

UCDAVIS

Insulator, Metal, or Superconductor: The Criteria

- 1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators
- 2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory
- 3. Anderson and Mott Insulators: Disorder and Interactions
- 4. Formal Definitions
- 5. Applications of Formal Theory: Quantum Monte Carlo
- 6. Conductivity and Spectral Functions

Main goal: Insight via solution in simple limits.

Find me any time to chat/ask questions about the book chapter, etc! Or contact via email: scalettar@physics.ucdavis.edu.

Acknowledgement: DOE DE-SC0014671

1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators

$$\hat{H} = -t \sum_{\langle \mathbf{ij} \rangle \sigma} (c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + c^{\dagger}_{\mathbf{j}\sigma} c_{\mathbf{i}\sigma}) - \mu \sum_{\mathbf{i}\sigma} (n_{\mathbf{i}\sigma} + n_{\mathbf{i}\sigma})$$

- $c_{\mathbf{i}\sigma}^{\dagger}(c_{\mathbf{i}\sigma})$ are fermion creation(destruction) operators, site \mathbf{i} , spin $\sigma = \uparrow, \downarrow$.
- Kinetic energy t describes hopping between near-neighbor sites $\langle \mathbf{ij} \rangle$.
- Chemical potential μ controls filling. $(n_{i\sigma} = c^{\dagger}_{i\sigma}c_{i\sigma}$ is number operator.) States labeled by site occupation numbers:

$$|n\rangle \rightarrow |n_{1\uparrow} n_{2\uparrow} n_{3\uparrow} \dots n_{1\downarrow} n_{2\downarrow} n_{3\downarrow} \dots \rangle.$$

Operators describe fermions: Anticommutation relations: $\{\hat{A}, \hat{B}\} = \hat{A}\hat{B} + \hat{B}\hat{A}$.

$$\begin{aligned} \{\hat{c}_{\mathbf{j}\sigma}, \hat{c}_{\mathbf{l}\sigma'}^{\dagger}\} &= \delta_{\mathbf{j},\mathbf{l}}\delta_{\sigma,\sigma'} & \{\hat{c}_{\mathbf{j}\sigma}^{\dagger}, \hat{c}_{\mathbf{l}\sigma'}^{\dagger}\} = 0 & \{\hat{c}_{\mathbf{j}\sigma}, \hat{c}_{\mathbf{l}\sigma'}\} = 0. \\ \hat{c}_{\mathbf{j}\sigma}^{\dagger} | 0 \rangle &= | 1 \rangle \\ \hat{c}_{\mathbf{j}\sigma}^{\dagger} | 1 \rangle &= \hat{c}_{\mathbf{j}\sigma}^{\dagger} \hat{c}_{\mathbf{j}\sigma}^{\dagger} | 0 \rangle = 0. \end{aligned}$$

Pauli principle! Maximum occupation of a particular site with a given spin is 1. Anticommutation $\hat{c}^{\dagger}_{\mathbf{j}\sigma} \hat{c}^{\dagger}_{\mathbf{l}\sigma} = -\hat{c}^{\dagger}_{\mathbf{l}\sigma} \hat{c}^{\dagger}_{\mathbf{j}\sigma}$ ensures wave function antisymmetry. Two alternate (but equivalent) solutions at U = 0 ("band theory").

One works in real space. The other in momentum space.

Start with the real space analysis (useful for disorder later):

 \hat{H} commutes with the total number operators $N_{\uparrow} = \sum_{\mathbf{j}} n_{\mathbf{j}\uparrow}$ and $N_{\downarrow} = \sum_{\mathbf{j}} n_{\mathbf{j}\downarrow}$ Commutator of the kinetic energy on 'link' of the lattice with density at vertices:

 $[c^{\dagger}_{\mathbf{i}\sigma}c_{\mathbf{j}\sigma} + c^{\dagger}_{\mathbf{j}\sigma}c_{\mathbf{i}\sigma}, n_{\mathbf{i}\sigma} + n_{\mathbf{j}\sigma}] = 0$

Handy identity: $[AB, C] = A\{B, C\} - \{A, C\}B.$

Hopping contains creation and annihilation operators in pairs.

Implication: eigenstates of \hat{H} come in separate sectors of total N_{\uparrow} and N_{\downarrow} . Consider single particle sector where $N_{\uparrow} = 1$ and $N_{\downarrow} = 0$.

