Dynamical Mean-Field Theory of Disordered Electrons: Coherent Potential Approximation and Beyond

václav Janíš

Institute of Physics, Czech Academy of Sciences, Praha, CZ

The Physics of Correlated Insulators, Metals, and Superconductors 29 September 2017, FZ. Jülich

Э

Collaborator: Jindřich Kolorenč (IOP CAS)

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ, Jülích

イロト 不得 トイヨト イヨト

Outline

- 1 Introduction Resistivity of metals
- 2 Electron gas in random lattices
 - Electron scatterings on impurities
 - Many-body theory of disordered electrons
- 3 Dynamical Mean Field Theory
 - Renormalization of perturbation expansion
 - Límít to infinite dimensions
- Diffusion and transport properties (non-equilibrium)
 Transport properties within CPA
 - Beyond CPA Backscatterings

5 Conclusions

Э

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Electrons in crystalline solids

Most of properties of solids are determined by the behavior of electrons

mportant influencing factors

- Temperature ξ structure
- Correlations
- Dísorder

Low-temperature behavior

- Quantum dynamics & fluctuations
- Noncommuting of operators in Hamiltonian
- Indístinguíshable particles Fermi statistics

Electrons in crystalline solids

Important influencing factors

- Temperature ξ structure
- Correlations
- Dísorder

Low-temperature behavior

- Quantum dynamics & fluctuations
- Noncommuting of operators in Hamiltonian
- Indistinguishable particles Fermi statistics

・ロン ・四 と ・ 回 と ・ 回 と

Two types of problems in disordered systems: Thermodynamic equilibrium – spectral function Weak non-equilibrium – Linear Response Theory (Kubo formalism for electrical conductivity)

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Introduction Randomness DMFT Diffusion Conclu

Electrons in perfect crystals are Bloch waves do not scatter on ions (no resistivity)

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ. Jülích

・ロト ・回ト ・ヨト ・ヨト

Resistivity of metals

Thermal fluctuations

Imperfections in crystals

Perfect translational symmetry must be broken

Э

Václav Janíš

・ロト ・回ト ・ヨト ・ヨト Correlated Insulators, Metals, and Superconductors, FZ Jülich

Classical electron motion in crystals – Drude theory

Scattering of electrons on ions

- \blacksquare Probability of scattering events: τ^{-1}
- Electric current: $j = -en\overline{v} = \frac{e^2n\tau}{m}E = \sigma E$
- Ohm's behavior dissipative forces (heat generation)
- Probability distribution of charge density

Classical transport - Boltzmann equation

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_r + \frac{1}{m} \mathbf{F} \cdot \nabla_v\right) f(\mathbf{r}, \mathbf{v}, t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

・ロト ・回ト ・ヨト ・ヨト

Quantum diffusion - coherence & wave interference

Quantum coherence and backscatterings on impurities

- Only imperfections in the crystal matter
- Nonlocal character of quantum particles (waves)
- Quantum coherence of admissible classical trajectories

$$P_{quant} = |A_{+} + A_{-}|^{2} = \underbrace{|A_{+}|^{2} + |A_{-}|^{2}}_{P_{class}} + (A_{+}A_{-}^{*} + A_{+}^{*}A_{-}) > P_{class}$$

Quantum coherence decreases mobility and reduces diffusion

Electron gas in a random alloy

 Noninteracting conduction electrons in a random lattice (impurities) in tight-binding representation:

$$\widehat{H} = \sum_{nm} |m
angle W_{mn} \langle n| + \sum_{n} |n
angle V_n \langle n| = \widehat{W} + \widehat{V}$$
 $W_{mn} = W(\vec{R}_m - \vec{R}_n)$ with $W_{nn} = 0$

Disorder distribution (site independent):

$$\langle X(V_i) \rangle_{av} = \int_{-\infty}^{\infty} dV \rho(V) X(V)$$

Binary alloy: $\rho(V) = c_A \delta(V - V_A) + c_B \delta(V - V_B)$ Quantum fluctuations: $[\widehat{W}, \widehat{V}] \neq 0$

イロト 不得 トイヨト イヨト

Averaged T-matrix and coherent potential I

Basic object: Resolvent operator

$$G_{mn}(z) = \left\langle m \left| \left[z \hat{1} - \widehat{W} - \widehat{V} \right]^{-1} \right| n \right\rangle$$

Density of states (averaged)

$$\rho(E) = -\frac{1}{\pi V} \sum_{n} \Im G_{nn}(E + i0^{+}) = \langle \rho_{nn}(E) \rangle_{av}$$

