Gutzwiller Density Functional Theory

Florian Gebhard

Department of Physics, Philipps-Universität Marburg, Germany

in collaboration with Jörg Bünemann, Dortmund, Tobias Schickling, Marburg, and Werner Weber († July 2014), Dortmund

September 26, 2017

Universität Marburg

イロト 不同下 イヨト イヨト

3

The many-body problem in solid-state theory (see talk by R. Martin)

Electronic many-particle Hamiltonian ($\sigma = \uparrow, \downarrow; \hbar \equiv 1$)

$$\hat{H} = \hat{H}_{\text{band}} + \hat{H}_{\text{int}} ,$$

$$\hat{H}_{\text{band}} = \sum_{\sigma} \int d\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m} + U(\mathbf{r}) \right) \hat{\Psi}_{\sigma}(\mathbf{r}) ,$$

$$\hat{H}_{\text{int}} = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}) .$$

$$(1)$$

The electrons experience their mutual Coulomb interaction and the interaction with the ions at positions \mathbf{R} ,

$$V(\mathbf{r} - \mathbf{r}') = \frac{1}{2} \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}, \quad U(\mathbf{r}) = \sum_{\mathbf{R}} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}$$
(2)

The many-body problem in solid-state theory

Objective

Explain all fascinating phenomena in solid-state physics, e.g., magnetism and superconductivity. To this end, solve the Schrödinger equation, $\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$, and calculate all expectation values of interest, $A_{n,m} = \langle \Psi_n | \hat{A} | \Psi_m \rangle$.

Problems

• \hat{H} poses an **extremely difficult** many-body problem.

 The bare energy scales are of the order of ten electron Volt (eV) per unit cell, the energy scales of interest (10 K) are milli-eV (relative accuracy requirement 10⁻⁴, or better).

The many-body problem in solid-state theory

'Solution'

- Focus on simpler Hamiltonians (e.g., Heisenberg or Hubbard models) and their ground-state properties;
- Design sensible approximations for models and/or for *Ĥ*, e.g., the Local Density Approximation (LDA) to Density Functional Theory (DFT).

In this lecture, you will learn that

- The Gutzwiller Density Functional Theory provides an approximate description of the many-particle ground state of the electronic problem, and of its elementary Landau quasi-particle excitations.
- At its core, it provides an approximate ground state for the multi-band Hubbard model with its purely local interactions.

Part I: Gutzwiller variational approach Part II: Combination with Density Functional Theory

Outline of Part I

1 Hubbard model

- Hamiltonian
- Problems
- Multi-band Hubbard model
- 2 Gutzwiller variational states
 - Definition
 - Application to the two-site Hubbard model
- 3 Evaluation in high dimensions
 - Limit of high dimensions
 - Diagrammatic approach
 - Results for the single-band Hubbard model
 - Landau-Gutzwiller quasi-particles
- 4 Summary of part I

Outline of Part II

- **5** Density Functional Theory
 - Electronic problem
 - Levy's constrained search
 - Single-particle Hamiltonian and Ritz variational principle
 - Kohn-Sham equations
- 6 Density Functional Theory for many-particle Hamiltonians
 - Hubbard interaction and Hubbard density functional
 - Gutzwiller density functional
 - Limit of infinite lattice coordination number
- Transition metals
 - Gutzwiller-Kohn-Sham quasi-particle Hamiltonian
 - Local Hamiltonian for transition metals
 - Results for nickel
 - Results for iron
- 8 Summary of part II

Part I

Gutzwiller variational approach

Hamiltonian Problems Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons

(see talk by R. Eder)

Fig. 1: Electrons with spin $\sigma = \uparrow, \downarrow$ on a lattice

Kinetic term

$$\hat{T} = \sum_{\mathbf{R},\mathbf{R}';\sigma} t_{\mathbf{R}-\mathbf{R}'} \hat{c}^+_{\mathbf{R},\sigma} \hat{c}_{\mathbf{R}',\sigma} \quad (3)$$

 $t_{\mathbf{R}-\mathbf{R}'}$: electron transfer amplitude from lattice site \mathbf{R}' to \mathbf{R} Hubbard interaction

$$\hat{V} = U \sum_{\mathbf{R}} \hat{n}_{\mathbf{R},\uparrow} \hat{n}_{\mathbf{R},\downarrow}$$
 (4)

U: strength of the Coulomb repulsion

Single-band Hubbard Hamiltonian

$$\hat{H} = \hat{T} + \hat{V} \tag{5}$$

Hamiltonian Problems Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons

Technical problems

- The Hubbard model poses an **extremely difficult** many-body problem (see talk by R. Eder)!
- (Asymptotic) Bethe Ansatz provides the exact solution in one dimension for t_κ(r) ~ sinh(κ)/sinh(κr).
- In the limit of infinite dimensions, the model can be mapped onto an effective single-impurity Anderson model whose dynamics must be determined self-consistently (Dynamical Mean-Field Theory, see talks by E. Pavarini and V. Janiš).

Conceptual problem

The single-band Hubbard model is too simplistic for the description of real materials, e.g., of the 3d-electrons in transition metals.

Hamiltonian Problems Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons

Minimal extension: multi-band Hubbard model (orbital index b)

$$\hat{\mathcal{H}} = \sum_{\mathbf{R},\mathbf{R}';\sigma} t_{\mathbf{R}-\mathbf{R}'}^{b} \hat{c}_{\mathbf{R},b,\sigma}^{+} \hat{c}_{\mathbf{R}',b,\sigma}^{+} \\ + \sum_{\mathbf{R}} \sum_{\substack{b_{1},\dots,b_{4};\\\sigma_{1},\dots,\sigma_{4}}} U_{b_{1}\sigma_{1},b_{2}\sigma_{2}}^{b_{3}\sigma_{3},b_{4}\sigma_{4}} \hat{c}_{\mathbf{R},b_{1},\sigma_{1}}^{+} \hat{c}_{\mathbf{R},b_{2},\sigma_{2}}^{+} \hat{c}_{\mathbf{R},b_{3},\sigma_{3}}^{+} \hat{c}_{\mathbf{R},b_{4},\sigma_{4}}$$
(6)

Problem

The multi-band Hubbard model is not exactly solvable. It readily exceeds our numerical capabilities even in DMFT when more than three bands are involved.

'Solution'

Use variational many-particle states as approximate ground states. In the following: we use Gutzwiller variational states.

 $10 \, / \, 63$

Definition Application to the two-site Hubbard model

Gutzwiller variational state

Observation for the single-band Hubbard model: doubly occupied sites are unfavorable for the potential energy (U > 0). Gutzwiller's Ansatz for the single-band Hubbard model

$$|\Psi_{\rm G}\rangle = \hat{P}_{\rm G}|\Phi\rangle , \ \hat{P}_{\rm G} = g^{\hat{D}} ,$$
 (7)

where

- $|\Psi_G\rangle$: Gutzwiller variational state $|\Phi\rangle$: single-particle product state, e.g., the Fermi sea
- \hat{P}_{G} : Gutzwiller correlator
- g : real variational parameter $\hat{D} = \sum_{\mathbf{p}} \hat{n}_{\mathbf{p}} \star \hat{n}_{\mathbf{p}}$: number of g
 - $= \sum_{\mathbf{R}} \hat{n}_{\mathbf{R},\uparrow} \hat{n}_{\mathbf{R},\downarrow}$: number of doubly occupied sites

The Gutzwiller variational state is exact for U = 0 (free Fermions), and for $U = \infty$ (no double occupancies).

