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Motivation
Outlines

The many-body problem in solid-state theory
(see talk by R. Martin)

Electronic many-particle Hamiltonian (σ =↑, ↓; ~ ≡ 1)

Ĥ = Ĥband + Ĥint ,

Ĥband =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m
+ U(r)

)
Ψ̂σ(r) , (1)

Ĥint =
∑
σ,σ′

∫
dr

∫
dr′Ψ̂†σ(r)Ψ̂†σ′(r′)V (r − r′)Ψ̂σ′(r′)Ψ̂σ(r) .

The electrons experience their mutual Coulomb interaction and the
interaction with the ions at positions R,

V (r − r′) =
1

2

e2

|r − r′|
, U(r) =

∑
R

e2

|r − R|
(2)
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Motivation
Outlines

The many-body problem in solid-state theory

Objective

Explain all fascinating phenomena in solid-state physics, e.g.,
magnetism and superconductivity.
To this end, solve the Schrödinger equation, Ĥ|Ψn〉 = En|Ψn〉, and
calculate all expectation values of interest, An,m = 〈Ψn|Â|Ψm〉.

Problems

Ĥ poses an extremely difficult
many-body problem.

The bare energy scales are of the order of ten electron Volt
(eV) per unit cell, the energy scales of interest (10 K) are
milli-eV (relative accuracy requirement 10−4, or better).
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Motivation
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The many-body problem in solid-state theory

‘Solution’

Focus on simpler Hamiltonians (e.g., Heisenberg or Hubbard
models) and their ground-state properties;

Design sensible approximations for models and/or for Ĥ, e.g.,
the Local Density Approximation (LDA) to Density Functional
Theory (DFT).

In this lecture, you will learn that

The Gutzwiller Density Functional Theory provides an
approximate description of the many-particle ground state of
the electronic problem, and of its elementary Landau
quasi-particle excitations.

At its core, it provides an approximate ground state for the
multi-band Hubbard model with its purely local interactions.
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Hubbard model
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Evaluation in high dimensions
Summary of part I
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Gutzwiller variational approach
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Hubbard model
Gutzwiller variational states

Evaluation in high dimensions
Summary of part I

Hamiltonian
Problems
Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons
(see talk by R. Eder)

Fig. 1: Electrons with

spin σ =↑, ↓ on a lattice

Kinetic term

T̂ =
∑

R,R′;σ

tR−R′ ĉ+
R,σ ĉR′,σ (3)

tR−R′ : electron transfer amplitude
from lattice site R′ to R
Hubbard interaction

V̂ = U
∑

R

n̂R,↑n̂R,↓ (4)

U: strength of the Coulomb repulsion

Single-band Hubbard Hamiltonian

Ĥ = T̂ + V̂ (5)
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Hubbard model
Gutzwiller variational states

Evaluation in high dimensions
Summary of part I

Hamiltonian
Problems
Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons

Technical problems

The Hubbard model poses an extremely difficult
many-body problem (see talk by R. Eder)!

(Asymptotic) Bethe Ansatz provides the exact solution in one
dimension for tκ(r) ∼ sinh(κ)/ sinh(κr).

In the limit of infinite dimensions, the model can be mapped
onto an effective single-impurity Anderson model whose
dynamics must be determined self-consistently (Dynamical
Mean-Field Theory, see talks by E. Pavarini and V. Janǐs).

Conceptual problem

The single-band Hubbard model is too simplistic for the description
of real materials, e.g., of the 3d-electrons in transition metals.
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Gutzwiller variational states
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Summary of part I

Hamiltonian
Problems
Multi-band Hubbard model

Hubbard model: a toy model for interacting electrons

Minimal extension: multi-band Hubbard model (orbital index b)

Ĥ =
∑

R,R′;σ

tbR−R′ ĉ+
R,b,σ ĉR′,b,σ

+
∑

R

∑
b1,...,b4;
σ1,...σ4

Ub3σ3,b4σ4

b1σ1,b2σ2
ĉ+

R,b1,σ1
ĉ+

R,b2,σ2
ĉR,b3,σ3

ĉR,b4,σ4
(6)

Problem

The multi-band Hubbard model is not exactly solvable. It readily
exceeds our numerical capabilities even in DMFT when more than
three bands are involved.

‘Solution’

Use variational many-particle states as approximate ground states.
In the following: we use Gutzwiller variational states.
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Hubbard model
Gutzwiller variational states

Evaluation in high dimensions
Summary of part I

Definition
Application to the two-site Hubbard model

Gutzwiller variational state

Observation for the single-band Hubbard model: doubly occupied
sites are unfavorable for the potential energy (U > 0).
Gutzwiller’s Ansatz for the single-band Hubbard model

|ΨG〉 = P̂G|Φ〉 , P̂G = g D̂ , (7)

where
|ΨG〉 : Gutzwiller variational state
|Φ〉 : single-particle product state, e.g., the Fermi sea

