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The insulating state of matter:
A geometrical theory

Raffaele Resta

Dipartimento di Fisica, Università di Trieste
Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (IOM-CNR)
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Before quantum mechanics
(Discovery of the electron: J.J. Thomson 1897)
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Soon after quantum mechanics
(Bloch 1928, Wilson 1931)
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A more general theory is needed: why?

Bloch theorem applies to noninteracting electrons in a
periodic crystalline potential.
“Noninteracting” means that the Bloch theorem applies to a
mean-field theory.

Some insulators are obviously noncrystalline
(i.e. liquid or amorphous).
In some crystalline materials the electron-electron interaction
must be dealt with explicitly
(i.e beyond mean-field theory).
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“Exotic” insulators

In some materials, the insulating character is dominated by
disorder: Anderson insulators.
In some materials, the insulating character is dominated by
electron-electron interaction: Mott insulators.
Other kinds of exotic insulators exist.
Example: a two-dimensional electron fluid in the
quantum-Hall regime.
The nonexotic textbook insulators will be called in the
following band insulators.
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Exotic insulators first discovered by theoreticians
(late 1950s)
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A very ambitious title indeed!
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Which property characterizes all insulators?
(band insulators & exotic insulators)

Kohn’s revolutionary message (1):
The insulating behavior reflects a certain type of organization
of the electrons in their ground state.
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Property of the ground state or of the excitations?
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Kohn’s revolutionary message (2):
Insulating characteristics are a strict consequence of
electronic localization (in an appropriate sense) and do not
require an energy gap.
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Kohn’s theory vindicates classical physics:
Electrons localized/delocalized in insulators/metals
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Which “appropriate sense”?
(Simple example: a band insulator)

What Kohn did not provide:
A “marker” for the insulating/metallic state of matter
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The old paradigm: Before 1992
(Feynman Lectures in Physics, Vol. 2)
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The old paradigm: Before 1992
(Feynman Lectures in Physics, Vol. 2)
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The “Modern theory of polarization”
A genuine change of paradigm, based on a geometric phase (Berry phase)

Macroscopic polarization has nothing to do with the periodic
charge of a polarized dielectric
(contrary to common statements in most textbooks).

Polarization can be expressed as a geometric phase (Berry
phase) of the electronic wavefunction.

Nowadays, the Berry phase is computed as a standard option
within all the electronic-structure codes on the market.

Nonetheless, the popular textbooks (Kittel,
Ashcroft-Mermin...) are slow to catch up and are still plagued
with erroneous concepts and definitions.
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Center of charge

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the center
of negative charge”

N electrons in a segment of lenght L:

Ψ0 = Ψ0(x1, x2, . . . xj, . . . xN),

Periodic boundary conditions:

Ψ0 = Ψ0(x1, x2, . . . xj, . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN)

Nuclei of charge eZℓ at sites Xℓ

Centers of positive & negative charge:∑
ℓ

ZℓXℓ − 2 ⟨Ψ0|
∑

j
xj |Ψ0⟩
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Center of charge, much better

Within PBCs coordinates are actually angles
The two “centers” must be defined modulo L
Their difference must be origin-invariant∑

ℓ

ZℓXℓ − 2 ⟨Ψ0|
∑

j
xj |Ψ0⟩

−→ L
2π Im ln ei 2π

L
∑

ℓ ZℓXℓ +
2L
2π Im ln ⟨Ψ0|e−i 2π

L
∑

j xj |Ψ0⟩

Polarization, including disordered & correlated insulators:

Px =
e

2π Im ln ⟨Ψ0|ei 2π
L (

∑
ℓ ZℓXℓ−2

∑
j xj)|Ψ0⟩ = e γ2π

γ is the Berry phase in disguise
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Polyacetilene, different terminations

Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

Raffaele Resta
CNR-INFM DEMOCRITOS National Simulation Center, Via Beirut 2, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

!Received 18 June 2007; accepted 24 September 2007; published online 15 November 2007"

A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.

THE JOURNAL OF CHEMICAL PHYSICS 127, 194902 !2007"

0021-9606/2007/127"19!/194902/9/$23.00 © 2007 American Institute of Physics127, 194902-1

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

In this centrosymmetric polymer is P = 0?
Polarization defined modulo e

P =
e

2πγ
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Dipole per monomer
(Kudin, Car, & Resta, JCP 2007)

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.

194902-7 Dipole moment quantization in polymers J. Chem. Phys. 127, 194902 !2007"

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Z2 classification of centrosymmetric polymers

Z2-even: P = 0 mod e
Alternant polyacetilene, model molecular crystal.....

Z2-odd: P = e/2 mod e
Model ionic crystal.....

Z2 invariant topological:
Independent e.g. of ionicity difference
Independent of the theory level
(tight-binding, first-principle...)
Robust by continuous deformation of the wavefunction
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Simple tight-binding Hamiltonians

Z2-even: Onsite ϵi constant, alternating hoppings t and t′

Z2-odd: Constant hopping t, alternating ϵi

Z2 invariant protected by centrosymmetry
When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M)
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Electronic term when |Ψ0⟩ is a Slater determinant

zN = ⟨Ψ0| exp

i2πL

N∑
j=1

xj

 |Ψ0⟩ = ⟨Ψ0|Ψ̃0⟩

Even |Ψ̃0⟩ is a Slater determinant

Theorem: ⟨Ψ0|Ψ̃0⟩ = det S

Single band case:

S(qj, qj′) = ⟨ψqj |ψ̃qj′ ⟩ =
∫ L

0
dx ψ∗

qj(x)e
i 2π

L xψqj′ (x).
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The connection matrix is very sparse in the band case

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0


The matrix element vanishes unless qj′ = qj − 2π/L,
that is ′ = j−1: the determinant factors.

zN = det S =
N∏

j=1
S(qj, qj−1)
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King-Smith & Vanderbilt Berry phase

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0


Insulating case: Discretization of King-Smith & Vanderbilt γ

γ = i
∫

BZ
dk ⟨ψk|

d
dkψk⟩ = lim

N→∞
Im ln

M∏
j=1

S(qj, qj−1) = lim
N→∞

Im ln zN
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What is the relationship between polarization
and the insulating state?

