(N \) sites have to be divided into:

- \(N_d \) sites with double occupancy
- \(N_{\uparrow} - N_d \) sites with ↑-electron only
- \(N_{\downarrow} - N_d \) sites with ↓-electron only
- \(N - N_d - (N_{\uparrow} - N_d) - (N_{\downarrow} - N_d) = N - N_{\uparrow} - N_{\downarrow} + N_d \) empty sites

The answer then is the multinomial coefficient

\[
C(N_{\uparrow}, N_{\downarrow}, N_d) = \frac{N!}{N_d! (N_{\uparrow} - N_d)! (N_{\downarrow} - N_d)! (N - N_{\uparrow} - N_{\downarrow} + N_d)!}
\]
We briefly remember what we are currently working on....

\[|\Phi_G\rangle = \sum_{N_d} |\Phi(N_d)\rangle \]

\[\langle \Phi_G | \Phi_G \rangle = \sum_{N_d} \langle \Phi(N_d) | \Phi(N_d) \rangle \]

Question: which \(N_d \) gives the largest contribution \(W(N_d) = \langle \Phi(N_d) | \Phi(N_d) \rangle \) to this sum?
We just found

\[W(N_d) = \frac{N^{\uparrow}! \, N^{\downarrow}!}{N^{\uparrow+N_d}} (1 - \lambda)^{2N_d} \frac{N!}{N_d! \, (N^{\uparrow} - N_d)! \, (N^{\downarrow} - N_d)! \, (N - N^{\uparrow} - N^{\downarrow} + N_d)!} \]

Take \(\log(W(N_d)) \), use Stirling formula for the factorials ...

\[\log(N!) \approx N \log(N) - N \]

\[\frac{d}{dN} \log(N!) \approx \log(N) = \frac{\log((N+1)!) - \log(N!)}{1} \]

...and differentiate with respect to \(N_d \):

\[\frac{d}{dN_d} \log(W(N_d)) = \log \left((1 - \lambda)^{2} \frac{(N^{\uparrow} - N_d) \, (N^{\downarrow} - N_d)}{N_d \, (N - N^{\uparrow} - N^{\downarrow} + N_d)} \right) \]

\[\frac{d^2}{dN_d^2} \log(W(N_d)) = -\left(\frac{1}{N_d} + \frac{1}{N^{\uparrow} - N_d} + \frac{1}{N^{\downarrow} - N_d} + \frac{1}{N - N^{\uparrow} - N^{\downarrow} + N_d} \right) \]
We had
\[
\frac{d}{dN_d} \log (W(N_d)) = \log \left((1 - \lambda)^2 \frac{(N_\uparrow - N_d) (N_\downarrow - N_d)}{N_d (N - N_\uparrow - N_\downarrow + N_d)} \right)
\]
\[
\frac{d^2}{dN_d^2} \log (W(N_d)) = -\left(\frac{1}{N_d} + \frac{1}{N_\uparrow - N_d} + \frac{1}{N_\downarrow - N_d} + \frac{1}{N - N_\uparrow - N_\downarrow + N_d} \right)
\]

Switch to densities \(n_\alpha = N_\alpha / N, \alpha \in \{\uparrow, \downarrow, d\} \)
\[
\frac{d}{dN_d} \log (W(N_d)) = \log \left((1 - \lambda)^2 \frac{(n_\uparrow - n_d) (n_\downarrow - n_d)}{n_d (1 - n_\uparrow - n_\downarrow + n_d)} \right)
\]
\[
\frac{d^2}{dN_d^2} \log (W(N_d)) = -\frac{1}{N} \left(\frac{1}{n_d} + \frac{1}{n_\uparrow - n_d} + \frac{1}{n_\downarrow - n_d} + \frac{1}{1 - n_\uparrow - n_\downarrow + n_d} \right)
\]

Demanding \(\frac{d}{dN_d} \log (W(N_d)) = 0 \) the first equation gives \(n_d(\lambda) \) (remember: \(n_\uparrow, n_\downarrow \) are given!)
\[
(1 - \lambda)^2 \frac{(n_\uparrow - n_d) (n_\downarrow - n_d)}{n_d (1 - n_\uparrow - n_\downarrow + n_d)} = 1
\]
We had

\[(1 - \lambda)^2 \frac{(n_\uparrow - n_d) (n_\downarrow - n_d)}{n_d (1 - n_\uparrow - n_\downarrow + n_d)} = 1\]

For general \(n_\sigma\) this is involved - so put \(n_\uparrow = n_\downarrow = \frac{1}{2}\) (half-filling!):

\[(1 - \lambda)^2 \frac{(\frac{1}{2} - n_d)^2}{n_d^2} = 1 \rightarrow n_d = \frac{1 - \lambda}{2(2 - \lambda)}\]

Check: \(\lambda \rightarrow 0\) - i.e. no projection - implies \(n_d = 1/4 = n_\uparrow \cdot n_\downarrow\) - correct at half-filling!
We have found the value $N_{d,\text{max}}$ which gives the largest weight - the second derivative was

$$\frac{d^2}{dN_d^2} \log (W(N_d)) = -\frac{1}{N} \left(\frac{1}{n_d} + \frac{1}{n_\uparrow - n_d} + \frac{1}{n_\downarrow - n_d} + \frac{1}{1 - n_\uparrow - n_\downarrow + n_d} \right) = -\frac{c}{N}$$

All densities n_α are of order unity $\Rightarrow c$ is of order unity

Taylor expansion of the logarithm around $N_{d,\text{max}}$ (remember: $n_d = N_d/N \rightarrow N_d = N \cdot n_d$)

$$\log (W(N_d)) = \log (W(N_{d,\text{max}})) - \frac{1}{2} \frac{c}{N} (N_d - N_{d,\text{max}})^2 + \ldots$$

$$\Rightarrow W(N_d) = W(N_{d,\text{max}}) \cdot \exp \left(-\frac{c}{2N} (N_d - N_{d,\text{max}})^2 \right) = W(N_{d,\text{max}}) \cdot \exp \left(-\frac{c}{2} (n_d - n_{d,\text{max}})^2 \right)$$

$\rightarrow W(n_d)$ is a Gaussian of width $\sqrt{\frac{2}{cN}}$ \Rightarrow as $N \rightarrow \infty$ the width becomes zero

The Gutzwiller wave function consists of configurations with $N_d = N \cdot n_{d,\text{max}}$!
The probability distribution for the number of double occupancies in the Gutzwiller wave function is a Gaussian with a width $\propto \frac{1}{\sqrt{N}}$ and the center of the Gaussian is shifted by varying λ.

![Diagram showing Gaussian distribution with parameters λ, $W(n_d)$, and n_d.]