P̂G : Gutzwiller correlator
g : real variational parameter

D̂ =
∑

R n̂R,↑n̂R,↓: number of doubly occupied sites

The Gutzwiller variational state is exact for U = 0 (free Fermions),
and for U =∞ (no double occupancies).
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Hubbard model
Gutzwiller variational states

Evaluation in high dimensions
Summary of part I

Definition
Application to the two-site Hubbard model

Gutzwiller variational state

For the multi-band Hubbard model and for tbR−R′ ≡ 0, we must

work with the atomic eigenstates |Γ〉 of V̂ ,

V̂ =
∑

b1,...,b4;
σ1,...σ4

Ub3σ3,b4σ4

b1σ1,b2σ2
ĉ+
b1,σ1

ĉ+
b2,σ2

ĉb3,σ3
ĉb4,σ4

=
∑
R;Γ

ER;Γm̂R;Γ (8)

where m̂R;Γ = |ΓR〉〈ΓR| = m̂2
R;Γ projects onto the atomic eigenstate

|Γ〉 on site R.
Gutzwiller Ansatz for the multi-band Hubbard model

|ΨG〉 = P̂G|Φ〉 , P̂G =
∏

R

∏
ΓR

λ
m̂R;Γ

R;Γ =
∏

R

∑
ΓR

λR;Γm̂R;Γ , (9)

where
|ΨG〉 : Gutzwiller variational state
λR;Γ : real variational parameter
|Φ〉 : single-particle product state, e.g., the Fermi sea
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Definition
Application to the two-site Hubbard model

Gutzwiller variational state

The ground state of the two-site Hubbard model with tunnel
amplitude (−t) and N↑ = N↓ = L/2 = 1 electrons is given in
position space by

|Ψ0〉 ∼
(
| ↑1, ↓2〉− | ↓1, ↑2〉

)
+α(U/t)

(
| ↑↓1, ∅2〉+ |∅1, ↑↓2〉

)
(10)

with α(x) = (x −
√
x2 + 16)/4 and E0(U) = −2tα(U/t).

The Gutzwiller-correlated Fermi sea has the form

|ΨG〉 ∼
(
| ↑1, ↓2〉 − | ↓1, ↑2〉

)
+ g

(
| ↑↓1, ∅2〉+ |∅1, ↑↓2〉

)
(11)

Ritz’s variational principle thus gives gopt = α(U/t): exact!

Problem

The evaluation of expectation values with Gutzwiller variational
states poses a very difficult many-body problem.
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Evaluation in high dimensions

Let Z be the number of nearest neighbors of a lattice site, e.g.,
Z = 2d for a simple-cubic lattice in d dimensions.

Question

How do we have to scale the electron transfer matrix element
between nearest neighbors in the limit Z →∞?

For the spin-1/2 Ising model we have to scale

J =
J∗

Z
(J∗ = const) (12)

because each of the Z neighbors can contribute the energy J∗/4.
At large interactions U, the Hubbard at half band-filling maps onto
the Heisenberg model with J = J∗/Z ∼ t2/U. Thus, we scale

t ∼ t∗/
√
Z . (13)
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Hubbard model
Gutzwiller variational states

Evaluation in high dimensions
Summary of part I

Limit of high dimensions
Diagrammatic approach
Results for the single-band Hubbard model
Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Expectation values with the Gutzwiller variational state are
calculated using diagrammatic perturbation theory.
Lines that connect lattice sites R and R′ represent the
single-particle density matrix,

P0
σ(R, b; R′, b′) = 〈Φ|ĉ+

R,b,σ ĉR′,b′,σ|Φ〉 ∼
(

1

Z

)||R−R′||/2

. (14)

Collapse of diagrams in position space

When two inner vertices f1 and f2 are connected by three different
paths, we may set f1 = f2 in the limit Z →∞ because the
summation over Z ||f1−f2|| neighbors cannot compensate the factor
Z−3||f1−f2||/2 from the three lines for f1 6= f2.

How can we get rid of the remaining local contributions?
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Diagrammatic approach
Results for the single-band Hubbard model
Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Diagrammatic expansion for Gutzwiller states

1 Develop a diagrammatic perturbation theory with vertices
xf,l1,I2 and lines P̃0

σ(f1, b1; f2, b2);
2 Choose the expansion parameters xf,l1,I2 such that

at least four lines meet at every inner vertex,
there are no Hartree bubble diagrams, and
the single-particle density matrices vanish on the same site,

P̃0
σ(f, b; f, b′) = 0 ; (15)

3 In the limit Z →∞, all skeleton diagrams collapse in position
space, i.e., they have the same lattice site index. As a
consequence of Eq. (15), they all vanish and not a single
diagram with inner vertices must be calculated.
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Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

We use the representation (P̂G =
∏

f P̂G,f)

P̂2
G,f = 1 + xf(n̂f,↑ − 〈n̂f,↑〉Φ)(n̂f,↓ − 〈n̂f,↓〉Φ) . (16)

Note: the Hartree contributions are eliminated by construction,
there are only inner vertices vertices with four lines.
Now that we also have (P̂G,f =