Phenomenologically:
Metal: Has a nonzero dc conductivity
Insulator: Has a zero dc conductivity
(at zero temperature)

But also
Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.
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Under the action of a dc electrical field

Insulator: Electrons do not flow freely
(they polarize instead)
Metal: Electrons flow freely over macroscopic distances
(hindered by scattering)
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The relationship between localization and polarization

VOLUME 82, NUMBER 2 PHY S I CA L REV I EW LE T T ER S 11 JANUARY 1999

Electron Localization in the Insulating State

Raffaele Resta
Istituto Nazionale di Fisica della Materia (INFM), Strada Costiera 11, I-34014 Trieste, Italy

and Dipartimento di Fisica Teorica, Università di Trieste, I-34014 Trieste, Italy

Sandro Sorella
Istituto Nazionale di Fisica della Materia (INFM), Via Beirut 4, I-34014 Trieste, Italy

and Scuola Internazionale Superiore di Studı̂ Avanzati (SISSA), Via Beirut 4, 34014, Trieste Italy
(Received 11 August 1998)

The insulating state of matter is characterized by the excitation spectrum, but also by qualitative
features of the electronic ground state. The insulating ground wave function in fact (i) sustains
macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our approach
to localization is exemplified by means of a two-band Hubbard model in one dimension. In the
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbitals.
[S0031-9007(98)08159-9]

PACS numbers: 71.10.Fd, 71.23.An

In a milestone paper that appeared in 1964 [1],
W. Kohn investigated the very basic features which
discriminate between an insulator and a metal: he gave
evidence that localization of the electronic ground wave
function implies zero dc conductivity, and therefore char-
acterizes the insulating state. In this Letter, we provide a
definition of localization which is deeply rooted into the
modern theory of polarization [2–5], and rather different
from Kohn’s. Indeed, besides zero dc conductivity,
the property which obviously discriminates between
insulators and metals is dielectric polarization: whenever
the bulk symmetry is low enough, an insulator displays
nontrivial static polarization. Here, we show that the
whole information needed for describing both localization
and polarization is embedded into the same many-body
expectation value, namely, the complex number z

N

de-
fined in Eq. (10) below. It was previously shown [5] that
macroscopic polarization is essentially the phase of z

N

:
here we show that the modulus of z

N

yields a definition of
localization length which is sharper and more meaningful
than the available ones. In our formalism a vanishing z

N

implies a delocalized wave function and an ill-defined
polarization: this characterizes the metallic state. Our
definition is first demonstrated for a one-dimensional
crystalline system of independent electrons, in which case
our localization length coincides (for insulators) with the
spread of the Wannier orbitals. We then study a two-band
Hubbard model undergoing a Mott-like transition: both
in the band regime (below the transition) and in the
highly correlated regime (above the transition) the wave
function turns out to be localized, while the localization
length diverges at the transition point, thus indicating a
metallic ground state. Our approach to localization in
a many-electron system sharply discriminates between a
conducting and nonconducting ground state, yet avoids
any reference to the excitation spectrum.

Let us start with a single one-dimensional electron:
the distinction between localized (bound) and delocalized
(scattering) states is a clearcut one when the usual
boundary conditions are adopted; much less so when
periodic Born–von Kàrmàn boundary conditions (BvK)
are adopted, implying a ring topology for the one-
dimensional system. Within the latter choice—which
is almost mandatory in condensed matter physics—all
states appear in a sense as “delocalized” since all wave
functions csxd are periodic over the BvK period: csx 1
Ld ≠ csxd. We show that the key parameter to study
localization of an electronic state within BvK is the
dimensionless complex number z, defined as

z ≠
Z L

0

dx e

is2pyLdxjcsxdj2, (1)

whose modulus is no larger than 1. In the case of extreme
delocalization, one has jcsxdj2 ≠ 1yL and z ≠ 0, while
in the case of extreme localization,

jcsxdj2 ≠
X̀

m≠2`

dsx 2 x

0

2 mLd , (2)

and we get z ≠ e

is2pyLdx
0 . In the most general case, de-

picted in Fig. 1, the electron density jcsxdj2 can always
be written as a superposition of a function n

loc

, normal-
ized over s2`, `d, and of its periodic replicas:

jcsxdj2 ≠
X̀

m≠2`

n

loc

sx 2 x

0

2 mLd . (3)

Both x

0

and n

loc

sxd have a large arbitrariness: we restrict
it a little bit by imposing that x

0

is the center of the
distribution, in the sense that

R`
2` dx xn

loc

sxd ≠ 0.
Using Eq. (3), z can be expressed in terms of the

Fourier transform of n

loc

as

z ≠ e

is2pyLdx
0

ñ

loc

µ
2

2p

L

∂
. (4)

370 0031-9007y99y82(2)y370(4)$15.00 © 1999 The American Physical Society

Macroscopic polarization and electron localization in the
insulating state stem from the same formalism
They are two aspects of the same phenomenon
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A marker for the insulating state of matter

Electronic term in polarization

P(el) =
e

2π Im log lim
N→∞

zN

It is imposible to define polarization whenever

lim
N→∞

zN = 0

all insulators: lim
N→∞

|zN| = 1 all metals: lim
N→∞

zN = 0
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RS localization length

λ2 = − lim
N→∞

1
N

(
L

2π

)2
|zN|2

λ is finite in all insulators
λ diverges in all metals

Very general: all kinds of insulators:
Correlated insulator
Independent electrons, crystalline
a.k.a. “band insulator”
Independent electrons, disordered
Quantum Hall insulator (not shown here)
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Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

|Ψ0⟩ is written as a determinant of occupied Bloch orbitals, in
both the insulating and the metallic case.

Key difference:
The whole band is used to build the insulating |Ψ0⟩, while
only one half of the band is used for the metallic |Ψ0⟩.
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Insulators vs. metal

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0



The connection matrix has zero determinant in the metallic case!
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Implementation: Mott transition in HN chains
Stella, Attaccalite, Sorella & Rubio, PRB 2011

STRONG ELECTRONIC CORRELATION IN THE HYDROGEN . . . PHYSICAL REVIEW B 84, 245117 (2011)
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FIG. 1. (Color online) (a) Total energy per atom as a function
of the interatomic distance from VMC calculations of periodic
chains with 18, 34, 50, and 66 H atoms in the supercell. (Data are
almost superimposed at the scale of this figure; see also Table I.)
(b) Comparison between the total energy per atom of a finite H50

chain obtained by VMC and DMRG (Ref. 3).

III. RESULTS

In Fig. 1(a), we show the convergence of the total energy
per atom by increasing the number of H atoms per supercell
for several interatomic distances. We note that the H50 periodic
H chain is already well converged at the scale of this figure.
To follow the fine detail of the convergence, the values of the
total energy per atom details have been also listed in Table I.

