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Figure 3 Schematic representation of reference systems in the DFT, DFT+DMFT and
GW+DMFT methods

ture, are indeed most striking in spectroscopic probes, where they take the form of
quasi-particle renormalisations or broadening due to finite lifetimes, and give rise to
satellite features or atomic multiplets. An intrinsic temperature dependence of the
electronic structure of a metal, with a coherence-incoherence crossover delimiting
Fermi liquid properties, or a strongly temperature-dependent gap – beyond what can
be explained by a Fermi factor – are further hallmarks of electronic correlations [11].

Historically, the first non-perturbative electronic structure techniques for correlated
materials evolved from many-body treatments of the multi-orbital Hubbard Hamilto-
nian with realistic parameters. The general strategy of these so-called “DFT++” ap-
proaches [12, 13] consists in the extraction of the parameters of a many-body Hamil-
tonian from first principles calculations and then solving the problem by many-body
techniques. The procedure becomes conceptually involved, however, through the
need of incorporating e�ects of higher energy degrees of freedom on the low energy
part, the so-called “downfolding”.

For the one-particle part of the Hamiltonian, downfolding techniques have been the
subject of a vast literature [14, 15], and are by now well established. The task here
is to define orbitals spanning the low-energy Hilbert space of the electronic degrees
of freedom of a solid in such a way that a low-energy one-particle Hamiltonian can
be constructed whose spectrum coincides with the low-energy part of the spectrum
of the original one-particle Hamiltonian.1) Downfolding of the interacting part of a
many-body Hamiltonian is a less straightforward problem, which has attracted a lot

1) We do not enter here into details concerning the di�erent strategies of achieving such a construction:
various frameworks, such as mu�n-tin orbitals methods [15], maximally localised Wannier functions
[16], or projected atomic orbitals [17] have been employed.

Reference system is important: Archimedes  
„Give me the place to stand, and I shall move the earth.“ 
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Summary for Fermions 
ĉi |1i = |0i ĉi |0i = 0

ĉ+i |0i = |1i ĉ+i |1i = 0

{ĉi, ĉ+j } = �ij

Pauli principle 

9.4 Alexander Lichtenstein

interactions between dual fermions are related with the connected part of the screened impu-
rity vertex. Standard diagrammatic techniques can be applied for calculations of the bold dual
propagator G̃k,⌫ , which allows to obtain the nonlocal self-energy for the original fermions [2]
and to describe nonlocal correlations beyond the DMFT.
The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation (1). In the dual space, this simply reduces to

P
k G̃

0

k,⌫ = 0 and means that, on average
over the whole Brillouin zone, �⌫ optimally approximates the electron spectrum "k, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by, e.g., ladder summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Path Integral for fermions

We first introduce a formalism of the path integral over fermionic fields [10]. Let us consider a
simple case of a single quantum state |ii occupied by fermionic particles [11] . Due to the Pauli
principle the many-body Hilbert space is spanned only by two orthonormal states |0i and |1i.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ+i operators
with anticommutation relations {ĉi, ĉ+j } = �ij we have the following simple rules

ĉi |1i = |0i ĉi |0i = 0 (1)

ĉ+i |0i = |1i ĉ+i |1i = 0 .

Moreover, the density operator and the Pauli principle has a form

ĉ+i ĉi |ni = ni |ni
ĉ2i = (ĉ+i )

2 = 0 .

The central object here related with so-called fermionic coherent states |ci which are eigenstates
of annihilation operator ĉi with eigenvalue ci:

ĉi |ci = ci |ci (2)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the bottom and one can rewrite one of equation from Eq. (1) in
the following ”eigenvalue” form

ĉi |0i = 0 |0i

Due to anti-commutation relations for the frmionic operators the eigenvalues of coheren states
ci are so-called Grassmann numbers with the following multiplictions rules [12]:

cicj = �cjci (3)

c2i = 0

Fermionic coherent states |c⟩  
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Left-eigenbasis has only annihilation operator - bounded from the bottom:  
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2 = 0 .

The central object here related with so-called fermionic coherent states |ci which are eigenstates
of annihilation operator ĉi with eigenvalue ci:
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Grassmann numbers ci   

Exact representation 

Left coherent state ⟨c| : 

general function of  two Grassmann variables  

Eigenvalues of  coheren states  
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Dual Fermions 9.5

It is convenient to assume that the Grassmann number also anti-commute with the fermionic
operators

{c, ĉ} = {c, ĉ+} = 0

The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f
0

+ f
1

c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
+

i |0i (5)

Let us show this in a simple case of one fermionic states:

ĉ |ci = ĉ(1� cĉ+) |0i = ĉ (|0i � c |1i) = �ĉc |1i = c |0i = c |ci (6)

One can also define a ”left” coherent state hc| as the lef-eigenstates of creations operators ĉ+i

hc| ĉ+i = hc| c⇤i

Note that new eigenvalues c⇤i is just another Grassman nimber and not a complex conjugate of
ci. The left coherent state can be obtained similar to Eq. (5) as following

hc| = h0| e�
P

i ĉic
⇤
i

The general function of two Grassmann variables analogously to Eq. (4) can be represented
only by four Taylor coefficients

f(c⇤, c) = f
00

+ f
10

c⇤ + f
01

c+ f
11

c⇤c (7)

Using this expansion we can define a derivative of Grassmann variables in the natural way

@ci
@cj

= �ij

One need to be careful with ”right-order” of such a derivative and remember of anti-commutation
rules, i.e.

@

@c
2

c
1

c
2

= �c
1

For the case of general two-variable function in Eq. (7) we have

@

@c⇤
@

@c
f(c⇤, c) =

@

@c⇤
(f

01

� f
11

c⇤) = �f
11

= � @

@c

@

@c⇤
f(c⇤, c)

One also need a formal definition of integration over Grassmann variables and the natural way
consists with the following rules [12]:

Z
1dc = 0

Z
cdc = 1,

Proof  for one fermionic states  
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The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f
0

+ f
1

c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
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F. A. Berezin: Method of  Second Quantization (Academic Press , New York, 1966) 



Grassmann calculus 

Due to anti-commutation rule:   

Formal definition of  integration over Grassmann variables  

Formal definition of  derivative 

Example: 
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The arbitrary function of one Grassmann variable can be represented only by the first two Taylor
coefficients

f(c) = f
0

+ f
1

c (4)

One can proof the following general many-body representation of coherent states

|ci = e�
P

i ciĉ
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+

i |0i (5)

Let us show this in a simple case of one fermionic states:
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9.6 Alexander Lichtenstein

which just shows that the integration over Grassmann variable is equivalent to the differentia-
tion: Z

...dc ! @

@c
...

The coherent states are not orthonormal and the overlap of any two coherent fermionic states
equal to

hc|ci = e
P

i c
⇤
i ci

which is easy to see for the case of one particle

hc|ci = (h0|� h1| c⇤) (|0i � c |1i) = 1 + c⇤c = ec
⇤c

An important property of coherent states is related with resolution of the unity operator
Z

dc⇤
Z

dc e�
P

i c
⇤
i ci |ci hc| = 1̂ =

Z Z
dc⇤dc

|ci hc|
hc|ci .

For simplicity we demonstrate this relation only for one fermion state:
Z Z

dc⇤dc e�c⇤c |ci hc| =
Z Z

dc⇤dc (1� c⇤c) (|0i � c |1i) (h0|� h1| c⇤) =

�
Z Z

dc⇤dc c⇤c (|0i h0|+ |1i h1|) =
X

n

|ni hn| = 1̂

Matrix elements of normally ordered operators is very easy to calculate in coherent basis by
operating of ĉ+ to the write states and ĉ to the left one:

hc⇤| Ĥ(ĉ+, ĉ) |ci = H(c⇤, c) hc⇤|ci = H(c⇤, c) e
P

i c
⇤
i ci (8)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ+i , ĉi) ! (c⇤i , ci).
Finally, we prove the so-called ”trance-formula” for arbitrary fermionic operator in normal
order (in one fermion notation):

Tr
⇣
bO
⌘

=
X

n=0,1

hn| bO |ni =
X

n=0,1

Z Z
dc⇤dc e�c⇤c hn| ci hc| bO |ni =
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Z Z
dc⇤dc e�c⇤c

X

n=0,1

h�c| bO |ni hn| ci =
Z Z

dc⇤dc e�c⇤c h�c| bO |ci

The fermionic ”minus” sign in the left coherent states come from the commutation of (c⇤) and
(c) coherent state in such a transformation: hn|ci hc|ni = h�c|ni hn|ci. One have to use the
standard Grassmann rules: c⇤i cj = �cjc⇤i and |�ci = |0i+ c |1i.
We are ready now to write a partition function for grand-canonical quantum ensemble with
H = bH�µ bN and inverse temperature �. One have to use the N-slices Trotter decomposition for
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and for N = 2 we have
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For a shift (change) of variables in the path integral one use the following transformation with
the unit Jacobian: c ! c�M�1J and

c⇤Mc� c⇤J � J⇤c =
�
c⇤ � J⇤M�1

�
M

�
c�M�1J

�
� J⇤M�1J .

Using Gaussian path integral it is very easy to calculate any correlation functions for a non-
interaction action (Wick-theorem) :
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[J⇤, J ]

�J⇤
i �Jj
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�4Z
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[J⇤, J ]

�J⇤
i �J

⇤
j �Jl�Jk

|J=0

= M�1

il M�1

jk �M�1

ik M�1

jl

Corresponding bosonic path-integral can be formulated in a similar way with a complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path integral over
bosonic fields is equal to inverse of the M-matrix determinant [10] .

3 Functional approach

We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [9]. Let us start from the full many–body
Hamiltonian describing electrons moving in the periodic external potential of ions V (r) with
the chemical potential µ and interacting via Coulomb law: U(r � r0) = 1/|r � r0|. We use
the atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian has the
following form:

H =
X

�

Z
dr b +

� (r)[�
1

2
52 + V (r)� µ] b �(r) (10)

+
1

2

X

��0

Z
dr

Z
dr0 b +

� (r) b +

�0(r0)U(r� r0) b �0(r0) b �(r).

We can always use the single-particle orthonormal basis set in solids �n(r) for example Wannier
orbitals with full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, �) and
expand the fields in creation and annihilation operators:

b (r) =
X

n

�n(r)bcn (11)

b +(r) =
X

n

�⇤
n(r)bc+n
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2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r′) = 1/|r− r′|. We

use atomic units ! = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫
dr ψ̂†

σ(r)

(
−
1

2
∇2 + V (r)− µ

)
ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫
dr

∫
dr′ ψ̂†

σ(r)ψ̂
†
σ′(r′)U(r − r

′) ψ̂σ′(r′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫
D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫
drφ∗

1(r)

(
−
1

2
▽2 + V (r)− µ

)
φ2(r) (5)

U1234 =

∫
dr

∫
dr′ φ∗

1(r)φ
∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫
dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −⟨c1c
∗
2⟩S = −

1

Z

∫
D[c∗, c] c1c

∗
2 e

−S (7)
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = ⟨c1c2c
∗
3c

∗
4⟩S =

1

Z

∫
D[c∗, c] c1c2c

∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =
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D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation
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X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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1.6 Alexander Lichtenstein

The Baym–Kadanoff functional can be obtained by Legendre transforming from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = ⟨c∗1c1⟩S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free

energy.

One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.
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A.4.3 Determination of Combinatorial Prefactors
The determination of the combinatorial prefactors by counting the number of equiva-
lent pairings becomes difficult for diagrams at high orders. A closer analysis gives the
following general rules to determine these prefactors: First consider diagrams which
contains no equivalent lines (i.e. equally directed lines connecting the same or same
two vertices). This is the case for diagrams a) and e). The prefactor of such a diagram is
unity at any order of the perturbation theory. In order to see this, recall that the prefactor
of each vertex is 1/[(n/2)!]2, where n is the number of edges (see Sec. A.3). This is
exactly the number of possibilities to attach lines to the vertex. An additional factor
1/m! arises from the expansion of the exponential, where m is the perturbation order.
Attaching a label to each vertex of one sort (e.g. two-particle vertices) to make them
distinguishable, one sees that all m! permutations appear in a complete contraction. If
vertices of different sorts are present in a diagram, the factor corresponding to the per-
mutation of these vertices among themselves explicitly appears in the expansion (e.g.
2! for diagram c). Hence a diagram corresponds to the sum of 1/[(n/2)!]2m! diagrams
with the same value, so that the prefactor exactly cancels.

This only holds if all ways of attaching the lines or permuting the vertices yield
a different, distinguishable diagram. If for example two vertices are connected by k
equivalent lines, this reduces the number of distinguishable diagrams (pairings) by the
number of permutations of these lines, since a permutation yields the identical, distin-
guishable diagram. Hence the prefactor is cancelled only up to a factor 1/k! for each
set of k equivalent lines connecting the same two vertices. For example, there are two
equivalent lines going from left to right and three parallel lines from right to left in
diagram d). Hence the prefactor is 1/2! · 1/3! = 1/12. For the vacuum to vacuum dia-
grams contributing to the Luttinger-Ward functional Φ used in chapter 11 one needs to
account for additional symmetry factors. Noting that for the generic n-th order diagram
depicted in Fig. A.1, each of the 2n cyclic permutations of the sequences (1, 2, . . .n) and
(n, . . . , 2, 1) corresponds to the same distinguishable diagram, the prefactor of this dia-
gram is 1/(2n). The symmetry factor is obviously unity for self-energy diagrams. The
diagrammatic rules for the dual propagator are similar to those for Hugenholtz diagrams
[177].

Figure A.1: Generic n-th order ring diagram contributing to the Luttinger-Ward functional Φ.
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using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.

Correlated Electrons 1.7

3 Local correlations and beyond

We will only consider the local, but multiobital, interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving

the idea of how to generalize a dual-fermion (DF) scheme to the multi-orbital case [17,18]. The

general strategy to separate the local and non-local correlations effects is associated with the

introduction of auxiliary fermionic fields which will couple separated local correlated impurities

models back to the lattice [16]. In order to include the smaller non-local part of the Coulomb

interactions one can use a more general approach using auxiliary fermionic and bosonic fields

[19].

We rewrite corresponding original action, Eq. (3), in Matsubara space as a sum of the non-local

one-electron contribution with t12 and the local interaction part U

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[
(iω + µ)1− tmm′

kσ

]
cωkσm′ +

∑

i

SU[c
∗
i , ci]. (16)

The index i labels the lattice sites, m refers to different orbitals, σ is the spin projection and

the k-vectors are quasi-momenta. In order to keep the notation simple, it is useful to introduce

the combined index α ≡ {m, σ}. Translational invariance is assumed for simplicity in the

following, although a real space formulation is straightforward. The local part of the action, SU,

may contain any type of local multi-orbital interaction.

In order to formulate an expansion around the best possible auxiliary local action, a quantum

impurity problem is introduced

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα
[
(iω + µ)1−∆αβ

ω

]
cωβ + SU[c

∗, c], (17)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an

auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a

quantum impurity model is that such a reference system can be solved numerically exactly for

an arbitrary hybridization function using the CT-QMC methods [20]. Using the locality of the

hybridization function ∆ω, the lattice action (16) can be rewritten exactly in terms of individual

impurity models and the effective one-electron coupling (tij−∆ω) between different impurities

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα

(
tαβ
k

−∆αβ
ω

)
cωkβ. (18)

We will find the condition for the optimal choice of the hybridization function later. Although

we can solve the individual impurity model exactly, the effect of spatial correlations due to

the second term in Eq. (18) is very hard to treat, even perturbatively, since the impurity ac-

tion is non-Gaussian and one cannot use the Wick theorem. The main idea of a dual-fermion

transformation is the change of variables from (c∗, c) to weakly correlated Grassmann fields

(f ∗, f) in the path integral representation of the partition function, Eq. (3), followed by a sim-

ple perturbative treatment. The new variables are introduced through the Hubbard-Stratonovich

= 
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Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice
problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted
to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice
problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted
to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 9: Illustration of the dual fermion approach. Spatial correlations in the original lattice
problem are mediated between the impurities of Fig. 8 through dual fermions, which in turn
interact via n-particle interactions. From the Ref. [14].
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Fig. 9: Illustration of the dual fermion approach. Spatial correlations in the original lattice
problem are mediated between the impurities of Fig. 8 through dual fermions, which in turn
interact via n-particle interactions. From the Ref. [14].
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Basic diagrams for dual self-energy 

Lines  - dual Green’s function.  
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Condition for Δ and relation with DMFT 

To determine Δ, we require  
that Hartree correction in dual variables vanishes. 
If no higher diagrams are taken into account, one obtains DMFT: 

Higher-order diagrams give corrections to the DMFT self-energy,  
and already the leading-order correction is nonlocal. 