Occupation number basis: $|100000\cdots\rangle$, $|010000\cdots\rangle$, $|001000\cdots\rangle$, \cdots .

Example One: Linear chain. \hat{H} moves occupied site to the left or right:

 $\hat{H} |010000\cdots\rangle = -\mu |010000\cdots\rangle - t |100000\cdots\rangle - t |001000\cdots\rangle$ Matrix for \hat{H} , use periodic boundary conditions (pbc):

$$H = \begin{pmatrix} -\mu & -t & 0 & 0 & \cdots & 0 & -t \\ -t & -\mu & -t & 0 & \cdots & 0 & 0 \\ 0 & -t & -\mu & -t & \cdots & 0 & 0 \\ 0 & 0 & -t & -\mu & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -t & 0 & 0 & 0 & \cdots & -t & -\mu \end{pmatrix}$$

Mathematical identity: Eigenvalues of NxN tridiagonal matrix (pbc)

 $\lambda_n = -\mu - 2t \cos k_n \qquad k_n = 2\pi n/N \qquad n = 1, 2, 3, \dots N.$

Proof: use ansatz $v_l = e^{ikl}$ in eigenvalue equation

$$-\mu v_{l} - t v_{l-1} - t v_{l+1} = \lambda v_{l}.$$
$$(-\mu - t e^{-ik} - t e^{+ik})e^{ikl} = \lambda e^{ikl}$$

Discretization of k arises from pbc, $v_0 = v_N$ and $v_{N+1} = v_1$.

Eigenvalues of U = 0 Hubbard Hamiltonian in one particle sector (1d chain):

"Energy band" : $\epsilon(k) = -2t \cos k$

Eigenvectors $(\vec{v}_k)_l = e^{ikl}$ are Bloch states \rightarrow metal.

Two particle sector: $N_{\uparrow} = 2$ and $N_{\downarrow} = 0$. N(N-1)/2 occupation number basis states: $|110000\cdots\rangle$, $|101000\cdots\rangle$, $|100100\cdots\rangle$, \cdots . Same construction as $N_{\uparrow} = 1$: Act with \hat{H} on each state. Get the matrix for \hat{H} . Diagonalizing yields N(N-1)/2 eigenvalues and eigenvectors. Eigenvalues are sums of pairs of the eigenvalues of $N_{\uparrow} = 1$ matrix

with the Pauli Principle restriction (choose distinct eigenvalues).

Similar result for all sectors $N_{\uparrow} = 3, 4, 5, \ldots$

Interactions turn the Hubbard Hamiltonian into a many body problem.

Second, treatment of U = 0 limit (d = 1). Canonical transformation:

$$c_{k\sigma}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{l} e^{ikl} c_{l\sigma}^{\dagger}. \qquad c_{l\sigma}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{k} e^{-ikl} c_{k\sigma}^{\dagger}.$$

Momentum k discretized: same number of $c_{k\sigma}^{\dagger}$ as $c_{l\sigma}^{\dagger}$.

Inverse relation follows from orthogonality identities:

$$\frac{1}{N}\sum_{l}e^{i(k-p)l} = \delta_{k,p} \qquad \qquad \frac{1}{N}\sum_{k}e^{ik(l-j)} = \delta_{l,j}$$

These are discrete analog of $\int dk \, e^{ikx} = 2\pi \delta(x)$.

Anticommutation relations preserved (suppress spin indices):

$$\{ c_k, c_p^{\dagger} \} = \{ \frac{1}{\sqrt{N}} \sum_l e^{-ikl} c_l , \frac{1}{\sqrt{N}} \sum_m e^{+ipm} c_m^{\dagger} \}$$
$$= \frac{1}{N} \sum_{l,m} e^{-ikl} e^{+ipm} \{ c_l, c_m^{\dagger} \}$$
$$= \frac{1}{N} \sum_{l,m} e^{-ikl} e^{+ipm} \delta_{l,m} = \sum_l e^{+i(p-k)m} \delta_{l,m} = \delta_{k,p}$$

