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Prelude: 3d transition metals and their compounds

What makes the 3d transition metals special: small radius of their 3d shell
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Taken from: D. van der Marel and G. A. Sawatzky, Phys. Rev. B 37, 10674 (1988).



The small spatial extent of the 3d shell enhances the Coulomb repulsion between electrons strongly

r WS rShell
Z Z Z

Up to 10eV increase in energy!

To study the motion of conduction electrons under the influence of this strong Coulomb repulsion Hubbard,

Gutzwiller and Kanamori more or less simultaneously introduced a simplified model, nowadays known as the

Hubbard model

After the discovery of the copper oxide superconductors and after Zhang and Rice showed that these materials

can be described by the 2D Hubbard model there was renewed interest in the Hubbard model



The Hubbard model is highly oversimplified:

• All atoms besides the transition metal atoms are ignored

• The five-fold degeneracy of the 3d orbital is neglected - one s-like orbital/site

U !
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An important additional parameter in this model is the density of electrons

We callN the number of sites,Ne = N↑+N↓ the number of electrons - densities are denotes by n: n↑ = N↑/N

For copper oxide supercondutors the important range of densities is 1 ≥ ne ≥ 0.7 and U/t ≈ 10

ne = 1 means n↑ = n↓ =
1
2 - i.e. a metal with a half-filled band for noninteracting electrons

In contrast to this the cuprates are insulators for ne = 1 - i.e. Mott insulators



Reminder Green’s Functions and Self Energy

The imaginary time Green’s function is (with c(τ ) = eτ(H−µN) c e−τ(H−µN))

Gσ(k, τ ) = −⟨T ck,σ(τ ) c
†
k,σ⟩th = −Θ(τ ) ⟨ ck,σ(τ ) c

†
k,σ ⟩th + Θ(−τ ) ⟨ c†k,σ ck,σ(τ ) ⟩th

G(τ ) has the Fourier transform (with iων: (Fermionic) Matsubara frequencies)
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The Fourier coefficient Gσ(k, iων) is given by the Lehmann representation (where H|j⟩ = Ej|j⟩):
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Lehmann representation of Gσ(k, iων):

Gσ(k, iων) =
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Gσ(k, iων) can be analytically continued - Gσ(k,ω+ i0+) is (the Fourier transform of) the retarded real-time

Green’s function - this gives the combined photoemission and inverse photoemission spectrum of the system

A(k,ω) = −
1

π
lim
ϵ→0

I Gσ(k,ω + iϵ) = Z(−)
k δ(ω − E(−)

k ) + Z(+)
k δ(ω − E(+)

k )

The poles of Gσ(k,ω) give the ionization and electron affinity energies - i.e. the quasiparticle energies

The self-energy is defined by the Dyson equation

( ω + µ− ϵk −Σ(k,ω) )G(k,ω) = 1.



Lehmann representation of G(k,ω) (n runs over pairs (i, j)):
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Near a zero ζi :

G(ω) ≈ −βi (ω − ζi)

The Dyson equation:

G−1(ω) = ω + µ− ϵk − Σ(ω)

⇒ Σ(ω) = −G−1(ω) + ω + µ− ϵk =
1/βi
ω − ζi

+ . . .

Σ(ω) has simple poles at the zeros of the Green’s function, ζi

Luttinger has shown that Σ(ω) can be written as (with σi = 1/βi > 0, VHF : Hartree-Fock potential)

Σ(ω) = VHF +
∑

i

σi
ω − ζi



The Hubbard dimer - solution by exact diagonalization

• We consider the Hubbard model on a dimer - i.e. a two-atom system with atoms 1 and 2

H = −t
∑

σ

(

c†1,σc2,σ + c†2,σc1,σ

)

+ U
2
∑

i=1

ni,↑ni,↓.

• This can be solved by exact diagonalization

• Generate all states of the Hilbert space with given electron numbers N↑ and N↓ on N lattice sites

nBasis =

⎛

⎝

N

N↑

⎞

⎠ ·

⎛

⎝

N

N↓

⎞

⎠

• Set up the Hamilton matrix in this basis and diagonalize it numerically

• Obtain physical observables from the solution



H = −t
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c†1,σc2,σ + c†2,σc1,σ
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+ U
2
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• The dimer Hamiltonian is invariant under the exchange of the two sites 1 ↔ 2

• We can therefore classify states also by their parity P = ±1 under this exchange

• We may also view the dimer as ‘2-site ring with periodic boundary conditions’ and hopping integral t
2

1 2 1 2
−t

−t/2

−t/2

• Exchange of the sites is equaivalent to translation by one lattice site

• A Bloch state ψk with momentum k obeys T1 ψk = eik ψk

P = 1 is equivalent to k = 0, P = −1 is equivalent to k = π



• We start with the sector N↑ = N↓ = 1 - ‘half filling’ and nonmagnetic

• The normalized basis states with P = ±1 are
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• |1+⟩ is spin singlet, |1−⟩ is triplet (with Sz = 0), |2+⟩ and |2−⟩ are singlets

• The action of the kinetic term is
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• We start with the sector N↑ = N↓ = 1 - ‘half filling’ and nonmagnetic

• The normalized basis states with P = ±1 are
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• |1+⟩ is spin singlet, |1−⟩ is triplet (with Sz = 0), |2+⟩ and |2−⟩ are singlets

• The action of the kinetic term is
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We had

Ht |1+⟩ = −2t |2+⟩ ⇒ ⟨2+| Ht |1+⟩ = −2t

Ht |1−⟩ = 0 ⇒ ⟨2−| Ht |1−⟩ = 0

We recall
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so that

⟨1±|HU |1±⟩ = 0

⟨2±|HU |2±⟩ = U

Writing |ψ±⟩ = u|1±⟩ + v|2±⟩ the coefficients (u, v) are obtained from the eigenvalue problems
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For negative parity the state with lower energy is |1−⟩ with energy E = 0 - this |1−⟩ is a triplet

The other two members of the triplet are c†1,↑c
†
2,↑ |0⟩ and c†1,↓c

†
2,↓ |0⟩ - these are the only states in the sectors

Ne = 2, Sz = ±1 and P = −1 ⇒ eigenstates by construction, energy E = 0

For positive parity the eigenvalue problem was
⎛
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⎠
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⎠

The lower state - which is a singlet - has energy

E0 =
U

2
−

√

(

U

2

)2

+ 4t2
U/t→∞−→

U

2
−
(

U

2
+

4t2

U

)

= −
4t2

U
= −J

The ground state is a singlet the first excited state a triplet with excitation energy J = 4t2

U ≪ t (for U/t ≫ 1)



To calculate the Green’s function we need the eigenstates with 1 or 3 electrons, Sz = σ = ±1
2 and parity ±1

(we recall: P = 1 means k = 0, P = −1 means k = π):

|3±, σ⟩ =
1√
2

(

c†1,σ ± c†2,σ

)

|0⟩,

|4±, σ⟩ =
1√
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(
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†
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†
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)

|0⟩.

