#### Path Integrals and Dual Fermions

#### Alexander Lichtenstein University of Hamburg



#### In collaboration with

H. Hafermann, J. Otsuki, S. Brener, F. Krien, E. van Loon, A. Huber, E. Stepanov, A. Rubtsov, M. Katsnelson



#### Outline

- Introduction: Reference System
- Path integral for fermions
- Functional approach: Route to fluctuations
- Dual Fermion approach: beyond DMFT
- Solving quantum impurity problems
- Non-Local screened interactions: cRPA
- Dual Boson approach for non-local interactions
- Plasmons in Correlated Materials
- Outlook



## References

- John W. Negele and Henri Orland "Quantum Many-particle Systems" (Addison Wesley 1988)
- Piers Coleman "Introduction to Many-Body Physics" (Cambridge Uni Press 2015)
- Eduardo Fradkin "Field Theories of Condensed Matter Physics" (Cambridge Uni Press 2013)
- Alexander Altland and Ben D. Simons "Condensed Matter Field Theory" (Cambridge Uni Press 2010)
- Alexey Kamenev "Field Theory of Non-Equilibrium Systems" (Cambridge Uni Press 2011)

# Summary for Fermions $\{\hat{c}_i, \hat{c}_j^+\} = \delta_{ij}$ $\hat{c}_i |1\rangle = |0\rangle$ $\hat{c}_i |0\rangle = 0$ $\hat{c}_i^+ |0\rangle = |1\rangle$ $\hat{c}_i^+ |1\rangle = 0$

Pauli principle

$$\hat{c}_i^+ \hat{c}_i |n\rangle = n_i |n\rangle$$
$$\hat{c}_i^2 = (\hat{c}_i^+)^2 = 0.$$

Fermionic coherent states |c>

$$\hat{c}_i \left| c \right\rangle = c_i \left| c \right\rangle$$

Left-eigenbasis has only annihilation operator - bounded from the bottom:  $\hat{c}_i \left| 0 \right\rangle = 0 \left| 0 \right\rangle$ 

## Grassmann numbers c<sub>i</sub>

F. A. Berezin: Method of Second Quantization (Academic Press, New York, 1966)

Eigenvalues of coheren states

$$c_i c_j = -c_j c_i$$
$$c_i^2 = 0$$

Exact representation

 $|c\rangle = e^{-\sum_{i} c_{i} \hat{c}_{i}^{+}} |0\rangle$ 

Proof for one fermionic states

$$\hat{c} |c\rangle = \hat{c}(1 - c\hat{c}^{\dagger}) |0\rangle = \hat{c}(|0\rangle - c |1\rangle) = -\hat{c}c |1\rangle = c |0\rangle = c |c\rangle$$

Left coherent state  $\langle c |$  :

$$\left\langle c\right|\hat{c}_{i}^{+}=\left\langle c\right|c_{i}^{*}$$

$$\langle c | = \langle 0 | e^{-\sum_i \hat{c}_i c_i^*}$$

general function of two Grassmann variables

$$f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$$

#### Grassmann calculus

Formal definition of derivative

$$\frac{\partial c_i}{\partial c_j} = \delta_{ij}$$

$$\frac{\partial}{\partial c_2}c_1c_2 = -c_1$$

Example:  $f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$ 

$$\frac{\partial}{\partial c^*}\frac{\partial}{\partial c}f(c^*,c) = \frac{\partial}{\partial c^*}(f_{01} - f_{11}c^*) = -f_{11} = -\frac{\partial}{\partial c}\frac{\partial}{\partial c^*}f(c^*,c)$$

Formal definition of integration over Grassmann variables

$$\int \dots dc \to \frac{\partial}{\partial c} \dots$$
$$\int 1 dc = 0 \qquad \int c dc = 1$$

# Resolution of unity operator

Overlap of any two coherent fermionic states

 $\langle c|c\rangle = e^{\sum_i c_i^* c_i}$ 

Proof for single particle

$$\langle c|c\rangle = (\langle 0| - \langle 1|c^*) (|0\rangle - c|1\rangle) = 1 + c^*c = e^{c^*c}$$

Unity operator

$$\int dc^* \int dc \ e^{-\sum_i c_i^* c_i} \left| c \right\rangle \left\langle c \right| = \hat{1} = \int \int dc^* dc \ \frac{\left| c \right\rangle \left\langle c \right|}{\left\langle c \right| c \right\rangle}$$

Proof for single particle

$$\int \int dc^* dc \ e^{-c^* c} \left| c \right\rangle \left\langle c \right| = \int \int dc^* dc \left( 1 - c^* c \right) \left( \left| 0 \right\rangle - c \left| 1 \right\rangle \right) \left( \left\langle 0 \right| - \left\langle 1 \right| c^* \right) = -\int \int dc^* dc \ c^* c \left( \left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \right) = \sum_n \left| n \right\rangle \left\langle n \right| = \hat{1}$$