∑
Γ λf;Γm̂f;Γ)

P̂2
G,f = λ2

f;∅(1− n̂f,↑)(1− n̂f,↓) + λf;↑↓n̂f,↑n̂f,↓

+λ2
f;↑n̂f,↑(1− n̂f,↓) + λ2

f;↓(1− n̂f,↑)n̂f,↓ , (17)

so that we know λf;∅, λf;σ and λf;↑↓ as a function of xf .
In infinite dimensions (R 6= R′)

〈n̂R;↑n̂R;↓〉G = λ2
R;↑↓〈n̂R,↑〉Φ〈n̂R,↓〉Φ ,

〈ĉ+
R,σ ĉR′,σ〉G = qR,σqR′,σ〈ĉ+

R,σ ĉR′,σ〉Φ . (18)

qR,σ is a known function of xR.
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Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

For the Hubbard model with nearest-neighbor transfer (−t) at half
band-filling and for a Gutzwiller-correlated paramagnetic Fermi sea,
we have to optimize

Evar = 〈Φ|Ĥeff
0 |Φ〉+ ULλ2

↑↓ , Ĥ
eff
0 =

∑
k

[
q2ε(k)

]
n̂k;σ (19)

with respect to λ↑↓ where 0 ≤ q2 = λ2
↑↓(2− λ2

↑↓) ≤ 1.

Brinkman-Rice (BR) metal-to-insulator transition

〈D̂/L〉G =
λ2
↑↓
4

=
1

4

(
1− U

UBR

)
, q2 = 1−

(
U

UBR

)2

. (20)

All particles are localized beyond UBR = 8|〈T̂ 〉0/L| (BR insulator).
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Diagrammatic approach
Results for the single-band Hubbard model
Landau-Gutzwiller quasi-particles

Evaluation in high dimensions

Quasi-particle picture

The single-particle Hamiltonian Heff
0 describes quasi-particles.

Landau’s idea of quasi-particles
Fermi gas + hole exc.

interactions−→ Fermi liquid + quasi-hole exc.
Realization in terms of Gutzwiller wave functions
Fermi-gas ground state: |Φ〉 =

∏
p,σ;ε(p)≤EF

ĥ+
p,σ|vac〉

Fermi-liquid ground state: |ΨG〉 = P̂G|Φ〉
hole excitation: ĥp,σ|Φ〉
quasi-hole excitation: |ΨG;p,σ〉 = P̂Gĥp,σ|Φ〉
Energy of Landau-Gutzwiller quasi-particles

EQP
σ (p) :=

〈ΨG;p,σ|Ĥ|ΨG;p,σ〉
〈ΨG;p,σ|ΨG;p,σ〉

− Evar
0

Z=∞
= ε̃σ(p) (21)

ε̃σ(p): dispersion relation of Ĥeff
0 ; here: ε̃σ(p) = q2ε(p).
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Summary of part I

What have we discussed so far?

Gutzwiller-correlated single-particle states are approximate ground
states for (multi-band) Hubbard models.

Formalism:

Gutzwiller wave functions are evaluated in an elegant
diagrammatic formalism where Hartree bubbles are absent and
lines connect only different inner vertices.
In the limit of infinite coordination number, Z →∞, diagrams
with inner vertices are zero.

Application:

The Gutzwiller theory is a concrete example for Landau’s
Fermi-liquid picture.
The Gutzwiller theory provides dispersion relations for
Landau-Gutzwiller quasi-particles.
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Combination with
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Density Functional Theory
Density Functional Theory for many-particle Hamiltonians
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Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Reminder: Electronic many-particle Hamiltonian (σ =↑, ↓; ~ ≡ 1)

Ĥ = Ĥband + Ĥint ,

Ĥband =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m
+ U(r)

)
Ψ̂σ(r) , (22)

Ĥint =
∑
σ,σ′

∫
dr

∫
dr′Ψ̂†σ(r)Ψ̂†σ′(r′)V (r − r′)Ψ̂σ′(r′)Ψ̂σ(r) .

The electrons experience their mutual Coulomb interaction and the
interaction with the ions at positions R,

V (r − r′) =
1

2

e2

|r − r′|
, U(r) =

∑
R

e2

|r − R|
(23)
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Density Functional Theory for many-particle Hamiltonians

Transition metals
Summary of part II

Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Ritz variational principle

Task: minimize the energy functional

E [{|Ψ〉}] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (24)

Problem

This task poses an extremely difficult many-body problem!

Density Functional Theory (see talk by R. Martin)

Express the energy functional in terms of a density functional –
and make some educated approximations later in the game!
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Density Functional Theory for many-particle Hamiltonians
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Summary of part II

Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Consider all normalized states |Ψ(n)〉 for given ‘physical’ densities

nσ(r) = 〈Ψ(n)|Ψ̂†σ(r)Ψ̂σ(r)|Ψ(n)〉 . (25)

The purely electronic operator Ĥe = Ĥkin + V̂xc (kinetic energy +
exchange-correlation energy) is

Ĥkin =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m

)
Ψ̂σ(r) , (26)

V̂xc =
∑
σ,σ′

∫
dr

∫
dr′V (r − r′)

[
Ψ̂†σ(r)Ψ̂†σ′(r′)Ψ̂σ′(r′)Ψ̂σ(r)

− 2Ψ̂†σ(r)Ψ̂σ(r)nσ′(r′) + nσ(r)nσ′(r′)
]
.