Definition Application to the two-site Hubbard model

Gutzwiller variational state

For the multi-band Hubbard model and for $t^b_{\mathbf{R}-\mathbf{R}'} \equiv 0$, we must work with the atomic eigenstates $|\Gamma\rangle$ of \hat{V} ,

$$\hat{V} = \sum_{\substack{b_1, \dots, b_4;\\\sigma_1, \dots, \sigma_4}} U_{b_1\sigma_1, b_2\sigma_2}^{b_3\sigma_3, b_4\sigma_4} \hat{c}^+_{b_1, \sigma_1} \hat{c}^+_{b_2, \sigma_2} \hat{c}_{b_3, \sigma_3} \hat{c}_{b_4, \sigma_4} = \sum_{\mathbf{R}; \Gamma} E_{\mathbf{R}; \Gamma} \hat{m}_{\mathbf{R}; \Gamma}$$
(8)

where $\hat{m}_{\mathbf{R};\Gamma} = |\Gamma_{\mathbf{R}}\rangle\langle\Gamma_{\mathbf{R}}| = \hat{m}_{\mathbf{R};\Gamma}^2$ projects onto the atomic eigenstate $|\Gamma\rangle$ on site **R**.

Gutzwiller Ansatz for the multi-band Hubbard model

$$|\Psi_{\rm G}\rangle = \hat{P}_{\rm G}|\Phi\rangle \quad , \quad \hat{P}_{\rm G} = \prod_{\mathbf{R}} \prod_{\Gamma_{\mathbf{R}}} \lambda_{\mathbf{R};\Gamma}^{\hat{m}_{\mathbf{R};\Gamma}} = \prod_{\mathbf{R}} \sum_{\Gamma_{\mathbf{R}}} \lambda_{\mathbf{R};\Gamma} \hat{m}_{\mathbf{R};\Gamma} \; , \; (9)$$

where

- $|\Psi_{\mathrm{G}}
 angle$: Gutzwiller variational state
- $\lambda_{\mathbf{R};\Gamma}$: real variational parameter
- $|\Phi
 angle$: single-particle product state, e.g., the Fermi sea

Definition Application to the two-site Hubbard model

Gutzwiller variational state

The ground state of the two-site Hubbard model with tunnel amplitude (-t) and $N_{\uparrow} = N_{\downarrow} = L/2 = 1$ electrons is given in position space by

$$|\Psi_{0}\rangle \sim \left(|\uparrow_{1},\downarrow_{2}\rangle - |\downarrow_{1},\uparrow_{2}\rangle\right) + \alpha(U/t)\left(|\uparrow\downarrow_{1},\emptyset_{2}\rangle + |\emptyset_{1},\uparrow\downarrow_{2}\rangle\right)$$
(10)

with $\alpha(x) = (x - \sqrt{x^2 + 16})/4$ and $E_0(U) = -2t\alpha(U/t)$. The Gutzwiller-correlated Fermi sea has the form

$$|\Psi_{\mathrm{G}}
angle \sim \left(|\uparrow_{1},\downarrow_{2}
angle - |\downarrow_{1},\uparrow_{2}
angle
ight) + g\left(|\uparrow\downarrow_{1},\emptyset_{2}
angle + |\emptyset_{1},\uparrow\downarrow_{2}
angle
ight)$$
 (11)

Ritz's variational principle thus gives $g^{\text{opt}} = \alpha(U/t)$: exact!

Problem

The evaluation of expectation values with Gutzwiller variational states poses a **very difficult** many-body problem.

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Let Z be the number of nearest neighbors of a lattice site, e.g., Z = 2d for a simple-cubic lattice in d dimensions.

Question

How do we have to scale the electron transfer matrix element between nearest neighbors in the limit $Z \rightarrow \infty$?

For the spin-1/2 lsing model we have to scale

$$J = \frac{J^*}{Z} \quad (J^* = \text{const}) \tag{12}$$

because each of the Z neighbors can contribute the energy $J^*/4$. At large interactions U, the Hubbard at half band-filling maps onto the Heisenberg model with $J = J^*/Z \sim t^2/U$. Thus, we scale

$$t \sim t^*/\sqrt{Z}$$
 . (13)

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Expectation values with the Gutzwiller variational state are calculated using diagrammatic perturbation theory. Lines that connect lattice sites \mathbf{R} and \mathbf{R}' represent the single-particle density matrix,

$$P^{0}_{\sigma}(\mathbf{R},b;\mathbf{R}',b') = \langle \Phi | \hat{c}^{+}_{\mathbf{R},b,\sigma} \hat{c}^{-}_{\mathbf{R}',b',\sigma} | \Phi \rangle \sim \left(\frac{1}{Z}\right)^{||\mathbf{R}-\mathbf{R}'||/2} .$$
(14)

Collapse of diagrams in position space

When two inner vertices \mathbf{f}_1 and \mathbf{f}_2 are connected by three different paths, we may set $\mathbf{f}_1 = \mathbf{f}_2$ in the limit $Z \to \infty$ because the summation over $Z^{||\mathbf{f}_1 - \mathbf{f}_2||}$ neighbors cannot compensate the factor $Z^{-3||\mathbf{f}_1 - \mathbf{f}_2||/2}$ from the three lines for $\mathbf{f}_1 \neq \mathbf{f}_2$.

How can we get rid of the remaining local contributions?

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Diagrammatic expansion for Gutzwiller states

- Develop a diagrammatic perturbation theory with vertices x_{f,l1,l2} and lines *P*⁰_σ(f1, b1; f2, b2);
- **2** Choose the expansion parameters $x_{\mathbf{f},l_1,l_2}$ such that
 - at least four lines meet at every inner vertex,
 - there are no Hartree bubble diagrams, and
 - the single-particle density matrices vanish on the same site,

$$\widetilde{P}^{0}_{\sigma}(\mathbf{f},b;\mathbf{f},b') = 0;$$
 (15)

In the limit Z → ∞, all skeleton diagrams collapse in position space, i.e., they have the same lattice site index. As a consequence of Eq. (15), they all vanish and not a single diagram with inner vertices must be calculated.