• These states are the only ones in their respective (Ne, Sz, P ) sector ⇒ eigenstates by construction

• Their energies are (with ϵk = −t cos(k))

H |3±, σ⟩ = ∓t |3±, σ⟩ = ϵk |3±, σ⟩

H |4±, σ⟩ = (U ± t) |4±, σ⟩ = (U − ϵk) |4±, σ⟩



We thus know all eigenstates |j⟩ with Ne = 0, 1, 2, 3, 4 as well as their energies Ej

We can now evaluate the Green’s function using the Lehmann representation (k = 0, π):

G(k,ω) =
1

Z

∑

i,j

e−β(Ei−µNi) + e−β(Ej−µNj)

ω + µ− (Ej − Ei)
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with

ck,σ =
1√
2
(c1,σ ± c2,σ)

From the Green’s function we can then obtain the self-energy Σ(k,ω) from the Dyson equation

( ω + µ− ϵk − Σ(k,ω) )G(k,ω) = 1.

For simplicity we consider the limit of low temperature and assume that µ is chosen such that the thermal

occupation factor e−β(Ej−µNj)/Z is 1 for the ground state with 2 electrons and 0 otherwise

(this can in fact be achieved by choosing µ = U
2 and T ≪ J)



In this limit we can actually give analytical expressions for G and Σ
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Dimer spectrum compared to spectra of half-filled 16- and 18-site clusters (U/t = 10, Dots: −ϵk)
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To see the implications of this let us consider just a single pole:

Σ(ω) =
σ

ω − ζ

The equation for poles of the Green’s function (=energies of electron states) reads: ω − ϵk = Σ(ω)
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To see the implications of this let us consider just a single pole:

Σ(ω) =
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The equation for poles of the Green’s function (=energies of electron states) reads: ω − ϵk = Σ(ω)
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Dimer spectrum compared to spectra of 16- and 18-site clusters (U/t = 10)
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Summary, Hubbard Dimer

• At - or close to - half-filling: antiferromagnetic spin correlations, electrons on neighboring sites prefer to

couple their spins to a singlet, or be antiparallel

• Spin excitations with new low energy scale J = 4t2

U ≪ t

• Photoemission/inverse photoemission spectrum shows Hubbard gap of order U

• This is ‘pushed open’ by a single pole of the self-energy with residuum ∝ U2

• ‘Gap-opening pole’ has substantial dispersion - k-dependent self-energy

• Conjecture: residuum of ‘gap-opening pole’ would be natural order parameter for paramagnetic MIT:

U
2

σ

MIT



The Hubbard-I approximation

• We consider the Hubbard model at half-filling, Ne = N , and the nonmagnetic case N↑ = N↓ = N/2

• We set t = 0, U finite

• The GS has one electron/site and is highly degenerate

ndeg =

⎛

⎝

N

N/2

⎞

⎠

• We ignore this degeneracy and assume that there is a single ground state |Ψ0⟩

• |Ψ0⟩ may be thought of as a superposition of all the degenerate states with one electron per site

• Our main assumption is that |Ψ0⟩ is ‘disordered’

• Next we assume that a finite t ≪ U is switched on

• This will result in charge fluctuations



Charge fluctuations as Fermionic Particles

H =
∑

i,j

∑

σ

ti,j
2

(

d†i,σ h
†
j,−σ +H.c.

)

+
∑

i,j
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σ
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2
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d†i,σ dj,σ − h†
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d†i,σdi,σ



Fourier transformation gives

H =
∑

k,σ

(

(
ϵk
2
+ U) d†k,σdk,σ −

ϵk
2
h†
k,σhk,σ

)

+
∑

k,σ

ϵk
2

(

d†k,σh
†
−k,−σ +H.c.

)

This is a quadratic form which can be solved by a unitary transformation

γ−,k,σ = uk dk,σ + vk h†
−k,−σ

γ+,k,σ = −vk dk,σ + uk h†
−k,−σ (1)

Demanding...

[H, γ†α,k,σ] = Ek γ
†
α,k,σ

... leads to the eigenvalue problem
⎛

⎝

ϵk
2 , ϵk

2

ϵk
2 , ϵk

2 + U

⎞

⎠

⎛

⎝
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⎞

⎠ = Ek

⎛

⎝
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vk

⎞
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This is readily solved to give the energies of the two Hubbard bands

Ek,± =
1

2

(

ϵk + U ±
√

ϵ2k + U2

)

U/t→∞−→

⎧

⎨

⎩

ϵk
2 + U
ϵk
2

Example: U/t = 10

Particle-hole-symmetry : µ = U/2 = 5

Comparison with Hartree-approximation:

Ek = U
2 + ϵk
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Charge fluctuations as Fermionic Particles

H =
∑
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∑
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ti,j
2

(
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†
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)

+
∑
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σ
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2

(

d†i,σ dj,σ − h†
i,−σ hj,−σ

)

+ U
∑

i,σ

d†i,σdi,σ



Rigorous Derivation: Equation of motion method

We split the electron annihilation operator into the part which reduces the number of double occupancies

by one and the part which leaves the number of double occupancies constant

ci,↑ = ci,↑ ni,↓ + ci,↑(1− ni,↓) = d̂i,↑ + ĉi,↑

ich bin bloss platzhalter

d

c

d̂i,↑ and ĉi,↑ are called Hubbard operators



We recall

d

c

Accordingly these operators obey

[d̂i,σ, HU ] = U d̂i,σ [ĉi,σ, HU ] = 0

The time ordered Green’s functions for these operators is (with α, β ∈ {ĉ, d̂})

Gα,β(k, t) = −i⟨ T αk,σ(t) β
†
k,σ ⟩

These obey the equations of motion

i∂t Gα,β(k⃗, t) = δ(t) ⟨ {β†
k,σ,αk,σ} ⟩ − i⟨ T [αk,σ, H](t) β†

k,σ ⟩.



Consider the hopping term between the sites i and j: Ti,j = ti,j
∑

σ

(

c†i,σcj,σ + c†j,σ ci,↑

)

with

[ci,σ, Ti,j] = ti,j cj,σ [c†i,σ, Ti,j] = −ti,j c
†
j,σ

Then (remember: ĉi,↑ = ci,↑ (1− ni,↓) = ci,↑ ci,↓ c
†
i,↓)

[ĉi,↑, Ti,j] = [ci,↑ ci,↓ c
†
i,↓ , Ti,j]

= ci,↑ ci,↓ [c
†
i,↓, Ti,j] + ci,↑ [ci,↓, Ti,j] c

†
i,↓ + [ci,↑, Ti,j] ci,↓ c

†
i,↓ .