Σ(k,ω)= ΣDMFT(ω)+Σd(k,ω)/[1+gΣd(k,ω)] 
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Dynamical Mean Field Theory 
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Realistic DMFT: Charge+Spin+Orbital Fluctuations 

DMFT  
self-consistensy 

DMFT  
Impurity solver 
TRIQS, ALPS 

W. Metzner and D. Vollhardt (1987) 
A.  Georges and G. Kotliar    (1992) 



Quantum Impurity Solver 
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =

⎛

⎜⎜⎜⎝

Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0

⎞

⎟⎟⎟⎠

For a general N ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

What is a best scheme? 
Quantum Monte Carlo ! 



Imputity solver: miracle of CT-QMC  

 Interaction expansion CT-INT:  A. Rubtsov et al, JETP Lett (2004) 

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)  

E. Gull, et al, RMP 83, 349 (2011) 

Efficient Krylov scheme:  A. Läuchli and P. Werner, PRB (2009)  



Comparison of  different CT-QMC 
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Dual Fermions: Diagrams 
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Fig. 6: Schematic representations of initial lattice model (left) and the local DMFT approach

with orbital and spin fluctuations (right).

by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite

partial series of all local diagrams, starting from the first term in Fig. 5. These contributions are

effectively absorbed into the impurity problem. Note that such an expansion is not one around

DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (19) that for a theory, which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.

The action (29) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram in

Fig. 5, which contains a single closed loop

Σ̃(1)
12 = −T

∑

34

γ1324 G̃
loc
43 (34)

where G̃loc = (1/Nk)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented in Fig. 5 contains two equivalent lines and one closed loop, and

1.12 Alexander Lichtenstein

hence is k-dependent

Σ̃(2)
12 (k) = −

1

2

(
T

Nk

)2 ∑

k1k2

∑

345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[(
gω + gωΣ̃ω(k)gω

)−1
+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)
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Dual and Lattice Green’s Functions 
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Two equivalent forms for partition function: 

Hubbard-Stratanovich transformation: 

Relation between Green functions: 

1.12 Alexander Lichtenstein

hence is k-dependent
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345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[(
gω + gωΣ̃ω(k)gω

)−1
+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)

T-matrix like relations via dual self-energy 
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5.4 Calculation of susceptibilities

For the calculation of the dual susceptibility, the dual vertex function is first calculated by means
of a Bethe-Salpeter equation [37,38] (in the following we write the equations for a single-orbital
model for simplicity)
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This equation is depicted diagrammatically in Fig. 13. Here the irreducible vertex is ap-
proximated by the local irreducible interaction of dual fermions to lowest-order and is hence
given by the reducible vertex of the impurity model γ (the index ’(4)’ is omitted in what fol-
lows). Here α = d,m stands for the density (d) and magnetic (m) electron-hole channels:
Γ d = Γ ↑↑↑↑ + Γ ↑↑↓↓, Γm = Γ ↑↑↑↑ − Γ ↑↑↓↓. The physical content of the BSE is repeated scatter-
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and spin projection Sz. The density channel corresponds to the S = 0, Sz = 0 singlet channel,
while Γm is the vertex in the S = 1, Sz = 0 triplet channel. In the magnetic channel, the collec-
tive excitations are magnons. The vertex Γ ↑↓↓↑ (Γ ↓↑↑↓) which corresponds to the Sz = +1(−1)

spin projection of the S = 1 channel must be equal to Γm in the paramagnetic state (longitudinal
and transverse modes cannot be distinguished).
The BSE may be solved iteratively, starting from the approximation Γ (0) ≈ γ. Inserting this
into the right-hand-side of Eq. (69) yields a new approximation Γ (1). Repeating this step suc-
cessively generates a sum of all ladder diagrams with 1, . . . , n + 1 irreducible rungs in the
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Figure 8: (Color online) Momentum dependence of the eigen-
functions φω0,k of Eq. (30) for U = 8, δ = 0.14 and T = 0.1,
where ω

0

= πT . Either the even-frequency part φeven

ω0,k
or the

odd-frequency part φodd

ω0,k
is plotted depending on which is

allowed by the Pauli principle.

10 types of pairings (2 spin symmetries × 5 spatial sym-
metries), which have the largest eigenvalue in each sym-
metry class. The phase of the eigenfunction is arbitrary
in the linear equation. We determined the phase factor so
that the component which has the largest absolute value
becomes a real number. Then, all components of φk be-
come real. Finally, we define even- and odd-frequency
parts, φevenωk = φωk + φ−ωk and φoddωk = φωk − φ−ωk, to
see the frequency dependence. We have confirmed that
either φeven or φodd vanishes to fulfill the Pauli principle,
e.g., φodd = 0 for the spin-singlet with symmetry A1g.

We first show eigenfunctions φωk obtained in the way
described above. Figure 8 shows the momentum de-
pendence of φωk with the lowest Matsubara frequency,
ω0 = πT . The main feature is that some functions have
only minimal nodes required from the symmetry and the
rest have additional nodes. In the A1g symmetry, for ex-
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Figure 9: (Color online) Temperature dependence of the
eigenvalues λSC of Eq. (30) for U = 8 and δ = 0.14.

ample, there is no node for the triplet, while a line node
exists on the Fermi level for the singlet (i.e., extended
s-wave symmetry, cos kx + cos ky).
Which type of superconductivity actually occurs is ex-

amined from the temperature dependence of λSC. It can
be seen from Fig. 9 that λSC for the spin-singlet B1g

(dx2−y2) symmetry crosses 1 as expected. The transition
temperature Tc is estimated to be Tc ≃ 0.030 for these
parameters. The doping dependence of Tc is plotted in
the phase diagram in Fig. 2.

VI. PHASE SEPARATION

Our next interest lies in the paramagnetic state above
Tc and near the Mott insulator. In this regime, we found
an instability of the uniform charge fluctuations. Fig-
ure 10 shows the temperature dependence of the chem-
ical potential µ for several values of doping δ = 1 − n
for U = 8. The decrease of µ below T ≃ 1 is due to the
development of a Mott gap. At around T = 0.1, some
lines for different doping levels intersect. It means that
µ is a non-monotonic function of δ at low temperatures
as shown in the inset of Fig. 10. This behavior indicates
a phase separation as explained below.

At T = 0.1 in the inset of Fig. 10, there exists two
solutions with different doping, say δ1 and δ2. Actually,
the Mott insulator with δ = 0 is also a solution in this
case. Hence, there are three solutions (δ0 = 0 < δ1 < δ2),
two of which (δ0 and δ2) are thermodynamically stable
and one (δ1) is unstable. In order to make the average
doping δ̄ at 0 < δ̄ < δ2, the system becomes spatially
inhomogeneous between the Mott insulator with δ = 0
and the metallic state with δ = δ2.

We define the temperature TPS for the phase separa-
tion by the point where two lines intersect in Fig. 10.
It corresponds to the so-called spinodal point where the
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becomes a real number. Then, all components of φk be-
come real. Finally, we define even- and odd-frequency
parts, φevenωk = φωk + φ−ωk and φoddωk = φωk − φ−ωk, to
see the frequency dependence. We have confirmed that
either φeven or φodd vanishes to fulfill the Pauli principle,
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ample, there is no node for the triplet, while a line node
exists on the Fermi level for the singlet (i.e., extended
s-wave symmetry, cos kx + cos ky).
Which type of superconductivity actually occurs is ex-

amined from the temperature dependence of λSC. It can
be seen from Fig. 9 that λSC for the spin-singlet B1g

(dx2−y2) symmetry crosses 1 as expected. The transition
temperature Tc is estimated to be Tc ≃ 0.030 for these
parameters. The doping dependence of Tc is plotted in
the phase diagram in Fig. 2.
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Our next interest lies in the paramagnetic state above
Tc and near the Mott insulator. In this regime, we found
an instability of the uniform charge fluctuations. Fig-
ure 10 shows the temperature dependence of the chem-
ical potential µ for several values of doping δ = 1 − n
for U = 8. The decrease of µ below T ≃ 1 is due to the
development of a Mott gap. At around T = 0.1, some
lines for different doping levels intersect. It means that
µ is a non-monotonic function of δ at low temperatures
as shown in the inset of Fig. 10. This behavior indicates
a phase separation as explained below.
At T = 0.1 in the inset of Fig. 10, there exists two

solutions with different doping, say δ1 and δ2. Actually,
the Mott insulator with δ = 0 is also a solution in this
case. Hence, there are three solutions (δ0 = 0 < δ1 < δ2),
two of which (δ0 and δ2) are thermodynamically stable
and one (δ1) is unstable. In order to make the average
doping δ̄ at 0 < δ̄ < δ2, the system becomes spatially
inhomogeneous between the Mott insulator with δ = 0
and the metallic state with δ = δ2.

We define the temperature TPS for the phase separa-
tion by the point where two lines intersect in Fig. 10.
It corresponds to the so-called spinodal point where the
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Figure 1: (Color online) A phase diagram at half filling, δ = 0.

with ladder-type diagrams provides a combined descrip-
tion of strong local correlations and long-range correla-
tions.

Although first results of the ladder approximation have
been presented in 2009 [45, 48], its exemplary results for
doped Mott insulators have been limited because of some
technical difficulties arising from strong AFM fluctua-
tions. In this paper, we overcome these limitations and
present systematic results for the doped regime of the
two-dimensional Hubbard model. We address possible
phase transitions of the d-DW and the phase separation
in the doped Mott insulator as well as the d-SC. Our re-
sults reveal further characteristics of the ladder approxi-
mation.

The rest of this paper is organized as follows. In
the next section, we first present phase diagrams ob-
tained in this investigation to give an overview of our
results. Afterwards, the dual-fermion formalism and the
self-energy equation are presented in Section III. Suc-
ceeding Sections IV–VII present detailed numerical re-
sults and related formulas for the AFM susceptibility,
superconductivity, phase separation, and unconventional
density waves. The paper is closed with discussions in
Section VIII.

II. OVERVIEW

Prior to presenting formalism and detailed numerical
results, we first give an overview of our results obtained in
this paper. We investigate the two-dimensional Hubbard
model:

H =
∑

kσ

ϵkc
†
kσckσ + U

∑

r

nr↑nr↓, (1)

with ϵk = −2t(cos kx + cos ky). The number operator

nrσ is defined by nrσ = N−1
∑

kq c
†
kσck+qσeiq·r, where

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2

T

δ

U = 8 AFM (λsp = 0.90)
(0.94)
(0.98)

AFM (DMFT)
d-SC

PS

Figure 2: (Color online) Phase diagrams under doping δ =
1− n for U = 8.

N denotes the number of lattice sites. We take t = 1 as
the unit of energy.

In two-dimensional systems, the AFM transition is for-
bidden at T > 0 by the Mermin-Wagner theorem [49].
This leads to the critical behavior χ ∼ ecβ of the suscep-
tibility at low temperatures [50, 51]. Our approximation
indeed shows no AFM transition within calculated tem-
peratures. To quantify the AFM fluctuations, we define
a “phase boundary” by the points where the fluctuations
exceed a certain criterion (see Section IV for details). We
may regard this line as a phase boundary in quasi-two di-
mensions. The phase diagram at half filling obtained in
this way is shown in Fig. 1. We plot three phase bound-
aries corresponding to different criteria. In DMFT, there
exists a real phase transition, which is plotted for com-
parison.

According to a cluster DMFT calculation with a para-
magnetic bath [52], the Mott transition takes place at
U ≃ 6 and below T ≃ 0.1 [53]. We could not reach this
regime due to the critical AFM fluctuations, which ren-
ders the self-energy calculation unstable. We note, how-
ever, that cluster DMFT does not take into account crit-
ical fluctuations characteristic of two dimensions, mean-
ing that the AFM transition takes place at a higher tem-
perature than the Mott transition. Hence the latter is
actually hidden by the AFM phase in cluster DMFT.

Figure 2 shows the phase diagram of temperature
against doping δ = 1 − n for U = 8. The d-SC is ob-
tained in the region T ! 0.05 and δ ! 0.18. The su-
perconducting transition temperature Tc monotonically
increases approaching half filling (δ = 0). This behav-
ior is reminiscent of the FLEX [43, 44] and differs from
that in cluster DMFT, where the d-SC phase exhibits a
maximum at finite doping [29, 31]. We consider that the
monotonic behavior of Tc in our results is due to insuf-
ficient treatment of short-range spin fluctuations, which
will be discussed in Sec. VIII.
In the low-doping regime above Tc, we found a phase

U=8 
δ=0.15 

7

V. SUPERCONDUCTIVITY

A. Formulas for pairing susceptibilities

In this section, we discuss the superconductivity in the
doped regime. We first derive a formula for the pairing
susceptibility of the dual fermions. The susceptibilities
of the dual fermions can be transformed to those of the
original electrons [46, 60, 61]. Actually, numerical trans-
formations cannot be performed in the case of unconven-
tional (momentum-dependent) order parameters because
the susceptibility matrix is too large to store in memory
[see Eq. (22)]. However, since the diverging point is com-
mon to both susceptibilities, we can determine the tran-
sition temperature from the dual-fermion susceptibility
without transforming to the electron susceptibility.
We consider Cooper pairs with opposite spin directions

of the constituent electrons. With a form factor φk which
depends on both k and ω, the order parameter Φ is ex-
pressed as Φ =

∑
k φk⟨fk↑f−k↓⟩S̃ . The static susceptibil-

ity for this pairing is defined by
∑

kk′ φkP̃kk′φ∗k′ where

P̃kk′ = ⟨fk↑f−k↓f
∗
−k′↓f

∗
k′↑⟩S̃ . (21)

The Bethe-Salpeter equation for this Green’s function is
written as

P̃kk′ = P̃ 0
k δkk′ −

T

N

∑

k′′

P̃ 0
kΓ

pp
kk′′ P̃k′′k′ , (22)

where

P̃ 0
k = G̃kG̃−k. (23)

For the irreducible vertex part Γpp, we take account of
effective interactions mediated by the spin and charge
fluctuations. Hence, Γpp is given in terms of the renor-
malized vertex in Eq. (13) as [46, 48]

Γpp
kk′ =− Γ↑↓↓↑

ω,−ω′;ω′−ω,k′−k + Γ↑↓↑↓
ω,ω′;−ω−ω′,−k−k′

+ γ↑↓↓↑ω,−ω′;ω′−ω. (24)

The first term in Eq. (24) incorporates the charge and
longitudinal spin fluctuations, and the second term the
transverse spin fluctuations. The third term subtracts
their double counting. A diagrammatic representation
for Γpp is shown in Fig. 7.
Without magnetic field, the pairing susceptibility is

classified according to the total spin of the pair. For this
purpose, we replace the pair operator by its symmetrized
or anti-symmetrized form:

fk↑f−k↓ →
1
√
2
(fk↑f−k↓ ∓ fk↓f−k↑). (25)

Here, − corresponds to the spin singlet and + to the
spin triplet. The corresponding pairing susceptibility is
expressed as

P̃±
k,k′ = P̃k,k′ ± P̃k,−k′ . (26)

+ −=

Figure 7: The pairing interaction (the irreducible vertex for
the pairing susceptibility) Γpp in the ladder approximation.
The box with stripes stands for the renormalized vertex Γ in
Fig 3(c).

Hence, the inversion of the fermionic frequency and mo-
mentum, k = (ω,k) → −k = (−ω,−k), transforms P̃±

kk′

as P±
k,k′ = ±P±

k,−k′ = ±P±
−k,k′ = P±

−k,−k′ . From Eq. (22),

we obtain the equation for P̃±
kk′ ,

P̃±
kk′ = P̃ 0

k (δk,k′ ± δk,−k′ )−
T

N

∑

k′′

P̃ 0
kΓ

pp±
kk′′ P̃±

k′′k′ , (27)

where the (anti-)symmetrized vertex Γpp±
kk′ is defined by

Γpp±
kk′ = (Γpp

k,k′ ± Γpp
k,−k′)/2. Their explicit expressions

read

Γpp+
kk′ =

1

4

[
(3Γsp − Γch)ω,−ω′;ω′−ω,k′−k − 2γspω,−ω′;ω′−ω

]

+ (ω′ → −ω′), (28)

Γpp−
kk′ =

1

4

[
−(Γsp + Γch)ω,−ω′;ω′−ω,k′−k + 2γspω,−ω′;ω′−ω

]

− (ω′ → −ω′), (29)

where (ω′ → −ω′) is symbolic for the terms appearing
before it with ω′ replaced by −ω′.
The dimension of the matrices is too large to solve

Eq. (27) numerically. We instead deal with an eigen-
value problem to determine the transition temperature
and to extract the dominant pairing fluctuations. Near
the transition temperature, we may neglect the first term
in Eq. (27) to obtain the linear equation

K̂±φ = λSCφ, (K̂±)kk′ = −
T

N
P̃ 0
kΓ

pp±
kk′ . (30)

We can demonstrate from the explicit form of Γpp±
kk′ that

the eigenvalues λSC are purely real. The condition for the
divergence of the susceptibility is λSCmax = 1 with λSCmax
being the largest eigenvalue. The corresponding eigen-
function φk gives the form factor of the order parameter.