## Trace Formula

Matrix elements of normally ordered operators

$$\langle c^* | \hat{H}(\hat{c}^+, \hat{c}) | c \rangle = H(c^*, c) \langle c^* | c \rangle = H(c^*, c) e^{\sum_i c_i^* c_i}$$

Trace of fermionic operators in normal order

$$Tr\left(\widehat{O}\right) = \sum_{n=0,1} \langle n | \,\widehat{O} \, | n \rangle = \sum_{n=0,1} \int \int dc^* dc \, e^{-c^* c} \langle n | \, c \rangle \, \langle c | \,\widehat{O} \, | n \rangle = \int \int dc^* dc \, e^{-c^* c} \sum_{n=0,1} \langle -c | \,\widehat{O} \, | n \rangle \, \langle n | \, c \rangle = \int \int dc^* dc \, e^{-c^* c} \, \langle -c | \,\widehat{O} \, | c \rangle$$

"Minus" fermionic sign deu to commutations:

$$\langle n|c\rangle\,\langle c|n\rangle\,=\,\langle -c|n\rangle\,\langle n|c\rangle$$

Mapping:

$$(\hat{c}_i^+, \hat{c}_i) \to (c_i^*, c_i)$$

## Partition function

Grand-canonical quantum ensemble

$$H = \widehat{H} - \mu \widehat{N}$$

N-slices Trotter decomposition  $[0, \beta]$ 

$$\tau_n = n\Delta\tau = n\beta/N \ (n = 1, ..., N).$$

Insert N-times the resolution of unity:

$$Z = Tr \left[ e^{-\beta H} \right] = \int \int dc^* dc e^{-c^* c} \left\langle -c \right| e^{-\beta H} \left| c \right\rangle$$
  
$$= \int \Pi_{n=1}^N dc_n^* dc_n e^{-\sum_n c_n^* c_n} \left\langle c_N \right| e^{-\Delta \tau H} \left| c_{N-1} \right\rangle \left\langle c_{N-1} \right| e^{-\Delta \tau H} \left| c_{N-2} \right\rangle \dots \left\langle c_1 \right| e^{-\Delta \tau H} \left| c_0 \right\rangle$$
  
$$= \int \Pi_{n=1}^N dc_n^* dc_n e^{-\Delta \tau \sum_{n=1}^N [c_n^* (c_n - c_{n-1}) / \Delta \tau + H(c_n^*, c_{n-1})]} d\tau$$

In continuum limit (N  $\rightarrow \infty$ )

$$Z = \int D[c^*, c] e^{-\int_0^\beta d\tau [c^*(\tau)\partial_\tau c(\tau) + H(c^*(\tau), c(\tau))]}$$

Antiperiodic boundary condition

$$\Delta \tau \sum_{n=1}^{N} \dots \mapsto \int_{0}^{\beta} d\tau \dots$$
$$\frac{c_{n} - c_{n-1}}{\Delta \tau} \mapsto \partial_{\tau}$$
$$\Pi_{n=0}^{N-1} dc_{n}^{*} dc_{n} \mapsto D[c^{*}, c]$$

 $c(\beta) = -c(0), \qquad c^*(\beta) = -c^*(0)$ 

## Gaussian path integral

Non-interacting "quadratic" fermionic action

$$Z_0[J^*, J] = \int D[c^*c] \ e^{-\sum_{i,j=1}^N c_i^* M_{ij} c_j + \sum_{i=1}^N \left(c_i^* J_i + J_i^* c_i\right)} = \det[M] \ e^{-\sum_{i,j=1}^N J_i^* (M^{-1})_{ij} J_j}$$
  
Hint for proof:  $e^{-\sum_{i,j=1}^N c_i^* M_{ij} c_j} = \frac{1}{N!} \left(-\sum_{i,j=1}^N c_i^* M_{ij} c_j\right)^N$ 

Exercise for N=1 and 2:  $\int D[c^*c] e^{-c_1^*M_{11}c_1} = \int D[c^*c] (-c_1^*M_{11}c_1) = M_{11} = \det M$ 

$$\int D[c^*c] e^{-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2} = \frac{1}{2!} \int D[c^*c] (-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2)^2 = M_{11}M_{22} - M_{12}M_{21} = \det M$$

Shift of Grassmann variable:  $c^*Mc - c^*J - J^*c = (c^* - J^*M^{-1}) M (c - M^{-1}J) - J^*M^{-1}J$ correlation functions for a non- interaction action (Wick-theorem)

$$\left\langle c_i c_j^* \right\rangle_0 = -\frac{1}{Z_0} \frac{\delta^2 Z_0 \left[ J^*, J \right]}{\delta J_i^* \, \delta J_j} |_{J=0} = M_{ij}^{-1}$$

$$c_i c_j c_k^* c_l^* \right\rangle_0 = \frac{1}{Z_0} \frac{\delta^4 Z_0 \left[ J^*, J \right]}{\delta J_i^* \delta J_j^* \delta J_l \delta J_k} |_{J=0} = M_{il}^{-1} M_{jk}^{-1} - M_{ik}^{-1} M_{jl}^{-1}$$