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

We use the representation ($\hat{P}_{
m G}=\prod_{f f}\hat{P}_{
m G,f}$)

$$\hat{P}_{\mathrm{G},\mathbf{f}}^{2} = 1 + x_{\mathbf{f}} (\hat{n}_{\mathbf{f},\uparrow} - \langle \hat{n}_{\mathbf{f},\uparrow} \rangle_{\Phi}) (\hat{n}_{\mathbf{f},\downarrow} - \langle \hat{n}_{\mathbf{f},\downarrow} \rangle_{\Phi}) .$$
(16)

Note: the Hartree contributions are eliminated by construction, there are only inner vertices vertices with four lines. Now that we also have $(\hat{P}_{G,f} = \sum_{\Gamma} \lambda_{f;\Gamma} \hat{m}_{f;\Gamma})$

$$\hat{P}_{\mathrm{G},\mathbf{f}}^{2} = \lambda_{\mathbf{f},\emptyset}^{2} (1 - \hat{n}_{\mathbf{f},\uparrow})(1 - \hat{n}_{\mathbf{f},\downarrow}) + \lambda_{\mathbf{f};\uparrow\downarrow} \hat{n}_{\mathbf{f},\uparrow} \hat{n}_{\mathbf{f},\downarrow} + \lambda_{\mathbf{f};\uparrow}^{2} \hat{n}_{\mathbf{f},\uparrow} (1 - \hat{n}_{\mathbf{f},\downarrow}) + \lambda_{\mathbf{f};\downarrow}^{2} (1 - \hat{n}_{\mathbf{f},\uparrow}) \hat{n}_{\mathbf{f},\downarrow} , \qquad (17)$$

so that we know $\lambda_{\mathbf{f};\emptyset}$, $\lambda_{\mathbf{f};\sigma}$ and $\lambda_{\mathbf{f};\uparrow\downarrow}$ as a function of $x_{\mathbf{f}}$. In infinite dimensions $(\mathbf{R} \neq \mathbf{R}')$

$$\langle \hat{n}_{\mathbf{R};\uparrow} \hat{n}_{\mathbf{R};\downarrow} \rangle_{\mathrm{G}} = \lambda_{\mathbf{R};\uparrow\downarrow}^{2} \langle \hat{n}_{\mathbf{R},\uparrow} \rangle_{\Phi} \langle \hat{n}_{\mathbf{R},\downarrow} \rangle_{\Phi} , \langle \hat{c}_{\mathbf{R},\sigma}^{+} \hat{c}_{\mathbf{R}',\sigma} \rangle_{\mathrm{G}} = q_{\mathbf{R},\sigma} q_{\mathbf{R}',\sigma} \langle \hat{c}_{\mathbf{R},\sigma}^{+} \hat{c}_{\mathbf{R}',\sigma} \rangle_{\Phi} .$$
 (18)

 $q_{\mathbf{R},\sigma}$ is a known function of $x_{\mathbf{R}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

For the Hubbard model with nearest-neighbor transfer (-t) at half band-filling and for a Gutzwiller-correlated paramagnetic Fermi sea, we have to optimize

$$E_{\rm var} = \langle \Phi | \hat{H}_0^{\rm eff} | \Phi \rangle + UL\lambda_{\uparrow\downarrow}^2 , \ \hat{H}_0^{\rm eff} = \sum_{\mathbf{k}} \left[q^2 \epsilon(\mathbf{k}) \right] \hat{n}_{\mathbf{k};\sigma}$$
(19)

with respect to $\lambda_{\uparrow\downarrow}$ where $0 \leq q^2 = \lambda_{\uparrow\downarrow}^2 (2 - \lambda_{\uparrow\downarrow}^2) \leq 1$.

Brinkman-Rice (BR) metal-to-insulator transition

$$\langle \hat{D}/L \rangle_{\rm G} = \frac{\lambda_{\uparrow\downarrow}^2}{4} = \frac{1}{4} \left(1 - \frac{U}{U_{\rm BR}} \right) , \ q^2 = 1 - \left(\frac{U}{U_{\rm BR}} \right)^2 .$$
 (20)

All particles are localized beyond $U_{\rm BR} = 8 |\langle \hat{T} \rangle_0 / L|$ (BR insulator).

Limit of high dimensions Diagrammatic approach Results for the single-band Hubbard model Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Quasi-particle picture

The single-particle Hamiltonian H_0^{eff} describes quasi-particles.

- Landau's idea of quasi-particles Fermi gas + hole exc. $\stackrel{\text{interactions}}{\longrightarrow}$ Fermi liquid + quasi-hole exc.
- Realization in terms of Gutzwiller wave functions Fermi-gas ground state: $|\Phi\rangle = \prod_{\mathbf{p},\sigma;\epsilon(\mathbf{p}) \leq E_{\mathrm{F}}} \hat{h}_{\mathbf{p},\sigma}^{+} |\mathrm{vac}\rangle$ Fermi-liquid ground state: $|\Psi_{\mathrm{G}}\rangle = \hat{P}_{\mathrm{G}}|\Phi\rangle$ hole excitation: $\hat{h}_{\mathbf{p},\sigma}|\Phi\rangle$ quasi-hole excitation: $|\Psi_{\mathrm{G};\mathbf{p},\sigma}\rangle = \hat{P}_{\mathrm{G}}\hat{h}_{\mathbf{p},\sigma}|\Phi\rangle$
- Energy of Landau-Gutzwiller quasi-particles

$$E_{\sigma}^{\rm QP}(\mathbf{p}) := \frac{\langle \Psi_{\rm G;\mathbf{p},\sigma} | \hat{H} | \Psi_{\rm G;\mathbf{p},\sigma} \rangle}{\langle \Psi_{\rm G;\mathbf{p},\sigma} | \Psi_{\rm G;\mathbf{p},\sigma} \rangle} - E_0^{\rm var} \stackrel{Z=\infty}{=} \widetilde{\epsilon}_{\sigma}(\mathbf{p}) \qquad (21)$$

 $\widetilde{\epsilon}_{\sigma}(\mathbf{p})$: dispersion relation of \hat{H}_{0}^{eff} ; here: $\widetilde{\epsilon}_{\sigma}(\mathbf{p}) = q_{e}^{2} \widetilde{\epsilon}(\mathbf{p})$.

Summary of part I

What have we discussed so far?

Gutzwiller-correlated single-particle states are approximate ground states for (multi-band) Hubbard models.

- Formalism:
 - Gutzwiller wave functions are evaluated in an elegant diagrammatic formalism where Hartree bubbles are absent and lines connect only different inner vertices.
 - In the limit of infinite coordination number, $Z \to \infty$, diagrams with inner vertices are zero.
- Application:
 - The Gutzwiller theory is a concrete example for Landau's Fermi-liquid picture.
 - The Gutzwiller theory provides dispersion relations for Landau-Gutzwiller quasi-particles.

(m) > < = >

Part II

Combination with Density Functional Theory

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Reminder: Electronic many-particle Hamiltonian ($\sigma = \uparrow, \downarrow; \hbar \equiv 1$)

$$\hat{H} = \hat{H}_{\text{band}} + \hat{H}_{\text{int}},$$

$$\hat{H}_{\text{band}} = \sum_{\sigma} \int d\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m} + U(\mathbf{r})\right) \hat{\Psi}_{\sigma}(\mathbf{r}), \quad (22)$$

$$\hat{H}_{\text{int}} = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}).$$

The electrons experience their mutual Coulomb interaction and the interaction with the ions at positions \mathbf{R} ,

$$V(\mathbf{r} - \mathbf{r}') = \frac{1}{2} \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}, \ U(\mathbf{r}) = \sum_{\mathbf{R}} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}$$
(23)

 Density Functional Theory

Density Functional Theory for many-particle Hamiltonians Transition metals Summary of part II Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Ritz variational principle Task: minimize the energy functional $E[\{|\Psi\rangle\}] = \frac{\langle \Psi|\hat{H}|\Psi\rangle}{\langle \Psi|\Psi\rangle}.$ (24)

Problem

This task poses an **extremely difficult** many-body problem!

Density Functional Theory (see talk by R. Martin)

Express the energy functional in terms of a density functional – and make some educated approximations later in the game!