B. Numerical results

We evaluated the largest eigenvalues λSCmax of Eq. (30)
by a kind of power method. In this calculation, we en-
forced a particular spatial symmetry to pick up an eigen-
function belonging to a certain irreducible representation
(see Appendix B for details). In this way, we computed
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values of the Wannier Hamiltonian in the crystal field basis are exemplarily shown
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mesh of this size gives a very accurate description of the electronic structure. The high
symmetry points R,X and M are located at (0.5, 0.5, 0.5), (0.0, 0.5, 0.0) and (0.5, 0.5, 0.0)

(in units of the reciprocal lattice vectors) in the Brillouin zone respectively. The band
structure shows a set of 12 mainly flat bands extending from 2eV below the Fermi level
(which is set to zero) to 0.5eV above same, which can be identified as Ru t2g bands [165].
The unoccupied eg bands disperse down only slightly below 2eV above the Fermi energy.
This situation is also reflected in the density of states, which is large in the region between
�1eV and 0.5eV, due to the flat bands. Below �2eV bands stemming from oxygen 2p and
from bonding states of ruthenium 4d and oxygen 2p are located.
Rotation and tilt of the octahedra has visible effects on the electronic structure. The rota-
tion of the octahedron allows for hybridization between the xy and the x2 � y2 orbitals,
which leads to the enlarged gap between the t2g and eg bands as compared to Sr2RuO4 [65].
Symmetry lowering leads to an enlarged unit cell and consequently a reduction of the Bril-
louin zone as compared to Sr2RuO4. This leads to anti-crossings of folded bands, which
manifests in the pseudogap at �0.35eV [120]. The width of the Ru d bands is mainly con-
trolled by the Ru-O hybridization, as usual in transition metal oxides [28]. The bandwidth
is to a good approximation proportional to cos

2 ↵, where ↵ is the bond angle of Ru-O-Ru.
Starting from Sr2RuO4, where the bond angle is 180

� and the bandwidth is maximal at
3.55eV, one can estimate the bandwidth in the distorted structures. This is an approxi-
mation, since it neglects other phenomena, like the bond length, that can have influence
on the bandwidth. The rotational and tilt distortions in Ca1.85Sr0.15RuO4 reduce the bond
angle to ↵ = 153.4�, which reduces the bandwidth to 2.84eV. The directly measured band-
width at the � point amounts to 2.92eV, which is a little higher, still the estimate is quite
good, which shows that the rotational distortions account for most of the changes in the
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-Equations to derive UDMFT. Here, we derive the basic
equations to evaluate UDMFT from first principles calcula-
tions [17]. In the RPA, the screened Coulomb interaction
W can be written as (1− vχ0)−1v with the independent-
particle polarization χ0 and the bare Coulomb interac-
tion v. The polarization χ0 is divided into χt

0 and χr
0,

where χt
0 is a polarization formed in the target subspace

and χr
0 is the rest. Note that this decomposition is not

necessarily restricted to bands (cRPA); it is also applica-
ble to the real space using localized basis sets. For exam-
ple, the “dimensional downfolding” has been formulated
to derive effective models in reduced dimensions such
as 2D or 1D models by excluding polarizations within
the target layer/chain [8]. With this decomposition and
within the RPA, the fully screened W can be obtained in
a two-step procedure as [4]

W̄ = (1 − vχr
0)

−1v (1)

and

W = (1− W̄χt
0)

−1W̄ , (2)

where W̄ describes a screened Coulomb interaction ex-
cluding a specified subset of excitations χt

0. These exci-
tations are taken into account when the effective model
with the interaction W̄ is solved. Alternatively, W̄
is obtained from the fully screened W , by rewriting
Eq. (2) [17] as

W̄ = W
(
1 + χt

0W
)−1

. (3)

In the present scheme, W̄ corresponds to UDMFT and χt
0

is a one-center or local target polarization formed at the
impurity site.

In practice, the static independent-particle polariza-
tion formed in the target bands (tb) is calculated using

χtb
0 (r,r

′)=2
∈tb∑

αβ

∑

qk

fβk+q−fαk
ϵβk+q−ϵαk

ψ∗αk(r)ψβk+q(r)ψ
∗
βk+q(r

′)ψαk(r
′),(4)

where {ψαk, ϵαk} are one-body wavefunctions and their
energies with the wave vector k and the band index α.
The factor of 2 comes from the spin sum. The band sum-
mation is performed only over the target bands in the ef-
fective model. Since the Bloch wavefunctions are related
to the Wannier functions via the unitary transform as

ψαk(r)=
1

√
N

∑

miR

eik·RU †(k)
mi,αφmiR(r), (5)

the polarization can be recast as

χtb
0 (r,r

′)=
2

N2

∑

mnop

∑

ijkl

∑

R1-R4

[
∈tb∑

αβ

∑

qk

fβk+q−fαk
ϵβk+q−ϵαk

e−ik·(R1−R4)

×ei(k+q)·(R2−R3)
(
U †(k)
mi,α

)∗
U †(k+q)
nj,β

(
U †(k+q)
ok,β

)∗
U †(k)
pl,α

]

×φ∗miR1
(r)φnjR2

(r)φ∗okR3
(r′)φplR4

(r′), (6)

where m-p, i-l, R1-R4 are the orbital, primitive site, su-
perlattice site indices respectively and N indicates the
total number of superlattice sites. With this expression,
we specify the target-band polarization formed at the im-
purity site (the 0th site in R=0) as

χimp
0 (r,r′)=

∑

mnop

Cmnopφ
∗
m00(r)φn00(r)φ

∗
o00(r

′)φp00(r
′) (7)

with

Cmnop=
2

N2

∈tb∑

αβ

∑

qk

fβk+q−fαk
ϵβk+q−ϵαk

(
U †(k)
m0,α

)∗
U †(k+q)
n0,β

(
U †(k+q)
o0,β

)∗
U †(k)
p0,α

(8)

corresponding to the local one-center components of a
polarization matrix in the Wannier orbital basis. Now,
by identifying χt

0 in Eq. (3) as χimp
0 and W̄ as UDMFT, we

write the Dyson equation for the effective interaction as

W (r,r′)=UDMFT(r,r′)+

∫
dr′′

∫
dr′′′UDMFT(r,r′′)χimp

0 (r′′, r′′′)

×W (r′′′, r′). (9)

Multiplying this equation by φ∗m00(r)φn00(r)φ
∗
o00(r

′)
×φp00(r′) and integrating over r and r′, we have

Wµν = UDMFT
µν +

∑

µ′ν′

UDMFT
µµ′ Cµ′ν′Wν′ν , (10)

where we introduce a composite index (µ, ν)=
{
(mn), (op)

}

and the matrix element of O={W,UDMFT} is given by

Omnop=

∫
dr

∫
dr′φ∗m00(r)φn00(r)O(r, r′)φ∗o00(r

′)φp00(r
′).

Thus, Eq. (10) is rewritten in a matrix form as

UDMFT = W(1+CW)−1. (11)

The equation resembles the unscreening equation (3), but
it is formulated entirely in terms of “local” one-center
quantities, that can be evaluated straightforwardly, al-
lowing for a computationally efficient treatment.

-Application to the Hubbard model. We first apply this
scheme to the derivation of UDMFT for the 2D single-band
Hubbard model. This is helpful to get insight into the
behavior of UDMFT with respect to changes of the electron
filling. The Hubbard Hamiltonian reads

H=−t
∑

⟨ij⟩σ

c†iσcjσ− t′
∑

⟨⟨ij⟩⟩σ

c†iσcjσ−µ
∑

iσ

niσ+ U
∑

i

ni↑ni↓,

where c†iσ (ciσ) creates (annihilates) an electron with spin

σ at site i and niσ ≡ c†iσciσ. t (t′) is a transfer integral
to the (next-)nearest neighbor sites in the ⟨i, j⟩ (⟨⟨i, j⟩⟩)
sums. U(=8t) and µ represent the onsite Coulomb re-
pulsion and chemical potential, respectively. Taking into
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involving the impurity site, i.e., the interaction parame-
ters calculated without the local one-center and “wing”
components of the polarization matrix in the Wannier
basis (“no-wing” method) [21]. The result is denoted as
Uno-wing. We see that the filling dependence of U ′ is
similar to that of U , except for a constant shift.

As the filling n increases from 1, UDMFT increases
more rapidly than U cRPA. This suggests that the non-
local anti-screening effect increases more rapidly than the
screening. Around n=2, UDMFT turns to decrease, cross-
ing U cRPA at n∼3.5. Finally around the filling end n∼5,
UDMFT again increases, as seen in the Hubbard model.
We see Uno-wing<UDMFT at all fillings. This is consis-
tent with the model analysis: The non-local contribu-
tions to the screening induce an anti-screening and lead
to the increase of the onsite interaction. Uno-wing is also
smaller than U cRPA and only weakly depends on the fill-
ing, consistently with the model analysis where the off-
site Coulomb interaction induces a screening weakly de-
pendent on filling. These comparisons clearly show that
the non-local polarization is the main source of the exotic
filling dependence of UDMFT.
It becomes now clear that the similar values of UDMFT

and U cRPA for SrVO3 is just a consequence of an approx-
imate cancellation of the anti-screening by the non-local
polarizations with the screening by the long-range inter-
action. In addition, U cRPA∼UDMFT∼Uno-wing for SrVO3

is partly ascribed to the small filling of the d1 system
where the polarization and screening are not large.

In the previous DMFT studies for the ab initio model,
rather large values of U compared to U cRPA have been
needed to reproduce the experimental results (e.g., the
insulating behavior of LaTiO3 [24]). Similarly, for the
2D Hubbard model, the Mott transition takes place at a
substantially larger U in the single-site DMFT than in
its cluster extension [25]. These aspects are ascribed to
the intersite correlation effects ignored in the single-site
DMFT with original U cRPA or U . The present scheme
with UDMFT at least partially takes account of the off-site
effects and will improve the results of the DMFT. The
vertex corrections ignored in the RPA form have been
estimated to be small for the conventional cRPA [1]. For
the present case, this estimate is left for future studies.

-Conclusion. We have examined a scheme to evalu-
ate the effective onsite interaction UDMFT for the DMFT.
Through the analysis based on the Hubbard model,
we have found unexpectedly an anti-screening effect in-
duced by non-local polarizations, which competes with
the screening effects caused by the off-site Coulomb in-
teraction in real materials. The anti-screening causes a
non-trivial filling dependence of UDMFT and increases the
effective interaction. Combining the present method with
DFT, we have indeed shown that UDMFT for SrVO3 ex-
hibits non-trivial filling dependence if the chemical po-
tential is varied.
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Table I: Spinor representation of hopping integrals (in meV) calculated for C2F and C2H on the basis of the
Wannier parametrization of the LDA+SO Hamiltonian.

C
2

F C
2

H

t
01

✓
�232.84� 0.82i 1.35� 2.35i
�1.35� 2.35i �232.84 + 0.82i

◆ ✓
38.98 + 0.02 �0.14 + 0.25i
0.14 + 0.25i 38.98� 0.02i

◆

t
02

✓
5.95 + 0i 0.65� 0.37i

�0.65� 0.37i 5.95 + 0i

◆ ✓
�114 + 0i 0.04� 0.02i

�0.04� 0.02i �114 + 0i

◆

t
03

✓
�21.29� 0.1i 0.37� 0.64i
�0.37� 0.64i �21.29 + 0.1i

◆ ✓
�98.05 + 0.03i 0.01� 0.01i
�0.01� 0.01i �98.05� 0.03i

◆

t
04

✓
�10.70 + 0i 0.39� 0.31i
�0.39� 0.31i �10.70 + 0i

◆ ✓
27.92 + 0i 0 + 0i
0 + 0i 27.92 + 0i

◆

t
05

✓
�10.40 + 0.04i 0.37 + 0i
�0.37 + 0i �10.40� 0.04i

◆ ✓
11.86 + 0i �0.01 + 0i
0.01 + 0i 11.86 + 0i

◆

Table II: The calculated local and non-local partially
screened Coulomb interactions (in eV) for C2F and
C2H. The two values of JF

01 correspond to the fully
screened and bare interactions.

Interaction C
2

F C
2

H
U

00

5.16 4.69
U

01

2.46 2.19
U

02

1.66 1.11
U

03

1.46 0.85
JF
01

(screened) 0.018 0.034
JF
01

(bare) 0.044 0.099

Importantly, there are strong long-range Coulomb inter-
actions, which indicates significant spatial charge fluc-
tuations in these graphene-based systems. The direct
exchange interaction between the nearest Wannier func-
tions is much smaller than other Coulomb matrix ele-
ments. Nevertheless, as will be shown below, JF

ij plays a
principal role in the formation of the magnetic states of
C2H and C2F.

IV. MAGNETIC INTERACTIONS

Values of the calculated hopping integrals and
Coulomb interactions correspond to the strong local-
ization regime, tij ⌧ U00, that allows us to construct
a Heisenberg-type Hamiltonian for the localized spins
S = 1/2 within the superexchange theory developed by
Anderson.35 The corresponding spin model is given by

Ĥspin =
X

ij

JijŜiŜj +
X

ij

Dij [Ŝi ⇥ Ŝj ], (4)

Figure 3: Schematic representation of the hopping
paths in the triangular model for C2F and C2H. The
gray spheres denote the Wannier functions centered at

non-bonded carbon atoms.

where Ŝ is the spin operator, Jij andDij are the isotropic
and anisotropic (Dzyaloshinskii-Moriya) exchange inter-
actions. The summation over all pairs in Eq. (4) runs
twice.
Isotropic exchange interaction. In terms of the Hamil-

tonian parameters given by Eq. (1) the isotropic exchange
interaction can be expressed in the following form35,39

Jij =
1
eU
Tr�{t̂jit̂ij}� JF

ij , (5)

V. Mazurenko, et al, PRB 94, 214411 (2016) 

Uij = ij
_

W ij

Jij = ij
_

W ji
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General Lattice Action: 

Reference system: Local Action with hybridization Δν and Λω

Lattice-Impurity connection: 

Λω

Δν  

9.18 Alexander Lichtenstein

The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. Additionally the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for a consideration of the strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions Sref

i defined by hybridization function �⌫ with screened local interaction U! and a
non-local remaining part S̃

S =
X

i

S(i)
ref

+�S, (51)

which are given by the following explicit relations

S
ref

= �
X

⌫�

c+⌫�[i⌫ + µ��⌫ ]c⌫� +
1

2

X

!

U! ⇢⇤!⇢! ,

�S =
X

⌫k�

c+⌫k�["k ��⌫ ]c⌫k� +
1

2

X

q!

(Uq � U!) ⇢
⇤
q!⇢q! . (52)

The local bare interaction of the impurity model is then equal to U! = U! +⇤! and it is easy to
see that Uq � U! = Vq � ⇤! which makes the method independent of the U -V separation. The
impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green’s function g⌫ , susceptibility �! and the renormalized interaction W!.
The local impurity Green’s function g⌫ , susceptibility �! and renormalized interaction W! as

g⌫ = �hc⌫c⇤⌫iimp ,

�! = �h⇢!⇢⇤!iimp , (53)

W! = U! + U!�!U! ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of efficient perturbation scheme for �S in action
formalsim. In addition to fermionic Hubbard-Stratonovich transformation Eq. (32) on the first
term ["k � �⌫ ]c

+

⌫k�c⌫k� which give the dual fermion variables f+

⌫k�, f⌫k�, we will perform a
bosonic transformation:

q
det[⇤! � Vq]e

1

2

P
q!

⇢⇤
q! [⇤!�Vq]⇢q!

=

Z
D[�] e

� 1

2

P
q!
{�⇤

q! [⇤!�Vq]
�1�q!+⇢⇤

!�!+�⇤
!⇢!}

, (54)

and we use that U! � Uq = ⇤! � Vq. Note that the caution should be taken for convergence
problem of integral over new dual variable e� [3] which not affect the final eqiations. Rescaling
the bosonic fields �q! as �q!↵�1

! and integrating out the original degrees of freedom c+ and c

we arrive at the dual action

S̃ = �
X

k⌫

f ⇤
k⌫G̃

�1

0

fk⌫ �
1

2

X

q!