Only averaged quantities are reproducible

Averaged T-matrix and coherent potential II

Perturbation expansion in the random potential

$$\langle G_{mn}(z) \rangle_{av} = G_{m-n}^{(0)}(z) + \sum_{i} G_{m-i}^{(0)}(z) \langle V_{i} \rangle_{av} G_{i-n}^{(0)}(z)$$

 $+ \sum_{i,j} G_{m-i}^{(0)}(z) \left\langle V_{i} G_{i-j}^{(0)}(z) V_{j} \right\rangle_{av} G_{j-n}^{(0)}(z) + \dots$

T-matríx operator

$$\mathbb{G}(z) = \left\langle \widehat{G}(z) \right\rangle_{av} + \left\langle \widehat{G}(z) \right\rangle_{av} \mathbb{T}(z) \left\langle \widehat{G}(z) \right\rangle_{av}$$

Coherent potential: absorbs multiple onsite scatterings

$$\widehat{\sigma}(z) = \sum_{n} |n\rangle \, \sigma_n(z) \, \langle n|$$

Václav Janíš

Correlated Insulators, Metals, and Superconductors, FZ. Jülich

イロト イポト イヨト イヨト

Averaged T-matrix and coherent potential III

Local T-matrix with the coherent potential

$$\mathbb{T}_n(z) = \frac{V_n - \sigma_n(z)}{1 - (V_n - \sigma_n(z)) G_{nn}(z)}$$

Random potential replaced by the local T-matrix

$$\mathbb{T}(z) = \sum_{n} \mathbb{T}_{n}(z) \left[\widehat{1} + \langle \mathbb{G}(z) \rangle_{av} \sum_{m \neq n} \mathbb{Q}_{m}(z) \right]$$
$$\mathbb{Q}_{n}(z) = \mathbb{T}_{n}(z) + \left[\widehat{1} + \langle \mathbb{G}(z) \rangle_{av} \sum_{m \neq n} \mathbb{Q}_{m}(z) \right]$$

<ロト イ (アト イ アト イ き ト イ き ト き の Q Correlated Insulators, Metals, and Superconductors, FZ Jülich

Averaged T-matrix and coherent potential IV

 Coherent Potential Approximation (CPA) : vanishing of the local T-matrix

$$\left\langle \mathbb{T}_{n}(z)\right\rangle_{av} = \left\langle \frac{V_{n} - \sigma(z)}{1 - (V_{n} - \sigma(z))\left\langle G_{nn}(z)\right\rangle_{av}} \right\rangle_{av} = 0$$

Multiple scattering on distinct lattice sites neglected

Many-body approach (Statistical mechanics)

- Second quantization indistinguishable particles (fermions)
- Fock space with creation § annihilation operators
- Thermodynamic limit restoring translational invariance
- Averaged Green functions the only ingredients
- Spectral and response functions simultaneously
- Equilibrium thermodynamics in natural way

・ロン ・回 と ・ ヨン ・ ヨン

Many-body model and grand potential

Hamíltonían for Anderson dísordered model

$$\widehat{H} = \sum_{\langle ij \rangle} t_{ij} \widehat{c}_i^{\dagger} \widehat{c}_j + \sum_i V_i \widehat{c}_i^{\dagger} \widehat{c}_i$$

Averaged grand potential

$$\Omega(\mu) = -rac{1}{eta} \left\langle \ln \operatorname{Tr} \exp \left\{ -eta \widehat{H} + eta \mu \widehat{N}
ight\}
ight
angle_{av}$$

Ergodic hypothesis: Configurational averaging = Spatial averaging

Perturbation (diagrammatic) expansion in the random potential: averaging term by term

One-particle Green function

One-electron resolvent (z - complex energy to cover dissipation)

$$G(\mathbf{k},z) = \frac{1}{z - \epsilon(\mathbf{k}) - \Sigma(\mathbf{k},z)} = \frac{1}{N} \sum_{i,j} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)} \left\langle \left[z\widehat{1} - \widehat{t} - \widehat{V}\right]_{ij}^{-1} \right\rangle_{av}$$

k – quasimomenta, label the complete set of extended states
 (Bloch waves)

Density of states:
$$\rho(E) = -\frac{1}{\pi N} \sum_{\mathbf{k}} \Im G(\mathbf{k}, E + i0^+)$$

determines the energy spectrum: $\rho(E) > 0$, $\Im G \propto \Im \Sigma \propto -\Im z$ no information about spatial extension of wave function

> Elastic scatterings on impurities only - energy conserved (not a dynamical variable)

Э

・ロン ・四 と ・ ヨ と ・ ヨ と

One-particle Green function

One-electron resolvent (z - complex energy to cover dissipation)

$$G(\mathbf{k}, z) = \frac{1}{z - \epsilon(\mathbf{k}) - \Sigma(\mathbf{k}, z)} = \frac{1}{N} \sum_{i,j} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)} \left\langle \left[z \widehat{1} - \widehat{t} - \widehat{V} \right]_{ij}^{-1} \right\rangle_{av}$$

k – quasimomenta, label the complete set of extended states
 (Bloch waves)