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Consider all normalized states $|\Psi^{(n)}
angle$ for given 'physical' densities

$$n_{\sigma}(\mathbf{r}) = \langle \Psi^{(n)} | \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) | \Psi^{(n)} \rangle .$$
 (25)

The purely electronic operator $\hat{H}_{\rm e} = \hat{H}_{\rm kin} + \hat{V}_{\rm xc}$ (kinetic energy + exchange-correlation energy) is

$$\hat{H}_{\text{kin}} = \sum_{\sigma} \int d\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m}\right) \hat{\Psi}_{\sigma}(\mathbf{r}) ,$$

$$\hat{V}_{\text{xc}} = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' V(\mathbf{r}-\mathbf{r}') \left[\hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}) - 2\hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}') + n_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}')\right].$$
(26)

For fixed densities, the interaction with the ions and the Hartree interaction are constant.

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Levy's constraint search

Task: minimize the energy functional

$$F\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Psi^{(n)}\rangle\right\}\right] = \langle\Psi^{(n)}|\hat{H}_{\mathrm{kin}}+\hat{V}_{\mathrm{xc}}|\Psi^{(n)}\rangle. \quad (27)$$

for fixed densities $n_{\sigma}(\mathbf{r})$. Result: optimized $|\Psi_0^{(n)}\rangle$.

Density functionals for the kinetic/exchange-correlation energy

We define two energy functionals that only depend on the densities, Kinetic: $\mathcal{K}[\{n_{\sigma}(\mathbf{r})\}] = \langle \Psi_{0}^{(n)} | \hat{H}_{kin} | \Psi_{0}^{(n)} \rangle$, (28) Exchange-correlation: $E_{xc}[\{n_{\sigma}(\mathbf{r})\}] = \langle \Psi_{0}^{(n)} | \hat{V}_{xc} | \Psi_{0}^{(n)} \rangle$.(29)

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Density Functional

Task: minimize the Density Functional

$$D[\{n_{\sigma}(\mathbf{r})\}] = K[\{n_{\sigma}(\mathbf{r})\}] + E_{xc}[\{n_{\sigma}(\mathbf{r})\}] + U[\{n_{\sigma}(\mathbf{r})\}] + V_{Har}[\{n_{\sigma}(\mathbf{r})\}]$$
(30)

with the ionic/Hartree energies

lonic:
$$U[\{n_{\sigma}(\mathbf{r})\}] = \sum_{\sigma} \int d\mathbf{r} U(\mathbf{r}) n_{\sigma}(\mathbf{r}) ,$$
 (31)

Hartree: $V_{\text{Har}}[\{n_{\sigma}(\mathbf{r})\}] = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' V(\mathbf{r} - \mathbf{r}') n_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}')$.

The minimization provides the ground-state densities $n_{\sigma}^{0}(\mathbf{r})$ and the ground-state energy $E_{0} = D\left[\left\{n_{\sigma}^{0}(\mathbf{r})\right\}\right]$.

Density Functional Theory

Density Functional Theory for many-particle Hamiltonians Transition metals Summary of part II Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Problem

The minimization of the energy functional in eq. (27) \bigcirc poses an **extremely difficult** many-particle problem. Thus, the exact density functional $D[\{n_{\sigma}(\mathbf{r})\}]$ is unknown.

Hohenberg-Kohn approach

Idea: derive the same ground-state physics from an effective single-particle problem.

How can this be achieved?

In the following we follow a simple and straightforward strategy, not the most general one (see talk by R. Martin).

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Consider all normalized single-particle product states $|\Phi^{(n)}\rangle$ for given 'physical' densities

$$n_{\sigma}^{\rm sp}(\mathbf{r}) = \langle \Phi^{(n)} | \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) | \Phi^{(n)} \rangle .$$
 (32)

As our single-particle Hamiltonian we consider the kinetic-energy operator $\hat{H}_{\rm kin}$. For fixed single-particle densities $n_{\sigma}^{\rm sp}(\mathbf{r})$, we define the single-particle functional

$$F_{\rm sp}\left[\left\{n_{\sigma}^{\rm sp}(\mathbf{r})\right\},\left\{|\Phi^{(n)}\rangle\right\}\right] = \langle\Phi^{(n)}|\hat{H}_{\rm kin}|\Phi^{(n)}\rangle.$$
(33)

Levy's constrained search provides the optimized $|\Phi_0^{(n)}
angle$ and

$$\mathcal{K}_{\rm sp}\left[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}\right] = \langle \Phi_0^{(n)} | \hat{H}_{\rm kin} | \Phi_0^{(n)} \rangle . \tag{34}$$

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

The single-particle density functional is defined as

$$D_{\rm sp}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] = K_{\rm sp}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + U[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + V_{\rm Har}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + E_{\rm sp,xc}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}]$$
(35)

with the yet unspecified single-particle exchange-correlation energy $E_{\rm sp,xc} [\{n_{\sigma}^{\rm sp}(\mathbf{r})\}].$

Assumption: non-interacting V-representability

For any given (physical) densities $n_{\sigma}(\mathbf{r})$ we can find normalized single-particle product states $|\Phi^{(n)}\rangle$ such that

$$n_{\sigma}^{\mathrm{sp}}(\mathbf{r}) = n_{\sigma}(\mathbf{r})$$
 (36)

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Hohenberg-Kohn theorem

We demand

$$D_{\rm sp}\left[\{n_{\sigma}(\mathbf{r})\}\right] = D\left[\{n_{\sigma}(\mathbf{r})\}\right]. \tag{37}$$

 \Rightarrow The single-particle substitute system has the same ground-state density $n_{\sigma}^{0}(\mathbf{r})$ and energy E_{0} as the many-particle Hamiltonian.

Single-particle exchange-correlation energy

To fulfill eq. (37), we define

$$E_{\rm sp,xc}\left[\{n_{\sigma}(\mathbf{r})\}\right] = \mathcal{K}\left[\{n_{\sigma}(\mathbf{r})\}\right] - \mathcal{K}_{\rm sp}\left[\{n_{\sigma}(\mathbf{r})\}\right] + E_{\rm xc}\left[\{n_{\sigma}(\mathbf{r})\}\right]. (38)$$

Problem

We know neither of the quantities on the r.h.s. of eq. (38)!

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

イロト 不得下 イヨト イヨト 二日

Density Functional Theory

Upshot of the Hohenberg-Kohn theorem:

- A single-particle substitute system *exists* that leads to the exact ground-state properties.
- Its energy functional takes the form

$$E\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Phi\rangle\right\}\right] = \langle\Phi|\hat{H}_{\mathrm{kin}}|\Phi\rangle + U\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right]$$
(39)
+ $V_{\mathrm{Har}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + E_{\mathrm{sp,xc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right].$

Remaining task:

minimize $E[\{n_{\sigma}(\mathbf{r})\}, \{|\Phi\rangle\}]$ in the subset of single-particle product states $|\Phi\rangle = \prod'_{n,\sigma} \hat{b}^{\dagger}_{n,\sigma} |\text{vac}\rangle$. The field operators are expanded as

$$\hat{\Psi}^{\dagger}_{\sigma}(\mathbf{r}) = \sum_{n} \psi^{*}_{n}(\mathbf{r})\hat{b}^{\dagger}_{n,\sigma} \quad , \quad \hat{\Psi}_{\sigma}(\mathbf{r}) = \sum_{n} \psi_{n}(\mathbf{r})\hat{b}_{n,\sigma} \; . \tag{40}$$

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

With the Hartree and exchange-correlation potentials

$$V_{\text{Har}}(\mathbf{r}) \equiv \sum_{\sigma'} \int d\mathbf{r}' 2V(\mathbf{r} - \mathbf{r}') n_{\sigma'}^{0}(\mathbf{r}') ,$$

$$v_{\text{sp,xc},\sigma}(\mathbf{r}) \equiv \frac{\partial E_{\text{sp,xc}}[\{n_{\sigma'}(\mathbf{r}')\}]}{\partial n_{\sigma}(\mathbf{r})} \Big|_{n_{\sigma}(\mathbf{r}) = n_{\sigma}^{0}(\mathbf{r})} , \qquad (41)$$

the minimization conditions lead to the Kohn-Sham equations.