In Fig. 1(b), a direct comparison between the VMC total
energy for the H50 finite chain and the benchmark DMRG
results obtained by using a STO-6G basis set3 demonstrates the
accuracy of our optimized JAGP variational wave function.27

In this case, to have a fair comparison against the DMRG
data, PBCs have not been employed to obtain the VMC results
showed in Fig. 1(b). The difference between the total energy
of H50 chains with and without PBCs and the same interatomic
distance is of the order of few mHa per atom.

Having verified the quality of the variational wave function,
in Fig. 2(a) we plot the electronic localization length λN in
units of the interatomic distance a as a function of a. For all

TABLE I. Total energy per atom as a function of the interatomic
distance a for the same periodic chains of Fig. 1(a). The VMC error
on the last digit is indicated in parentheses.

a H18 H34 H50 H66

1.0 −0.40751(4) −0.41639(3) −0.41380(3) −0.41358(2)
1.5 −0.55402(2) −0.55156(1) −0.55099(1) −0.55070(1)
2.0 −0.56480(2) −0.56329(1) −0.56296(1) −0.56284(1)
2.5 −0.54747(2) −0.54699(1) −0.54639(1) −0.54682(1)
3.0 −0.52796(2) −0.52770(2) −0.52717(1) −0.52727(1)
3.5 −0.51263(3) −0.51308(2) −0.51459(2) −0.51508(1)
4.0 −0.50458(3) −0.50556(4) −0.50599(2) −0.50626(1)
4.5 −0.50080(3) −0.50206(1) −0.50222(1) −0.50237(1)
5.0 −0.50014(2) −0.50029(1) −0.50047(1) −0.50063(1)
6.0 −0.49962(1) −0.49971(1) −0.49972(1) −0.49965(1)
7.0 −0.49980(1) −0.49981(1) −0.49979(1) −0.49972(1)

 0

 1

 2

 3

 4

 5

λ N
 /a

(a)

VMC H18 
VMC H34 
VMC H50 
VMC H66 

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7

|z
|

Interatomic distance, a (a.u.)

(b)

VMC H18 
VMC H34 
VMC H50 
VMC H66 

FIG. 2. (Color online) (a) Electronic localization length λN

divided by the interatomic distance a as a function of a, for the
same chains of Fig. 1(a). (d) Modulus of the complex polarization
|zN | as a function of the interatomic distance for the same chains
of (c).

the supercells considered, we find that

λN/a ∝
{ |a − ac|η if a < ac,

a−1 if a > ac,
(6)

where η ≃ 0.5 and ac ≃ 3.5 (a.u.). This critical behavior is also
in agreement with the sudden switch from |z| ≃ 0 to |z| ≃ 1
visible in Fig. 2(b), i.e., to the crossover between a (finite-size)
metal and an insulator, namely a Mott-Hubbard insulator.1

To further characterize the nature of the weakly and strongly
correlated regimes of the H chain, we have investigated the
spin-spin,

fss(i − j ) = ⟨#N |Ŝ(i)
z Ŝ(j )

z |#N ⟩, (7)

and the dimer-dimer,

fdd (i − j ) = ⟨#N |Ŝ(i)
z Ŝ(i+1)

z Ŝ(j )
z Ŝ(j+1)

z |#N ⟩, (8)

correlation functions, where Ŝ(i)
z measures the transverse

component of the electronic spin about the ith H atom of the
chain. By neglecting logarithmic corrections, we have fitted
these functions by28

fss(i − j ) = ass

(i − j )2
+ bss

cos[π (i − j )]
(i − j )Kss

, (9)

fdd (i − j ) = add + bdd

cos[π (i − j )]
(i − j )Kdd

(10)

245117-3

localization length
(tensor in 3d)

λ2
N = − 1

N

(
L

2π

)2
ln |zN|2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Longitudinal conductivity (zero T)

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

= σ
(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)
The Drude weight Dαβ is actually a ground-state property:
it measures the inertia of the electrons in the adiabatic limit

The insulating state requires both:
Dαβ = 0
Re σ(regular)

αβ (ω) goes to zero for ω → 0
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Drude weight according to Kohn (1964)

Hamiltonian with a “flux” (a gauge transformation):

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂

Thermodynamic limit after taking derivatives
PBCs violate gauge invariance in the conventional sense:
E0 does depend on κ.

Drude weight

Dαβ =
πe2

ℏ2Ld
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0
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Why RS discriminate insulators from metals

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂, r̂ =
∑

i
ri

|Ψ̃0(κ)⟩ = e−iκ·̂r|Ψ0(0)⟩ obeys Schrödinger Eq.
It does not obey PBCs
Except for a commensurate κ0

Does |Ψ̃0(κ0)⟩ coincide with the genuine |Ψ0(κ0)⟩?
Yes (modulo a phase) if D = 0
No (it is orthogonal to it) if D ̸= 0
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Why RS discriminate insulators from metals (cont’d)

⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = 0, D ̸= 0
⟨Ψ̃0(κ0)|Ψ0(κ0)⟩ = ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(κ0)⟩ = eiγ , D = 0

|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | = O(1/L), D ̸= 0
|zN| = | ⟨Ψ0(0)| eiκ0 ·̂r |Ψ0(0)⟩ | = 1 −O(1/L), D = 0
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Quantum metric (Provost & Vallée, 1980)

Same Hamiltonian with a “flux”, but now within OBCs:

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂ r̂ =
∑

i
ri

OBCs do not violate gauge invariance: E0 is κ-independent

Quantum metric tensor (derivatives taken at κ = 0))

g̃αβ =
1
N(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

Intensive ground state property, gauge-invariant
(dimensions: squared length)
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The modern theory (OBCs)

Ĥ(κ) =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂ r̂ =
∑

i
ri

Basic tenet of the modern theory:
The OBCs metric g̃αβ in the thermodynamic limit

Diverges in all metals
Converges in all insulators

g̃αβ =
1
N(Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ )

=
1
N( ⟨Ψ0 |̂rαr̂βΨ0⟩ − ⟨Ψ0 |̂rα|Ψ0⟩⟨Ψ0 |̂rβΨ0⟩ )

=
1

2N

∫
drdr′ (r − r′)α(r − r′)β[ n(r)n(r′)− n(2)(r, r′) ]
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Physical meaning of the OBCs quantum metric tensor

Second moment of the exchange-correlation hole:

g̃αβ =
1

2N

∫
drdr′ (r − r′)α(r − r′)β[ n(r)n(r′)− n(2)(r, r′) ]

Ground-state quantum fluctuation of the dipole:

g̃αβ =
1
N( ⟨Ψ0 |̂rαr̂βΨ0⟩ − ⟨Ψ0 |̂rα|Ψ0⟩⟨Ψ0 |̂rβΨ0⟩ )

g̃αβ used as a marker for the insulating/metallic state:
Noninteracting crystalline systems:

Insulators: g̃αβ equals the WF quadratic spread
Metals: some simulations prove divergence

A few simulations for noninteracting disordered systems
No simulation so far for correlated systems
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Tight binding 1d binary crystal

H =
∑

j
( ϵj |j⟩⟨j| − t |j + 1⟩⟨j| − t |j⟩⟨j + 1| )

Diagonal disorder: t fixed, ϵb − ϵa = ∆ fixed

Crystalline case:
ABABABABABABABABABABABABABABABABABAB.............