For fixed densities, the interaction with the ions and the Hartree
interaction are constant.
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Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Levy’s constraint search

Task: minimize the energy functional

F
[
{nσ(r)} ,

{
|Ψ(n)〉

}]
= 〈Ψ(n)|Ĥkin + V̂xc|Ψ(n)〉 . (27)

for fixed densities nσ(r). Result: optimized |Ψ(n)
0 〉.

Density functionals for the kinetic/exchange-correlation energy

We define two energy functionals that only depend on the densities,

Kinetic: K [{nσ(r)}] = 〈Ψ(n)
0 |Ĥkin|Ψ

(n)
0 〉 , (28)

Exchange-correlation: Exc [{nσ(r)}] = 〈Ψ(n)
0 |V̂xc|Ψ(n)

0 〉 .(29)
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Density Functional Theory

Density Functional

Task: minimize the Density Functional

D [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}]
+U [{nσ(r)}] + VHar [{nσ(r)}] (30)

with the ionic/Hartree energies

Ionic: U [{nσ(r)}] =
∑
σ

∫
drU(r)nσ(r) , (31)

Hartree: VHar [{nσ(r)}] =
∑
σ,σ′

∫
dr

∫
dr′V (r − r′)nσ(r)nσ′(r′) .

The minimization provides the ground-state densities n0
σ(r) and the

ground-state energy E0 = D
[{
n0
σ(r)

}]
.
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Density Functional Theory

Problem

The minimization of the energy functional in eq. (27) poses an
extremely difficult many-particle problem. Thus, the exact
density functional D [{nσ(r)}] is unknown.

Hohenberg-Kohn approach

Idea: derive the same ground-state physics from an effective
single-particle problem.

How can this be achieved?
In the following we follow a simple and straightforward strategy,
not the most general one (see talk by R. Martin).
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Density Functional Theory

Consider all normalized single-particle product states |Φ(n)〉 for
given ‘physical’ densities

nsp
σ (r) = 〈Φ(n)|Ψ̂†σ(r)Ψ̂σ(r)|Φ(n)〉 . (32)

As our single-particle Hamiltonian we consider the kinetic-energy
operator Ĥkin. For fixed single-particle densities nsp

σ (r), we define
the single-particle functional

Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
= 〈Φ(n)|Ĥkin|Φ(n)〉 . (33)

Levy’s constrained search provides the optimized |Φ(n)
0 〉 and

Ksp [{nsp
σ (r)}] = 〈Φ(n)

0 |Ĥkin|Φ
(n)
0 〉 . (34)
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Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

The single-particle density functional is defined as

Dsp [{nsp
σ (r)}] = Ksp [{nsp

σ (r)}] + U [{nsp
σ (r)}] + VHar [{nsp

σ (r)}]
+Esp,xc [{nsp

σ (r)}] (35)

with the yet unspecified single-particle exchange-correlation energy
Esp,xc [{nsp

σ (r)}].

Assumption: non-interacting V -representability

For any given (physical) densities nσ(r) we can find normalized
single-particle product states |Φ(n)〉 such that

nsp
σ (r) = nσ(r) . (36)
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Density Functional Theory

Hohenberg-Kohn theorem

We demand
Dsp [{nσ(r)}] = D [{nσ(r)}] . (37)

⇒ The single-particle substitute system has the same ground-state
density n0

σ(r) and energy E0 as the many-particle Hamiltonian.

Single-particle exchange-correlation energy

To fulfill eq. (37), we define

Esp,xc [{nσ(r)}] = K [{nσ(r)}]−Ksp [{nσ(r)}]+Exc [{nσ(r)}] . (38)

Problem

We know neither of the quantities on the r.h.s. of eq. (38)!
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Density Functional Theory

Upshot of the Hohenberg-Kohn theorem:

A single-particle substitute system exists that leads to the
exact ground-state properties.

Its energy functional takes the form

E [{nσ(r)} , {|Φ〉}] = 〈Φ|Ĥkin|Φ〉+ U [{nσ(r)}] (39)

+VHar [{nσ(r)}] + Esp,xc [{nσ(r)}] .

Remaining task:
minimize E [{nσ(r)} , {|Φ〉}] in the subset of single-particle product

states |Φ〉 =
∏′

n,σb̂
†
n,σ|vac〉. The field operators are expanded as

Ψ̂†σ(r) =
∑
n

ψ∗n(r)b̂†n,σ , Ψ̂σ(r) =
∑
n

ψn(r)b̂n,σ . (40)
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Density Functional Theory

With the Hartree and exchange-correlation potentials

VHar(r) ≡
∑
σ′

∫
dr′2V (r − r′)n0

σ′(r′) ,

vsp,xc,σ(r) ≡ ∂Esp,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

, (41)

the minimization conditions lead to the Kohn-Sham equations.

