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Preface
Since the beginning of quantum mechanics, emergent many-body phenomena represent the
grand-challenge in theoretical condensed-matter physics. Indeed, static mean-field approaches
fail to capture even the simplest many-body effects, while diagrammatic techniques generally
fail in the regime characteristic of strong correlations. The introduction of dynamical mean-
field theory (DMFT) has revolutionized this field. Two insights paved the way to this paradigm
shift. The first is that in the limit of infinite dimensions all contributions to the self-energy
become local. The second is that the locality of the self-energy makes it possible to build a new
type of mean-field theory, dynamical in nature, by mapping a correlated lattice problem onto
a self-consistent quantum-impurity model. In the last decades, thanks to advances in model
building combined with the development of flexible and numerically exact quantum-impurity
solvers, DMFT was successfully linked with ab-initio density-functional techniques, making it
the method of choice for the investigation of correlated electron materials.

This year’s school covers the most important aspects of the DMFT approach to real mate-
rials. Lectures range from the basics to advanced topics, covering the DFT+DMFT method,
non-local extensions of DMFT, advanced quantum impurity solvers, the calculation of dynam-
ical response functions, and the description of correlation effects out of equilibrium. The goal
of the school is to introduce advanced graduate students and up to this modern method for the
realistic modeling of strongly correlated matter.

A school of this size and scope requires support and help from many sources. We are
very grateful for all the financial and practical support we have received. The Institute for
Advanced Simulation at the Forschungszentrum Jülich and the Jülich Supercomputer Centre
provided the major part of the funding and were vital for the organization of the school and
the production of this book. The Center for Electronic Correlations and Magnetism at the
University of Augsburg offered housing support for the lecturers and some of the students,
while the Institute for Complex Adaptive Matter (ICAM) provided travel grants for selected
international speakers and participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
N. Daivandy of the Jülich Supercomputer Centre for providing their expert support in producing
the present volume on a tight schedule. We heartily thank our students and postdocs who
helped with proofreading the manuscripts, often on quite short notice: Julian Mußhoff, Esmaeel
Sarvestani, and Qian Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Alexander Lichtenstein, and Dieter Vollhardt

August 2018
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1.2 Dieter Vollhardt

1 From materials to models

In view of the great complexity of nature, scientific explanations of natural phenomena can only
be found by appropriate simplifications, namely through idealization and abstraction (“reduc-
tion”). This requires modelling. Models are supposed to take into account the most important
features of a complicated object or process, neglecting features which are considered less im-
portant. This has been an extremely successful approach in science, especially in physics. Take,
for example, a steam engine in a power plant. Many aspects of the functional principle of such
a large and technically complicated machine can already be understood in terms of a simple
mechanical model consisting of a cylinder and piston, and using the concept of temperature,
pressure, and volume. For a long time mechanical models were thought to be indispensable
for an understanding of physical phenomena. Indeed, in 1861 Maxwell, the founding father of
the highly elegant theory of electromagnetism, introduced a mechanical model of electromag-
netism [1] based on vortices in a molecular medium, which looks rather bizarre to us today.
Although it helped Maxwell to explain the displacement current, the molecular vortex model
did not turn out to be useful to understand electromagnetism and was soon abandoned. This
shows that models have to prove their usefulness over the course of time – otherwise they will
be discarded.

1.1 The long way to a model for ferromagnetism in 3d transition metals

When it comes to materials and the explanation of their properties the question again arises what
kind of models to use. One of the most famous properties of solids which is known for a very
long time already [2] is ferromagnetism, in particular in magnetite (Fe3O4) and elemental iron
(Fe). What is a good model to understand ferromagnetism? A crucial step in the development of
a microscopic theory of ferromagnetism in solids was the model of magnetic domains proposed
by Weiss [3] in 1906, where he postulated the alignment of elementary magnets due to the
existence of a “molecular field”, also referred to as “Weiss mean field”. But what is the origin
of this peculiar field?
Starting from the interaction between neighboring elementary magnets the Ising model [4] was
formulated almost 20 years later to provide a microscopic explanation of the molecular field.
Ising solved the one-dimensional problem, found that a phase transition does not occur, and
concluded (incorrectly) that this was also the case in three dimensions. The Ising model is a
classical spin model. Earlier it had been shown by Bohr (1911) and van Leeuwen (1919) that
magnetism is actually a quantum effect. Therefore another important step in the development of
a theory of ferromagnetism was Heisenberg’s formulation of a quantum spin model in 1928 [5].
The Heisenberg model explains the Weiss molecular field as the result of a quantum mechanical
exchange process. But this model includes only the spin degree of electrons, i.e., describes
localized electrons.
In 1929 Bloch [6] pointed out that such a model cannot explain ferromagnetism as observed
in 3d transition metals such as iron, cobalt and nickel, and that an appropriate model had to
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include the itineracy of the electrons, i.e., their wave nature, which in a solid leads to elec-
tronic bands. However, the conditions for ferromagnetism which he obtained for free electrons
where unrealistic.1 Obviously one has to go beyond free electrons and take also their mu-
tual interaction into account. This immediately leads to an enormously difficult many-body
problem, which is made especially complicated by the fermionic nature of the electrons, their
long-range Coulomb interaction, their high density in the metallic state, and the presence of a
periodic lattice potential. Attempts by Slater [8] in 1936 to explain ferromagnetism in Ni by
including the Coulomb interaction within Hartree-Fock theory were not successful. In partic-
ular, the screening of the bare Coulomb repulsion was a difficult issue. It became clear that
one had to include genuine correlation effects within well-defined approximations.2 This im-
plies two intimately connected problems: the formulation of a sufficiently simple model of
correlated electrons which unifies the competing approaches by Heisenberg and Bloch (namely
the picture of localized and itinerant electrons, respectively), and its solution within more or
less controlled approximations. Progress in this direction was slow. One reason certainly was
that in the nineteen-thirties and forties nuclear physics attracted more attention than solid-state
physics, with a very specific focus of research during the 2nd World War. But apart from that,
the sheer complexity of the many-body problem itself did not allow for quick successes. High
hurdles had to be overcome, both regarding the development of appropriate mathematical tech-
niques (field-theoretic and diagrammatic methods, Green functions, etc.) and physical concepts
(multiple scattering, screening of the long-range Coulomb interaction, quasiparticles and Fermi
liquid theory, electron-phonon coupling, superconductivity, metal-insulator transitions, disor-
der, super-exchange, localized magnetic states in metals, etc.).3

At the Washington Conference on Magnetism, held at the University of Maryland on September
2-6, 1952, the conceptual problems regarding a theory of ferromagnetism in 3d transition metals
were discussed in detail. This resulted in a series of articles in the Reviews of Modern Physics,
including papers by Slater [11], Wohlfarth [12], and van Vleck [13], which summarized the
understanding of this fundamental problem at that time. But in spite of great progress in many
areas of condensed matter physics a microscopic model for metallic ferromagnetism, or of
interacting electrons in general, did not emerge until 1963, when a model for correlated lattice
electrons was proposed independently by Gutzwiller [14], Hubbard [15], and Kanamori [16].
All three wanted to explain ferromagnetism in 3d transition metals. This model is now called
“Hubbard model” and is the fundamental theoretical model for electronic correlations in solids.

1For a historical review of the development of the quantum-mechanical theory of metals from 1928 to 1933,
which describes the conceptual problems of that time, see Ref. [7].

2Apparently Wigner [9] was the first who tried to calculate the contribution of the mutual electronic interaction
to the ground state energy relative to the Hartree-Fock result, which he called “correlation energy”.

3A discussion of the many-body problem and of some of the important developments up to 1961 can be found
in the lecture notes and reprint volume by Pines [10].
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1.2 Electronic correlations

The concept of electronic correlations plays a very important role in modern condensed mat-
ter physics. It refers to electronic interaction effects which cannot be explained within a static
mean-field picture and which therefore go beyond results obtained by factorization approxima-
tions such as Hartree or Hartree-Fock mean-field theory. Correlation effects are particularly
strong in materials with partially filled d and f electron shells and narrow energy bands, as in
the 3d transition metals or the rare–earths and their compounds.
Electronic correlations in solids lead to the emergence of complex behavior, resulting in rich
phase diagrams. In particular, the interplay between the spin, charge, and orbital degrees of
freedom of the correlated d and f electrons with the lattice degrees of freedom leads to a cornu-
copia of correlation and ordering phenomena including heavy fermion behavior [17], high tem-
perature superconductivity [18], colossal magnetoresistance [19], Mott metal-insulator transi-
tions [20], and Fermi liquid instabilities [21]. Such properties are not only of interest for funda-
mental research but also have a great potential for technological applications. Namely, the great
sensitivity of correlated electron materials with respect to changes of external parameters such
as temperature, pressure, electromagnetic fields, and doping can be employed to develop mate-
rials with useful functionalities [22]. Consequently there is a great need for the development of
appropriate models and theoretical investigation techniques which allow for a comprehensive,
and at the same time reliable, exploration of correlated electron materials [23–25].