The expectation value of H_U therefore is trivial: $\langle H_U \rangle = U \cdot N_d = U \cdot N \cdot n_d$.
Expectation value of the kinetic energy

Basic idea: Reducing the number of double occupancies reduces the number of ‘hopping possibilities’
The Gutzwiller Approximation

Basic assumption: the expectation value of the kinetic energy can be obtained from that of free electrons by multiplying by suitable renormalization factors η_σ which account for the reduced probability for hopping

$$\frac{\langle \Phi_G | H_t | \Phi_G \rangle}{\langle \Phi_G | \Phi_G \rangle} = \sum_\sigma \eta_\sigma(n_{\uparrow}, n_{\downarrow}, n_d) \langle FS, \sigma | H_t | FS, \sigma \rangle$$

$|FS, \sigma\rangle$: Fermi sea for σ-electrons

$$\eta_\sigma(n_{\uparrow}, n_{\downarrow}, n_d) = \frac{\text{Number of hopping possibilities with } n_d \text{ double occupancies}}{\text{Number of hopping possibilities with } n_d = n_{\uparrow} \cdot n_{\downarrow}}$$

The evaluation of the $\eta_\sigma(n_{\uparrow}, n_{\downarrow}, n_d)$ then is a combinatorical problem - this is discussed very understandably by Ogawa et al. Progr. Theor. Phys. 53, 614 (1975).
Introduce fictitious Hilbert space with 4 ‘book-keeping kets’ for every site i: $|i, 0\rangle$, $|i, \uparrow\rangle$, $|i, \downarrow\rangle$ and $|i, \uparrow\downarrow\rangle$

Define a wave function of a single site i (with α_{σ}, β real).....

$$|B_i\rangle = \frac{|i, 0\rangle + \alpha_\uparrow |i, \uparrow\rangle + \alpha_\downarrow |i, \downarrow\rangle + \beta |i, \uparrow\downarrow\rangle}{\sqrt{1 + \alpha_{\uparrow}^2 + \alpha_{\downarrow}^2 + \beta^2}}$$

$$\langle B_i | B_i \rangle = 1$$

... and a wave function of the whole lattice

$$|\Psi\rangle = \prod_i |B_i\rangle$$

$$\langle \Psi | \Psi \rangle = 1$$
We had

\[|B_i\rangle = \frac{|i, 0\rangle + \alpha_i^\uparrow |i, \uparrow\rangle + \alpha_i^\downarrow |i, \downarrow\rangle + \beta |i, \uparrow\downarrow\rangle}{\sqrt{1 + \alpha_i^2 + \alpha_i^2 + \beta^2}}\]

\[|\Psi\rangle = \prod_i |B_i\rangle\]

If \(|\Psi\rangle\) were a true electron state we would have

\[\langle N^\uparrow \rangle = N \frac{\alpha^2_i + \beta^2}{1 + \alpha^2_i + \alpha^2_i + \beta^2},\]

\[\langle N_d \rangle = N \frac{\beta^2}{1 + \alpha^2_i + \alpha^2_i + \beta^2}.\]

which can be reverted to give

\[\alpha_{\sigma} = \sqrt{\frac{n_{\sigma} - n_d}{1 - n^\uparrow - n^\downarrow + n_d}},\]

\[\beta = \sqrt{\frac{n_d}{1 - n^\uparrow - n^\downarrow + n_d}}.\]
Our auxiliary wave function was (remember: $(\alpha^\uparrow, \alpha^\downarrow, \beta) \leftrightarrow (n^\uparrow, n^\downarrow, n_d)$)

$$|B_i\rangle = \frac{|i, 0\rangle + \alpha^\uparrow|i, \uparrow\rangle + \alpha^\downarrow|i, \downarrow\rangle + \beta|i, \uparrow\downarrow\rangle}{\sqrt{1 + \alpha^2_{\uparrow} + \alpha^2_{\downarrow} + \beta^2}}$$

$$|\Psi\rangle = \prod_i |B_i\rangle$$

$|\Psi\rangle$ has norm 1 and as many 'empty sites', 'singly occupied sites' and 'doubly occupied sites' as the true Gutzwiller wave function if we adjust α_σ and β correctly.

But: $|\Psi\rangle$ does not correspond to a state with fixed electron number \Rightarrow in principle we should instead use

$$|\Psi''\rangle = \mathcal{P}(N^\uparrow, N^\downarrow, N_d) |\Psi\rangle$$

where \mathcal{P} projects onto the component of $|\Psi\rangle$ which has precisely $\langle N^\uparrow \rangle$ \uparrow-electrons etc.
But2: It is straightforward to show that the probability distribution of the N_{α} - with $\alpha \in \{\uparrow, \downarrow, d\}$ have a Gaussian distribution around their mean values \bar{N}_{α} with a width which is again $\propto N^{-1/2}$

Therefore, in calculating expectation values we may drop the projector \mathcal{P} and replace $|\Psi'\rangle \rightarrow |\Psi\rangle$

$$|\Psi_{BCS}\rangle = \mathcal{P} \prod_{k} \left(u_{k} + v_{k} \left(c_{k,\uparrow}^{\dagger} c_{-k,\downarrow}^{\dagger} \right) \right) |0\rangle$$
Our auxiliary wave function was (remember: \((\alpha_\uparrow, \alpha_\downarrow, \beta) \leftrightarrow (n_\uparrow, n_\downarrow, n_d)\))

\[
|B_i\rangle = \frac{|i, 0\rangle + \alpha_\uparrow|i, \uparrow\rangle + \alpha_\downarrow|i, \downarrow\rangle + \beta|i, \uparrow\downarrow\rangle}{\sqrt{1 + \alpha_\uparrow^2 + \alpha_\downarrow^2 + \beta^2}}
\]

\[
|\Psi\rangle = \prod_i |B_i\rangle
\]

Now we ‘translate’ the electron operators (note: this ignores the Fermi sign)

\[
\tilde{c}_{i,\uparrow} = |i, 0\rangle \langle i, \uparrow| + |i, \downarrow\rangle \langle i, \uparrow\downarrow|
\]

Then we estimate the number of hopping possibilities per bond as

\[
h(\uparrow, n_\uparrow, n_\downarrow, n_d) = \frac{\langle \Psi | \tilde{c}_{i,\uparrow}^\dagger \tilde{c}_{j,\uparrow} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle \Psi | \tilde{c}_{i,\uparrow}^\dagger \tilde{c}_{j,\uparrow} | \Psi \rangle = \langle B_i | \tilde{c}_{i,\uparrow}^\dagger | B_i \rangle \langle B_j | \tilde{c}_{j,\uparrow} | B_j \rangle
\]

\[
= |\langle B_i | \tilde{c}_{i,\uparrow} | B_i \rangle|^2 = \left(\frac{\alpha_\uparrow + \alpha_\downarrow \beta}{1 + \alpha_\uparrow^2 + \alpha_\downarrow^2 + \beta^2} \right)^2
\]
Number of hopping possibilities per bond

\[h(\sigma, n_{\uparrow}, n_{\downarrow}, n_d) = \left(\frac{\alpha_\sigma + \alpha_{-\sigma}\beta}{1 + \alpha_\uparrow^2 + \alpha_\downarrow^2 + \beta^2} \right)^2 \]