Kohn-Sham equations

hKS
σ (r)ψn(r) = εn(r)ψn(r) ,

hKS
σ (r) ≡ −∆r

2m
+ VKS

σ (r) , (42)

VKS
σ (r) ≡ U(r) + VHar(r) + vsp,xc,σ(r) .
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Density Functional Theory

Resume of DFT

There exists a single-particle substitute system that has the
same ground-state energy and ground-state densities as the
interacting many-electron system.

If we knew the single-particle exchange-correlation energy
Esp,xc [{nσ(r)}], the Kohn-Sham equations would provide
single-particle eigenstates that define the single-particle
ground state |Φ0〉. The exact ground-state properties can be
extracted from |Φ0〉.

Remaining task

Find physically reasonable approximations for Esp,xc [{nσ(r)}].
Example: the local (spin) density approximation (L(S)DA).
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Density Functional Theory for many-particle Hamiltonians

Limitations of DFT-L(S)DA & Co

The properties of transition metals and their compounds are not so
well described.
Reason: 3d electrons are strongly correlated.

Solution

Treat interaction of electrons in correlated bands separately!
The kinetic energy Ĥkin plus the Hubbard interaction V̂loc define
our new reference system,

Ĥkin 7→ ĤH = Ĥkin + V̂loc − V̂dc . (43)

Here, V̂dc accounts for the double counting of the Coulomb
interactions among correlated electrons.
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Density Functional Theory for many-particle Hamiltonians

Using the same formalism as before, we define the functional

FH

[
{nσ(r)} ,

{
|Ψ(n)〉

}]
= 〈Ψ(n)|ĤH|Ψ(n)〉 . (44)

Its optimization provides |Ψ(n)
H,0〉 and the functionals

KH [{nσ(r)}] = 〈Ψ(n)
H,0|Ĥkin|Ψ

(n)
H,0〉 ,

Vloc/dc [{nσ(r)}] = 〈Ψ(n)
H,0|V̂loc/dc|Ψ

(n)
H,0〉 , (45)

DH [{nσ(r)}] = KH [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
+Vloc [{nσ(r)}]− Vdc [{nσ(r)}]
+EH,xc [{nσ(r)}] . (46)

We demand DH [{nσ(r)}] = D [{nσ(r)}]. Then, ĤH leads to the
exact ground-state energy E0 and densities n0

σ(r).
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Density Functional Theory for many-particle Hamiltonians

Problem

The Hubbard interaction V̂loc reintroduces the complexity of the
the full many-body problem! – What have we gained?

Indeed, when we apply the Ritz principle to the energy functional

E = 〈Ψ|ĤH|Ψ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] ,
(47)

we arrive at the many-particle Hubbard-Schrödinger equation(
Ĥ0 + V̂loc − V̂dc

)
|Ψ0〉 = E0|Ψ0〉 (48)

with the single-particle Hamiltonian

Ĥ0 =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
Ψ̂σ(r) .

(49)
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Density Functional Theory for many-particle Hamiltonians

Advantage

Local interactions among correlated electrons are treated explicitly
so that they are subtracted from the exact exchange-correlation
energy,

EH,xc [{nσ(r)}] = K [{nσ(r)}]− KH [{nσ(r)}] + Exc [{nσ(r)}]
− (Vloc [{nσ(r)}]− Vdc [{nσ(r)}]) . (50)

Consequence: an (L(S)DA) approximation should better suited for
EH,xc than for Esp,xc.

Later, we shall employ the approximation

EH,xc [{nσ(r)}] ≈ ELDA,xc [{nσ(r)}] . (51)
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Density Functional Theory for many-particle Hamiltonians

Approximate treatments

Idea: approximate the functional 〈Ψ|Ĥkin + V̂loc − V̂dc|Ψ〉.
Strategies:

Limit of infinite dimensions: use DMFT to determine |Ψ〉.
LDA+U: use single-particle variational states |Φ〉.
Gutzwiller: use many-particle variational states |ΨG〉.

Consider atomic states |ΓR〉 at lattice site R that are built from the
correlated orbitals. With the local many-particle operators
m̂R;Γ = |ΓR〉〈ΓR| we define the Gutzwiller states as in part I

|ΨG〉 = P̂G|Φ〉 , P̂G =
∏

R

∑
Γ

λR;Γm̂R;Γ . (52)

λR;Γ are real variational parameters.
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Density Functional Theory for many-particle Hamiltonians

The energy functional requires the evaluation of expectation values
for the local interaction

Vloc/dc =
∑

R

∑
Γ,Γ′

E
loc/dc
Γ,Γ′ (R)

〈ΨG|m̂R;Γ,Γ′ |ΨG〉
〈ΨG|ΨG〉

, (53)

