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1 Introduction

Fermion-boson systems play an important role in many domains of physics. An example in the
solid state is the electron-phonon problem that leads to many collective phenomena such as su-
perconductivity [1–3], charge density waves [4,5], and topological effects [6,7]. In high energy
physics, especially lattice gauge theories, the bosonic modes account for the gauge fields that
mediate interactions between fermion matter fields. Recently a number of so called designer
Hamiltonians have been introduced to describe a variety of phases and quantum phase transi-
tions [8–14]. As we will see, these models all fall in the class of electron-boson Hamiltonians
and are designed to capture the essential physics at hand without encountering the infamous
sign problem. In doing so, nematic and ferromagnetic quantum phase transitions in metals as
well as topological states of matter can be studied unbiasedly and on large system sizes.

In a former issue of these lecture notes [15] we had already considered this problem, but for
the special case of non-interacting bosons coupled to interacting fermions. We had adopted
an action based formalism and integrated-out the bosonic degrees of freedom in favor of a
fermion-only problem, albeit with retarded interactions. Such action-based problems are con-
veniently solved within the continuous-time interaction-expansion (CT-INT) algorithm [16,17]
that is very powerful for a variety of models including the electron-phonon problem [18–20].
Integrating-out the phonons certainly facilitates things and local sampling strategies turn out to
be efficient in many cases. However the approach has some drawbacks. i) The computational
effort scales as the cube of the number of (interacting) fermion sites, N , times the cube of the
inverse temperature β. Even if the pre-factor of this scaling law is small, it will ultimately be
hard to reach very large system sizes. For example, for the one dimensional Holstein model, a
very efficient directed loop algorithm for retarded interactions has been formulated that clearly
out-preforms the CT-INT approach [21]. ii) Integrating-out the bosons actually can generate a
negative sign problem which would not occur in formulations where the bosons are explicitly
taken into account. This happens in the two dimensional case [22]. iii) Finally, integrating-out
the bosonic modes is only possible if they do not interact.

In this review we will discuss various formulations of the auxiliary-field QMC (AFQMC) ap-
proach for electron-boson systems. We will concentrate only on models where the so called neg-
ative sign problem is absent, such that the problem reduces to the sampling of a non-local prob-
ability distribution in a high dimensional space. There has recently been tremendous progress in
defining the class of problems that can be solved without encountering the negative sign prob-
lem [23–26]. The models we will define here are certainly inspired from these new insights.
In particular we will start with a many body classic, the Su-Schrieffer-Heeger (SSH) model [6]
introduced to study soliton excitations in polyacetylene. Here we will consider the two dimen-
sional case, and show that in limiting cases the model is equivalent to Z2 lattice gauge theories
where the Gauss law is dynamically imposed at low temperatures. Models with Z2 symme-
tries, local or global, are more easily formulated by considering Ising bond variables coupled to
fermions. This class of problems shows extremely rich phase diagrams [8–14] and it is of great
interest to find efficient algorithms to simulate them.
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Since, as mentioned above, the infamous negative sign problem is absent in the class of models
we will consider, the reader could ask the pertinent question: what is then so hard? It is the
sampling. For fermion-boson problems, the major issue that we will encounter are very long
autocorrelation times [27] when adopting simple single spin-flip updates. Historically for the
Ising model cluster updates circumvent critical slowing down [28]. The beauty of these algo-
rithms is that, as one approaches the critical point, blocks of spins, the size of which tracks the
correlation length, are flipped and accepted with unit probability. Cluster algorithms have been
formulated for problems where the action is local. For fermion systems the action is highly
non-local and defining cluster algorithms for fermions is an open question.
Faced with this challenge, one can progress in various ways. One approach is to use concepts of
machine learning, more specifically so called self-learning algorithms [29,30]. Here the idea is
to define a simpler auxiliary model on the same configuration space as the original one endowed
with a set of free parameters. Assume that one has a representative set of configurations and
associated weights for the original model, then we can train (i.e. tune the free parameters) of
the auxiliary model, so as to at best reproduce the data set of configurations and weights. If this
step is successful, one will then use the auxiliary model to propose new configurations.
In this review we will adopt other strategies, presented in [31], to argue that so called hybrid
molecular-dynamics sampling is the method of choice for a class of electron-boson problems.
We will combine two approaches: the Blankenbecler-Scalapino-Sugar (BSS) formulation [32]
of the AFQMC supplemented by a hybrid molecular-dynamics sampling of the fields [33, 34].
This review is organized as follows. In the next section we will first introduce a set of mod-
els, that are all free of the negative sign problem and that fall in the category of fermion-boson
problems. They all have in common an O(2N) symmetry where N corresponds to the number
of fermion flavors. In Sec. 3 we will derive in all details the equations required to formulate the
AFQMC. Our approach will be based on the Grassmann algebra, aspects of which are reviewed
in Appendix A. It is however beyond the scope of this monograph to discuss the detailed im-
plementation of the algorithm. For this, we refer the reader to [35] and to [36] for a generic
implementation of the AFQMC. In the last section, we will give some reasons why single spin-
flip updates suffer from long autocorrelation times. To circumvent this problem we will discuss
alternative forms of sampling strategies, in particular Langevin and hybrid molecular dynamics.
We have tested favorably these ideas in Ref. [31]. Finally, we give our conclusions.

2 Model systems

In this section we review a number of models that show extremely rich phase diagrams with
exotic phases and quantum phase transitions. They are all related to each other, and fall in
the greater class of fermion-boson models. We will start with the canonical Su-Schrieffer-
Heeger (SSH) model and show that in limiting cases it maps onto unconstrained Z2 lattice gauge
theories. Using duality transformations we can map Z2 lattice gauge theories, in the absence
of visons, to Falikov-Kimball models [37]. Finally, breaking the local Z2 symmetry to a global
one, naturally leads to the problem of fermions coupled to an Ising model in a transverse field.
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2.1 The Su-Schrieffer-Heeger model

In the one-dimensional case, the SSH model describes solitonic excitations in polyacetylene [6].
In this dimension, the model can be solved efficiently with the CT-INT approach [38, 15]. In
higher dimensions the phase diagram of the model is essentially unknown and the CT-INT
approach suffers form a negative sign problem. The model is given by

Ĥ = Ĥel + Ĥph + Ĥep. (1)

Here
Ĥel = −t

∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉj,σ ĉ

†
i,σ

)
, (2)

is the kinetic energy and 〈i, j〉 denotes the nearest neighbors of a square lattice. ĉ†i,σ creates an
electron in a Wannier state centered around lattice site i, and with flavor index σ. We allow
the flavor index to take any integer value. Remarkably, this will not introduce a negative sign
problem. Harmonic oscillators on links account for the lattice vibrations,