We found earlier how \(\alpha_\sigma \) and \(\beta \) can be expressed by \(n_\sigma \) and \(n_d \)....

\[\alpha_\sigma = \sqrt{\frac{n_\sigma - n_d}{1 - n_{\uparrow} - n_{\downarrow} + n_d}}, \quad \beta = \sqrt{\frac{n_d}{1 - n_{\uparrow} - n_{\downarrow} + n_d}}. \]

.... and inserting this we find

\[h(\sigma, n_{\uparrow}, n_{\downarrow}, n_d) = \left(\sqrt{n_\sigma - n_d} \sqrt{1 - n_{\uparrow} - n_{\downarrow} + n_d} + \sqrt{n_d} \sqrt{n_{-\sigma} - n_d} \right)^2 \]

The final renormalization factor then is obtained by dividing

\[\eta(\sigma, n_{\uparrow}, n_{\downarrow}, n_d) = \frac{h(\sigma, n_{\uparrow}, n_{\downarrow}, n_d)}{h(\sigma, n_{\uparrow}, n_{\downarrow}, n_{\uparrow}n_{\downarrow})} = \left(\frac{\sqrt{n_\sigma - n_d}\sqrt{1 - n_{\uparrow} - n_{\downarrow} + n_d} + \sqrt{n_d}\sqrt{n_{-\sigma} - n_d}}{\sqrt{n_\sigma(1 - n_\sigma)}} \right)^2 \]
Collecting everything

We decomposed the Gutzwiller wave function into components with fixed number of double occupancies

$$|\Phi_G\rangle = \sum_{N_d} |\Phi(N_d)\rangle$$

$$\langle \Phi(N_d)|\Phi(N_d)\rangle$$ is the probability distribution for the number of double occupancies and we found this is ‘infinitely sharply peaked’ around $$N_d = N \cdot n_d$$ with

$$(1 - \lambda)^2 \frac{(n_\uparrow - n_d)(n_\downarrow - n_d)}{n_d (1 - n_\uparrow - n_\downarrow + n_d)} = 1$$

This equation allows to switch from $$\lambda \rightarrow n_d$$ as variational parameter!
The expectation value of H_U then becomes trivial

$$\langle H_U \rangle = N \cdot U \cdot n_d$$

The expectation value of the kinetic energy was approximated as

$$\langle H_t \rangle = \sum_{\sigma} \eta(\sigma, n_\uparrow, n_\downarrow, n_d) \langle FS, \sigma | H_t | FS, \sigma \rangle$$

with the renormalization factors η_σ

$$\eta_\sigma(n_\uparrow, n_\downarrow, n_d) = \frac{\text{Number of hopping possibilities with } n_d \text{ double occupancies}}{\text{Number of hopping possibilities with } n_d = n_\uparrow \cdot n_\downarrow}$$

Their evaluation is a combinatorial problem and they can be expressed as functions of n_\uparrow, n_\downarrow and n_d

$$\eta(\sigma, n_\uparrow, n_\downarrow, n_d) = \left(\frac{\sqrt{n_\sigma - n_d} \sqrt{1 - n_\uparrow - n_\downarrow + n_d} + \sqrt{n_d} \sqrt{n_{-\sigma} - n_d}}{\sqrt{n_\sigma (1 - n_\sigma)}} \right)^2.$$

We thus have calculated the expectation value of the energy as a function of n_d.
Here it is:

\[E = \langle H_t \rangle + \langle H_U \rangle = \sum_{\sigma} \eta_{\sigma}(\sigma, n_{\uparrow}, n_{\downarrow}, n_d) \langle FS, \sigma|H_t|FS, \sigma \rangle + N \cdot U \cdot n_d \]

We specialize to the nonmagnetic case \(n_{\uparrow} = n_{\downarrow} \) and divide by \(N \) (i.e. we consider the energy per site)

\[e = \eta(n_{\sigma}, n_d) t_0 + U n_d \]

where \(t_0 \) is the kinetic energy of the Fermi sea per site - which can be obtained by numerical integration

\[t_0 = \frac{2}{N} \sum_k \epsilon_k \Theta(E_F - \epsilon_k) \]

We further specialize to \(n_{\sigma} = \frac{1}{2} \)

\[\eta(n_d) = 16 n_d \left(\frac{1}{2} - n_d \right) \]

\[e(n_d) = 16 n_d \left(\frac{1}{2} - n_d \right) t_0 + U n_d \]

Demanding \(\frac{de}{dn_d} = 0 \) we find the \(n_d \) (or \(\lambda \)) which minimizes the energy

\[n_d = \frac{1}{4} - \frac{U}{32|t_0|} \]
The n_d which minimizes the energy was

$$n_d = \frac{1}{4} - \frac{U}{32|t_0|}$$

This decreases linearly with U and becomes zero for

$$U_c = 8|t_0|$$

This is the famous Brinkman-Rice transition

For the 2D square lattice with nearest neighbor hopping we obtain $t_0 = -1.621 \, t \Rightarrow U_c = 12.969 \, t$
Quasiparticle Dispersion

The Gutzwiller wave function was

$$|\Phi_G\rangle = \prod_i (1 - \lambda n_{i,\uparrow} n_{i,\downarrow}) |FS\rangle,$$

The wave function for a state with a hole-like quasiparticle then would be

$$|\Phi_G(k)\rangle = \prod_i (1 - \lambda' n_{i,\uparrow} n_{i,\downarrow}) c_{k,\uparrow} |FS\rangle,$$

The 'quasiparticle dispersion' then can be obtained from

$$\tilde{\epsilon}_k = \frac{\langle \Phi_G | H | \Phi_G \rangle}{\langle \Phi_G | \Phi_G \rangle} - \frac{\langle \Phi_G(k) | H | \Phi_G(k) \rangle}{\langle \Phi_G(k) | \Phi_G(k) \rangle}$$
\[
|\Phi_G(k)\rangle = \prod_i (1 - \lambda' n_{i,\uparrow} n_{i,\downarrow}) c_{k,\uparrow} |FS\rangle,
\]

The condition on \(n_d\) (i.e. \(\lambda'\)) was the minimization of the energy per site

\[
e = \eta(n_\sigma, n_d) t_0 + n_d U \Rightarrow 0 = \frac{\partial \eta}{\partial n_d} t_0 + U
\]

The variational procedure for \(|\Phi_G(k)\rangle\) amounts to

\[
\begin{align*}
e & \rightarrow e - \frac{1}{N} \tilde{\epsilon}_k \\
t_0 & \rightarrow t_0 - \frac{1}{N} \epsilon_k \\
n_{\uparrow} & \rightarrow n_{\uparrow} - \frac{1}{N} \\
n_d & \rightarrow n_d + \frac{1}{N} \delta n_d
\end{align*}
\]