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + ci,↑ cj,↓ c

†
i,↓ + cj,↑ ci,↓ c

†
i,↓)

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + c†i,↓ ci,↑ cj,↓ + cj,↑ ( 1− ni,↓ ) )

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + S−

i cj,↓ + cj,↑ ( 1− ni,↓ ) )

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + S−

i cj,↓ + cj,↑ ( 1− (
ni

2
− Sz

i ) ) )

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + ( S−

i cj,↓ + Sz
i cj,↑ ) + cj,↑ ( ( 1−

⟨ni⟩
2

)− (
ni

2
−

⟨ni⟩
2

) )



Collecting terms and writing ⟨ni⟩ = ne we find

[ĉi,↑, Ht] =
∑

j

tij

[

(1−
ne

2
) cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )−

1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]

[d̂i,↑, Ht] =
∑

j

tij

[

ne

2
cj,↑ − (cj,↑S

z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c†j,↓ci,↓ci,↑

]

The various terms describe

Coherent propagation from i → j with reduced hopping element

Hopping i → j while leaving a spin excitation at i

Hopping i → j while leaving a density excitation at i

Hopping i → j while leaving a pair excitation at i (important only for U < 0)

The Hubbard-I approximation corresponds to a rather crude truncation:

[ĉi,↑, Ht] =
∑

j

tij (1−
ne

2
) cj,↑ = (1−

ne

2
)
∑

j

tij (ĉj,↑ + d̂j,↑)

[d̂i,↑, Ht] =
∑

j

tij
ne

2
cj,↑ =

ne

2

∑

j

tij (ĉj,↑ + d̂j,↑)



Spatial Fourier transformation and adding the commutator with HU gives

[ ĉk,↑, H] = (1−
ne

2
) ϵk (ĉk,↑ + d̂k,↑)

[d̂k,↑, H] =
ne

2
ϵk (ĉk,↑ + d̂k,↑) + U d̂k,↑

The anticommutators are (remember: ĉ†i,σ = c†i,σ (1− ni−σ))

{ĉ†i,σ, ĉi,σ} = {c†i,σ, ci,σ} (1− ni−σ)
2 = 1− ni−σ

{d̂†i,σ, d̂i,σ} = ni−σ

Now we have every ingredient to set up the equations of motion

i∂t Gα,β(k⃗, t) = δ(t) ⟨ {β†
k,σ,αk,σ} ⟩ − i⟨ T [αk,σ, H](t) β†

k,σ ⟩.

For example α = d̂, β = d̂:

i∂t Gd̂,d̂(k⃗, t) = δ(t) ⟨n−σ⟩ +
ne

2
ϵk
(

Gĉ,d̂(k⃗, t) + Gd̂,d̂(k⃗, t)
)

+ U Gd̂,d̂(k⃗, t)



After Fourier transformation with respect to time (i∂t → ω) we obtain the system of equations

⎛

⎝

ω − (1− ne
2 ) ϵk , −(1− ne

2 ) ϵk

−ne
2 ϵk , ω − ne

2 ϵk − U

⎞

⎠

⎛

⎝

Gĉ,ĉ Gĉ,d̂

Gd̂,ĉ Gd̂,d̂

⎞

⎠ =

⎛

⎝

1− ne
2 , 0

0 , ne
2

⎞

⎠

Now we can use ....
⎛

⎝

a b

c d

⎞

⎠

−1

=
1

ad− bc

⎛

⎝

d −b

−c a

⎞

⎠

... to solve for the 2× 2 matrix G(k,ω)

Since ck,σ = ĉk,σ + d̂k,σ the electron Green’s function

G(k, t) = −i⟨ Tck,σ(t) c
†
k,σ ⟩,

can be obtained as G = Gĉ,ĉ +Gĉ,d̂ +Gd̂,ĉ +Gd̂,d̂



After some algebra this can be brought to the familiar-looking form...

G(k,ω) =
1

ω − ϵk − Σ(ω)

...where the k-independent self-energy Σ(ω) is given by

Σ(ω) =
ne

2
U +

ne

2
(1−

ne

2
)

U2

ω − (1− ne
2 ) U

= VHF +
σ

ω − ζ

⇒ Sum of Hartree-Fock potential and a single term with a pole - as established by Luttinger



First check: Comparison to exact spectra for the dimer

Simply use ‘dimer dispersion’ ϵk = −t cos(k) and the Hubbard-I self-energy for ne = 1 in the Dyson equation

Exact
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After fixing the chemical potential we obtain the spectral function (here: T → 0)
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Note the transfer of spectral weight upon decreasing electron density

(Experimental data on La2−xSrxCuO4 by C.T. Chen et al., Phys. Rev. Lett. 66, 104 (1991))



For small doping the Fermi surface is a small pocket around (π, π) - the Fermi surface volume depends on

electron density in a strange nonlinear way - this is a well-known deficiency of the Hubbard-I approximation
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Comparison to A(k,ω) obtained by

QMC on an 8× 8 cluster, U/t = 8, ne = 1

C. Gröber et al, PRB 62, 4336 (2000).



QMC at kBT = t - Fermi surface volume



Rough estimate for fractional Fermi surface volume
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Summary: the Hubbard-I approximation

• Basic physical idea: consider half-filled state as ‘vacuum’

- interpret charge fluctuations as hole-like and double occupany-like ‘particles’

• The particles have energies 0 and U ⇒ two Hubbard-bands

• Self-energy has a single dispersionless ‘gap opening peak’ with residuum ∝ U2 (cave exact diagonalization!)

• At half-filling (ne = 1): lower Hubbard band is filled completely

• Less than half-filling: lower Hubbard band is ‘hole doped’

• Fermi surface is a small hole pocket at the maximum of the lower Hubbard band (usually (π, π))

• Hole-pocket volume → 0 as ne → 1 - MIT by vanishing carrier density

• Strange nonlinear dependence of Fermi surface volume on electron density

• Comparison with QMC: soso....



The Gutzwiller wave function

Basic idea: With increasing U/t the probability to find doubly occupied sites will decrease

This may be described by the following variational wave function

|ΦG⟩ =
∏

i

(1− λ ni,↑ni,↓) |FS⟩

• |FS⟩ is the free electron ground state i.e. the Fermi sea

• λ is a variational parameter - to be determined from ⟨ΦG|H|ΦG⟩/⟨ΦG|ΦG⟩ → min

The operator 1− λ n↑n↓ acts like this

(1− λ n↑n↓) |0⟩ = |0⟩

(1− λ n↑n↓) | ↑⟩ = | ↑⟩

(1− λ n↑n↓) | ↓⟩ = | ↓⟩

(1− λ n↑n↓) | ↑↓⟩ = (1− λ)| ↑↓⟩

A state with Nd double occupancies gets a factor of (1− λ)Nd ≪ 1



Rewriting the Fermi sea |FS⟩

We use (spin index suppressed!)

c†k =
1√
N

N
∑

j=1

eik·Rj c†j

Then

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1,i2,i3,...iM

exp

⎛

⎝ i
M
∑

j=1

kj ·Rij

⎞

⎠ c†i1c
†
i2
. . . c†iM |0⟩

Here we sum over all M -tuples of site indices

We may as well sum over all ordered M -tuples and then sum over all permutations of M indizes

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩



We had

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩

The product of creation operators can be brought back to the original ordered sequence

c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩ = (−1)σ

′
c†i1c

†
i2
. . . c†iM |0⟩

Since obviously σ′ = σ−1 we have (−1)σ
′
= (−1)σ we finally have

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

(−1)σ exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†i1c
†
i2
c†iM |0⟩

=
1

√
N

M

∑

i1>i2>i3···>iM

D(k1,k2, . . . ,kM |i1, i2, . . . iM) c†i1c
†
i2
c†iM |0⟩



Assuming this procedure carried out for both spin directions, the Fermi sea |FS⟩ therefore may be thought of

as the superposition of all real space configurations

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

In the Gutzwiller wave function each of these configurations gets an additional factor of (1− λ)Nd < 1 where

Nd is the number of sites belonging to {i1, . . . iN↑} ∩ {j1, . . . jN↓}

Why do we insist on ordered M-tuples (i1, . . . iN↑) and (j1, . . . jN↓)?