E
loc/dc
Γ,Γ′ (R) = 〈ΓR|V̂loc/dc(R)|Γ′R〉 , (54)

and for the single-particle density matrix, e.g., in the orbital
Wannier basis (Ψ̂σ(r) =

∑
R φR,b,σ(r)ĉR,b,σ),

ρG
(R′,b′),(R,b);σ =

〈ΨG|ĉ†R,b,σ ĉR′,b′,σ|ΨG〉
〈ΨG|ΨG〉

. (55)
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Density Functional Theory for many-particle Hamiltonians

Gutzwiller energy functional

The Gutzwiller energy functional E ≡ E [{nσ(r)} , {|ΨG〉}] reads

E =
∑

R,b,R′,b′,σ

T(R,b),(R′,b′);σρ
G
(R′,b′),(R,b);σ + VG

loc − VG
dc

+U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] , (56)

T(R,b),(R′,b′);σ =

∫
drφ∗R,b,σ(r)

(
−∆r

2m

)
φR′,b′,σ(r) . (57)

The densities become

nσ(r) =
∑

R,b,R′,b′

φ∗R,b,σ(r)φR′,b′,σ(r)ρG
(R′,b′),(R,b);σ . (58)
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Density Functional Theory for many-particle Hamiltonians

Problem

The evaluation of expectation values with Gutzwiller-correlated
states poses an extremely difficult many-particle problem.

Solution (see part I)

Evaluate expectation values diagrammatically in such a way that
not a single diagram must be calculated in the limit of infinite
lattice coordination number, Z →∞ (recall: Z = 12 for nickel).

Result: all quantities depend only on the single-particle density
matrix Cb′,b;σ(R) = 〈Φ|ĉ†R,b,σ ĉR,b′,σ|Φ〉 and the Gutzwiller
variational parameters λΓ,Γ′(R). For example,

VG
loc =

∑
R

∑
Γ,Γ′

λR;ΓE
loc
R;Γ,Γ′〈m̂R;Γ,Γ′〉ΦλR;Γ′ . (59)
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Density Functional Theory for many-particle Hamiltonians

For R 6= R′, the correlated single-particle density matrix becomes

ρG
(R′,b′),(R,b);σ =

∑
a,a′

qa,σb,σ(R)
(
qa

′,σ
b′,σ(R′)

)∗
ρ(R′,a′),(R,a);σ . (60)

The orbital-dependent factors qa,σb,σ(R) reduce the band width of
the correlated orbitals and their hybridizations with other orbitals.

Results

In the limit Z →∞, the Gutzwiller many-body problem is
solved without further approximations.

‘Solve the Gutzwiller–Kohn-Sham equations’ ⊕
‘Minimize with respect to the Gutzwiller parameters λR;Γ’
is similar in complexity to the DFT. For simple systems such
as nickel and iron, the latter minimization is computationally
inexpensive (. 50% of total CPU time).
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Transition metals

For translational invariant lattice systems, the quasi-particle
(‘Gutzwiller–Kohn-Sham’) Hamiltonian becomes

ĤG
qp =

∑
k,b,b′,σ

hG
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ (61)

with the matrix elements in the orbital Bloch basis

hG
b,b′;σ(k) = ηb,b′;σ +

∑
a,a′

qb,σa,σ

(
qb

′,σ
a′,σ

)∗
h0
a,a′;σ(k) ,

h0
a,a′;σ(k) =

∫
drφ∗k,a,σ(r)

(
−∆r

2m
+ VH

σ (r)

)
φk,a′,σ(r) , (62)

VH
σ (r) = U(r) + VHar(r) + vH,xc,σ(r) .

ηb,b′;σ: Lagrange parameters (variational band-shifts).
43 / 63



Density Functional Theory
Density Functional Theory for many-particle Hamiltonians

Transition metals
Summary of part II

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian
Local Hamiltonian for transition metals
Results for nickel
Results for iron

Transition metals

In cubic symmetry, the local interaction for 3d electrons reads

V̂ full
loc = V̂ dens

loc + V̂ sf
loc + V̂

(3)
loc + V̂

(4)
loc ,

V̂ dens
loc =

∑
c,σ

U(c , c)n̂c,σn̂c,σ̄ +
∑

c(6=)c ′

∑
σ,σ′

Ũσ,σ′(c , c ′)n̂c,σn̂c ′,σ′ ,

V̂ sf
loc =

∑
c(6=)c ′

J(c, c ′)
(
ĉ†c,↑ĉ

†
c,↓ĉc ′,↓ĉc ′,↑ + h.c.

