Orbital Physics

Andrzej M. Oleś

Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. S. Łojasiewicza 11, Kraków, Poland

Jülich, 29 September 2017

Correl17

(National Science Center) under Project MAESTRO 2012/A/ST3/00331

1

Outline

- Orbital models: intrinsic quantum frustration
- Spin-orbital superexchange: entanglement
- Construction of Kugel-Khomskii model: KCuF₃
- Spin-orbital model for LaMnO₃
- Spin-orbital models with t_{2g} orbitals; orbital fluctuations
- Fractionalization of orbitons; double exchange; perspective

Thanks to:

für Festkörperforschung

Mosaic from 12th century, Veneto Cattedrale di San Giusto, Trieste

- Wojciech Brzezicki
- Piotr Czarnik
- Jacek Dziarmaga
- Krzysztof Wohlfeld
 - Lou-Fe' Feiner

•

•

•

•

- Peter Horsch
- Giniyat Khaliullin
- Jiri Chaloupka
- Wen-Long You
- Adolfo Avella
- Mario Cuoco

Jagiellonian & Unita degli Studi di Salerno Jagiellonian University, Kraków, Poland Jagiellonian University, Kraków, Poland University of Warsaw, Warsaw, Poland Technical University, Eindhoven, Netherlands Max-Planck-Institut FKF, Stuttgart, Germany Max-Planck-Institut FKF, Stuttgart, Germany Masaryk University, Brno, Czech Republic Soochow University, Suzhow, China Universita degli Studi di Salerno, Italy 2 Universita degli Studi di Salerno, Italy

- Superconductivity
- Colossal magnetoresistance (CMR)
- Charge and orbital ordering
- Non-Fermi liquid

Interaction depends on the bond direction => *frustration* on a square lattice Correl17 4

At large U: from Hubbard to the t-J model

$$H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

 $P_1 H P_1 = t \sum_{ij\sigma}' (1 - n_{i-\sigma}) a_{i\sigma}^{\dagger} a_{j\sigma} (1 - n_{j-\sigma})$ Canonical transformation in the regime of $t \ll U$ $P_1 H P_2 = t \sum_{ij\sigma}' (1 - n_{i-\sigma}) a_{i\sigma}^{\dagger} a_{j\sigma} n_{j-\sigma},$ Perturbation: $P_2 H P_1 = t \sum_{i j\sigma}' n_{i-\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} (1 - n_{j-\sigma}),$ processes P_1HP_2 and P_2HP_1 charge excitations => superexchange $P_2 H P_2 = t \sum_{i \neq \sigma}' n_{i-\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} n_{j-\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$ $d_i^m d_j^m \rightleftharpoons d_i^{m+1} d_j^{m-1}$ $\mathscr{H}(\epsilon) = e^{-i\epsilon S} H(\epsilon) e^{i\epsilon S}$ with $H_1 + i [H_0, S] = 0$ $\tilde{H} = \tilde{H}(\epsilon = 1) = H_0 + \frac{1}{2}i[H_1, S]$ (Erik Koch) $H = -t \sum_{\langle ij \rangle, \sigma} \left(\tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + \text{H.c.} \right) + J \sum_{\langle ij \rangle} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{n_{i}n_{j}}{4} \right) \quad \frac{\text{kinetic exchange}}{J = 4t^{2}/U}$ Correl17 5

[K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C 10, L271 (1977)]

Toward superexchange model: hybridization and *d*-*d* hopping *t*

Hopping and orbital superexchange for t_{2q}

In t_{2g} systems $(d^1, d^2, ...)$ two states are active along each cubic axis, e.g. yz & zx for the axis $c - H_t(t_{2g}) = -t \sum_{\alpha} \sum_{\langle ij \rangle || \gamma \neq \alpha} a^{\dagger}_{i\alpha\sigma} a_{j\alpha\sigma}$

We introduce convenient notation

$$|a\rangle \equiv |yz\rangle, \qquad |b\rangle \equiv |zx\rangle, \qquad |c\rangle \equiv |xy\rangle$$

no hopping ||c

Orbital interactions have cubic symmetry

they are described by quantum operators:

$$\vec{T}_i = \{T_i^x, T_i^y, T_i^z\} \qquad T_i^x = \frac{1}{2}\sigma_i^x, \ T_i^y = \frac{1}{2}\sigma_i^y, \ T_i^z = \frac{1}{2}\sigma_i^z.$$
Scalar product $\vec{T}_i \cdot \vec{T}_j$ but for J_H >0 also other terms breaking the "SU(2)" symmetry