Kohn-Sham equations

$$\begin{split} h_{\sigma}^{\mathrm{KS}}(\mathbf{r})\psi_{n}(\mathbf{r}) &= \epsilon_{n}(\mathbf{r})\psi_{n}(\mathbf{r}) , \\ h_{\sigma}^{\mathrm{KS}}(\mathbf{r}) &\equiv -\frac{\Delta_{\mathbf{r}}}{2m} + V_{\sigma}^{\mathrm{KS}}(\mathbf{r}) , \\ V_{\sigma}^{\mathrm{KS}}(\mathbf{r}) &\equiv U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{sp,xc},\sigma}(\mathbf{r}) . \end{split}$$
(42)

Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Resume of DFT

- There exists a single-particle substitute system that has the same ground-state energy and ground-state densities as the interacting many-electron system.
- If we knew the single-particle exchange-correlation energy $E_{\rm sp,xc}$ [{ $n_{\sigma}(\mathbf{r})$ }], the Kohn-Sham equations would provide single-particle eigenstates that define the single-particle ground state $|\Phi_0\rangle$. The exact ground-state properties can be extracted from $|\Phi_0\rangle$.

Remaining task

Find physically reasonable approximations for $E_{sp,xc}$ [{ $n_{\sigma}(\mathbf{r})$ }]. Example: the local (spin) density approximation (L(S)DA).

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Limitations of DFT-L(S)DA & Co

The properties of transition metals and their compounds are not so well described.

Reason: 3d electrons are strongly correlated.

Solution

Treat interaction of electrons in correlated bands separately! The kinetic energy $\hat{H}_{\rm kin}$ plus the Hubbard interaction $\hat{V}_{\rm loc}$ define our new reference system,

$$\hat{H}_{\mathrm{kin}} \mapsto \hat{H}_{\mathrm{H}} = \hat{H}_{\mathrm{kin}} + \hat{V}_{\mathrm{loc}} - \hat{V}_{\mathrm{dc}}$$
 (43)

Here, $\hat{V}_{\rm dc}$ accounts for the double counting of the Coulomb interactions among correlated electrons.

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Using the same formalism as before, we define the functional

$$F_{\rm H}\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Psi^{(n)}\rangle\right\}\right] = \langle\Psi^{(n)}|\hat{H}_{\rm H}|\Psi^{(n)}\rangle . \tag{44}$$

Its optimization provides $|\Psi_{\mathrm{H},0}^{(n)}
angle$ and the functionals

$$\begin{aligned}
\mathcal{K}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \langle \Psi_{\mathrm{H},0}^{(n)} | \hat{H}_{\mathrm{kin}} | \Psi_{\mathrm{H},0}^{(n)} \rangle ,\\
\mathcal{V}_{\mathrm{loc/dc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \langle \Psi_{\mathrm{H},0}^{(n)} | \hat{\mathcal{V}}_{\mathrm{loc/dc}} | \Psi_{\mathrm{H},0}^{(n)} \rangle , \\
\mathcal{D}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \mathcal{K}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + U\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + \mathcal{V}_{\mathrm{Har}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] \\
&+ \mathcal{V}_{\mathrm{loc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] - \mathcal{V}_{\mathrm{dc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] \\
&+ \mathcal{E}_{\mathrm{H,xc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] .
\end{aligned}$$
(45)

We demand $D_{\rm H}[\{n_{\sigma}(\mathbf{r})\}] = D[\{n_{\sigma}(\mathbf{r})\}]$. Then, $\hat{H}_{\rm H}$ leads to the exact ground-state energy E_0 and densities $n_{\sigma}^0(\mathbf{r})$.

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Problem

The Hubbard interaction \hat{V}_{loc} reintroduces the complexity of the the full many-body problem! – What have we gained?

Indeed, when we apply the Ritz principle to the energy functional

$$E = \langle \Psi | \hat{H}_{\mathrm{H}} | \Psi \rangle + U [\{ n_{\sigma}(\mathbf{r}) \}] + V_{\mathrm{Har}} [\{ n_{\sigma}(\mathbf{r}) \}] + E_{\mathrm{H,xc}} [\{ n_{\sigma}(\mathbf{r}) \}],$$
(47)

we arrive at the many-particle Hubbard-Schrödinger equation

$$\left(\hat{H}_{0}+\hat{V}_{\rm loc}-\hat{V}_{\rm dc}\right)|\Psi_{0}\rangle=E_{0}|\Psi_{0}\rangle \tag{48}$$

with the single-particle Hamiltonian

$$\hat{H}_{0} = \sum_{\sigma} \int \mathrm{d}\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \Big(-\frac{\Delta_{\mathbf{r}}}{2m} + U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{H,xc},\sigma}(\mathbf{r}) \Big) \hat{\Psi}_{\sigma}(\mathbf{r}) \,.$$

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Advantage

Local interactions among correlated electrons are treated explicitly so that they are subtracted from the exact exchange-correlation energy,

$$E_{\mathrm{H,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] = K\left[\{n_{\sigma}(\mathbf{r})\}\right] - K_{\mathrm{H}}\left[\{n_{\sigma}(\mathbf{r})\}\right] + E_{\mathrm{xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] - \left(V_{\mathrm{loc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] - V_{\mathrm{dc}}\left[\{n_{\sigma}(\mathbf{r})\}\right]\right) .$$
(50)

Consequence: an (L(S)DA) approximation should better suited for $E_{\rm H,xc}$ than for $E_{\rm sp,xc}.$

Later, we shall employ the approximation

$$E_{\mathrm{H,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] \approx E_{\mathrm{LDA,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] .$$
(51)

37 / 63

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Approximate treatments

Idea: approximate the functional $\langle \Psi | \hat{H}_{\rm kin} + \hat{V}_{\rm loc} - \hat{V}_{\rm dc} | \Psi \rangle$. Strategies:

- Limit of infinite dimensions: use DMFT to determine $|\Psi\rangle$.
- LDA+U: use single-particle variational states $|\Phi\rangle$.
- Gutzwiller: use many-particle variational states $|\Psi_{\rm G}\rangle.$

Consider atomic states $|\Gamma_{\mathbf{R}}\rangle$ at lattice site **R** that are built from the correlated orbitals. With the local many-particle operators $\hat{m}_{\mathbf{R};\Gamma} = |\Gamma_{\mathbf{R}}\rangle\langle\Gamma_{\mathbf{R}}|$ we define the Gutzwiller states as in part I

$$|\Psi_{\rm G}\rangle = \hat{P}_{\rm G}|\Phi\rangle \quad , \quad \hat{P}_{\rm G} = \prod_{\mathbf{R}} \sum_{\Gamma} \lambda_{\mathbf{R};\Gamma} \hat{m}_{\mathbf{R};\Gamma} .$$
 (52)

 $\lambda_{\mathbf{R};\Gamma}$ are real variational parameters.