Density of states:
$$\rho(E) = -\frac{1}{\pi N} \sum_{\mathbf{k}} \Im G(\mathbf{k}, E + i0^+)$$

determines the energy spectrum: $\rho(E) > 0$, $\Im G \propto \Im \Sigma \propto -\Im z$ no information about spatial extension of wave function

> Elastic scatterings on impurities only - energy conserved (not a dynamical variable)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-particle Green function

One-electron resolvent (z - complex energy to cover dissipation)

$$G(\mathbf{k},z) = \frac{1}{z - \epsilon(\mathbf{k}) - \Sigma(\mathbf{k},z)} = \frac{1}{N} \sum_{i,j} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)} \left\langle \left[z\widehat{1} - \widehat{t} - \widehat{V}\right]_{ij}^{-1} \right\rangle_{av}$$

k – quasimomenta, label the complete set of extended states
 (Bloch waves)

Density of states:
$$\rho(E) = -\frac{1}{\pi N} \sum_{\mathbf{k}} \Im G(\mathbf{k}, E + i0^+)$$

determines the energy spectrum: $\rho(E) > 0$, $\Im G \propto \Im \Sigma \propto -\Im z$ no information about spatial extension of wave function

> Elastic scatterings on impurities only - energy conserved (not a dynamical variable)

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Two-particle Green function

Averaged two-particle resolvent (direct lattice space)

$$G_{ij,kl}^{(2)}(z_1,z_2) = \left\langle \left[z_1 \widehat{1} - \widehat{t} - \widehat{V} \right]_{ij}^{-1} \left[z_2 \widehat{1} - \widehat{t} - \widehat{V} \right]_{kl}^{-1} \right\rangle_{av}$$

Fourier transform to momenta

$$G_{\mathbf{k}\mathbf{k}'}^{(2)}(z_1, z_2; \mathbf{q}) = \frac{1}{N} \sum_{ijkl} e^{-i(\mathbf{k}+\mathbf{q}/2)\mathbf{R}_i} e^{i(\mathbf{k}'+\mathbf{q}/2)\mathbf{R}_j} \\ \times e^{-i(\mathbf{k}'-\mathbf{q}/2)\mathbf{R}_k} e^{i(\mathbf{k}-\mathbf{q}/2)\mathbf{R}_l} G_{ii,kl}^{(2)}(z_1, z_2)$$

Two-particle Green function $G^{RA} = G^{(2)}_{kk'}(E + i0, E - i0)$ carries information about the spatial extension of the wave function

・ロン ・回 と ・ ヨ と ・ ヨ と

Two-particle Green function

Averaged two-particle resolvent (direct lattice space)

$$G_{ij,kl}^{(2)}(z_1,z_2) = \left\langle \left[z_1 \widehat{1} - \widehat{t} - \widehat{V} \right]_{ij}^{-1} \left[z_2 \widehat{1} - \widehat{t} - \widehat{V} \right]_{kl}^{-1} \right\rangle_{av}$$

Fourier transform to momenta

$$G_{\mathbf{k}\mathbf{k}'}^{(2)}(z_1, z_2; \mathbf{q}) = \frac{1}{N} \sum_{ijkl} e^{-i(\mathbf{k}+\mathbf{q}/2)\mathbf{R}_i} e^{i(\mathbf{k}'+\mathbf{q}/2)\mathbf{R}_j} \times e^{-i(\mathbf{k}'-\mathbf{q}/2)\mathbf{R}_k} e^{i(\mathbf{k}-\mathbf{q}/2)\mathbf{R}_l} G_{ij,kl}^{(2)}(z_1, z_2)$$

Two-particle Green function $G^{RA} = G^{(2)}_{kk'}(E + i0, E - i0)$ carries information about the spatial extension of the wave function

イロト イポト イヨト イヨト

Two-particle Green function

Averaged two-particle resolvent (direct lattice space)

$$G_{ij,kl}^{(2)}(z_1,z_2) = \left\langle \left[z_1 \widehat{1} - \widehat{t} - \widehat{V} \right]_{ij}^{-1} \left[z_2 \widehat{1} - \widehat{t} - \widehat{V} \right]_{kl}^{-1} \right\rangle_{av}$$