Because then each real-space configuration of electrons is included only once and all real space configurations

are mutually orthogonal



The Gutzwiller wave function can be decomposed into components with fixed number of double occupancies

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

0| Φ(   ) >

1| Φ(   ) >

2| Φ(   ) >

= a + b + c + ....

= d + e + f + ....

= g + k + h + ....



The Gutzwiller wave function can be decomposed into components with fixed number of double occupancies

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

Since the overlap of any two states with different Nd is zero we have

⟨ΦG|ΦG⟩ =
∑

Nd

⟨Φ(Nd)|Φ(Nd)⟩ =
∑

Nd

W (Nd)

Question: Which Nd has the largest weight W (Nd)in this sum?

W (Nd) obviously is the probability distribution for the number of double occupancies in the Gutzwiller wave

function

Therefore the question may also be stated as: Which number of double occupancies is the most probable one?



Remember: |Φ(Nd)⟩ is the sum over all ordered N↑-tuples i1, i2, . . . iN↑ and N↓-tuples j1, j2, . . . jN↓ of

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

such that {i1, . . . iN↑} ∩ {j1, . . . jN↓} comprises Nd sites - additional prefactor: (1− λ)Nd 1√
N

N↑+N↓

Since any two configurations are orthogonal we only need D∗(kj|ij) D(kj|ij)

D(k1,k2, . . . ,kM |i1, i2, . . . iM) =
∑

σ

(−1)σ exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠

D∗(kj|ij) D(kj|ij) =
∑

σ,σ′

(−1)σ (−1)σ
′
exp

⎛

⎝ i
M
∑

j=1

kj · (Riσ(j) −Riσ′(j)
)

⎞

⎠

=
∑

σ

1 +
∑

σ ̸=σ′
(−1)σ (−1)σ

′
exp

⎛

⎝ i
M
∑

j=1

kj · (Riσ(j) −Riσ′(j)
)

⎞

⎠

= M !



We want to calculate ⟨Φ(Nd)|Φ(Nd)⟩

Remember: |Φ(Nd)⟩ is the sum over all ordered N↑-tuples i1, i2, . . . iN↑ and N↓-tuples j1, j2, . . . jN↓ of

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

such that {i1, . . . iN↑} ∩ {j1, . . . jN↓} comprises Nd sites - additional prefactor: (1− λ)Nd 1√
N

N↑+N↓

We have just seen that

D∗(kj|ij) D(kj|ij) = M !

The total weight of all states with Nd double occupancies therefore is the norm of each state times the number

of states

W (Nd) = ⟨Φ(Nd)|Φ(Nd)⟩ =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd C(N↑, N↓, Nd)

C(N↑, N↓, Nd): number of ways in which N↑ ↑-electrons and N↓ ↓-electrons can be distributed over the N

lattice sites such as to generate Nd double occupancies



We seek: C(N↑, N↓, Nd): the number of ways in which N↑ ↑-electrons and N↓ ↓-electrons can be distributed

over the N lattice sites such as to generate Nd double occupancies

All in all we have N sites - these N sites have to be divided into

• Nd sites with double occupancy

• N↑ −Nd sites with ↑-electron only

• N↓ −Nd sites with ↓-electron only

• N −Nd − (N↑ −Nd)− (N↓ −Nd) = N −N↑ −N↓ +Nd empty sites

The answer then is the multinomial coefficient

C(N↑, N↓, Nd) =
N !

Nd! (N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!



We briefly remember what we are currently working on....

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

⟨ΦG|ΦG⟩ =
∑

Nd

⟨Φ(Nd)|Φ(Nd)⟩

Question: which Nd gives the largest contribution W (Nd) = ⟨Φ(Nd)|Φ(Nd)⟩ to this sum?



We just found

W (Nd) =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd

N !

Nd! (N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!

Take log(W (Nd)), use Stirling formula for the factorials ...

log(N !) ≈ N log(N)−N

d log(N !)

dN
≈ log(N) =

log((N + 1)!)− log(N !)

1

...and differentiate with respect to Nd:

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(N↑ −Nd) (N↓ −Nd)

Nd (N −N↑ −N↓ +Nd)

)

d2

dN2
d

log (W (Nd)) = −
(

1

Nd
+

1

N↑ −Nd
+

1

N↓ −Nd
+

1

N −N↑ −N↓ +Nd

)



We had

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(N↑ −Nd) (N↓ −Nd)

Nd (N −N↑ −N↓ +Nd)

)

d2

dN2
d

log (W (Nd)) = −
(

1

Nd
+

1

N↑ −Nd
+

1

N↓ −Nd
+

1

N −N↑ −N↓ +Nd

)

Switch to densities nα = Nα/N , α ∈ {↑, ↓, d}

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)

)

d2

dN2
d

log (W (Nd)) = −
1

N

(

1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)

Demanding d
dNd

log (W (Nd)) = 0 the first equation gives nd(λ) (remember: n↑,n↓ are given!)

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1



We had

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1

For general nσ this is involved - so put n↑ = n↓ =
1
2 (half-filling!):

(1− λ)2
(12 − nd)2

n2
d

= 1 → nd =
1− λ

2(2− λ)

Check: λ→ 0 - i.e. no projection - implies nd = 1/4 = n↑ · n↓ - correct at half-filling!



We have found the value Nd,max which gives the largest weight - the second derivative was

d2

dN2
d

log (W (Nd)) = −
1

N

(

1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)

= −
c

N

All densities nα are of order unity ⇒ c is of order unity

Taylor expansion of the logarithm around Nd,max (remember: nd = Nd/N → Nd = N · nd)

log (W (Nd)) = log (W (Nd,max))−
1

2

c

N
(Nd −Nd,max)

2 + . . .

⇒ W (Nd) = W (Nd,max) · exp
(

−
c

2N
(Nd −Nd,max)

2
)

= W (Nd,max) · exp
(

−
c N

2
(nd − nd,max)

2

)

→ W (nd) is a Gaussian of width
√

2
cN ⇒ as N → ∞ the width becomes zero

The Gutzwiller wave function consists of configurations with Nd = N · nd,max!