Ĥph =
∑
〈i,j〉

(
p̂2〈i,j〉
2m

+
mω2

2
x̂2〈i,j〉

)
, (3)

with p̂, x̂ being the canonical conjugate momentum and position operators. The electron-phonon
coupling leads to a modulation of the hopping matrix element:

Ĥep = g
∑
〈i,j〉,σ

x̂〈i,j〉

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
(4)

with coupling strength g. To simplify the notation we label bond indices as

b := 〈i, j〉 , (5)

and introduce the bond hopping as

K̂b :=
∑
σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
. (6)

2.2 Unconstrained lattice gauge theories

Unconstrained lattice gauge theories can be derived from the above SSH model, provided that
we set the hopping matrix element to zero. This step certainly violates the harmonic approxi-
mation central to the very definition of phonons. Nevertheless the model is well defined, and
the flexibility inherent to systems of cold atoms trapped in optical lattices may offer possible
realizations of such systems [39]. Introducing the boson operators,

b̂†〈i,j〉 =
ωmx̂〈i,j〉 − ip̂〈i,j〉√

2ωm
, (7)
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we can rewrite the model as

ĤZ2 = g

√
1

2ωm

∑
〈i,j〉

(
b̂†〈i,j〉 + b̂〈i,j〉

)
K̂〈i,j〉 + ω

∑
b

b̂†〈i,j〉b̂〈i,j〉. (8)

Due to the lack of a direct hopping term, the above model acquires a local symmetry. In par-
ticular, the boson parity on the four links emanating from site i times the fermion parity on the
site is a local conserved Ising variable. That is, for

Q̂i = (−1)n̂
b
〈i,i+ax〉

+n̂b〈i,i−ax〉
+n̂b〈i,i+ay〉

+n̂b〈i,i−ay〉(−1)n̂ci (9)

we have [
Q̂i, ĤZ2

]
= 0 with Q̂2

i = 1 and
[
Q̂i, Q̂j

]
= 0. (10)

In the above, n̂b〈i,j〉 = b̂†〈i,j〉b̂〈i,j〉 and n̂ci =
∑

σ ĉ
†
i,σ ĉi,σ. Q̂i defines a Z2 charge that is conserved

locally in space but not in time.1 To see this we note that[
Q̂i, b̂〈n,m〉

]
= 2Q̂ib̂〈n,m〉 (δi,m + δi,n) and

[
Q̂i, ĉj,σ

]
= 2Q̂iĉj,σ δi,j (11)

such that
〈ĉiĉ

†
j〉 = δi,j (12)

and a similar equation holds for the bosons. The above merely states that since the electron
carries a Z2 charge that is locally conserved in space, the equal time propagator between differ-
ent lattice sites has to vanish. The difference between the above Hamiltonian and lattice gauge
theories is that the Z2 charge is not conserved along the imaginary time axis: 〈ĉi(τ) ĉ

†
j〉 = δi,j

with ĉi(τ) = eτĤ ĉi e
−τĤ . Such so called unconstrained gauge theories, where the Gauss law is

not imposed, have recently attracted considerable interest [10, 40, 41].
The above model has the same symmetries as a Z2 lattice gauge theory and the exact relationship
can be obtained by restricting the boson Hilbert space to two states: the vacuum and the first
excited state,

{
|0〉, |1〉 = b̂†|0〉

}
. This reduction of the Hilbert space amounts to replacing the

soft core bosons by hard core ones, b̂†b̂† = 0, which is certainly a valid approximation in the
antiadiabatic limit, ω →∞. Next, we define Ising variables: |±〉 = 1√

2
(|1〉 ± |0〉) such that for

X̂bbb = 2b̂†bbb b̂bbb − 1, Ẑbbb = b̂†bbb + b̂bbb (13)

X̂bbb|±〉 = |∓〉 and Ẑbbb|±〉 = ±|±〉. (14)

With this reading, the SSH model reduces, up to a constant, to

ĤZ2 =
∑
〈i,j〉

Ẑ〈i,j〉K̂〈i,j〉 − h
∑
〈i,j〉

X̂〈i,j〉 (15)

Here we have set g/
√
2ωm = 1 such that h = −g2/4m. Under the above mapping the con-

served Z2 charge transforms to

Q̂i = X̂〈i,i+ax〉X̂〈i,i−ax〉X̂〈i,i+ay〉X̂〈i,i−ay〉(−1)n̂
c
i . (16)

1 This stems from the fact that the constraint, say Q̂i = 1, is not imposed on the Hilbert space.
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The above model has captured a considerable amount of interest [10, 11, 14]. It is extremely
simple and hosts deconfined and confined phases of matter as well as exotic quantum phase
transitions (see Fig. 1).

2.3 Duality transformations and a Falikov-Kimball model

In interacting systems, interaction terms that do not break the macroscopic symmetries of the
model will generically be dynamically generated. For example in the functional renormalization
group [42] flow, one will be able to study the dynamically generated interactions in various
channels. Let us follow this idea in the context of the above unconstrained lattice gauge theories.
On a square lattice, the flux term

ĤF = F
∑
i

Ẑ〈i,i+ax〉 Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 (17)

does not break any symmetries of the model and will hence be dynamically generated. In fact,
for h = 0 in Eq. (15), the Ising fields will order so as to accommodate a π-flux (Ẑ〈i,i+ax〉
Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 = −1) per plaquette [10, 43], so as to dynamically gen-
erate Dirac fermions. A Falikov-Kimball model [37] is related to Eq. (15) in the sector where
the flux per plaquette vanishes

Ẑ〈i,i+ax〉 Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 = 1. (18)

This corresponds to the zero vison, i.e., plaquettes with π-flux, sector. Let us work in a basis
where Ẑ is diagonal and consider a zero vison state. The transverse Ising field term creates a
pair of visons on neighboring plaquettes and thereby violates the zero vison constraint. The first
non-trivial term that complies with the constraint reads

h̃
∑
i

X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉. (19)

The zero vison constraint can be satisfied with the Ansatz

Ẑ〈i,j〉 = τ̂ zi τ̂
z
j where τ̂ z =

(
1 0

0 −1

)
. (20)

With this rewriting

X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉 = τ̂xi with τ̂x =

(
0 1

1 0

)
. (21)

Hence in the zero vison sector, the unconstrained Z2 lattice gauge theory, is given by

ĤFK =
∑
〈i,j〉,σ

(
τ̂ zi c

†
i,σ τ̂

z
j cj,σ + h.c.