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

The energy functional requires the evaluation of expectation values for the local interaction

$$V_{\rm loc/dc} = \sum_{\mathbf{R}} \sum_{\Gamma,\Gamma'} E_{\Gamma,\Gamma'}^{\rm loc/dc}(\mathbf{R}) \frac{\langle \Psi_{\rm G} | \hat{m}_{\mathbf{R};\Gamma,\Gamma'} | \Psi_{\rm G} \rangle}{\langle \Psi_{\rm G} | \Psi_{\rm G} \rangle} , \quad (53)$$
$$E_{\Gamma,\Gamma'}^{\rm loc/dc}(\mathbf{R}) = \langle \Gamma_{\mathbf{R}} | \hat{V}_{\rm loc/dc}(\mathbf{R}) | \Gamma_{\mathbf{R}}' \rangle , \quad (54)$$

and for the single-particle density matrix, e.g., in the orbital Wannier basis ($\hat{\Psi}_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}} \phi_{\mathbf{R},b,\sigma}(\mathbf{r}) \hat{c}_{\mathbf{R},b,\sigma}$),

$$\rho_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma}^{\mathrm{G}} = \frac{\langle \Psi_{\mathrm{G}} | \hat{c}_{\mathbf{R},b,\sigma}^{\dagger} \hat{c}_{\mathbf{R}',b',\sigma} | \Psi_{\mathrm{G}} \rangle}{\langle \Psi_{\mathrm{G}} | \Psi_{\mathrm{G}} \rangle} .$$
(55)

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Gutzwiller energy functional

The Gutzwiller energy functional $E \equiv E[\{n_{\sigma}(\mathbf{r})\}, \{|\Psi_{G}\rangle\}]$ reads

$$E = \sum_{\mathbf{R},b,\mathbf{R}',b',\sigma} T_{(\mathbf{R},b),(\mathbf{R}',b');\sigma} \rho_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma}^{\mathrm{G}} + V_{\mathrm{loc}}^{\mathrm{G}} - V_{\mathrm{dc}}^{\mathrm{G}} + U[\{n_{\sigma}(\mathbf{r})\}] + V_{\mathrm{Har}}[\{n_{\sigma}(\mathbf{r})\}] + E_{\mathrm{H,xc}}[\{n_{\sigma}(\mathbf{r})\}], (56)$$
$$T_{(\mathbf{R},b),(\mathbf{R}',b');\sigma} = \int \mathrm{d}\mathbf{r} \phi_{\mathbf{R},b,\sigma}^{*}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m}\right) \phi_{\mathbf{R}',b',\sigma}(\mathbf{r}).$$
(57)

The densities become

$$n_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}, b, \mathbf{R}', b'} \phi_{\mathbf{R}, b, \sigma}^{*}(\mathbf{r}) \phi_{\mathbf{R}', b', \sigma}(\mathbf{r}) \rho_{(\mathbf{R}', b'), (\mathbf{R}, b); \sigma}^{\mathrm{G}} .$$
(58)

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Problem

The evaluation of expectation values with Gutzwiller-correlated states poses an **extremely difficult** many-particle problem.

Solution (see part I)

Evaluate expectation values diagrammatically in such a way that not a single diagram must be calculated in the limit of infinite lattice coordination number, $Z \rightarrow \infty$ (recall: Z = 12 for nickel).

Result: all quantities depend only on the single-particle density matrix $C_{b',b;\sigma}(\mathbf{R}) = \langle \Phi | \hat{c}^{\dagger}_{\mathbf{R},b,\sigma} \hat{c}_{\mathbf{R},b',\sigma} | \Phi \rangle$ and the Gutzwiller variational parameters $\lambda_{\Gamma,\Gamma'}(\mathbf{R})$. For example,

$$V_{\rm loc}^{\rm G} = \sum_{\mathbf{R}} \sum_{\Gamma,\Gamma'} \lambda_{\mathbf{R};\Gamma} E_{\mathbf{R};\Gamma,\Gamma'}^{\rm loc} \langle \hat{m}_{\mathbf{R};\Gamma,\Gamma'} \rangle_{\Phi} \lambda_{\mathbf{R};\Gamma'} \,. \tag{59}$$

41/63

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

For $\textbf{R} \neq \textbf{R}'$, the correlated single-particle density matrix becomes

$$\rho_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma}^{\mathrm{G}} = \sum_{a,a'} q_{b,\sigma}^{a,\sigma}(\mathbf{R}) \left(q_{b',\sigma}^{a',\sigma}(\mathbf{R}') \right)^* \rho_{(\mathbf{R}',a'),(\mathbf{R},a);\sigma} .$$
(60)

The orbital-dependent factors $q_{b,\sigma}^{a,\sigma}(\mathbf{R})$ reduce the band width of the correlated orbitals and their hybridizations with other orbitals.

Results

- In the limit $Z \to \infty$, the Gutzwiller many-body problem is solved without further approximations.
- 'Solve the Gutzwiller–Kohn-Sham equations' \oplus 'Minimize with respect to the Gutzwiller parameters $\lambda_{\mathbf{R};\Gamma}$ ' is similar in complexity to the DFT. For simple systems such as nickel and iron, the latter minimization is computationally inexpensive ($\lesssim 50\%$ of total CPU time).

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

For translational invariant lattice systems, the quasi-particle ('Gutzwiller-Kohn-Sham') Hamiltonian becomes

$$\hat{H}_{\rm qp}^{\rm G} = \sum_{\mathbf{k}, b, b', \sigma} h_{b, b'; \sigma}^{\rm G}(\mathbf{k}) \hat{c}_{\mathbf{k}, b, \sigma}^{\dagger} \hat{c}_{\mathbf{k}, b', \sigma}$$
(61)

with the matrix elements in the orbital Bloch basis

$$\begin{split} h_{b,b';\sigma}^{\mathrm{G}}(\mathbf{k}) &= \eta_{b,b';\sigma} + \sum_{a,a'} q_{a,\sigma}^{b,\sigma} \left(q_{a',\sigma}^{b',\sigma} \right)^* h_{a,a';\sigma}^{0}(\mathbf{k}) , \\ h_{a,a';\sigma}^{0}(\mathbf{k}) &= \int \mathrm{d}\mathbf{r} \phi_{\mathbf{k},a,\sigma}^*(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m} + V_{\sigma}^{\mathrm{H}}(\mathbf{r}) \right) \phi_{\mathbf{k},a',\sigma}(\mathbf{r}) , (62) \\ V_{\sigma}^{\mathrm{H}}(\mathbf{r}) &= U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{H,xc},\sigma}(\mathbf{r}) . \end{split}$$

 $\eta_{b,b';\sigma}$: Lagrange parameters (variational band-shifts).