The probability distribution for the number of double occupancies in the Gutzwiller wave function is a Gaussian

with a width ∝ 1√
N

and the center of the Gaussian is shifted by varying λ

ich bin bloss

platzhalter

 0  0.05  0.1  0.15  0.2  0.25  0.3

W
(n

d)

nd

λ

N

1

The expectation value of HU therefore is trivial: ⟨HU⟩ = U ·Nd = U ·N · nd



Expectation value of the kinetic energy

Basic idea: Reducing the number of double occupancies reduces the number of ‘hopping possibilities’



The Gutzwiller Approximation

Basic assumption: the expectation value of the kinetic energy can be obtained from that of free electrons

by multiplying by suitable renormalization factors ησ which account for the reduced probability for hopping

⟨ΦG|Ht|ΦG⟩
⟨ΦG|ΦG⟩

=
∑

σ

ησ(n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩

|FS, σ⟩: Fermi sea for σ-electrons

ησ(n↑, n↓, nd) =
Number of hopping possibilities with nd double occupancies

Number of hopping possibilities with nd = n↑ · n↓

The evaluation of the ησ(n↑, n↓, nd) then is a combinatorical problem - this is discussed very understandably

by Ogawa et al. Progr. Theor. Phys. 53, 614 (1975).



Introduce fictitious Hilbert space with 4 ‘book-keeping kets’ for every site i: |i, 0⟩, |i, ↑⟩, |i, ↓⟩ and |i, ↑↓⟩

Define a wave function of a single site i (with ασ, β real).....

|Bi⟩ =
|i, 0⟩ + α↑ |i, ↑⟩ + α↓ |i, ↓⟩ + β |i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

⟨Bi| Bi⟩ = 1

... and a wave function of the whole lattice

|Ψ⟩ =
∏

i

|Bi⟩

⟨Ψ|Ψ⟩ = 1



We had

|Bi⟩ =
|i, 0⟩ + α↑ |i, ↑⟩ + α↓ |i, ↓⟩ + β |i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

If |Ψ⟩ were a true electron state we would have

⟨N↑⟩ = N
α2
↑ + β2

1 + α2
↑ + α2

↓ + β2
,

⟨Nd⟩ = N
β2

1 + α2
↑ + α2

↓ + β2
.

which can be reverted to give

ασ =

√

nσ − nd

1− n↑ − n↓ + nd
,

β =
√

nd

1− n↑ − n↓ + nd
.



Our auxilliary wave function was (remember: (α↑,α↓, β) ↔ (n↑, n↓, nd))

|Bi⟩ =
|i, 0⟩ + α↑|i, ↑⟩ + α↓|i, ↓⟩ + β|i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

|Ψ⟩ has norm 1 and as many ‘empty sites’, ‘singly occupied sites’ and ‘doubly occupied sites’ as the true

Gutzwiller wave function if we adjust ασ and β correctly

But: |Ψ⟩ does not correspond to a state with fixed electron number ⇒ in principle we should instead use

|Ψ′⟩ = P(N↑, N↓, Nd) |Ψ⟩

where P projects onto the component of |Ψ⟩ which has precisely ⟨N↑⟩ ↑-electrons etc.



But2: It is straightforward to show that the probability distribution of the Nα - with α ∈ {↑, ↓, d} have a

Gaussian distribution around their mean values N̄α with a width which is again ∝ N−1/2

Therefore, in calculating expectation values we may drop the projector P and replace |Ψ′⟩ → |Ψ⟩

Compare J. Bardeen, L. N. Cooper, and J. R. Schrieffer Phys. Rev. 106, 162 (1957)

|ΨBCS⟩ = P
∏

k

(

uk + vk c†k,↑c
†
−k,↓

)

|0⟩



Our auxilliary wave function was (remember: (α↑,α↓, β) ↔ (n↑, n↓, nd))

|Bi⟩ =
|i, 0⟩ + α↑|i, ↑⟩ + α↓|i, ↓⟩ + β|i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

Now we ‘translate’ the electron operators (note: this ignores the Fermi sign)

c̃i,↑ = |i, 0⟩ ⟨i, ↑ | + |i, ↓⟩ ⟨i, ↑↓ |

Then we estimate the number of hopping possibilities per bond as

h(↑, n↑, n↓, nd) =
⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩

⟨Ψ|Ψ⟩
= ⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩ = ⟨Bi|c̃†i,↑|Bi⟩ ⟨Bj|c̃j,↑|Bj⟩

= |⟨Bi|c̃i,↑|Bi⟩|2 =

(

α↑ + α↓β

1 + α2
↑ + α2

↓ + β2

)2



Number of hopping possibilities per bond h(σ, n↑, n↓, nd) =

(

ασ + α−σβ

1 + α2
↑ + α2

↓ + β2

)2

We found earlier how ασ and β can be expressed by nσ and nd....

ασ =

√

nσ − nd

1− n↑ − n↓ + nd
, β =

√

nd

1− n↑ − n↓ + nd
.

.... and inserting this we find

h(σ, n↑, n↓, nd) =
( √

nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

)2

The final renormalization factor then is obtained by dividing

η(σ, n↑, n↓, nd) =
h(σ, n↑, n↓, nd)

h(σ, n↑, n↓, n↑n↓)
=

(√
nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

√

nσ(1− nσ)

)2



Collecting everything

We decomposed the Gutzwiller wave function into components with fixed number of double occupancies

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

⟨Φ(Nd)|Φ(Nd)⟩ is the probability distribution for the number of double occupancies and we found this is

‘infinitely sharply peaked’ around Nd = N · nd with

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1

This equation allows to switch from λ→ nd as variational parameter!



The expectation value of HU then becomes trivial

⟨HU⟩ = N · U · nd

The expectation value of the kinetic energy was approximated as

⟨Ht⟩ =
∑

σ

η(σ, n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩

with the renormalization factors ησ

ησ(n↑, n↓, nd) =
Number of hopping possibilities with nd double occupancies

Number of hopping possibilities with nd = n↑ · n↓

Their evaluation is a combinatorical problem and they can be expressed as functions of n↑, n↓ and nd

η(σ, n↑, n↓, nd) =

(√
nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

√

nσ(1− nσ)

)2

.

We thus have calculated the expectation value of the energy as a function of nd



Here it is:

E = ⟨Ht⟩ + ⟨HU⟩ =
∑

σ

ησ(σ, n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩ +N · U · nd

We specialize to the nonmagnetic case n↑ = n↓ and divide by N (i.e. we consider the energy per site)

e = η(nσ, nd) t0 + U nd

where t0 is the kinetic energy of the Fermi sea per site - which can be obtained by numerical integration

t0 =
2

N

∑

k

ϵk Θ(EF − ϵk)

We further specialize to nσ =
1
2

η(nd) = 16 nd (
1

2
− nd)

e(nd) = 16 nd (
1

2
− nd) t0 + U nd

Demanding de
dnd

= 0 we find the nd (or λ) which minimizes the energy

nd =
1

4
−

U

32|t0|



The nd which minimizes the energy was

nd =
1

4
−

U

32|t0|

This decreases linearly with U and becomes zero for

Uc = 8|t0|

This is the famous Brinkman-Rice transition

For the 2D square lattice with nearest neigbor hopping we obtain t0 = −1.621 t ⇒ Uc = 12.969 t



Quasiparticle Dispersion

The Gutzwiller wave function was

|ΦG⟩ =
∏

i

(1− λ ni,↑ni,↓) |FS⟩,

The wave function for a state with a hole-like quasiparticle then would be

|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The ‘quasiparticle dispersion’ then can be obtained from