Disordered case:
ABAABABBABABBAABABABBABAABABBABABBAA ............
Random choice with equal probability, average over many replicas.
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Density of states

 0

 100

 200

 300

 400

 500

 600

 700

 800

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

cris
dis

At half filling both (crystalline and disordered) are insulating
At any other filling the crystalline is conducting and the
disordered is insulating.
What about g̃?
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Results of the simulations
(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

In the crystalline case g̃ converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).
In the disordered case g̃ always converge (to a very similar
value for the two cases).
The disordered case g̃ is about 20 times larger than the
crystalline one. Why?
The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.
Has our g̃ anything to do with the (squared) Anderson
localization length?
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The benchmark model 3d system

Need a 3d system to observe the M-I transition

A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at Wc = 8.25
(W is the amount of tunable disorder, in appropriate units)

In our (and others’) simulations:
Computational samples are long rods of square section
Results are averaged over several disorder realizations

The novelty here: use our marker to detect the transition
in the ground state
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Anderson transition as a ground-state property
T. Olsen, R. Resta, and I. Souza, Phys. Rev. B 95, 045109 (2017)
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FIG. 1. (Color online). Localization length as a function of
rod length. The localization length diverges for small values
of W and saturates to a finite value for large values of W .

III. RESULTS

We consider the half-filled 3-dimensional tight-binding
model

H = t
X

<ij>

c†i cj +H.C.+W
X

i

"ic
†
i ci, (18)

where i, j denote sites on a simple cubic lattice, < ij >
are pairs of nearest neighbor sites and the onsite energies
"i are randomly picked from the interval [�1, 1]. W is
the disorder strength and the model has previously been
shown to exhibit an Anderson transition at Wc = W/t =
8.25.4–7

We have calculated the localization length within open
boundary conditions using Eq. (12) for various values of
W using rods of dimension L⇥ d⇥ d where L = 100 and
d = 3, 5, 7. To obtain the configurational average we cal-
culated 100 configurations and for each configuration the
long component of the localization tensor was obtained
by averaging the two short dimensions. In the following
we have put t = 1. The results for various values of W
are shown in Fig. 1 for di↵erent rod thicknesses d. We
clearly observe a tendency for the localization length to
saturate when W becomes large. In contrast, for small
W the localization length appears to be growing mono-
tonically with increasing rod length L. In the present
context the Anderson transition would emerge as a tran-
sition from a divergent to a finite localization length in
the limit of large L. While it seems plausible that this
may happen in the range of Wc = 8.25 it is very di�-
cult to extract a quantitative estimate of Wc from the
localization length alone. For example, for W = 10, the
localization length appears to be saturated at a finite
value for L ⇠ 100, but it is hard to verify if this is really
the case or if the localization length is merely increasing
too slowly to be observable on the present scale.

Instead, we will analyze the density matrix directly

FIG. 2. (Color online). Configurational averaged density
matrix. Top: density matrix with W = 5.0 with a double
logarithmic scale to the left and a semi-logarithmic scale to
the right. Bottom: same as top, but with W = 15.0. The
norm-squared density matrix is seen to be well approximated
by polynomial decay for W = 5.0 and exponential decay for
W = 15.0.

and show that the Anderson transition can be extracted
from the long range behavior of the configurational av-
eraged norm-squared density matrix. In Fig. 2 we
show the density matrix for W = 5 and for W = 15
on semi-logarithmic and double logarithmic scales calcu-
lated from 300 random disorder configurations. It should
be noted that when discussing the density matrix for dis-
ordered systems, one is usually referring to the configura-
tional average of the density matrix h⇢ic. The expression
for the localization length involves the norm square of the
density matrix and for disordered systems this should be
replaced by h|⇢|2ic which will be di↵erent from |h⇢ic|2.
In general it is therefore not possible to calculate the lo-
calization length in disordered systems from knowledge
of the density matrix alone. In fact, the density matrix
may exhibit exponential decay even though the localiza-
tion length is diverging. In Fig. 2 we display both h|⇢|2ic
and |h⇢ic|2 and while the two quantities seem to follow
similar scalings, h|⇢|2ic is a much smoother function and

Localization length λ =
√

g̃αα as a function of rod length L
(average over 100 disorder realizations)
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A smarter way to estimate Wc (by Thomas Olsen)

4

FIG. 3. (Color online). Cost functions calculated from a least
squares fit in the polynomial and exponentially decaying mod-
els. The displayed values of � are the fitted powers in the poly-
nomial model. The vertical red line in the value of W

c

= 8.25
obtained by di↵erent methods.4–7 The best estimate of the
metal insulator transition from the present method is where
C
Pol

/C
Exp

becomes unity. This happens at W ⇡ 8.5.

therefore easier to fit to a model. For W = 5, h|⇢|2ic ap-
pears to decay polynomially, whereas for W = 15, h|⇢|2ic
appears to decay exponentially. This is consistent with
Fig. 1, where it is seen that hx2ic appears diverging for
W = 5 and finite for W = 15. It should be noted, how-
ever, that exponential decay is a su�cient, but not a
necessary condition for a finite localization length. For
example, in a homogeneous system it can be seen from
Eq. (17) that the trace of the localization tensor will be
finite if h|⇢|2ic ⇠ r�� and � > 5.
In order to get a quantitative estimate for the Ander-

son transition, we consider two models for the long range
behavior of y = h|⇢|2ic representing polynomial and ex-
ponential decay:

ỹExp(r) = ae�br, (19)

ỹPol(r) = ↵r�� . (20)

Assuming Gaussian noise, the probability of obtaining
the data displayed in Fig. 2 within a model is given by

PModel ⇠ e�C
Model (21)

where CModel is the cost function

CModel =
X

i

(ỹModel(xi)� yi)2

2�2
i

. (22)

Here the index i represents lattice sites along the long
direction and yi are thus configurational averaged values
of h|⇢(xi)|2ic. We can then obtain the parameters in the
two models by a least squares fit and calculate the cost
function of either model. In Fig. 3 we show the fraction
of cost functions CPol/CExp obtained from a fit to the two

models and observe a very steep descent (two orders of
magnitude) between W = 8 and W = 9. Thus in the
limited model space of exponential and polynomial de-
cay, the probability of the norm squared density matrix
being exponentially decaying makes a transition from be-
ing nearly vanishing to being close to one in the vicinity
of the Anderson transition. It should also be noted that
the fitted powers in the region where polynomial decay is
most likely satisfy � < 5 such that the polynomial model
will yield a divergent localization tensor, whenever this
model is most likely.