Inserting and expanding gives

\[
e - \frac{1}{N} \tilde{\epsilon}_k = \left(\eta(n_\sigma, n_d) - \frac{1}{N} \frac{\partial \eta}{\partial n_{\uparrow}} + \frac{1}{N} \frac{\partial \eta}{\partial n_d} \delta n_d \right) \left(t_0 - \frac{1}{N} \epsilon_k \right) + n_d U + \frac{1}{N} \delta n_d U
\]
\[|\Phi_G(k)\rangle = \prod_i (1 - \lambda' n_i\uparrow n_i\downarrow) c_{k\uparrow} |FS\rangle, \]

The condition on \(n_d \) (i.e. \(\lambda' \)) was the minimization of the energy per site

\[e = \eta(n_\sigma, n_d) t_0 + n_d U \quad \Rightarrow \quad 0 = \frac{\partial \eta}{\partial n_d} t_0 + U \]

The variational procedure for \(|\Phi_G(k)\rangle \) amounts to

\[
\begin{align*}
e & \rightarrow e - \frac{1}{N} \tilde{\epsilon}_k \\
t_0 & \rightarrow t_0 - \frac{1}{N} \epsilon_k \\
n_\uparrow & \rightarrow n_\uparrow - \frac{1}{N} \\
n_d & \rightarrow n_d + \frac{1}{N} \delta n_d
\end{align*}
\]

Inserting and expanding gives

\[
\tilde{\epsilon}_k = \eta(n_\sigma, n_d) \epsilon_k + t_0 \frac{1}{2} \left(\frac{\partial \eta_\uparrow}{\partial n_\uparrow} + \frac{\partial \eta_\downarrow}{\partial n_\uparrow} \right) - \delta n_d \left(\frac{\partial \eta}{\partial n_d} t_0 + U \right)
\]
We had

\[\tilde{\epsilon}_k = \eta(n_\sigma, n_d) \epsilon_k + t_0 \frac{1}{2} \left(\frac{\partial \eta_\uparrow}{\partial n_\uparrow} + \frac{\partial \eta_\downarrow}{\partial n_\uparrow} \right) = \eta(n_\sigma, n_d) \epsilon_k + C' \]

The quasiparticle dispersion is renormalized by the same factor \(\eta \) as the expectation value of the kinetic energy (\(C' \) can be absorbed in a shift of \(\mu \))

At the Brinkman-Rice transition (for half-filling) we had \(\eta \to 0 \)

The Gutzwiller wave function describes the metal insulator transition at half-filling by the vanishing of the bandwidth or, alternatively, by the divergence of the effective mass
Suppose we choose $U > U_c$ (Brinkman-Rice!) so that the system is a **Mott-insulator at half-filling**

What happens in the **lightly doped Mott-insulator** i.e we start from the doped case $n_e < 1$ and let $n_e \to 1$?

The condition on n_d continues to be minimization of the GS-energy per site...

$$e = \eta(n_{\sigma}, n_d) t_0 + n_d U$$

... but this now has to be done numerically - the result is (2D square lattice, $U/t = 16 > U_c/t = 12.969$)
Summary, Gutzwiller Wave Function

- Basis idea: ground state corresponds to a ‘Fermi sea’ with the same number of quasiparticles as the free electrons system, but reduced band width (and kinetic energy).
- This correlation narrowing takes into account that electrons have fewer possibilities to hop due to a reduction of the number of double occupancies.
- The Fermi surface agrees with the free electron Fermi surface.
- The metal-insulator transition (Brinkman-Rice transition) is realized by a vanishing bandwidth - divergence of the effective mass.
Intermediate Summary: Hubbard-I versus Gutzwiller

We consider the case of large U/t such that the system is a Mott-insulator at half-filling, $n_e = 1$

How does the system behave as $n_e \to 1$ from below?

Hubbard-I approximation and Gutzwiller wave function describe two completely different scenarios

![Graphs illustrating the comparison between Hubbard-I and Gutzwiller approximations.](image-url)
Experiments show that in the cuprates Hubbard-I is closer to reality.

(From W. J. Padilla et al., PRB 72, 060511 (2005): Hall constant and Drude weight as functions of $1 - n_e$)
Dissipative part of optical conductivity in Drude theory:

\[\sigma_1(\omega) = \frac{ne^2}{m^*} \frac{\tau^{-1}}{\omega^2 + \tau^{-2}} \]

(\(\tau^{-1}\): inverse lifetime, \(n\): carrier density, \(m^*\): ‘optical mass’)

It follows that

\[N_{eff} = \int_0^\infty d\omega \sigma_1(\omega) = \frac{ne^2}{m^*} \frac{\pi}{2} \]

In practice the integral is carried out only up to \(\omega_{max} = 650 \text{ cm}^{-1}\) so as to pick up only the Drude peak

The Hall constant is in Drude theory:

\[R_H = \frac{1}{ne} \]

we have

\[m^* = \frac{1}{R_H N_{eff} e\pi} 2 \]
Experiments show that in the cuprates Hubbard-I is closer to reality....

(From W. J. Padilla et al., PRB 72,060511 (2005): Hall constant and Drude weight as functions of $1 - n_e$)
Summary

Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?

Perhaps a phase transition between two phases of different Fermi surface volume?
Does one see anything like this in experiment?
Underdoped cuprate superconductors show ‘Fermi arcs’ \((x = 1 - n_c)\)

ARPES spectra on \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\) (20 K) from T. Yoshida et al., J. Phys. Soc. Jpn. 81 011006 (2012).
These may also be ‘half of a pocket’

(0,0) \(\pi,\pi \) (0,0)

\(S_r^2 CuO_2 Cl_2 \)

Intensity (Arbitrary Units)

Energy Relative to \(E_F \) (eV)
T-dependence of resitivity in HgBa$_2$CoO$_{4+\delta}$: (Barisic et al., Proc. Nat. Acad. Sci. 110, 12235 (2013))

\[
\rho(T) = A_1 \, T \quad T > 280 \, K
\]

\[
\rho(T) = A_2 \, T^2 \quad T < 170 \, K
\]

The prefactors A_1 and A_2 vary with hole concentration $\delta = 1 - n_e$
Doping dependence of prefactors: $A_1, A_2 \propto \frac{1}{\delta}$
We had $\rho(T) = A_1 T$ and $\rho(T) = A_2 T^2$ and in both cases $A \propto \frac{1}{\delta}$ - this can be explained like this

$$\sigma = \frac{ne^2}{m^*} \rightarrow \rho = \frac{m^*/e^2}{ne^2\tau} = \frac{m^*/e^2}{n} \tau^{-1}$$

with inverse lifetime $\tau^{-1} \propto T, T^2$ and carrier density $n = \delta \rightarrow$ Fermi surface volume $\propto \delta$ (we have seen before that m^* is doping independent)
Transport properties also are consistent with a ‘small’ Fermi surface

(Data from W. J. Padilla et al., PRB 72,060511 (2005) - remember: \(n_e = 1 - x \))
Therefore

Possible Scenario
Question: Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?