Fourier transform to momenta

$$G_{\mathbf{k}\mathbf{k}'}^{(2)}(z_1, z_2; \mathbf{q}) = \frac{1}{N} \sum_{ijkl} e^{-i(\mathbf{k}+\mathbf{q}/2)\mathbf{R}_i} e^{i(\mathbf{k}'+\mathbf{q}/2)\mathbf{R}_j} \times e^{-i(\mathbf{k}'-\mathbf{q}/2)\mathbf{R}_k} e^{i(\mathbf{k}-\mathbf{q}/2)\mathbf{R}_l} G_{ij,kl}^{(2)}(z_1, z_2)$$

Two-particle Green function $G^{RA} = G^{(2)}_{kk'}(E + i0, E - i0)$ carries information about the spatial extension of the wave function

イロト イポト イヨト イヨト

Diagrammatic representation

Perturbation expansion in the random potential V_i – diagrammatic representation Self-energy (one-particle irreducible vertex)

Irreducible electron-hole vertex (2P self-energy)

ward identities

- 1P § 2P (Green) functions not independent
 - charge conservation (ward identities) & gauge invariance
- Velický identity probability conservation (no restriction)

$$\frac{[G(\mathbf{k},z_+) - G(\mathbf{k},z_-)]}{z_- - z_+} = \frac{1}{N} \sum_{\mathbf{k}'} G^{(2)}_{\mathbf{k}\mathbf{k}'}(z_+,z_-;\mathbf{0})$$

vollhardt-wölfle identity (continuity equation)
 $(\mathbf{k}_{\pm} = \mathbf{k} \pm \mathbf{q}/2)$

$$\begin{split} \Sigma(\mathbf{k}_{+}, z_{+}) &- \Sigma(\mathbf{k}_{-}, z_{-}) \\ &= \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}(z_{+}, z_{-}; \mathbf{q}) \left[G(\mathbf{k}'_{+}, z_{+}) - G(\mathbf{k}'_{-}, z_{-}) \right] \end{split}$$

ward identities

- 1P § 2P (Green) functions not independent
 - charge conservation (ward identities) & gauge invariance
- vollhardt-wölfle identity (continuity equation) $(\mathbf{k}_{\pm} = \mathbf{k} \pm \mathbf{q}/2)$

$$\begin{split} \boldsymbol{\Sigma}(\mathbf{k}_+, z_+) &- \boldsymbol{\Sigma}(\mathbf{k}_-, z_-) \\ &= \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) \left[\boldsymbol{G}(\mathbf{k}'_+, z_+) - \boldsymbol{G}(\mathbf{k}'_-, z_-) \right] \end{split}$$

$$G^{(2)} = GG + GG\Lambda \star G^{(2)}$$
 - Bethe-Salpeter equation

() < </p>

Diffusion: Electron-hole correlation function

Electron-hole correlation function

$$\Phi_{E_F}^{RA}(\mathbf{q},\omega) = rac{1}{N^2} \sum_{\mathbf{k},\mathbf{k}'} G_{\mathbf{k}\mathbf{k}'}^{RA}(E_F + \omega, E_F; \mathbf{q})$$

Diffusion pole – low-energy asymptotics $(q \rightarrow 0, \omega/q \rightarrow 0)$:

$$\Phi_{E_F}^{RA}(\mathbf{q},\omega) pprox rac{2\pi n_F}{-i\omega + D(\omega)q^2}$$

Dynamical diffusion constant $D(\omega)$ – center of interest for Anderson localization

Vaclav Janis

Functional-integral representation

Functional-integral representation of the grand potential

$$\Omega\left\{G^{(0)-1}\right\} = -\beta^{-1}\ln\left[\int \mathcal{D}\varphi \mathcal{D}\varphi^{*}\right]$$
$$\exp\left\{-\varphi^{*}\eta G^{(0)-1}\varphi + h^{*}\varphi + \varphi^{*}h + U[\varphi,\varphi^{*}]\right\}$$

- Complex (Grassmann) fluctuating fields φ (depend on all degrees of freedom)
- (nonlocal) kinetic energy $G^{(0)-1} = H_0 \mu N$
- \blacksquare (auxiliary) external field $h,\,\eta=\pm 1$ for bosons/fermions

Baym-Kadanoff formalism of renormalizations I

Replacing bare one-particle quantities by renormalized ones (mass renormalization)

Introducing the full propagator G and self-energy Σ

 $G^{(0)-1} = G^{-1} + \Sigma$

to be determined self-consistently from a generating functional $\Psi[G, \Sigma]$

Э

イロト イポト イヨト

Baym-Kadanoff formalism of renormalizations II

Legendre transformation of the grand potential

$$\Omega[G, \Sigma] = \Omega_{\Sigma} + \Omega_{G} + \Omega \left\{ G^{(0)-1} \right\}$$

with stationarity condictions

$$\frac{\delta\beta\Omega_{\Sigma}}{\delta\Sigma} = \frac{\delta\beta\Omega_{G}}{\delta\,G^{-1}} = -\frac{\delta\beta\Omega}{\delta\,G^{(0)-1}}$$