�⇤
q!W̃

�1

0

�q! + Ṽ . (55)
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and we use that U! � Uq = ⇤! � Vq. Note that the caution should be taken for convergence
problem of integral over new dual variable e� [3] which not affect the final eqiations. Rescaling
the bosonic fields �q! as �q!↵�1

! and integrating out the original degrees of freedom c+ and c

we arrive at the dual action
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In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform. After calculating the best possible
series for the self-energy ⌃̃ in the dual space one can calculate the renormalized Green function
matrix for original fermions using the following simple transformations [3]:

G⌫(k) =

⇣
g⌫ + g⌫⌃̃⌫(k)g⌫

⌘�1

+�⌫ � "k

��1

, (49)

which is a useful generalization of the DMFT Green’s function (see Eq.(45)) to include the non-
local correlation effects. One can see that the dual self-energy plays the role of of an effective
T-matrix for the exactly solvable local problem. The progress of the DMFT approach is strongly
related to developments of efficient numerical solvers for an effective continuous time quantum
impurity model [1].

5 Dual Boson approach for non-local interactions

Many important effects in physics of correlated systems based on non-local interactions in solids
and related with consistent description of collective excitation (plasmons, magnons, orbitons
etc.) which can strongly affect the original electronic degrees of freedom. Using first-principle
constrain-RPA scheme [16] one can obtained non-local interaction parameters for correlated
subspace screened by broad-bands of conducting electrons. The simplest effective Hamiltonian
for such an extended Hubbard model reads

S = �
X

k⌫�

c+k⌫�[i⌫ + µ � "k ]ck⌫� +
1

2

X

q!

Uq ⇢
⇤
q!⇢q!. (50)

here the Grassmann variables c+q⌫ (cq⌫) corresponding to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ⌫ and we skip the spin-indices for sim-
plicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-local
long-range Coulomb interactions respectively. The screened Coulomb enteraction can be fre-
qency dependent Uq! as in c-RPA case which not produce any problems as one can see later.
For simplicity we include only charge fluctuations which are given by the complex bosonic
variable ⇢q! =

P
k⌫�(c

⇤
k⌫ck+q,⌫+! � hc⇤k⌫ck⌫i�q!). We do not include exchange interactions in

Hamiltonian and local spin degrees of freedom which can be done with some caution for vector
spin boson case [17]. Moreover we will consider only one-band model but keep the matrix form
of all equations for simple generalization in case of few orbitals (bands). The chemical potential
µ defined the average number of electrons per site. Finally, "k is the Fourier transform of the
hopping integral tij between different sites.
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and related with consistent description of collective excitation (plasmons, magnons, orbitons
etc.) which can strongly affect the original electronic degrees of freedom. Using first-principle
constrain-RPA scheme [16] one can obtained non-local interaction parameters for correlated
subspace screened by broad-bands of conducting electrons. The simplest effective Hamiltonian
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here the Grassmann variables c+q⌫ (cq⌫) corresponding to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ⌫ and we skip the spin-indices for sim-
plicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-local
long-range Coulomb interactions respectively. The screened Coulomb enteraction can be fre-
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variable nq! =
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etc.) which can strongly affect the original electronic degrees of freedom. Using first-principle
constrain-RPA scheme [16] one can obtained non-local interaction parameters for correlated
subspace screened by broad-bands of conducting electrons. The simplest effective Hamiltonian
for such an extended Hubbard model reads
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here the Grassmann variables c+q⌫ (cq⌫) corresponding to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ⌫ and we skip the spin-indices for sim-
plicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-local
long-range Coulomb interactions respectively. The screened Coulomb enteraction can be fre-
qency dependent Uq! as in c-RPA case which not produce any problems as one can see later.
For simplicity we include only charge fluctuations which are given by the complex bosonic
variable nq! =

P
k⌫�(c

⇤
k⌫ck+q,⌫+! � hc⇤k⌫ck⌫i�q!). We do not include exchange interactions in

Hamiltonian and local spin degrees of freedom which can be done with some caution for vector
spin boson case [17]. Moreover we will consider only one-band model but keep the matrix form
of all equations for simple generalization in case of few orbitals (bands). The chemical potential
µ defined the average number of electrons per site. Finally, "k is the Fourier transform of the
hopping integral tij between different sites.
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The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. Additionally the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for a consideration of the strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions Sref

i defined by hybridization function �⌫ with screened local interaction U! and a
non-local remaining part S̃

S =
X

i

S(i)
ref

+�S, (51)

which are given by the following explicit relations
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The local bare interaction of the impurity model is then equal to U! = U + ⇤! and it is easy to
see that Uq � U! = Vq � ⇤! which makes the method independent of the U -V separation. The
impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green’s function g⌫ , susceptibility �! and the renormalized interaction W!.
The local impurity Green’s function g⌫ , susceptibility �! and renormalized interaction W! as

g⌫ = � hc⌫c⇤
⌫iimp ,

�! = � hn!n
⇤
!iimp , (53)

W! = U! + U!�!U! ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of efficient perturbation scheme for �S in action
formalsim. In addition to fermionic Hubbard-Stratonovich transformation Eq. (32) on the first
term ["k � �⌫ ]c

+

⌫k�c⌫k� which give the dual fermion variables f+

⌫k�, f⌫k�, we will perform a
bosonic transformation:
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and we use that U! � Uq = ⇤! � Vq. Note that the caution should be taken for convergence
problem of integral over new dual variable e� [3] which not affect the final eqiations. Rescaling
the bosonic fields �q! as �q!↵�1

! and integrating out the original degrees of freedom c+ and c

we arrive at the dual action

S̃ = �
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2

X
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0

�q! + Ṽ . (55)
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�q! + Ṽ . (55)



Dual Transformation 

Bosonic Hubbard-Stratanovich transformation 

Dual action 

Dual Boson theory: non-local correlations and collective excitations
(Dated: September 11, 2016)

I. DUAL BOSON THEORY

Many important e↵ects in physics of correlated sys-
tems are based on non-local interactions in solids and re-
lated with consistent description of collective excitations
(plasmons, magnons, orbitons etc.) which can strongly
a↵ect the original electronic degrees of freedom. Us-
ing first-principle constrain-RPA scheme? one can ob-
tain frequency dependent non-local interaction for cor-
related subspace screened by broad-bands of conducting
electrons. The simplest e↵ective action for such an ex-
tended Hubbard model reads

S = �
X

k⌫�

G�1
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+
k⌫�ck⌫� +

1
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X

q!

Uq!n
⇤
q!nq!. (1)

where G0k⌫ = [i⌫ + µ � "k ]
�1 is a bare lattice Green’s

function and the interaction Uq! = U! + Vq! con-
sists of the on-site term U and non-local long-range
Coulomb interactions V , respectively. For simplicity we
include only charge fluctuations which are given by the
complex bosonic variable nq! =

P
k⌫�(c

+
k⌫ck+q,⌫+! �⌦

c+k⌫ck⌫
↵
�q!). We do not consider the exchange interac-

tions and local spin degrees of freedom that can be done
with some caution for vector spin boson case? . Moreover
we will investigate here only the single-band model but
preserve the matrix form of all equations keeping in mind
a simple generalization to the case of several orbitals or
bands.
The dual boson scheme? aims to treat the action (1)

in a way, similar to the dual-fermion approach. Addition-
ally the dual fermionic degrees of freedom, the bosonic
fields are treated in a similar manner. This allows for
a consideration of the strongly correlated systems be-
yond the Hubbard model. Also, it can be employed for
an explicit treatment of the collective excitations in the
Hubbard model. Here we present the basic idea of this
approach.
First, we split the lattice action (1) into a sum of the

e↵ective single-site local impurity reference actions Sref
i

defined by hybridization function �⌫ with screened local
interaction U! and a non-local remaining part S̃

S =
X

i

S(i)
ref +�S, (2)

which are given by the following relations

Sref =�
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where G0k⌫ = [i⌫ + µ � �⌫ ]
�1 is a bath Green’s func-

tion, "̃k⌫ = "k � �⌫ and Ũq! = Uq! � U! and one can

see that we can incorporate arbitrary frequency depen-
dence of bare Coulomb interactions as well as electron
spectrum. The local bare interaction of the impurity
model is then equal to U! = U! + ⇤! and it is easy
to see that Uq! � U! = Vq! � ⇤! which makes the
method independent of the U -V separation. The impu-
rity problem with frequency dependent interactions (as
well as spin-dependent exchange) can be solved using,
e.g., continuous-time quantum Monte Carlo solvers? ? ,
and one can obtain the local impurity Green’s function
g⌫ , susceptibility �! and the renormalized interaction
W!. The lattice and the reference impurity Green’s func-
tions and susceptibilities are defined as follows:

Gk⌫/G
ref
⌫ = �

⌦
c c+

↵
k⌫/⌫ ref

, (5)

Xq!/�! = �hn n⇤iq!/! ref , (6)

W! = U! + U!�!U!, (7)

where the averages are taken with respect to the lattice
or impurity actions (??).
The strategy here is similar to the dual fermion scheme

and consists of e�cient perturbation scheme for �S in
the action formalism. To shorten the expressions, here
we do not write the formulas with the explicit source
fields, as they can be straightforwardly introduced in an
analogue to Sec. .... In addition to fermionic Hubbard-
Stratonovich transformation Eq. (??) on the first term
"̃k⌫c

+
⌫k�c⌫k� which give the dual fermion variables c̃+k⌫�,

c̃k⌫�, we will perform a bosonic transformation:
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Note that the caution should be taken for convergence
problem of integral over new dual variable ñ due to the
signum of Ũq! which not a↵ect the final equations? . We
point out that the first transformation as in dual fermion
approach made exact relation to the reference impurity
system. Rescaling the bosonic fields ñq! with some fre-
quency dependent factor as ñq!↵�1

! , and integrating out
the original degrees of freedom c+ and c we arrive at the
dual boson action
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with the bare dual fermion-boson propagators
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�1 �Gref
⌫ = GE �Gref

⌫ , (10)
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2

and the dual interaction term Ṽ . We introduce also the
fermion (GE) and boson (WE) propagators for the ex-
tended DMFT theory and we chose ↵! = W!/U! =
(1 + U!�!) as the local renormalization factor.

The explicit form of the dual interaction can be ob-
tained expanding the c+, c-dependent part of the par-
tition function in an infinite series and integrating out
these degrees of freedom. The two first terms in Ṽ are
given by

Ṽ = �⌫! c̃+
⌫ c̃⌫+!ñ⇤

! +
1

4
F⌫⌫0! c̃+

⌫ c̃+
⌫0 c̃⌫+! c̃⌫0�!; (12)

hereafter in this section the spin indices are omitted for
simplicity. We define the three-point vertex �⌫! via the
original variables of the impurity reference system in the
following way?

�⌫! = G�1
⌫ G�1

⌫+!↵
�1
!

⌦
c⌫c+

⌫+!n!

↵
, (13)

The four-point vertex function F⌫⌫0! is defined similar to
the same quantity of the dual fermion scheme. Further,
the dual Green’s function G̃k⌫ = �

⌦
c̃k⌫ c̃+

k⌫

↵
and renor-

malized dual interaction W̃q! = �
⌦
ñq!ñ⇤

q!

↵
, as well

as dual self-energy ⌃̃k⌫ and polarization operator ⇧̃q!,
can be obtained diagrammatically (Fig....)? ? ? . This
defines the renormalized dual propagators in a standard
way. An important property of the theory is that the
free dual boson propagators correspond to the EDMFT
approximation. Finally, the Green’s function Gk⌫ and
the renormalized interaction Wq! of the original model
can be exactly expressed in terms of the dual quantities
via the similar Dyson Eqs. (??)-(??) as follows

G�1
k⌫ = G�1

E � ⌃̃k⌫(1 + Gref
⌫ ⌃̃k⌫)

�1 (14)

W�1
q! = W�1

E � ⇧̃q!(1 + Wref
! ⇧̃q!)

�1, (15)

Finally, the self-consistency conditions should be in-
troduced to determine the values of the fermionic and
bosonic hybridizations. The most physical relevant self-
consistency conditions for the dual boson scheme were
found to be the requirements that the impurity problem
Green’s functions mimic the local lattice properties:

X

k

Gk⌫ = Gref
⌫ , (16)

X

q

Wq! = Wref
! . (17)

It is important to point out that whereas the requirement
of the DF method is closely related to the absence of lo-
cal part of the dual Green’s function, it is not the case

for the dual bosons, because of the more complicated
structure of the diagram series. Instead, the condition
(17) is related? to the vanishing of the local part of the
diagram sequence including both bosonic and fermionic
propagators (so-called superline). In this case the fully
renormalized dual theory is free from the double-counting
problem by construction, and the local impurity contri-
bution is excluded from the diagrams on the level of the
bare propagators?

Finally, we mention the useful relation between the
renormalized dual interaction W̃q! and lattice suscepti-
bility from HS-transformation (Eq. ???):

Xq! = Ũ�1
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�1
! W̃q!↵
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! Ũ�1

q! � Ũ�1
q! . (18)

END: The rest is for the applications sections

This method has been applied to various problems
related to charge ordering and charge excitations in
strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
should be hnn⇤iq=0 = 0 at any finite frequency (pro-
vided that the current-current correlator < jj⇤ >!,q=0

is finite). For 3D systems with Coulomb interaction the
long-wavelength asymptotic behaviour for the density-

density correlator should be < nn⇤ >!,q!0/ q2

!2+!2
p
,

where !p is the plasma frequency. The RPA for free
electrons is proven to obey this property, since X0

!,q!0

vanishes with G = (i⌫ � "q)�1, but if we just replace
the bare Green’s functions by the renormalized ones, the
conservation law will be broken? . Indeed, following the
expression X0
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way. An important property of the theory is that the
free dual boson propagators correspond to the EDMFT
approximation. Finally, the Green’s function Gk⌫ and
the renormalized interaction Wq! of the original model
can be exactly expressed in terms of the dual quantities
via the similar Dyson Eqs. (??)-(??) as follows

G�1
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Finally, the self-consistency conditions should be in-
troduced to determine the values of the fermionic and
bosonic hybridizations. The most physical relevant self-
consistency conditions for the dual boson scheme were
found to be the requirements that the impurity problem
Green’s functions mimic the local lattice properties:
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Gk⌫ = Gref
⌫ , (16)

X

q

Wq! = Wref
! . (17)

It is important to point out that whereas the requirement
of the DF method is closely related to the absence of lo-
cal part of the dual Green’s function, it is not the case

for the dual bosons, because of the more complicated
structure of the diagram series. Instead, the condition
(17) is related? to the vanishing of the local part of the
diagram sequence including both bosonic and fermionic
propagators (so-called superline). In this case the fully
renormalized dual theory is free from the double-counting
problem by construction, and the local impurity contri-
bution is excluded from the diagrams on the level of the
bare propagators?

Finally, we mention the useful relation between the
renormalized dual interaction W̃q! and lattice suscepti-
bility from HS-transformation (Eq. ???):
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END: The rest is for the applications sections

This method has been applied to various problems
related to charge ordering and charge excitations in
strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
should be hnn⇤iq=0 = 0 at any finite frequency (pro-
vided that the current-current correlator < jj⇤ >!,q=0

is finite). For 3D systems with Coulomb interaction the
long-wavelength asymptotic behaviour for the density-

density correlator should be < nn⇤ >!,q!0/ q2
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p
,

where !p is the plasma frequency. The RPA for free
electrons is proven to obey this property, since X0
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vanishes with G = (i⌫ � "q)�1, but if we just replace
the bare Green’s functions by the renormalized ones, the
conservation law will be broken? . Indeed, following the
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q! . (18)

END: The rest is for the applications sections

This method has been applied to various problems
related to charge ordering and charge excitations in
strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
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For the future research we aim to find the functional
description of the dual approximations presented in the
current paper, that will automatically solve the compli-
cated issue of the conservation laws. Unfortunately, there
is only one dual approximation known that fulfils the con-
servation laws and can be derived from the functional
introduced in the dual space31.
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Appendix A: Dual transformations

The dual transformations of the non-local part of the
action Srem can be made in the same way as in previous
works on DB approach. In order to define the three-point
vertex in the TRILEX way, here we introduce a di↵er-
ent rescaling of the dual bosonic fields. The partition
function of our problem is given by

Z =

Z
D[c⇤, c] e�S (A1)

where the action S is given by (2). Performing the
Hubbard–Stratonovich transformations one can intro-
duce the new dual variables f⇤, f,�

e

P
k⌫�

c⇤k⌫�[�⌫��"k]ck⌫�
= Df⇥

Z
D[f⇤, f ] e
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k⌫�
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k⌫�[�⌫��"k]

�1fk⌫�+c⇤⌫�f⌫�+f⇤
⌫�c⌫�}

,

e
1
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P
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q! [⇤!�Vq]⇢q!