# Path Integral for Everything

Euclidean action

$$Z = \int \mathcal{D}[c^*, c] e^{-S}$$
  

$$S = \sum_{12} c_1^* (\partial_\tau + t_{12}) c_2 + \frac{1}{4} \sum_{1234} c_1^* c_2^* U_{1234} c_4 c_3$$

One- and two-electron matrix elements:

$$t_{12} = \int d\mathbf{r} \,\phi_1^*(\mathbf{r}) \left( -\frac{1}{2} \bigtriangledown^2 + V(\mathbf{r}) - \mu \right) \phi_2(\mathbf{r})$$
$$U_{1234} = \int d\mathbf{r} \int d\mathbf{r}' \,\phi_1^*(\mathbf{r}) \phi_2^*(\mathbf{r}') \,U(\mathbf{r} - \mathbf{r}') \,\phi_3(\mathbf{r}) \phi_4(\mathbf{r}')$$

Shot notation:

$$\sum_1 \ldots \equiv \sum_{im} \int d\tau ...$$

#### **One- and Two-particle Green Functions**

One-particle Green function

$$G_{12} = -\langle c_1 c_2^* \rangle_S = -\frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S}$$

Two-particle Green function (generalized susceptibilities)

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_S = \frac{1}{Z} \int \mathcal{D}[c^*, c] c_1 c_2 c_3^* c_4^* e^{-S}$$

Vertex function:

$$X_{1234} = G_{14}G_{23} - G_{13}G_{24} + \sum_{1'2'3'4'} G_{11'}G_{22'}\Gamma_{1'2'3'4'}G_{3'3}G_{4'4}$$

$$\chi = - + \Gamma$$

# Baym-Kadanoff functional

Source term

$$S[J] = S + \sum_{ij} c_i^* J_{ij} c_j$$

Partition function and Free-energy:

$$Z[J] = e^{-F[J]} = \int \mathcal{D}[c^*, c] \, e^{-S[J]}$$

Legendre transforming from J to G:

$$F[G] = F[J] - \operatorname{Tr}(JG) \qquad \qquad G_{12} = \frac{1}{Z[J]} \frac{\delta Z[J]}{\delta J_{12}} \Big|_{J=0} = \frac{\delta F[J]}{\delta J_{12}} \Big|_{J=0}$$

 $\int \mathbf{r} \mathbf{r} [\mathbf{T}] \mathbf{r}$ 

1

STT[T]

Decomposition into the single particle part and correlated part

$$F[G] = \operatorname{Tr} \ln G - \operatorname{Tr} \left(\Sigma G\right) + \Phi[G]$$



Baym-Kadanoff Functional  $F[G] = -Tr \ln[-(G_0^{-1} - \Sigma[G])] - Tr(\Sigma[G]G) + \Phi[G]$ 

Exact representation of  $\Phi: \bigvee_{ee}^{\alpha} = \alpha \bigvee_{ee}^{\alpha} = \frac{1}{2} \int_{0}^{1} d\alpha Tr[V_{ee}^{\alpha} < \psi^{+}\psi^{+}\psi\psi >]$ 

**Different Functionals:** 

DFT:  $G=\rho$ DMFT:  $G=G(i\omega)$ BKF:  $G=G(k,i\omega)$ 

$$J=V=V_{h}+V_{xc}$$
$$J=\Sigma_{loc}(i\omega)$$
$$J=\Sigma(k,i\omega)$$

#### Functionals: MFT- DFT- DMFT-BK

G. Kotliar et. al. RMP (2006), A. Georges (2004)

- Weiss Mean-Field Theory (MFT) of classical magnets
- Kohn Density Functional Theory (DFT) of inhomogeneous electron gas in solids
- Dynamical Mean-Field Theory (DMFT) of strongly correlated electron systems
- Baym-Kadanoff Functional

### How to find DMFT-functional?







Dual Fermions: Basic

Find the optimal Reference System Bath hybridization Expand around DMFT solution

Start from Correlated Lattice

#### Superperturbation



#### **Dual Fermion scheme**

General Lattice Action H = h + U $S[c^*, c] = \sum_{\omega k m m' \sigma} \left[ h_k^{mm'} - (i\omega + \mu) 1 \right] c^*_{\omega k m \sigma} c_{\omega k m' \sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c_1^* c_2^* c_3 c_4 d\tau$ 

Reference system: Local Action with hybridization  $\Delta_{\omega}$ 

$$S_{loc} = \sum_{\omega mm'\sigma} \left[ \Delta_{\omega}^{mm'} - (i\omega + \mu)\mathbf{1} \right] c_{\omega m\sigma}^* c_{\omega m'\sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c_1^* c_2^* c_3 c_4 d\tau$$

#### Lattice-Impurity connection:

$$S[c^*, c] = \sum_{i} S_{loc}[c_i^*, c_i] + \sum_{\omega k m m' \sigma} \left( h_k^{mm'} - \Delta_{\omega}^{mm'} \right) c_{\omega k m \sigma}^* c_{\omega k m' \sigma}.$$