1.3 The Hubbard model

The single-band Hubbard model [14–16] is the simplest microscopic lattice model for interact-
ing electrons in a solid such as 3d electrons in transition metals [26]. The Hamiltonian consists
of two terms, the kinetic energy Ĥ0 and the interaction energy Ĥint (in the following operators
are denoted by a hat):

Ĥ = Ĥ0 + Ĥint (1a)

Ĥ0 =
∑
Ri,Rj

∑
σ

tij ĉ
†
iσ ĉjσ =

∑
k,σ

εkn̂kσ (1b)

Ĥint = U
∑
Ri

n̂i↑n̂i↓ ≡ UD̂. (1c)

Here ĉ†iσ(ĉiσ) are creation (annihilation) operators of fermions with spin σ at site Ri (for sim-
plicity denoted by i), n̂iσ = ĉ†iσ ĉiσ, and D̂ is the operator of total double occupation of the lattice
sites. The Fourier transform of the kinetic energy in (1b), where tij is the amplitude for hopping
between sites i and j, involves the dispersion εk and the momentum distribution operator n̂kσ.
A schematic picture of the Hubbard model is shown in Fig. 1.
In the Hubbard model the Coulomb interaction between two electrons is assumed to be so
strongly screened that it can be described as a purely local interaction which occurs only on a
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Fig. 1: Schematic illustration of interacting electrons in a solid described by the Hubbard
model. The ions enter only as a rigid lattice, here represented by a square lattice. The electrons,
which have mass, negative charge, and spin (↑ or ↓), are quantum particles which move from
one lattice site to the next with a hopping amplitude t. Together with the lattice structure this
determines the band structure of the non-interacting electrons. The quantum dynamics leads
to fluctuations in the occupation of lattice sites as indicated by the sequence: a lattice site can
either be unoccupied, singly occupied (↑ or ↓), or doubly occupied. When two electrons meet
on a lattice site, which is only possible if they have opposite spin because of the Pauli exclusion
principle, they encounter a local interaction U .

lattice site.4 In view of the Pauli principle the interaction is therefore only possible if the two
electrons have opposite spin. A direct interaction between electrons with equal spin direction,
e.g., on neighboring sites, is not described by the model, but can be easily included. The
interaction is therefore completely independent of the lattice structure and spatial dimension of
the system. This property distinguishes it from other model interactions since it has no classical
counterpart. The kinetic energy Ĥ0 is diagonal in momentum space and reflects the wave nature
of the electrons, while the interaction energy Ĥint is diagonal in position space and characterizes
their particle nature.
The physics described by the Hubbard model is clearly very different from that of bare electrons
with a long-range Coulomb interaction. Therefore the Hubbard model is far from obvious. Its
formulation required fundamentally new insights as explained in section 1.1. In particular,
screening is a basic ingredient of the many-body problem of metals.
As discussed above, the Hubbard model was originally introduced to provide a microscopic
explanation of ferromagnetism in 3d transition metals [14–16]. How should this model be
able to do that? In fact, the interaction energy is lowest (zero) when double occupation of
lattice sites is fully suppressed, i.e., when the spins of electrons are ferromagnetically aligned.
From the point of view of the interaction alone one can therefore expect the ground state to be
ferromagnetic for sufficiently strong repulsion U . However, this argument neglects the kinetic

4In particular, the Hubbard model applies to lattice fermions with a point interaction, such as cold atoms in
optical lattices where the bare interaction is indeed extremely short-ranged [27, 28]; see section 5.2.2.
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energy. While the lattice structure and spatial dimension do not affect the Hubbard interaction
at all, they play a very important role for the kinetic energy since they determine the structure
of the density of states of the non-interacting electrons. This is especially important for the
stabilization of ferromagnetism and will be discussed in more detail in section 6.1.
In spite of the extreme simplifications made by the Hubbard model in comparison with interact-
ing electrons in a real solid, it still cannot be solved analytically, except in dimension d = 1 for
nearest-neighbor hopping [29]. For dimensions d = 2, 3, approximations are required.5 Here
“mean-field theories” play a particularly important role.

2 Mean-field theories

In the statistical theory of classical and quantum-mechanical systems a rough, overall descrip-
tion of the properties of a model can often be obtained within a mean-field theory. While in the
full many-body model a particle or spin experiences a complicated, fluctuating field generated
by the other particles or spins, in a mean-field theory this fluctuating field is approximated by
an average (“mean”) field. Usually, but not always, the full interaction problem then reduces to
an effective, single-particle problem — a self-consistent field theory.
A mean-field theory can often be constructed by letting some variable or parameter become
large (in fact, infinite), whereby fluctuations are suppressed. Depending on the model this can
be the length of the spins S, the spin degeneracy N , the spatial dimension d, or the coordination
number Z, i.e., the number of nearest neighbors of a lattice site.6 Mean-field theories obtained
in such a limit, supplemented if possible by an expansion in the inverse of the large parameter,
can provide valuable insights into the fundamental properties of a model. Perhaps the best-
known mean-field theory in many-body physics is the Weiss molecular-field theory for the Ising
model [31]. It is a prototypical “single-site mean-field theory” which becomes exact in the limit
of infinite coordination number Z or infinite dimensions d.

2.1 Infinite dimensions

The meaning of “infinite dimensions” needs some explanation. Already in d = 3 the coordina-
tion number can be quite large, e.g., Z = 6 for a simple cubic lattice, Z = 8 for a bcc lattice and
Z = 12 for an fcc-lattice, making its inverse, 1/Z, rather small. It is then interesting to investi-
gate whether the limit Z →∞ leads to some simplifications. For a hypercubic lattice, obtained
by generalizing the simple cubic lattice in d = 3 to arbitrary dimensions, one has Z = 2d. The
limit d→∞ is then equivalent to Z →∞.

5In view of the complexity of the many-body problem in condensed matter theory, progress in this field relies
on making good approximations. As Peierls wrote: “... the art of choosing a suitable approximation, of checking
its consistency and finding at least intuitive reasons for expecting the approximation to be satisfactory, is much
more subtle than that of solving an equation exactly” [30].

6For regular lattices both a dimension d and a coordination number Z can be defined. The coordination number
Z is then determined by the dimension d and the lattice structure. But there exist other lattice-like structures, such
as the Bethe lattice, which cannot be associated with a physical dimension d, although a coordination number Z is
well-defined.
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It is interesting to note that investigations in statistical mechanics based on the simplifications
arising in the limit of infinite coordination number Z or dimension d do not go far back. In fact,
Z originally denoted the number of spins in the range of the interaction [32]. In this case the
limit Z →∞ describes an infinitely long-ranged interaction.7 Since a particle or spin at a given
site then interacts with infinitely many other particles or spins (which are all “neighbors”), this
limit was referred to as “limit of infinite dimensions” or “limit of high density” [32]. It was
found that the Weiss mean-field theory for the Ising model becomes exact in this limit. Starting
with Fisher and Gaunt [33] in 1964 the Ising model and other classical models were investigated
on general d-dimensional simple hypercubic lattices. Now Z is really the coordination number,
i.e., the number of nearest neighbors, as we use it today, with Z = 2d. For the Ising model the
limit of infinitely long-ranged spin coupling J and the limit of infinite dimensions d both yield
the same result, namely the Weiss mean-field theory.

2.2 Weiss mean-field theory for the Ising model

The Hamiltonian for the Ising model with nearest-neighbor coupling between two classical
spins is given by

H = −1

2
J
∑
〈Ri,Rj〉

SiSj , (2)

where we assume ferromagnetic coupling (J > 0) and summation over nearest-neighbor sites.
This can also be written as

H =
∑
Ri

hiSi , (3)

where now every spin Si interacts with a local field

hi = −J
(i)∑
Rj

Sj (4)

produced by the spins on nearest-neighbor sites; here the superscript (i) implies summation
over the nearest-neighbor sites ofRi. In the Weiss mean-field theory the spin interaction in (2),
or the interaction of a spin with the local field in (3), are decoupled, i.e., H is replaced by a
mean-field Hamiltonian

HMF = hMF

∑
Ri

Si + Eshift . (5)

Now a spin Si interacts only with a global (“molecular”) field

hMF ≡ 〈hi〉 = −JZS , (6)

7This limit can be even used in one-dimensional particle models, in which case the equation of state reduces to
the van der Waals equation [31].
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where 〈 〉 indicates the thermal average, 〈Si〉 ≡ S, Eshift = 1
2
LJZ〈S〉2 is a constant energy

shift, and L is the number of lattice sites. Formally this result can be obtained by employing the
factorization 〈

(Si − S)(Sj − S)
〉

= 0 , (7)

whereby correlated fluctuations of spins at sites Ri and Rj are neglected. In the limit Z → ∞
the coupling constant J needs to be rescaled as

J → J∗

Z
, J∗ = const (8)

for hMF, and thereby the energy, to remain finite. In this limit the factorization (7), and hence the
replacement of (2) by the mean-field Hamiltonian (5), becomes exact [32, 34]. Eq. (5) implies
that in the limit Z → ∞ fluctuations of a finite number of spins in the “bath” of surrounding
neighbors become unimportant, such that the surrounding of any site is completely described
by a single mean-field hMF. Hence the Hamiltonian becomes purely local

HMF =
∑
Ri

Hi + Eshift , (9)

whereHi = hMFSi. Thereby the problem reduces to an effective single-site problem. The value
of S (the “magnetization”) is determined by the self-consistent Curie-Weiss or Bragg-Williams
equation

S = tanh(βJ∗S), (10)

where β = 1/(kBT ) and the self-consistency condition (6) was used. The scaling (8) is typical
for localized spin models.
The Weiss mean-field theory is seen to become exact in the limit of infinite coordination number
Z or dimension d. In this case 1/Z or 1/d serve as a small parameter which can be used to im-
prove the mean-field theory systematically. The Weiss mean-field theory contains no unphysical
singularities, is applicable for all values of the input parameters (temperature and/or additional
external magnetic field), and is diagrammatically controlled [35]. Therefore it is often viewed
as a prototypical mean-field theory in statistical mechanics.