Correl17

Hopping for e_a orbitals Hamiltonian for e_g electrons couples two directional e_q -orbitals $H_t(e_g) = -t \sum_{\alpha} \sum_{\langle ij \rangle \parallel \alpha, \sigma} a^{\dagger}_{i\zeta_{\alpha}\sigma} a_{j\zeta_{\alpha}\sigma}$ Real basis: $\begin{cases} |z\rangle \equiv \frac{1}{\sqrt{6}}(3z^2 - r^2), & |\bar{z}\rangle \equiv \frac{1}{\sqrt{2}}(x^2 - y^2) \\ H_t^{\uparrow}(e_g) = -\frac{1}{4}t \sum_{\langle ij\rangle \parallel c} \left[3a_{i\bar{z}}^{\dagger}a_{j\bar{z}} + a_{iz}^{\dagger}a_{jz} \mp \sqrt{3}\left(a_{i\bar{z}}^{\dagger}a_{jz} + a_{iz}^{\dagger}a_{j\bar{z}}\right)\right] - t \sum_{\langle ij\rangle \parallel c} a_{iz}^{\dagger}a_{jz} \end{cases}$ $complex \ e_g \ orbitals \ |j+\rangle = \frac{1}{\sqrt{2}} (|jz\rangle - i|j\bar{z}\rangle), \qquad |j-\rangle = \frac{1}{\sqrt{2}} (|jz\rangle + i|j\bar{z}\rangle)$ e_q electrons with only one spin flavor $\sigma = \uparrow$ (FM manganites) $\mathcal{H}^{\uparrow}(e_g) = -\frac{1}{2}t \sum \sum \left[\left(a_{i+}^{\dagger} a_{j+} + a_{i-}^{\dagger} a_{j-} \right) + \gamma \left(e^{-i\chi_{\alpha}} a_{i+}^{\dagger} a_{j-} + e^{+i\chi_{\alpha}} a_{i-}^{\dagger} a_{j+} \right) \right]$ $\alpha \langle ij \rangle \| \alpha$ with $\chi_a = +2\pi/3$, $\chi_b = -2\pi/3$, and $\chi_c = 0$ has cubic symmetry Correl17 with interaction $\bar{U} \sum n_{i+} n_{i-} => orbital Hubbard model$

Intraatomic Coulomb interactions for 3d orbitals

$$\begin{aligned} H_{int} &= U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \sum_{i,\alpha<\beta} \left(U_{\alpha\beta} - \frac{1}{2} J_{\alpha\beta} \right) n_{i\alpha} n_{i\beta} - 2 \sum_{i,\alpha<\beta} J_{\alpha\beta} \, \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta} \\ &+ \sum_{i,\alpha<\beta} J_{\alpha\beta} \left(a^{\dagger}_{i\alpha\uparrow} a^{\dagger}_{i\alpha\downarrow} a_{i\beta\downarrow} a_{i\beta\uparrow} + a^{\dagger}_{i\beta\uparrow} a^{\dagger}_{i\beta\downarrow} a_{i\alpha\downarrow} a_{i\alpha\uparrow} \right). \end{aligned}$$

$$U = U_{\alpha\beta} + 2J_{\alpha\beta}$$
$$U = A + 4B + 3C$$

rotational invariance

Intraorbital Coulomb U = A + 4B + 3COn-site interorbital exchange elements $J_{\alpha\beta}$ for 3d orbitals

3d orbital	xy	yz	zx	$x^2 - y^2$	$3z^2 - r^2$
xy	0	3B + C	3B + C	C	4B + C
yz	3B + C	0	3B + C	3B + C	B+C
zx	3B + C	3B + C	0	3B + C	B+C
$x^2 - y^2$	C	3B + C	3B + C	0	4B + C
$3z^2 - r^2$	4B + C	B + C	B + C	4B + C	0

Hund's	excl	hange
--------	------	-------

Correl17

 $J_H^t = 3B + C,$ $J_H^e = 4B + C.$

9

Orbital operators: e_a

define:
$$\begin{aligned} |i\vartheta\rangle &= \cos\left(\vartheta/2\right)|iz\rangle - \sin\left(\vartheta/2\right)|i\bar{z}\rangle\\ |i\bar{\vartheta}\rangle &= \sin\left(\vartheta/2\right)|iz\rangle + \cos\left(\vartheta/2\right)|i\bar{z}\rangle \end{aligned}$$

For angles $\vartheta = \pm 4\pi/3$ one finds equivalent pairs $\{|i\zeta_a\rangle, |i\xi_a\rangle\}$ and $\{|i\zeta_b\rangle, |i\xi_b\rangle\}$ Local projection operators:

$$\mathcal{P}_{i\zeta}^{\gamma} = |i\zeta_{\gamma}\rangle\langle i\zeta_{\gamma}| = \left(\frac{1}{2} + \tau_{i}^{(\gamma)}\right), \qquad \mathcal{P}_{i\xi}^{\gamma} = |i\xi_{\gamma}\rangle\langle i\xi_{\gamma}| = \left(\frac{1}{2} - \tau_{i}^{(\gamma)}\right)$$
$$\tau_{i}^{(\gamma)} \equiv \frac{1}{2} \left(|i\zeta_{\gamma}\rangle\langle i\zeta_{\gamma}| - |i\xi_{\gamma}\rangle\langle i\xi_{\gamma}|\right)$$