Transform d = 1 noninteracting Hubbard Hamiltonian to momentum space:

$$\begin{split} \hat{H} &= -t \sum_{l} \left(c_{l+1}^{\dagger} c_{l} + c_{l}^{\dagger} c_{l+1} \right) \\ &= -t \sum_{l} \frac{1}{N} \sum_{k} \sum_{p} \left(e^{ik(l+1)} e^{-ipl} + e^{ikl} e^{-ip(l+1)} \right) c_{k}^{\dagger} c_{p} \\ &= -t \sum_{k} \sum_{p} \frac{1}{N} \sum_{l} e^{il(k-p)} \left(e^{ik} + e^{-ip} \right) c_{k}^{\dagger} c_{p} \\ &= -t \sum_{k} \sum_{p} \delta_{k,p} \left(e^{ik} + e^{-ip} \right) c_{k}^{\dagger} c_{p} \\ &= -t \sum_{k} \left(e^{ik} + e^{-ik} \right) c_{k}^{\dagger} c_{k} \\ \hat{H} &= \sum \epsilon_{k} c_{k}^{\dagger} c_{k} = \sum \epsilon_{k} n_{k} \end{split}$$

Reproduce energy band $\epsilon_k = -2t \cos k$.

Sum of independent (mutually commuting) number operators.

Evident that single particle levels ϵ_k give solution for all particle sectors.

Example Two: (d=1) Hubbard Hamiltonian with staggered potential,

$$\hat{H} = -t \sum_{l} \left(c_{l+1}^{\dagger} c_{l} + c_{l}^{\dagger} c_{l+1} \right) + \Delta \sum_{l} (-1)^{l} c_{l}^{\dagger} c_{l}$$

Write $(-1)^l = e^{il\pi}$ and go to momentum space.

$$\Delta \sum_{l} (-1)^{l} c_{l}^{\dagger} c_{l} = \Delta \frac{1}{N} \sum_{l} e^{i\pi l} \sum_{k} e^{-ikl} c_{k}^{\dagger} \sum_{p} e^{+ipl} c_{p} = \Delta \sum_{k} c_{k}^{\dagger} c_{k+\pi}$$

 \hat{H} not fully diagonalized: momenta k and $k + \pi$ mix.

$$H = \sum_{k} \begin{pmatrix} c_{k}^{\dagger} & c_{k+\pi}^{\dagger} \end{pmatrix} \begin{pmatrix} -2t\cos k & \Delta \\ \Delta & -2t\cos(k+\pi) \end{pmatrix} \begin{pmatrix} c_{k} \\ c_{k+\pi} \end{pmatrix}$$

k sum is over the reduced Brillouin zone $-\pi/2 < k < \pi/2$.

Diagonalization of 2x2 matrix yields two bands $E_k = \pm \sqrt{(-2t \cos k)^2 + \Delta^2}$. Band gap 2 Δ opens at reduced Brillouin zone boundaries $k = \pm \pi/2$. Diagonalization of 2x2 matrix yields two bands $E_k = \pm \sqrt{(-2t \cos k)^2 + \Delta^2}$. Band gap 2 Δ opens at reduced Brillouin zone boundaries $k = \pm \pi/2$.

Example of most simple type of Metal-Insulator Transition:

- Fixed $\Delta \neq 0$: Insulator if $-\Delta < \mu < +\Delta$ in gap $(\rho = \frac{1}{2})$. Otherwise Metal.
- At fixed $\rho = \frac{1}{2}$, Insulator if Δ becomes nonzero.

Example Three: Generalize to several orbitals

$$\begin{split} \hat{H} &= -t \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} \left(\hat{c}^{\dagger}_{\mathbf{j} \sigma} \hat{c}_{\mathbf{l} \sigma} + \hat{c}^{\dagger}_{\mathbf{l} \sigma} \hat{c}_{\mathbf{j} \sigma} \right) - t \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} \left(\hat{d}^{\dagger}_{\mathbf{j} \sigma} \hat{d}_{\mathbf{l} \sigma} + \hat{d}^{\dagger}_{\mathbf{l} \sigma} \hat{d}_{\mathbf{j} \sigma} \right) \\ -t' \sum_{\mathbf{j} \sigma} \left(\hat{d}^{\dagger}_{\mathbf{j} \sigma} \hat{c}_{\mathbf{j} \sigma} + \hat{c}^{\dagger}_{\mathbf{j} \sigma} \hat{d}_{\mathbf{j} \sigma} \right) - \mu \sum_{\mathbf{j}} \left(\hat{n}^{d}_{\mathbf{j} \uparrow} + \hat{n}^{d}_{\mathbf{j} \downarrow} + \hat{n}^{c}_{\mathbf{j} \uparrow} + \hat{n}^{c}_{\mathbf{j} \downarrow} \right) \,. \end{split}$$

 \hat{c}^{\dagger} and \hat{d}^{\dagger} fermions hop between near-neighbor sites (t). Inter-orbital hybridization t' converts $\hat{c}_{\mathbf{j}}^{\dagger} \leftrightarrow \hat{d}_{\mathbf{j}}^{\dagger}$ on the same site \mathbf{j} .