)
− h̃

∑
i

τ̂xi (22)

and the local conservation law reads

Q̂i = X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉 (−1)n̂
c
i ≡ τ̂xi (−1)n̂

c
i . (23)
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AFMVBS

CDW

AFM/SCZ D 2

DQCP

Z D 2

 

CDW
(N=1)

Z D 2

VBS
(N=3)

AFM 
(N=3)

(e)(d)

(b) (c)

(a)

Fig. 1: Schematic zero temperature phase diagram of the model in Eq. (15) in the N vs. h
plane (a) as well as cartoons (b)-(e) of a selected number of phases. The fermions carry a
global U(1) electrical charge as well as a local Z2 one. (a): We observe a Z2 Dirac deconfined
phase (Z2D), a Néel antiferromagnet phase (AFM) (or a superconductor (SC), depending on
the pattern of particle-hole symmetry breaking), a charge density wave (CDW) phase as well
as a valence bond solid (VBS). For N = 1, we do not find evidence for a Z2D phase beyond
h = 0, consistent with the arguments in the main text. The phase transitions from the Z2D
to AFM/SC (N = 2) and VBS (N = 3) are seemingly continuous. At N = 3 we observe a
deconfined quantum critical point (DCQP) between the VBS and AFM phases. (b)-(e) Cartoons
of the corresponding phases. Circles correspond to fermions and the color code to the flavor
index. Circles with two colors represent a pair of fermions on a site with corresponding flavors.
The low energy properties of the Z2D phase resemble SU(N) fermions propagating freely in
space-time and connected by a Z2 gauge string (b). The symmetry broken phases correspond
to the confined phases of the model. At N = 3 the AFM phase, (e), has the fundamental
(conjugate) representation of SU(3) on sublattice A (B). The corresponding Young tableaux are
included. The VBS phase, (d), corresponds to a pattern of inter-site SU(3) singlets. This Figure
is reproduced from Ref. [10].
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The explicit form of the Falikov-Kimball model can now be obtained by defining the fermion
operator f̂ †i,σ = τ̂ zi c

†
i,σ and noting that τ̂xi = Q̂i(−1)n̂

f
i. Finally, since (−1)n̂

f
i=
∏

σ(2f̂
†
i,σf̂i,σ−1)

we obtain
ĤFK =

∑
〈i,j〉,σ

(
f †i,σfj,σ + h.c.

)
− h̃

∑
i

Q̂i

∏
σ

(
2f̂ †i,σf̂i,σ − 1

)
. (24)

Since Qi is a Z2 local conserved quantity, it can be interpreted as the static density of spinless
fermions in a SU(N) symmetric Falikov-Kimball model [37]. A detailed study of this model
shows that it harbors fractionalized orthogonal metal phases at finite temperature [44], while at
low temperatures the Ising variables order (Q̂i = 1), such that the physics of the Hubbard model
is recovered. Finally in the particle-hole symmetric case and in the limit of infinite dimensions,
the model is equivalent to the Hubbard model [45, 44].

2.4 Models of fermions coupled to Ising spins

The common feature of this class of models is again to couple fermion degrees of freedom to
Ising spins. However, and in contrast to the above, one will allow spontaneous Z2 symmetry
breaking such that the ordering of the Ising spins can trigger a transition in the fermionic system.
This route to engineer models that can be simulated without encountering the infamous negative
sign problem has recently been very successful [8–14].
The models presented in the above section have an extensive set of conserved local quantities,
Q̂i, and as a consequence the correlation functions 〈ẐbẐb′〉 vanishes for b 6= b′. In other words,
there is a local Z2 symmetry, and local symmetries cannot be broken [46]. To avoid this, one
has to add terms that reduce the local Z2 symmetry of the model from to a global one. Among
many choices, one can add an Ising term of the form

J
∑
〈b,b′〉

Ẑb Ẑ
′
b (25)

between nearest neighbor bonds, as well as a direct hopping

− t
∑
b

K̂b (26)

such that the general model we will consider is given by

Ĥ =
∑
b

(
−t+ gẐb

) N∑
σ=1

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
− h

∑
〈i,j〉

X̂〈i,j〉 + J
∑
〈b,b′〉

Ẑb Ẑ
′
b. (27)

The last two terms correspond to an Ising model in a transverse field. When formulating the
path integral for this model, one will notice that it is identical to a D+1 Ising model,2 albeit
with space-time anisotropic couplings. Since anisotropies in the couplings are irrelevant in
the sense of the renormalization group, the critical phenomena of the model fall in the D+1-
dimensional Ising universality class. Coupling to gapless fermions can be relevant and lead to

2 D corresponds to the spacial dimension
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novel critical points. This idea has been successfully used to study a variety of phenomena such
as the dynamical generation of quantum spin Hall [47] and Kekule mass terms [13] in Dirac
systems as well as Ising nematic [48] and ferromagnetic [12] transitions in metals. This very
rich set of phenomena can be studied by merely appropriately choosing the lattice, the coupling
between the Ising and fermion degrees of freedom, as well as the interaction between the Ising
spins.

2.5 Symmetries

The symmetries of the model will be very important to avoid the negative sign problem. In the
form of Eq. (27) the SU(N) spin symmetry is manifest. On bipartite lattices this symmetry is
enhanced to a O(2N) one. To see this, we define the Majorana fermions

γ̂i,σ,1 = ĉi,σ + ĉ†i,σ, γ̂i,σ,2 =
1

i

(
ĉi,σ − ĉ

†
i,σ

)
(28)

on sub-lattice A, and

γ̂i,σ,1 =
1

i

(
ĉi,σ − ĉ

†
i,σ

)
, γ̂i,σ,2 = −

(
ĉi,σ + ĉ†i,σ

)
(29)

on sub-lattice B. The above Majorana fermions satisfy the anti-commutation relations{
γ̂i,σ,n, γ̂j,σ′,n′

}
= 2δi,j δσ,σ′ δn,n′ . (30)

Provided that the hopping matrix elements occur only between the two sub-lattices, the Hamil-
tonian can be written as

Ĥ =
∑
〈i,j〉

(
−t+ g Ẑ〈i,j〉

) N∑
σ=1

2∑
n=1

i

2
γ̂i,σ,nγ̂j,σ,n − h

∑
〈i,j〉

X̂〈i,j〉 +
∑
b.b′

Jb,b′Ẑb Ẑ
′
b. (31)

Here the global O(2N) symmetry, γ̂i → Oγ̂i where O corresponds to an orthogonal O(2N)

transformation and γ̂ T
i =(γ̂i,1,1 · · · γ̂i,N,1, γ̂i,1,2 · · · γ̂i,N,2), is manifest. This symmetry plays an

important role in the formulation of the negative sign free Monte Carlo algorithm.