= D b⇥
Z

D[�] e
� 1

2

P
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{�⇤

q! [⇤!�Vq]
�1�q!+⇢⇤

!�!+�⇤
!⇢!}

. (A2)

Terms Df = det[�⌫� � "k] and D�1
b =

p
det[⇤! � Vq]

can be neglected, because they does not contribute to
expectation values. Rescaling the fermionic fields fk⌫�
as fk⌫�g

�1
⌫� , the bosonic fields �q! as �q!↵�1

! , where
↵! = (1 + U!�!), and integrating out the original de-
grees of freedom c⇤ and c we arrive at the dual action

S̃ = �
X

k⌫

f⇤
k⌫G̃

�1
0 fk⌫ � 1

2

X

q!

�⇤
q!W̃

�1
0 �q! + Ṽ . (A3)

with the bare dual propagators

G̃0 = [g�1
⌫ +�⌫ � "k]

�1 � g⌫ = GE � g⌫ , (A4)

W̃0 = ↵�1
!

⇥
[Uq � U!]

�1 � �!

⇤�1
↵�1
! = WE �W!,

(A5)

and the dual interaction term Ṽ . The explicit form of the
dual interaction can be obtained by expanding the c⇤ and
c dependent part of partition function in an infinite series
and integrating out these degrees of freedom as follows
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So the dual interaction has the form of an infinite expan-
sion o↵ the full vertices of the local impurity problem
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Here we define the three- and four-point vertex functions
as (�⌫! is the shorthand notation for the �2,1

⌫! ),

�⌫! = g�1
⌫ g�1

⌫+!↵
�1
!

⌦
c⌫c

⇤
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with the simple connection between them

�⌫! = ↵�1
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1� �4,0

⌫⌫0!g⌫0g⌫0�!

⇤
. (A10)

In the weakly-interacting limit, namely U ! 0, the renor-
malization factor ↵! goes to unity and the four-point
vertex �4,0 is zero, as detailed in previous works29–31 on
the DB approach. Then, the three-point vertex can be
reduced to its bare form �0 = 1. Frequency dependence
of the full local three-point vertex function �⌫! and the
influence of non-local interaction V is shown in Fig. 9.

Then, the two first terms in Ṽ are given by

Ṽ = �⌫! f⇤
⌫ f⌫+!�

⇤
! +

1

4
�4,0
⌫⌫0! f⇤

⌫ f
⇤
⌫0f⌫+!f⌫0�!. (A11)
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For the future research we aim to find the functional
description of the dual approximations presented in the
current paper, that will automatically solve the compli-
cated issue of the conservation laws. Unfortunately, there
is only one dual approximation known that fulfils the con-
servation laws and can be derived from the functional
introduced in the dual space31.
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ent rescaling of the dual bosonic fields. The partition
function of our problem is given by
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⌫� , the bosonic fields �q! as �q!↵�1

! , where
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with the bare dual propagators
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dual interaction can be obtained by expanding the c⇤ and
c dependent part of partition function in an infinite series
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In the weakly-interacting limit, namely U ! 0, the renor-
malization factor ↵! goes to unity and the four-point
vertex �4,0 is zero, as detailed in previous works29–31 on
the DB approach. Then, the three-point vertex can be
reduced to its bare form �0 = 1. Frequency dependence
of the full local three-point vertex function �⌫! and the
influence of non-local interaction V is shown in Fig. 9.

Then, the two first terms in Ṽ are given by

Ṽ = �⌫! f⇤
⌫ f⌫+!�

⇤
! +

1

4
�4,0
⌫⌫0! f⇤

⌫ f
⇤
⌫0f⌫+!f⌫0�!. (A11)
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For the future research we aim to find the functional
description of the dual approximations presented in the
current paper, that will automatically solve the compli-
cated issue of the conservation laws. Unfortunately, there
is only one dual approximation known that fulfils the con-
servation laws and can be derived from the functional
introduced in the dual space31.
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Appendix A: Dual transformations

The dual transformations of the non-local part of the
action Srem can be made in the same way as in previous
works on DB approach. In order to define the three-point
vertex in the TRILEX way, here we introduce a di↵er-
ent rescaling of the dual bosonic fields. The partition
function of our problem is given by

Z =

Z
D[c⇤, c] e�S (A1)

where the action S is given by (2). Performing the
Hubbard–Stratonovich transformations one can intro-
duce the new dual variables f⇤, f,�

e

P
k⌫�

c⇤
k⌫�[�⌫��"k]ck⌫�

= Df⇥
Z

D[f⇤, f ] e
�

P
k⌫�

{f⇤
k⌫�[�⌫��"k]

�1fk⌫�+c⇤
⌫�f⌫�+f⇤

⌫�c⌫�}
,

e
1
2

P
q!

⇢⇤
q! [⇤!�Vq]⇢q!

= D b⇥
Z

D[�] e
� 1

2

P
q!

{�⇤
q! [⇤!�Vq]

�1�q!+⇢⇤
!�!+�⇤

!⇢!}
. (A2)

Terms Df = det[�⌫� � "k] and D�1
b =

p
det[⇤! � Vq]

can be neglected, because they does not contribute to
expectation values. Rescaling the fermionic fields fk⌫�
as fk⌫�g

�1
⌫� , the bosonic fields �q! as �q!↵�1

! , where
↵! = (1 + U!�!), and integrating out the original de-
grees of freedom c⇤ and c we arrive at the dual action

S̃ = �
X

k⌫

f⇤
k⌫G̃

�1
0 fk⌫ � 1

2

X

q!

�⇤
q!W̃

�1
0 �q! + Ṽ . (A3)

with the bare dual propagators

G̃0 = [g�1
⌫ +�⌫ � "k]

�1 � g⌫ = GE � g⌫ , (A4)

W̃0 = ↵�1
!

⇥
[Uq � U!]

�1 � �!

⇤�1
↵�1
! = WE � W!,

(A5)

and the dual interaction term Ṽ . The explicit form of the
dual interaction can be obtained by expanding the c⇤ and
c dependent part of partition function in an infinite series
and integrating out these degrees of freedom as follows

Z
e

�
P
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So the dual interaction has the form of an infinite expan-
sion o↵ the full vertices of the local impurity problem
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Here we define the three- and four-point vertex functions
as (�⌫! is the shorthand notation for the �2,1

⌫! ),

�⌫! = g�1
⌫ g�1

⌫+!↵
�1
!

⌦
c⌫c

⇤
⌫+!⇢!

↵
, (A8)

�4,0
⌫⌫0! = g�1

⌫ g�1
⌫0 g�1

⌫0�!g
�1
⌫+!

h ⌦
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⌫0�!c
⇤
⌫+!

↵
�

g⌫g⌫0(�! � �⌫0,⌫+!)
i
, (A9)

with the simple connection between them

�⌫! = ↵�1
!

X

⌫0

⇥
1 � �4,0

⌫⌫0!g⌫0g⌫0�!

⇤
. (A10)

In the weakly-interacting limit, namely U ! 0, the renor-
malization factor ↵! goes to unity and the four-point
vertex �4,0 is zero, as detailed in previous works29–31 on
the DB approach. Then, the three-point vertex can be
reduced to its bare form �0 = 1. Frequency dependence
of the full local three-point vertex function �⌫! and the
influence of non-local interaction V is shown in Fig. 9.
Then, the two first terms in Ṽ are given by

Ṽ = �⌫! f⇤
⌫ f⌫+!�

⇤
! +

1

4
�4,0
⌫⌫0! f⇤

⌫ f
⇤
⌫0f⌫+!f⌫0�!. (A11)

9.18 Alexander Lichtenstein

The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. Additionally the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for a consideration of the strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions Sref

i defined by hybridization function �⌫ with screened local interaction U! and a
non-local remaining part S̃

S =
X

i

S(i)
ref

+ �S, (51)

which are given by the following explicit relations

S
ref

= �
X

⌫�

c+⌫�[i⌫ + µ � �⌫ ]c⌫� +
1

2

X
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U! n⇤
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�S =
X
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c+⌫k�["k � �⌫ ]c⌫k� +
1

2

X

q!

(Uq � U!)n
⇤
q!nq! . (52)

The local bare interaction of the impurity model is then equal to U! = U + ⇤! and it is easy to
see that Uq � U! = Vq � ⇤! which makes the method independent of the U -V separation. The
impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green’s function g⌫ , susceptibility �! and the renormalized interaction W!.
The local impurity Green’s function g⌫ , susceptibility �! and renormalized interaction W! as

g⌫ = � hc⌫c
⇤
⌫iimp ,

�! = � hn!n
⇤
!iimp , (53)

W! = U! + U!�!U! ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of efficient perturbation scheme for �S in action
formalsim. In addition to fermionic Hubbard-Stratonovich transformation Eq. (32) on the first
term ["k � �⌫ ]c

+

⌫k�c⌫k� which give the dual fermion variables f+

⌫k�, f⌫k�, we will perform a
bosonic transformation:

q
det[⇤! � Vq]e
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2
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, (54)

and we use that U! � Uq = ⇤! � Vq. Note that the caution should be taken for convergence
problem of integral over new dual variable e� [3] which not affect the final eqiations. Rescaling
the bosonic fields �q! as �q!↵�1

! and integrating out the original degrees of freedom c+ and c

we arrive at the dual action

S̃ = �
X

k⌫

f ⇤
k⌫G̃

�1

0

fk⌫ � 1

2

X
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q!W̃
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0

�q! + Ṽ . (55)

9.18 Alexander Lichtenstein

The dual boson scheme [3] aims to treat the action (50) in a way, similar to the dual-fermion
approach. Additionally the dual fermionic degrees of freedom, the bosonic fields are treated in
a similar manner. This allows for a consideration of the strongly correlated systems beyond the
Hubbard model. Also, it can be employed for an explicit treatment of the collective excitations
in the Hubbard model. Here we present the basic idea of this approach (Fig. 6).
First we split the lattice action (50) into a sum of effective single-site local impurity reference
actions Sref

i defined by hybridization function �⌫ with screened local interaction U! and a
non-local remaining part S̃

S =
X

i

S(i)
ref

+ �S, (51)

which are given by the following explicit relations

S
ref

= �
X

⌫�

c+⌫�[i⌫ + µ � �⌫ ]c⌫� +
1

2

X

!

U! n⇤
!n! ,

�S =
X

⌫k�

c+⌫k�["k � �⌫ ]c⌫k� +
1

2

X

q!

(Uq � U!)n
⇤
q!nq! . (52)

The local bare interaction of the impurity model is then equal to U! = U + ⇤! and it is easy to
see that Uq � U! = Vq � ⇤! which makes the method independent of the U -V separation. The
impurity problem with frequency dependent interactions (as well as spin-dependent exchange)
can be solved using, e.g., continuous-time quantum Monte Carlo solvers [1], and one can obtain
the local impurity Green’s function g⌫ , susceptibility �! and the renormalized interaction W!.
The local impurity Green’s function g⌫ , susceptibility �! and renormalized interaction W! as

g⌫ = � hc⌫c
⇤
⌫iimp ,

�! = � hn!n
⇤
!iimp , (53)

W! = U! + U!�!U! ,

where the average is taken with respect to the impurity action (52). The strategy here is similar
to the dual fermion scheme and consists of efficient perturbation scheme for �S in action
formalsim. In addition to fermionic Hubbard-Stratonovich transformation Eq. (32) on the first
term ["k � �⌫ ]c

+

⌫k�c⌫k� which give the dual fermion variables f+

⌫k�, f⌫k�, we will perform a
bosonic transformation:

q
det[⇤! � Vq]e

1

2

P
q!

n⇤
q! [⇤!�Vq]nq!

=

Z
D[�] e

� 1

2

P
q!
{�⇤

q! [⇤!�Vq]
�1�q!+n⇤

!�!+�⇤
!n!}

, (54)

and we use that U! � Uq = ⇤! � Vq. Note that the caution should be taken for convergence
problem of integral over new dual variable e� [3] which not affect the final eqiations. Rescaling
the bosonic fields �q! as �q!↵�1

! and integrating out the original degrees of freedom c+ and c

we arrive at the dual action

S̃ = �
X

k⌫

f ⇤
k⌫G̃

�1

0

fk⌫ � 1

2

X

q!

�⇤
q!W̃

�1

0

�q! + Ṽ . (55)
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Fig. 6: General view on dual-fermion approach: effective impurity model defined by fermionic
hibridizationn function �⌫ and bosonic screened interactions ⇤!. It can be exactly solved
within CT-QMC scheme, resulting in electronic local Green’s function g⌫ and bosonic local
susceptibility �! as well as full connected vertex �!

⌫,⌫0 and electron-boson vertex �⌫
!. Based on

this local information one can performed an efficient lattice perturbation expansion for the dual
Green function G̃k⌫ and dual boson propagator W̃q!.

with the bare dual fermion-boson propagators

G̃
0

= [G�1

ref,⌫ +�⌫ � "k]
�1 � g⌫ = G

E

� g⌫ , (56)

W̃
0

= ↵�1

!

⇥
[Uq � U!]

�1 � �!

⇤�1

↵�1

! = W
E

� W!, (57)

and the dual interaction term Ṽ . The explicit form of the dual interaction can be obtained by
expand the c+ and c dependent part of partition function in an infinite row and integrating out
these degrees of freedom. The two first terms in Ṽ are given by

Ṽ =
1

4

X

⌫⌫0!

�⌫⌫0! f
⇤
⌫ f

⇤
⌫0f⌫+!f⌫0�! +

X

⌫!

(�⌫! f
⇤
⌫ f⌫+!�

⇤
! + h.c.) (58)

We define the three-point electron-boson vertex �⌫! in the following way:

�⌫! = g�1

⌫ g�1

⌫+!↵
�1

! hc⌫c⇤⌫+!n!i
loc

(59)

where ↵! = W!/U! = (1 + U!�!) is the local renormalization factor. The four-point vertex
function �⌫⌫0! can be determined similarly to the dual fermion section.

1 Green Function in ⌧ -space

Exact transformation: Matsubara-frequency and imaginary-time:

1

i!n � "
<= FT => � e�⌧"

1 + e��"

Green function with a simple bath:

G(i!n) = � 1

i!n � "d ��(i!n)

�(i!n) =
V 2

i!n � "k
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+
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]

⌃k⌫ = ⌃ref
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k⌫ +Gref
⌫
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I. DUAL BOSON THEORY

Many important e↵ects in physics of correlated sys-
tems are based on non-local interactions in solids and re-
lated with consistent description of collective excitations
(plasmons, magnons, orbitons etc.) which can strongly
a↵ect the original electronic degrees of freedom. Us-
ing first-principle constrain-RPA scheme? one can ob-
tain frequency dependent non-local interaction for cor-
related subspace screened by broad-bands of conducting
electrons. The simplest e↵ective action for such an ex-
tended Hubbard model reads

S = �
X

k⌫�

G�1
0k⌫c+

k⌫�ck⌫� +
1

2

X

q!

Uq!n⇤
q!nq!. (1)

where G0k⌫ = [i⌫ + µ � "k ]
�1 is a bare lattice Green’s

function and the interaction Uq! = U! + Vq! con-
sists of the on-site term U and non-local long-range
Coulomb interactions V , respectively. For simplicity we
include only charge fluctuations which are given by the
complex bosonic variable nq! =

P
k⌫�(c

+
k⌫ck+q,⌫+! �⌦

c+
k⌫ck⌫

↵
�q!). We do not consider the exchange interac-

tions and local spin degrees of freedom that can be done
with some caution for vector spin boson case? . Moreover
we will investigate here only the single-band model but
preserve the matrix form of all equations keeping in mind
a simple generalization to the case of several orbitals or
bands.

The dual boson scheme? aims to treat the action (1)
in a way, similar to the dual-fermion approach. Addition-
ally the dual fermionic degrees of freedom, the bosonic
fields are treated in a similar manner. This allows for
a consideration of the strongly correlated systems be-
yond the Hubbard model. Also, it can be employed for
an explicit treatment of the collective excitations in the
Hubbard model. Here we present the basic idea of this
approach.