2D model with increasing frustration: from Ising to compass

Frustration in the 2D quantum compass model

Orbital (pseudospin) model with competing Ising-like interactions:

TABLE I. The critical temperature \mathcal{T}_c and the type of order for the classical and quantum models on a square lattice: Ising model, $\frac{1}{2}$ and $\frac{2}{3}$ frustrated Ising [29], fully frustrated Villain model [30], e_g orbital model [23] and 2D compass model [22].

2D model	order	\mathcal{T}_c/J	method	interactions
Ising	2D	0.567296	exact	Onsager
$\frac{1}{2}$ frustrated	2D	0.410	exact	С
$\frac{2}{3}$ frustrated	2D	0.342	exact	В
Villain		0.0	exact	Α
e_g orbital	2D	0.3566 ± 0.0001	T>0 tensor	$1\propto rac{3}{16}\sigma_i^x\sigma_j^x$
compass	nematic	0.0606 ± 0.0004	network	$rac{1}{4}\sigma_i^z\sigma_j^z$

Spin-orbital physics

Frustration can be removed

Simplest case: Mott insulators with spin-orbital order

manganites, nickelates, vanadates, titanates, ...

Goodenough-Kanamori rules:

AO order supports FM spin order

FO order supports AF spin order

Are these rules sufficient?

Qualitative changes due to *spin-orbital entanglement*

Inventors of spin-orbital physics at Blois (06)

[4] K.I. Kugel and D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982) 18

Degenerate Hubbard model & charge excitations (t<<U)

Two parameters: U – intraorbital Coulomb interaction, J_H – Hund's exchange

$$\begin{split} H_{\text{int}} &= U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + (U - \frac{5}{2} J_H) \sum_{i,\alpha < \beta} n_{i\alpha} n_{i\beta} - 2 J_H \sum_{i,\alpha < \beta} \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta} \\ &+ J_H \sum_{i,\alpha < \beta} (d^+_{i\alpha\uparrow} d^+_{i\alpha\downarrow} d_{i\beta\downarrow} d_{i\beta\uparrow} + d^+_{i\beta\uparrow} d^+_{i\beta\downarrow} d_{i\alpha\downarrow} d_{i\alpha\uparrow}) \end{split}$$

FIG. 1: Energies of $d_i^m d_j^m \to d_i^{m+1} d_j^{m-1}$ charge excitations

Low energy Hamiltonian: **Spin-orbital superexchange** (*t*<<*U*)

Two parameters: U – intraorbital Coulomb interaction, J_H – Hund's exchange At large U >> t ($J=4t^2/U$): n=Jப charge excitation $\varepsilon_n = E_n(d^{m+1}) + E_0(d^{m-1}) - 2E_0(d^m)$ $P_{\langle ij \rangle}(\mathcal{S})$ is the projection on the total spin $\mathcal{S} = S \pm \frac{1}{2}$ spin interactions: SU(2) symmetry $\mathcal{O}_{\langle ij \rangle}^{\gamma}$ is the projection operator on the orbital state $\mathcal{H} = -\sum_{n} \frac{t^2}{\varepsilon_n} \sum_{\langle ij \rangle \parallel \gamma} P_{\langle ij \rangle}(\mathcal{S}) \mathcal{O}_{\langle ij \rangle}^{\gamma}$ => superexchange $\mathcal{H}_J = J \sum \sum \left\{ \hat{\mathcal{K}}_{ij}^{(\gamma)} \left(\vec{S}_i \cdot \vec{S}_j + S^2 \right) + \hat{\mathcal{N}}_{ij}^{(\gamma)} \right\} \text{ spin-orbital model}$ contains orbital operators $\hat{\mathcal{K}}_{ij}^{(\gamma)}$ and $\hat{\mathcal{N}}_{ij}^{(\gamma)}$ of **cubic symmetry** ($\gamma = a, b, c$) Averaging over orbital (dis)ordered state => anisotropic **spin model**: $H_{s} = J_{c} \sum_{\langle ij \rangle} S_{i} \cdot S_{j} + J_{ab} \sum_{\langle ij \rangle} S_{i} \cdot S_{j}$ $J_{\gamma} \equiv \left\langle J_{ii}^{(\gamma)} \right\rangle$ Correl17 20 Here spin and orbital operators are disentangled