2.3 Hartree mean-field theory for the Hubbard model

Lattice fermion models such as the Hubbard model are much more complicated than local-
ized spin models. Therefore the construction of a mean-field theory with the comprehensive
properties of the Weiss mean-field theory for the Ising model will be more complicated, too.
The simplest static mean-field theory for the Hubbard model is the Hartree approximation [36–
38]. To clarify the shortcomings of this mean-field theory we proceed as in the derivation of the
Weiss mean-field theory for the Ising model and factorize the interaction term. To this end we
rewrite the Hubbard interaction in the form of (3), i.e., we let an electron with spin σ at site Ri

interact with a local field ĥiσ produced by an electron with opposite spin on that site8

8This field is described by an operator and therefore has a dynamics.
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Ĥint =
∑
Ri

∑
σ

ĥiσn̂iσ, (11)

where ĥiσ = 1
2
Un̂i−σ. As in the derivation of the Weiss mean-field theory we now factorize the

two-particle interaction in (11), i.e., we replace Ĥ by

ĤMF = Ĥkin +
∑
Ri,σ

〈ĥiσ〉n̂iσ + Eshift . (12)

Now a σ-electron at siteRi interacts only with a local, static field (a c-number)

〈ĥiσ〉 =
1

2
Un−σ , (13)

where n−σ = 〈n̂i−σ〉 is the global density of (−σ)-electrons. The above decoupling of the
operators corresponds to the Hartree approximation,9 which assumes〈

(n̂iσ − nσ)(n̂i−σ − n−σ)
〉

= 0, (14)

whereby correlated fluctuations on the siteRi are neglected.
It is important to note that although (12) is now a one-particle problem it still cannot be solved
exactly, since, in principle, the potential (the static mean field 〈ĥiσ〉) may vary from site to
site. This is a new feature due to the quantum-mechanical kinetic energy, which enters as an
additional term in the Hamiltonian.
The Hartree approximation becomes exact in the weak-coupling limit (U → 0) and/or the low-
density limit (n → 0). But how about d → ∞? Does it become exact in this limit for all
input parameters (temperature, density, interaction strength)? The answer is clearly no: the
Hubbard interaction is purely local and hence independent of the spatial dimensions. Although
the factorizations (7) and (14) are mathematical identical, the physics they imply is very differ-
ent. Namely, (7) describes the decoupling of a spin from a bath of infinitely many neighboring
spins in which fluctuations do indeed become unimportant in the limit d→∞, while (14) cor-
responds to the decoupling of an electron from one other electron (with opposite spin) on the
same site. For strong repulsion U double occupation of a lattice site is energetically unfavorable
and is therefore suppressed. In this situation the local correlation function 〈n̂i↑n̂i↓〉 must not be
factorized, since otherwise correlation phenomena are immediately eliminated. It is therefore
clear that the Hartree decoupling, which factorizes the local quantum dynamics, can never be-
come exact in any dimension or for any coordination number, since 〈n̂i↑n̂i↓〉 6= 〈n̂i↑〉〈n̂i↓〉,
unless U → 0 and/or n → 0. Hence the nature of the Hartree mean-field theory for spin-1

2

electrons with on-site interaction is very different from the Weiss mean-field theory for spins
with nearest-neighbor coupling.

9Since the Hubbard interaction acts only between electrons with opposite spin on the same lattice site an
exchange (Fock) term does not arise.
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3 Gutzwiller variational method

Another useful but very different approximation scheme for quantum many-body systems,
which has a long and successful history in theoretical many-body physics [39], makes use of
variational wave functions. Starting from a many-body trial wave function the energy expec-
tation value is calculated and then minimized with respect to physically motivated variational
parameters. Although variational wave functions usually yield only approximate results, they
have several advantages: they are physically intuitive, can be custom tailored to a particular
problem, and can be used even when standard perturbation methods fail or are inapplicable.
For the analytic investigation of the electronic correlation model which Gutzwiller [14] had
introduced (and which was later named after Hubbard), he had also proposed a very simple
variational wave function. This “Gutzwiller wave function” introduces correlations into the
wave function for non-interacting particles via a purely local correlation factor in real space,
which is constructed from the double occupation operator D̂ as

| ΨG〉 = gD̂ |FG〉 (15a)

=
∏
Ri

(
1− (1− g)D̂i

)
|FG〉. (15b)

Here |FG〉 is the wave function of non-interacting fermions (Fermi Gas), g is a variational
parameter with 0 ≤ g ≤ 1, and D̂i = n̂i↑n̂i↓ is the operator of double occupation of lattice
site Ri, which monitors the interaction on that site. The projector gD̂ globally reduces the
amplitude of those spin configurations in |FG〉 which have too many doubly occupied sites for
given repulsion U . The limit g = 1 describes the non-interacting case, while g → 0 corresponds
to strong coupling (usually U →∞). The Gutzwiller wave function can be used to calculate the
expectation value of an operator, e.g., the ground state energy Ē(g, U) of the Hubbard model,
using the Hamiltonian (1). By computing the minimum of Ē(g, U), the variational parameter g
is determined as a function of the interaction parameter U .

3.1 Gutzwiller approximation

In general the evaluation of expectation values cannot be performed exactly. Therefore Gutz-
willer introduced a non-perturbative approximation scheme which allowed him to obtain an
explicit expression for the ground state energy of the Hubbard model [14, 40]; for details see
Refs. [41,24]. The Gutzwiller approximation is based on the counting of classical spin configu-
rations and is therefore a quasiclassical approximation. The idea behind the approximation can
be illustrated by calculating the norm 〈ΨG|ΨG〉. In configuration space the ground state of the
Fermi gas can be written as

|FG〉 =
∑
D

∑
{iD}

AiD |ΨiD〉, (16)

where |ΨiD〉 is a spin configuration with D doubly occupied sites and AiD is the corresponding
probability amplitude. The sum extends over the whole set {iD} of different configurations with
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the same D, and over all D. For a system with L lattice sites and Nσ σ-electrons the number
ND of different configurations in {iD} is given by the combinatorial expression

ND =
L!

L↑!L↓!D!E!
, (17)

where Lσ = Nσ−D, and E = L−N↑−N↓+D are the numbers of singly occupied and empty
sites, respectively. Since |ΨiD〉 is an eigenstate of D̂, the norm of |ΨG〉 reads

〈ΨG|ΨG〉 =
∑
D

g2D
∑
{iD}

|AiD |2. (18)

In the Gutzwiller approximation spatial correlations between the spins of the electrons are ne-
glected. The probability |AiD |2 is then the same for all configurations of electrons on the lattice,
i.e., is given by the classical combinatorial result for uncorrelated particles

|AiD |2 = P↑P↓, (19)

where Pσ = 1/
(
L
Nσ

)
= Nσ! (L − Nσ)!/L! ' nNσσ (1 − nσ)L−Nσ , with nσ = Nσ/L, is the

probability for an arbitrary configuration of σ-electrons. In this case (18) reduces to

〈ΨG|ΨG〉 = P↑P↓
∑
D

g2DND. (20)

In the thermodynamic limit the sum in (20) is dominated by its largest term corresponding to a
value D = D̄, where D̄ is determined by

g2 =
d̄ (1− n↑ − n↓ + d̄)

(n↓ − d̄)(n↑ − d̄)
, (21)

where d̄ = D̄/L. Eq. (21) has the form of the law of mass action, where the correlation
parameter g2 rather than the Boltzmann factor regulates the dynamical equilibrium between
the concentrations of singly occupied sites on one side of this “chemical reaction” and that of
doubly occupied sites and holes on the other.10 The calculation of the expectation values of the
kinetic and the interaction energy of the Hubbard model proceeds similarly [41]. We will later
see that the Gutzwiller approximation leads to the correct results for the expectation value of an
operator calculated in terms of the Gutzwiller wave function in the limit d =∞.

3.2 Brinkman-Rice transition

The results of the Gutzwiller approximation [14,40] describe a correlated, normal-state fermionic
system at zero temperature whose momentum distribution has a discontinuity q at the Fermi
level, with q = 1 in the non-interacting case, which is reduced to q < 1 by the interaction as in a
Landau Fermi liquid. In 1970 Brinkman and Rice [43] observed that in the case of a half-filled

10In fact, eq. (21), with g2 replaced by the Boltzmann factor e−βU, is the exact result for the Hubbard model
with infinite-range hopping [42].
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band (n↑ = n↓ = 1/2) the Gutzwiller approximation describes a transition at a finite critical
interaction strength Uc from an itinerant to a localized state, where lattice sites are singly occu-
pied and the discontinuity q vanishes. This “Brinkman-Rice transition” therefore corresponds
to a correlation induced (Mott) metal-insulator transition. They argued [43] that the inverse of
q can be identified with the effective mass of Landau quasiparticles, q−1 = m∗/m ≥ 1, which
diverges at Uc.

The results obtained with the Gutzwiller approximation are physically very reasonable. In fact,
in the nineteen-seventies and eighties it was the only approximation scheme which was able
to describe a Mott metal-insulator transition at a finite value of the interaction and was in ac-
cord with basic properties of Landau Fermi liquid theory.11 This was confirmed by a detailed
investigation of the assumptions and implications of the Gutzwiller approximation which I pub-
lished in 1984 [41], and in which I showed that the Gutzwiller-Brinkman-Rice theory was not
only in qualitative [46], but even in good quantitative agreement with experimentally measured
properties of normal-liquid 3He; for a discussion see section 3 in Ref. [47].