First, we split the lattice action (1) into a sum of the
e↵ective single-site local impurity reference actions Sref

i
defined by hybridization function �⌫ with screened local
interaction U! and a non-local remaining part S̃

S =
X

i

S(i)
ref +�S, (2)

which are given by the following relations

Sref = �
X

⌫�

G0 k⌫c+
⌫�c⌫� +

1

2

X

!

U! n⇤
!n! (3)

�S =
X

k⌫�

"̃k⌫ c+
k⌫�ck⌫� +

1

2

X

q!

Ũq! n⇤
q!nq!. (4)

where G0 k⌫ = [i⌫ + µ � �⌫ ]
�1 is a bath Green’s func-

tion, "̃k⌫ = "k � �⌫ and Ũq! = Uq! � U! and one can

see that we can incorporate arbitrary frequency depen-
dence of bare Coulomb interactions as well as electron
spectrum. The local bare interaction of the impurity
model is then equal to U! = U! + ⇤! and it is easy
to see that Uq! � U! = Vq! � ⇤! which makes the
method independent of the U -V separation. The impu-
rity problem with frequency dependent interactions (as
well as spin-dependent exchange) can be solved using,
e.g., continuous-time quantum Monte Carlo solvers? ? ,
and one can obtain the local impurity Green’s function
g⌫ , susceptibility �! and the renormalized interaction
W!. The lattice and the reference impurity Green’s func-
tions and susceptibilities are defined as follows:

Gk⌫/Gref
⌫ = �

⌦
c c+

↵
k⌫/⌫ ref

, (5)

Xq!/�! = � hn n⇤iq!/! ref , (6)

W! = U! + U!�!U!, (7)

where the averages are taken with respect to the lattice
or impurity actions (??).

The strategy here is similar to the dual fermion scheme
and consists of e�cient perturbation scheme for �S in
the action formalism. To shorten the expressions, here
we do not write the formulas with the explicit source
fields, as they can be straightforwardly introduced in an
analogue to Sec. .... In addition to fermionic Hubbard-
Stratonovich transformation Eq. (??) on the first term
"̃k⌫c+

⌫k�c⌫k� which give the dual fermion variables c̃+
k⌫�,

c̃k⌫�, we will perform a bosonic transformation:

e
1
2

P
q!

n⇤
q!Ũq!nq!

=
q

det[Ũ�1
q! ]

Z
D[ñ] e

1
2

P
q!

{�ñ⇤
q!Ũ�1

q! ñq!+n⇤
!ñ!+ñ⇤

!n!}
. (8)

Note that the caution should be taken for convergence
problem of integral over new dual variable ñ due to the
signum of Ũq! which not a↵ect the final equations? . We
point out that the first transformation as in dual fermion
approach made exact relation to the reference impurity
system. Rescaling the bosonic fields ñq! with some fre-
quency dependent factor as ñq!↵�1

! , and integrating out
the original degrees of freedom c+ and c we arrive at the
dual boson action

S̃ = �
X

k⌫

G̃�1
0k⌫ c̃+

k⌫� c̃k⌫� � 1

2

X

q!

W̃ �1
0q!ñ⇤

q!ñq! + Ṽ . (9)

with the bare dual fermion-boson propagators

G̃0 = [G�1
ref,⌫ +�⌫ � "k]

�1 � Gref
⌫ = GE � Gref

⌫ , (10)

W̃0 = ↵�1
!

⇥
[Uq � U!]

�1 � �!

⇤�1
↵�1
! = WE � Wref

! ,
(11)
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and the dual interaction term Ṽ . The explicit form of the dual interaction can be obtained by
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where ↵! = W!/U! = (1 + U!�!) is the local renormalization factor. The four-point vertex
function �⌫⌫0! can be determined similarly to the dual fermion section.
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For the future research we aim to find the functional
description of the dual approximations presented in the
current paper, that will automatically solve the compli-
cated issue of the conservation laws. Unfortunately, there
is only one dual approximation known that fulfils the con-
servation laws and can be derived from the functional
introduced in the dual space31.
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Appendix A: Dual transformations

The dual transformations of the non-local part of the
action Srem can be made in the same way as in previous
works on DB approach. In order to define the three-point
vertex in the TRILEX way, here we introduce a di↵er-
ent rescaling of the dual bosonic fields. The partition
function of our problem is given by

Z =

Z
D[c⇤, c] e�S (A1)

where the action S is given by (2). Performing the
Hubbard–Stratonovich transformations one can intro-
duce the new dual variables f⇤, f,�
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Terms Df = det[�⌫� � "k] and D�1
b =

p
det[⇤! � Vq]

can be neglected, because they does not contribute to
expectation values. Rescaling the fermionic fields fk⌫�
as fk⌫�g

�1
⌫� , the bosonic fields �q! as �q!↵�1

! , where
↵! = (1 + U!�!), and integrating out the original de-
grees of freedom c⇤ and c we arrive at the dual action
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with the bare dual propagators
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and the dual interaction term Ṽ . The explicit form of the
dual interaction can be obtained by expanding the c⇤ and
c dependent part of partition function in an infinite series
and integrating out these degrees of freedom as follows
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So the dual interaction has the form of an infinite expan-
sion o↵ the full vertices of the local impurity problem
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Here we define the three- and four-point vertex functions
as (�⌫! is the shorthand notation for the �2,1
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In the weakly-interacting limit, namely U ! 0, the renor-
malization factor ↵! goes to unity and the four-point
vertex �4,0 is zero, as detailed in previous works29–31 on
the DB approach. Then, the three-point vertex can be
reduced to its bare form �0 = 1. Frequency dependence
of the full local three-point vertex function �⌫! and the
influence of non-local interaction V is shown in Fig. 9.
Then, the two first terms in Ṽ are given by
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In the weakly-interacting limit, namely U ! 0, the renor-
malization factor ↵! goes to unity and the four-point
vertex �4,0 is zero, as detailed in previous works29–31 on
the DB approach. Then, the three-point vertex can be
reduced to its bare form �0 = 1. Frequency dependence
of the full local three-point vertex function �⌫! and the
influence of non-local interaction V is shown in Fig. 9.
Then, the two first terms in Ṽ are given by
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Fig. 6: General view on dual-fermion approach: effective impurity model defined by fermionic
hibridizationn function �⌫ and bosonic screened interactions ⇤!. It can be exactly solved
within CT-QMC scheme, resulting in electronic local Green’s function g⌫ and bosonic local
susceptibility �! as well as full connected vertex �!

⌫,⌫0 and electron-boson vertex �⌫
!. Based on

this local information one can performed an efficient lattice perturbation expansion for the dual
Green function G̃k⌫ and dual boson propagator W̃q!.

with the bare dual fermion-boson propagators
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and the dual interaction term Ṽ . The explicit form of the dual interaction can be obtained by
expand the c+ and c dependent part of partition function in an infinite row and integrating out
these degrees of freedom. The two first terms in Ṽ are given by
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We define the three-point electron-boson vertex �⌫! in the following way:

�⌫! = g�1

⌫ g�1
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! hc⌫c
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loc

(59)

where ↵! = W!/U! = (1 + U!�!) is the local renormalization factor. The four-point vertex
function �⌫⌫0! can be determined similarly to the dual fermion section.
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where ↵! = W!/U! = (1 + U!�!) is the local renormalization factor. The four-point vertex
function �⌫⌫0! can be determined similarly to the dual fermion section.
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hence is k-dependent:
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(48)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform. After calculating the best possible
series for the self-energy ⌃̃ in the dual space one can calculate the renormalized Green function
matrix for original fermions using the following simple transformations [3]:

G⌫(k) =

⇣
g⌫ + g⌫⌃̃⌫(k)g⌫

⌘�1

+ �⌫ � "k

��1

, (49)

which is a useful generalization of the DMFT Green’s function (see Eq.(45)) to include the non-
local correlation effects. One can see that the dual self-energy plays the role of of an effective
T-matrix for the exactly solvable local problem. The progress of the DMFT approach is strongly
related to developments of efficient numerical solvers for an effective continuous time quantum
impurity model [1].

5 Dual Boson approach for non-local interactions

Many important effects in physics of correlated systems based on non-local interactions in solids
and related with consistent description of collective excitation (plasmons, magnons, orbitons
etc.) which can strongly affect the original electronic degrees of freedom. Using first-principle
constrain-RPA scheme [16] one can obtained non-local interaction parameters for correlated
subspace screened by broad-bands of conducting electrons. The simplest effective Hamiltonian
for such an extended Hubbard model reads

S = �
X

k⌫�

c+k⌫�[i⌫ + µ � "k ]ck⌫� +
1

2

X

q!

Uq n
⇤
q!nq!. (50)

here the Grassmann variables c+q⌫ (cq⌫) corresponding to creation (annihilation) of an electron
with momentum k and fermionic Matsubara frequency ⌫ and we skip the spin-indices for sim-
plicity. The interaction Uq = U + Vq consists of the on-site (Hubbard term) and non-local
long-range Coulomb interactions respectively. The screened Coulomb enteraction can be fre-
qency dependent Uq! as in c-RPA case which not produce any problems as one can see later.
For simplicity we include only charge fluctuations which are given by the complex bosonic
variable nq! =

P
k⌫�(c

⇤
k⌫ck+q,⌫+! � hc⇤k⌫ck⌫i�q!). We do not include exchange interactions in

Hamiltonian and local spin degrees of freedom which can be done with some caution for vector
spin boson case [17]. Moreover we will consider only one-band model but keep the matrix form
of all equations for simple generalization in case of few orbitals (bands). The chemical potential
µ defined the average number of electrons per site. Finally, "k is the Fourier transform of the
hopping integral tij between different sites.

8

For our particular case � =#, �0 =" and & = +, so i = |#i, k = |"i and j can be either |0i for the first term in (69) or |"#i for the
second one. Thus

�#"+(i!1, i!2) = � 1
Z

�
f#,0,"(i!1, i!2) + f#,"#,"(i!2, i!1)

�
. (72)

Using (71) and �B� 1 we obtain

�#"+(i!1, i!2) =
 

2µ
i!1 + i!2 � 2B

� 1
!

1
(i!1 � B � µ)(i!2 � B � µ) (73)

= g#(i!1)g"(�i!2)
�
1 � U��+(i!1 + i!2)

�
. (74)

As it was discussed above, the three-point vertex for the spin channel is determined as

�+(i!1, i!2) =

D
c#(i!1) c⇤"(�i!2) ⇢+(i!1 + i!2)

E

g#(i!1)g"(�i!2) (1 + U+���+(i!1 + i!2))
(75)

and equal to unity if U+� = �U.

Interaction through the for-point vertex function

It is also possible to rewrite the interaction (9) without the three-point vertex functions, which looks more natural. Let us start
with the equation (10) and use expression (32) for the bare dual bosonic propagator W̃0

Y

& q

⌫⌫0! = �
&
⌫⌫0! � � &⌫!↵&!

h
V & �1

q! � �&!
i�1
↵&!�

&
⌫0! (76)

= � &⌫⌫0! �
X

⌫1,⌫2

⇣
1 � � &⌫⌫1!g⌫1 g⌫1+!

⌘ h
V & �1

q! � �&!
i�1 ⇣

1 � g⌫2 g⌫2+!�
&
⌫0⌫2!

⌘

=
X

⌫1

� &⌫⌫0! �V
&
q!

⇣
1 � g⌫1 g⌫1+!�

&
⌫1⌫0!

⌘

1 � �&!V &
q!

.

Then, the total renormalized interaction is

�
& q

⌫⌫0! =
X

k

00,⌫00,⌫1,⌫2

� &⌫⌫00! �V
&
q!

⇣
1 � g⌫1 g⌫1+!�

&
⌫1⌫00!

⌘

1 � �&!V &
q! + G̃

k

00⌫00G̃k

00+q,⌫00+!

h
� &⌫00⌫0! �V

&
q!

⇣
1 � g⌫2 g⌫2+!�

&
⌫2⌫0!

⌘i . (77)

Unfortunately, this expression can not be simplified in terms of � vertex. So, let us introduce two other type of vertex functions:
a dual ladder

� ladd
⌫⌫0!(&, q) =

X

k

00⌫00

� &⌫⌫00!
1 + G̃

k

00⌫00G̃k

00+q,⌫00+!�
&
⌫00⌫0!

, (78)

or

� &⌫⌫0! =
X

k

00⌫00

� ladd
⌫⌫00!(&, q)

1 � G̃
k

00⌫00G̃k

00+q,⌫00+!�
ladd
⌫00⌫0!(&, q)

, (79)

and the 2PI vertex of impurity problem as

� &⌫⌫0! =
X

⌫00

� 2PI &
⌫⌫00!

1 + g⌫00g⌫00+!� 2PI &
⌫00⌫0!

. (80)

Then, the total renormalized interaction can be rewritten as

�
& q
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k1⌫1Gk1+q,⌫1+!�
ladd
⌫1⌫00!

(&, q)
⌘

1 �V &
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⇣
G

k

00⌫00Gk

00+q,⌫00+! �G
k

00⌫00Gk

00+q,⌫00+!�
ladd
⌫00⌫000!(&, q)G

k

000⌫000Gk

000+q,⌫000+!

⌘ , (81)
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and the dual interaction term Ṽ . We introduce also the
fermion (GE) and boson (WE) propagators for the ex-
tended DMFT theory and we chose ↵! = W!/U! =
(1 + U!�!) as the local renormalization factor.

The explicit form of the dual interaction can be ob-
tained expanding the c+, c-dependent part of the par-
tition function in an infinite series and integrating out
these degrees of freedom. The two first terms in Ṽ are
given by

Ṽ = �⌫! c̃+
⌫ c̃⌫+!ñ⇤

! +
1

4
F⌫⌫0! c̃+

⌫ c̃+
⌫0 c̃⌫+! c̃⌫0�!; (12)

hereafter in this section the spin indices are omitted for
simplicity. We define the three-point vertex �⌫! via the
original variables of the impurity reference system in the
following way?

�⌫! = G�1
⌫ G�1

⌫+!↵�1
!

⌦
c⌫c+

⌫+!n!

↵
, (13)

The four-point vertex function F⌫⌫0! is defined similar to
the same quantity of the dual fermion scheme. Further,
the dual Green’s function G̃k⌫ = �

⌦
c̃k⌫ c̃+

k⌫

↵
and renor-

malized dual interaction W̃q! = �
⌦
ñq!ñ⇤

q!

↵
, as well

as dual self-energy ⌃̃k⌫ and polarization operator ⇧̃q!,
can be obtained diagrammatically (Fig....)? ? ? . This
defines the renormalized dual propagators in a standard
way. An important property of the theory is that the
free dual boson propagators correspond to the EDMFT
approximation. Finally, the Green’s function Gk⌫ and
the renormalized interaction Wq! of the original model
can be exactly expressed in terms of the dual quantities
via the similar Dyson Eqs. (??)-(??) as follows

G�1
k⌫ = G�1

E � ⌃̃k⌫(1 + Gref
⌫ ⌃̃k⌫)

�1 (14)

W �1
q! = W �1

E � ⇧̃q!(1 + Wref
! ⇧̃q!)

�1, (15)

Finally, the self-consistency conditions should be in-
troduced to determine the values of the fermionic and
bosonic hybridizations. The most physical relevant self-
consistency conditions for the dual boson scheme were
found to be the requirements that the impurity problem
Green’s functions mimic the local lattice properties:

X

k

Gk⌫ = Gref
⌫ , (16)

X

q

Wq! = Wref
! . (17)

It is important to point out that whereas the requirement
of the DF method is closely related to the absence of lo-
cal part of the dual Green’s function, it is not the case

for the dual bosons, because of the more complicated
structure of the diagram series. Instead, the condition
(17) is related? to the vanishing of the local part of the
diagram sequence including both bosonic and fermionic
propagators (so-called superline). In this case the fully
renormalized dual theory is free from the double-counting
problem by construction, and the local impurity contri-
bution is excluded from the diagrams on the level of the
bare propagators?

Finally, we mention the useful relation between the
renormalized dual interaction W̃q! and lattice suscepti-
bility from HS-transformation (Eq. ???):

Xq! = Ũ�1
q! ↵�1

! W̃q!↵�1
! Ũ�1

q! � Ũ�1
q! . (18)

END: The rest is for the applications sections

This method has been applied to various problems
related to charge ordering and charge excitations in
strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
should be hnn⇤iq=0 = 0 at any finite frequency (pro-
vided that the current-current correlator < jj⇤ >!,q=0

is finite). For 3D systems with Coulomb interaction the
long-wavelength asymptotic behaviour for the density-

density correlator should be < nn⇤ >!,q!0/ q2

!2+!2
p
,

where !p is the plasma frequency. The RPA for free
electrons is proven to obey this property, since X0

!,q!0

vanishes with G = (i⌫ � "q)�1, but if we just replace
the bare Green’s functions by the renormalized ones, the
conservation law will be broken? . Indeed, following the
expression X0

!q = �
P

k⌫ G⌫kG⌫+!k+q can be rewritten
as

X0
!q = �

X

⌫k

✓
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i! + "k � "k+q + ⌃⌫ � ⌃⌫+!
. (19)
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tended DMFT theory and we chose ↵! = W!/U! =
(1 + U!�!) as the local renormalization factor.