A. Rubtsov, et al, PRB 77, 033101 (2008)

## **Dual Transformation**

Gaussian path-integral

$$\int D[\vec{f}^*, \vec{f}] \exp(-\vec{f}^* \hat{A} \vec{f} + \vec{f}^* \hat{B} \vec{c} + \vec{c}^* \hat{B} \vec{f}) = \det(\hat{A}) \exp(\vec{c}^* \hat{B} \hat{A}^{-1} \hat{B} \vec{c})$$

$$With \qquad A = g_{\omega}^{-1} (\Delta_{\omega} - h_k) g_{\omega}^{-1}$$

$$B = g_{\omega}^{-1}$$

$$S_d[f^*, f] = -\sum_{k\omega} \tilde{\mathcal{G}}_{k\omega}^{-1} f_{k\omega}^* f_{k\omega} + \frac{1}{4} \sum_{1234} \gamma_{1234}^{(4)} f_1^* f_2^* f_4 f_3 + \dots$$

Diagrammatic:

**Dual Fermion Action: Details** Lattice - dual action

$$S[c^*, c, f^*, f] = \sum_{i} S_{\text{site},i} + \sum_{\omega \mathbf{k} \alpha \beta} f_{\omega \mathbf{k} \alpha}^* [g_{\omega}^{-1} (\Delta_{\omega} - t_{\mathbf{k}})^{-1} g_{\omega}^{-1}]_{\alpha \beta} f_{\omega \mathbf{k} \beta}$$
$$S_{\text{site},i}[c_i^*, c_i, f_i^*, f_i] = S_{\text{loc}}[c_i^*, c_i] + \sum_{\alpha \beta} f_{\omega i \alpha}^* g_{\omega \alpha \beta}^{-1} c_{\omega i \beta} + c_{\omega i \alpha}^* g_{\omega \alpha \beta}^{-1} f_{\omega i \beta}$$

For each site I integrate-out c-Fermions:

 $\chi^1$ 

$$\int \mathcal{D}[c^*, c] \exp\left(-S_{\text{site}}[c^*_i, c_i, f^*_i, f_i]\right) = \mathcal{Z}_{\text{loc}} \exp\left(-\sum_{\omega \alpha \beta} f^*_{\omega i \alpha} g^{-1}_{\omega \alpha \beta} f_{\omega i \beta} - V_i[f^*_i, f_i]\right)$$
Dual potential:
$$V[f^*, f] = \frac{1}{4} \gamma_{1234} f^*_1 f^*_2 f_4 f_3 + \dots$$

$$\gamma_{1234} = g^{-1}_{11'} g^{-1}_{22'} \left[\chi_{1'2'3'4'} - \chi^0_{1'2'3'4'}\right] g^{-1}_{3'3} g^{-1}_{4'4} \quad \chi^0_{1234} = g_{14} g_{23} - g_{13} g_{24}$$

$$\chi^{1234} = \langle c_1 c_2 c^*_3 c^*_4 \rangle_{\text{loc}} = \frac{1}{\mathcal{Z}_{\text{loc}}} \int \mathcal{D}[c^*, c] c_1 c_2 c^*_3 c^*_4 \exp\left(-S_{\text{loc}}[c^*, c]\right)$$



#### Condition for $\Delta$ and relation with DMFT

 $G^d = G^{DMFT} \cdot g$ 

To determine △, we require that Hartree correction in dual variables vanishes. If no higher diagrams are taken into account, one obtains DMFT:

$$\frac{1}{N}\sum_{\mathbf{k}}\tilde{G}^{0}_{\omega}(\mathbf{k}) = 0 \quad \Longleftrightarrow \quad \frac{1}{N}\sum_{\mathbf{k}}G^{\mathrm{DMFT}}_{\omega}(\mathbf{k}) = g_{\omega}$$

Higher-order diagrams give corrections to the DMFT self-energy, and already the leading-order correction is nonlocal.

$$\Sigma(\mathbf{k},\omega) = \Sigma_{\text{DMFT}}(\omega) + \Sigma_{d}(\mathbf{k},\omega) / [1 + g\Sigma_{d}(\mathbf{k},\omega)]$$

#### **Dynamical Mean Field Theory**



$$\hat{G}(i\omega_n) = \frac{1}{\Omega} \sum_{\vec{k}}^{BZ} \left[ \hat{I}(\mu + i\omega_n) - \hat{H}_0(\vec{k}) - \hat{\Sigma}(i\omega_n) \right]^{-1}$$
$$\hat{G}_0^{-1}(i\omega_n) = \hat{G}^{-1}(i\omega_n) + \hat{\Sigma}(i\omega_n)$$
$$S_{eff} = -\iint d\tau d\tau' c_{\sigma}^+(\tau) G_0^{-1}(\tau - \tau') c_{\sigma}(\tau') + \int d\tau U n^{\uparrow}(\tau) n^{\downarrow}(\tau)$$
$$\hat{G}(\tau - \tau') = -\frac{1}{2} \int D[c, c^+] c(\tau) c^+(\tau') e^{-S_{eff}}$$

$$\hat{\Sigma}_{new}(i\omega_n) = \hat{G}_0^{-1}(i\omega_n) - \hat{G}^{-1}(i\omega_n)$$