43 / 63

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

In cubic symmetry, the local interaction for 3d electrons reads

$$\begin{aligned}
\hat{V}_{\text{loc}}^{\text{full}} &= \hat{V}_{\text{loc}}^{\text{dens}} + \hat{V}_{\text{loc}}^{\text{sf}} + \hat{V}_{\text{loc}}^{(3)} + \hat{V}_{\text{loc}}^{(4)}, \\
\hat{V}_{\text{loc}}^{\text{dens}} &= \sum_{c,\sigma} U(c,c) \hat{n}_{c,\sigma} \hat{n}_{c,\bar{\sigma}} + \sum_{c(\neq)c'} \sum_{\sigma,\sigma'} \widetilde{U}_{\sigma,\sigma'}(c,c') \hat{n}_{c,\sigma} \hat{n}_{c',\sigma'}, \\
\hat{V}_{\text{loc}}^{\text{sf}} &= \sum_{c(\neq)c'} J(c,c') \left(\hat{c}_{c,\uparrow}^{\dagger} \hat{c}_{c,\downarrow}^{\dagger} \hat{c}_{c',\downarrow} \hat{c}_{c',\uparrow} + \text{h.c.} \right) \\
&+ \sum_{c(\neq)c';\sigma} J(c,c') \hat{c}_{c,\sigma}^{\dagger} \hat{c}_{c',\bar{\sigma}}^{\dagger} \hat{c}_{c,\bar{\sigma}} \hat{c}_{c',\sigma}. \end{aligned}$$
(63)
Here, $\bar{\uparrow} = \downarrow (\bar{\downarrow} = \uparrow)$ and $\widetilde{U}_{\sigma,\sigma'}(c,c') = U(c,c) - \delta_{\sigma,\sigma'} J(c,c').
\end{aligned}$

Here, $\uparrow = \downarrow (\downarrow = \uparrow)$ and $U_{\sigma,\sigma'}(c,c') = U(c,c) - \delta_{\sigma,\sigma'}J(c,c')$. $U \equiv U(c,c)/2$ and $J \equiv J(c,c')$ are local Hubbard and Hund's-rule exchange interactions. DMFT calculations often employ \hat{V}_{loc}^{dens} only (reduction of the numerical effort).

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Gutzwiller calculations include the full $\hat{V}_{\rm loc}$ with the spin-flip terms and the three-orbital and four-orbital terms

$$\hat{V}_{\text{loc}}^{(3)} = \sum_{t;\sigma,\sigma'} (T(t) - \delta_{\sigma,\sigma'}A(t)) \hat{n}_{t,\sigma} \hat{c}_{u,\sigma'}^{\dagger} \hat{c}_{v,\sigma'} + \text{h.c.}, \quad (64)$$

$$+ \sum_{t,\sigma} A(t) \left(\hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t,\bar{\sigma}}^{\dagger} \hat{c}_{u,\bar{\sigma}} \hat{c}_{v,\sigma} + \hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t,\bar{\sigma}}^{\dagger} \hat{c}_{t,\bar{\sigma}} \hat{c}_{v,\sigma} + \text{h.c.} \right)$$

$$\hat{V}_{\text{loc}}^{(4)} = \sum_{t(\neq)t'(\neq)t''} \sum_{e,\sigma,\sigma'} S(t,t';t'',e) \hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t',\sigma'}^{\dagger} \hat{c}_{t'',\sigma'} \hat{c}_{e,\sigma} + \text{h.c.}.$$

Here, $t = \zeta$, η , ξ (t_{2g} orbitals) with symmetries $\zeta = xy$, $\eta = xz$, and $\xi = yz$, and e = u, v (two e_g orbitals) with symmetries $u = 3z^2 - r^2$ and $v = x^2 - y^2$.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Double counting corrections

There exists no systematic (let alone rigorous) derivation of the double-counting corrections.

In the context of the LDA+U method, it was suggested to use

$$V_{\rm dc}^{\rm LDA+U} = \frac{U}{2}\bar{n}(\bar{n}-1) - \frac{J}{2}\sum_{\sigma}\bar{n}_{\sigma}(1-\bar{n}_{\sigma}) , \qquad (65)$$

where \bar{n}_{σ} is the sum of σ -electrons in the correlated orbitals. In effect, the double-counting corrections generate a band shift

$$\eta_{c,c;\sigma}^{\rm dc} = -\left[U\left(\bar{n} - 1/2\right) + J\left(\bar{n}_{\sigma} - 1/2\right)\right] \,. \tag{66}$$

It guarantees that the Hubbard interaction does not empty the 3d-levels.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Problems

- The choice of the double-counting correction is guess-work.
- The double-counting corrections have no orbital resolution.
- The double-counting corrections do not work, e.g., for Cerium.

There is the big risk that the physics is determined by the choice of the double-counting corrections!

Double counting corrections for iron and nickel

Nickel: The 3*d*-shell is almost filled, $n_{3d} \approx 9/10$. Here, the form of the double-counting corrections is not decisive for the ground-state properties.

Iron: standard double-counting corrections still work satisfactorily.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals **Results for nickel** Results for iron

Transition metals

Further simplifications for iron and nickel

- Assume identical radial parts for the t_{2g} and e_g orbitals ('spherical approximation'). Then, three Racah parameters A, B, C determine all Coulomb parameters, e.g., U = A + 4B + 3C, J = 5B/2 + C.
- Use C/B = 4, as is appropriate for neutral atoms. Then, U and J determine the atomic spectrum completely.
- In cubic symmetry, some matrices become diagonal

$$q_{c,\sigma}^{c',\sigma} = \delta_{c,c'} \left(\delta_{c,t_{2g}} q_{t,\sigma} + \delta_{c,e_g} q_{e,\sigma} \right) , \quad (67)$$

$$\rho_{(\mathbf{R},b'),(\mathbf{R},b);\sigma}^{G} = \delta_{b,b'} \rho_{(\mathbf{R},b),(\mathbf{R},b);\sigma} . \quad (68)$$

Then, we recover expressions used in previous phenomenological treatments of the Gutzwiller-DFT.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Implementation

- We use QUANTUMESPRESSO as DFT code (open source, based on plane waves, employs ultra-soft pseudo-potentials).
- 'Poor-man' Wannier orbitals for 3d electrons.

Hubbard parameters

The 'best values' for U and J depend on

- the quality of the correlated orbitals; better localized orbitals require larger Coulomb interactions;
- the accuracy of the local interaction; using only density-density interactions requires smaller Coulomb parameters;
- The choice of the double-counting corrections.

49/63

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

We fix U and J for Ni from a comparison of the lattice constant and the spin-only magnetic moment.

Fig. 2: Fcc lattice constant of nickel as a function of Ufor different values of J/U, calculated with the full local Hamiltonian $\hat{V}_{\rm loc}^{\rm full}$ and the LDA+U double counting correction; dashed line: experimental value.

In DFT: the lattice constant is too small; the Gutzwiller approach resolves this problem when we choose U > 10 eV.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

In order to fix both U and J, we must also consider the spin-only magnetic moment.

Fig. 3: Magnetic moment of nickel as a function of U for different values of J/U, calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; dashed line: experimental value.