3 General formulation of the BSS algorithm

In this section, we will show how to simulate the model of Eq. (27). It is beyond the scope of this
article to offer a detailed account of the auxiliary-field QMC approach, and for a detailed review
the interested reader is referred to Ref. [35]. We also note that an open-source implementation of
this algorithm is available online at https://alf.physik.uni-wuerzburg.de [36]. This
implementation allows to simulate the model defined in Eq. (27). Here we will concentrate on
the general formulation and place emphasis on issues arising when considering boson-fermion
problems. For the numerical stabilization of the algorithm as well as for an efficient implemen-
tation, the reader is referred to the aforementioned references.



10.10 Fakher F. Assaad

3.1 Partition function: discrete variables

The Hilbert space of the Hamiltonian of Eq. (27) accounts for the Ising degree of freedom per
bond and to N -flavored fermions per site. Thereby, the partition function reads

Z = Tr
(
e−βĤ

)
= Tr

((∏
b

e−∆τ(−t+gẐb)K̂b
)
e−∆τ

∑
b,b′ Jb,b′ Ẑb Ẑ

′
b e∆τh

∑
b X̂b

)Lτ

+O
(
∆τ 2

)
,

(32)
where the trace runs over the fermion Fock space and the bond Ising degrees of freedom. In
the above β = Lτ∆τ , and we have used an asymmetric Trotter decomposition that introduces a
systematic error of order ∆τ 2.3 We carry out the trace over the Ising variables by introducing a
complete set of Ising spins on each time slice

Ẑb|s1, · · · , sNb〉 = sb|s1, · · · , sNb〉 ,
∑

s1,··· ,sNb

|s1, · · · sNb〉〈s1, · · · sNb| = 1̂I . (33)

Here Nb counts the number of bonds and 1̂I is the unit operator in the Ising space. Noting that

〈
s
∣∣∣e∆τh∑b X̂b

∣∣∣ s′〉 = γNb eK
∑
b sbs

′
b with tanh(K) = e−2∆τh , γ =

e∆τK

2 cosh(∆τh)
(34)

and |s〉 = |s1, · · · , sNb〉 we obtain

Z = γNbLτ
∑

s1,··· ,sLτ

e−S0({s}) TrF

(∏
τ,b

e−∆τ(−t+g sb,τ )K̂b

)
. (35)

Here s has acquired an imaginary time index with boundary condition s0 = sLτ and

S0 ({s}) =
Lτ∑
τ=1

(∑
b,b′

∆τJb,b′sb,τsb′,τ −K
∑
b

sb,τsb,τ−1

)
. (36)

Using the determinant formulas derived in the appendix, we can integrate out the fermions, to
obtain

Z = γNbLτ
∑

s1,··· ,sLτ

e−S0({s}) det

(
1 +

∏
τ,b

e−∆τ(−t+gsb,τ )Kb

)N

, (37)

where the sparse matrices Kb are defined as K̂b =
∑

σ,i,j ĉ
†
i,σ (Kb)i,j ĉj,σ. Note that since the

fermions symmetrically couple to the Ising fields sb,τ the trace is block diagonal in the flavor
index σ = 1, . . . , N . Thereby we just have to compute the determinant for one flavor and
elevate it to the power N . This explicitly reflects the SU(N) symmetry of our formulation.

3Strictly speaking the error should be of order ∆τ . However, one can show that for our specific model the
coefficient of the linear in ∆τ error vanishes [49].
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3.2 From discrete to continuous fields

In the above formulation, the configuration space for the Monte Carlo sampling will corre-
sponds to a set of discrete Ising fields. As will be apparent, it may be more efficient to consider
continuous fields, for which sampling strategies such as hybrid molecular or Langevin dynam-
ics can be used. Instead of considering the discrete Ising spin we will introduce a Gaussian
transformation that formulates the problem in terms of the average magnetization. These types
of transformations explicitly show the equivalence between Ising and scalar fields. We use the
short hand notation

S0 ({s}) =
1

2
sssTAAAsss, (38)

whereAAA is a NbLτ ×NbLτ matrix and sssT =
(
sT1 , · · · , sTLτ

)
, and will assume thatAAA is positive

definite. Here there is no loss of generality since sssTsss = NbLτ such that we can add a constant
toAAA so as to guarantee that all the eigenvalues are positive. Next we use the Gaussian identity∫

RNbLτ
dφ1 · · · dφNbLτ︸ ︷︷ ︸

≡Dφφφ

e−
1
2
φφφTAAA−1φφφ−sssTφφφ = (2π)NbLτ/2

√
detAAA e

1
2
sssTAAAsss. (39)

With C = (2π)NbLτ/2
√
detAAA, the partition function reads

Z = C

∫
RNbLτ

Dφφφ e−
1
2
φφφTAAA−1φφφ TrF

(∏
τ,b

( ∑
s=±1

e−sφb,τ e−∆τ(−t+gs)K̂b
))

, (40)

and we can evaluate
∑

s=±1 e
−sφb,τ e−∆τ(−t+gs)K̂b using the fact that ∆τ is small∑

s=±1

e−sφb,τ e−∆τ(−t+gs)K̂b =
∑
s=±1

e−sφb,τ
(
1−∆τ(−t+ gs)K̂b

)
+O(∆τ 2)

= 2 cosh(φb,τ )
(
1−∆τ(−t+ g tanh(φb,τ )K̂b

)
+O(∆τ 2)

= 2 cosh(φb,τ ) exp
(
−∆τ(−t+ g tanh(φb,τ ))K̂b

)
+O(∆τ 2). (41)

Thereby, the partition function can now be written as

Z = 2NbLτC

∫
RNbLτ

Dφφφ e−
1
2
φφφTAAA−1φφφ+

∑
b,τ log cosh(φb,τ ) TrF

(∏
τ,b

e−∆τ(−t+g tanh(φb,τ ))K̂b

)
, (42)

where we have omitted the Trotter error. Using the determinant formula for fermions, we see
that

Z = 2NbLτC

∫
RNbLτ

Dφφφ e−S(φφφ) (43)

with
S(φφφ) =

1

2
φφφTAAA−1φφφ−

∑
b,τ

log cosh(φb,τ )−N log detMMM(φφφ) (44)

and

MMM(φφφ) = 1 +

(∏
τ,b

e−∆τ(−t+g tanh(φb,τ ))Kb

)
. (45)
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For future purposes, it will be useful to introduce the super-index

t = (τ, b) (46)

that runs over the sequence of space-time bonds, and the propagators

Ûφ(t2, t1) =

t2∏
t=t1+1

e−∆τ(−t+g tanh(φt))K̂bt for t2 ≥ t1. (47)

Note that Ûφ(t, t) = 1̂.