Kugel-Khomskii model

Equidistant multiplet structure for d^{8} ions

Charge excitations fully characterized by:

$$r_{1} = \frac{1}{1 - 3\eta}, \qquad r_{2} = r_{3} = \frac{1}{1 - \eta}, \qquad r_{4} = \frac{1}{1 + \eta} \left[J = 4t^{2}/U \right] \left[U^{-3}J_{H} \right] \left[\frac{^{3}A_{2}}{\mathbf{d}^{8}} \right] \mathbf{HS}$$
$$\mathcal{H}(d^{9}) = \frac{1}{2}J \sum_{\gamma} \sum_{\langle ij \rangle \parallel \gamma} \left\{ \left[-r_{1} \left(\vec{S}_{i} \cdot \vec{S}_{j} + \frac{3}{4} \right) + r_{2} \left(\vec{S}_{i} \cdot \vec{S}_{j} - \frac{1}{4} \right) \right] \left(\frac{1}{4} - \tau_{i}^{(\gamma)} \tau_{j}^{(\gamma)} \right) \right\}$$

$$+ (r_3 + r_4) \left(\vec{S}_i \cdot \vec{S}_j - \frac{1}{4} \right) \left(\tau_i^{(\gamma)} + \frac{1}{2} \right) \left(\tau_j^{(\gamma)} + \frac{1}{2} \right) \right\} + E_z \sum_i \tau_i^c.$$

 ε_n

U+J_H

η=J_H/U

₁_E **|LS**

KK model

Experimental observations:

 K_2CuF_4 — the FM spin phase

KCuF₃ finite Hund's exchange η favors AO order stabilizing A-AF KCuF₃ exhibits spinon excitations for $T > T_N$

Correl17

In this regime behaves as the 1D quantum antiferromagnet

Mean field analysis of spin-orbital order

Two-sublattice ground state:
$$|\Phi_0\rangle = \prod_{i \in A} |i\theta_A\rangle \prod_{j \in B} |j\theta_B\rangle$$

 $|i\theta_A\rangle = \cos(\theta/2) |iz\rangle + \sin(\theta/2) |ix\rangle$
 $|j\theta_B\rangle = \cos(\theta/2) |jz\rangle - \sin(\theta/2) |jx\rangle$

Averages of the orbital projection operators

operator	average	ab	С
${\cal Q}_{\langle ij angle}^{(\gamma)}$	$2\left\langle \left(\frac{1}{2} - \tau_i^{(\gamma)}\right) \left(\frac{1}{2} - \tau_j^{(\gamma)}\right) \right\rangle$	$\frac{1}{2} \left(\frac{1}{2} - \cos \theta \right)^2$	$\frac{1}{2}(1+\cos\theta)^2$
${\cal P}_{\langle ij angle}^{(\gamma)}$	$\left\langle \frac{1}{4} - \tau_i^{(\gamma)} \tau_j^{(\gamma)} \right\rangle$	$\frac{1}{4}\left(\frac{3}{4}+\sin^2\theta\right)$	$rac{1}{4}\sin^2 heta$
${\cal R}^{(\gamma)}_{\langle ij angle}$	$2\left\langle \left(\frac{1}{2} + \tau_i^{(\gamma)}\right) \left(\frac{1}{2} + \tau_j^{(\gamma)}\right) \right\rangle$	$\frac{1}{2} \left(\frac{1}{2} + \cos \theta \right)^2$	$\frac{1}{2}(1-\cos\theta)^2$

anisotropic exchange constants

$$J_{c} = \frac{1}{8}J\left\{-r_{1}\sin^{2}\theta + (r_{2}+r_{3})(1+\cos\theta) + r_{4}(1+\cos\theta)^{2}\right\},\$$
$$J_{ab} = \frac{1}{8}J\left\{-r_{1}\left(\frac{3}{4}+\sin^{2}\theta\right) + (r_{2}+r_{3})\left(1-\frac{1}{2}\cos\theta\right) + r_{4}\left(\frac{1}{2}-\cos\theta\right)^{2}\right\} 24$$

in mean field approximation a quantum critical point $Q_{2D} = (-0.5, 0)$

Spin-orbital entanglement near the QCP

Example: Kugel-Khomskii (KK) model (d9)

 e_g orbitals T=1/2 spins S=1/2

Parameters: (1) $E_z/J - e_g$ orbital splitting (2) J_H/U – Hund's exchange

Quantum critical point: $Q_{3D} = (0,0)$

Entanglement near the QCP?