Momentum space:

$$\begin{split} \hat{H} &= \sum_{\mathbf{k}\,\sigma} \epsilon_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\,\sigma} \hat{c}_{\mathbf{k}\,\sigma} + \sum_{\mathbf{k}\,\sigma} \epsilon_{\mathbf{k}} \hat{d}^{\dagger}_{\mathbf{k}\,\sigma} \hat{d}_{\mathbf{k}\,\sigma} + t' \sum_{\mathbf{k}\,\sigma} \left(\hat{d}^{\dagger}_{\mathbf{k}\,\sigma} \hat{c}_{\mathbf{k}\,\sigma} + \hat{c}^{\dagger}_{\mathbf{k}\,\sigma} \hat{d}_{\mathbf{k}\,\sigma} \right) \\ &= \sum_{k} \left(\begin{array}{cc} c^{\dagger}_{\mathbf{k}} & d^{\dagger}_{\mathbf{k}} \end{array} \right) \left(\begin{array}{cc} \epsilon_{\mathbf{k}} & t' \\ t' & \epsilon_{\mathbf{k}} \end{array} \right) \left(\begin{array}{cc} c_{\mathbf{k}} \\ d_{\mathbf{k}} \end{array} \right) \\ \end{split}$$

t' just rigidly shifts bands up and down. The final 2x2 rotation yields the energy levels,

 $E_{\mathbf{k}}^{\pm} = -2t\cos k \pm t' \; .$

Staggered potential $\Delta(-1)^{\mathbf{j}}$: band gap opens for any nonzero Δ . Here: bands overlap for t' < 4t and the system is metallic. Insulating at $\rho = 1$ if t' > 4t (at half-filling). Also describes 'bilayer' geometries: c^{\dagger} and d^{\dagger} label two distinct spatial layers. Application of uniaxial strain or pressure to tune t'.

Example Four: Periodic Anderson Model (PAM). One orbital is 'localized'. No hopping t on d orbitals.

$$H = -t \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} (c^{\dagger}_{\mathbf{j}\sigma} c_{\mathbf{l}\sigma} + c^{\dagger}_{\mathbf{l}\sigma} c_{\mathbf{j}\sigma}) + V \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} (c^{\dagger}_{\mathbf{j}\sigma} d_{\mathbf{l}\sigma} + d^{\dagger}_{\mathbf{l}\sigma} c_{\mathbf{j}\sigma})$$

Momentum space

$$H = \sum_{k} \begin{pmatrix} c_{k}^{\dagger} & d_{k}^{\dagger} \end{pmatrix} \begin{pmatrix} -2t\cos k & V \\ V & 0 \end{pmatrix} \begin{pmatrix} c_{k} \\ d_{k} \end{pmatrix}$$

Final diagonalization

$$E_k = \frac{1}{2} \left(\epsilon_k \pm \sqrt{\epsilon_k^2 + 4V^2} \right)$$

'Hybridization gap'. Dispersionless d repels c band at $k = \pm \pi/2$ crossing.

Summary of these examples:

Simplest (single particle) type of metal-insulator transition:

- Noninteracting fermions on a translationally invariant lattice.
- placement of the chemical potential:

Within a band: metal

In gap between bands: insulator.

2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory

Within Mean Field Theory (MFT), insulating behavior arising from interactions and a nonzero order parameter has a very similar mathematical structure! Hubbard Hamiltonian

$$\hat{H} = -t \sum_{\langle \mathbf{j}, \mathbf{l} \rangle \sigma} \left(\hat{c}^{\dagger}_{\mathbf{j} \sigma} \hat{c}_{\mathbf{l} \sigma} + \hat{c}^{\dagger}_{\mathbf{l} \sigma} \hat{c}_{\mathbf{j} \sigma} \right) - \mu \sum_{\mathbf{j}} \left(\hat{n}_{\mathbf{j} \uparrow} + \hat{n}_{\mathbf{j} \downarrow} \right) + U \sum_{\mathbf{j}} \hat{n}_{\mathbf{j} \uparrow} \hat{n}_{\mathbf{j} \downarrow}$$

U is an on-site repulsive interaction.