Perhaps a phase transition between two phases of different Fermi surface volume?
Spin density wave theory

- The interaction term $H_U = U n_{i,\uparrow} n_{i,\downarrow}$ can be rewritten:

$$H_U n_i S_i^2 \begin{pmatrix} \vert 0 \rangle \\ \vert \uparrow \rangle \\ \vert \downarrow \rangle \\ \vert \uparrow \downarrow \rangle \end{pmatrix} = U n_{i,\uparrow} n_{i,\downarrow} = U \left(\frac{n_i}{2} - \frac{2}{3} S_i^2 \right)$$

- The system can lower its energy by forming magnetic moments: $\langle S_i^2 \rangle \neq 0$
- The moments can be static $\langle S_i \rangle \neq 0$ or fluctuating $\langle S_i \rangle = 0$
- The Hubbard dimer was an example for fluctuating moments
- Spin density wave theory deals with static moments
• We consider a 2D square lattice with N sites - with a static moment $\langle S_i \rangle \neq 0$ at each site

• From the solution of the Hubbard dimer we know that the spins on sites connected by the hopping term prefer to be antiparallel

• If we assume hopping only between nearest neighbors this defines the Néel state:

\[
\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\end{array}
\]

• Accordingly we set (with $Q = (\frac{\pi}{a}, \frac{\pi}{a})$, a lattice constant)

\[
\langle n_{i,\uparrow} \rangle = \frac{n_e}{2} + \frac{m}{2} e^{iQ \cdot R_i}, \quad \langle n_{i,\downarrow} \rangle = \frac{n_e}{2} - \frac{m}{2} e^{iQ \cdot R_i},
\]

\[
\Rightarrow \langle n_i \rangle = \langle n_{i,\uparrow} \rangle + \langle n_{i,\downarrow} \rangle = n_e,
\]

\[
\langle S_z^i \rangle = \frac{1}{2} \left(\langle n_{i,\uparrow} \rangle - \langle n_{i,\downarrow} \rangle \right) = \frac{m}{2} e^{iQ \cdot R_i}.
\]

Let $R_i = (ma, na) \Rightarrow e^{iQ \cdot R_i} = e^{i(m+n)\pi}$ which is $+1$ (-1) if $(m+n)$ is even (odd)
We set

\[n_{i,\sigma} = \langle n_{i,\sigma} \rangle + \delta n_{i,\sigma} \quad \delta n_{i,\sigma} = n_{i,\sigma} - \langle n_{i,\sigma} \rangle \]

- \(\delta n_{i,\sigma} \) is the operator of fluctuations of \(n_{i,\sigma} \) around its mean value \(\langle n_{i,\sigma} \rangle \)
- We assume that fluctuations are ‘small’ - this is the basic assumption of any mean-field theory
- Then we can approximate the interaction term

\[
U n_{i,\uparrow} n_{i,\downarrow} = U(\langle n_{i,\uparrow} \rangle + \delta n_{i,\uparrow}) (\langle n_{i,\downarrow} \rangle + \delta n_{i,\downarrow})
\]

\[
= U (\langle n_{i,\uparrow} \rangle \langle n_{i,\downarrow} \rangle + \langle n_{i,\uparrow} \rangle \delta n_{i,\downarrow} + \langle n_{i,\downarrow} \rangle \delta n_{i,\uparrow} + \delta n_{i,\uparrow} \delta n_{i,\downarrow})
\]

\[
\approx U (\langle n_{i,\uparrow} \rangle n_{i,\downarrow} + \langle n_{i,\downarrow} \rangle n_{i,\uparrow} - \langle n_{i,\uparrow} \rangle \langle n_{i,\downarrow} \rangle)
\]

Now insert

\[
\langle n_{i,\uparrow} \rangle = \frac{n_e}{2} + \frac{m}{2} e^{iQ \cdot R_i}
\]

\[
\langle n_{i,\downarrow} \rangle = \frac{n_e}{2} - \frac{m}{2} e^{iQ \cdot R_i}
\]

and find

\[
U n_{i,\uparrow} n_{i,\downarrow} \approx \frac{n_e U}{2} \sum_{\sigma} n_{i,\sigma} - \frac{m U}{2} e^{iQ \cdot R_i} (n_{i,\uparrow} - n_{i,\downarrow}) - U \frac{n_e^2 - m^2}{4}
\]

This is now quadratic in \(\epsilon \)-operators so and thus \(H \) can be diagonalized by unitary transformation!
We had

\[U \ n_{i,\uparrow} n_{i,\downarrow} = \frac{n_e U}{2} \sum_{\sigma} n_{i,\sigma} - \frac{mU}{2} e^{i Q \cdot R_i} \left(n_{i,\uparrow} - n_{i,\downarrow} \right) - U \ \frac{n_e^2 - m^2}{4} \]

Now switch to Fourier transformed \(c \)-operators and add the kinetic energy

\[H_0 = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} \ c_{\mathbf{k},\sigma}^\dagger c_{\mathbf{k},\sigma} \]

- the mean-field Hamiltonian \(K = H - \mu N \) then becomes

\[K_{MF} = \sum_{\mathbf{k},\sigma} \tilde{\epsilon}_{\mathbf{k}} \ c_{\mathbf{k},\sigma}^\dagger c_{\mathbf{k},\sigma} - \Delta \sum_{\mathbf{k}} \left(c_{\mathbf{k},\uparrow}^\dagger c_{\mathbf{k}+Q,\uparrow} - c_{\mathbf{k},\downarrow}^\dagger c_{\mathbf{k}+Q,\downarrow} \right) - NU \ \frac{n_e^2 - m^2}{4} , \]

whereby

\[\tilde{\epsilon}_{\mathbf{k}} = \epsilon_{\mathbf{k}} + \frac{n_e U}{2} - \mu \quad \quad \Delta = \frac{mU}{2} \]
We had

\[K_{MF} = \sum_{k,\sigma} \tilde{\epsilon}_k c_{k,\sigma}^\dagger c_{k,\sigma} - \Delta \sum_k \left(c_{k,\uparrow}^\dagger c_{k+Q,\uparrow} - c_{k,\downarrow}^\dagger c_{k+Q,\downarrow} \right) - NU \frac{n_e^2 - m^2}{4}, \]

Now we follow Gorkov (Soviet Phys. JETP 7, 505 (1958)), and define the imaginary-time Green's function

\[G_\sigma(k, \tau) = -\langle T c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle = -\Theta(\tau) \langle c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle + \Theta(-\tau) \langle c_{k,\sigma}^\dagger c_{k,\sigma}(\tau) \rangle \]