)
+

∑
c(6=)c ′;σ

J(c , c ′)ĉ†c,σ ĉ
†
c ′,σ̄ ĉc,σ̄ ĉc ′,σ . (63)

Here, ↑̄ =↓ (↓̄ =↑) and Ũσ,σ′(c, c ′) = U(c , c)− δσ,σ′J(c , c ′).
U ≡ U(c , c)/2 and J ≡ J(c , c ′) are local Hubbard and Hund’s-rule
exchange interactions. DMFT calculations often employ V̂ dens

loc

only (reduction of the numerical effort).
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Transition metals

Gutzwiller calculations include the full V̂loc with the spin-flip terms
and the three-orbital and four-orbital terms

V̂
(3)
loc =

∑
t;σ,σ′

(T (t)− δσ,σ′A(t))n̂t,σ ĉ
†
u,σ′ ĉv ,σ′ + h.c. , (64)

+
∑
t,σ

A(t)
(
ĉ†t,σ ĉ

†
t,σ̄ ĉu,σ̄ ĉv ,σ + ĉ†t,σ ĉ

†
u,σ̄ ĉt,σ̄ ĉv ,σ + h.c.

)
V̂

(4)
loc =

∑
t(6=)t′(6=)t′′

∑
e,σ,σ′

S(t, t ′; t ′′, e)ĉ†t,σ ĉ
†
t′,σ′ ĉt′′,σ′ ĉe,σ + h.c. .

Here, t = ζ, η, ξ (t2g orbitals) with symmetries ζ = xy , η = xz ,
and ξ = yz , and e = u, v (two eg orbitals) with symmetries
u = 3z2 − r2 and v = x2 − y2.
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Transition metals

Double counting corrections

There exists no systematic (let alone rigorous) derivation of the
double-counting corrections.

In the context of the LDA+U method, it was suggested to use

V LDA+U
dc =

U

2
n̄(n̄ − 1)− J

2

∑
σ

n̄σ(1− n̄σ) , (65)

where n̄σ is the sum of σ-electrons in the correlated orbitals.
In effect, the double-counting corrections generate a band shift

ηdc
c,c;σ = − [U (n̄ − 1/2) + J (n̄σ − 1/2)] . (66)

It guarantees that the Hubbard interaction does not empty the
3d-levels.
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Transition metals

Problems

The choice of the double-counting correction is guess-work.

The double-counting corrections have no orbital resolution.

The double-counting corrections do not work, e.g., for Cerium.

There is the big risk that the physics is determined by the choice of
the double-counting corrections!

Double counting corrections for iron and nickel

Nickel: The 3d-shell is almost filled, n3d ≈ 9/10. Here, the form of
the double-counting corrections is not decisive for the ground-state
properties.
Iron: standard double-counting corrections still work satisfactorily.
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Transition metals

Further simplifications for iron and nickel

Assume identical radial parts for the t2g and eg orbitals
(‘spherical approximation’). Then, three Racah parameters
A,B,C determine all Coulomb parameters, e.g.,
U = A + 4B + 3C , J = 5B/2 + C .

Use C/B = 4, as is appropriate for neutral atoms. Then, U
and J determine the atomic spectrum completely.

In cubic symmetry, some matrices become diagonal

qc
′,σ

c,σ = δc,c ′
(
δc,t2gqt,σ + δc,egqe,σ

)
, (67)

ρG
(R,b′),(R,b);σ = δb,b′ρ(R,b),(R,b);σ . (68)

Then, we recover expressions used in previous phenomenological
treatments of the Gutzwiller-DFT.
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Transition metals

Implementation

We use QuantumEspresso as DFT code (open source,
based on plane waves, employs ultra-soft pseudo-potentials).

‘Poor-man’ Wannier orbitals for 3d electrons.

Hubbard parameters

The ‘best values’ for U and J depend on

the quality of the correlated orbitals; better localized orbitals
require larger Coulomb interactions;

the accuracy of the local interaction; using only
density-density interactions requires smaller Coulomb
parameters;

The choice of the double-counting corrections.
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We fix U and J for Ni from a comparison of the lattice constant
and the spin-only magnetic moment.
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Fig. 2: Fcc lattice constant

of nickel as a function of U

for different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

In DFT: the lattice constant is too small; the Gutzwiller approach
resolves this problem when we choose U > 10 eV.
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Transition metals

In order to fix both U and J, we must also consider the spin-only
magnetic moment.
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Fig. 3: Magnetic moment of

nickel as a function of U for

different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

When we choose Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.07),
we obtain a good agreement with the experimental values for a
and m.

51 / 63



Density Functional Theory
Density Functional Theory for many-particle Hamiltonians

Transition metals
Summary of part II

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian
Local Hamiltonian for transition metals
Results for nickel
Results for iron

Transition metals

For Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.07), we calculate
the bulk modulus.
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Fig. 4: Ground-state energy per

particle E0(a)/N relative to its

value at a = 6.63aB as a

function of the fcc lattice

parameter a/aB, calculated

with the full local Hamiltonian

V̂ full
loc and the LDA+U double

counting correction; full line:

2nd-order polynomial fit.