This is a many-body problem (quartic in fermionic operators)

$$U\sum_{\mathbf{j}} \hat{n}_{\mathbf{j}\uparrow} \hat{n}_{\mathbf{j}\downarrow} = U\sum_{\mathbf{j}} c^{\dagger}_{\mathbf{j}\uparrow} c_{\mathbf{j}\uparrow} c^{\dagger}_{\mathbf{j}\downarrow} c_{\mathbf{j}\downarrow}$$

MFT: recast the interaction term so that it is quadratic

$$U\sum_{\mathbf{j}} \left(\hat{n}_{\mathbf{j}\uparrow} \left\langle \hat{n}_{\mathbf{j}\downarrow} \right\rangle + \hat{n}_{\mathbf{j}\uparrow} \left\langle \hat{n}_{\mathbf{j}\downarrow} \right\rangle - \left\langle \hat{n}_{\mathbf{j}\uparrow} \right\rangle \left\langle \hat{n}_{\mathbf{j}\downarrow} \right\rangle \right) \,.$$

MFT: recast the interaction term so that it is quadratic

$$U\sum_{\mathbf{j}}\left(\hat{n}_{\mathbf{j}\uparrow}\langle\hat{n}_{\mathbf{j}\downarrow}\rangle+\hat{n}_{\mathbf{j}\uparrow}\langle\hat{n}_{\mathbf{j}\downarrow}\rangle-\langle\hat{n}_{\mathbf{j}\uparrow}\rangle\langle\hat{n}_{\mathbf{j}\downarrow}\rangle\right).$$

An antiferromagnetic (AF) pattern of the fermionic occupations $\langle n_{j\sigma} \rangle$

$$\langle \hat{n}_{\mathbf{j}\uparrow} \rangle = \rho + (-1)^{\mathbf{j}} m \rightarrow \left(\rho + (-1)^{\mathbf{j}} m \right) n_{\mathbf{j}\downarrow} \langle \hat{n}_{\mathbf{j}\downarrow} \rangle = \rho - (-1)^{\mathbf{j}} m \rightarrow \left(\rho - (-1)^{\mathbf{j}} m \right) n_{\mathbf{j}\uparrow}$$

looks just like a staggered potential to the opposite spin species $n_{\mathbf{j}-\sigma}$. m is antiferromagnetic order parameter.

A 'spin density wave' (SDW) opens a band gap and 'Slater' insulator. Require self-consistent solution. Patterns $\langle \hat{n}_{\mathbf{j}\uparrow} \rangle$, $\langle \hat{n}_{\mathbf{j}\downarrow} \rangle \rightarrow$ energy bands. What value of *m* minimizes free energy for these bands?

Optimal m depends on lattice geometry (noninteracting bands); U, T, and ρ . Generate MFT phase diagram (metallic/insulator regions).

Similar CDW insulators arise when fermions interact with local phonon modes . Added feature is competition with energy cost to stretch bonds.

3. Anderson and Mott Insulators: Disorder and Interactions

Anderson insulators arising from disorder.

Mott insulators arising from strong repulsive interactions treated outside of MFT. d = 1 hopping Hamiltonian again, with random chemical potentials μ_j :

$$\hat{H} = -t \sum_{j,\sigma} \left(\hat{c}_{j\sigma}^{\dagger} \hat{c}_{j+1\sigma} + \hat{c}_{j+1\sigma}^{\dagger} \hat{c}_{j\sigma} \right) - \sum_{j,\sigma} \mu_{j} \left(n_{j\uparrow} + n_{j\downarrow} \right) \,.$$

Numerically diagonalize real space \hat{H} .

$$H = \begin{pmatrix} -\mu_1 & -t & 0 & 0 & \cdots & 0 & -t \\ -t & -\mu_2 & -t & 0 & \cdots & 0 & 0 \\ 0 & -t & -\mu_3 & -t & \cdots & 0 & 0 \\ 0 & 0 & -t & -\mu_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -t & 0 & 0 & 0 & \cdots & -t & -\mu_N \end{pmatrix}$$

Translation invariance broken by impurities. $-\Delta < \mu_j < +\Delta$ Can no longer label the eigenvalues with a momentum index k. Resulting localized eigenvectors are not extended Bloch states. 'Anderson Insulator': localized states do not conduct. In one dimension, all eigenstates localized, for any amplitude of disorder. Also true in two dimensions, although just barely.

