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Outline 

Introduction to ED –based method: 

 - models, lattices 

Lanczos based methods: 

-  T = 0 ground state and correlation functions 

-  T > 0 Lanczos method: static and dynamical properties 

-  T >> 0 microcanonical Lanczos method 

-  advantages and limitations 

Examples of application: 

-  t – J model: low T - thermodynamics, spectral functions 

- frustrated Heisenbeeg model: triangular lattice ! spin liquid 

-  many-body localization: high-T dynamics  



Numerical calculations - simulations 

  The only computer experiments worth doing are those  
   that yield a surprise ! (V. Arnold ~ 1970) 

   Why to investigate model (strongly correlated) systems numerically: 

   - to discover new phenomena 
   - to get new ideas for construction of the theory 
   - to confirm existing theories, concepts, experiments 
   - to establish the right model for experiments  
   - to produce reliable model results 
   - to disprove wrong theories, speculations 
   - to do something 
   - to spend computer time 



Many – body quantum lattice models 
of strongly correlated electrons 

The size of the Hilbert space: K quantum degrees/ site 

                                                N lattice sites  

Limitation of methods based on ED (exact diagonalization): 

Heisenberg model: spin systems 

taking into account conserved quantities and symmetries: 

total spin: 

translation + rotation symmetry of the lattice : 

practical limit today:   



t - J model: doped insulator, HTC cuprates.. 

symmetries:                                at present:   

Hubbard model: Mott insulators, correlated metals.. 

spins + holes 

at present: 

electrons with spin 

projected fermion operators 



Lattices 

1D systems:  

there are more powerful methods than for statics (DMRG ..), but 
not necessarily for T > 0 dynamical quantities 

2D systems: periodic boundary conditions 
square lattice, tilted (+ distorted) square lattice, 
frustrated lattices (triangular, Kagome..)    



Exact diagonalization 

A) Full ED: T > 0 statics and dynamics  

Example - Heisenberg S=1/2 model:  

B) Lanczos – based ED: T = 0 ground state, g.s. dynamics   

sparse Hamiltonian matrix  !  Basis states only locally connected  



Lanczos ED technique 

Diagonalization of sparse matrices:  - power method 

C. Lanczos (1950),  R. Haydock, V.Heine (1970) 
1)  start with (random) normalized vector in Hilbert space 
2)  generate orthogonal Lanczos vectors 

       Krylov space 

3)   diagonalization of (real) tridiagonal matrix M x M: real   

    approx. eigenfunctions 
convergence for ground state:     

exact ! 



T = 0 dynamics via Lanczos 

dynamical (auto)correlation function for operator A 

1)  start the Lanczos procedure with normalized 

2)  generate Lanczos functions                                                and 

3)     

frequency moments: 

exact ! for given          provided  



Matrix elements via Lanczos 

How to evaluate matrix element for any operators A, B ?  

Perform 2 x Lanczos                     !  

Proof: projectors  

exact !  



FTLM - T > 0 static quantities  

Operator A : 

1) Calculate M Lanczos steps for each      ,, and corresponding       

reproduces high-T expansion up to the order M ! 

correct k < M, extended to k > M !  

J. Jaklič, PP (1994) 



reproduces correctly also T = 0 result !   

2)  Replace full sum with random sampling  

  single random state   

  random  
value, sign 



 statistical error: effective number of states Z(T)   

At high T >> 0 single random state is enough to evaluate         ! 

uncorrelated 



Random sampling:  

3) Conserved quantities (energy, specific heat..):  

no need to calculate (and store) Lanczos wf., 
overlap given by diagonalization of 3-diagonal matrix ! 

just few additional lines  
in the Lanczos code ! 



FTLM - T > 0 dynamical (auto)correlations  

perform 2 x Lanczos with                                       , , exact  

extrapolation:  



Finite – size effects: Tfs  

Which size or T is large enough to represent the macroscopic result ? 

Effective number of MB states:  

MB spectra: 

2D Heisenberg: N=16            2D t-J model: N=10 Nh=2     

Tfs 

Tfs 



2D t – J  model:  

more frustration, better for FTLM and ED-based methods: 
   - shorter correlation length 
   - large density of low lying MB states, therefore lower Tfs  

   -  frustrated systems: macroscopic-like results for  T >   Tfs   

‘optimal’ doping (for SC Tc...)  

doped model more frustrated, lower Tfs !  

entropy 



How many Lanczos steps?  

1D Heisenberg model  S(q = π,ω) : T >> 0 

T >> 0 oscillations in spectra: 

  - Lanczos generates equidistant 

    ‘levels’ in the middle MB spectrum 

  - no information content ? 