W. Metzner and D. Vollhardt, PRL(1989) A. Georges et al., RMP 68, 13 (1996)

ΖJ

#### Realistic DMFT: Charge+Spin+Orbital Fluctuations

W. Metzner and D. Vollhardt (1987)  
A. Georges and G. Kotliar (1992)  
DMFT time scale  

$$\int C(\tau - \tau')$$

$$S[c^*, c] = -\sum_{\omega k\sigma mm'} c^*_{\omega k\sigma m} \left[ (i\omega + \mu)\mathbf{1} - t^{mm'}_{k\sigma} \right] c_{\omega k\sigma m'} + \sum_i S_U[c^*_i, c_i]$$

$$S_{\text{loc}}[c^*, c] = -\sum_{\omega \alpha\beta} c^*_{\omega \alpha} \left[ (i\omega + \mu)\mathbf{1} - \Delta^{\alpha\beta}_{\omega} \right] c_{\omega\beta} + S_U[c^*, c] \qquad g_{12} = -\langle c_1 c^*_2 \rangle_{\text{loc}}$$
DMFT  
Self-consistensy k
$$\int [g^{-1}_{\omega} + \Delta_{\omega} - t_k]^{-1} = g_{\omega}$$

$$\int DMFT$$
Impurity solver  
TRIQS, ALPS

## Quantum Impurity Solver



$$Z = \int \mathcal{D}[c^*, c] e^{-S_{simp}},$$

$$S_{simp} = -\sum_{I,J=0}^{N} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' c_{I\sigma}^{*}(\tau) \left[ \mathcal{G}_{\sigma}^{-1}(\tau - \tau') \right]_{IJ} c_{J\sigma}(\tau') + \sum_{I=1}^{N} \int_{0}^{\beta} d\tau U n_{I,\uparrow}(\tau) n_{I,\downarrow}(\tau),$$

What is a best scheme? Quantum Monte Carlo ! Imputity solver: miracle of CT-QMC  $S = \sum_{\sigma\sigma'} \int_0^\beta d\tau \int_0^\beta d\tau \left[ -G_0^{-1}(\tau - \tau')c_\sigma^+(\tau)c_\sigma(\tau') + \frac{1}{2}U\delta(\tau - \tau')c_\sigma^+(\tau)c_{\sigma'}(\tau)c_{\sigma'}(\tau')c_\sigma(\tau') \right]$ 

$$G_0^{-1}(\tau - \tau') = \delta(\tau - \tau') \left[\frac{\partial}{\partial \tau} + \mu\right] - \Delta(\tau - \tau')$$

Interaction expansion CT-INT: A. Rubtsov et al, JETP Lett (2004)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} Tr \det[G_0(\tau - \tau')]$$

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{1}{k!} Tr \left\langle c_{\sigma}^+(\tau) c_{\sigma}(\tau') \dots c_{\sigma'}^+(\tau) c_{\sigma'}(\tau') \right\rangle_0 \det[\Delta(\tau - \tau')]$$

Efficient Krylov scheme: A. Läuchli and P. Werner, PRB (2009)

E. Gull, et al, RMP 83, 349 (2011)

#### Comparison of different CT-QMC



Ch. Jung, unpublished

CT-QMC review: E. Gull et al. RMP (2011)

## **Dual Fermions: Diagrams**



$$\tilde{\varSigma}_{12}^{(1)} = -T \sum_{34} \gamma_{1324} \, \tilde{G}_{43}^{\rm loc}$$

$$\tilde{\Sigma}_{12}^{(2)}(\mathbf{k}) = -\frac{1}{2} \left(\frac{T}{N_k}\right)^2 \sum_{\mathbf{k}_1 \mathbf{k}_2} \sum_{345678} \gamma_{1345} \,\tilde{G}_{57}(\mathbf{k}_1) \,\tilde{G}_{83}(\mathbf{k}_2) \,\tilde{G}_{46}(\mathbf{k} + \mathbf{k}_2 - \mathbf{k}_1) \,\gamma_{6728}$$

#### Convergence of Dual Fermions: 2d





H. Hafermann, et al. PRL102, 206401 (2009)

#### **Dual and Lattice Green's Functions**

Two equivalent forms for partition function:

$$F[J^*, J; L^*, L] = \ln \mathcal{Z}_f \int \mathcal{D}[c^*, c; f^*, f] \exp\left(-S[c^*, c; f^*, f] + J_1^*c_1 + c_2^*J_2 + L_1^*f_1 + f_2^*L_2\right)$$

$$F[J^*, L] = \ln \tilde{\mathcal{Z}}_f \int \mathcal{D}[f^*, f] \exp\left(-S_f[f^*, f] + J_1^*f_2 + f_2^*L_2\right)$$

$$F[L^*, L] = \ln \mathcal{Z}_f \int \mathcal{D}[f^*, f] \exp\left(-S_d[f^*, f] + L_1^* f_1 + f_2^* L_2\right)$$