This obeys the equation of motion (upper sign for \(\sigma = \uparrow \))

\[-\frac{\partial}{\partial \tau} G_\sigma(k, \tau) = \delta(\tau) \langle \{ c_{k,\sigma}^\dagger, c_{k,\sigma} \} \rangle - \langle T [c_{k,\sigma}, K_{MF}](\tau) c_{k,\sigma}^\dagger \rangle \]
\[= \delta(\tau) - \langle T \left(\tilde{\epsilon}_k c_{k,\sigma}(\tau) \mp \Delta c_{k+Q,\sigma}(\tau) \right) c_{k,\sigma}^\dagger \rangle \]
\[= \delta(\tau) + \tilde{\epsilon}_k \left(-\langle T c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle \mp \Delta \left(-\langle T c_{k+Q,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle \right) \right) \]
\[= \delta(\tau) + \tilde{\epsilon}_k G_\sigma(k, \tau) \mp \Delta \tilde{G}_\sigma(k, \tau), \]

with the anomalous Green's function \(\tilde{G}_\sigma(k, \tau) = -\langle T c_{k+Q,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle \).
We had

\[K_{MF} = \sum_{k,\sigma} \tilde{\varepsilon}_k \, c_{k,\sigma}^\dagger c_{k,\sigma} - \Delta \sum_k \left(c_{k,\uparrow}^\dagger c_{k+Q,\uparrow} - c_{k,\downarrow}^\dagger c_{k+Q,\downarrow} \right) -NU \frac{n_e^2 - m^2}{4} \]

\[-\frac{\partial}{\partial \tau} G_{\sigma}(k, \tau) = \delta(\tau) + \tilde{\varepsilon}_k \, G_{\sigma}(k, \tau) \mp \Delta \, \tilde{G}_{\sigma}(k, \tau), \]

\[\tilde{G}_{\sigma}(k, \tau) = -\langle T \, c_{k+Q,\sigma}(\tau) \, c_{k,\sigma}^\dagger \rangle \]

Proceeding as above we find the second equation of motion

\[\Rightarrow -\frac{\partial}{\partial \tau} \tilde{G}_{\sigma}(k, \tau) = \tilde{\varepsilon}_{k+Q} \, \tilde{G}_{\sigma}(k, \tau) \mp \Delta \, G_{\sigma}(k, \tau). \]

The system of equations of motion closes:

\[-\frac{\partial}{\partial \tau} G_{\sigma}(k, \tau) - \tilde{\varepsilon}_k \, G_{\sigma}(k, \tau) \pm \Delta \, \tilde{G}_{\sigma}(k, \tau) = \delta(\tau) \]

\[-\frac{\partial}{\partial \tau} \tilde{G}_{\sigma}(k, \tau) - \tilde{\varepsilon}_{k+Q} \, \tilde{G}_{\sigma}(k, \tau) \pm \Delta \, G_{\sigma}(k, \tau) = 0 \]
We had

\[-\frac{\partial}{\partial \tau} G_\sigma(k, \tau) - \tilde{c}_k G_\sigma(k, \tau) \pm \Delta \tilde{G}_\sigma(k, \tau) = \delta(\tau)\]

\[-\frac{\partial}{\partial \tau} \tilde{G}_\sigma(k, \tau) - \tilde{c}_{k+Q} \tilde{G}_\sigma(k, \tau) \pm \Delta G_\sigma(k, \tau) = 0\]

After Fourier transformation with respect to \(\tau\)

\[G_\sigma(k, \tau) = \frac{1}{\beta} \sum_{\nu=-\infty}^{\infty} e^{-i\omega_\nu \tau} G_\sigma(k, i\omega_\nu)\]

\[\delta(\tau) = \frac{1}{\beta} \sum_{\nu=-\infty}^{\infty} e^{-i\omega_\nu \tau}\]

so that \(-\partial_\tau \to i\omega_\nu\):

\[(i\omega_\nu - \tilde{c}_k) G_\sigma(k, i\omega_\nu) \pm \Delta \tilde{G}_\sigma(k, i\omega_\nu) = 1\]

\[(i\omega_\nu - \tilde{c}_{k+Q}) \tilde{G}_\sigma(k, i\omega_\nu) \pm \Delta G_\sigma(k, i\omega_\nu) = 0\]

This can be written in matrix form

\[
\begin{pmatrix}
 i\omega_\nu - \tilde{c}_k & \pm \Delta \\
 \pm \Delta & i\omega_\nu - \tilde{c}_{k+Q}
\end{pmatrix}
\begin{pmatrix}
 G_\sigma(k, i\omega_\nu) \\
 \tilde{G}_\sigma(k, i\omega_\nu)
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
\]
We had
\[
\begin{pmatrix}
 i\omega - \tilde{\epsilon}_k & \pm \Delta \\
 \pm \Delta & i\omega - \tilde{\epsilon}_{k+Q}
\end{pmatrix}
\begin{pmatrix}
 G'(k, i\omega) \\
 \tilde{G}'(k, i\omega)
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
\]

Now define
\[
\zeta_k = \frac{1}{2} (\tilde{\epsilon}_k + \tilde{\epsilon}_{k+Q}), \quad \eta_k = \frac{1}{2} (\tilde{\epsilon}_k - \tilde{\epsilon}_{k+Q}),
\]
\[
\tilde{\epsilon}_k = \zeta_k + \eta_k, \quad \tilde{\epsilon}_{k+Q} = \zeta_k - \eta_k
\]
so that
\[
\begin{pmatrix}
 i\omega - \zeta_k - \eta_k & \pm \Delta \\
 \pm \Delta & i\omega - \zeta_k + \eta_k
\end{pmatrix}
\begin{pmatrix}
 G'(k, i\omega) \\
 \tilde{G}'(k, i\omega)
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 0
\end{pmatrix}.
\]
We had
\[
\begin{pmatrix}
i \omega_\nu - \zeta_k - \eta_k & \pm \Delta \\
\pm \Delta & i \omega_\nu - \zeta_k + \eta_k
\end{pmatrix}
\begin{pmatrix}
G_\sigma(k, i \omega_\nu) \\
\tilde{G}_\sigma(k, i \omega_\nu)
\end{pmatrix}
=
\begin{pmatrix}
1 \\
0
\end{pmatrix}.
\]

The matrix on the l.h.s. can be written as (with 1: 2 \times 2 unit matrix, \(\tau\): Pauli matrices)
\[
(i \omega_\nu - \zeta_k) \begin{pmatrix} 1 & \pm \Delta \end{pmatrix} \begin{pmatrix} \tau_x & -\eta_k \\tau_z \end{pmatrix}
\]

One can show (Landau-Lifshitz, Quantum Mechanics) that for any \(a\) and any vector \(b\):
\[
(a \mathbf{1} + b \cdot \tau)(a \mathbf{1} - b \cdot \tau) = a^2 - b^2 \quad \Rightarrow \quad (a \mathbf{1} + b \cdot \tau)^{-1} = \frac{a \mathbf{1} - b \cdot \tau}{a^2 - b^2}.
\]