3.3 Systematic derivation of the Gutzwiller approximation?

The results of the Gutzwiller approximation are clearly mean-field-like since, for example, the
kinetic energy of the correlated system is obtained by renormalizing the kinetic energy of non-
interacting single-particle states (k, σ) by an overall factor q. This is also one of the reasons
why the results obtained for the Hubbard lattice model have a much wider range of applicability,
i.e., can even be used to understand liquid 3He [41,48]. However, the validity of the Gutzwiller
approximation was still unclear in 1984. In particular, it was not known how to improve this ap-
proximation — after all it was based on the calculation of quantum-mechanical matrix elements
from the most probable classical spin configurations. The question was, whether the Gutzwiller
approximation could be derived in a controlled way, for example by calculating expectation
values of operators with the Gutzwiller wave function using quantum many-body perturbation
theory in a well-defined limit, or by some other method of quantum many-body theory. This
question was answered a few years later, when the Gutzwiller approximation was re-derived in
two different ways: as a slave-boson mean-field theory [49]12 and in the limit of infinite spatial
dimensions [52], as will be discussed below.

11Other well-known approximation schemes, in particular those proposed by Hubbard, did not have these im-
portant properties: in the Hubbard-I approximation [15], which interpolates between the atomic limit and the
non-interacting band, a band gap exists for any U > 0 (so there is no Mott transition at all), while the Hubbard-III
approximation [44] corresponds to the coherent potential approximation [45] for disordered systems, in which case
the Fermi surface volume is not conserved.

12Kotliar and Ruckenstein [50] formulated a functional integral representation of the Hubbard and Anderson
models in terms of auxiliary bosons, whose simplest saddle-point approximation (“slave-boson mean-field theory”)
reproduces exactly the results of the Gutzwiller approximation [49]. Thus they showed that the results of the
Gutzwiller approximation can also be obtained without the use of the Gutzwiller variational wave function.
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4 Lattice fermions in infinite dimensions

The expectation values of the kinetic and the interaction energy of the Hubbard model (1) in
terms of the Gutzwiller wave function can, in principle, be calculated within diagrammatic
many-body perturbation theory for arbitrary dimensions d. Introducing a new analytic approach
in which the expectation values were expressed by sums over different lattice sites, Walter Met-
zner and I showed that these calculations can be greatly simplified [51, 52].13 Thereby we were
able to calculate the diagrams analytically to all orders in d = 1, which led to analytic results
for the ground-state energy for arbitrary density n and interaction strength U [51, 52].14 In
d > 1 analytic calculations to all orders were not possible. But by evaluating individual dia-
grams numerically in dimensions as high as d = 15 we observed that in d = ∞ the values of
these diagrams could equally be obtained if momentum conservation at a vertex was neglected,
i.e., if the momenta carried by the lines of a diagram were assumed to be independent. When
summed over all diagrams this approximation gave exactly the results of the Gutzwiller ap-
proximation [52]. Thus the Gutzwiller approximation had been derived systematically within
quantum many-body perturbation theory in the limit of infinite spatial dimensions. Apparently
the limit d→∞ was not only useful for the investigation of spin models, but also for fermions.

4.1 Simplifications of diagrammatic many-body perturbation theory

The simplifications of the diagrammatic many-body perturbation theory in the limit d → ∞
are due to a collapse of irreducible diagrams, which implies that only local diagrams remain
[57, 58]. In particular, the irreducible self-energy is then completely local (Fig. 2). To under-
stand this diagrammatic collapse let us consider diagrams where lines correspond to one-particle
density matrices, g0ij,σ, as they enter in the calculation of expectation values with the Gutzwiller
wave function (nevertheless the following arguments are equally valid for the one-particle Green
function G0

ij,σ(ω)15). The one-particle density matrix may be interpreted as the amplitude for
transitions between sites Ri and Rj . The square of its absolute value is therefore proportional
to the probability for a particle to hop fromRj to a siteRi. In the case of nearest-neighbor sites
on a lattice with coordination number Z this implies |g0ij,σ|2 ∼ O(1/Z). For nearest-neighbor

13The resulting diagrams have the same form as Feynman diagrams in many-body perturbation theory (due to
the locality of the interaction they are identical to those of a Φ4 theory), but a line corresponds to a one-particle
density matrix g0ij,σ = 〈ĉ†iσ ĉjσ〉0 and not to a one-particle propagator G0

ij,σ(ω) since in the variational approach
there is no dynamics.

14Correlation functions can also be calculated analytically in d = 1 [53, 54] and provide further insights into
the properties of the Gutzwiller wave function. For example, the result for the spin–spin correlation function show
that in the strong coupling limit the Gutzwiller wave function describes spin correlations in the nearest-neighbor,
isotropic Heisenberg chain extremely well and coincides with the exact solution of the spin-1/2 antiferromagnetic
Heisenberg chain with an exchange interaction falling off as 1/r2 [55, 56]; for a discussion see section 4.1 in
Ref. [47].

15 This follows directly from g0ij,σ = limt→0− G
0
ij,σ(t) and the fact that the scaling properties do not depend on

the time evolution and the quantum-mechanical representation. The Fourier transform of G0
ij,σ(ω) also preserves

this property. For this reason the same results as those obtained in the calculation with the Gutzwiller wave function
hold: all connected one-particle irreducible diagrams collapse in position space, i.e., are purely diagonal in d =∞.
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Fig. 2: Collapse of the irreducible self-energy diagram for the Hubbard model in second-order
perturbation theory in U in the limit d→∞.

sitesRi andRj on a hypercubic lattice (where Z = 2d) one therefore finds for large d [57, 58]

g0ij,σ ∼ O
(

1√
d

)
. (22)

For general i, j one obtains [58, 59]

g0ij,σ ∼ O
(
1/d‖Ri−Rj‖/2

)
. (23)

Here ‖ R ‖=
∑d

n=1 |Rn| is the length ofR in the “New York metric”, where particles only hop
along horizontal or vertical lines, never along a diagonal; for further discussions of diagram-
matic simplifications see Ref. [60].16

For non-interacting electrons at T = 0 the expectation value of the kinetic energy is given by

E0
kin = −t

∑
〈Ri,Rj〉

∑
σ

g0ij,σ . (24)

On a hypercubic lattice the sum over nearest neighbors leads to a factor O(d). In view of
the 1/

√
d dependence of g0ij,σ it is therefore necessary to scale the nearest-neighbor hopping

amplitude t as

t→ t∗√
d
, t∗ = const., (25)

since only then the kinetic energy remains finite for d → ∞. The same result is obtained in
a momentum-space formulation.17 It is important to bear in mind that, although g0ij,σ ∼ 1/

√
d

16Gebhard [61] showed that it is possible to calculate with the Gutzwiller wave function in the limit d =∞ even
without diagrams. Thereby he re-derived the full set of static saddle-point equations of the slave-boson approach
and provided a direct connection between the slave-boson mean-field theory [49] and the diagrammatic calculation
of expectation values in terms of the Gutzwiller wave function in d = ∞ [57, 58]. The approach was generalized
by him and collaborators to multi-band Hubbard models into a “Gutzwiller density functional theory” which can
be used to describe the effect of correlations in real materials [62, 63].

17This can be seen by calculating the density of states of non-interacting particles. For nearest-neighbor hopping
on a d-dimensional hypercubic lattice εk has the form εk = −2t

∑d
i=1 cos ki (here and in the following we

set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity). The density of states
corresponding to εk is given by Nd(ω) =

∑
k δ(ω − εk), which is the probability density for finding the value

ω = εk for a random choice of k = (k1, . . . , kd). If the momenta ki are chosen randomly, εk is the sum of d
many independent (random) numbers −2t cos ki. The central limit theorem then implies that in the limit d → ∞
the density of states is given by a Gaussian, i.e., Nd(ω)

d→∞−→ 1
2t
√
πd

exp
[
−
(

ω
2t
√
d

)2]
. Only if t is scaled with d

as in (25) does one obtain a non-trivial density of states N∞(ω) in d =∞ [38,57] and thus a finite kinetic energy.
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vanishes for d → ∞, the particles are not localized, but are still mobile. Indeed, even in the
limit d → ∞ the off-diagonal elements of g0ij,σ contribute, since particles may hop to d many
nearest neighbors with amplitude t∗/

√
d.

A rescaling of the microscopic parameters of the Hubbard model with d is only required in the
kinetic energy, since the interaction term is independent of the spatial dimension. Altogether
this implies that only the Hubbard Hamiltonian with a rescaled kinetic energy

Ĥ = − t∗√
d

∑
〈Ri,Rj〉

∑
σ

ĉ†iσ ĉjσ + U
∑
Ri

n̂i↑n̂i↓ (26)

has a non-trivial d → ∞ limit where both the kinetic energy and the interaction contribute
equally. Namely, it is the competition between the two terms which leads to interesting many-
body physics.