In the present approach the critical disorder param-
eter Wc, where the Anderson transition occurs can be
estimated from the point where CPol/CExp = 1. From
the present simulations we get Wc ⇡ 8.5.

IV. CONCLUSIONS

This method could perhaps be used for ab initio pur-
poses ...

V. ACKNOWLEDGEMENT
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Appendix A: Vertex corrections and the density
matrix

The evaluation of the localization tensor, can be for-
mulated either in terms of the conductivity tensor or the
density matrix. In this appendix we show that for the
localization tensor, the inclusion of vertex corrections
in the conductivity corresponds exactly to performing
the configurational average of the norm-squared density
h|⇢|2ic, whereas the quantity |h⇢ic|2 corresponds to ne-
glecting vertex corrections in the conductivity. For this
purpose we start by reviewing the Streda formula for
the dynamic conductivity. The result then follows im-
mediately by recasting the localization tensor in terms of
Greens functions.

1. Streda formula

The Kubo formula for the conductivity is straightfor-
ward to derive from time-dependent perturbation theory.
For non-interacting particles it reads

�ij(!) =
ie2

!⌦

X

mn

fm � fn
("n � "m � ~! + i⌘)

hm|v̂j |nihn|v̂i|mi,

(A1)

where the limit of ⌘ ! 0 is understood. We now write
this as

Our best estimate: Wc = 8.5
We are probing “the organization” of the electrons in their ground state
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Summary

Phenomenology:
Insulators differs from conductors in their dc conductivity;
But also: insulators and metals polarize in a different way.

Theory:
Textbook viewpoint: Insulators and metals have a qualitatively
different excitation spectrum (gapped/gapless)
Modern viewpoint (inspired by Kohn): Even before any probe
is applied to the system, the ground-state organization of the
electrons is different in insulators and metals.

I have shown a couple of ways for sampling such organization:
Resta-Sorella within PBCs
The quantum metric within OBCs
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Noninteracting electrons, OBCs

All ground-state properties obtain from the projector:

⟨r| P |r′⟩ =
∑
ϵj≤µ

⟨r|φj⟩⟨φj|r′⟩

Metric (quantum fluctuation of the dipole):

g̃αβ =
1
N( ⟨rαrβ⟩ − ⟨rα⟩⟨rβ⟩ )

=
1

2N

∫
drdr′ (r − r′)α(r − r′)β[ n(r)n(r′)− n(2)(r, r′) ]

= − 1
N

∫
dr ⟨r| P [rα,P] [rβ,P] |r⟩

A real symmetric tensor, even in absence of TR symmetry.
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Anomalous Hall conductivity (AHC)

Nonzero only when TR symmetry is absent
Quantized in insulators, nonquantized in metals
AHC is a Chern number in 2d: Haldane’s Nobel prize (part of)
AHC is topological in insulators;
AHC has a geometrical contribution in metals
QAHE materials synthesized recently
Geometrical & topological quantities dealt with in k-space,
adopting PBCs

PBCs and k vectors are a (very useful) creation of our mind:
they do not exist in nature. AHC should be accessible even:

Inside finite samples (e.g. bounded crystallites)
In noncrystalline samples
In macroscopically inhomogeneous samples
(e.g. heterojunctions)
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Geometry & topology in r-space

Insulators:
R. Bianco and R. Resta,
Mapping topological order in coordinate space,
Phys. Rev. B 84, 241106(R) (2011)

Metals:
A. Marrazzo and R. Resta,
Locality of the anomalous Hall conductivity,
Phys. Rev. B 95, 121114(R) (2017)
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AHC as a local quantity

g̃αβ = − 1
N

∫
sample

dr Fαβ(r), Fαβ(r) = ⟨r| P [rα,P] [rβ,P] |r⟩

Next we integrate Fαβ(r) over an inner region of the sample,
not over the whole sample
For a crystallite:

1
N

∫
sample

dr Fαβ(r) →
1

Nc

∫
cell

dr Fαβ(r)

In absence of TR symmetry such integral is endowed with
an antisymmetric imaginary part

σ
(−)
αβ = − 2e2

ℏVcell

∫
cell

dr Im Fαβ(r)
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The “Haldanium” paradigm (F.D.M. Haldane, 1988)
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

+ staggered B field
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boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
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solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

+ staggered B field

A two-band model
(T-broken)

Tight-binding parameters:
1st-neighbor hopping t1
staggered onsite ±∆
complex 2nd-neighbor
t2eiϕ

In the topological phase:
QAHE

f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.

CERESOLI et al. PHYSICAL REVIEW B 74, 024408 !2006"

024408-10
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Normal insulator, topological insulator, metal

Phase diagram at half filling

2

that, in a polarized/magnetized solid, the charge and cur-
rent densities ρ(micro)(r) and j(micro)(r) are well defined,
while a “dipolar density” (either electric or magnetic)
cannot be unambiguously defined [16, 17]; our M(r) plays
indeed the role of a magnetic dipolar density, although
only its macroscopic average bears a physical meaning.

The main concepts are more clearly formulated in the
simple two-dimensional (2D) case: electrons in the xy
plane and magnetization M along z. Eq. (2) reads, for a
2D macroscopic flake of independent electrons

M = −
ie

2!cA

∑
εn<µ

〈ϕn| r × [H, r] |ϕn〉 (3)

= −
ie

2!cA

∑
εn<µ

( 〈ϕn|xHy |ϕn〉 − 〈ϕn| yHx |ϕn〉 )

where A is the sample area, H is the single-particle
Hamiltonian, |ϕn〉 are the orbitals, and µ is the Fermi
level; single occupancy is assumed (“spinless electrons”).
Eq. (3) only applies to a system that remains gapped
(as a whole) in the large-A limit, and therefore does not
apply, as such, to Chern insulators; more about this will
be said below. Eq. (3) is a trace; since M is real,

M = Im iM =
e

!cA
Im Tr {PxHyP}, (4)

where P is the ground-state projector. In the following,
we also need its complement Q, i.e.