In our case \(a = i \omega_\nu - \zeta_k\), \(b = (\pm \Delta, 0, -\eta_k)\) Therefore
\[
\begin{pmatrix}
G_\sigma(k, i \omega_\nu) \\
\tilde{G}_\sigma(k, i \omega_\nu)
\end{pmatrix}
=
\frac{1}{(i \omega_\nu - \zeta_k)^2 - (\Delta^2 + \eta_k^2)}
\begin{pmatrix}
i \omega_\nu - \zeta_k + \eta_k & \mp \Delta \\
\mp \Delta & i \omega_\nu - \zeta_k - \eta_k
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}.
We had

\[
\begin{pmatrix}
i\omega \nu - \zeta_k - \eta_k & \pm \Delta \\
\pm \Delta & i\omega \nu - \zeta_k + \eta_k
\end{pmatrix}
\begin{pmatrix}
G_{\sigma}(k, i\omega \nu)
\\
\tilde{G}_{\sigma}(k, i\omega \nu)
\end{pmatrix}
= \begin{pmatrix}1 \\ 0\end{pmatrix}.
\]

The matrix on the l.h.s. can be written as (with \(1\): 2 \(\times\) 2 unit matrix, \(\tau\): Pauli matrices)

\[(i\omega \nu - \zeta_k) 1 \mp \Delta \tau_x - \eta_k \tau_z\]

One can show (Landau-Lifshitz, Quantum Mechanics) that for any \(a\) and any vector \(b\):

\[(a1 + b \cdot \tau)(a1 - b \cdot \tau) = a^2 - b^2 \implies (a1 + b \cdot \tau)^{-1} = \frac{a1 - b \cdot \tau}{a^2 - b^2}.
\]

In our case \(a = i\omega \nu - \zeta_k, \ b = (\pm \Delta, 0, -\eta_k)\) Therefore

\[
\begin{pmatrix}
G_{\sigma}(k, i\omega \nu) \\
\tilde{G}_{\sigma}(k, i\omega \nu)
\end{pmatrix}
= \frac{1}{(i\omega \nu - \zeta_k)^2 - (\Delta^2 + \eta_k^2)}
\begin{pmatrix}
i\omega \nu - \zeta_k + \eta_k \\
\mp \Delta
\end{pmatrix}
\]
We had

\[
\begin{pmatrix}
G_\sigma(k, i\omega_\nu) \\
\tilde{G}_\sigma(k, i\omega_\nu)
\end{pmatrix}
= \frac{1}{(i\omega_\nu - \zeta_k)^2 - (\Delta^2 + \eta_k^2)}
\begin{pmatrix}
i\omega_\nu - \zeta_k + \eta_k \\
\mp \Delta
\end{pmatrix}
\]

Reminder:

\[
\begin{align*}
\zeta_k &= \frac{1}{2} (\tilde{\epsilon}_k + \tilde{\epsilon}_{k+Q}) \\
\eta_k &= \frac{1}{2} (\tilde{\epsilon}_k - \tilde{\epsilon}_{k+Q}) \\
\tilde{\epsilon}_k &= \epsilon_k + \frac{n_e U}{2} - \mu \\
\Delta &= \frac{mU}{2}
\end{align*}
\]

- This is the complete solution for given \(n_e, \mu\) and \(m\)
- The Green’s function can be analytically continued \(i\omega_\nu \to \omega, \omega\) complex
- Both Green’s function have simple poles (\(\equiv\)quasiparticle energies) when \((\omega - \zeta_k)^2 - (\Delta^2 + \eta_k^2) = 0\)

\[
\Rightarrow \omega = E_k^{(\pm)} = \zeta_k \pm W_k \\
W_k = \sqrt{\Delta^2 + \eta_k^2}
\]

- For each \(k\) there are two poles \(E_k^{(\pm)} \Rightarrow\) two ‘bands’ rather than one
- It is straightforward to show that the bands obey \(E_{k+Q}^{(\pm)} = E_k^{(\pm)}\) (with \(Q = (\pi a, \pi a)\))
The Green’s function was

\[G_{\sigma}(k, \omega) = \frac{\omega - \zeta_k + \eta_k}{(\omega - \zeta_k)^2 - (\Delta^2 + \eta_k^2)} = \frac{Z_k^{(-)}}{\omega - E_k^{(-)}} + \frac{Z_k^{(+)}}{\omega - E_k^{(+)}} \]

with

\[E_k^{(\pm)} = \zeta_k \pm W_k \]

\[Z_k^{(\pm)} = \frac{1}{2} \left(1 \pm \frac{\eta_k}{W_k} \right) \]

We can now obtain the single particle spectral function (=combined photoemission and inverse photoemission spectrum) \(A(k, \omega) \) by analytical continuation \(i\omega_n \to \omega + i\epsilon \) and using

\[\lim_{\epsilon \to 0} \mathcal{I} \frac{1}{\omega + i\epsilon} = -\pi \delta(\omega) \]

we get

\[A(k, \omega) = -\frac{1}{\pi} \lim_{\epsilon \to 0} \mathcal{I} G_{\sigma}(k, \omega + i\epsilon) = Z_k^{(-)} \delta(\omega - E_k^{(-)}) + Z_k^{(+) \delta}(\omega - E_k^{(+)}) \]
Combined Photoemission and inverse Photoemission spectrum

In experiment:

‘Remnant Fermi surface’
We had

\[
\begin{pmatrix}
G_\sigma(k, i\omega
\end{pmatrix}
\left(\frac{1}{(i\omega - \zeta k)^2 - (\Delta^2 + \eta k^2)}\right)
\begin{pmatrix}
i\omega - \zeta_k + \eta_k
\end{pmatrix}
\]

Reminder:

\[
\begin{align*}
\zeta_k &= \frac{1}{2} (\tilde{\epsilon}_k + \tilde{\epsilon}_{k+Q}), \\
\tilde{\epsilon}_k &= \epsilon_k + \frac{n_e U}{2} - \mu,
\end{align*}
\]

\[
\begin{align*}
\eta_k &= \frac{1}{2} (\tilde{\epsilon}_k - \tilde{\epsilon}_{k+Q}), \\
\Delta &= \frac{m U}{2}.
\end{align*}
\]

- This is the complete solution for given \(n_e, \mu\) and \(m\)
How to determine μ and m for given n_e

We recall the definition of the Green’s functions...

\[
G_\sigma(k, \tau) = -\langle T c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle \\
\tilde{G}_\sigma(k, \tau) = -\langle T c_{k+Q,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle
\]

.. and the expectation values (for any site i !)

\[
\langle n_{i,\uparrow} \rangle = \frac{n_e}{2} + \frac{m}{2} e^{iQ \cdot R_i} \\
\langle n_{i,\downarrow} \rangle = \frac{n_e}{2} - \frac{m}{2} e^{iQ \cdot R_i} \\
n_e = \langle n_{i,\uparrow} + n_{i,\downarrow} \rangle, \\
m = \langle n_{i,\uparrow} - n_{i,\downarrow} \rangle e^{iQ \cdot R_i}
\]