KG = 169GPa, in good agreement with experiment,
K = 182GPa, whereas KDFT = 245GPa.
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For Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.07), we derive the
quasi-particle band structure.
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Fig. 5: Landau-Gutzwiller quasi-particle band structure of fcc nickel along

high-symmetry lines in the first Brillouin zone, calculated with the full

local Hamiltonian and the LDA+U double-counting correction; left:

majority spin; right: minority spin. Fermi energy EG
F = 0.
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Symmetry Experiment V̂ full
loc V̂ dens

loc

〈Γ1〉 8.90± 0.30 8.95[0.08] 8.93[0.08]
〈X1〉 3.30± 0.20 3.37[0.27] 3.42[0.10]
X2↑ 0.21± 0.03 0.26 0.13
X2↓ 0.04± 0.03 0.14 0.21
X5↑ 0.15± 0.03 0.32 0.41

∆eg (X2) 0.17± 0.05 0.12 −0.08
∆t2g (X5) 0.33± 0.04 0.60 0.70
〈L2′〉 1.00± 0.20 0.14[0.06] 0.12[0.06]
〈Λ3;1/2〉 0.50[0.21± 0.02] 0.64[0.30] 0.60[0.16]

Quasi-particle band energies with respect to the Fermi energy in eV at

various high-symmetry points (counted positive for occupied states).

〈. . .〉 indicates the spin average, errors bars in the experiments without

spin resolution are given as ±. Theoretical data show the spin average

and the exchange splittings in square brackets.
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Improvements

Gutzwiller-DFT gets the correct 3d bandwidth
(WG−DFT = 3.3 eV, whereas WDFT = 4.5 eV).

Gutzwiller-DFT gets the correct Fermi-surface topology (only
one hole ellipsoid at the X -point).

The positions of the bands are OK, by and large.

The band at L2′ are pure 3p-like (not correlated – yet!).

The full local interaction gives somewhat better results than
the density-only interaction.

Refinements are to be expected when we improve the description
(orbital-dependent double counting, spin-orbit coupling).
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Transition metals

We fix U and J for Fe from a comparison of the lattice constant
and the spin-only magnetic moment.
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Fig. 6: Bcc lattice constant

of iron as a function of U for

different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

In DFT: the lattice constant is too small; the Gutzwiller approach
resolves this problem when we choose U > 8 eV.
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In order to fix both U and J, we must also consider the spin-only
magnetic moment.
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Fig. 7: Magnetic moment of

iron as a function of U for

different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

When we choose Uopt = 9 eV and Jopt = 0.54 eV (J/U = 0.06),
we obtain a good agreement with the experimental values for a
and m.
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For Uopt = 9 eV and Jopt = 0.54 eV (J/U = 0.06), we calculate
the bulk modulus.
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Fig. 8: Energy per atom e(v)

in units of eV as a function of

the unit-cell volume v in units

of a3
B for non-magnetic and

ferromagnetic bcc iron and

non-magnetic hcp iron at

U = 9 eV and J = 0.54 eV and

ambient pressure. The energies

are shifted by the same value.

KG = 165GPa, in good agreement with Kexp = 170GPa from
experiment, whereas KLDA = 227GPa and KGGA = 190GPa.
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For Uopt = 9 eV and Jopt = 0.54 eV (J/U = 0.06), we derive the
quasi-particle band structure.
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Fig. 9: Landau-Gutzwiller quasi-particle band structure (full lines) and

DFT(LDA) bands (dashed lines) of bcc iron (left) and hcp iron (right)

along high-symmetry lines in the first Brillouin zone, calculated with the

full local Hamiltonian and the LDA+U double-counting correction; Fermi

energy EG
F = 0.
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Improvements and remaining issues

The electronic correlations guarantee the correct ground-state
structure (ferromagnetic bcc iron) even when the LDA
exchange-correlation potential is used. It is not necessary to
resort to gradient corrections (GGA).

Gutzwiller-DFT improves the 3d bandwidth. The bandwidth
reduction is not as large as in nickel.

The effective mass enhancement at the Fermi energy cannot
be explained satisfactorily within the Gutzwiller approach.
Large ratios, m∗/m & 3 in some directions, must be due to
the coupling to magnons.

The spin-orbit coupling is considered only phenomenologically.
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What have you learned?

Formalism:

A formal derivation of the Gutzwiller Density Functional
Theory is given.
Explicit expressions for all required expectation values are
available in the limit of large lattice coordination number.
For simple cases such as nickel, previous ad-hoc formulations
of G-DFT are proven to be correct.

Results for nickel and iron:

Experimental values for the lattice constant, the bulk modulus
and the magnetic moment are reproduced for
(U = 13 eV, J = 0.9 eV)Ni and (U = 9 eV, J = 0.54 eV)Fe.
The experimental crystal structure, bandwidth, Fermi surface
topology, and overall band structure are reproduced fairly well.
No fine tuning of parameters is required.
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Outlook

The Gutzwiller DFT is a generic extension of the DFT
framework; however, it is not fully ‘ab initio’ !

It is a numerically affordable method to include correlations.

Our present implementation is based on the limit of infinite
lattice coordination number.

Open problems

The spin-orbit coupling must be implemented.

The method must be applied to other materials.

The double-counting problem must be solved in a canonical
way; ad-hoc potentials are not helpful in the long run.
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Thanks

Thank you for your attention!
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