Phase diagram of the *d*⁹ model

Correl17

[L.F. Feiner, AMO, J. Zaanen, PRL **78**, 2799 (97)]

Phase diagram: 3D Kugel-Khomskii model

$$\begin{aligned} & \underset{\substack{u + 3J_{H} \\ u + 3J_{$$

[L.F. Feiner and AMO, PRB **59**, 3295 (99)]

Spin-orbital physics: optical spectral weights

Structure of the spin-orbital model:

$$\begin{aligned} \mathcal{H} &= J \sum_{n} \sum_{\langle ij \rangle \parallel \gamma} H_n^{(\gamma)}(ij) \end{aligned} \text{exc} \\ & \text{exc} \\ \varepsilon_n &= E_n(d^{m+1}) + E_0(d^{m-1}) - 2E_0(d^m) \end{aligned}$$

Terms originate from charge excitations to multiplet states *n*

Spectral weight for an excitation at energy ω_n

$$\frac{a_0\hbar^2}{e^2}\int_0^\infty \sigma_n^{(\gamma)}(\omega)d\omega = \frac{\pi}{2}K_n^{(\gamma)}$$

These weights are found from the superexchange terms:

$$K_{n}^{(\gamma)} = -2J \left\langle H_{n}^{(\gamma)}(ij) \right\rangle \quad \text{for excitation at} \quad \omega_{n}$$
$$K^{(\gamma)} = -2J \sum_{n} \left\langle H_{n}^{(\gamma)}(ij) \right\rangle \quad \text{total weight}$$

Correl17

Optical spectral weights for LaMnO₃

spin-orbital model

$$\mathcal{H} = J \sum_{n} \sum_{\langle ij \rangle \parallel \gamma} H_n^{(\gamma)}(ij)$$

spectral weight for excitation at energy ω_n

$$K_n^{(\gamma)} = -2J \left\langle H_n^{(\gamma)}(ij) \right\rangle$$

Theory reproduces the spectral weights for low energy ω_1 high-spin excitations

Spin and orbital correlations are here disentangled

Note: S = 2

Correl17

Avoiding electron correlations: electron doped Sr_{1-x}La_xMnO₃

Kondo-like model for (few) noninteracting e_a electrons :

$$\mathcal{H} = -\sum_{ij,\alpha\beta,\sigma} t^{ij}_{\alpha\beta} a^{\dagger}_{i\alpha\sigma} a_{j\beta\sigma} - 2J_H \sum_i \vec{S}_i \cdot \vec{s}_i + J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j - gu \sum_i (n_{iz} - n_{i\bar{z}}) + \frac{1}{2} N K u^2$$

 $u \equiv 2(c-a)/(c+a)$ Parameters: $t = 0.4 \, eV$, $J_H = 0.74 \, eV$, $g = 3 \, eV$.

Degenerate Hubbard model & charge excitations (t<<U)

Two parameters: U – intraorbital Coulomb interaction, J_H – Hund's exchange

$$\begin{split} H_{\text{int}} &= U \sum_{i\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + (U - \frac{5}{2} J_H) \sum_{i,\alpha < \beta} n_{i\alpha} n_{i\beta} - 2 J_H \sum_{i,\alpha < \beta} \vec{S}_{i\alpha} \cdot \vec{S}_{i\beta} \\ &+ J_H \sum_{i,\alpha < \beta} (d^+_{i\alpha\uparrow} d^+_{i\alpha\downarrow} d_{i\beta\downarrow} d_{i\beta\uparrow} + d^+_{i\beta\uparrow} d^+_{i\beta\downarrow} d_{i\alpha\downarrow} d_{i\alpha\uparrow}) \end{split}$$

 t_{2q} systems e_a systems (b) (a) In a Mott insulator (t<<U) U+3J_H superexchange follows U+2J_H ⁴E from charge excitations U+J_H′ LS $d_i^m d_i^m \rightleftharpoons d_i^{m+1} d_i^{m-1}$ U-J _H' U-J_H single parameter: U-3J U-3JL HS $\eta = J_H / U$ Correl17 FIG. 1: Energies of $d_i^m d_j^m \to d_i^{m+1} d_j^{m-1}$ charge excitations

orbital fluctuations

$$A_{ij}^{(\gamma)} = 2\left(\vec{\tau}_{i} \cdot \vec{\tau}_{j} + \frac{1}{4}n_{i}n_{j}\right)^{(\gamma)}, \quad B_{ij}^{(\gamma)} = 2\left(\vec{\tau}_{i} \otimes \vec{\tau}_{j} + \frac{1}{4}n_{i}n_{j}\right)^{(\gamma)}, \quad n_{ij}^{(\gamma)} = n_{i}^{(\gamma)} + n_{j}^{(\gamma)}$$

$$\vec{\tau}_{i} \otimes \vec{\tau}_{j} = \tau_{i}^{x}\tau_{j}^{x} - \tau_{i}^{y}\tau_{j}^{y} + \tau_{i}^{z}\tau_{j}^{z}$$

$$Nonconservation of orbital flavor => spin-orbital liquid ?$$

$$34$$

Spin-Orbital Model for RVO₃ (R=La,Y, ...)