We sum this over i, divide by N, and switch to Fourier transformed c-operators:

\[
n_e = \frac{1}{N} \sum_k \langle c_{k,\uparrow}^\dagger c_{k,\uparrow} + c_{k,\downarrow}^\dagger c_{k,\downarrow} \rangle = \frac{1}{N} \sum_k \left(G_\uparrow(k, \tau = 0^-) + G_\downarrow(k, \tau = 0^-) \right)
\]

\[
m = \frac{1}{N} \sum_k \langle c_{k,\uparrow}^\dagger c_{k+Q,\uparrow} - c_{k,\downarrow}^\dagger c_{k+Q,\downarrow} \rangle = \frac{1}{N} \sum_k \left(\tilde{G}_\uparrow(k, \tau = 0^-) - \tilde{G}_\downarrow(k, \tau = 0^-) \right)
\]
We recall (upper sign for $\sigma = \uparrow$)

\[
\begin{pmatrix}
G_{\sigma}(k, i\omega) \\
\tilde{G}_{\sigma}(k, i\omega)
\end{pmatrix}
= \frac{1}{(i\omega - \zeta_k)^2 - (\Delta^2 + \eta_k^2)} \begin{pmatrix}
i\omega - \zeta_k + \eta_k \\
\mp \Delta
\end{pmatrix}
\]
How to determine μ and m for given n_e

We recall the definition of the Green’s functions...

$$G_\sigma(k, \tau) = -\langle T c_{k,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle$$

$$\tilde{G}_\sigma(k, \tau) = -\langle T c_{k+Q,\sigma}(\tau) c_{k,\sigma}^\dagger \rangle$$

.. and the expectation values (for *any* site i !)

$$\langle n_{i,\uparrow} \rangle = \frac{n_e}{2} + \frac{m}{2} e^{iQ \cdot R_i}$$

$$n_e = \langle n_{i,\uparrow} + n_{i,\downarrow} \rangle,$$

$$\langle n_{i,\downarrow} \rangle = \frac{n_e}{2} - \frac{m}{2} e^{iQ \cdot R_i}$$

$$m = \langle n_{i,\uparrow} - n_{i,\downarrow} \rangle e^{iQ \cdot R_i}$$

We sum this over i, divide by N, and switch to Fourier transformed c-operators:

$$n_e = \frac{1}{N} \sum_k \langle c_{k,\uparrow}^\dagger c_{k,\uparrow} + c_{k,\downarrow}^\dagger c_{k,\downarrow} \rangle = \frac{1}{N} \sum_k \left(G_{\uparrow}(k, \tau = 0^-) + G_{\downarrow}(k, \tau = 0^-) \right)$$

$$m = \frac{1}{N} \sum_k \langle c_{k,\uparrow}^\dagger c_{k+Q,\uparrow} - c_{k,\downarrow}^\dagger c_{k+Q,\downarrow} \rangle = \frac{1}{N} \sum_k \left(\tilde{G}_{\uparrow}(k, \tau = 0^-) - \tilde{G}_{\downarrow}(k, \tau = 0^-) \right)$$
How to determine μ and m for given n_e

We recall the definition of the Green’s functions...

$$G_\sigma(k, \tau) = -\langle T c_{k,\sigma}(\tau) c^\dagger_{k,\sigma} \rangle$$

$$\tilde{G}_\sigma(k, \tau) = -\langle T c_{k+Q,\sigma}(\tau) c^\dagger_{k,\sigma} \rangle$$

.. and the expectation values (for *any* site i !)

$$\langle n_{i,\uparrow} \rangle = \frac{n_e}{2} + \frac{m}{2} e^{iQ \cdot R_i}$$

$$n_e = \langle n_{i,\uparrow} + n_{i,\downarrow} \rangle,$$

$$\langle n_{i,\downarrow} \rangle = \frac{n_e}{2} - \frac{m}{2} e^{iQ \cdot R_i}$$

$$m = \langle n_{i,\uparrow} - n_{i,\downarrow} \rangle e^{iQ \cdot R_i}$$

We sum this over i, divide by N, and switch to Fourier transformed c-operators:

$$n_e = \frac{1}{N} \sum_k \langle c^\dagger_{k,\uparrow} c_{k,\uparrow} + c^\dagger_{k,\downarrow} c_{k,\downarrow} \rangle = \frac{2}{N} \sum_k G_{\uparrow}(k, \tau = 0^-)$$

$$m = \frac{1}{N} \sum_k \langle c^\dagger_{k,\uparrow} c_{k+Q,\uparrow} - c^\dagger_{k,\downarrow} c_{k+Q,\downarrow} \rangle = \frac{2}{N} \sum_k \tilde{G}_{\uparrow}(k, \tau = 0^-)$$
The Green’s functions at infinitesimally negative τ can be evaluated using contour integration techniques. After some calculations (see the lecture notes) we obtain the self-consistency equations

$$n_e = \frac{2}{N} \sum_k \left(f(E_k^-) Z_k^- + f(E_k^+) Z_k^+ \right)$$

$$1 = \frac{U}{N} \sum_k \frac{1}{2 W_k} \left(f(E_k^-) - f(E_k^+) \right)$$

with $W_k = \sqrt{\Delta^2 + \eta_k^2}$

$$E_k^{(\pm)} = \zeta_k \pm W_k$$

$$Z_k^{(\pm)} = \frac{1}{2} \left(1 \pm \frac{\eta_k}{W_k} \right)$$

$$\zeta_k = \frac{1}{2} (\tilde{\epsilon}_k + \tilde{\epsilon}_{k+Q})$$

$$\eta_k = \frac{1}{2} (\tilde{\epsilon}_k - \tilde{\epsilon}_{k+Q})$$

$$\Delta = \frac{mU}{2}$$

Z_k and E_k depend on μ and $m \Rightarrow$ for given n_e and T we solve this by a self-consistency procedure.

Choose m_{in} - Determine μ from (1) - vary m_{in} until (2) is satisfied.
Vanishing of m - AF phase transition - for increasing temperature/decreasing electron density

Fermi surface is an elliptical hole pocket centered on $(\frac{\pi}{2}, \frac{\pi}{2})$
Summary, Spin density wave theory

• Basic physical idea: assume static antiferromagnetically ordered moments
• Predicts antiferromagnetic insulator at half-filling
• Insulating gap \propto ordered moment
• Mean-field theory - self-energy reduces to the Hartree-Fock potential
• At the antiferromagnetic transition the gap closes - the system becomes an ordinary metal
• For the lightly doped case the Fermi surface is an elliptical hole pocket centered on $(\frac{\pi}{2}, \frac{\pi}{2})$
• Fractional area of hole pockets is $1 - n_e$ - MIT by vanishing carrier number
The above derivation closely parallels Gorkov’s re-derivation of BCS theory in terms of imaginary-time Green’s function.

The only difference is that in the case of BCS theory the anomalous Green’s function is

\[\tilde{G}(k, \tau) = -\langle T c_{k,\uparrow}(\tau) c_{-k,\downarrow} \rangle \]

The formulation in terms of Green’s functions allows to treat spatial inhomogeneity (Landau-Ginzburg theory) systems with impurities (gapless superconductivity) and to go beyond simple BCS theory (Eliashberg theory).