4.1.1 Is there a unique d → ∞ limit for the Hubbard model?

The motivation for the scaling discussed above deserves a more detailed discussion: To obtain
a physically meaningful mean-field theory for a model, its internal or free energy has to remain
finite in the limit d or Z →∞. While for the Ising model the scaling J → J∗/Z, J∗= const., is
rather obvious, this is not so for more complicated models. Namely, fermionic or bosonic many-
particle systems are usually described by a Hamiltonian with several non-commuting terms,
e.g., a kinetic energy and an interaction, each of which is associated with a coupling parameter,
usually a hopping amplitude and an interaction, respectively. In such a case the question of how
to scale these parameters has no unique answer since this depends on the physical effects one
wishes to explore. The scaling should be performed such that the model remains non-trivial
and that its internal or free energy stays finite in the d, Z →∞ limit. Here “non-trivial” means
that not only 〈Ĥ0〉 and 〈Ĥint〉 but also the competition, expressed by 〈[Ĥ0, Ĥint]〉, should remain
finite. In the case of the Hubbard model it would be possible to scale the hopping amplitude
as in the Weiss mean-field theory, i.e., t → t∗/Z, t∗ = const., but then the kinetic energy
would be reduced to zero in the limit d, Z →∞, making the resulting model uninteresting (but
not unphysical) for most purposes. For the bosonic Hubbard model the situation is even more
subtle, since the kinetic energy has to be scaled differently depending on whether it describes
the normal or the Bose-Einstein condensed fraction; for a discussion see Ref. [64]. Hence, in
the case of a many-body system described by a Hamiltonian with several terms, the solution in
the limit d→∞ depends on the scaling of the model parameters.

4.2 The Hubbard model in d = ∞

In our 1989 paper [57] Walter Metzner and I had shown (i) that the diagrammatic collapse of
diagrams which occurs in the limit d → ∞ leads to great simplifications in quantum many-
body perturbation theory and (ii) that the Hubbard model, when scaled properly, stills describes
nontrivial correlations among the fermions. This is already apparent from the evaluation of
the second-order diagram in Goldstone perturbation theory for the correlation energy at weak
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Fig. 3: Correlation energy of the Hubbard model in second-order Goldstone perturbation the-
ory in U (in units of 2U2/|ε0|) vs. density n for dimensions d = 1, 3,∞. Here ε0 is the kinetic
energy for U = 0 and n = 1; adapted from Ref. [57].

coupling [57]. Namely, the nine-dimensional integral in d = 3 over the three internal momenta
reduces to a single integral in d =∞, implying that in d =∞ the calculation is simpler than in
any other dimension. More importantly, the numerical results obtained in d =∞ turn out to be
very close to those in d = 3 and therefore provide a computationally simple, but quantitatively
reliable approximation (Fig. 3).
These results clearly showed that microscopic calculations for correlated lattice fermions in
d =∞ dimensions were useful and very promising. Further insights followed quickly:
(i) Müller-Hartmann [65] proved that in infinite dimensions only local interactions remain dy-
namical, that the proper self-energy becomes momentum independent18

Σσ(k, ω)
d→∞≡ Σσ(ω), (27)

and that therefore typical Fermi liquid features are preserved [66] (for a discussion see section
4.2.3),
(ii) Schweitzer and Czycholl [71] demonstrated that calculations for the periodic Anderson
model also become much simpler in high dimensions, and
(iii) Brandt and Mielsch [72] derived the exact solution of the Falicov-Kimball model for infinite
dimensions by mapping the lattice problem onto a solvable atomic problem in a generalized,

18This result may be understood as follows [67, 68]: The interaction between particles influences their motion.
This effect is described by a complex, spatially dependent, and dynamical field — the self-energyΣσ(k, ω). When
a lattice has a very large number of nearest neighbors the spatial dependence of this field becomes increasingly
unimportant and vanishes completely in d = ∞, as in the Weiss mean-field theory. So the field becomes a mean
field in position space but retains its full dynamics. In this respect there is a direct analogy to non-interacting
electrons in the present of static (“quenched”) disorder, where the self-energy also becomes purely local (k in-
dependent) in the limit d → ∞ (“coherent potential”). The coherent potential approximation [45] is a single-site
theory where a particle moves through an effective medium described by the self-energyΣσ(ω) and becomes exact
in d = ∞ [69, 70]. It should be noted that the coherent potential in the case of the Hubbard model in the limit
d→∞ is more complicated due to the interaction between the particles (see section 5.1).
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time-dependent external field.19 They also indicated that such a mapping was, in principle, also
possible for the Hubbard model.
Due to the property (27) the most important obstacle for diagrammatic calculations in finite
dimensions d ≥ 1, namely the integration over intermediate momenta, is removed. At the
same time the limit d → ∞ does not affect the dynamics of the system. Hence, in spite of
the simplifications in position or momentum space, the many-electron problem retains its full
dynamics in d =∞.

4.2.1 Interactions beyond the on-site interaction

In the case of more general interactions than the Hubbard interaction, e.g., nearest-neighbor
interactions such as

Ĥnn =
∑
〈Ri,Rj〉

∑
σσ′

Vσσ′ n̂iσn̂jσ′ (28)

the interaction constant has to be scaled, too, in the limit d → ∞. Since (28) has the form of a
classical interaction, the scaling known from the Ising model

Vσσ′ →
V ∗σσ′

Z
(29)

is required [65]. Therefore in the limit d → ∞ non-local contributions reduce to their Hartree
equivalent and only the Hubbard interaction remains dynamical, as discussed in section 2.3.

4.2.2 One-particle propagator

Due to the k-independence of the irreducible self-energy, (27), the one-particle propagator of
an interacting lattice fermion system (“lattice Green function”) is given by

Gk,σ(ω) =
1

ω − εk + µ−Σσ(ω)
. (30)

We note that the k-dependence of Gk(ω) comes entirely from the energy dispersion εk of the
non-interacting particles. This means that in a homogeneous system described by the propagator

Gij,σ(ω) = L−1
∑
k

Gk,σ(ω) eik·(Ri−Rj) (31)

its local part, Gii,σ ≡ Gσ, is given by

Gσ(ω) = L−1
∑
k

Gk,σ(ω) =

∞∫
−∞

dε
N0(ε)

ω − ε+ µ−Σσ(ω)
, (32)

whereN0(ε) is the density of states of the non-interacting system. In the paramagnetic phase we
can suppress the spin index. The spectral function of the interacting system (also often called
density of states) is then given by

A(ω) = − 1

π
ImG(ω + i0+). (33)

19Alternatively, it can be shown that in the limit Z →∞ the dynamics of the Falicov-Kimball model reduces to
that of a non-interacting, tight-binding model on a Bethe lattice with coordination number Z = 3 which can thus
be solved analytically [73].
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4.2.3 Consequences of the k-independence of the self-energy: Fermi liquid behavior

The k-independence of the self-energy allows one to make contact with Fermi liquid theory
[66]. At T = 0 the one-particle propagator (30) takes the form

Gk(ω) =
1

ω − εk + EF −Σ(ω)
. (34)

In general, i.e., even when Σ has a k-dependence, the Fermi surface is defined by the ω = 0

limit of the denominator of (34)

εk +Σk(0) = EF . (35a)

According to Luttinger and Ward [74] the volume within the Fermi surface is not changed by
interactions, provided the latter can be treated in perturbation theory. This is expressed by

n =
∑
kσ

Θ
(
EF − εk −Σk(0)

)
, (35b)

where n is the particle density and Θ(x) is the step function. The k-dependence of Σk(0) in
(35a) implies that, in spite of (35b), the shape of the Fermi surface of the interacting system will
be quite different from that of the non-interacting system (except for the rotationally invariant
case εk = f(|k|). By contrast, for lattice fermion models in d = ∞, where Σk(ω) ≡ Σ(ω),
the Fermi surface itself, and hence the enclosed volume, is not changed by the interaction. The
Fermi energy is simply shifted uniformly from its non-interacting value E0

F to EF = E0
F +

Σ(0), to keep n in (35b) constant. Thus G(0), the ω = 0 value of the local lattice Green
function, and of the spectral function A(0) = − 1

π
ImG(i0+) are not changed by the interaction

at all. This “pinning behavior” is well-known from the single-impurity Anderson model [75].
A renormalization of N(0) can only come from a k-dependence of Σ.
For ω → 0 the self-energy has the property [66]

Im Σ(ω) ∝ ω2, (35c)

which implies Fermi liquid behavior. The effective mass of the quasiparticles

m∗

m
= 1− dΣ

dω

∣∣∣∣
ω=0

(35d)

= 1 +
1

π

∫ ∞
−∞

dω
ImΣ(ω + i0−)

ω2
≥ 1 (35e)

is seen to be enhanced. In particular, the momentum distribution

nk =
1

π

∫ 0

−∞
dω ImGk(ω) (36)

has a discontinuity at the Fermi surface, given by nk−F −nk+F = (m∗/m)−1, where k±F = kF±0+.
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5 Dynamical mean-field theory (DMFT)

The diagrammatic simplifications of many-body perturbation theory in infinite spatial dimen-
sions provide the basis for the construction of a comprehensive mean-field theory for lattice
fermions which is diagrammatically controlled and whose free energy has no unphysical sin-
gularities. The construction is based on the scaled Hamiltonian (26). The self-energy is then
momentum independent, but retains its frequency dependence and thereby describes the full
many-body dynamics of the interacting system.20 The resulting theory is mean-field-like and
dynamical and hence represents a dynamical mean-field theory (DMFT) for lattice fermions,
which is able to describe genuine correlation effects as will be discussed next.