Hubbard-Stratanovich transformation:

$$F[J^*, J; L^*, L] = L_1^*[g(\Delta - h)g]_{12}L_2 + \ln \int \mathcal{D}[c^*, c] \exp\left(-S[c^*, c] + J_1^*c_1 + c_2^*J_2 + L_1^*[g(\Delta - t)]_{12}c_2 + c_1^*[(\Delta - t)g]_{12}L_2\right)$$

Relation between Green functions:

$$\tilde{G}_{12} = -\frac{\delta^2 F}{\delta L_2 \delta L_1^*} \bigg|_{L^* = L = 0}$$

$$\tilde{G}_{12} = -[g(\Delta - t)g]_{12} + [g(\Delta - t)]_{11'}G_{1'2'}[(\Delta - t)g]_{2'2}$$
  
T-matrix like relations via dual self-energy

$$G_{\omega}(\mathbf{k}) = \left[ \left( g_{\omega} + g_{\omega} \tilde{\Sigma}_{\omega}(\mathbf{k}) g_{\omega} \right)^{-1} + \Delta_{\omega} - t_k \right]^{-1}$$

ARPES:  $Im \Sigma(k, \omega=0)$ 



Hubbard model with  $8t = 2, \beta = 20$  at half-filling. Data for Im  $\Sigma_k$  at  $\omega = 0$ .

A. Rubtsov, et al, PRB 79, 045133 (2009)

#### 2d-Hubbard: Spectral Function

paramagnetic calculation U/t = 8, T/t = 0.235DMFT



#### Pseudogap in HTSC: dual fermions $S[f, f^*] = \sum g_{\omega}^{-2} \left( (\Delta_{\omega} - \epsilon_k)^{-1} + g_{\omega} \right) f_{\omega k\sigma}^* f_{\omega k\sigma} + \sum V_i$ $\omega k\sigma$ 0.3 DMFT 0.25 0.2 5.0 LDFA DOS ××



**2d**:

k,

FS, n=0.85

2.5

- 0

# TPGF: Bethe-Salpeter Equations



Non-local susceptibility with vertex corrections



#### Susceptibility: 2d – Hubbard model



#### DF: AFM and SC instabilities



# Non-local screened interactions

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A. L. PRB 70, 195104 (2004).



| Interaction           | $C_2F$ | $C_2H$ |
|-----------------------|--------|--------|
| $U_{00}$              | 5.16   | 4.69   |
| $U_{01}$              | 2.46   | 2.19   |
| $U_{02}$              | 1.66   | 1.11   |
| $U_{03}$              | 1.46   | 0.85   |
| $J_{01}^F$ (screened) | 0.018  | 0.034  |
| $J_{01}^F$ (bare)     | 0.044  | 0.099  |
|                       |        |        |

 $\chi_0^r$  V. Mazurenko, et al, PRB 94, 214411 (2016)

$$\overline{W} = (1 - v\chi_0^r)^{-1}v \qquad W = (1 - \overline{W}\chi_0^t)^{-1}\overline{W}$$

 $U_{ij} = \left\langle ij \left| \bar{W} \right| ij \right\rangle$  $J_{ij} = \left\langle ij \left| \bar{W} \right| ji \right\rangle$  Non-local Coulomb and Exchange



C-RPA in Wannier basis: Y. Nomura, M. Kaltak, K. Nakamura, C. Taranto, S. Sakai, A. Toschi, R. Arita, K. Held, G. Kresse, M. Imada, PRB **86**, 085117 (2012)

# Interaction of electrons with collective excitations



Magnons

Plasmons

Orbitons

## Dual Boson: General Idea



#### Beyond DMFT: Dual DB/DF scheme

General Lattice Action:  $U_{\mathbf{q}} = U + V_{\mathbf{q}}$ 

$$S = -\sum_{\mathbf{k}\nu\sigma} c^{+}_{\mathbf{k}\nu\sigma} [i\nu + \mu - \varepsilon_{\mathbf{k}}] c_{\mathbf{k}\nu\sigma} + \frac{1}{2} \sum_{\mathbf{q}\omega} U_{\mathbf{q}} n^{*}_{\mathbf{q}\omega} n_{\mathbf{q}\omega}$$

$$n_{\mathbf{q}\omega} = \sum_{\mathbf{k}\nu\sigma} (c^*_{\mathbf{k}\nu} c_{\mathbf{k}+\mathbf{q},\nu+\omega} - \langle c^*_{\mathbf{k}\nu} c_{\mathbf{k}\nu} \rangle \delta_{\mathbf{q}\omega})$$

(2012)

#### Reference system: Local Action with hybridization $\Delta_{\!_{\rm V}}$ and $\Lambda_{\!_{\rm G}}$

$$S_{\text{ref}} = -\sum_{\nu\sigma} c_{\nu\sigma}^{+} [i\nu + \mu - \Delta_{\nu}] c_{\nu\sigma} + \frac{1}{2} \sum_{\omega} \mathcal{U}_{\omega} n_{\omega}^{*} n_{\omega}$$

