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Outline of the lecture:

• Landau-Fermi liquid theory in short 

• ordinary Kondo physics at the Mott transition 

• exotic Kondo physics at the Mott transition



Landau-Fermi liquid in short
(L. D. Landau, 1957)

• single-particle Green’s function
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Landau-Fermi liquid in short
(L. D. Landau, 1957)

• assumption for ε, |k-kF|,T ≪ TF 
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• analytic continuation iε → z ∊ !
• G

coh.

(z,k) ) single pole on the real axis

• G
incoh.

(z,k) ) branch cut on the real axis

• the assumption can be verified order by order in perturbation 
theory, though no one can guarantee that the series converges 
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• single-particle density-of-states (DOS)
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• ultimate goal: calculate physical response functions at 
small frequency ω and momentum q
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• irreducible vertex in the particle-hole channel
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mathematical sense of a distribution

non-analytic at the origin ω=q=0
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• indeed:

while by assumption:
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lim
q!0

lim
!!0

R
incoh.

(i✏,k; i!,q) ⌘ Rq
incoh.

(i✏,k)

= lim
!!0

lim
q!0

R
incoh.

(i✏,k; i!,q) ⌘ R!
incoh.

(i✏,k)

⌘ R
incoh.

(i✏,k)

lim
!!0

lim
q!0

R
coh.

(i✏, k; i!, q) = lim
!!0

lim
q!0

�@f(✏k)

@✏k
�(i✏) Z2

k
✏k+q � ✏k

i! � ✏k+q + ✏k

⌘ R!
coh.

(i✏, k) = 0

lim
q!0

lim
!!0

R
coh.

(i✏, k; i!, q) = lim
q!0

lim
!!0

�@f(✏k)

@✏k
�(i✏) Z2

k
✏k+q � ✏k

i! � ✏k+q + ✏k

⌘ Rq
coh.

(i✏, k) =
@f(✏k)

@✏k
�(i✏) Z2

k



• therefore:
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• back to Bethe-Salpeter
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• express everything in terms of Γω

� = �! + �! �
⇣

R � R!
⌘

� �

�q = �! + �! �
⇣

Rq � R!
⌘

� �q

… or rather in terms of the Landau’s f parameters: 
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Exploiting Ward’s identities, one can derive for any conserved quantity the 
known Fermi liquid expression of its response function at small ω and q in 

terms of the unknown f-parameters and quasiparticle dispersion εk

and quasiparticle scattering amplitudes: 
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Correlated metals close to a Mott transition

• in the Mott insulator we do have a clue what Gincoh. and thus Aincoh. 
describe: the single-particle excitations of the isolated atom

D
OS
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ε
0



Correlated metals close to a Mott transition

• by continuity, in the metal Gincoh. and thus Aincoh. should still 
approximately describe atomic-like excitations

D
OS

dn→dn+1dn→dn-1

ε
0

quasiparticle peak



Gcoh./Z Gincoh./(1-Z)
both DOS’s are thus normalised to one&
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• scattering amplitude between quasiparticles and incoherent excitations 

this process can transfer low energy …  

• in the charge channel? 

• in the spin, orbital, spin-orbital channels?

NO! 
YES! 



• e.g., in the single-band model only the spin-channel is allowed
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which corresponds to a model of conduction electrons coupled by a 
spin exchange to localised moments

Kondo-lattice model
with the exchange J and conduction band dispersion εk that are not 

fixed but self-consistently determined by the interacting theory



the relationship between Mott and Kondo physics becomes 
transparent in lattices with infinite coordination number

DMFT

within DMFT a model defined on an infinitely coordinated lattice is mapped 
onto an Anderson impurity model self-consistently hybridised to a  

non-interacting conduction bath 

ε2

ε1

ε4 ε3

ε6

ε5

ε8

ε7

ε11ε9 ε10

V11V10V9

V8

V7

V6

V5
V4 V3

V2
V1

e.g. Bethe lattice with 
infinite connectivity

G(i✏) /
X

n

|Vn|2

i✏ � ✏n



Single-band Hubbard model & single-orbital Anderson impurity

Bethe-lattice coordination number z→∞

Mott transition & ordinary Kondo effect
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impurity DOS hybridisation function
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Ordinary Kondo effect

� 6= 0 , U = 0

� = 0 , U 6= 0

U � � > 0

U/2�U/2

competition of U vs. �(✏ = 0) ⌘ �

Lorentzian width "

renormalised width "∗  = Z"
 with Z≪1

d1→d0 d1→d2 



Kondo resonance

Without self-consistency the system always gains hybridisation 
energy by promoting a percentage Z≪1 of the impurity to the 
conduction band, and thus screening the impurity spin-1/2.  

That screening is characterised  by a Kondo resonance that 
appears at Fermi no matter how U is large, of width #∗ = Z#≪#, 

to be identified with the Kondo temperature TK.  

For T≫TK the resonance is destroyed by thermal fluctuations

lower Hubbard band upper Hubbard band



What is the role of self-consistency?