Spin-orbital superexchange in RVO₃

In t_{2g} systems (d^1, d^2) two states are active, e.g. *yz* i *zx* for the axis *c* – they are described by **quantum** operators:

$$\vec{\tau_i} = \left\{ \tau^x_i \ , \ \tau^y_i \ , \tau^z_i \ \right\}$$

Scalar product $\vec{\tau_i} \cdot \vec{\tau_j}$ but for η >0 also:

 $\vec{\tau}_i \otimes \vec{\tau}_j = \tau_i^x \tau_j^x - \tau_i^y \tau_j^y + \tau_i^z \tau_j^z$

Local constraints:

$$n_{ic} \simeq 1, \quad n_{ia} + n_{ib} \simeq 1$$

c orbitals occupied
a,**b**} – orbital degree of freedom

Orbital interactions have cubic symmetry

Orbital SU(2) symmetry is broken !

Spin-orbit superexchange in
$$RVO_3 d^2$$
 (S = 1):

$$\mathcal{H}_{0} = \frac{1}{2} J \sum_{\langle ij \rangle \parallel \gamma} (\vec{S}_{i} \cdot \vec{S}_{j} + 1) \left(\vec{\tau}_{i} \cdot \vec{\tau}_{j} + \frac{1}{4} n_{i} n_{j} \right)^{(\gamma)}$$

Multiplet
structure =>
$$r_{1} = \frac{1}{1 - 3\eta}, \qquad r_{3} = \frac{1}{1 + 2\eta}$$

Entanglement expected !

Spin-orbital superexchange in RVO₃: spectral weights

ij

 $K_n^{(\gamma)} = -2J \left\langle H_n^{(\gamma)} \right\rangle$

cubic symmetry broken by **C-AF**

orbital fluctuations:

$$H_1^{(c)}(ij) = -\frac{1}{3}Jr_1\left(\vec{S}_i \cdot \vec{S}_j + 2\right)\left(\frac{1}{4} - \vec{\tau}_i \cdot \vec{\tau}_j\right)$$

$$H_{2}^{(c)}(ij) = -\frac{1}{12}J\left(1 - \vec{S}_{i}\cdot\vec{S}_{j}\right)\left(\frac{7}{4} - \tau_{i}^{z}\tau_{j}^{z} - \tau_{i}^{x}\tau_{j}^{x} + 5\tau_{i}^{y}\tau_{j}^{y}\right)$$

$$H_{3}^{(c)}(ij) = -\frac{1}{4}Jr\left(1 - \vec{S}_{i}\cdot\vec{S}_{j}\right)\left(\frac{1}{4} + \tau_{i}^{z}\tau_{j}^{z} + \tau_{i}^{x}\tau_{j}^{x} - \tau_{i}^{y}\tau_{j}^{y}\right)$$

more classical:

$$\begin{aligned} H_1^{(ab)}(ij) &= -\frac{1}{6} Jr_1 \left(\vec{S}_i \cdot \vec{S}_j + 2 \right) \left(\frac{1}{4} - \tau_i^z \tau_j^z \right) \\ H_2^{(ab)}(ij) &= -\frac{1}{8} J \left(1 - \vec{S}_i \cdot \vec{S}_j \right) \left(\frac{19}{12} \mp \frac{1}{2} \tau_i^z \mp \frac{1}{2} \tau_j^z - \frac{1}{3} \tau_i^z \tau_j^z \right) \\ H_3^{(ab)}(ij) &= -\frac{1}{8} Jr \left(1 - \vec{S}_i \cdot \vec{S}_j \right) \left(\frac{5}{4} \mp \frac{1}{2} \tau_i^z \mp \frac{1}{2} \tau_j^z + \tau_i^z \tau_j^z \right) \end{aligned}$$

Correl17

Spin-orbital entanglement along the *c* axis

Phase transitions in the vanadium perovskites RVO₃ spin $\langle S_i^z \rangle$ (solid) and G-type orbital $\langle \tau_i^z \rangle_G$ (dashed)

and the transverse orbital polarization $\langle \tau_i^x \rangle$ (dashed-dotted lines)

Exotic spin orders possible in certain situations

Entanglement entropy (Bipartite)

 $\boldsymbol{\psi}_{AB} = \sum C_{mn} \boldsymbol{\psi}_{A}^{(m)} \boldsymbol{\psi}_{B}^{(n)}$