In three dimensions:

- Eigenfunctions with largest and smallest eigenvalues: localized.
- Eigenfunctions near center of spectrum: extended.
- Energy separating these two behaviors: mobility edge E_* .

Anderson metal-insulator transitions:

- $\mu < E_*$: only localized eigenfunctions are occupied \rightarrow insulator.
- $\mu > E_*$: extended states become occupied \rightarrow metal.

In contrast to band, SDW, and CDW insulators, no gap in spectrum.

Most powerful approach actually not diagonalization, but transfer matrix.

Fairly opaque: physics hidden in diagonalizing random matrix.

Can develop insight from numeric and analytic solution to single defect problem.

Diagonalize matrix with $\mu_0 \neq 0$ on just one site j_0 .

Most eigenvalues continue to look like $-2t \cos k$.

However, one extremal eigenvalue split off from all the others.

How do we know the associated eigenvector is localized?

Squares of amplitudes of components $|\phi_j|^2$ are sharply peaked at j_0 . N = 512 site chain with defect at $j_0 = 256$.

Formal similarity to localization of vibrations in harmonic chain with defect mass.

Small number of impurities can also be treated analytically.

Single particle eigenstates ϕ and eigenenergies E, in the absence of an impurity:

$$\sum_{n} L_{mn} \phi_n = 0 \qquad \qquad L_{mn} = E \,\delta_{mn} - t \,\delta_{m,n-1} - t \,\delta_{m,n+1} \;,$$

Nontrivial solution requires |L| = 0.

In the presence of randomness,

$$\sum_{n} L_{mn} \phi_n = \sum_{k} \delta L_{mk} \phi_k \qquad \rightarrow \qquad \left(I - G \, \delta L \right) \phi = 0 \; ,$$

 δL is matrix containing local chemical potentials; $G = L^{-1}$. "Solution" is,

$$\phi_n = \sum_{lk} G_{nl} \,\delta L_{lk} \,\phi_k \;.$$

However unknown variables ϕ_n appear on both sides!

Sparsity of δL enormously simplifies the linear algebra problem $|I - G \delta L| = 0$. Instead of rank N (number of sites), $I - G \delta L$ has rank n (number of defects). Furthermore, we have an explicit expression $G_{nl} = \sum_k e^{ik(n-l)}/E_k$.

Hubbard-Mott Insulator is the most subtle by far.

Describes qualitative "strong correlation" physics of many-electron materials

- Transition metal monoxides, cuprate superconductors, ...
- On-site repulsion U sufficiently large \rightarrow Mott Insulator
- Exchange interaction $J \propto t^2/U \rightarrow \text{Antiferromagnetism}$
- Stripes and other charge/spin inhomogeneities.
- *d*-wave superconductivity ???

Mott Insulators and Antiferromagnetism: Qualitative Pictures

Consider a lattice of sites with "commensurate filling": The average number of electrons is one per site.

"quantum fluctuations" (kinetic energy t) and thermal fluctuations T, both favor electrons moving around lattice. Metal: odd number (one) particle per cell/site.

But what if there were a large repulsive interaction U between electrons on the same site?

A Mott Insulator forms. Basic physics of parent compounds of cuprate superconductors!

Two ways to destroy Mott Insulator:

- * Decrease U/t: By applying pressure (MnO)
- * Shift $\langle n \rangle \neq 1$: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?

Hopping of neighboring parallel spins forbidden by Pauli. Antiparallel arrangement lower in second order perturbation theory.

Mott insulating behavior and antiferromagnetism go hand-in-hand. Qualitative picture of cuprate physics before doping.

Still do not fully understand why cuprates superconduct after doping.

Quantum simulation results for the square lattice Hubbard Hamiltonian at U = 4t. $\rho(\mu)$ develops a plateau at half-filling signalling Mott insulator has formed.

In many situations Slater insulator forming at small U due to the opening of an AF gap, merges smoothly, as U increases, into Mott insulator.