I. make the Kondo resonance disappear at finite U

U/2�U/2

%n(&)
#n+1(&)

%n+1(&)

#n+2(&)%n+2(&)

this is precisely how the 
Mott transition occurs
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II. turn the impurity instabilities into true bulk ones

#∗= Z# ≪ #
impurity spin susceptibility

� ⇠ ��1
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the large impurity susceptibility will transmit, through 
the self-consistency condition, to the bulk, making the 

latter unstable to magnetism. This is instead impossible 
in the impurity model without self-consistency.  



II. turn the impurity instabilities into true bulk ones

• the knowledge of the impurity model can thus help to 
anticipate, without even imposing any self-consistency 
condition,  which instabilities are going to occur at or 
in proximity of the Mott transition

• Kondo models with exotic phases might correspond in 
infinitely coordinated lattices to lattice models with  
rich and equally exotic physics near the Mott 
transition



1. screened: number of impurity degrees of freedom = number of 
bath degrees of freedom 

2. overscreened:  number of impurity degrees of freedom < number 
of bath degrees of freedom — appealing non-Fermi-liquid 
properties with non-analytic thermodynamic susceptibilities 

3. underscreened: number of impurity degrees of freedom > 
number of bath degrees of freedom — also appealing marginal 
Fermi-liquid behaviour 

General classification of Kondo models: 



1. screened: number of impurity degrees of freedom = number 
of bath degrees of freedom 

2. overscreened:  number of impurity degrees of freedom < number 
of bath degrees of freedom — appealing non-Fermi-liquid 
properties with non-analytic thermodynamic susceptibilities 

3. underscreened: number of impurity degrees of freedom > 
number of bath degrees of freedom — also appealing marginal 
Fermi-liquid behaviour 

General classification of Kondo models: 

the DMFT mapping implies by construction that the 
impurity has the same number of degrees of 

freedom as the bath



Even though the impurity has the same number of 
degrees of freedom as the bath, still exotic Kondo 

physics may appear

need an impurity with internal degrees of freedom as 
well as with an internal mechanism able to lock the 

impurity into a non-degenerate state that makes Kondo 
screening inactive



The simplest example: the two impurity model
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J

bath 1 bath 2 impurity 1 impurity 2 

• if J=0, each impurity is Kondo screened 
by its own bath. The relevant energy 
scale is the Kondo temperature TK 

• if TK≫J, each impurity still remains 
Kondo screened 

• if J≫TK, the two impurities lock into a 
spin-singlet state transparent to 
conduction electrons ⇒ no Kondo 
screening 

the two regimes, Kondo screened and unscreened, are separated by a 
true quantum critical point at TK ∽ J

screened unscreened
J/TK

≈1

QCP
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bath 1 bath 2 impurity 1 impurity 2 

the two regimes, Kondo screened and unscreened, are separated by a 
true quantum critical point at U/Γ∼ log(UΓ/J2)

screened unscreened
U/"

QCP

(U/")c

• if J=0, each impurity is Kondo screened 
by its own bath. The relevant energy 
scale is the Kondo temperature TK 

• if TK≫J, each impurity still remains 
Kondo screened 

• if J≫TK, the two impurities lock into a 
spin-singlet state transparent to 
conduction electrons ⇒ no Kondo 
screening 



Properties of the QCP

• instability channels Δi with log-diverging susceptibilities:

�i(!) = h�i(!)�†
i(�!)i ⇠ � ln!

• meaning of instability:

if H2AIM ! H2AIM � hi �i

however small hi is, the QCP will turn into a crossover between 
the screened and unscreened phases, the sharper the smaller hi is



Properties of the QCP
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• instability channels Δi with log-diverging susceptibilities:



Properties of the QCP

• “doping” the impurity is not an instability channel

U
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the QCP at n=2 belongs 
to a whole critical line 
that bends to larger U/" 
values the higher is the 
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filling 



Dynamics across the QCP

screened

unscreened

across the transition from the screened to the unscreened 
phase the narrow Kondo resonance transforms into a 

narrow pseudo-gap 

A(✏)
LHB UHB

NRG results



Dynamics across the QCP

• two energy scales

• T+≈max(TK,J), smooth across the transition

•T- measuring the distance from the QCP

for instance, if both J and U are fixed and Γ varies,  
the QCP occurs at Γ=Γc and 
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Modelling the impurity DOS
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Modelling the impurity DOS

(a)

(b)
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(d)
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Modelling the impurity DOS away from half-filling
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hopping t⊥

Destabilising the QCP

• two impurities coupled by a hopping t⊥

t⊥ breaks the relevant Uf(1) (flavour) symmetry 

related to the hybridisation channel Δhyb.

d1� ! ei� d1� c1� ! ei� c1�

d2� ! e�i� d2� c2� ! e�i� c2�
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hopping t⊥

• at leading order in 1/U
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bath 1 bath 2 impurity 1 impurity 2 

hopping t⊥

• at leading order in 1/U

t? ! J =
4t2

?
U

still invariant under Uf(1)

• next-to leading order in 1/U
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notable circumstance where t⊥ ≪ U generates at leading 
order J, which can drive the model across the QCP, but 
concurrently, at next-to leading order, t12, which makes 

instead the QCP inaccessible 



A11(✏) = A22(✏)

with t⊥

with only J=4t⊥2/U

A12(✏)

despite the model with t⊥ is not 
invariant under the relevant 

Uf(1) symmetry, yet the 
crossover between screened and 

unscreened phases is quite 
sharp, being J ≫ t12



Question: why approaching the QCP the system is able to 
respond so efficiently to a symmetry breaking term 
despite the vanishing quasiparticle residue Z=0?   