 $C_{mm} \stackrel{mm}{=} C_{m}C_{m}$

 $C_{mn} \neq C_m C_n$

- Two subsystems: A and B
- Wave function:
- Product state:
- Entangled state:
- Taking trace over **B** leads to

$$ho_A^{(0)} = \mathrm{Tr}_B |\Psi_0
angle \langle \Psi_0 |$$

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

Entanglement is measured by von Neumann entropy in the ground state

$$\mathcal{S}_{\mathrm{vN}}^0 \equiv -\mathrm{Tr}_A\{
ho_A^{(0)}\log_2
ho_A^{(0)}\}$$

Here **A** and **B** are spin and orbital degrees of freedom of the system i.e., the boundary involves the entire system

Correl17

J. Phys.: Condens. Matter 24 (2012) 313201 (28pp)

TOPICAL REVIEW

Fingerprints of spin-orbital entanglement in transition metal oxides

Andrzej M Oleś

Contents

			4.1. Optical spectral weights for LaVO ₃	12
Introduction: entanglement in many-body systems	2		4.2. Phase diagram of the RVO ₃ perovskites	13
Orbital and spin-orbital superexchange	3		4.3. Peierls dimerization in YVO ₃	15
2.1. Intrinsic frustration of orbital interactions	3	5.	Entanglement in the ground states of spin-orbital	
2.2. Spin–orbital superexchange models	5		models	17
Spin-orbital entanglement	7		5.1. The Kugel–Khomskii model	17
3.1. Exact versus mean field states for a bond	7		5.2. Spin-orbital resonating valence bond liquid	19
3.2. Entanglement in the $SU(2) \otimes SU(2)$ spin–orbital		6.	Hole propagation in a Mott insulator with coupled	
model	8		spin-orbital order	23
3.3. Entanglement in t_{2g} spin–orbital models	10	7.	Discussion and summary	25
	Introduction: entanglement in many-body systems Orbital and spin-orbital superexchange 2.1. Intrinsic frustration of orbital interactions 2.2. Spin-orbital superexchange models Spin-orbital entanglement 3.1. Exact versus mean field states for a bond 3.2. Entanglement in the $SU(2) \otimes SU(2)$ spin-orbital model 3.3. Entanglement in t_{2g} spin-orbital models	Introduction: entanglement in many-body systems2Orbital and spin-orbital superexchange32.1. Intrinsic frustration of orbital interactions32.2. Spin-orbital superexchange models5Spin-orbital entanglement73.1. Exact versus mean field states for a bond73.2. Entanglement in the $SU(2) \otimes SU(2)$ spin-orbital83.3. Entanglement in t_{2g} spin-orbital model10	Introduction: entanglement in many-body systems2Orbital and spin-orbital superexchange32.1. Intrinsic frustration of orbital interactions32.2. Spin-orbital superexchange models5Spin-orbital entanglement73.1. Exact versus mean field states for a bond73.2. Entanglement in the $SU(2) \otimes SU(2)$ spin-orbital6.model83.3. Entanglement in t_{2g} spin-orbital models10	4.1. Optical spectral weights for LaVO3Introduction: entanglement in many-body systems2Orbital and spin-orbital superexchange32.1. Intrinsic frustration of orbital interactions32.2. Spin-orbital superexchange models3Spin-orbital entanglement5Spin-orbital entanglement73.1. Exact versus mean field states for a bond73.2. Entanglement in the $SU(2) \otimes SU(2)$ spin-orbital model73.3. Entanglement in t_{2g} spin-orbital models107.< Discussion and summary

4. Entangled states in the RVO₃ perovskites

12

Example: triangular lattice

 $d_i^1 d_j^1 \rightleftharpoons d_i^2 d_j^0$ charge excitations in NaTiO₂ are possible due to:

(i) the effective hopping $t = t_{pd}^2/\Delta$ (ii) direct hopping t'

 \Rightarrow spin-orbital model

$$\mathcal{H} = J\left\{ (1-\alpha) \mathcal{H}_s + \sqrt{(1-\alpha)\alpha} \mathcal{H}_m + \alpha \mathcal{H}_d \right\}$$

$$\alpha = \frac{t'^2}{t^2 + t'^2}$$

 α interpolates between

the superexchange \mathcal{H}_s ($\alpha = 0$) kinetic exchange \mathcal{H}_d ($\alpha = 1$)

(c)

t orbitals interchanged

t' orbital conserving

Example: entangled states in a free hexagon

$$\mathcal{H} = J\left\{ (1-\alpha) \mathcal{H}_s + \sqrt{(1-\alpha)\alpha} \mathcal{H}_m + \alpha \mathcal{H}_d \right\}$$

correlation functions for a bond $\langle ij \rangle$ entangled $C_{ij} < -0.10$ (a) $S_{ij} \equiv \frac{1}{d} \sum \left\langle n | \vec{S}_i \cdot \vec{S}_j | n \right\rangle,$ 0.2 TTTTT 0.0 $T_{ij} \equiv \frac{1}{d} \sum \left\langle n \left| (\vec{T}_i \cdot \vec{T}_j)^{(\gamma)} \right| n \right\rangle,$ 0 -0.2 $C_{ij} \equiv \frac{1}{d} \sum \left\langle n | (\vec{S}_i \cdot \vec{S}_j - S_{ij}) (\vec{T}_i \cdot \vec{T}_j - T_{ij})^{(\gamma)} | n \right\rangle$ Ś -0.4 -0.6 C_{ii} is a local measure of entanglement -0.8 In the superexchange model ($\alpha = 0$) (b) 1.0 $n_{1c} = 1$ as the c orbital is active along both bonds 0.8 RVB hexagon $S_{ij} = -0.4671$ 0.6 entanglement $C_{ij} \simeq -0.12$ for $0.10 < \alpha < 0.44$ na He nb He nc He 0.4 $C_{ij} \simeq -0.13$ $0.44 < \alpha < 0.63$ 0.2 Here spins and orbitals 0.0 cannot be decoupled 0.0 0.2 0.4 0.6 0.8 1.0 α Weak entanglement is found for $\alpha > 0.63$

Correl17

Ground state for a free hexagon as a function of α [J. Chaloupka and AMO, PRB **83**, 094406 (11)]

Evolution of orbital densities in a free hexagon

Ground state for a free hexagon as a function of α [J. Chaloupka and AMO, PRB **83**, 094406 (11)]

Correl17

Fractionalization of orbital excitations: AF/FO

In a 1D spin-orbital model the orbiton fractionalizes into a freely propagating spinon and orbiton, in analogy to spinon and holon in spin *t-J* model

t-J-like model for ferromagnetic manganites

Double exchange gives FM coupling proportional to the kinetic energy

for
$$La_{1-x}Sr_xMnO_3$$
 $J_{DE} = \frac{1}{2zS^2} \left| \left\langle \tilde{H}_t^{\uparrow}(e_g) \right\rangle \right|$

between average spins $2\mathcal{S} = 4 - x$

the frustrating AF superexchange $J_{\rm SE}$ reduces the FM coupling $J_{\rm DE}$

Derivation with Schwinger bosons at doping x

or $La_{1-x}Sr_xMnO_3$ (diamonds) poi and $La_{0.7}Pb_{0.3}MnO_3$ (circle)

Orbital dilution in d^4 (S = 1) by d^3 impurities (S = 3/2)

c = xydoublon a = yz

Orbital degree of freedom

Futuristic electronic devices may rely on properties that are highly sensitive to magnetic and orbital order spintronics - orbitronics

[W. Brzezicki, AMO, M. Cuoco, PRX **5**, 011037 (15)] Correl17

Parameters for a hybrid 3d-4d bond

Mismatch potential renormalized by Coulomb U's and Hund's J_H 's

$$\Delta = I_e + 3(U_1 - U_2) - 4(J_1^H - J_2^H)$$

$J_{\rm imp} = \frac{t^2}{4\Delta}$	$\eta_{ ext{imp}}=rac{J_1^H}{\Delta}$
$J_{\rm host} = \frac{4t_h^2}{U_2}$	$\eta_{ m host} = rac{J_2^H}{U_2}$

Parameters to characterize the impurity:

Schematic view of a 3*d*-4*d* bond with a doublon in the host at orbital *c*

$$J_{imp}/J_{host}$$

superexchange

Hund's exchange at 3d

Correl17

[W. Brzezicki, AMO, M. Cuoco, PRX 5, 011037 (15)]

Enhanced fluctuations for *d*⁴-*d*² hybrids (charge dilution)

We solve a problem of two sites in the second order perturbation expansion in hopping to get a **spin-orbital bond Hamiltonian**.

$$|a\rangle \equiv |yz\rangle, \quad |b\rangle \equiv |xz\rangle, \quad |c\rangle \equiv |xy\rangle$$

Enhanced fluctuations for *d*⁴-*d*² hybrids (charge dilution)

Frustration & entanglement: orbital and spin-orbital

- **1.** Orbital models: frustration => orbital order at $T < T_c$
- 2. Features of spin-orbital superexchange models
- 3. Different properties of systems with e_g and t_{2g} orbitals
- 4. Spin-orbital entanglement
- 5. Doped systems: double exchange & novel phases

Quantum Goodenough-Kanamori rules for exchange bonds:

Complementary correlations are dynamical !

Challenge: excitations in spin-orbital systems?

Thank you for your kind attention !

New Quantum Phases with Frustration and Entanglement 19-22 June 2016, Cracow, Poland

Correl17

http://sces.if.uj.edu.pl/