Explicit solution

$$\begin{split} &\beta\Omega_{\Sigma} = \eta \left\{ \mathsf{tr} \ln \left[G^{(0)-1} - \Sigma \right] + m^* \left[G^{(0)-1} - \Sigma \right] m \right\}, \\ &\beta\Omega_{G} = -\eta \left[\mathsf{tr} \ln G^{-1} + m^* G^{-1} m \right]. \end{split}$$

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ, Jülích

イロト イポト イヨト イヨト

Baym-Kadanoff formalism of renormalizations III

New grand potential

$$\begin{split} &-\beta\Omega\left[m,H;\,G,\Sigma\right]=-\eta \mathsf{tr}\ln\left[G^{(0)-1}-\Sigma\right]+\eta \mathsf{tr}\ln G^{-1}\\ &-m^*\eta \,G^{(0)-1}m+H^*m+m^*H-\beta F\left[m,H;\,G^{-1}+\Sigma\right] \end{split}$$

Renormalized thermodynamic potential (perturbation theory)

$$-\beta F[m, H; G^{-1} + \Sigma] = \ln \int \mathcal{D}\phi \mathcal{D}\phi^*$$
$$\exp\left\{-\phi^* \eta \left[G^{-1} + \Sigma\right]\phi + H^*\phi + \phi^* H + U[\phi + m, \phi^* + m^*]\right\}$$

Stationarity equations

$$\frac{\delta\Omega}{\delta\Sigma} = \frac{\delta\Omega}{\delta G} = 0$$

Correlated Insulators, Metals, and Superconductors, FZ Jülich

・ロン ・回 と ・ ヨ と ・ ヨ と

Límit to infinite lattice dimensions

Energy must be linearly proportional to volume

$$E_{kin} = -t \sum_{\langle ij
angle \sigma} \left\langle c^{\dagger}_{i\sigma} c_{j\sigma}
ight
angle_{av} = -it \sum_{\langle ij
angle \sigma} G_{ij,\sigma}(0^+) \propto 2 d \mathcal{N} t^2$$

Correct scaling of the hopping parameter t = t*/(\sqrt{2d})
 Behavior of renormalized quantities

$$G = G^{diag} \left[d^0 \right] + G^{off} \left[d^{-1/2} \right],$$

$$\Sigma = \Sigma^{diag} \left[d^0 \right] + \Sigma^{off} \left[d^{-3/2} \right]$$

Dísordered Anderson model (CPA) 1

Anderson Hamiltonian with random atomic potential

$$\widehat{H} = -t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + \sum_i V_i c^{\dagger} c_i = \sum_{\mathbf{k}} \epsilon(\mathbf{k}) c^{\dagger}(\mathbf{k}) c(\mathbf{k}) + \sum_i V_i c_i^{\dagger} c_i$$

Grand potential in the mean-field limit

$$\mathcal{N}^{-1}\Omega\left[G_{n},\Sigma_{n}\right] = -\beta^{-1}\sum_{n=-\infty}^{\infty} e^{i\omega_{n}0^{+}} \left\{ \int_{-\infty}^{\infty} d\epsilon \rho_{\infty}(\epsilon) \ln\left[i\omega_{n} + \mu\right] - \Sigma_{n} - \epsilon \right] + \left\langle \ln\left[1 + G_{n}\left(\Sigma_{n} - V_{i}\right)\right] \right\rangle_{av} \right\}$$

・ロト ・回ト ・ヨト ・ヨト

Dísordered Anderson model (CPA) II

Density of states for hypercubic lattie

$$\rho_{\infty}(\epsilon) = \frac{1}{\sqrt{2\pi}t^*} \exp\left\{-\epsilon^2/2t^{*2}\right\}$$

Stationarity equations
 Soven equation

$$\frac{\delta\beta\Omega}{\delta G_n} = 0 = \left\langle \frac{\Sigma_n - V_i}{1 + G_n(\Sigma_n - V_i)} \right\rangle_{av}$$

Dyson equation

$$\frac{\delta\beta\Omega}{\delta\Sigma_n} = 0 = -\int_{-\infty}^{\infty} \frac{d\epsilon\rho_{\infty}(\epsilon)}{i\omega_n + \mu - \Sigma_n - \epsilon} + G_n$$

Correlated Insulators, Metals, and Superconductors, FZ. Jülich

・ロン ・回 と ・ ヨ と ・ ヨ と

Response to external perturbation I

How to desribe the response functions? Higher-oder Green functions.