5.1 The self-consistent DMFT equations

The DMFT equations were derived in 1991/92 by Janiš [67] and Georges and Kotliar [76] in
different ways: (i) as a generalization of the coherent potential approximation [67],21 and (ii)
by mapping the lattice electron problem onto a single-impurity Anderson model with a self-
consistency condition [76]; the latter mapping was also employed by Jarrell [77]. For a detailed
discussion of the two derivations see Ref. [60]. Both derivations make use of the fact that
in d = ∞ lattice fermion models with a local interaction effectively reduce to a single site
embedded in a dynamical mean field provided by the other fermions as illustrated in Fig. 4.
Although the DMFT equations derived within the coherent potential approximation approach
and by the mapping onto a self-consistent single-impurity Anderson model, respectively, are
identical, the latter approach was immediately adopted by the community since it connects with
the well-studied theory of quantum impurities and the Kondo problem [75], for whose solution
efficient numerical codes such as the quantum Monte-Carlo (QMC) method [78] had already
been developed and were readily available. For this reason the single-impurity based derivation
of the DMFT immediately became the standard approach. For a detailed derivation see the
review by Georges, Kotliar, Krauth, and Rozenberg [79]; an introductory presentation can be
found in Ref. [80]. The foundations of the DMFT will be discussed at this Autumn School in
the lecture by M. Kollar.
The self-consistent DMFT equations are given by
(I) the local propagator Gσ(iωn), which is expressed by a functional integral as

Gσ(iωn) = − 1

Z

∫ ∏
σ

Dc∗σDcσ cσ(iωn) c∗σ(iωn) exp(−Sloc) (37)

with the partition function

Z =

∫ ∏
σ

Dc∗σDcσ exp(−Sloc) (38)

20This is in contrast to Hartree(-Fock) theory where the self-energy is merely a static potential.
21In the coherent potential approximation quenched disorder acting on non-interacting electrons is averaged and

produces a mean field, the “coherent potential”. For the Hubbard model in d = ∞ the infinitely many fluctuat-
ing fields generated by the Hubbard-Stratonovich transformation of the Hubbard interaction represent “annealed”
disorder acting on non-interacting electrons which, after averaging, produces a mean field, the self-energy [68].
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Fig. 4: In the limit d or Z → ∞ the Hubbard model effectively reduces to a dynamical single-
site problem which may be viewed as a lattice site embedded in a k-independent, dynamical
fermionic mean field. Electrons can hop from the mean field onto this site and back, and interact
on the site as in the original Hubbard model (see Fig. 1). The local propagator (i.e., the return
amplitude) and the dynamical mean field are the most important quantities in this limit.

and the local action

Sloc = −
β∫

0

dτ1

β∫
0

dτ2
∑
σ

c∗σ(τ1)G−1σ (τ1 − τ2) cσ(τ2) + U

β∫
0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ) . (39)

Here Gσ is the effective local propagator (also called “bath Green function”, or “Weiss mean
field”)22 which is defined by a Dyson equation

Gσ(iωn) =
((
Gσ(iωn)

)−1
+Σσ(iωn)

)−1
. (40)

Furthermore, by identifying the local propagator (37) with the Hilbert transform of the lattice
Green function

Gk σ(iωn) =
1

iωn − εk + µ−Σσ(iωn)
(41)

(which is exact in d =∞ [79]) one obtains
(II) the self-consistency condition

Gσ(iωn) =
1

L

∑
k

Gk σ(iωn) =

∞∫
−∞

dε
N(ε)

iωn − ε+ µ−Σσ(iωn)
(42)

= G0
σ

(
iωn −Σσ(iωn)

)
. (43)

In (42) the ionic lattice enters only through the density of states of the non-interacting electrons.
Eq. (43) illustrates the mean-field character of the DMFT equations particularly clearly: the
local Green function of the interacting system is given by the non-interacting Green functionG0

σ

at the renormalized energy iωn − Σσ(iωn), which corresponds to the energy measured relative
to the mean-field energy Σσ(iωn) of the surrounding dynamical fermionic bath.

22In principle, both the local functions Gσ(iωn) and Σσ(iωn) can be viewed as a dynamical mean field since
both appear in the bilinear term of the local action (39).
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5.1.1 Solution of the self-consistent DMFT equations

The self-consistent DMFT equations can be solved iteratively: starting with an initial guess for
the self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (42) and thereby the
bath Green function Gσ(iωn) from (40). This determines the local action (39) which is needed
to compute a new value for the local propagator Gσ(iωn) from (37). By employing the old
self-energy a new bath Green function Gσ is calculated and so on, until convergence is reached.
It should be stressed that although the DMFT corresponds to an effectively local problem, the
propagator Gk(ω) does depend on the crystal momentum k through the dispersion relation εk
of the non-interacting electrons. But there is no additional momentum-dependence through the
self-energy, since this quantity is local within the DMFT.
Solutions of the self-consistent DMFT equations require the extensive application of numerical
methods, in particular quantum Monte-Carlo simulations [77, 79, 81], the numerical renormal-
ization group [82], the Lanczos method [83], and other techniques [79].

5.2 Characteristic features of the DMFT

In the DMFT the mean field is dynamical, whereby local quantum fluctuations are fully taken
into account, but is spatially independent because of the infinitely many neighbors of every
lattice site. The only approximation of the DMFT when applied in d < ∞ is the neglect of the
k-dependence of the self-energy (“single-site DMFT”). The DMFT provides a comprehensive,
non-perturbative and thermodynamically consistent approximation scheme for the investigation
of correlated lattice models at all interaction strengths. It describes fluctuating moments and the
renormalization of quasiparticles and is especially valuable for the study of correlation problems
at intermediate couplings.
The DMFT allows one to define electronic correlations in such a way that they can be tested
experimentally, for example, by electron spectroscopies. Namely, correlations lead to trans-
fer of spectral weight and to a finite lifetime of quasiparticles through the real and imaginary
part of the dynamic self-energy, respectively. This is particularly useful for understanding and
characterizing the correlation-induced metal-insulator transition.

5.2.1 The Mott-Hubbard metal-insulator transition

The correlation driven transition between a paramagnetic metal and a paramagnetic insulator,
first discussed by Mott [84, 85] and now referred to as Mott- or Mott-Hubbard metal-insulator
transition, is one of the most intriguing phenomena in condensed matter physics [86, 20]. This
transition is a consequence of the quantum-mechanical competition between the kinetic energy
of the electrons and their local interaction U . Namely, the kinetic energy prefers the electrons
to be mobile (a wave effect) which leads to doubly occupied sites and thereby to interactions
between the electrons (a particle effect). For large values of U the doubly occupied sites become
energetically very costly. The system can reduce its total energy by localizing the electrons.
Hence the Mott transition is a localization-delocalization transition [80]. While the Gutzwiller-
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Brinkman-Rice approach [41] gives a good description of the quasiparticle behavior, it cannot
reproduce the upper and lower Hubbard bands. Here the DMFT has been extremely valuable
since it provided detailed insights into the nature of the Mott-Hubbard metal-insulator transition
for all values of the interaction U and temperature T [79, 87, 80, 60].

5.2.2 Cold atoms in optical lattices

The investigation of correlation phenomena in cold atoms in optical lattices is a fascinating field
of current research [28]. While the Hubbard model with its strictly local interaction is a strong
approximation for electrons in solids, the model can describe cold atoms in optical lattices very
accurately since the interaction between the atoms is indeed extremely short ranged. Here the
DMFT has also been extremely useful. In fact, experiments with cold atoms in optical lattices
have shown that the DMFT leads to reliable results even for finite-dimensional systems [88].

6 From models back to materials: DFT+DMFT

It took several decades to develop many-body techniques to study and understand at least the
basic principles of the Hubbard model and the physics it describes. During that time first-
principles investigations of correlated materials were out of reach. Electronic properties of
solids were mainly studied within density-functional theory (DFT) [89, 90], e.g., in the lo-
cal density approximation (LDA) [91], the generalized gradient approximation (GGA) [92],
or using the so-called LDA+U method [93]. These approaches are able to describe the phase
diagrams of many simple elements and semiconductors, and even of some insulators, quite ac-
curately. Moreover, they often allow one to correctly predict the magnetic, orbital, and crystal
structures of solids where the equilibrium structures are determined by the simultaneous opti-
mization of the electron and lattice systems [94–96]. However, these methods usually fail to
describe the correct electronic and structural properties of electronically correlated paramag-
netic materials since they miss characteristic features of correlated electron systems, e.g., heavy
quasiparticle behavior and Mott physics.
This changed dramatically with the advent of the DMFT. The computational scheme obtained
by merging DFT with DMFT, now referred to as DFT+DMFT (or more explicitly as LDA+DMFT,
GGA+DMFT, etc.), provides a powerful new method for the calculation of the electronic,
magnetic, and structural properties of correlated materials from first principles [97–103]. The
DFT+DMFT approach is able to describe and explain the effect of finite temperatures, including
thermally driven phase transitions, in real materials. By overcoming the limitations of conven-
tional band-structure methods, it opened up new vistas for fully microscopic investigations of
the structural properties of strongly correlated systems, and has already led to many important
insights into the properties of strongly correlated materials.
To illustrate the power of the DFT+DMFT approach and, at the same time, stay in line with
the historically motivated discussion of correlated electron physics in section 1, I will limit
the following presentation to elemental iron (Fe). Iron has been known for its extraordinary
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magnetic and metallurgical properties for several thousand years already [2]. Since iron is the
main constituent of the Earth’s core it is also of great interest in geophysics [104].23 More
information about the DFT+DMFT approach can be found in the lecture notes of the Autumn
Schools in 2011 and 2014 [25]. A detailed presentation will be given by E. Pavarini in her
lecture during this Autumn School.

