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Before quantum mechanics

(Discovery of the electron: J.J. Thomson 1897)




Soon after quantum mechanics

(Bloch 1928, Wilson 1931)




A more general theory is needed: why?

m Bloch theorem applies to noninteracting electrons in a
periodic crystalline potential.
“Noninteracting” means that the Bloch theorem applies to a
mean-field theory.

m Some insulators are obviously noncrystalline
(i.e. liquid or amorphous).

m In some crystalline materials the electron-electron interaction
must be dealt with explicitly
(i.e beyond mean-field theory).



“Exotic” insulators

m In some materials, the insulating character is dominated by
disorder: Anderson insulators.

m In some materials, the insulating character is dominated by
electron-electron interaction: Mott insulators.

m Other kinds of exotic insulators exist.
Example: a two-dimensional electron fluid in the
quantum-Hall regime.

m The nonexotic textbook insulators will be called in the
following band insulators.



Exotic insulators first discovered by theoreticians

(late 1950s)




A very ambitious title indeed!
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Theory of the Insulating State*

WALTER KON
University of California, San Diego, La Jolla, California
{Received 30 August 1963)

In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
‘This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function &
of an insulating ring breaks up into a sum of functions, ®= Z__® &5, which are localized in disconnected
regions of the many-particle configuration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.



Which property characterizes all insulators?

(band insulators & exotic insulators)

PHYSICAL REVIEW VOLUME 133, NUMBIER 1A 6 JANUARY 1964

Theory of the Insulating State*

WALTER KonN
University of California, San Diego, La Jolla, California
{Received 30 August 1963)

In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
‘This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function &
of an insulating ring breaks up into a sum of functions, = Z__* &4, which are localized in disconnected
regions of the many-particle configuration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.

m Kohn'’s revolutionary message (1):
The insulating behavior reflects a certain type of organization
of the electrons in their ground state.



Property of the ground state or of the excitations?
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In this paper a new and more comprehensive characterization of the insulating state of matter is developed.
‘This characterization includes the conventional insulators with energy gap as well as systems discussed by
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function &
of an insulating ring breaks up into a sum of functions, ®= Z__® &5, which are localized in disconnected
regions of the many-particle configuration space and have essentially vanishing overlap. This property is
the analog of localization for a single particle and leads directly to the electrical properties characteristic of
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con-
ducting state.

m Kohn's revolutionary message (2):
Insulating characteristics are a strict consequence of
electronic localization (in an appropriate sense) and do not
require an energy gap.



Kohn's theory vindicates classical physics:

Electrons localized/delocalized in insulators/metals




Which “appropriate sense”?

(Simple example: a band insulator)

What Kohn did not provide:
A “marker” for the insulating/metallic state of matter



The old paradigm: Before 1992

(Feynman Lectures in Physics, Vol. 2)




The old paradigm: Before 1992

(Feynman Lectures in Physics, Vol. 2)




The “Modern theory of polarization™

A genuine change of paradigm, based on a geometric phase (Berry phase)

m Macroscopic polarization has nothing to do with the periodic
charge of a polarized dielectric
(contrary to common statements in most textbooks).

m Polarization can be expressed as a geometric phase (Berry
phase) of the electronic wavefunction.

m Nowadays, the Berry phase is computed as a standard option
within all the electronic-structure codes on the market.

m Nonetheless, the popular textbooks (Kittel,
Ashcroft-Mermin...) are slow to catch up and are still plagued
with erroneous concepts and definitions.
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Center of charge

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the center
of negative charge”

m N electrons in a segment of lenght L:
Vo = Wo(x1,%,...Xj,...XN),
m Periodic boundary conditions:
Vo = Wo(x1,x2,...Xj,...xn) = Vo(x1, x2,... x+L,...xn)

m Nuclei of charge eZ; at sites X,
m Centers of positive & negative charge:

" ZXy — 2 (Wo| Y x; [Wo)
0 J



Center of charge, much better

m Within PBCs coordinates are actually angles
m The two “centers” must be defined modulo L

m Their difference must be origin-invariant
D ZiXe —2(Wo| Y x; [Wo)
1 Jj

L 2 2L 2 _
— glm In o TeZeXe 4 glm In <\|lo|e_'2T i Wo)

m Polarization, including disordered & correlated insulators:

e

27 o X

m 7 is the Berry phase in disguise



Polyacetilene, different terminations

m In this centrosymmetric polymer is P = 07

m Polarization defined modulo e



Dipole per monomer

(Kudin, Car, & Resta, JCP 2007)
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Z classification of centrosymmetric polymers

Zo-even: P=0 mod e
Alternant polyacetilene, model molecular crystal.....

Zp-odd: P=¢e/2 mod e
Model ionic crystal.....

m Z, invariant topological:
m Independent e.g. of ionicity difference
m Independent of the theory level
(tight-binding, first-principle...)
m Robust by continuous deformation of the wavefunction



Simple tight-binding Hamiltonians

Zo-even: Onsite €; constant, alternating hoppings t and

Zp-odd: Constant hopping t, alternating ¢;

m Z invariant protected by centrosymmetry

m When joining the two with a
continuous & centrosymmetric deformation of the
Hamiltonian the gap closes!
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Crystalline system of independent electrons

Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.

14 occupied orbitals in the insulating state (N = M)



Electronic term when |Wy) is a Slater determinant

o1 -
an = (Wol exp "TZXJ [Wo) = (Wo[Vo)

Even |Wy) is a Slater determinant

Theorem: (VW) = det S

Single band case:

~ L S27
S(qj7 qj') = <1/’qj‘1/’qj/> = /0 dx ij(X)eITX¢qj/ (X)



The connection matrix is very sparse in the band case

cocoocoocoocoocoo o
cocooocoo Bl oo
oo ool ooo
coofloooo
oo floocoooo
O oocoocooo
BMoocoooooo
coocoocoocoococoll

The matrix element vanishes unless gy = q; — 27 /L,
that is’ = j—1: the determinant factors.

N
sn = det S= ] S(q) g-1)
=1



King-Smith & Vanderbilt Berry phase

coocoocoocooo o
oo ocooo oo
O ool ooo
O ool oooo
oo fooooo
Ol o ocoocoooo
Hoocoooooo
coocoocoocoocooco R

Insulating case: Discretization of King-Smith & Vanderbilt ~

M
. d . .
T I./BZ dk Ykl gevow) = fim Im In ES(% gj-1) = \Jim Im In 3n
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What is the relationship between polarization

and the insulating state?

m Phenomenologically:
m Metal: Has a nonzero dc conductivity
m Insulator: Has a zero dc conductivity
(at zero temperature)

m But also
m Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
m Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.



Under the action of a dc electrical field

m Insulator: Electrons do not flow freely
(they polarize instead)

m Metal: Electrons flow freely over macroscopic distances
(hindered by scattering)



The relationship between localization and polarization
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Electron Localization in the Insulating State

Raffaele Resta
Istituto Nazionale di Fisica della Materia (INFM), Strada Costiera 11, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Universita di Trieste, I-34014 Trieste, Italy

Sandro Sorella
Istituto Nazionale di Fisica della Materia (INFM), Via Beirut 4, 1-34014 Trieste, Italy

and Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 4, 34014, Trieste Italy
(Received 11 August 1998)

The insulating state of matter is characterized by the excitation spectrum, but also by qualitative
features of the electronic ground state. The insulating ground wave function in fact (i) sustains
macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our approach
to localization is exemplified by means of a two-band Hubbard model in one dimension. In the
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbitals.

m Macroscopic polarization and electron localization in the
insulating state stem from the same formalism

m They are two aspects of the same phenomenon



A marker for the insulating state of matter

m Electronic term in polarization
plel) — —Im log lim 3p
N—o0
m It is imposible to define polarization whenever

li =0
Ninooalv

all insulators: lim |3n] =1 all metals: lim 3y =0
N—oo N—oo



RS localization length

1/ L\?
M= lim = — 2
Nﬂ;noo N <27T) |3N|
m ) is finite in all insulators

m )\ diverges in all metals

m Very general: all kinds of insulators:

m Correlated insulator
m Independent electrons, crystalline
a.k.a. “band insulator”
m Independent electrons, disordered
m Quantum Hall insulator (not shown here)



Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.

14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).



Crystalline system of independent electrons

Before the thermodynamic limit: N and L finite

m |Wy) is written as a determinant of occupied Bloch orbitals, in
both the insulating and the metallic case.

m Key difference:
The whole band is used to build the insulating |[Wg), while
only one half of the band is used for the metallic |Wg).



Insulators vs. metal

coocoocoocoocoo o
cocoocoocoo Bl oo
oo ool ooo
coolloooo
oo floocoooo
O oocoocooo
Boocoooooo
coocoocoocoococo Bl

The connection matrix has zero determinant in the metallic case!



Implementation: Mott transition in Hy chains

Stella, Attaccalite, Sorella & Rubio, PRB 2011
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Longitudinal conductivity (zero T)

o) = Dus [5( )+} 1ol )

Drude regular
oiy (@) + o5 (@)

m Both terms obtain from Kubo formulas
(may include disorder & correlation, but not dissipation)

m The Drude weight D, is actually a ground-state property:
it measures the inertia of the electrons in the adiabatic limit

m The insulating state requires both:
m D=0

m Re (rgglﬂar)( ) goes to zero for w — 0



Drude weight according to Kohn (1964)

m Hamiltonian with a “flux” (a gauge transformation):

A(k) = Z|p.—|—hn|2—|—v

m Thermodynamic limit after taking derivatives

m PBCs violate gauge invariance in the conventional sense:
Ep does depend on k.

m Drude weight

7T€2 82E0(h',)

Dop =
P W2l Ora0kg |,



Why RS discriminate insulators from metals

H(k) = Z|p.+7’m\2+v ?:Zri
|Wo(k)) = e~ F|Wy(0)) obeys Schrodinger Eq.
It does not obey PBCs

Except for a commensurate kg

Does |Wq(ko)) coincide with the genuine |Wo(kg))?

m Yes (modulo a phase) if D=10
m No (it is orthogonal to it) if D# 0



Why RS discriminate insulators from metals (cont'd)

(Wo(0)| ™o Wy (ko)) =0, D#0
(Wo(0)| eof |Wy(ko)) =€, D=0

| (Wo(0)| 7 [Wo(0)) | = O(1/L), D40
| (Wo(0)] 0% [Wo(0)) | =1 - O(1/L), D=0
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Quantum metric (Provost & Vallée, 1980)

m Same Hamiltonian with a “flux”, but now within OBCs:
1N
H(k) = zm_zl|pi+hn|2+v ?:Zri
= ]
m OBCs do not violate gauge invariance: Ej is k-independent

m Quantum metric tensor (derivatives taken at kK = 0))

. 1
Bop = N( Re (0o V0|0ks Vo) — (0o Wo|V0) (Wo|0k,; Vo) )

m Intensive ground state property, gauge-invariant
(dimensions: squared length)



The modern theory (OBCs)

m Basic tenet of the modern theory:
The OBCs metric g, in the thermodynamic limit

m Diverges in all metals
m Converges in all insulators

N 1
8op = (Re (0, Vol0ksWo) — (O, Wo| Vo) (Wo|Or Vo) )
1 o N .
= ((VoltaTsWo) — (Wolfa|Wo)(Wol75Wo) )

— %V drdr’ (r — r')a(r o r/)ﬁ[ n(r)n(r') . n(2)(r’ r/)]



Physical meaning of the OBCs quantum metric tensor

m Second moment of the exchange-correlation hole:

Bar = 5y | G (= Vol = O)sLn(0)nle) — 1V (r.0))

m Ground-state quantum fluctuation of the dipole:

X 1 5 s 3 ?
Zap = 1 ({Vo[falsWo) — (WolTa|Wo) (Vo[75V0) )

m 2,3 used as a marker for the insulating/metallic state:
m Noninteracting crystalline systems:

m Insulators: g.g equals the WF quadratic spread
m Metals: some simulations prove divergence

m A few simulations for noninteracting disordered systems
m No simulation so far for correlated systems
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Tight binding 1d binary crystal

H=> (Ul —tli+ 1) —th)y(i+1])
J
Diagonal disorder: t fixed, €, — €; = A fixed

Crystalline case:
ABABABABABABABABABABABABABABABABABAB

Disordered case:
ABAABABBABABBAABABABBABAABABBABABBAA

Random choice with equal probability, average over many replicas.



Density of states

A }“
[
30 | \ !
!’ \\
200 : - 4 N~
w00 f
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m At half filling both (crystalline and disordered) are insulating

m At any other filling the crystalline is conducting and the
disordered is insulating.

m What about g?



Results of the simulations

(5000 sites, 1000 replicas, 1/2 & 1/4 filling)

m In the crystalline case g converges to a finite limit for 1/2
filling, diverges for 1/4 (as expected).

m In the disordered case g always converge (to a very similar
value for the two cases).

m The disordered case g is about 20 times larger than the
crystalline one. Why?

m The insulating mechanism (band vs. Anderson) is quite
different, despite the very similar Hamiltonian.

m Has our g anything to do with the (squared) Anderson
localization length?



The benchmark model 3d system

m Need a 3d system to observe the M-I transition

m A standard 3d tight-binding Hamiltonian is known from
previous literature to undergo the transition at W, = 8.25
(W'is the amount of tunable disorder, in appropriate units)

In our (and others’) simulations:

m Computational samples are long rods of square section
m Results are averaged over several disorder realizations

The novelty here: use our marker to detect the transition
in the ground state



Anderson transition as a ground-state property

T. Olsen, R. Resta, and I. Souza, Phys. Rev. B 95, 045109 (2017)

1 w=10 W=5.0

o 20 40 60 80 o 20 a0 60 80

Localization length A = v/g.« as a function of rod length L
(average over 100 disorder realizations)



A smarter way to estimate W, (by Thomas Olsen)

CPol / CE:cp

w

Our best estimate: W, = 8.5
We are probing “the organization” of the electrons in their ground state



Summary

m Phenomenology:

m Insulators differs from conductors in their dc conductivity;

m But also: insulators and metals polarize in a different way.

m Theory:

m Textbook viewpoint: Insulators and metals have a qualitatively
different excitation spectrum (gapped/gapless)

m Modern viewpoint (inspired by Kohn): Even before any probe
is applied to the system, the ground-state organization of the
electrons is different in insulators and metals.

m | have shown a couple of ways for sampling such organization:
m Resta-Sorella within PBCs
m The quantum metric within OBCs
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Noninteracting electrons, OBCs

m All ground-state properties obtain from the projector:

(r Py = (rlepipilr)

€<p
m Metric (quantum fluctuation of the dipole):
- 1
Bop = y({rarg) = (ra)(rs))
— o [ @ (= Oale = Ol n0)n(r) 1)
= 5 [ & WP P Pl

m A real symmetric tensor, even in absence of TR symmetry.



Anomalous Hall conductivity (AHC)

m Nonzero only when TR symmetry is absent
m Quantized in insulators, nonquantized in metals
m AHC is a Chern number in 2d: Haldane's Nobel prize (part of)

m AHC is topological in insulators;
AHC has a geometrical contribution in metals

m QAHE materials synthesized recently

m Geometrical & topological quantities dealt with in k-space,
adopting PBCs

m PBCs and k vectors are a (very useful) creation of our mind:
they do not exist in nature. AHC should be accessible even:

m Inside finite samples (e.g. bounded crystallites)

® In noncrystalline samples

m In macroscopically inhomogeneous samples
(e.g. heterojunctions)



Geometry & topology in r-space

m Insulators:

R. Bianco and R. Resta,
Mapping topological order in coordinate space,
Phys. Rev. B 84, 241106(R) (2011)

m Metals:

A. Marrazzo and R. Resta,
Locality of the anomalous Hall conductivity,
Phys. Rev. B 95, 121114(R) (2017)



AHC as a local quantity

Bos= = [ deFas(), Faslt) = (1P lra Pl (5. P]IF)

N sample

m Next we integrate F,3(r) over an inner region of the sample,
not over the whole sample

m For a crystallite:

1 1
— dr Fop(r) — m / dr Foa(r)

sample c Jeell

m In absence of TR symmetry such integral is endowed with
an antisymmetric imaginary part

2
-) _ 2e
Uaﬁ B _hvcell /cel?r i Faﬁ(r)



The “Haldanium” paradigm (F.D.M. Haldane, 1988)

+ staggered B field




The “Haldanium” paradigm (F.D.M. Haldane, 1988)

»

\ staggered B field

(..
{c._
{_

m A two-band model
(T-broken)

m Tight-binding parameters:
m 1st-neighbor hopping t;
m staggered onsite +A
m complex 2nd-neighbor
t26i¢

m In the topological phase:
QAHE



Normal insulator, topological insulator, metal

m Phase diagram at half filling
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m Metallic at any other filling
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Topological order

05 y 05
¢ [in units of w]

m Ground state wavefunctions differently “knotted” in k space

m Topological order very robust
m (; switched only via a metallic state: “cutting the knot”
m Displays quantum anomalous Hall effect:
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A “macroscopic” flake of Haldanium (OBC)
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Crystalline Haldanium (normal & Chern)
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Topological marker (top); site occupancy (bottom)
Notice: trace per unit area vs. trace over the whole flake!



Haldanium alloy (normal & Chern)
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Haldanium heterojunctions
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