3.3 Positivity of the determinant

An exact enumeration of the Ising spins for large euclidean volumes NbLτ is prohibitively
expensive. A way out is to estimate the sum stochastically with importance sampling methods.
This reading requires

P ({s}) =
e−S0({s}) det

(
1 +

∏
τ,b e

−∆τ(−t+gsb,τ )Kb
)N

∑
s1,··· ,sLτ

e−S0({s}) det
(
1 +

∏
τ,b e

−∆τ(−t+gsb,τ )Kb
)N (48)

to be positive. Obviously, for even values of N and since Kb are real symmetric matrices,
the weight will be positive for each configuration. What about odd values of N? Using the
Majorana basis introduced above, we have for a single flavor

TrF
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )(ĉ
†
i ĉj+ĉ

†
j ĉi) =

TrM
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
γ̂iγ̂j

2

. (49)

Here TrM corresponds to the trace over a single Majorana mode. We now want to show that
TrM

∏
τ,b=〈i,j〉 e

−∆τ(−t+gsb,τ ) i2 γ̂iγ̂j is a real number

TrM
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
γ̂iγ̂j = TrM

∏
τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
−i
2
γ̂iγ̂j = TrM

∏
τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
η̂iη̂j

(50)
with

η̂i =

{
γ̂i for i ∈ A
−γ̂i for i ∈ B

(51)

Since the above is a canonical transformation, the trace over the η̂’s is equal to that of the γ̂’s.
Note that we have used the fact that the hopping links only the A and B sub-lattices. Thereby
the O(2N) symmetry of the model allows us to show that for arbitrary number of colors P ({s})
is positive semidefinite. For more general symmetry based arguments that lead to the absence
of a negative sign problem, the reader is referred to Refs [23, 25, 26, 50]. In Appendix B we
summarize some useful determinant identities for Majorana fermions. Note that the positivity
of the determinant is valid for both discrete or continuous fields.
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3.4 Calculation of observables

The calculation of observables proceeds as follows. Let us consider observables Ô that involve
only fermionic degrees of freedom such that

〈O〉 = 1∫
Dφφφ e−S(φφφ)

∫
Dφφφ e−S(φφφ)

TrF
(
Ûφ(LτNb, 0) Ô

)
TrF Ûφ(LτNb, 0)

. (52)

We now consider observables of the form

Ô = T ĉi1(t1) ĉ
†
i′1
(t′1) · · · ĉin(tn) ĉ

†
i′n
(t′n) (53)

with

ĉi(t) = Û−1φ (t, 0) ĉi Ûφ(t, 0). (54)

In this section we omit the spin or flavor index. T corresponds to the time ordering in which
the time indices, t, are organized in ascending order. To achieve this ordering, one will permute
operators and not forget to include the sign of the permutation in the result. For example,
T ĉi(1) ĉ

†
j(3) = −ĉ

†
j(3) ĉi(1). Using the Grassmann algebra briefly introduced in Appendix A

we can show that

TrF
(
Ûφ(LτNb, 0) Ô

)
TrF Ûφ(LτNb, 0)

=

∫ ∏
i,t

dξ†i(t) dξi(t) e
−

∑
i,t,i′,t′

ξ†i(t)G
−1
i,i′ (t,t

′)ξ
i′(t
′)

ξi1(t1) ξ
†
i′1
(t′1) · · · ξin(tn) ξ

†
i′n
(t′n)∫ ∏

i,t

dξ†i(t) dξi (t) e
−

∑
i,t,i′,t′

ξ†i(t)G
−1
i,i′ (t,t

′)ξ
i′(t
′)

= det

Gi1,i′1
(t1, t

′
1) · · · Gi1,i′n(t1, t

′
n)

... . . . ...
Gin,i′1

(tn, t
′
1) · · · Gin,i′n(tn, t

′
n)

 . (55)

The last equation corresponds to Wick’s theorem, the demonstration of which can be found in
Ref. [51]. Hence the knowledge of the Green functionG is sufficient to compute any correlation
function. For t ≥ t′

Gi,i′(t, t
′) =

TrF
(
Ûφ(LτNb, t) ĉi Ûφ(t, t

′) ĉ†i′ Ûφ(t
′, 0)
)

TrF Ûφ(LτNb, 0)
. (56)

Noting that

Û−1φ (t, t′) ĉi Ûφ(t, t
′) =

∑
j

Bφ(t, t
′)i,j ĉj (57)

with

Bφ(t2, t1) =

t2∏
t=t1+1

e−∆τ(−t+g tanh(φt))Kbt for t2 ≥ t1, (58)
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the calculation of the imaginary time displaced Green function reduces to the calculation of the
equal time one

Gi,i′(t
′, t′) =

TrF
(
Ûφ(LτNb, t

′) ĉi ĉ
†
i′ Ûφ(t

′, 0)
)

TrF Ûφ(LτNb, 0)

= δi,i′ −
∂

∂η
logTrF

(
Ûφ(LτNb, t

′) eη c
†O(i′,i) c Ûφ(t

′, 0)
)∣∣∣
η=0

(59)

with c†O(i′,i) c = ĉ†i′ ĉi. Using the determinant formula and the fact that detA = eTr logA one
obtains

G(t′, t′) =
(
1 +Bφ(t

′, 0)Bφ(LτNb, t
′)
)−1

. (60)

The equal time Green function allows to compute any equal time correlation function and as we
will see it will also determine the Monte Carlo dynamics. For a given operator Ô, we denote by
〈〈Ô〉〉φφφ the result of the Wick decomposition for a given field configuration φφφ.

3.5 Summary

All in all, we have now recast our problem into a form where importance sampling can be used.
Our probability distribution

P (φφφ) =
e−S(φφφ)∫
Dφφφ e−S(φφφ)

(61)

is positive semi-definite and for each configuration of fields we are in the position of computing
the expectation value of any operator Ô. Our task is now to sample P (φφφ) so as to compute
quantities of the form

〈Ô〉 =
∫
Dφφφ P (φφφ) 〈〈Ô〉〉φφφ. (62)

4 Sampling strategies

The semi-positiveness of the determinant allows us to avoid the negative sign problem, and
to thereby potentially formulate a code that scales polynomially in the Euclidean system size.
However, care has to be taken with sampling strategies. We will argue below that single spin
flips algorithms are bound to fail for small values of h and that a possible remedy stems from
using global updating schemes such as hybrid molecular or Langevin dynamics. Both these
updating schemes can only be formulated for continuous fields.