The explicit form of the dual interaction can be ob-
tained expanding the c+, c-dependent part of the par-
tition function in an infinite series and integrating out
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as dual self-energy ⌃̃k⌫ and polarization operator ⇧̃q!,
can be obtained diagrammatically (Fig....)? ? ? . This
defines the renormalized dual propagators in a standard
way. An important property of the theory is that the
free dual boson propagators correspond to the EDMFT
approximation. Finally, the Green’s function Gk⌫ and
the renormalized interaction Wq! of the original model
can be exactly expressed in terms of the dual quantities
via the similar Dyson Eqs. (??)-(??) as follows
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Finally, the self-consistency conditions should be in-
troduced to determine the values of the fermionic and
bosonic hybridizations. The most physical relevant self-
consistency conditions for the dual boson scheme were
found to be the requirements that the impurity problem
Green’s functions mimic the local lattice properties:
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It is important to point out that whereas the requirement
of the DF method is closely related to the absence of lo-
cal part of the dual Green’s function, it is not the case

for the dual bosons, because of the more complicated
structure of the diagram series. Instead, the condition
(17) is related? to the vanishing of the local part of the
diagram sequence including both bosonic and fermionic
propagators (so-called superline). In this case the fully
renormalized dual theory is free from the double-counting
problem by construction, and the local impurity contri-
bution is excluded from the diagrams on the level of the
bare propagators?

Finally, we mention the useful relation between the
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bility from HS-transformation (Eq. ???):
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END: The rest is for the applications sections

This method has been applied to various problems
related to charge ordering and charge excitations in
strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
should be hnn⇤iq=0 = 0 at any finite frequency (pro-
vided that the current-current correlator < jj⇤ >!,q=0

is finite). For 3D systems with Coulomb interaction the
long-wavelength asymptotic behaviour for the density-
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where !p is the plasma frequency. The RPA for free
electrons is proven to obey this property, since X0
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vanishes with G = (i⌫ � "q)�1, but if we just replace
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fermion (GE) and boson (WE) propagators for the ex-
tended DMFT theory and we chose ↵! = W!/U! =
(1 + U!�!) as the local renormalization factor.

The explicit form of the dual interaction can be ob-
tained expanding the c+, c-dependent part of the par-
tition function in an infinite series and integrating out
these degrees of freedom. The two first terms in Ṽ are
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Finally, the self-consistency conditions should be in-
troduced to determine the values of the fermionic and
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Green’s functions mimic the local lattice properties:
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(17) is related? to the vanishing of the local part of the
diagram sequence including both bosonic and fermionic
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strongly correlated systems? ? ? ? ? ? ? ? . The problem
of plasmon spectrum in strongly correlated systems?

seems to provide the best example of its opportuni-
ties. The point is to take into account properly charge
conservation law which is a highly nontrivial problem
when working with exact Green’s functions? ? . In-
deed, the charge (particle number) conservation results
in the equation !2 hnn⇤iq! = q2 hjj⇤iq!and therefore it
should be hnn⇤iq=0 = 0 at any finite frequency (pro-
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Di↵erent self–consistency conditions.

SUPERLINES FOR THE DIFFERENT

SELF–CONSISTENCY CONDITIONS

In the last paper we have shown, that the self–consistency
condition

X

q

X
q! = �! (1)

leads to the vanishing of the local bosonic superlineP
q

S̃
q! = 0, where

S̃
q! = X̃

q! + �!⇧̃q!X̃
q! + X̃

q!⇧̃q!�!+

�!⇧̃q!�! + �!⇧̃q!X̃
q!⇧̃q!�!. (2)

Unfortunately, this self–consistency condition gives the
wrong sign for the bosonic retarded interaction for spin de-
grees of freedom ⇤s

!, which results in the sign problem for
QMC algorithm.

Recently, the idea of the new self–consistency condition on
the renormalized interaction

X

q

W latt
q! = W imp

! (3)

was proposed in the TRILEX paper, where it was alleging that
such condition gives the right sign for ⇤s

! and therefore, has
no problems with QMC. Renormalized interaction W

q! can be
rewritten in terms of susceptibility and interaction as follows

W latt
q! = (U + V

q

) + (U + V
q

)X
q!(U + V

q

),

W imp
! = (U + ⇤!) + (U + ⇤!)�!(U + ⇤!). (4)

Then, the self–consistency condition (3) looks similar to con-
dition (1), but with the renormalization of susceptibility on
their own interaction. Indeed, impurity and lattice problems
start with the di↵erent interactions (U +⇤!) and (U + Vq) re-
spectively. Therefore, may be, we should shift a bit bosonic
Green’s functions � and X to have correct expression for the
SC condition.

The form of the TRILEX self–consistency condition tempt-
ing to think that it is possible to construct dimensionless quan-
tity for the impurity and lattice problem and then chose the
self–consistency condition on it. I propose to take �!(U+⇤!)
and X

q!(U +V
q

) for such quantity, because it indeed gives the
renormalized susceptibility on their own bare interaction.

The most interesting fact is, that all these three self–
consistency conditions are equivalent on the EDMFT level (it
is simple to proof it, so I skip it here). Let us check, what do
these conditions give on the diagrammatic level in the Dual
Boson theory.

1) As it was mentioned before, our condition
P
q

X
q! = �!

vanishes the local dual bosonic superline S̃
q! and importantly

saves the property of the system, that X! derived from the dual
theory indeed has the form of hnni.

2) TRILEX condition
P
q

W latt
q! = W imp

! can be rewritten as

X

q

n
(V

q

� ⇤!) + (U + V
q

)X
q!(U + V

q

)
o
�

(U + ⇤!)�!(U + ⇤!) = 0. (5)

Introducing the polarization P! for impurity problem we can
write U + ⇤! =

�!�P!
�!P!

. From the last paper on Dual Boson
approach we use the following relations

X
q! =

⇣
1 + �!⇧̃q!

⌘ h
X̃

q!(1 + ⇧̃
q!�!) + �!

i
(6)

and

V
q

� ⇤! =
X̃

q!

�!
h
X̃

q!(1 + ⇧̃
q!�!) + �!

i . (7)

After 3 pages of calculations (I will show them if needed) we
arrive at the following relation

0 =
1

P2
!

X

q

n
X̃

q! + (�! � P!)⇧̃
q!X̃

q! + X̃
q!⇧̃q!(�! � P!)+

(�! � P!)⇧̃
q!(�! � P!) + (�! � P!)⇧̃

q!X̃
q!⇧̃q!(�! � P!)

o
,

(8)

or
P
q

S̃ 0
q! = 0. The di↵erence between two superlines S !

and S 0! is only in the impurity susceptibility �! and �! � P!
respectively, which means that we just neglect the first term
in �! in the second superline. Also, comparison of this SC
condition with the DB shows, that in this case the lattice sus-
ceptibility also has the form of hnni, because the di↵erence is
only the first term in �, and this quantity we obtain from the
exact solution of impurity problem, which means that it has
the form hnni by definition.

3) Using the same equations as for the second SC condition,
we can obtain for

P
q!

X
q!(U + V

q

) = �!(U + ⇤!) the similar

relation

0 =
1

P!

X

q

n
X̃

q! + �!⇧̃q!X̃
q! + X̃

q!⇧̃q!(�! � P!)+

�!⇧̃q!(�! � P!) + �!⇧̃q!X̃
q!⇧̃q!(�! � P!)

o
,

(9)

or
P
q

S̃ 00
q! = 0. This superline is something in between the S̃

q!

and S̃ 0
q! and also gives the correct form for X = hnni.

The main questions are, should we (or should not) cancel
the first term P! in the impurity susceptibility �! when we
construct the dual superline and why? If not, then the SC on
W and the last one gives only the corrections to the superline.
Can we neglect them and use di↵erent SC conditions or not?

vs. 
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Plasmon in strongly correlated materials 
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Single plasmon mode for q->0 

2

strong correlation physics à la DMFT, the latter there-
fore leads to unphysical behavior of the collective charge
excitations and to a divergence of the excitation energy in
the long-wavelength limit [26]. In Ref. 25, the dual boson
approach has been introduced as a diagrammatic exten-
sion of EDMFT. It allows us to restore the momentum
dependence of the polarization operator through a ladder
summation of diagrams. This scheme yields a minimal
conserving approximation for correlated systems, simi-
lar to the RPA being the minimal theory for the Fermi
gas. In this paper, we employ this approach to study the
charge excitations in two-dimensional correlated systems
with long-range Coulomb interaction.
We proceed with the prototypical model of a strongly

correlated system, the (extended) Hubbard model [5, 6,
27, 28]

H = �t
X

hiji

c†i�cj� +
1

2

X

q

Vq⇢q⇢�q, (2)

on the two-dimensional square lattice with the charge
susceptibility X!(q) = h⇢⇢i!q. In the above, c†i� and ci�
denote the creation and annihilation of an electron on
lattice site i with spin � =", # and ⇢i = c†i"ci"+ c†i#ci#�1
describes the deviation of the density at site i from its
average value 1 for the half-filled case that we consider.
The sum

P
hiji is over pairs of nearest neighbor sites and

t is the hopping parameter.
The long-range Coulomb interaction Vq has the form

U + V0/|q| for |q| > 0 [29]. Correlated adatom sys-
tems on semiconductor surfaces [30] and the plasmon-
ics of graphene [31, 32] provide a beautiful examples
of real phenomena which may be described within this
model. The momentum dependent part corresponds to
the asymptotic behavior of the Coulomb interaction in
2D for distances considerably larger than the interatomic
distance and will result in a plasmonic branch [11–13].
For such distances, the long-range interaction is screened
by the substrate and the potential strength is given by
V0 = 2⇡e2/, where  is the dielectric constant of the
substrate. At short distances, screening e↵ects of the sub-
strate are often negligible. We therefore add a variable
interaction U to the local part which yields an e↵ective
local interaction U⇤ = U +

P
q V0/|q|.

In our calculations, we choose 4t = 1 as the energy
unit and work at fixed temperature T = 0.02 and V0 = 2,
while varying the parameter U⇤ = U +1.1. In each case,
we start from a standard, self-consistent EDMFT calcu-
lation. The retarded interaction U! as well as the local
part U⇤ of the interaction are treated on the level of the
impurity model. A hybridization expansion continuous-
time quantum Monte-Carlo solver [33] with improved es-
timators [34] is used to compute the imaginary-time cor-
relation functions of the impurity model without approx-
imation. In the final impurity solver step, we additionally
compute the (reducible) impurity vertex function �!⌫⌫0

a)
� ⇤

b)
⇤ � ��+=

Figure 1. a) Polarization correction diagram for ⇧̃ and b)
renormalized triangular electron-boson vertex ⇤ (shaded tri-
angle) in the dual boson approximation. The shaded square
denotes the renormalized two-particle vertex �.

in the charge channel. The polarization operator is repre-
sented in the form [25] ⇧�1

! (q) = ��1
! [1 + ⇧̃!(q)�!]�1 +

U!, where �! denotes the local charge susceptibility. The
dual bosonic self-energy ⇧̃ in turn is given by [cf. Fig. 1
a)]

⇧̃!(q) =
X

⌫�

�⌫+!,�!X̃
0
⌫!(q)⇤⌫!(q) (3)

(in EDMFT, it is identically zero). Here X̃0 de-
notes the nonlocal part of the bubble, X̃0

⌫!(q) =
�
P

k G̃⌫(k)G̃⌫+!(k + q), which avoids double counting
of the impurity contribution since G̃⌫(k) = G⌫(k)�g⌫ . In
the summation over the bosonic (fermionic) Matsubara
frequencies !, ⌫ (or quasimomenta), we implicitly assume
a normalization by the inverse temperature (or number
of k points). The vertex corrections in the dual boson ap-
proach enter through the renormalized triangular vertex
[Fig. 1 b)]: ⇤⌫!(q) = �⌫! +

P
⌫0 �⌫⌫0!(q)X̃0

⌫0!(q)�⌫0!,
where �⌫⌫0!(q) denotes the lattice vertex function in the
particle-hole charge channel, which is obtained through
the dual Bethe-Salpeter equation [25] [��1

! (q)]⌫⌫0 =
[��1

! ]⌫⌫0 � X̃0
⌫!(q)�⌫⌫0 .

In Fig. 2 we show the EDMFT local density of states
(DOS) for the extended Hubbard model for three qualita-
tively di↵erent cases: For weak interaction U⇤, the DOS
exhibits a single quasiparticle peak at the Fermi level. As
the interaction is increased, the is peak is renormalized,
as spectral weight is moved to incoherent excitations at
a higher energy. This leads to the formation of Hubbard
bands at energies E ⇠ ±U⇤/2. Above a critical U⇤

c ⇠ 2.4,

 0

 1
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D
O
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U⇤=1.1
U⇤=2.1
U⇤=2.6

Figure 2. Finite temperature local density of states (DOS)
of the two-dimensional Hubbard model with long-range
Coulomb interaction calculated within EDMFT. The local in-
teraction U⇤ moves spectral weight from the quasi-particle
peak at the Fermi energy to the Hubbard bands at E ⇠
±U⇤/2. For su�ciently large U⇤, the system is a Mott in-
sulator.

3

the system undergoes a first-order Mott transition [1, 4].
The Hubbard bands persist in the Mott phase.
We now turn to the discussion of the results for the

collective excitations. First, we verify in our numeri-
cal data that the polarization behaves as q2/(i!)2 for
any finite Matsubara frequency !m > 0 and small mo-
menta [26]. We hence expect that an RPA-type analysis
according to (1) still holds. In Figure 3 we plot the in-
verse of the dielectric function ✏E(q) = 1 � V (q)⇧E(q)
pls check sign! on real frequencies obtained by a stochas-
tic analytical continuation procedure [35]. Despite the
appearance of artifacts, the main qualitative features dis-
cussed here are robust. This quantity can be measured
via Angular Resolved Electron Energy Loss Spectroscopy
(EELS) [12, 13]. We find that at U⇤ = 1.1, the over-
all behavior is reminiscent of the RPA. It can be un-
derstood within an itinerant electron picture. In the
proximity of the � point, the spectrum exhibits a sin-
gle plasmon branch whose energy vanishes in the long-
wavelength limit. We further see a rather well defined
but broadened excitation throughout the Brillouin zone
with a wide continuum of particle-hole excitations below.
The energy scales are determined by the hopping rather
than the interaction, just as one would expect from a sim-
ple convolution of weakly renormalized Green’s functions:
The dominant contribution at the M -point stems from
the k-points connected by M for which the single-particle
dispersion ✏k is extremal, corresponding to a large den-
sity of states. The energy di↵erence is ✏M � ✏

�

= 2. At
the X-point, ✏X � ✏

�

= ✏M � ✏X = 1. The energy scales
are indeed found to be independent of U⇤ in this regime.
At U⇤ = 2.1, the picture has changed drastically. The

excitations of the particle-hole continuum are suppressed.
More strikingly, the dispersion is split into two branches
except for small wave vectors. The maximum energy of
both branches is found at the M -point, where they are
separated by a gap. The maximum of the lower branch
is consistent with a value of U⇤/2, while the latter is lo-
cated at E ⇠ U⇤. These features appear concomitantly
with the Hubbard bands in the density of states of Fig. 2.
One can interpret the lower branch to originate mainly
from particle-hole excitations for which the electron is ex-
cited from the Hubbard band to the quasiparticle-peak
(or vice versa), whereas the upper branch stems from ex-
citations between the Hubbard bands [37]. Similar split-
ting has also been observed in EDMFT+GW calcula-
tions for the extended Hubbard model with short-range
interaction [23, 24]. It is further apparent that the low
energy, long wavelength excitations are renormalized in
the vicinity of the � point. This is expected for excita-
tions from within the quasiparticle peak. We will discuss
this feature in more detail below.
Figure 3 finally shows the inverse dielectric function

in the Mott insulator at U⇤ = 2.6. In this state, a two-
particle excitation corresponds to a creation of a doublon
and a holon, which costs an energy U⇤. Such an excita-

0 2
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1

2
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1

2

0

1

2

E
E

E

U⇤
= 1.1

U⇤
= 2.1

U⇤
= 2.6

�� X M

Figure 3. Inverse dielectric function � Im ✏�1
E (q) of the 2D

Hubbard model with long-range Coulomb interaction for dif-
ferent values of the e↵ective local interaction U⇤ across the
Mott transition. The spectra show a transition from itiner-
ant to localized behavior. The interaction causes a spectral
weight transfer and renormalization of the long-wavelength
plasmon dispersion.

tion is expected to be highly localized. As a result, we
see a weakly dispersing branch at an energy E ⇠ U⇤.
The low-energy plasmon mode has disappeared together
with the quasiparticle peak.