ϵ̃k =
⟨ΦG|H|ΦG⟩
⟨ΦG|ΦG⟩

−
⟨ΦG(k)|H|ΦG(k)⟩
⟨ΦG(k)|ΦG(k)⟩



|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The condition on nd (i.e. λ′) was the minimization of the energy per site

e = η(nσ, nd) t0 + nd U ⇒ 0 =
∂η

∂nd
t0 + U

The variational procedure for |ΦG(k)⟩ amounts to

e → e−
1

N
ϵ̃k

t0 → t0 −
1

N
ϵk

n↑ → n↑ −
1

N

nd → nd +
1

N
δnd

Inserting and expanding gives

e−
1

N
ϵ̃k =

(

η(nσ, nd)−
1

N

∂η

∂n↑
+

1

N

∂η

∂nd
δnd

)(

t0 −
1

N
ϵk

)

+ nd U +
1

N
δnd U



|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The condition on nd (i.e. λ′) was the minimization of the energy per site

e = η(nσ, nd) t0 + nd U ⇒ 0 =
∂η

∂nd
t0 + U

The variational procedure for |ΦG(k)⟩ amounts to

e → e−
1

N
ϵ̃k

t0 → t0 −
1

N
ϵk

n↑ → n↑ −
1

N

nd → nd +
1

N
δnd

Inserting and expanding gives

ϵ̃k = η(nσ, nd) ϵk + t0
1

2

(

∂η↑
∂n↑

+
∂η↓
∂n↑

)

− δnd

(

∂η

∂nd
t0 + U

)



We had

ϵ̃k = η(nσ, nd) ϵk + t0
1

2

(

∂η↑
∂n↑

+
∂η↓
∂n↑

)

= η(nσ, nd) ϵk + C

The quasiparticle dispersion is renormalized by the same factor η as the expectation value of the kinetic energy

(C can be absorbed in a shift of µ)
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At the Brinkman-Rice transition (for half-filling) we had η → 0

The Gutzwiller wave function describes the metal insulator transition at half-filling by the vanishing of the

bandwidth or, alternatively, by the divergence of the effective mass



Suppose we choose U > Uc (Brinkman-Rice!) so that the system is a Mott-insulator at half-filling

What happens in the lightly doped Mott-insulator i.e we start from the doped case ne < 1 and let ne → 1?

The condition on nd continues to be minimization of the GS-energy per site...

e = η(nσ, nd) t0 + nd U

... but this now has to be done numerically - the result is (2D square lattice, U/t = 16 > Uc/t = 12.969)
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Summary, Gutzwiller Wave Function

• Basis idea: gound state corresponds to a ‘Fermi sea’ with the same number of quasiparticles as the free

electrons system, but reduced band width (and kinetic energy)

• This correlation narrowing takes into account that electrons have fewer possibilities to hop due to a

reduction of the number of double occupancies

• The Fermi surface agrees with the free electron Fermi surface

• The metal-insulator transition (Brinkman-Rice transition) is realized by a vanishing bandwidth - divergence

of the effective mass



Intermediate Summary: Hubbard-I versus Gutzwiller

We consider the case of large U/t such that the system is a Mott-insulator at half-filling, ne = 1

How does the system behave as ne → 1 from below?

Hubbard-I approximation and Gutzwiller wave function describe two completely different scenarios

ich bin bloss platzhalter
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Experimens show that in the cuprates Hubbard-I is closer to reality....

(From W. J. Padilla et al., PRB 72,060511 (2005): Hall constant and Drude weight as functions of 1− ne)



Dissipative part of optical conductivity in Drude theory:

σ1(ω) =
ne2

m∗
τ−1

ω2 + τ−2

(τ−1: inverse lifetime, n: carrier density, m∗: ‘optical mass’)

It follows that

Neff =

∫ ∞

0
dω σ1(ω) =

ne2

m∗
π

2

In practice the integral is carried out only up to ωmax = 650 cm−1 so as to pick up only the Drude peak

The Hall constant is in Drude theory:

RH =
1

ne

we have

m∗ =
1

RH Neff

2

eπ



Experimens show that in the cuprates Hubbard-I is closer to reality....

(From W. J. Padilla et al., PRB 72,060511 (2005): Hall constant and Drude weight as functions of 1− ne)



Summary

Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?
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Does one see anything like this in experiment?



Underdoped cuprate superconductors show ‘Fermi arcs’ (x = 1− ne)

ARPES spectra on La2−xSrxCuO4 (20 K) from T. Yoshida et al., J. Phys. Soc. Jpn. 81 011006 (2012).



These may also be ‘half of a pocket’

(0,0)

(π,π)

(0,0)

(π,π)



T-dependence of resitivity in HgBa2CoO4+δ: (Barisic et al., Proc. Nat. Acad. Sci. 110, 12235 (2013))

ρ(T ) = A1 T T > 280 K

ρ(T ) = A2 T 2 T < 170 K

The prefactors A1 and A2 vary with

hole concentration δ = 1− ne



Doping dependence of prefactors: A1, A2 ∝ 1
δ



We had ρ(T ) = A1 T and ρ(T ) = A2 T 2 and in both cases A ∝ 1
δ - this can be explained like this

σ =
ne2τ

m∗ → ρ =
m∗

ne2τ
=

m∗/e2

n
τ−1

with inverse lifetime τ−1 ∝ T, T 2 and carrier density n = δ → Fermi surface volume ∝ δ

(we have seen before that m∗ is doping independent)



Transport properties also are consistent with a ‘small’ Fermi surface

(Data from W. J. Padilla et al., PRB 72,060511 (2005) - remember: ne = 1− x)



Therefore

Possible Scenario



Question: Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?
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Spin density wave theory

• The interaction term HU = U ni,↑ni,↓ can be rewritten:

HU ni S2
i

|0⟩ 0 0 0

| ↑⟩ 0 1 3
4

| ↓⟩ 0 1 3
4

| ↑↓⟩ U 2 0

⇒ U ni,↑ni,↓ = U

(

ni

2
−

2

3
S2
i

)

• The system can lower its energy by forming magnetic moments: ⟨S2
i ⟩ ̸= 0

• The moments can be static ⟨Si⟩ ̸= 0 or fluctuating ⟨Si⟩ = 0

• The Hubbard dimer was an example for fluctuating moments

• Spin density wave theory deals with static moments



• We consider a 2D square lattice with N sites - with a static moment ⟨Si⟩ ̸= 0 at each site

• From the solution of the Hubbard dimer we know that the spins on sites connected by the hopping term

prefer to be antiparallel

• If we assume hopping only between nearest neighbors this defines the Néel state:

• Accordingly we set (with Q = (πa,
π
a), a lattice constant)

⟨ni,↑⟩ =
ne

2
+

m

2
eiQ·Ri, ⟨ni,↓⟩ =

ne

2
−

m

2
eiQ·Ri,

⇒ ⟨ni⟩ = ⟨ni,↑⟩ + ⟨ni,↓⟩ = ne, ⟨Sz
i ⟩ =

1

2
( ⟨ni,↑⟩ − ⟨ni,↓⟩ ) =

m

2
eiQ·Ri.