Lattice-Impurity connection:  $S = \sum S_{ref}^{(i)} + \Delta S$ 

$$\Delta S = \sum_{\nu \mathbf{k}\sigma} c^{+}_{\nu \mathbf{k}\sigma} [\varepsilon_{\mathbf{k}} - \Delta_{\nu}] c_{\nu \mathbf{k}\sigma} + \frac{1}{2} \sum_{\mathbf{q}\omega} \left( U_{\mathbf{q}} - \mathcal{U}_{\omega} \right) n^{*}_{\mathbf{q}\omega} n_{\mathbf{q}\omega}$$

$$\mathcal{U}_{\omega} = U + \Lambda_{\omega}$$
  $U_{\mathbf{q}} - \mathcal{U}_{\omega} = V_{\mathbf{q}} - \Lambda_{\omega}$   
. Rubtsov, M. Katsnelson, A.L., Ann. Phys. 327, 1320 (



В

U

 $\Lambda_{\omega}$ 

 $\Delta_{v}$ 

# **Dual Transformation**

$$\bar{\Sigma}_{k\nu}^{-1} = \tilde{\Sigma}_{k\nu}^{-1} + G_{\nu}^{ref}$$

 $\Sigma_{\cdot} = \Sigma^{ref} \perp \bar{\Sigma}_{\cdot}$ 

Fermionic Hubbard-Stratanovich transformation

$$e^{\sum_{\mathbf{k}\nu\sigma}c^*_{\mathbf{k}\nu\sigma}[\Delta_{\nu\sigma}-\varepsilon_{\mathbf{k}}]c_{\mathbf{k}\nu\sigma}} = \det[\Delta_{\nu\sigma}-\varepsilon_{\mathbf{k}}]\int D[f^*,f] e^{-\sum_{\mathbf{k}\nu\sigma}\left\{f^*_{\mathbf{k}\nu\sigma}[\Delta_{\nu\sigma}-\varepsilon_{\mathbf{k}}]^{-1}f_{\mathbf{k}\nu\sigma}+c^*_{\nu\sigma}f_{\nu\sigma}+f^*_{\nu\sigma}c_{\nu\sigma}\right\}}$$

Bosonic Hubbard-Stratanovich transformation

$$\sqrt{\det[\Lambda_{\omega} - V_{\mathbf{q}}]} e^{\frac{1}{2} \sum_{\mathbf{q}\omega} n_{\mathbf{q}\omega}^* [\Lambda_{\omega} - V_{\mathbf{q}}] n_{\mathbf{q}\omega}} = \int D[\phi] e^{-\frac{1}{2} \sum_{\mathbf{q}\omega} \left\{ \phi_{\mathbf{q}\omega}^* [\Lambda_{\omega} - V_{\mathbf{q}}]^{-1} \phi_{\mathbf{q}\omega} + n_{\omega}^* \phi_{\omega} + \phi_{\omega}^* n_{\omega} \right\}}$$
Dual action
$$\tilde{S} = -\sum_{\mathbf{k}\nu} f_{\mathbf{k}\nu}^* \tilde{G}_0^{-1} f_{\mathbf{k}\nu} - \frac{1}{2} \sum_{\mathbf{q}\omega} \phi_{\mathbf{q}\omega}^* \tilde{W}_0^{-1} \phi_{\mathbf{q}\omega} + \frac{1}{2} \int_{\mathbf{q}\omega} \phi_{\mathbf{q}\omega}^* \tilde{W}_0^{-1} \phi_{\mathbf{q}\omega}^* \tilde{W}_0^{-1} \phi_{\mathbf{q}\omega}^* + \frac{1}{2} \int_{\mathbf{q}\omega} \phi_{\mathbf{q}\omega}^* \tilde{W}_0^{-1} \phi_{\mathbf{q}\omega}^* + \frac{1}{2}$$

$$\tilde{G}_0 = [G_{\mathrm{ref},\nu}^{-1} + \Delta_\nu - \varepsilon_{\mathbf{k}}]^{-1} - G_\nu^{\mathrm{ref}} = G_{\mathrm{E}} - G_\nu^{\mathrm{ref}}$$

$$\tilde{W}_0 = \alpha_{\omega}^{-1} \left[ [U_{\mathbf{q}} - \mathcal{U}_{\omega}]^{-1} - \chi_{\omega} \right]^{-1} \alpha_{\omega}^{-1} = W_{\mathrm{E}} - \mathcal{W}_{\omega}^{\mathrm{ref}}$$

Augmentation:

$$\alpha_{\omega} = \mathcal{W}_{\omega} / \mathcal{U}_{\omega} = (1 + \mathcal{U}_{\omega} \chi_{\omega})$$
$$\mathcal{U}_{\omega} \longrightarrow \mathcal{W}_{\omega} \longleftarrow \tilde{W}_{\mathbf{q}\omega}$$