Replication of the system for each energy (conserved)

$$\begin{split} \Omega^{\nu}(\mu_{1},\mu_{2},\ldots\mu_{\nu};\Delta) \\ &= -\frac{1}{\beta} \left\langle \ln \operatorname{Tr} \exp \left\{ -\beta \sum_{i,j=1}^{\nu} \left(\widehat{H}^{(i)} \delta_{ij} - \mu_{i} \widehat{N}^{(i)} \delta_{ij} + \Delta \widehat{H}^{(ij)} \right) \right\} \right\rangle_{\mathrm{av}} \end{split}$$

Explica-mixing term: $\Delta \widehat{H}^{(ij)} = \sum_{kl} \Delta_{kl}^{(ij)} \widehat{c}_k^{(i)\dagger} \widehat{c}_l^{(j)\dagger}$

Э

Correlated Insulators, Metals, and Superconductors, FZ, Jülich

ヘロン 人間 とくほ とくほ とう

Response to external perturbation II

Matrix propagator with two energies (response function)

$$\widehat{G}^{-1}(\mathbf{k}_1, z_1, \mathbf{k}_2, z_2; \Delta) = \begin{pmatrix} z_1 - \epsilon(\mathbf{k}_1) - \Sigma_{11}(\Delta) & \Delta - \Sigma_{12}(\Delta) \\ \Delta - \Sigma_{21}(\Delta) & z_2 - \epsilon(\mathbf{k}_2) - \Sigma_{22}(\Delta) \end{pmatrix}$$

Two-particle irreducible vertex (unique)

$$\begin{split} \lambda(z_1, z_2) &= \frac{\delta \Sigma_U(z_1, z_2)}{\delta G_U(z_1, z_2)} \bigg|_{U=0} = \frac{1}{G(z_1) G(z_2)} \bigg[1 - \\ & \left\langle \frac{1}{1 + [\Sigma(z_1) - V_i] G(z_1)} \frac{1}{1 + [\Sigma(z_2) - V_i] G(z_2)} \right\rangle_{av}^{-1} \bigg] \end{split}$$

DMFT generates only local irreducible higher-order vertices

イロト イポト イヨト イヨト

CPA conductivity and vertex corrections I

Full nonlocal two-particle vertex

$$\Gamma^{\pm}_{\mathbf{k}\mathbf{k}'}(z_1,z_2;\mathbf{q}^{\pm}) = \frac{\lambda(z_1,z_2)}{1-\lambda(z_1,z_2)\chi^{\pm}(z_1,z_2;\mathbf{q}^{\pm})}$$

with a two-particle bubble

 $\chi^{\pm}(z_1, z_2; \mathbf{q}) = \frac{1}{N} \sum_{\mathbf{k}} G(\mathbf{k}, z_1) G(\mathbf{q} \pm \mathbf{k}, z_2)$

CPA conductivity at zero temperature

$$\sigma_{\alpha\alpha} = \frac{e^2}{2\pi N^2} \sum_{\mathbf{k}\mathbf{k}'} v_{\alpha}(\mathbf{k}) v_{\alpha}(\mathbf{k}') \left[G_{\mathbf{k}\mathbf{k}'}^{AR} - \Re G_{\mathbf{k}\mathbf{k}'}^{RR} \right]$$

with $\begin{aligned} G_{\mathbf{k}\mathbf{k}'}^{AR}(\omega,\omega';\mathbf{q}) &= G_{\mathbf{k}\mathbf{k}'}^{\{2\}}(\omega-i0^+,\omega'+i0^+;\mathbf{q})\\ G_{\mathbf{k}\mathbf{k}'}^{RR}(\omega,\omega';\mathbf{q}) &= G_{\mathbf{k}\mathbf{k}'}^{\{2\}}(\omega+i0^+,\omega'+i0^+;\mathbf{q}) \end{aligned}$

イロト イポト イヨト イヨト

CPA conductivity and vertex corrections II

Full electrical conductivity

$$\sigma_{\alpha\alpha} = \frac{e^2}{\pi N} \sum_{\mathbf{k}} \left| v_{\alpha}(\mathbf{k}) \right|^2 \left| \Im G^{R}(\mathbf{k}) \right|^2 + \Delta \sigma_{\alpha\alpha}$$