4.1 Single spin flips

Just by analyzing the form of the action, S0, one will readily see that single spin flips are bound
to be inefficient in the small h limit. The first term, −K

∑
b,τ sb,τ sb,τ+1, corresponds to a one-

dimensional ferromagnetic Ising model at K = arctanh
(
e−2∆τh

)
. For this problem [52] the

correlation length is set by ξ−1 = log(coth(K)) = 2∆τh. Thereby, kinks or domain walls of
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the ferromagnetic order in the imaginary time direction will be separated by a length scale set
by ξ. However single spin flips produce pairs of kinks separated by the imaginary time step
∆τ and will be very inefficient if ∆τ/ξ is small. Since ∆τ is dimension full we have to set a
scale to appreciate this result. Let us consider the model of Eq. (27), and let us assume that g
is the largest scale which we set to unity. We will then have to choose ∆τ � 1 to validate the
Trotter decomposition, such that ∆τ/ξ = ∆τ 2h � 1, and the single spin flip update will be
very inefficient. This argument is based on the discreetness of the imaginary time such that with
continuous time methods it may be possible to circumvent sampling issues using Ising fields.

4.2 Langevin and molecular dynamics: calculation of forces

In Langevin and hybrid molecular dynamics the key point is to compute the forces

∂S(φφφ)

∂φφφ
(63)

and to assess if they are bounded or not. For our bosonic problems we can show explicitly
that the determinant is positive semi-definite and we will make the bold assumption that it
vanishes only at isolated points. Away from these isolated points, the forces will be bounded
and we foresee that the Langevin and hybrid molecular dynamics walks through configuration
space will be smooth. As argued in Ref. [31] this is not the case for the Hubbard model. In fact
choosing a Hubbard-Stratonovich transformation that couples to the z-component of spin, splits
the configuration space in distinct regions separated by logarithmic barriers where the forces
diverge. For these types of landscapes formulating Langevin and hybrid molecular dynamics is
very challenging. In Ref. [31] we have tested positively the above assumption for the special
case of the SSH model.
Starting from the action of Eq. (44) the forces can are computed as

∂S(φφφ)

∂φt
=

1

2

(
AAA−1φφφ+ φφφTAAA−1

)
t
− tanhφt +Ng∆τ

(
1− tanh2 φt

)
Tr
(
Kt(1−G(t, t))

)
. (64)

Here we see that the equal time Green function, G(t, t), is the only fermionic quantity required
to compute the forces.

4.3 Langevin dynamics

Langevin dynamics corresponds to a stochastic differential equation for the fields φφφ. They
acquire a Langevin time tl and satisfy the stochastic differential equation

φt(tl + δtl) = φt(tl)−
∂

∂φt(tl)
S(φφφ) δtl +

√
2 δtl ηt. (65)

Here, ηt are independent Gaussian stochastic variables satisfying

〈ηt〉η = 0 and 〈ηt ηt′〉η = δt,t′ . (66)
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We refer the reader to Ref. [53] for a more in depth introduction to stochastic differential equa-
tions. To see that the above indeed produced the desired probability distribution in the long
Langevin time limit, we can transform the Langevin equation to the corresponding Fokker-
Planck equation. Let P (φφφ, tl) be the distribution of fields at Langevin time tl. Then

P (φφφ, tl + δtl) =

∫
Dφ′φ′φ′ P (φφφ′, tl)

〈
δ

(
φφφ−

(
φ′φ′φ′ − ∂S(φ′φ′φ′)

∂φ′φ′φ′
δtl +

√
2δtlηηη

))〉
η

(67)

where δ corresponds to the LτNb dimensional Dirac δ-function. Taylor expanding up to order
δtl and averaging over the stochastic variable yields

P (φφφ, tl+δtl)=

∫
Dφ′φ′φ′ P (φφφ′, tl)

(
δ(φφφ′−φφφ)−∂S(φ

′φ′φ′)

∂φ′φ′φ′
∂

∂φ′φ′φ′
δ(φφφ′−φφφ)δtl+

∂

∂φ′φ′φ′
∂

∂φ′φ′φ′
δ(φφφ′−φφφ)δtl

)
+O(δt2l ).

(68)
Integration by parts and taking the limit of infinitesimal time steps gives the Fokker-Planck
equation

∂

∂tl
P (φφφ, tl) =

∂

∂φφφ

(
P (φφφ, tl)

∂S(φφφ)

∂φφφ
+
∂P (φφφ, tl)

∂φφφ

)
. (69)

The stationary, ∂
∂tl
P (φφφ, tl) = 0, normalizable solution to the above equation corresponds to the

desired probability distribution

P (φφφ) =
e−S(φφφ)∫
Dφφφ e−S(φφφ)

. (70)

As mentioned above, Langevin dynamics will work well provided that the forces show no sin-
gularities. The great advantage of such an updating scheme is that there is no rejection and
that all fields are updated at each step. The following points that highlight potential issues with
Langevin dynamics are in order:

• Langevin dynamics will be carried out at a finite Langevin time step and thereby we have
introduced a further source of systematic error.

• The factor
√
2δtl multiplying the stochastic variable makes the noise dominant on short

time scales. On these times scales Langevin dynamics essentially corresponds to a ran-
dom walk. This has the advantage that one can circumvent potential barriers, but may
render the updating scheme less efficient than the hybrid molecular dynamics approach.