4. Metals, Insulators, and Superconductors: Formal Definitions

The most natural quantity to distinguish metals and insulators: conductivity σ . Require response of current to vector potential $A_x(\mathbf{l})$. Modifies hopping,

$$c_{\mathbf{l}+x}^{\dagger}c_{\mathbf{l}} + c_{\mathbf{l}}^{\dagger}c_{\mathbf{l}+x} \to e^{ieA_{x}(\mathbf{l})}c_{\mathbf{l}+x}^{\dagger}c_{\mathbf{l}} + e^{-ieA_{x}(\mathbf{l})}c_{\mathbf{l}}^{\dagger}c_{\mathbf{l}+x}$$
.

Expand in powers of A.

$$K_{A} = K - \sum_{\mathbf{l}} \left(ej_{x}^{p}(\mathbf{l}) A_{x}(\mathbf{l}) + \frac{e^{2}k_{x}(\mathbf{l})}{2} A_{x}(\mathbf{l})^{2} \right)$$

$$j_{x}^{p}(\mathbf{l}) = it \sum_{\sigma} \left(c_{\mathbf{l}+x\sigma}^{\dagger} c_{\mathbf{l}\sigma} - c_{\mathbf{l}\sigma}^{\dagger} c_{\mathbf{l}+x\sigma} \right) \qquad \text{paramagnetic current density}$$

$$k_{x}(\mathbf{l}) = -t \sum_{\sigma} \left(c_{\mathbf{l}+x\sigma}^{\dagger} c_{\mathbf{l}\sigma} + c_{\mathbf{l}\sigma}^{\dagger} c_{\mathbf{l}+x\sigma} \right) \qquad \text{kinetic energy density} .$$

Differentiating with respect to $A_x(\mathbf{l})$ yields the total current density,

$$j_x(\mathbf{l}) = -\frac{\delta K}{\delta A_x(\mathbf{l})} = e \, j_x^p(\mathbf{l}) + e^2 \, k_x(\mathbf{l}) \, A_x(\mathbf{l})$$

Plane wave form for the vector potential,

$$A_x(\mathbf{l},t) = \operatorname{Re}(A_x(\mathbf{q},\omega) e^{i\mathbf{q}\cdot\mathbf{l}-i\omega t}) ,$$

results in current,

$$\langle j_x(\mathbf{l},t)\rangle = \operatorname{Re}\left(\langle j_x(\mathbf{q},\omega)\rangle e^{i\mathbf{q}\cdot\mathbf{l}-i\omega t}\right)$$
$$\langle j_x(\mathbf{q},\omega)\rangle = -e^2\left(\langle k_x\rangle - \Lambda_{xx}(\mathbf{q},\omega)\right)A_x(\mathbf{q},\omega) .$$

Matsubara frequencies $i\omega_m = 2\pi mT$, current-current correlation function

$$\Lambda_{xx}(\mathbf{q}, i\omega_m) = \frac{1}{N} \int_0^\beta d\tau e^{i\omega_m \tau} \langle j_x^p(\mathbf{q}, \tau) j_x^p(-\mathbf{q}, 0) \rangle ,$$

Analogous to response of magnetization M to an applied Zeeman field. Susceptibility expressed as magnetization-magnetization correlation function.

$$\chi = \frac{d\langle M \rangle}{dB} = \beta \langle M^2 \rangle$$

Final step: Connect Λ to Drude weight D and superfluid density D_s .

Superfluid density determines magnetic field penetration into superconductor. London's observation:

Meissner effect follows if current density is proportional to the vector potential,

$$j_x(q_y) = -\frac{1}{4\pi} \frac{1}{\lambda^2} A_x(q_y) \; .$$

Magnetic fields expelled from superconductor beyond penetration depth λ ,

$$\frac{1}{\lambda^2} = \frac{4\pi n_s e^2}{mc^2} \; ,$$

which depends on the superfluid density n_s .

Link superfluid weight $D_s = n_s/m$ and current-current correlation function:

$$\frac{D_s}{\pi e^2} = -\langle -k_x \rangle - \Lambda_{xx} (q_x = 0, q_y \to 0, i\omega_m = 0) .$$

Relation between vector potential and electric field, $E_x = -\partial A_x/\partial t$, and between conductivity and electric field yields analogous formula for the Drude weight, the delta function contribution $D\delta(\omega)$ to the conductivity,

$$\frac{D}{\pi e^2} = -\langle -k_x \rangle - \Lambda_{xx} (q_x = 0, q_y = 0, i\omega_m \to 0) .$$

Third limit, longitudinal momentum taken to zero, relates Λ to kinetic energy,

$$\langle -k_x \rangle = \Lambda_{xx}(q_x \to 0, q_y = 0, i\omega_m = 0)$$
.