Vertex corrections (beyond CPA)

$$\Delta \sigma_{\alpha \alpha} = \frac{e^2}{2\pi N^2} \sum_{\mathbf{k}\mathbf{k}'} v_{\alpha}(\mathbf{k}) v_{\alpha}(\mathbf{k}') \left\{ \left| G_{\mathbf{k}}^R \right|^2 \Delta \Gamma_{\mathbf{k}\mathbf{k}'}^{AR} \left| G_{\mathbf{k}'}^R \right|^2 - \Re \left[\left(G_{\mathbf{k}}^R \right)^2 \Delta \Gamma_{\mathbf{k}\mathbf{k}'}^{RR} \left(G_{\mathbf{k}'}^R \right)^2 \right] \right\}$$

vertex corrections only beyond local mean field

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ. Jülích

・ロト ・回ト ・ヨト ・ヨト

Electron-hole (tíme reversal) symmetry

Electron-hole symmetry: reflection in momentum space

$$G(\mathbf{k},z)=G(-\mathbf{k},z)$$

Two-particle vertex

$$\Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) = \Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; -\mathbf{q} - \mathbf{k} - \mathbf{k}')$$

= $\Gamma_{-\mathbf{k}'-\mathbf{k}}(z_+, z_-; \mathbf{q} + \mathbf{k} + \mathbf{k}')$

Graphical representation

Nonlocal CPA vertex breaks electron-hole symmetric

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ, Jülích

・ロン ・回 と ・ ヨ と ・ ヨ と

Electron-hole (tíme reversal) symmetry

Electron-hole symmetry: reflection in momentum space

$$G(\mathbf{k},z)=G(-\mathbf{k},z)$$

Two-particle vertex

$$\Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) = \Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; -\mathbf{q} - \mathbf{k} - \mathbf{k}')$$

= $\Gamma_{-\mathbf{k}'-\mathbf{k}}(z_+, z_-; \mathbf{q} + \mathbf{k} + \mathbf{k}')$

Graphical representation

Nonlocal CPA vertex breaks electron-hole symmetry

Václav Janíš Correlated Insulators, Metals, and Superconductors, FZ, Jülích

ヘロン 人間 とくほ とくほう

Expansion around mean field

Expansion parameter – off-diagonal propagator

$$\bar{G}(\mathbf{k},\zeta) = rac{1}{\zeta - \epsilon(\mathbf{k})} - \int rac{d\epsilon
ho(\epsilon)}{\zeta - \epsilon}$$

Off-díagonal two-partícle bubble

$$\bar{\chi}(\zeta,\zeta';\mathbf{q}) = \frac{1}{N} \sum_{\mathbf{k}} \bar{G}(\mathbf{k},\zeta) \bar{G}(\mathbf{k}+\mathbf{q},\zeta') = \chi(\zeta,\zeta';\mathbf{q}) - G(\zeta) G(\zeta')$$

Conductivity with vertex corrections

$$\sigma_{\alpha\beta} = \frac{e^2}{2\pi N^2} \sum_{\mathbf{k}\mathbf{k}'} v_{\alpha}(\mathbf{k}) \left\{ G_{\mathbf{k}}^A \left[1 - \widehat{\overline{\Lambda}}^{RA} \star \right]_{\mathbf{k}\mathbf{k}'}^{-1} G_{\mathbf{k}'}^R - \Re \left(G_{\mathbf{k}}^R \left[1 - \widehat{\overline{\Lambda}}^{RR} \star \right]_{\mathbf{k}\mathbf{k}'}^{-1} G_{\mathbf{k}'}^R \right) \right\} v_{\beta}(\mathbf{k})$$

Perturbation expansion for the irreducible vertices A

Inability to obey ward identity in PT beyond DMFT

Conflict between causality and WI (beyond mean field)

Cansal vertex $\Lambda_{\mathbf{k}\mathbf{k}'}(E+i0^+, E-i0^+; \mathbf{0}) \geq 0$ (second order)

Self-energy (second order) – not causal ($\Im \Sigma_{\mathbf{k}}(z) \propto -\Im z$)

Restoring WI – making the theory conserving I

VW-WI with the conserving irreducible vertex L^{RA}

$$\Delta \Sigma_{\mathbf{k}}^{RA}(E;\omega,\mathbf{q}) = \frac{1}{N} \sum_{\mathbf{k}'} L_{\mathbf{k}_{+},\mathbf{k}_{+}'}^{RA}(E,\omega;\mathbf{q}) \Delta G_{\mathbf{k}'}^{RA}(E;\omega,\mathbf{q})$$

New quantities to define a vertex compatible with WI

$$\Delta G_{\mathbf{k}}(\omega, \mathbf{q}) = G^{R}(E_{+}, \mathbf{k}_{+}) - G^{A}(E_{-}, \mathbf{k}_{-})$$
$$\Delta \Sigma_{\mathbf{k}}(\omega, \mathbf{q}) = \Sigma^{R}_{\mathbf{k}_{+}}(E_{+}, \mathbf{k}_{+}) - \Sigma^{A}(E_{-}, \mathbf{k}_{-})$$