When we choose $U_{opt} = 13 \text{ eV}$ and $J_{opt} = 0.9 \text{ eV} (J/U = 0.07)$, we obtain a good agreement with the experimental values for *a* and *m*.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

For $U_{\rm opt}=13\,{\rm eV}$ and $J_{\rm opt}=0.9\,{\rm eV}$ (J/U=0.07), we calculate the bulk modulus.

Fig. 4: Ground-state energy per particle $E_0(a)/N$ relative to its value at $a = 6.63a_B$ as a function of the fcc lattice parameter a/a_B , calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; full line: 2^{nd} -order polynomial fit.

 $K_{\rm G} = 169 \,{\rm GPa}$, in good agreement with experiment, $K = 182 \,{\rm GPa}$, whereas $K_{\rm DFT} = 245 \,{\rm GPa}$.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

For $U_{\rm opt}=13\,{\rm eV}$ and $J_{\rm opt}=0.9\,{\rm eV}$ (J/U=0.07), we derive the quasi-particle band structure.

Fig. 5: Landau-Gutzwiller quasi-particle band structure of fcc nickel along high-symmetry lines in the first Brillouin zone, calculated with the full local Hamiltonian and the LDA+U double-counting correction; left: majority spin; right: minority spin. Fermi energy $E_{\rm F}^{\rm G} = 0$.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Symmetry	Experiment	$\hat{V}_{ m loc}^{ m full}$	$\hat{V}_{ m loc}^{ m dens}$
$\langle \Gamma_1 \rangle$	8.90 ± 0.30	8.95[0.08]	8.93[0.08]
$\langle X_1 \rangle$	3.30 ± 0.20	3.37[0.27]	3.42[0.10]
$X_{2\uparrow}$	0.21 ± 0.03	0.26	0.13
$X_{2\downarrow}$	0.04 ± 0.03	0.14	0.21
$X_{5\uparrow}$	0.15 ± 0.03	0.32	0.41
$\Delta_{e_g}(X_2)$	0.17 ± 0.05	0.12	-0.08
$\Delta_{t_{2g}}(X_5)$	0.33 ± 0.04	0.60	0.70
$\langle \hat{L}_{2'} \rangle$	1.00 ± 0.20	0.14[0.06]	0.12[0.06]
$\langle \Lambda_{3;1/2} \rangle$	$0.50[0.21\pm 0.02]$	0.64[0.30]	0.60[0.16]

Quasi-particle band energies with respect to the Fermi energy in eV at various high-symmetry points (counted positive for occupied states). $\langle \ldots \rangle$ indicates the spin average, errors bars in the experiments without spin resolution are given as \pm . Theoretical data show the spin average and the exchange splittings in square brackets.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Improvements

- Gutzwiller-DFT gets the correct 3d bandwidth ($W_{G-DFT} = 3.3 \text{ eV}$, whereas $W_{DFT} = 4.5 \text{ eV}$).
- Gutzwiller-DFT gets the correct Fermi-surface topology (only one hole ellipsoid at the X-point).
- The positions of the bands are OK, by and large.
- The band at $L_{2'}$ are pure 3p-like (not correlated yet!).
- The full local interaction gives somewhat better results than the density-only interaction.

Refinements are to be expected when we improve the description (orbital-dependent double counting, spin-orbit coupling).

Transition metals

We fix U and J for Fe from a comparison of the lattice constant and the spin-only magnetic moment.

Fig. 6: Bcc lattice constant of iron as a function of U for different values of J/U, calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; dashed line: experimental value.

In DFT: the lattice constant is too small; the Gutzwiller approach resolves this problem when we choose U > 8 eV.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

In order to fix both U and J, we must also consider the spin-only magnetic moment.

Fig. 7: Magnetic moment of iron as a function of U for different values of J/U, calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; dashed line: experimental value.

When we choose $U_{opt} = 9 \text{ eV}$ and $J_{opt} = 0.54 \text{ eV} (J/U = 0.06)$, we obtain a good agreement with the experimental values for *a* and *m*.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

For $U_{\text{opt}} = 9 \text{ eV}$ and $J_{\text{opt}} = 0.54 \text{ eV}$ (J/U = 0.06), we calculate the bulk modulus. 0.8 Fig. 8: Energy per atom e(v)0.7 in units of eV as a function of non-magnetic bcc 0.6 the unit-cell volume v in units ∧ 0.5
√ 0.4
√ 0.4
0.3 of $a_{\rm B}^3$ for non-magnetic and ferromagnetic bcc iron and non-magnetic hcp non-magnetic hcp iron at 0.2 $U = 9 \,\mathrm{eV}$ and $J = 0.54 \,\mathrm{eV}$ and 0.1 magnetic bcc ambient pressure. The energies 0.0L 65 70 75 are shifted by the same value. 80 $V / a_{\rm p}^3$

 $K_{\rm G} = 165 \,{\rm GPa}$, in good agreement with $K_{\rm exp} = 170 \,{\rm GPa}$ from experiment, whereas $K_{\rm LDA} = 227 \,{\rm GPa}$ and $K_{\rm GGA} = 190 \,{\rm GPa}$.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

For $U_{\rm opt}=9\,{\rm eV}$ and $J_{\rm opt}=0.54\,{\rm eV}$ (J/U=0.06), we derive the quasi-particle band structure.

Fig. 9: Landau-Gutzwiller quasi-particle band structure (full lines) and DFT(LDA) bands (dashed lines) of bcc iron (left) and hcp iron (right) along high-symmetry lines in the first Brillouin zone, calculated with the full local Hamiltonian and the LDA+U double-counting correction; Fermi energy $E_{\rm F}^{\rm G} = 0$.

Gutzwiller-Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel Results for iron

Transition metals

Improvements and remaining issues

- The electronic correlations guarantee the correct ground-state structure (ferromagnetic bcc iron) even when the LDA exchange-correlation potential is used. It is not necessary to resort to gradient corrections (GGA).
- Gutzwiller-DFT improves the 3*d* bandwidth. The bandwidth reduction is not as large as in nickel.
- The effective mass enhancement at the Fermi energy cannot be explained satisfactorily within the Gutzwiller approach. Large ratios, $m^*/m \gtrsim 3$ in some directions, must be due to the coupling to magnons.
- The spin-orbit coupling is considered only phenomenologically.

Summary of part II

What have you learned?

- Formalism:
 - A formal derivation of the Gutzwiller Density Functional Theory is given.
 - Explicit expressions for all required expectation values are available in the limit of large lattice coordination number.
 - For simple cases such as nickel, previous ad-hoc formulations of G-DFT are proven to be correct.
- Results for nickel and iron:
 - Experimental values for the lattice constant, the bulk modulus and the magnetic moment are reproduced for (U = 13 eV, J = 0.9 eV)_{Ni} and (U = 9 eV, J = 0.54 eV)_{Fe}.
 - The experimental crystal structure, bandwidth, Fermi surface topology, and overall band structure are reproduced fairly well.
 - No fine tuning of parameters is required.

Summary of part II

Outlook

- The Gutzwiller DFT is a generic extension of the DFT framework; however, it is not fully 'ab initio'!
- It is a numerically affordable method to include correlations.
- Our present implementation is based on the limit of infinite lattice coordination number.

Open problems

- The spin-orbit coupling must be implemented.
- The method must be applied to other materials.
- The double-counting problem must be solved in a canonical way; ad-hoc potentials are not helpful in the long run.

Thanks

Thank you for your attention!