Summary: Depending on the limits in which the momenta and frequency are taken to zero, one can obtain the superfluid density D_s and Drude weight D from the current-current correlation function. Then:

- Insulator: $D = D_s = 0.$
- Metal: $D \neq 0$ $D_s = 0.$
- Superconductor: $D_s \neq 0.$

Alternate limits of approaching zero momentum and frequency yield distinct results and profoundly different physical quantities.

5. Applications of Formal Theory: Quantum Monte Carlo

Can explicitly evaluate Λ and its different limits with Quantum Monte Carlo. Attractive Hubbard model with disorder of magnitude V. Basic physics:

- If U < 0 fermions form pairs which can then condense to a superfluid.
- This superfluid can be destroyed by randomness, which localizes the pairs.

$$\Lambda^{L} \equiv \lim_{q_{x} \to 0} \Lambda_{xx}(q_{x}, q_{y} = 0; i\omega_{n} = 0) \qquad D_{s} = \pi[-K_{x} - \Lambda^{T}]$$
$$\Lambda^{T} \equiv \lim_{q_{y} \to 0} \Lambda_{xx}(q_{x} = 0, q_{y}; i\omega_{n} = 0) \qquad K_{x} = -\Lambda^{L}$$

Critical value V_c beyond which $D = D_s = 0$ and the system becomes insulating.

Extrapolation in Matsubara frequencies captures Drude weight, D.

$$D(\omega_m) = \pi \left(-K_x - \Lambda_{xx} (q_x = 0, q_y = 0, i\omega_m) \right)$$

D vanishes at a value consistent with V_c for vanishing of D_s .

Suggests direct superconductor-insulator transition; no intervening metallic phase.

Similar plots showing the momentum extrapolations to verify $\Lambda^L = -\langle K_x \rangle$.

6. Conductivity and Spectral Functions

An alternate analysis of conductivity begins with fluctuation-dissipation theorem,

$$\Lambda_{xx}(\mathbf{q},\tau) = \int_{-\infty}^{+\infty} \frac{d\omega}{\pi} \frac{\exp(-\omega\tau)}{1 - \exp(-\beta\omega)} \operatorname{Im} \Lambda_{xx}(\mathbf{q},\omega) \; .$$

Inversion of Laplace transform to get $\text{Im} \Lambda_{xx}$, is very ill-conditioned. If $T \ll \Omega$, the scale at which $\text{Im}\Lambda$ deviates from $\text{Im}\Lambda \sim \omega \sigma_{dc}$,

Data from QMC simulations remarkably similar to experimental literature. 2D superconductor-insulator transition (SIT) in the presence of disorder. Means to access SIT:

- Changing the degree of microscopic disorder.
- Altering the film thickness.
- Applying a magnetic field
- Changing the carrier density.

Distinguishing metals and insulators via momentum-resolved spectral function

$$G(\mathbf{q},\tau) = \int_{-\infty}^{+\infty} d\omega \frac{\exp(-\omega\tau)}{1 + \exp(-\beta\omega)} A(\mathbf{q},\omega) \qquad \qquad N(\omega) = \sum_{\mathbf{q}} A(\mathbf{q},\omega) \ .$$

Square lattice Hubbard Hamiltonian at half-filling:

- $N(\omega = 0) \rightarrow 0 \text{ as } T \rightarrow 0$
 - Small U: Slater insulator driven by SDW order
 - Intermediate U crossover to Mott insulator.

Size of insulating gap \propto temperature range over which $N(\omega = 0) = 0$.

Momentum resolution: Track peak in $A(\mathbf{q}, \omega)$ to infer dispersion of dressed quasiparticle excitations.

7. Summary

[1] Non-interacting or MFT (quadratic) tight binding Hamiltonians. Metal to Band Insulator:

Compute single particle energy levels.

Position of chemical potential relaive to gap.

Anderson Insulator:

Driven by disorder; localized eigenstates

Position of chemical potential relative to mobility edge.

[2] Interacting (quartic) tight binding Hamiltonians. Mott Insulator

Large interactions restrict motion of fermions.

(Very) difficult to solve. Numerics: QMC, DMRG, DMFT

[3] Formal Criteria for Insulator, Metal, Superconductor Limits of current-current correlation function.