 $E_{\pm} = E \pm \omega/2$, $k_{\pm} = k \pm q/2$

- Irreducible vertex from perturbation theory Λ^{RA}
- Reduced WI: Imaginary part of the self-energy

$$\Im \Sigma_{\mathbf{k}}^{R}(E) = \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}^{RA}(E; 0, \mathbf{0}) \Im G_{\mathbf{k}'}^{R}(E)$$

Restoring WI – making the theory conserving II

$$\Re \Sigma_{\mathbf{k}}^{R}(E) = \Sigma_{\infty} + P \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{\Im \Sigma_{\mathbf{k}}^{R}(\omega)}{\omega - E}$$

Correction function

$$R_{\mathbf{k}}(\omega, \mathbf{q}) = rac{1}{N} \sum_{\mathbf{k}'} \Lambda^{RA}_{\mathbf{k}\mathbf{k}'}(\omega, \mathbf{q}) \Delta G_{\mathbf{k}'}(\omega, \mathbf{q}) - \Delta \Sigma_{\mathbf{k}}(\omega, \mathbf{q})$$

/anishes if wi is obeyed

New integral kernel of fundamental BS equation

$$L_{\mathbf{k}\mathbf{k}'}^{RA} = \Lambda_{\mathbf{k}\mathbf{k}'}^{RA} - \frac{1}{\langle \Delta G^2 \rangle} \left[\Delta G_{\mathbf{k}} R_{\mathbf{k}'} + R_{\mathbf{k}} \Delta G_{\mathbf{k}'} - \frac{\Delta G_{\mathbf{k}} \Delta G_{\mathbf{k}'}}{\langle \Delta G^2 \rangle} \langle R \Delta G \rangle \right]$$

• Notation: $\left< \Delta G(\omega, \mathbf{q})^2 \right> = \frac{1}{N} \sum_{\mathbf{k}} \Delta G_{\mathbf{k}}(\omega, \mathbf{q})^2$

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Restoring WI – making the theory conserving III

 Fundamental BS equation for a thermodynamically consistent (physical) 2P vertex Γ

$$\begin{split} &\frac{1}{N}\sum_{\mathbf{k}''}\left\{\delta_{\mathbf{k},\mathbf{k}''} - \left[\Lambda_{\mathbf{k}\mathbf{k}''} - \frac{\Delta G_{\mathbf{k}}R_{\mathbf{k}''}}{\langle\Delta G^2\rangle} - \frac{R_{\mathbf{k}}\Delta G_{\mathbf{k}''}}{\langle\Delta G^2\rangle} + \langle R\Delta G\rangle \,\frac{\Delta G_{\mathbf{k}}\Delta G_{\mathbf{k}''}}{\langle\Delta G^2\rangle^2}\right] \\ &\times G_{\mathbf{k}'_+}G_{\mathbf{k}'_-}\right\}\Gamma_{\mathbf{k}''\mathbf{k}'} = \Lambda_{\mathbf{k}\mathbf{k}'} - \frac{\Delta G_{\mathbf{k}}R_{\mathbf{k}'}}{\langle\Delta G^2\rangle} - \frac{R_{\mathbf{k}}\Delta G_{\mathbf{k}'}}{\langle\Delta G^2\rangle} + \langle R\Delta G\rangle \,\frac{\Delta G_{\mathbf{k}}\Delta G_{\mathbf{k}'}}{\langle\Delta G^2\rangle^2} \end{split}$$

Relation to the vertex from the perturbation theory $\Gamma_{\mathbf{k}\mathbf{k}'}^{RA}[\Lambda](E; 0, \mathbf{0}) = \Gamma_{\mathbf{k}\mathbf{k}'}^{RA}[L](E; 0, \mathbf{0})$

All macroscopic quantities derived from vertex $\Gamma_{\mathbf{kk}'}^{RA}[L](E; \omega, \mathbf{q})$

・ロト ・回ト ・ヨト ・ヨト

Conclusions - CPA

Equilibrium

- 🖬 Best local approximation all single-site contributions
- Generating (conserving) functional for equilibrium thermodynamics
- Ward identity obeyed
- Only local irreducible vertices directly

Non-equilibrium - Linear Response

- Diffusive behavior no backscatterings
- Nonlocal response functions ambiguous
- Electron-hole symmetry not obeyed in response functions

Expansion beyond DMFT

Beyond CPA

- Scattering on spatially distinct sites distinguishes electrons from holes
- Backscatterings emerge due to restored electron-hole symmetry
- PT beyond mean-field unable to satisfy WI
- WI restored by correcting the perturbative vertex
- 5 Díffusion behavior restored towards Anderson localization
- New two-particle self-consistency (missing in CPA) parquet equations
- 🗲 What is a microscopic (PT) criterion for AL?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >