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3d orbitals

correlated insulators

orbitals are quantum
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Intrinsic frustration of orbital interactions
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kagome lattice

eg orbitals t2g orbitals

Orbital interactions are directional !

eg systems ( d7,d9 ) z-like active

t2g systems ( d1, d2, d4 ) two 

active orbitals along each axis, 
e.g. zx and xy along a axis

classical quantum
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[K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C 10, L271 (1977)]

At large U:  from Hubbard to the t-J model

with

Canonical transformation

in the regime of t << U

Perturbation:

processes P1HP2 and P2HP1

kinetic exchange

charge excitations =>  superexchange

(Erik Koch)
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Toward superexchange model: hybridization and d-d hopping t

Effective hopping

t via oxygen

3d-2p-3d

=>

bandwidth W

eg orbitals t2g orbitals
strong                          weak

JT coupling

[J. Zaanen and AMO, PRB 48, 7197 (1993)]
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Hopping and orbital superexchange for t2g

In t2g systems (d1,d2, …) two states 

are active along each cubic axis,                            

e.g. yz & zx for the axis c –

We introduce convenient notation 

they are described by quantum operators: 

Scalar product                but for JH>0 also other terms breaking the „SU(2)” symmetry

Orbital interactions

have cubic symmetry

no hopping ||c

[A.B. Harris et al.,

PRL 91, 087206 (03)]

xy orbital called c
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Hopping for eg orbitals

Real basis:

with interaction =>

has cubic symmetry0

( FM manganites )
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Intraatomic Coulomb interactions for 3d orbitals

Intraorbital Coulomb

Hund’s exchange

rotational invariance
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Orbital operators: eg define:

Local projection operators:

Bond projection operators:

c axis:

+ +
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Orbital superexchange for eg orbitals

Consider                                            high spin ( S=1 ) excitations:

effective U
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Orbital waves and gap for eg orbitals

[J. van den Brink et al., PRB 59, 6795 (99)]

Two sublattices – orbital waves 

as for a quantum antiferromagnet

3D 2D

The gap vanishes at Ez = zJ 

and in 3D for Ez = 0

Quantum corrections are small
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2D model with increasing frustration: from Ising to compass

From Ising

to compass:

Ising compass

A QPT from 2D Ising order to

1D compass nematic order

at θ ~ 85 degrees

eg orbital

2D compass
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Frustration in the 2D quantum compass model

Orbital (pseudospin) model with competing Ising-like interactions:

Low-energy states for the 4x4 

cluster for Jx= Jcosθ, Jz= Jsinθ

θ
Artist’s view of the LxL cluster

for the 2D compass model (L=4)

High 2x2L degeneracy at the isotropic Jx=Jz point

[J. Dornier, F. Becca, F. Mila, PRB 72, 024448 (05)]

Model for quantum qubits => quantum computation

Jx=0Jz=0
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Order at finite T in 2D compass model

[S. Wenzel and W. Janke, PRB 78, 064402 (08)]

Interpolation in the 2D compass model from QMC 
Ordered nematic phase in 

2D FM classical compass model

CMC for 12x12 lattice at T =0.1J

nematic order

compass model
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Classical vs quantum for 2D frustrated models

=>

B

C

A

Onsager

interactions

T>0 tensor

network

A

B

C

-J

-J

-J

J

J

J
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Spin-orbital physics

LaVO3

t2g orbitals

LaMnO3

eg orbitals

C-AF A-AF

Goodenough-Kanamori rules:

AO order supports FM spin order

FO order supports AF spin order

Are these rules sufficient?

AF phases with some FM bonds

Simplest case:

Mott insulators with 

spin-orbital order

manganites, nickelates,

vanadates, titanates, …

Qualitative changes due to

spin-orbital entanglement

Frustration can be removed
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Inventors of spin-orbital physics at Blois (06)
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Degenerate Hubbard model & charge excitations ( t<<U )

[A.M. Oleś, PRB 28, 327 (1983)]
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Two parameters: U – intraorbital Coulomb interaction, JH – Hund’s exchange

single parameter: 

η=JH /U

In a Mott insulator (t<<U)

superexchange follows

from charge excitations

eg systems t2g systems

HS

LS
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Low energy Hamiltonian: Spin-orbital superexchange (t<<U)

contains orbital operators of  cubic symmetry ( γ =a,b,c )

Averaging over orbital (dis)ordered state =>  anisotropic spin model:

∑ ∑ ⋅+⋅=

c ab
ij ij

jiabjics SSJSSJH

Here spin and orbital operators are disentangled

)(γ
γ ijJJ ≡

At large  U >> t ( J=4t2/U ):

spin interactions:

SU(2) symmetry

Two parameters: U – intraorbital Coulomb interaction, JH – Hund’s exchange

η=JH /U

spin-orbital model

charge excitation

=> superexchange
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Kugel-Khomskii model

We follow the general scheme:

with
KK model

+ +
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Kugel-Khomskii model

Equidistant multiplet structure for d 8 ions η=JH /U

HS

LS

Charge excitations fully characterized by:

KK model

In this regime behaves as the 1D quantum antiferromagnet

Experimental observations:
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FM AF

A-AF C-AF

G-AFFM

Which kind of spin-orbital order ? spin exchange

Strong anisotropy for G-AF
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anisotropic exchange constants

Mean field analysis of spin-orbital order

Two-sublattice ground state:
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Phase diagram: 2D Kugel-Khomskii model

a

a

η=JH /U

Much weaker AF interactions between holes in        orbitals than in
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Spin-orbital entanglement near the QCP

Spin disordered states

Example: Kugel-Khomskii (KK) model (d9)

eg orbitals T=1/2 spins S=1/2

Parameters: (1) Ez/J – eg orbital splitting

(2) JH/U – Hund´s exchange

Phase diagram of the d9 model

Quantum critical point: (Ez,JH) = (0,0)

[L.F. Feiner, AMO, J. Zaanen, PRL 78, 2799 (97)]

Entanglement near the QCP ?

A-AF phase in KCuF3

A-AF

A-AF
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Phase diagram: 3D Kugel-Khomskii model

Exotic magnetic order arises at boarder lines 

between phases AF due to spin-orbital entanglement
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Spin-orbital model for  LaMnO3

Weak AF superexchange due to t2g electrons

Mn3+ Bond projection operators:

The spin-orbital part is similar to KCuF3 ( S=2 )
[L.F. Feiner and AMO, PRB 59, 3295 (99)]

+ +
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Spin-orbital physics: optical spectral weights

Structure of the spin-orbital model:

Terms originate from charge

excitations to multiplet states n

Spectral weight for an excitation at energy ωn

These weights are found from the superexchange terms:

for excitation at ωn

total weight
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tot

tot

Optical spectral weights for LaMnO3

spin-orbital model

spectral weight for excitation at energy ωn

FM

AF

TN

Spin and orbital correlations

are here disentangled

Theory reproduces the spectral weights

for low energy  ω1 high-spin excitations

Note:  S = 2
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[Sang-Wook Cheong (98)]

Possible magnetic phases in doped manganites

[M. Stier and W. Nolting, PRB 78, 144425 (08)]

Mn3+

Colossal magnetoresistance in manganites

[Y. Tokura, RPP 67, 797 (06)]

Phase diagrams La1-xAxMnO3

Theory has to include strong

correlations of  eg electrons

Orbital and charge degree of freedom
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Avoiding electron correlations: electron doped  Sr1-xLaxMnO3

Kondo-like model for (few) noninteracting eg electrons :

G-AF C-AF

C-AF phase stabilized by double exchange for  x >0.02
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Degenerate Hubbard model & charge excitations ( t<<U )
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Two parameters: U – intraorbital Coulomb interaction, JH – Hund’s exchange

single parameter: 

η=JH /U

In a Mott insulator (t<<U)

superexchange follows

from charge excitations

eg systems t2g systems

HS

LS
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Ti 

Spin-orbital superexchange in RTiO3

constraint:

Multiplet 

structure =>

superexchange

orbital fluctuations

Nonconservation of orbital flavor

=>  spin-orbital liquid ?
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Spin-Orbital Model for RVO3 (R=La,Y, …)

t2g
2 configurations of V3+ ions with S =1 spins

each orbital is inactive along one axis

A.B. Harris et al.,

PRL 91, 087206 (03)

t2g hopping

For T<Ts xy orbitals are occupied:

Superexchange for t<<U (at JH=0):

Energies of t2g orbitals in YVO3

[G. Khaliullin, P. Horsch, AMO, PRL 86, 3879 (01)]

orbital fluctuations

spin fluctuations

spin-orbital 

fluctuations

spin fluct.

orbital fluct.
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Spin-orbital superexchange in RVO3

In t2g systems (d1,d2) two states are 

active, e.g. yz i zx for the axis c – they 

are described by quantum operators: 

Scalar product             but for η>0 also:

Orbital interactions

have cubic symmetry

Orbital SU(2) symmetry is broken !