## **Dual Potential**

Effective Interactions:

$$\tilde{V} = \frac{1}{4} \sum_{\nu\nu'\omega} \gamma_{\nu\nu'\omega} f_{\nu}^* f_{\nu'}^* f_{\nu+\omega} f_{\nu'-\omega} + \sum_{\nu\omega} \left( \lambda_{\nu\omega} f_{\nu}^* f_{\nu+\omega} \phi_{\omega}^* + h.c. \right)$$

Definition of correlation functions

$$G_{\mathbf{k}\nu}/G_{\nu}^{\mathrm{ref}} = -\left\langle c \ c^{+} \right\rangle_{\mathbf{k}\nu/\nu \mathrm{ref}},$$
$$X_{\mathbf{q}\omega}/\chi_{\omega} = -\left\langle n \ n^{*} \right\rangle_{\mathbf{q}\omega/\omega \mathrm{ref}},$$
$$\mathcal{W}_{\omega} = \mathcal{U}_{\omega} + \mathcal{U}_{\omega}\chi_{\omega}\mathcal{U}_{\omega},$$

$$\lambda_{\nu\omega} = g_{\nu}^{-1} g_{\nu+\omega}^{-1} \alpha_{\omega}^{-1} \langle c_{\nu} c_{\nu+\omega}^* n_{\omega} \rangle_{\text{loc}}$$

 $\overbrace{\mu}^{\gamma} \gamma_{\nu\nu'\omega} = g_{\nu}^{-1} g_{\nu'}^{-1} g_{\nu'-\omega}^{-1} g_{\nu+\omega}^{-1} \Big[ \left\langle c_{\nu} c_{\nu'} c_{\nu'-\omega}^{*} c_{\nu+\omega}^{*} \right\rangle - g_{\nu} g_{\nu'} (\delta_{\omega} - \delta_{\nu',\nu+\omega}) \Big]$ 

DB: Full impurity vertex  $\gamma_{
u
u'\omega}$  with  $\tilde{G}_{{f k}
u}$ 

is equivalent to Bare irreducible vertex  $\overline{\gamma}^{2\mathrm{PI}\,arsigma}_{
u
u''\omega}$  and  $G_{
u}(\mathbf{k})$ 

in normal Ladder-perturbation theory

# Lattice GF and SCF-condition

Lattice two-point correlation functions

$$G_{\mathbf{k}\nu}^{-1} = G_{\mathbf{E}}^{-1} - \tilde{\Sigma}_{\mathbf{k}\nu} (1 + G_{\nu}^{\mathrm{ref}} \tilde{\Sigma}_{\mathbf{k}\nu})^{-1} \quad \tilde{\Sigma}_{\mathbf{k}\nu} = \mathbf{A} + \mathbf{A$$

Self-consistent conditions:

$$\begin{split} \sum_{\mathbf{k}} G_{\mathbf{k}\nu} &= G_{\nu}^{\text{ref}}, \\ \sum_{\mathbf{q}} W_{\mathbf{q}\omega} &= \mathcal{W}_{\omega}^{\text{ref}}. \qquad \text{VS.} \qquad \sum_{\mathbf{q}} X_{\mathbf{q}\omega} = \chi_{\omega} \end{split}$$

Lattice susceptibility

$$X_{\mathbf{q}\omega} = \tilde{U}_{\mathbf{q}\omega}^{-1} \alpha_{\omega}^{-1} \tilde{W}_{\mathbf{q}\omega} \alpha_{\omega}^{-1} \tilde{U}_{\mathbf{q}\omega}^{-1} - \tilde{U}_{\mathbf{q}\omega}^{-1}$$

## **Comparisson GW+DMFT**



DB+GW: E. Stepanov, A. Huber, E. van Loon, A. L., M. Katsnelson PRB **94**, 205110 (2016) GW+DMFT: Th. Ayral, S. Biermann, Ph. Werner, L. BoehnkePRB **95**, 245130 (2017) GW+DMFT: S. Biermann, F. Aryasetiawan, and A. Georges, PRL **90**, 086402 (2003)

#### Spin-Polaron near van Hove singularity in real Material: Na<sub>x</sub>CoO<sub>2</sub>



DF-spectral function Na<sub>x</sub>CoO<sub>2</sub>





A. Wilhelm, F. Lechermann, H. Hafermann,M. Katsnelson, A. L. Phys. Rev. B 91, 155114 (2015)

Spin-Polaron physics for n=1.75

$$E(k) = -\frac{2t(t - J\cos k)}{|t| + J}$$

1d t-J model, M. Katsnelson (1982)

#### **Plasmon in strongly correlated materials**



Single plasmon mode for q->0

Erik van Loon, et all, PRL 113, 246407 (2014)



#### DB/DF-scheme: interpretation

Hamiltonian action with local in time, but large (tall and beatiful) U



Non-Hamiltonian action with retarded V, formally including all ordres of interaction (but negligible!)



(can be hidden in your pocket, not much food required)

(troubles,troubles)

#### Summary

- Strong-coupling DB/DF-theory based on a ladder approximation is
  - a conserving theory of
  - electron-"anyon" interaction