6.1 Metallic ferromagnetism

The Hubbard model had been introduced in 1963 in the attempt to explain ferromagnetism in
3d metals such as Fe, Co, and Ni [14–16]. But the resulting many-body problem turned out to
be so hard to solve that it was uncertain for a long time whether the Hubbard model would be
able to fulfill the expectations. Studies of the stability of ferromagnetism in the Hubbard model
are made difficult not only by the fact that investigations have to be performed at intermediate
coupling strengths, but also by the delicate dependence of the kinetic energy on the lattice
structure, orbital overlap (determining the hopping amplitudes), and electronic density. It is
well-known from Hartree-Fock-type approximations that the shape of the density of states of
non-interacting electrons plays a very important role for ferromagnetism. Indeed, a peak at one
of the band edges as in the case of the fcc-lattice is known to be favorable for ferromagnetism.
This is supported by the observation that Co and Ni, having a non-bipartite hcp and fcc lattice
structure, respectively, show a full magnetization, while bcc Fe is only partially magnetized (for
a discussion with detailed references see Ref. [106]).

Investigations of the stability of metallic ferromagnetism on fcc-type lattices within DMFT were
first performed by Ulmke [107]. For a generalized fcc lattice in d = ∞ and at an intermediate
interaction strength ofU = 4, he found ferromagnetic solutions around quarter filling (n ' 0.5),
with the susceptibility χF obeying a Curie-Weiss law (Fig. 5). Below Tc the magnetization M
grows rapidly, reaching more than 80% of the fully polarized value (Mmax = n = 0.58) at the
lowest temperature (30% below Tc). It is remarkable that the data pointsM(T ) in Fig. 5 are con-
sistent with a Brillouin function (dashed curve) with the same critical temperature of Tc = 0.05

and an extrapolated full polarization at T = 0. So a Curie-Weiss-type static susceptibility with
Brillouin-function-type magnetization, and a non-integer magneton number as in 3d transition
metals are seen to coexist. These two features were usually thought to arise from seemingly
contrasting physical effects: the former to localized spins, and the latter to itinerant electrons.
However, these conclusions were derived from static mean-field-type approximations such as
the Weiss mean-field theory for spin models and Hartree-Fock mean-field theory for electrons.
Now we understand that these features appear naturally also in correlated electronic systems,
where they are generated by the quantum dynamics of the many-electron problem. Within
DMFT the seemingly paradoxical behavior of the magnetization and the susceptibility in band
ferromagnets is resolved without difficulty.

23 Iron is also vital for the human body, in particular in the production of blood. Many-body effects in the kernel
of hemoglobin were recently found to be essential to explain the binding of CO and O2 to heme [105].
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Fig. 5: Magnetization and inverse ferromagnetic susceptibility calculated (a) by DMFT for the
one-band Hubbard model on a generalized fcc lattice in d = ∞ at U = 4 and n = 0.58
(adapted from Ref. [107]), and (b) by LDA+DMFT for Fe (open squares) and Ni (open circles),
where the results are compared with experimental results for Fe (squares) and Ni (circles);
adapted from Ref. [108]). For details see text.

Shortly thereafter Lichtenstein, Katsnelson and Kotliar [108] obtained the first finite-temperature
results for the magnetic properties of elemental Fe and Ni within the ab initio LDA+DMFT ap-
proach. The temperature dependence of the magnetization and of the inverse ferromagnetic
susceptibility of Fe and Ni explain the experimental data remarkably well.24 The shape of the
curves agrees with that obtained by Ulmke for the Hubbard model on fcc-type lattices within
DMFT [107]. This demonstrates that the Hubbard model is indeed able to explain fundamental
features of ferromagnetism in 3d metals such as Fe and Ni. Moreover the microscopic origin of
the exchange couplings in ferromagnetic bcc Fe was recently clarified using the DFT+DMFT
scheme [109].

The critical behavior of the magnetization and of the inverse susceptibility observed in Refs. [107,
108] is clearly mean-field-like. Since the DMFT is derived from the Hubbard model in the limit
d = ∞ this does not come unexpected. Deviations from mean-field exponents will be due to
non-local effects which go beyond single-site DMFT. The critical properties of the Hubbard
model will be discussed in the lecture by K. Held during this Autumn School.

24The temperature scale is in units of T/TC . The actual Curie temperatures TC for Fe(Ni) were obtained as
1900(700) K [108] and are in reasonable agreement with the experimental values 1043(631) K. The fact that the
calculated values are higher than the experimental values is not surprising since the single-site nature of the DMFT
cannot capture the reduction of TC due to spin waves with finite wavelengths.
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Fig. 6: Schematic temperature-pressure (T-p) phase diagram of iron; adapted from Ref. [110].

6.2 Electronic correlations and lattice stability of solids: paramagnetic Fe

Iron exhibits a rich phase diagram with at least four allotropic forms (Fig. 6). At ambient
conditions iron is ferromagnetic and has a bcc crystal structure (α phase). Upon heating above
the Curie temperature TC ∼ 1043 K, α iron becomes paramagnetic, but remains in its bcc
crystal structure. Only when the temperature is increased above Tstruct ∼ 1185 K does α iron
exhibit a structural phase transition to a fcc structure (γ phase). Clearly iron is a complicated
material where magnetic order and correlation effects play an important role; for a discussion
see [111, 112]. In spite of intensive research on iron its electronic and lattice properties are still
not sufficiently understood.

6.2.1 Lattice stability and phonon spectra near the α-to-γ transition

State-of-the-art band structure methods provide a qualitatively correct description of various
electronic and structural properties of iron [113]. For example, these methods provide a good
quantitative understanding of the equilibrium crystal structure and the lattice dynamical prop-
erties of the ferromagnetic α phase. However, applications of these techniques to describe, for
example, the α-to-γ phase transition in iron, do not lead to satisfactory results. They predict a
simultaneous transition of the structure and the magnetic state at the bcc-to-fcc phase transition
while, in fact, the bcc-to-fcc phase transition occurs only about 150 K above TC . Moreover,
the elastic and dynamical stability of the bcc phase is found to depend sensitively on the value
of the magnetization. For example, in the absence of a magnetization, standard band-structure
methods predict bcc iron to be unstable [114]. We now understand that the stability of para-
magnetic bcc iron is due to the presence of local moments above TC which cannot be treated
realistically by conventional band-structure techniques.
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Fig. 7: Phonon dispersion curves and corresponding phonon density of states of paramagnetic
bcc Fe as calculated within (a) the non-magnetic GGA and (b) GGA+DMFT. The results are
compared with neutron inelastic scattering measurements at 1173 K; adapted from Ref. [117].

This problem has been overcome by employing the DFT+DMFT approach which allows one
to study correlated materials both in the long-range ordered and the paramagnetic state [115–
118,110,111]. The DFT+DMFT method naturally accounts for the existence of local moments
above TC and provides a good quantitative description of the properties of α iron. In particular,
DFT+DMFT studies of the equilibrium crystal structure and phase stability of iron at the α-to-γ
phase transition found that the bcc-to-fcc phase transition indeed takes place at a temperature
well above the magnetic transition, at about 1.3 TC , in agreement with experiment [110].

In view of the crucial importance of electronic correlations for the phase stability of α iron
Leonov et al. [117] also computed the phonon dispersion relations of paramagnetic iron near the
bcc-to-fcc phase transition (Fig. 7). For this purpose the DFT+DMFT approach implemented
with the frozen-phonon method was employed [117]. To evaluate the phonon frequencies for
arbitrary wave vectors in the Brillouin zone, lattice dynamical calculations were performed
on the basis of a Born-von Kármán model with interactions expanded up to the 5-th nearest-
neighbor shell. The calculated phonon dispersions of the bcc phase of iron show the typical
behavior of a bcc metal with an effective Debye temperature ∼ 458 K. The phonon frequencies
are overall positive, implying mechanical stability of the bcc lattice structure at ∼ 1.2 TC , i.e.,
well above the Curie temperature, in agreement with experiment. This corrects the results
obtained with the non-magnetic GGA which finds the bcc lattice to be dynamically unstable
even for the equilibrium lattice constant a = 2.883 Å. These results clearly demonstrate the
crucial importance of electronic correlations for an explanation of the thermodynamic and the
lattice dynamical stability of the paramagnetic bcc phase of iron [117]. Overall, the structural
phase stability, equilibrium lattice constant, and phonon frequencies of bcc iron obtained by
DFT+DMFT are in remarkably good agreement with the experimental data which were taken
at nearly the same reduced temperature T/TC [119]. Results obtained for the lattice stability of
Fe at even higher temperatures are discussed in Refs. [117, 111].
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7 Conclusions and outlook

By now the dynamical mean-field theory (DMFT) has developed into a versatile method for
the investigation of electronic systems with strong correlations. It provides a comprehensive,
non-perturbative and thermodynamically consistent approximation scheme for the investigation
of finite-dimensional systems, in particular for dimension d = 3, and is particularly useful for
the study of problems where perturbative approaches fail. For this reason the DMFT has now
become the standard mean-field theory for fermionic correlation problems. The generalization
of this approach and its applications is currently a subject of active research. Non-local ex-
tensions of the DMFT play a particularly important role [120, 81, 121]; see also the lecture by
H. Hafermann during this Autumn School. They make it possible to study and explain correla-
tion effects which occur on the scale of several lattice constants. Furthermore, investigations of
inhomogeneous bulk systems and of internal and external inhomogeneities, such as surfaces and
interfaces [122–127], lead to an improved understanding of correlation effects in thin films and
multi-layered nanostructures. This is particularly desirable in view of the novel functionalities
of these structures and their possible applications in electronic devices.
The study of correlated electrons out of equilibrium using the DMFT has become yet another
fascinating new research area. Non-equilibrium DMFT is able to explain, and even predict, the
results of time-resolved experiments [128] and will be discussed in the lecture by M. Eckstein
during this Autumn School.
In particular, the combination of the DMFT with methods for the computation of electronic
band structures (“DFT+DMFT”) has led to a conceptually new theoretical framework for the
realistic study of correlated materials.
The development of a comprehensive theoretical approach which allows for a quantitative un-
derstanding and prediction of correlation effects in materials, ranging from complex inorganic
materials all the way to biological systems, is one of the great challenges for modern theoret-
ical physics. The lecture notes of the “Autumn Schools on Correlated Electrons” held at the
Forschungszentrum Jülich since 2011 provide an excellent introduction into this very active
field of research [25].
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1 Introduction

In contrast to most other lectures in this Autumn-School series on Correlated Electrons, this
one will deal little with recent theories of how to describe and compute observables for corre-
lated materials, but mostly with insights derived a while ago from bands, not even quasiparticle
excitations, but merely Hohenberg-Kohn-Sham eigenvalues, Kohn’s “bastards of DFT”. After
scanning through previous year’s lectures and recent papers, I felt that this might not be entirely
inappropriate.