P =
∑

εn<µ

|ϕn〉〈ϕn|, Q = 1 − P . (5)

If we write H = PHP + QHQ, it is rather
straightforward to transform Eq. (4) into

M =
e

!cA
Im Tr {PxQHQyP −QxPHPyQ}. (6)

A different derivation of the same expression is due
to Souza and Vanderbilt [6]; they also show that
Eq. (6) provides the link with the modern theory of
magnetization. In fact the position operator r is ill
defined within PBCs [18], but becomes harmless and well
defined within both OBCs and PBCs when “sandwiched”
between a P and a Q. It is enough to perform the
thermodynamic limit in Eq. (6), and then cast P and
Q in terms of Bloch orbitals, in order to arrive at the k-
integral expression of the modern theory [3–5] for normal
insulators (Chern number C = 0).

In order to get a local description we write Eq. (6) as

M =
1

A

∫
dr M1(r), (7)

M1(r) =
e

!c
Im 〈r| PxQHQyP |r〉

−
e

!c
Im 〈r| QxPHPyQ |r〉. (8)

FIG. 1: Chern number C of the bottom band of the Haldane
model as a function of the parameters ϕ and ∆/t2 (t1 =
1, t2 = 1/3). The subsequent discussion and figures concern
the points (a) and (b) only

FIG. 2: A typical flake, with 2550 sites, showing the
honeycomb lattice of the Haldane model [19]. The 50 sites
on the horizontal line will be used in all the subsequent
one-dimensional plots. Black and grey circles indicate
nonequivalent sites (with onsite energies ±∆)

There is a paramount difference between our starting
Eq. (3) and Eq. (7): while the former integral, like
Eq. (2), is dominated by boundary contributions, the
latter expression is “bulk” in the above defined sense. In
order to evaluate M for a macroscopically homogeneous
region in the bulk of a sample, within either OBCs or
PBCs, it is enough to take the macroscopic average of
M1(r) in that region.

We demonstrate this key property of the local function
M1(r) by performing simulations on the Haldane model
Hamiltonian [19]; it is comprised of a 2D honeycomb
lattice with two tight-binding sites per primitive cell
with site energies ±∆, real first-neighbor hoppings t1,
and complex second-neighbor hoppings t2e±iϕ. This
model has been previously used in several simulations,
providing invaluable insight into orbital magnetization
[4, 5, 20] as well as into nontrivial topological features of
the electronic wavefunction [12, 19–23]. In the following,
we invariably choose t1 = 1, t2 = 1/3. At half filling
the system is insulating; it is either a normal insulator
or a Chern insulator depending on the ∆ and ϕ values,
according to the phase diagram shown in Fig. 1.

We illustrate the case of a normal insulator (C = 0),

Metallic at any other filling
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Topological order

a ba b

symmetry as an applied magnetic field would), in simplified models 
introduced in around 2003 it can lead to a quantum spin Hall effect, 
in which electrons with opposite spin angular momentum (commonly 
called spin up and spin down) move in opposite directions around the 
edge of the droplet in the absence of an external magnetic field2 (Fig. 2b). 
These simplified models were the first steps towards understanding 
topological insulators. But it was unclear how realistic the models were: 
in real materials, there is mixing of spin-up and spin-down electrons, 
and there is no conserved spin current. It was also unclear whether the 
edge state of the droplet in Fig. 2b would survive the addition of even 
a few impurities.

In 2005, a key theoretical advance was made by Kane and Mele3. 
They used more realistic models, without a conserved spin current, 
and showed how some of the physics of the quantum spin Hall effect 
can survive. They found a new type of topological invariant that could 
be computed for any 2D material and would allow the prediction of 
whether the material had a stable edge state. This allowed them to show 
that, despite the edge not being stable in many previous models, there are 
realistic 2D materials that would have a stable edge state in the absence of 
a magnetic field; the resultant 2D state was the first topological insulator 
to be understood. This non-magnetic insulator has edges that act like 
perfectly conducting one-dimensional electronic wires at low tempera-
tures, similar to those in the quantum Hall effect.

Subsequently, Bernevig, Hughes and Zhang made a theoretical 
prediction that a 2D topological insulator with quantized charge con-
ductance along the edges would be realized in (Hg,Cd)Te quantum 
wells4. The quantized charge conductance was indeed observed in this 
system, as a quantum-Hall-like plateau in zero magnetic field, in 2007 
(ref. 5). These experiments are similar to those on the quantum Hall 
effect in that they require, at least so far, low temperature and artificial 
2D materials (quantum wells), but they differ in that no magnetic field 
is needed.

Going 3D
The next important theoretical development, in 2006, was the 
realization6–8 that even though the quantum Hall effect does not general-
ize to a genuinely 3D state, the topological insulator does, in a subtle way. 
Although a 3D ‘weak’ topological insulator can be formed by layering 
2D versions, similar to layered quantum Hall states, the resultant state 
is not stable to disorder, and its physics is generally similar to that of the 
2D state. In weak topological insulators, a dislocation (a line-like defect 

in the crystal) will always contain a quantum wire like that at the edge 
of the quantum spin Hall effect (discussed earlier), which may allow 2D 
topological insulator physics to be observed in a 3D material9.

There is also, however, a ‘strong’ topological insulator, which has a 
more subtle relationship to the 2D case; the relationship is that in two 
dimensions it is possible to connect ordinary insulators and topologi-
cal insulators smoothly by breaking time-reversal symmetry7. Such a 
continuous interpolation can be used to build a 3D band structure that 
respects time-reversal symmetry, is not layered and is topologically non-
trivial. It is this strong topological insulator that has protected metallic 
surfaces and has been the focus of experimental activity.

Spin–orbit coupling is again required and must mix all components of 
the spin. In other words, there is no way to obtain the 3D strong topologi-
cal insulator from separate spin-up and spin-down electrons, unlike in 
the 2D case. Although this makes it difficult to picture the bulk physics of 
the 3D topological insulator (only the strong topological insulator will be 
discussed from this point), it is simple to picture its metallic surface6.

The unusual planar metal that forms at the surface of topological 
insulators ‘inherits’ topological properties from the bulk insulator. 
The simplest manifestation of this bulk–surface connection occurs at 
a smooth surface, where momentum along the surface remains well 
defined: each momentum along the surface has only a single spin state 
at the Fermi level, and the spin direction rotates as the momentum 
moves around the Fermi surface (Fig. 3). When disorder or impurities 
are added at the surface, there will be scattering between these surface 
states but, crucially, the topological properties of the bulk insulator do 
not allow the metallic surface state to vanish — it cannot become local-
ized or gapped. These two theoretical predictions, about the electronic 
structure of the surface state and the robustness to disorder of its metallic 
behaviour, have led to a flood of experimental work on 3D topological 
insulators in the past two years.

Experimental realizations
The first topological insulator to be discovered was the alloy BixSb1−x, 
the unusual surface bands of which were mapped in an angle-resolved 
photoemission spectroscopy (ARPES) experiment10,11. In ARPES exper-
iments, a high-energy photon is used to eject an electron from a crystal, 
and then the surface or bulk electronic structure is determined from an 
analysis of the momentum of the emitted electron. Although the surface 
structure of this alloy was found to be complex, this work launched a 
search for other topological insulators.

Figure 1 | Metallic states are born when a surface unties ‘knotted’ electron 
wavefunctions. a, An illustration of topological change and the resultant 
surface state. The trefoil knot (left) and the simple loop (right) represent 
different insulating materials: the knot is a topological insulator, and the 
loop is an ordinary insulator. Because there is no continuous deformation 
by which one can be converted into the other, there must be a surface where 
the string is cut, shown as a string with open ends (centre), to pass between 
the two knots; more formally, the topological invariants cannot remain 

defined. If the topological invariants are always defined for an insulator, 
then the surface must be metallic. b, The simplest example of a knotted 3D 
electronic band structure (with two bands)35, known to mathematicians as 
the Hopf map. The full topological structure would also have linked fibres 
on each ring, in addition to the linking of rings shown here. The knotting 
in real topological insulators is more complex as these require a minimum 
of four electronic bands, but the surface structure that appears is relatively 
simple (Fig. 3).
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2

that, in a polarized/magnetized solid, the charge and cur-
rent densities ρ(micro)(r) and j(micro)(r) are well defined,
while a “dipolar density” (either electric or magnetic)
cannot be unambiguously defined [16, 17]; our M(r) plays
indeed the role of a magnetic dipolar density, although
only its macroscopic average bears a physical meaning.

The main concepts are more clearly formulated in the
simple two-dimensional (2D) case: electrons in the xy
plane and magnetization M along z. Eq. (2) reads, for a
2D macroscopic flake of independent electrons

M = −
ie

2!cA

∑
εn<µ

〈ϕn| r × [H, r] |ϕn〉 (3)

= −
ie

2!cA

∑
εn<µ

( 〈ϕn|xHy |ϕn〉 − 〈ϕn| yHx |ϕn〉 )

where A is the sample area, H is the single-particle
Hamiltonian, |ϕn〉 are the orbitals, and µ is the Fermi
level; single occupancy is assumed (“spinless electrons”).
Eq. (3) only applies to a system that remains gapped
(as a whole) in the large-A limit, and therefore does not
apply, as such, to Chern insulators; more about this will
be said below. Eq. (3) is a trace; since M is real,

M = Im iM =
e

!cA
Im Tr {PxHyP}, (4)

where P is the ground-state projector. In the following,
we also need its complement Q, i.e.

P =
∑

εn<µ

|ϕn〉〈ϕn|, Q = 1 − P . (5)

If we write H = PHP + QHQ, it is rather
straightforward to transform Eq. (4) into

M =
e

!cA
Im Tr {PxQHQyP −QxPHPyQ}. (6)

A different derivation of the same expression is due
to Souza and Vanderbilt [6]; they also show that
Eq. (6) provides the link with the modern theory of
magnetization. In fact the position operator r is ill
defined within PBCs [18], but becomes harmless and well
defined within both OBCs and PBCs when “sandwiched”
between a P and a Q. It is enough to perform the
thermodynamic limit in Eq. (6), and then cast P and
Q in terms of Bloch orbitals, in order to arrive at the k-
integral expression of the modern theory [3–5] for normal
insulators (Chern number C = 0).

In order to get a local description we write Eq. (6) as

M =
1

A

∫
dr M1(r), (7)

M1(r) =
e

!c
Im 〈r| PxQHQyP |r〉

−
e

!c
Im 〈r| QxPHPyQ |r〉. (8)

FIG. 1: Chern number C of the bottom band of the Haldane
model as a function of the parameters ϕ and ∆/t2 (t1 =
1, t2 = 1/3). The subsequent discussion and figures concern
the points (a) and (b) only

FIG. 2: A typical flake, with 2550 sites, showing the
honeycomb lattice of the Haldane model [19]. The 50 sites
on the horizontal line will be used in all the subsequent
one-dimensional plots. Black and grey circles indicate
nonequivalent sites (with onsite energies ±∆)

There is a paramount difference between our starting
Eq. (3) and Eq. (7): while the former integral, like
Eq. (2), is dominated by boundary contributions, the
latter expression is “bulk” in the above defined sense. In
order to evaluate M for a macroscopically homogeneous
region in the bulk of a sample, within either OBCs or
PBCs, it is enough to take the macroscopic average of
M1(r) in that region.

We demonstrate this key property of the local function
M1(r) by performing simulations on the Haldane model
Hamiltonian [19]; it is comprised of a 2D honeycomb
lattice with two tight-binding sites per primitive cell
with site energies ±∆, real first-neighbor hoppings t1,
and complex second-neighbor hoppings t2e±iϕ. This
model has been previously used in several simulations,
providing invaluable insight into orbital magnetization
[4, 5, 20] as well as into nontrivial topological features of
the electronic wavefunction [12, 19–23]. In the following,
we invariably choose t1 = 1, t2 = 1/3. At half filling
the system is insulating; it is either a normal insulator
or a Chern insulator depending on the ∆ and ϕ values,
according to the phase diagram shown in Fig. 1.