4.4 Hybrid molecular dynamics

Hybrid molecular dynamics circumvents the aforementioned drawbacks of Langevin dynamics.
It does not introduce a systematic error and does not boil down to a random walk at small time
steps. The approach is based on the Metropolis-Hastings importance sampling formula. (The
reader is referred to the lecture notes in Ref. [15] by the same author, where aspects of the
theory of Monte Carlo sampling are discussed in Appendix A.) Let C and C ′ be configurations
in the Monte Carlo space. The probability of accepting a move form C to C ′ is given by

P (C → C ′) = max

(
T0(C

′ → C)P (C ′)

T0(C → C ′)P (C)
, 1

)
, (71)
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where T0(C ′ → C) is the probability of proposing a move fromC ′ toC. In the Monte Carlo ap-
proach, we will iterate the above procedure so as to generate a time series of configurations Cm.
Provided that we are able to reach all configurations in the Monte Carlo space from any starting
configuration,

lim
n→∞

1

n

n∑
m=1

δCm,C = P (C). (72)

Ideally, one would like to propose global, ergodic moves that satisfy P (C → C ′) = 1 and
thereby hope to have small autocorrelation times. This is a property of cluster algorithms such
as the loop [35], SSE [54], or Wolff [28] algorithms.
We will start by expanding the configuration space to C = {ppp,φφφ} and define the Hamiltonian

H(ppp,φφφ) =
ppp2

2
+ S(φφφ). (73)

ppp and φφφ are canonical conjugate. Clearly,

〈Ô〉 =
∫
Dφφφ e−S(φφφ)〈〈Ô〉〉φφφ∫

Dφφφ e−S(φφφ)
=

∫
DφφφDppp e−H(ppp,φφφ)〈〈Ô〉〉φφφ∫

DφφφDppp e−H(ppp,φφφ)
(74)

and in the hybrid molecular dynamics scheme we sample

P (ppp,φφφ) =
e−H(ppp,φφφ)∫

DφφφDppp e−H(ppp,φφφ)
. (75)

Hybrid molecular dynamics consists of two steps:
Step 1: Updating the momenta ppp
Here we choose

T0 (C
′ = {ppp′,φφφ} → C = {ppp,φφφ}) = e−ppp

2∫
dppp e−ppp2

(76)

such that P (C → C ′) = 1.
Step 2: Updating the positions φφφ
This step is numerically expensive and uses the Hamiltonian equations of motion

ṗpp = −∂H
∂φφφ

and φ̇φφ =
∂H

∂ppp
(77)

that conserve energy, H , for time independent Hamiltonians. As for the Langevin dynamics,
the fields acquire an additional time index, tm, and φ̇φφ = dφφφ

dtm
. We can propagate the fields over a

given molecular dynamics time interval, TM , to obtain

{ppp,φφφ}(tm + Tm) = UH
Tm

(
{ppp,φφφ}(tm)

)
(78)

where UH
Tm

(
{ppp,φφφ}(tm)

)
propagates the initial state {ppp,φφφ}(tm) with Hamiltonian dynamics for

a time interval Tm. The Hamiltonian equations of motion are time reversal symmetric and,
according to Liouville’s theorem, conserve volumes in phase space. Thereby,

T0({ppp,φφφ}(tm + Tm)→ {ppp,φφφ}(tm)) e−H({ppp,φφφ}(tm+Tm))

T0({ppp,φφφ}(tm)→ {ppp,φφφ}(tm + Tm)) e−H({ppp,φφφ}(tm))
= 1 (79)
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and the acceptance will be of unity. Clearly this corresponds to the ideal case, and in practice the
integration will be carried out with a finite time step such that the energy will not be conserved
exactly and the acceptance will not be unity. Provided that we choose an integrator that is
time reversal symmetric (see below) then the Monte Carlo acceptance-rejection step will cure
this systematic error. The acceptance-rejection step of the molecular dynamics trajectory is the
reason why this updating scheme is coined hybrid molecular dynamics. The algorithm then
proceeds by iterating step 1 followed by step 2.

4.4.1 The leap-frog integrator

In practice one will adopt an integrator that conserves time reversal symmetry such as the
Leapfrog algorithm. Our Hamiltonian can be split into H1 = ppp2/2 and H2 = S(φφφ). Propa-
gating with H1 only allows for an exact solution since in this case ppp is constant and φφφ(t) =

φφφ(t = t0) + (t − t0)ppp. Similarly for H2, φφφ is constant and ppp(t) = ppp(t = t0) − (t − t0)∂S(φφφ)∂φφφ
.

Hence both for H1 and H2 the propagation can be carried out exactly, such that time reversal
symmetry and Liouville’s theorem hold. In very much the same manner as for the symmetric
Trotter decomposition, the leapfrog approach carries out a δtm time interval propagation of the
full Hamiltonian H = H1 +H2 as

UH
δtm = UH1

δtm/2
◦ UH2

δtm
◦ UH1

δtm/2
+O

(
δt2m
)
. (80)

Clearly time reversal is satisfied and because of this property the error contains only even powers
of the time step. The energy H = H1 +H2 will however not be conserved exactly such that, as
mentioned above, the molecular dynamics trajectory will be accepted according to:

max

(
T0({ppp,φφφ}(tm + Tm)→ {ppp,φφφ}(tm)) e−H({ppp,φφφ}(tm+Tm))

T0({ppp,φφφ}(tm)→ {ppp,φφφ}(tm + Tm)) e−H({ppp,φφφ}(tm))
, 1

)
=max

(
e−H({ppp,φφφ}(tm+Tm))

e−H({ppp,φφφ}(tm))
, 1

)
.

(81)

5 Conclusions

In these notes, we have discussed a set of very interesting boson-fermion models that are free
of the negative sign problem, but that are numerically challenging due to sampling issues. The
case was made that the underlying O(2N) symmetry of the Hamiltonians we considered render
hybrid molecular dynamics an attractive sampling strategy. This statement was partially tested
in Ref. [31]. More work is required to further test this conjecture that will hopefully allow us to
unravel many salient aspects of a class of boson-fermion problems.
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Appendices

A Determinant formula for fermions

In this appendix, we derive a set of so called determinant formulas for fermions. They are the
basis for various forms of fermion Monte Carlo approaches and an elegant derivation is based
on fermion coherent states. The reader is referred to Ref. [51] for a detailed introduction to
the Grassmann algebra. Here we will briefly summarize the important formulas and concepts.
Grassmann numbers, ξ, anti-commute and are defined as

ĉx|ξ〉 = ξx|ξ〉 (82)

with {
ξ#x , ξ#

′

x′

}
=
{
ξ#x , ĉ#

′

x′

}
= 0 (83)

and
|ξ〉 =

∏
x

(
1− ξxĉ†x

)
|0〉. (84)

In the above the subscript x denotes the quantum numbers of a single particle state and # = †, ·.
Integration over Grassmann variables is defined as∫

dξx ξx = 1 ,

∫
dξx = 0, (85)

such that for example
∫
dξx dξ

†
x ξx ξ

†
x = −1 due to the anticommuting properties of the algebra.