Answer: cancellation of vertex and self-energy 
corrections, Z→0 but #→∞ so that Ai is finite or 
even singular right at the QCP

Ai(i!) = Z2 �(i!; 0; i!; 0)

recall that in the (local) 
Landau-Fermi liquid



Cancellation of vertex and self-energy corrections: 
physical reasons

none of the instability channels Δi opposes against U, 
but rather they all oppose against the hybridisation 

with the coupling # to the bath

their effective strength is enhanced rather than 
suppressed by increasing U



• in the presence of the symmetry breaking hybridisation the self-
energy acquires off-diagonal components

• without the symmetry breaking hybridisation the quasi-particle 
residue Z(iε) vanishes for ε→0 approaching the QCP and beyond
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assume cancellation of vertex and self-energy corrections and 
exploit what we know about weakly-disordered s-wave 

superconductors  
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Δ is a low-energy scale generated by the hybridisation that 
cut-offs the singularities: Fermi liquid behaviour is recovered
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NRG data in the unscreened phase

fit with the model self-energy

……

the assumption works extremely well at low-frequency

we thus conclude that singular self-energy and vertex 
corrections cancel each other 

large )eΣ12(0) in comparison with the weak symmetry 
breaking field 
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Lattice models that in infinitely coordinated lattices 
maps, through DMFT, onto the two-impurity model

• two-coupled Hubbard models
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• t2g2 configuration in a square planar crystal field

dxz=c1 dyz=c2
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Hund’s rule favouring
 high-spin S=1

single-ion anisotropy mediated 
by the spin-orbit coupling with the dxy



the same physics as the 2AIM under the transformation:
c1" ! c1" c1# ! c2" c2" ! c1# c2# ! c2#
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how do the instability channels transform?
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• E×e Jahn-Teller effect
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c2

q1 mode

q2 mode
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• lattice model
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like in the 2AIM the ground state is a non-degenerate spin-singlet



in all those three lattice models, the ground state in the atomic limit is 
non-degenerate and it is stabilised with respect to the other excited 

states by an on-site term of strength J 

in the impurity models onto which those lattice models map by 
DMFT, J tends to lock the impurity into a non-degenerate state and 

thus competes with the Kondo effect, whose energy scale is the 
Kondo temperature TK 



What shall we expect?

• bandwidth = W and J≪W

W⇤ = ZW ) TK

W

U/W0
MIT

J

the impurity QCP is unavoidably 
encountered before the MIT

W✴︎



Explicit DMFT calculation: the E×e Jahn-Teller model

• atomic limit ≈ Mott insulator

each site will freeze in the non-degenerate atomic 
ground state with S=0, T=1 and Tz=0: the on-site 

version of a valence-bond crystal
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S=0;T=1,Tz=0



Explicit DMFT calculation: the E×e Jahn-Teller model
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• weak-coupling U≪W

half-filled two-band metal with pairing channel:

1↑

2↓

1↑

2↓
= - ( 2J - U ) = - ρ-1 ( λ - µ∗ ) 

• if U<2J the metal is unstable towards s-wave 
superconductivity

• if U>2J the vertex is repulsive and the system is a 
normal metal
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WRONG!



True DMFT phase diagram

for small J a superconducting dome appears right before the MIT 
with a ΔSC much bigger than at U=0: this is just the mere 

manifestation of the impurity QCP



… indeed the low-frequency fit of the putative T=0 normal phase, 
obtained by not allowing anomalous components of the Green’s 

function in DMFT, with 

works extremely well and provides estimates of T+ and T-
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the physics of the isolated impurity emerges overwhelmingly  
also in the behaviour away from half-filling



Take-home message

• The physics of the Anderson impurity might be very 
useful in interpreting and even anticipating the 
behaviour of correlated models next to a Mott 
transition.  

• This is indeed the case in infinitely coordinated lattices. 

• In realistic lattices with finite coordination, Fermi 
liquid theory suggests that part of the Kondo physics 
may still survive — to what extent is so far unclear.



Final warning…
• in most examples relevant to DMFT, one encounters impurity 
models HAIM with no true quantum critical point, but rather with a 
sharp crossover, like the model of two impurities coupled to each 
other by t⊥  

• in this case it might be convenient to find the underlying impurity 
model H(0)AIM, which is invariant under a larger symmetry group 
that allows the critical point to exist. 

•  afterwards, one should regard the original model HAIM as the 
higher-symmetry one H(0)AIM plus a relevant symmetry breaking 
perturbation +HAIM, i.e. 

HAIM = H(0)AIM + +HAIM
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