We illustrate the case of a normal insulator (C = 0),

Ground state wavefunctions differently “knotted” in k space
Topological order very robust
C1 switched only via a metallic state: “cutting the knot”
Displays quantum anomalous Hall effect:

σ
(−)
xy = −e2

h C1
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Bulk-boundary correspondence

C1 ̸= 0

C1 =
0

J. Phys. A: Math. Theor. 44 (2011) 113001 Topical Review

(c)(b)(a)

(d )

(g)(e) (f )

Figure 2. (a) The bulk spectrum of Haldane Hamiltonian (equation (1)) (t = 0 and η = 0.1) as
a function of (k1, k2). (b) The energy spectrum of the same Hamiltonian when restricted on an
infinitely long ribbon with open boundary conditions at the two edges. The spectrum is represented
as a function of k parallel to the ribbon’s edges. (c) The local density of states (see equation (6)) of
the ribbon, plotted as an intensity map in the plane of energy (vertical axis) and unit cell number
along the red line shown in panel (d) (horizontal axis). Blue/red colors correspond to low/high
values. (d) Illustration of the ribbon used in the calculations shown in panels (b, c) and (f, g). The
ribbon was 50 unit cells wide. (e–g) Same as (a–c) but for t = 0.1 and τ = 0.

bring major qualitative differences. For some values such as t = 0.1 and η = 0, the energy
spectrum for the ribbon geometry displays an insulating energy gap, while for values like
t = 0 and η = 0.1 it does not. Things become even more intriguing if we look at this spectrum
as a function of the momentum parallel to the direction of the ribbon. Examining panels (b)
and (f ) of figure 2, we see that when t = 0 and η = 0.1, the spectrum displays two solitary
energy bands crossing the bulk insulating gap. For t = 0.1 and η = 0, we can still see two
solitary bands but they do not cross the bulk insulating gap. If we let the computer run for
a while, picking random points in the (t, η) plane, it will slowly reveal that this plane splits
into regions were the model displays bands that cross the insulating gap like in figure 2(b) and
regions where the insulating gap remains open like in figure 2(f ). These regions are shown
in figure 3.

It is instructive to also take a look at the maps of the local density of states
(LDOS):

ρ(ε,n) = 1
π

Im{(H0 − ε − i0+)−1(n,n)}, (6)

which will reveal the spatial distribution of the quantum states. The ρ(ε,n) written above
depends on three variables, the energy plus the two spatial coordinates, but for a homogeneous

9

bulk ribbon
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A “macroscopic” flake of Haldanium (OBC)
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Equation (4) becomes then the trace over a crystal cell of a
real-space operator:

C = − 1
π

(2π )2

Ac

Im trcell{PxQy}

= 4π

Ac

Im trcell{PxPy}, (6)

where the symmetry of the missing term yields the second
line. By exploiting the general properties of projectors and of
the trace, Eq. (6) can be recast in several equivalent ways.
For lattice models, a similar real-space formula has been
demonstrated in 2006 by Kitaev;13 our proof does not rely
on lattice models and generalizes Kitaev’s result to realistic
implementations.

Subsequent work adopting Kitaev’s formula was invariably
rooted in k space within a toroidal geometry, for a system
without boundaries, and was based on traces.14–17 Finite
systems within open boundary conditions look problematic.
In fact, if we replace the trace over the cell with the trace over
the whole sample, the identity

Im tr{PxPy} = 1
2i

tr{[PxP,PyP ]} (7)

guarantees a zero result, whenever P projects over a finite-
dimensional manifold. This confirms that the global topology
is trivial within open boundary conditions, and also hints
that traces must be avoided when addressing finite and/or
inhomogeneous samples.

At variance with previous work based on Kitaev’s formula,
we propose here to directly address the commutator in Eq. (7)
before taking the trace. Let X̃ be the projected x coordinate

X̃(r,r′) =
∫

dr′′ P (r,r′′)x ′′P (r′′,r′), (8)

and similarly Ỹ ; we then identify the topological marker with
the local Chern number as10

C(r) = −2π i

∫
dr′[X̃(r,r′)Ỹ (r′,r) − Ỹ (r,r′)X̃(r′,r)]. (9)

Our definition holds within both periodic and open boundary
conditions; given the shortsightedness of P , in a region of
crystalline periodicity, the cell average of C(r) coincides
with the Chern number C owing to Eq. (6). We expect the
dimensionless function C(r) to fluctuate over microscopic
dimensions; in the nonperiodic case, the cell average has
to be replaced with the macroscopic average, defined as in
electrostatics (see, e.g., Jackson18).

The gauge invariance of C(r) as defined in Eq. (9) deserves a
comment. The ground-state projector P is invariant by unitary
transformations of the occupied orbitals among themselves,
but not by a change of the magnetic gauge. However, the
unitary operator which transforms P is local in coordinate
space, thus ensuring gauge invariance of C(r).

We validate our formal findings by performing simulations
on the Haldane model Hamiltonian;19 it comprises a 2D
honeycomb lattice with two tight-binding sites per primitive
cell with site energies ±", real first-neighbor hoppings t1, and
complex second-neighbor hoppings t2e

±iφ . As a function of
the parameters, this 2D model system may have either C = 0
or C = ±1, according to the phase diagram shown in Fig. 1.

FIG. 1. Chern number of the bottom band of the Haldane model
as a function of the parameters φ and "/t2 (t1 = 1,t2 = 1/3). The
points marked with letters (a)–(e) in this phase diagram are relevant
for the subsequent discussion and figures. In order to avoid special
features, the φ parameter is not a multiple of π/4.

This model has been previously used in several simulations,
providing invaluable insight into orbital magnetization5,20,21

as well as into nontrivial topological features of the electronic
wave function.5,9,19,22,23 At half filling the system is insulating,
except when " = t2 sin φ = 0. In this Rapid Communication
we study, within open boundary conditions, finite flakes of
rectangular shape cut from the bulk, as shown in Fig. 2. We
have addressed homogenous samples where the Hamiltonian
is chosen from various points of the phase diagram (Fig. 1) as
well as disordered and inhomogeneous samples.

Two typical plots for crystalline samples are shown in Fig. 3,
where we have chosen the two points (b) and (c) in Fig. 1,
with C = 0 and C = 1, respectively. The plots confirm that
the local Chern numbers C(i) are equal to either 0 or 1 (as
expected) in the bulk of the sample, while they deviate in the
boundary region. In both cases the negative values compensate
for the positive ones, given that the sum of the C(i) over the
whole sample vanishes. This compensation is most interesting
when C = 1 (right-hand panel). A size analysis shows that the
minimum negative C(i) value scales as L (linear dimension of

FIG. 2. A typical flake, with 2550 sites, showing the honeycomb
lattice of the Haldane model (Ref. 19). The 50 sites on the horizontal
line will be used in all the subsequent one-dimensional plots.
Black and gray circles indicate nonequivalent sites (with on-site
energies ±").

241106-2

Sample of 2550 sites, line with 50 sites
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)
Notice: trace per unit area vs. trace over the whole flake!
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.
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