Spin-orbit superexchange in RVO3  d
2 ( S = 1 ):

Entanglement expected !

c orbitals occupied

{a,b} – orbital degree of freedom

Ti         V

Multiplet 

structure =>

Local constraints:
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Strong orbital fluctuations in C-AF phase ( LaVO3 )

[G. Khaliullin P. Horsch, AMO, PRL 86, 3879 (01)]

{a,b}={yz,zx} fluctuations on bonds <ij> || c axis

⇒ finite value of FM -Jc>0  for  η =0  ( no Hund’s mechanism! )

⇒ similar values of exchange AF Jab and  FM -Jc for  η =0.13

η=JH /U=0.13

Exchange constants in C-AF phase

for increasing Hund’s exchange η
shadow

C-AF phase
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Spin-orbital superexchange in RVO3: spectral weights

orbital fluctuations:

more classical:

Spin-orbital entanglement along the  c axis

cubic symmetry

broken by C-AF
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TN1 modified due to entanglement !

Spin and orbital phase transitions in RVO3 

C-AF phase G-AF phase

Orbital-lattice coupling            is crucial
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AO order supports FM spin order

FO order supports AF spin order

Goodenough-Kanamori rules

intraorbital hopping  t interorbital hopping  t’

complementarity
for orbital conserving hopping  t

-- FM order wins

-- only AF terms

frustration

by interorbital hopping t’

⇒ FM/FO or   AF/AO

are possible

Exotic spin orders possible in certain situations

eg orbitals why ?
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Here A and B are spin and orbital degrees of freedom of the system

i.e., the boundary involves the entire system
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Example: triangular lattice

charge excitations in NaTiO2

are possible due to:

⇒ spin-orbital model

t’ orbital

conserving

t orbitals

interchanged

interpolates between

[B. Normand and AMO, PRB 78, 094427 (08)]
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Example: entangled states in a free hexagon

entangled

Here spins and orbitals

cannot be decoupled

RVB hexagon

Cij is a local measure of entanglement

[J. Chaloupka and AMO, PRB 83, 094406 (11)]
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Evolution of orbital densities in a free hexagon

entangled

RVB hexagon

[J. Chaloupka and AMO, PRB 83, 094406 (11)]
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Fractionalization of orbital excitations:  AF/FO

orbiton is excited

orbiton moves and

creates a spinon

t-J model hole

holonspinon

holonspinon

orbiton propagating

with hopping  t =J/2

In a 1D spin-orbital model the orbiton

fractionalizes into a freely propagating

spinon and orbiton, in analogy to   

spinon and holon in spin t-J model

[K. Wohlfeld et al., PRL 107, 127201 (11)]
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t-J-like model for ferromagnetic manganites

[AMO and L.F. Feiner, PRB 78, 052414 (02)]

magnon dispersion

Double exchange gives FM coupling

between average spins

reduces the FM coupling

Derivation with Schwinger bosons at doping  x
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Orbital dilution in d4 ( S = 1 ) by d3 impurities ( S = 3/2 )

Futuristic electronic devices 

may rely on properties 

that are highly sensitive to 

magnetic and orbital order

[W. Brzezicki, AMO, M. Cuoco,

PRX 5, 011037 (15)]

doublon

c = xy

a = yz

Orbital degree of freedom

C-AF phase

spintronics - orbitronics
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Parameters for a hybrid 3d-4d bond

[W. Brzezicki, AMO, M. Cuoco, PRX 5, 011037 (15)]

Mismatch potential renormalized by Coulomb U’s and Hund’s JH’s

Parameters to characterize the impurity:

superexchange Hund’s exchange at 3d

Schematic view of a 3d-4d

bond with a doublon in the

host at orbital c

S=1S=3/2
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We solve a problem of two sites in the second order perturbation 

expansion in hopping to get a spin-orbital bond Hamiltonian.

Enhanced fluctuations for d4-d2 hybrids (charge dilution)

Here we see the 

action of T+ T+ !

Ground state Fluctuations

hole doublon
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Enhanced fluctuations for d4-d2 hybrids (charge dilution)
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Frustration & entanglement: orbital and spin-orbital

1. Orbital models: frustration =>  orbital order at  T < Tc

2. Features of spin-orbital superexchange models

3. Different properties of systems with  eg and  t2g orbitals

4. Spin-orbital entanglement  

5. Doped systems:  double exchange  &  novel phases

Quantum Goodenough-Kanamori rules for exchange bonds: 

Challenge: excitations in spin-orbital systems ?

spin triplet

orbital singlet

spin singlet    

orbital triplet

Complementary correlations are dynamical !
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