The following identities for overlaps

〈ξ|ξ′〉 = e
∑
x ξ
†
xξ
′
x , (86)

the resolution of unity in the Fock space

1̂ =

∫ ∏
x

dξ†x dξx e
−

∑
x ξ
†
xξx|ξ〉〈ξ|, (87)

and the trace over the Fock space

Tr Â =

∫ ∏
x

dξ†x dξx e
−

∑
x ξ
†
xξx〈−ξ|Â|ξ〉 (88)

hold. Finally, we will need the determinant formula∫ ∏
x

dξ†x dξx e
−

∑
x,y ξ

†
xMx,yξy = detM. (89)

As mentioned above, these formulas are standard and can be found in Ref. [51].
Our aim is compute

Tr
(
eĉ
†Anĉ eĉ

†A2ĉ · · · eĉ†A1ĉ
)
, (90)
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where ĉ† = (ĉ†1, · · · , ĉ
†
Ns
) with Ns the number of single particle states. The first step is to

transform eĉ
†Aĉ into a normal ordered expression. We will see that for a general A

eĉ
†Aĉ = :eĉ

†(eA−1)ĉ : , (91)

where : Ô : denotes the normal ordering of the operator Ô. To prove the above, we diagonal-
ize A: λ = UAU−1, with λ a diagonal matrix, and define η̂† = ĉ†U and γ̂ = U−1ĉ . These
operators satisfy the anti-commutations rules{

η̂†x, γ̂y
}
= δx,y, and

{
η̂†x, η̂

†
y

}
=
{
γ̂x, γ̂y

}
= 0 (92)

such that

eĉ
†Aĉ=

∏
x

eλxη̂
†
xγ̂x=

∏
x

(
1+(eλx−1)η̂†xγ̂x

)
=
∏
x

:eη̂
†
x(e

λx−1)γ̂x: =:e
∑
x η̂
†
x(e

λx−1)γ̂x: =:eĉ
†(eA−1)ĉ: .

(93)
With the above, we can evaluate the matrix element

〈ξ|eĉ†Aĉ |ξ′〉 = eξ
†(eA−1)ξ′〈ξ|ξ′〉 = eξ

†(eA)ξ′ . (94)

Using the Grassmann trace formula and inserting the resolution of unity between the operators,
we obtain

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
=

∫ n∏
x,τ=1

dξ†x(τ) dξx(τ) e
−
(∑n

x,τ=1 ξ
†
x(τ)ξx(τ)−

∑n
τ=1 ξ

†(τ+1)eAτ ξ(τ)
)

=

∫ n∏
x,τ=1

dξ†x(τ) dξx(τ)e
−ξ†x(τ)G−1

(x,τ),(x′,τ ′) ξx′ (τ
′)
. (95)

In the above, the Grassmann fields have acquired an extra dimension τ and we have defined
ξ†x(n+1) = −ξ†x(1). Finally with the determinant formula we can integrate over the Grassmann
variables and obtain

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
= det


1 0 · · · 0 eAn

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−1 1

 . (96)

The size of the this matrix is of nNs × nNs, and is the starting point for many applications in
the realm of the so called hybrid QMC approaches used in the high energy community. For
many applications in the solid state, it is more convenient to reduce the size of the matrix down
to Ns ×Ns. This can be achieved with Schur’s determinant identity

det

(
A B

C D

)
= det(D) det(A−BD−1C) (97)
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Setting D = 1, corresponding to the bottom right unity matrix, C = (0, · · · ,−e−An−1) and
BT = (eAn , · · · 0) gives

det


1 0 · · · 0 eAn

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−1 1

 = det


1 0 · · · 0 eAneAn−1

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−2 1

 . (98)

Iteration produces the final result

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
= det

(
1 + eAn · · · eA2eA1

)
. (99)

B Determinant formula for Majoranas

Here we will prove the following identity

TrM
(
eiγ̂

TT1γ̂ · · · eiγ̂TTLγ̂
)
=
√

det(1 + e4iT1 · · · e4iTL) , (100)

where Tτ are skew symmetric real matrices of even dimension (T Tτ = −Tτ ), and γ̂T = (γ̂1,1, γ̂1,2
· · · , γ̂n,1, γ̂n,2) are Majorana fermions.
First, we show that one can find an antisymmetric matrix h that satisfies

eiγ̂
TT1γ̂ · · · eiγ̂TTLτ γ̂ = eiγ̂

T hγ̂. (101)

The above follows from the fact that, using the anti-commutation rules of Majorana fermions,

d

dτ
e−iτ γ̂

TT γ̂ γ̂i e
iτ γ̂TT γ̂︸ ︷︷ ︸

≡γ̂i (τ)

= 4i
∑
j

Ti,j γ̂j(τ) (102)

such that
γ̂(τ) = e4iτT γ̂. (103)

Iteration gives

e−iγ̂
TTLγ̂ · · · e−iγ̂TT1γ̂ γ̂ eiγ̂TT1γ̂ · · · eiγ̂TTLγ̂ = e4iT1 · · · e4iTL γ̂ ≡ e−iγ̂

T hγ̂ γ̂i e
iγ̂T hγ̂. (104)

The last equality is the defining equation for h and leads to

e4iT1 · · · e4iTL = e4ih. (105)

That h is skew symmetric stems from the fact that, by definition, e4ih
(
e4ih
)T

= 1. We will pro-
ceed by assuming that h is a real skew symmetric matrix.4 Thereby one can find an orthogonal
transformation O such that

OThO = diag

((
0 λ1
−λ1 0

)
, · · · ,

(
0 λn
−λn 0

))
≡ λ. (106)

4A generalization to complex skew symmetric matrices is mentioned in Ref. [50]
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Since O is orthogonal, η̂ ≡ OT γ̂ are Majorana fermions and

TrMeiγ̂
T h γ̂ = TrMeiγ̂

T OλOT γ̂ = TrM
n∏
i=1

e2iλi η̂i,1 η̂i,2 = TrM
n∏
i=1

(
cosh(2λi)+sinh(2λi)η̂i,1 η̂i,2

)
.

(107)
We can now refermionize the Majorana operators

η̂i,1 = ĉi + ĉ†i , η̂i,2 =
1

i
(ĉi − ĉ

†
i ), (108)

and carry out the trace for each fermion flavor, to obtain

TrMeiγ̂
T hγ̂ = TrF

n∏
i=1

(
cosh(2λi) + sinh(2λi)

1

i
(2ĉ†i ĉi − 1)

)
=

n∏
i=1

2 cosh(2λi) =

(
n∏
i

(
e4λi + e−4λi + 2

))1/2

=
(
det(1 + e4iO

T hO)
)1/2

=
(
det(1 + e4ih)

)1/2
=
(
det(1 + e4iT1 · · · e4iTL)

)1/2
. (109)
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