Let Ri = (ma, na) ⇒ eiQ·Ri = ei(m+n)π which is +1 (−1) if (m + n) is even (odd)



We set

ni,σ = ⟨ni,σ⟩ + δni,σ δni,σ = ni,σ − ⟨ni,σ⟩

• δni,σ is the operator of fluctuations of ni,σ around its mean value ⟨ni,σ⟩

• We assume that fluctuations are ‘small’ - this is the basic assumption of any mean-field theory

• Then we can approximate the interaction term

U ni,↑ni,↓ = U( ⟨ni,↑⟩ + δni,↑ )( ⟨ni,↓⟩ + δni,↓ )

= U ( ⟨ni,↑⟩⟨ni,↓⟩ + ⟨ni,↑⟩ δni,↓ + ⟨ni,↓⟩ δni,↑ + δni,↑ δni,↓ )

≈ U ( ⟨ni,↑⟩ ni,↓ + ⟨ni,↓⟩ ni,↑ − ⟨ni,↑⟩⟨ni,↓⟩ )

Now insert ⟨ni,↑⟩ =
ne

2
+

m

2
eiQ·Ri ⟨ni,↓⟩ =

ne

2
−

m

2
eiQ·Ri

and find U ni,↑ni,↓ ≈
neU

2

∑

σ

ni,σ −
mU

2
eiQ·Ri ( ni,↑ − ni,↓ )− U

n2
e −m2

4

This is now quadratic in c-operators so and thus H can be diagonalized by unitary transformation!



We had

U ni,↑ni,↓ =
neU

2

∑

σ

ni,σ −
mU

2
eiQ·Ri ( ni,↑ − ni,↓ )− U

n2
e −m2

4

Now switch to Fourier transformed c-operators and add the kinetic energy

H0 =
∑

k,σ

ϵk c†k,σck,σ

- the mean-field Hamiltonian K = H − µN then becomes

KMF =
∑

k,σ

ϵ̃k c†k,σck,σ −∆
∑

k

(

c†k,↑ck+Q,↑ − c†k,↓ck+Q,↓

)

−NU
n2
e −m2

4
,

whereby

ϵ̃k = ϵk +
neU

2
− µ ∆ =

mU

2



We had

KMF =
∑

k,σ

ϵ̃k c†k,σck,σ −∆
∑

k

(

c†k,↑ck+Q,↑ − c†k,↓ck+Q,↓

)

−NU
n2
e −m2

4
,

Now we follow Gorkov (Soviet Phys. JETP 7, 505 (1958)), and define the imaginary-time Green’s function

Gσ(k, τ ) = −⟨ T ck,σ(τ ) c
†
k,σ ⟩ = −Θ(τ ) ⟨ ck,σ(τ ) c

†
k,σ ⟩ + Θ(−τ ) ⟨ c†k,σ ck,σ(τ ) ⟩

This obeys the equation of motion (upper sign for σ =↑)

−
∂

∂τ
Gσ(k, τ ) = δ(τ ) ⟨{c†k,σ, ck,σ}⟩ − ⟨ T [ ck,σ, KMF ](τ ) c†k,σ⟩

= δ(τ )− ⟨ T
(

ϵ̃k ck,σ(τ )∓∆ ck+Q,σ(τ )
)

c†k,σ ⟩

= δ(τ ) + ϵ̃k
(

−⟨ T ck,σ(τ ) c
†
k,σ ⟩

)

∓∆
(

−⟨ T ck+Q,σ(τ ) c
†
k,σ ⟩

)

= δ(τ ) + ϵ̃k Gσ(k, τ )∓∆ G̃σ(k, τ ),

with the anomalous Green’s function G̃σ(k, τ ) = −⟨ T ck+Q,σ(τ ) c
†
k,σ ⟩



We had

KMF =
∑

k,σ

ϵ̃k c†k,σck,σ −∆
∑

k

(

c†k,↑ck+Q,↑ − c†k,↓ck+Q,↓

)

−NU
n2
e −m2

4

−
∂

∂τ
Gσ(k, τ ) = δ(τ ) + ϵ̃k Gσ(k, τ )∓∆ G̃σ(k, τ ),

G̃σ(k, τ ) = −⟨ T ck+Q,σ(τ ) c
†
k,σ ⟩

Proceeding as above we find the second equation of motion

⇒ −
∂

∂τ
G̃σ(k, τ ) = ϵ̃k+Q G̃σ(k, τ )∓∆ Gσ(k, τ ).

The system of equations of motion closes:

−
∂

∂τ
Gσ(k, τ )− ϵ̃k Gσ(k, τ )±∆ G̃σ(k, τ ) = δ(τ )

−
∂

∂τ
G̃σ(k, τ )− ϵ̃k+Q G̃σ(k, τ )±∆ Gσ(k, τ ) = 0



We had

−
∂

∂τ
Gσ(k, τ )− ϵ̃k Gσ(k, τ )±∆ G̃σ(k, τ ) = δ(τ )

−
∂

∂τ
G̃σ(k, τ )− ϵ̃k+Q G̃σ(k, τ )±∆ Gσ(k, τ ) = 0

After Fourier transformation with respect to τ

Gσ(k, τ ) =
1

β

∞
∑

ν=−∞
e−iωντ Gσ(k, iων) δ(τ ) =

1

β

∞
∑

ν=−∞
e−iωντ

so that −∂τ → iων:

(iων − ϵ̃k ) Gσ(k, iων)±∆ G̃σ(k, iων) = 1

(iων − ϵ̃k+Q) G̃σ(k, iων)±∆ Gσ(k, iων) = 0

This can be written in matrix form
⎛

⎝

iων − ϵ̃k ±∆

±∆ iων − ϵ̃k+Q

⎞

⎠

⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =

⎛

⎝

1

0

⎞

⎠



We had
⎛

⎝

iων − ϵ̃k ±∆

±∆ iων − ϵ̃k+Q

⎞

⎠

⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =

⎛

⎝

1

0

⎞

⎠

Now define

ζk =
1

2
(ϵ̃k + ϵ̃k+Q) , ηk =

1

2
(ϵ̃k − ϵ̃k+Q) ,

ϵ̃k = ζk + ηk ϵ̃k+Q = ζk − ηk

so that
⎛

⎝

iων − ζk − ηk ±∆

±∆ iων − ζk + ηk

⎞

⎠

⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =

⎛

⎝

1

0

⎞

⎠ .



We had
⎛

⎝

iων − ζk−ηk ±∆

±∆ iων − ζk+ηk

⎞

⎠

⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =

⎛

⎝

1

0

⎞

⎠ .

The matrix on the l.h.s. can be written as (with 1: 2× 2 unit matrix, τ : Pauli matrices)

(iων − ζk) 1 ±∆ τx −ηk τz

One can show (Landau-Lifshitz, Quantum Mechanics) that for any a and any vector b:

(a1 + b · τ )(a1− b · τ ) = a2 − b2 ⇒ (a1 + b · τ )−1 =
a1− b · τ
a2 − b2

.