Similar to the single-particle spectra of correlated sys-
tems, we observe a spectral weight transfer in the plas-
mon spectra. This is clearly illustrated in Figure 4, where
we show the inverse dielectric function for fixed momen-
tum. The respective values of U⇤ are indicated, showing
that the spectral weight transfer is associated with this
energy scale.
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Figure 4. A cross section of the EELS (� Im ✏�1) of Fig. 3
at the M point, q = (⇡,⇡). The interaction causes a transfer
of spectral density. The arrows indicate the typical energy
scales U⇤ and U⇤/2.
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FIG. 3. (Color online) Test of Eq. (7) for an isotropic retarded
spin-spin interaction ⇤̃x = ⇤̃y = ⇤̃z and a retarded charge-
charge interaction ⇤̃0. The left-hand-side (dashed black lines)
and right-hand-side (symbols) of Eq. (7) are drawn at the first
two bosonic Matsubara frequencies !m=1,2. Eq. (7) holds in
the charge channel (open green symbols) but is violated in
the spin channels (filled blue symbols).
This test was performed at � = 2 and U = 6 with a conduct-
ing bath �. The violation of Eq. (7) in the spin channels de-
pends on the magnitude of ⇤̃x,y,z, which was chosen large for
demonstration purposes. The data shown in this figure was
produced with the CTQMC solver presented in reference [46].

We compute the lattice susceptibility in this approach
according to

X↵
q! =

h�
XDMFT,↵

q!

��1
+ ⇤↵

!

i�1
. (25)

The particular form (25) of the susceptibility can be mo-
tivated in the DB approach [18]. In this form the retarded
interaction is reminiscent of the Moriya ⇤ correction em-
ployed in D�A. Here ⇤ however depends on frequency,
while in D�A it is instantaneous. We note that the par-
ticular form of the susceptibility is not relevant for the
conserving character of the theory (see Sec. IVA below),
but will of course a↵ect the results.
In the above, XDMFT,↵ denotes the susceptibility

computed as in DMFT in the standard way [9], in-
cluding vertex corrections. This amounts to approx-
imating the irreducible vertex function of the lattice
with its counterpart on the impurity, �↵

kk0q ⌘ �↵
⌫⌫0!,

in the channels ↵ = 0, z. We compute the general-
ized susceptibility from the integral equation X↵

kk0q =

GkGk+q

h
��kk0 �

P
k00 �↵

⌫⌫00!X↵
k00k0q

i
. The susceptibili-

ties are obtained from the latter by tracing out k, k0:
XDMFT,↵

q = 2
P

kk0 X↵
kk0q. We emphasize that the la-

bel ’DMFT’ merely indicates that XDMFT,↵ is computed
as in DMFT. Its value will di↵er from the DMFT sus-
ceptibility, because the impurity model is di↵erent.
The BFK model can be solved accurately using a suit-

ably generalized continuous-time quantum Monte Carlo
(CTQMC) algorithm. In weak-coupling CTQMC, the in-
clusion of these terms is straightforward [47]. In strong-
coupling CTQMC the impurity model can be solved in
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FIG. 4. (Color online) Test of Eq. (7) for a retarded spin-
spin interaction ⇤̃z in the z-channel and a retarded charge-
charge interaction ⇤̃0. Eq. (7) holds in the channels ↵ = 0, z.
Parameters as in Fig. 3, except ⇤̃x = ⇤̃y = 0.

the segment representation when only ⇤0 or ⇤z are in-
cluded [48–50]. For the general case of a vector bosonic
field (not considered in the numerical results of this sec-
tion), the algorithm simultaneously performs a hybridiza-
tion expansion and an interaction expansion with respect
to the spin-o↵-diagonal interactions ⇤x,y [46]. Here we
compute the correlation functions g⌫ and �↵

!, the self-
energy ⌃⌫ and the irreducible vertex function �↵

⌫⌫0! for
↵ = 0, z using a strong coupling quantum Monte Carlo
solver [50] with improved estimators adapted to treat the
retarded interactions [51, 52].
The calculation procedure is as follows: We start from

initial values for the hybridization �⌫ and retarded inter-
actions ⇤↵

!, which specify the BFK impurity model (19).
After solving the model, we evaluate the lattice suscep-
tibility (25). The Green’s function is computed from the
impurity self-energy in the same way as in DMFT:

G�1
k⌫ = i⌫ + µ � ✏k � ⌃imp

⌫ . (26)

The local parts of Gk⌫ and X↵
q! will in general be dif-

ferent from the impurity quantities g⌫ and �↵
!. We up-

date the hybridization �⌫ and retarded interactions ⇤0
!,

⇤z
! simultaneously and iteratively, until the conditions

Gloc,⌫ = g⌫ and X↵
loc,! = �↵

! for ↵ = 0, z are satisfied.

A. Numerical results

Let us now turn to the discussion of numerical results
of the two-particle self-consistent DMFT. In the following
we use parameters U = 6, T = 0.5 (in units of t), which is
somewhat above the DMFT Néel temperature T ⇡ 0.35.

In Fig. 4 we illustrate numerically that contrary to
Heisenberg-type coupling (cf. Fig. 3) the local Ward
identities (7) hold in the considered channels, ↵ = 0, z.
As shown in Appendix B 1, this implies XDMFT,↵

q=0,! 6=0 = 0.
Inserting this into Eq. (25) it follows that X↵

q=0,! 6=0 = 0,
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FIG. 3. (Color online) Test of Eq. (7) for an isotropic retarded
spin-spin interaction ⇤̃x = ⇤̃y = ⇤̃z and a retarded charge-
charge interaction ⇤̃0. The left-hand-side (dashed black lines)
and right-hand-side (symbols) of Eq. (7) are drawn at the first
two bosonic Matsubara frequencies !

m=1,2. Eq. (7) holds in
the charge channel (open green symbols) but is violated in
the spin channels (filled blue symbols).
This test was performed at � = 2 and U = 6 with a conduct-
ing bath �. The violation of Eq. (7) in the spin channels de-
pends on the magnitude of ⇤̃x,y,z, which was chosen large for
demonstration purposes. The data shown in this figure was
produced with the CTQMC solver presented in reference [46].

We compute the lattice susceptibility in this approach
according to

X↵

q!

=
h

�

XDMFT,↵
q!

��1
+ ⇤↵

!

i�1
. (25)

The particular form (25) of the susceptibility can be mo-
tivated in the DB approach [18]. In this form the retarded
interaction is reminiscent of the Moriya ⇤ correction em-
ployed in D�A. Here ⇤ however depends on frequency,
while in D�A it is instantaneous. We note that the par-
ticular form of the susceptibility is not relevant for the
conserving character of the theory (see Sec. IVA below),
but will of course a↵ect the results.

In the above, XDMFT,↵ denotes the susceptibility
computed as in DMFT in the standard way [9], in-
cluding vertex corrections. This amounts to approx-
imating the irreducible vertex function of the lattice
with its counterpart on the impurity, �↵

kk0q ⌘ �↵

⌫⌫

0
!

,
in the channels ↵ = 0, z. We compute the general-
ized susceptibility from the integral equation X↵

kk0q =

GkGk+q

h

��kk0 � P

k00 �↵

⌫⌫

00
!

X↵

k00k0q

i

. The susceptibili-

ties are obtained from the latter by tracing out k, k0:
XDMFT,↵

q = 2
P

kk0 X↵

kk0q. We emphasize that the la-

bel ’DMFT’ merely indicates that XDMFT,↵ is computed
as in DMFT. Its value will di↵er from the DMFT sus-
ceptibility, because the impurity model is di↵erent.

The BFK model can be solved accurately using a suit-
ably generalized continuous-time quantum Monte Carlo
(CTQMC) algorithm. In weak-coupling CTQMC, the in-
clusion of these terms is straightforward [47]. In strong-
coupling CTQMC the impurity model can be solved in
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the segment representation when only ⇤0 or ⇤z are in-
cluded [48–50]. For the general case of a vector bosonic
field (not considered in the numerical results of this sec-
tion), the algorithm simultaneously performs a hybridiza-
tion expansion and an interaction expansion with respect
to the spin-o↵-diagonal interactions ⇤x,y [46]. Here we
compute the correlation functions g

⌫

and �↵

!

, the self-
energy ⌃

⌫

and the irreducible vertex function �↵

⌫⌫

0
!

for
↵ = 0, z using a strong coupling quantum Monte Carlo
solver [50] with improved estimators adapted to treat the
retarded interactions [51, 52].

The calculation procedure is as follows: We start from
initial values for the hybridization �

⌫

and retarded inter-
actions ⇤↵

!

, which specify the BFK impurity model (19).
After solving the model, we evaluate the lattice suscep-
tibility (25). The Green’s function is computed from the
impurity self-energy in the same way as in DMFT:

G�1
k⌫

= i⌫ + µ � ✏k � ⌃imp
⌫

. (26)

The local parts of Gk⌫

and X↵

q!

will in general be dif-
ferent from the impurity quantities g

⌫

and �↵

!

. We up-
date the hybridization �

⌫

and retarded interactions ⇤0
!

,
⇤z

!

simultaneously and iteratively, until the conditions
Gloc,⌫ = g

⌫

and X↵

loc,! = �↵

!

for ↵ = 0, z are satisfied.

A. Numerical results

Let us now turn to the discussion of numerical results
of the two-particle self-consistent DMFT. In the following
we use parameters U = 6, T = 0.5 (in units of t), which is
somewhat above the DMFT Néel temperature T ⇡ 0.35.

In Fig. 4 we illustrate numerically that contrary to
Heisenberg-type coupling (cf. Fig. 3) the local Ward
identities (7) hold in the considered channels, ↵ = 0, z.
As shown in Appendix B 1, this implies XDMFT,↵
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Hubbard Model / Splitting of the action
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Lattice Ward identity 

Imuprity Ward identity 

3

(Where unambiguous, we drop labels ’imp’ and ’lat’ in
what follows.)
In practice, an Anderson impurity model (AIM) is of-

ten employed for this purpose, whose action reads

SAIM =�
X

⌫�

c⇤⌫�(ı⌫ + µ ��⌫)c⌫� + U
X

!

n�!"n!#. (3)

Here �⌫ denotes the electronic hybridization, µ is
the chemical potential and ⌫ (!) denote the discrete
fermionic (bosonic) Matsubara frequencies ⌫n = (2n +
1)⇡/� and !m = 2m⇡/�, respectively. � = 1/T is the
inverse temperature. The AIM has the same local inter-
action U as the lattice model.
Let us now take a practical viewpoint. Assume we

have a non-trivial model that we can solve exactly, such
as the AIM described by the action (3). From this model
we can obtain the local impurity self-energy and irre-
ducible vertex function. We can now ask the question of
how to construct a conserving approximation given these
quantities.
We recall that local conservation of charge and spin

means that the following continuity equations for the
charge (⇢0) and spin densities (⇢x,y,z) hold:

@⌧⇢
↵ = �[⇢↵, H]. (4)

We have introduced the index ↵ = 0, x, y, z to label the
charge and spin channels. The corresponding charge and
spin density operators are defined as ⇢↵ =

P
��0 c†�s↵��0c�0

with the Pauli matrices s↵, such that ⇢0 = n = n" + n#
and ⇢x,y,z = 2Sx,y,z.

On the lattice we can formulate the following Ward
identities (cf. Appendix A), which are the Green’s func-
tion analogues of the continuity equations (4):

⌃k+q � ⌃k = �
X

k0

�↵
kk0q[Gk0+q � Gk0 ]. (5)

Here we have introduced four-vector notation k ⌘ (k, ⌫)
and q ⌘ (q,!). Summations over frequencies and mo-
menta imply factors ��1 and N�1, respectively, with N
being the number of sites. ⌃ and G are the exact lat-
tice self-energy and Green’s function, respectively, and
�↵ denotes the irreducible (horizontal) particle-hole ver-
tex. The irreducible vertices in the charge and spin chan-
nels are explicitly defined as �0 = �"""" + �""##, �z =
�"""" � �""## and �x = �y = 1

2 (�
"##" + �#""#) = �"##".

In a local approximation, ⌃k ⌘ ⌃⌫ and �↵
kk0q ⌘ �↵

⌫⌫0!,
such as DMFT, all momentum dependence drops out of
the Ward identities (5) and we obtain [39]

⌃⌫+! � ⌃⌫ = �
X

⌫0

�↵
⌫⌫0![Gloc,⌫0+! � Gloc,⌫0 ]. (6)

An analogous Ward identity holds for the AIM (see Ap-
pendix E),

⌃⌫+! � ⌃⌫ = �
X

⌫0

�↵
⌫⌫0![g⌫0+! � g⌫0 ], (7)

where ⌃⌫ , g⌫ and �↵
⌫⌫0! are the self-energy, Green’s func-

tion and the irreducible vertex of the AIM, respectively.
Hence the DMFT approximation is apparently conserv-
ing when the self-consistency condition (2) holds. Re-
markably, DMFT arises when we attempt to construct a
locally conserving approximation based on the AIM (3).
Let us consider further properties of the DMFT ap-

proximation. To this end, we introduce the (connected)
susceptibilities

X↵
q = �h⇢̄↵�q⇢̄

↵
q i = 2

X

kk0

X↵
kk0q, (8)

which are defined in terms of density fluctuations,
⇢̄↵(⌧) = ⇢↵(⌧) � h⇢↵i. Their local parts are given by
X↵

loc =
P

q X↵
q . The generalized susceptibility X↵

kk0q is
related to the irreducible vertex function via the integral
equation

X↵
kk0q = GkGk+q

"
��kk0 �

X

k00

�↵
kk00qX↵

k00k0q

#
. (9)

Now consider the kinetic energy of the lattice. It is
expressed through single-particle quantities as Elat

kin =P
k� "khnk�i. In Appendix B 1 we establish a relation

that expresses the kinetic energy in terms of a two-
particle quantity, more precisely the high-frequency be-
havior of the local susceptibility. The relation follows
directly from the Ward identities, Eq. (5):

lim
!!1

(ı!)2X↵
loc,! = �2Elat

kin. (10)

As the Ward identities themselves, this relation connects
single- and two-particle quantities. The local impurity
Ward identities (7) imply an analogous relation (see Ap-
pendix E 2),

lim
!!1

(ı!)2�↵
! = �2Eimp

kin , (11)

where �↵
! = �h⇢̄↵�!⇢̄

↵
!iimp is the impurity susceptibility

and the kinetic energy of the impurity model is given
by [40]

Eimp
kin = 2

X

⌫

�⌫g⌫ . (12)

DMFT is not two-particle self-consistent. As a con-
sequence, the impurity and local lattice susceptibility
di↵er in general. Remarkably, however, their asymp-
totes are the same. Decomposing the susceptibility into
a contribution from the impurity susceptibility and a
momentum-dependent correction [7], XDMFT

loc = �+X 0
loc,

one can show that X 0
loc decays at least with !�4. There-

fore, lim
!!1

(ı!)2Xloc,! = lim
!!1

(ı!)2�!. We demonstrate

this numerically in the left panel of Fig. 1. As a con-
sequence, Elat

kin = Eimp
kin and the kinetic energy can be

determined from the impurity model in DMFT.
Next, we consider the potential energy Epot = Udlat

where dlat = hn"n#i is the double occupancy of the lat-
tice. As a two-particle correlation function, d is naturally
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Vectror boson 



DB/DF-scheme: interpretation 

  

Hamiltonian action with local in time, 

but large (tall and beatiful) U Non-Hamiltonian action with retarded

V, formally including all ordres 

of interaction (but negligible!)

(troubles,troubles)

(can be hidden in your pocket, 

not much food required)

Interpretation



Summary 
�  Strong-coupling DB/DF-theory based  

    on a ladder approximation is  

    a conserving theory of  

    electron-“anyon“ interaction 

   

	   
  

For DMFT-based theories with bosons, 

dual ladder summation 

is a “minimal” conserving theory, 

similar to RPA for free electrons  

The theory includes slow dynamics of local 

momenta (e.g. superexchange)  

Conclusions