MCLM: Microcanonical Lanczos method  

Dynamical correlations at high T >> 0: might be nontrivial ? 

if dynamics singular: high – ω required, i.e., large M > 100 

    instead FTLM use MCLM: no wf. needed ! 

wf. with ~ good energy:  

     perform Lanczos with  

Heisenberg: frustrated  J1-J2 chain 

dynamical (spin) conductivity 



      Numerical methods for T > 0 dynamics  

1D methods 



Lanczos – based T > 0 methods 

  FTLM: T > 0 
       - represent (optimal ?) interpolation between T=0 Lanczos and HTE   
       - most valuable for dynamical correlations, where not many alternatives 
       - easy to implement: analogous to T = 0 method + matrix elements 
       - easy to control: very pedagogical ! code without evident errors usually OK !!   
       - best for frustrated systems with high entropy ! 
       - similar methods: low-T LM, FTD-DMRG 
       - limitations: storage of Lanczos wf., full Hilbert space Nst 

  MCLM: T >> 0   
       - requirements the same as T =0 (g.s.) code, possibly M >> 100 
       - interesting for dynamics of nontrivial systems (integrable, disordered MB..)  
       - similar methods: typicality approach.. 



t – J model 

interplay : electron hopping  + spin exchange 

single band model for strongly correlated electrons 

projected fermionic operators:  

no double occupation of sites 

n.n. hopping     

n.n.n. hopping     

etc. 



Cuprates: phase diagram 



Hole-doped cuprates: ARPES 

Fermi surface reconstruction: 

: Yoshida et al 06 

: K.Shen et al 05 

Pseudogap: 



Spectral functions 

projected operators  

normalization 

‘free’ term 

Finite size lattice: 

Continuous k: 

Regularization: with FTLM calculate 

average  over 



Pseudogap: spectral function and self energy along the ‘Fermi line’   

pseudogap contribution 

marginal FL damping 

t - t’ - J model: 

low doping: ch = 0.05  

intermediate (optimum) doping: 

ch = 0.17 

calculated for lowest T = Tfs ! 
macroscopic result ? 



ch = 0.05 ch = 0.17 

pseudogap 



Fermi surface evolution:  A(k,ω=0) 

t - t’- t’’- J model: 

t’= - 0.3 t,   t’’=0.12 t, 
J=0.4 t 

pseudogap  Fermi arc 

t - J model: 

J=0.3 t 

ch = 1/20, 2/20, 3/20 

ch = 1/18, 2/18, 3/18 



Pseudogap evolution: 

pseudogap large: 

a)  antinodal region 

b)  low doping 

density of states: 

integrated pseudogap  



t – J model: transport properties 

dynamical (optical) conductivity: 

d.c. conductivity, resistivity 

theory (FTLM): experiment 

             FTLM one of few methods  
                   for d.c. transport ! 



2D Heisenberg model: unfrustrated vs. frustrated (2017) 

square lattice                  vs.                triangular lattice 

entropy specific heat 



Create a macroscopic quantum MB system which does not thermalize  

       at any temperature  and retains the information locally ? 

Many-body localization: goal 

Ideal noneqilibrium system = absence of thermalization 

                                                   no d.c. transport            at any T ! 

                                                   nonergodicity of (all) correlations 

                                                   local quantitites : qubits 

                                                   no leakage of quantum information 

Numerical challenge: T >> 0 + low-ω ( long t ) dynamics ! 



What is MBL and why is it so interesting ? 

Nonergodic behaviour in a macroscopic MB quantum system: T > 0   
   -  non-interacting (NI) fermions on disordered lattice:  Anderson localization 

   -  integrable MB models: Heisenberg chain etc… 

   -  systems undergoing phase transition (macroscopic ordering at T < Tc) 

   -  many-body-localized systems = correlations + large disorder  ? 

Basko, Aleiner, Altshuler (2006):   

- MI transition at T=T* at fixed disorder  W 

- MI transition at W=Wc even at  T = ∞ ! 

> 700 theoretical papers after 2006   > 100 papers / year      

 Does MBL exist (phase transition or crossover ..) ? 

Which are properties of the ergodic and non-ergodic phase ? 



'Standard' model of many-body localization 

1D isotropic (or anisotropic) Heisenberg model + random fields:  

Jordan – Wigner transformation (1D) 

equivalent to disordered chain of interacting spinless fermions 

 =      Anderson model + interaction    



W > Wc: 
    -  Poisson MB level statistics 
    -  vanishing d.c. transport – spin (particle) , energy 
    -  area (log) law for entanglement entropy increase    
    -  non-ergodic behaviour of (all) correlation functions, no thermalization 
    -  local integrals of motion  

T ~ ∞:  phase diagram (approximate ?)  

Bar Lev et al, PRL (2015) 

ergodic phase:   W < Wc (V) 

nonergodic (MBL) phase: W > Wc (V) 

disorder 
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      Numerical methods for MBL (dynamics)  

MBL numerical problem: T >> 0  + very long times - low  ω ! 

                         +  large sizes ? 



Characteristic feature: dynamical conductivity and d.c. transport 

Barišić et al, PRB (2010, 2016) 

Steinigeweg et al, PRB (2016) 

vanishing d.c. transport σ0 for W > Wc ~ 5  

sharp transition : 

 crossover ?? 

log ! 

theory : experiment 

T >> 1: 



Characteristic feature: nonergodicity and universal dynamics 

Mierzejewski et al., PRB (2016) density-wave (imbalance) correlation 
function: T = ∞, V = t (Δ=0.5), ED,  L = 16   

a) real-time dynamics: 
    oscillations emerging from NI physics 

b) ‘quasi’-time dynamics: 
     the same long-time variation 

nonergodic (MBL) phase: W > W* ~ 4 
C0 = C(t=∞) > 0  + anomalous time 
dependence   



Many open question and numerical challenges !  