In our case a = iων − ζk, b = (±∆, 0, −ηk) Therefore
⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =
1

(iων − ζk)2 − (∆2 + ηk2)

⎛

⎝

iων − ζk+ηk ∓∆

∓∆ iων − ζk−ηk

⎞

⎠

⎛

⎝

1

0

⎞

⎠



We had
⎛

⎝

iων − ζk−ηk ±∆

±∆ iων − ζk+ηk

⎞

⎠

⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =

⎛

⎝

1

0

⎞

⎠ .

The matrix on the l.h.s. can be written as (with 1: 2× 2 unit matrix, τ : Pauli matrices)

(iων − ζk) 1 ±∆ τx −ηk τz

One can show (Landau-Lifshitz, Quantum Mechanics) that for any a and any vector b:

(a1 + b · τ )(a1− b · τ ) = a2 − b2 ⇒ (a1 + b · τ )−1 =
a1− b · τ
a2 − b2

.

In our case a = iων − ζk, b = (±∆, 0, −ηk) Therefore
⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =
1

(iων − ζk)2 − (∆2 + ηk2)

⎛

⎝

iων − ζk+ηk

∓∆

⎞

⎠



We had
⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =
1

(iων − ζk)2 − (∆2 + ηk2)

⎛

⎝

iων − ζk+ηk

∓∆

⎞

⎠

Reminder:
ζk =

1

2
(ϵ̃k + ϵ̃k+Q) , ηk =

1

2
(ϵ̃k − ϵ̃k+Q) ,

ϵ̃k = ϵk +
neU

2
− µ ∆ =

mU

2

• This is the complete solution for given ne, µ and m

• The Green’s function can be analytically continued iων → ω, ω complex

• Both Green’s function have simple poles (=quasiparticle energies) when (ω − ζk)2 − (∆2 + η2k) = 0

⇒ ω = E(±)
k = ζk ±Wk Wk =

√

∆2 + η2k

• For each k there are two poles E(±)
k ⇒ two ‘bands’ rather than one

• It is straightforward to show that the bands obey E(±)
k+Q = E(±)

k (with Q = (πa ,
π
a))



The Green’s function was

Gσ(k,ω) =
ω − ζk + ηk

(ω − ζk)2 − (∆2 + η2k)
=

Z(−)
k

ω − E(−)
k

+
Z(+)
k

ω − E(+)
k

with

E(±)
k = ζk ±Wk Z(±)

k =
1

2

(

1±
ηk
Wk

)

We can now obtain the single particle spectral function (=combined photoemission and inverse photoemission

spectrum) A(k,ω) by analytical continuation iων → ω + iϵ and using

lim
ϵ→0

I
1

ω + iϵ
= −π δ(ω)

we get

A(k,ω) = −
1

π
lim
ϵ→0

I Gσ(k,ω + iϵ) = Z(−)
k δ(ω − E(−)

k ) + Z(+)
k δ(ω − E(+)

k )



Combined Photoemission and inverse Photoemission spectrum
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In experiment:

‘Remnant Fermi surface’



We had
⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =
1

(iων − ζk)2 − (∆2 + ηk2)

⎛

⎝

iων − ζk+ηk

∓∆

⎞

⎠

Reminder:
ζk =

1

2
(ϵ̃k + ϵ̃k+Q) , ηk =

1

2
(ϵ̃k − ϵ̃k+Q) ,

ϵ̃k = ϵk +
neU

2
− µ ∆ =

mU

2

• This is the complete solution for given ne, µ and m



How to determine µ and m for given ne

We recall the definition of the Green’s functions...

Gσ(k, τ ) = −⟨ T ck,σ(τ ) c
†
k,σ ⟩ G̃σ(k, τ ) = −⟨ T ck+Q,σ(τ ) c

†
k,σ ⟩

.. and the expectation values (for any site i !)

⟨ni,↑⟩ =
ne

2
+

m

2
eiQ·Ri

⟨ni,↓⟩ =
ne

2
−

m

2
eiQ·Ri

ne = ⟨ni,↑ + ni,↓⟩,

m = ⟨ni,↑ − ni,↓⟩ eiQ·Ri

We sum this over i, divide by N , and switch to Fourier transformed c-operators:

ne =
1

N

∑

k

⟨ c†k,↑ck,↑ + c†k,↓ck,↓ ⟩ =
1

N

∑

k

(

G↑(k, τ = 0−) +G↓(k, τ = 0−)
)

m =
1

N

∑

k

⟨ c†k,↑ck+Q,↑ − c†k,↓ck+Q,↓ ⟩ =
1

N

∑

k

(

G̃↑(k, τ = 0−)− G̃↓(k, τ = 0−)
)



We recall (upper sign for σ =↑)
⎛

⎝

Gσ(k, iων)

G̃σ(k, iων)

⎞

⎠ =
1

(iων − ζk)2 − (∆2 + ηk2)

⎛

⎝

iων − ζk+ηk

∓∆

⎞

⎠
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)



How to determine µ and m for given ne

We recall the definition of the Green’s functions...
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†
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N
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k

⟨ c†k,↑ck,↑ + c†k,↓ck,↓ ⟩ =
2

N
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k
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N
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k
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2
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k
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The Green’s functions at infinitesimally negative τ can be evaluated using contour integration techniques

After some calculations (see the lecture notes) we obtain the self-consistency equations

ne =
2

N

∑

k

(

f(E(−)
k ) Z(−)

k + f(E(+)
k ) Z(+)

k

)

(2)

1 =
U

N

∑

k

1

2Wk

(

f(E−
k )− f(E+

k )
)

(3)

with Wk =
√

∆2 + η2k

E(±)
k = ζk ±Wk Z(±)

k =
1

2

(

1±
ηk
Wk

)

ζk =
1

2
(ϵ̃k + ϵ̃k+Q) , ηk =

1

2
(ϵ̃k − ϵ̃k+Q) ,

ϵ̃k = ϵk +
neU

2
− µ ∆ =

mU

2

Zk and Ek depend on µ and m ⇒ for given ne and T we solve this by a self-consistency procedure

Choose min - Determine µ from (1) - vary min until (2) is satisfied



Results of solving the the self-consistency equations
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• Vanishing of m - AF phase transition - for increasing temperature/decreasing electron density

• Fermi surface is an elliptical hole pocket centered on (π2 ,
π
2 )



Summary, Spin density wave theory

• Basic physical idea: assume static antiferromagnetically ordered moments

• Predicts antiferromagnetic insulator at half-filling

• Insulating gap ∝ ordered moment

• Mean-field theory - self-energy reduces to the Hartree-Fock potential

• At the antiferromagnetic transition the gap closes - the system becomes an ordinary metal

• For the lightly doped case the Fermi surface is an elliptical hole pocket centered on (π2 ,
π
2 )

• Fractional area of hole pockets is 1− ne - MIT by vanishing carrier number



The above derivation closely parallels Gorkov’s re-derivation of BCS theory in terms of imaginary-time Green’s

function

The only Difference is that in the case of BCS theory the anomalous Green’s function is G̃(k, τ ) = −⟨T ck,↑(τ ) c−k,↓⟩

The formulation in terms of Green’s functions allows to treat spatial inhomogeneity (Landau-Ginzburg theory)

systems with impurities (gapless superconductivity) and to go beyond simple BCS theory (Eliashberg theory)