2 Periodic system of the elements

The most fundamental chemical insight ever derived from one-electron energies is Bohr’s theory
of the periodic system of the elements [1]. I therefore found it appropriate to start with a
reminder about the electronic structure of atoms (see also Refs. [2–5]).
Materials are made of atoms, and atoms are (almost) round. The electronic structure of an
atom can therefore be constructed from atomic orbitals, ϕl (εnl, r)Ylm (r̂)χσ (s), which are the
solutions of the one-electron Schrödinger equation in the spherically symmetric, self–consistent
potential, v (r), from the attractive protons in the nucleus and the repulsive (other) electrons in
the atomic shells. χσ (s) are the spin functions which are the eigenfunctions of ŝz, Ylm (r̂) are
the spherical harmonics which are eigenfunctions of l̂2 and l̂z, and the radial functions satisfy
the radial Schrödinger equations,

−
(
rϕl(εnl, r)

)′′
=
(
εnl − vl(r)

)
rϕl(εnl, r), with vl(r) ≡ v(r) + l(l + 1)/r2 (1)

(in atomic Rydberg units) with the boundary conditions that ϕ (r) be regular at the origin and
vanish at infinity. The potentials v (r) = vs (r) and vd (r) are shown in Fig. 3 for a neutral Pt
atom in weak lines.
For given l, the solutions of (1) are numbered in order of increasing energy, εnl, by the principal
quantum number, n, which takes the values l+1, l+2, . . ., because with this convention, the en-
ergy levels for a Coulomb potential, −2Z/r, are independent of l and given by εnl = −(Z/n)2,
Bohr’s formula from 1913, before quantum mechanics. The radial functions decay at large
distances as exp(−Zr/n) and the number of nodes in the radial function is n−l−1.
For a neutral atom with Z protons in the nucleus and Z electrons in the shells, the effective
charge defined in terms of the self-consistent potential through: Zeff (r) ≡ −rv (r) /2, decreases
from the value Z, towards 1 as r increases from 0 to ∞ due to the screening by the (other)
electrons. As a consequence, the 2 (2l + 1)-degeneracy of the attractive Coulomb potential is
lifted and the perturbation by the repulsive centrifugal potential, l (l + 1) /r2,will cause the one-
electron energies for the same n to increase with l : εns < εnp < εnd < ... Whereas the order
of the s- and p-energies is always such that εns < εnp < ε(n+1)s, the order of the d-energies
is such that ε(n+1)s < εnd when the nd-shell is empty, and such that εnp < εnd < ε(n+1)s

when the nd-shell is full. Analogously, εnd < ε(n−1)f when the (n− 1) f -shell is empty, and
ε(n−1)d < ε(n−1)f < εnd when the (n− 1) f -shell is full.
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Fig. 1: Periodic Table of the Elements. From Ref. [6].

If we now occupy the orbitals, of which there are 2(2l+1) per nl-subshell, with Z electrons in
order of increasing energy, we recover the Periodic Table, which has one entry for each value of
Z increasing in steps of 1 along one row after the other (Fig. 1). The rows are numbered by the
period, n, which is the principal quantum number of the outermost s-electron. As Z increases,
the first term of the radial potential,−2Zeff(r)/r+l(l+1)/r2, in Eq. (1) deepens and counteracts
the repulsive second term such that bound states occur if Z ≥ 5 (B), 21 (Sc), and 58 (Ce), for
l=1, 2, and 3, respectively. This leads to the insertion of the p-, d-, and f -series, whereby the
length of the period (number of one-electron states in the n-shell) becomes 2(lmax+1)2.
In the columns are the elements with similar chemical properties, and Fig. 1 gives the config-
uration, i.e., the numbers of electrons in the outer shells for the ground states of the neutral
atoms. With increasing l, the radial potential-well becomes more narrow and with it, the region
where εnl > vl (r), i.e., which is classically-allowed (see Fig. 3). This increased localization of
the orbitals with higher l leads to their decreased chemical activity and, hence, the very similar
chemical properties of the rare earths and of the actinides which are exclusively associated with
their outer s-, p-, and possibly d-electrons.
When, in the process of filling the nl-subshell, we move from one element to the next, the added
nl-electron will partly screen out the added proton. Specifically, the increase of Zeff (r) is 1 for
r in the region near the nucleus which is classically forbidden [vl (r) > εnl] for an nl-electron,
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Fig. 2: First ionization potentials as a function of Z. From Ref. [2].

trails off in the classically-allowed region, and vanishes outside. Hence, εnl will fall a bit, and
ϕl (εnl) will contract.
When the filling of the nl-subshell is completed and we start to fill into the next, n′l′-subshell,
the increase of Zeff (r) by unity does not start to trail off before r reaches the region allowed for
an n′l′-electron. If n′ ≥ n, this is outside the region of an nl-electron and εnl will therefore drop
sharply and ϕl(εnl) contract rapidly, the nl-shell thereby starts to become part of the core. The
Fermi level, εF , will jump up, from εnl to εn′l′ . This is what happens most dramatically when
going from ns2 np6 to ns2 np6 (n+1)s1, i.e., from an inert gas to an alkali metal, and far less
dramatically when going from ns2 to ns2 np1, i.e., from Be to B, from Mg to Al, from Zn to Ga,
from Cd to In, and from Hg to Tl. In the last three cases the upwards jumps are larger because,
here, also the full (n−1)d10 shell contracts. This shell structure is clearly seen in Fig. 2 showing
for increasing Z the experimental first ionization potential. In theory, this is the ground-state
energy of the positive ion minus that of the neutral atom. Neglecting multiplet effects and using
the transition-state potential [7], it is simply −εF .
For an nd-shell, εnd continues to drop after the nd band is full, i.e., when going from nd10(n+1)s1

to nd10 (n+1)s2, i.e., from Cu to Zn, from Ag to Cd, and from Au to Hg. This is because the
(n+1)s shell contracts as it gets filled and drags the nd shell along.
The abrupt behaviors observed when we start to fill into the n′l′-subshell do not occur if n′ < n,
because now ϕl′ (εn′l′) lies inside ϕl (εnl). This is the case at the beginning of a transition
series when going from ns2 to ns2 (n−1)d1, i.e., from Ca to Sc, from Sr to Y, from Ba to
La, or from Ra to Ac. Filling the more localized (n−1)d-shell, e.g., going from ns2 (n−1)d1

to ns2 (n−1)d2, hardly influences the ns energies and orbitals, εns and ϕs(εns). As ε(n−1)d

gradually drops, it will therefore at some stage reach εns whereby some of the electrons in the
ns-shell may be transferred into the (n−1)d-shell. After the filling of the (n−1)d-shell has
been completed, the filling of the ns shell will be resumed. The same holds for εnd and ϕd(εnd)
when filling the (n−1)f -shell in lanthanide or actinide series.
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The positions and widths of the sp- and d-bands in the elemental, closely-packed transition
metals follow the same trends as the one-electron energies and orbitals described above. Also
the relative positions of O p-bands and transition-metal d-bands in transition-metal oxides are
roughly in accord with the ionization potentials in Fig. 2. Periodic Tables of the elements
containing information about bands in solids may be found in Refs. [8–12] and [4].
The relativistic effects may for the purpose of conceptual simplicity and with little loss of accu-
racy be included by formally using the Pauli Hamiltonian,

H = −∇2 + v (r)− 1

c2

((
ε− v(r)

)2
+ v′(r)

∂

∂r
− v′(r)

r
2ŝ · l̂

)
. (2)

Of the relativistic terms (∝ c−2) the two first, the mass-velocity and the Darwin term are diago-
nal in the lmσ-representation and may therefore be included in the radial equation for ϕl (ε, r).
But the last, the spin-orbit(SO)-coupling term is not diagonal because

〈
l′m′

∣∣∣ 2ŝ · l̂ ∣∣∣lm〉 =

(
mδm′m

√
(l+m)(l−m+1) δm′(m−1)√

(l−m)(l+m+1) δm′(m+1) −mδm′m

)
δl′l (3)

in the ↑, ↓-representation. Since the atom is round, ̂ ≡ l̂ + ŝ is conserved, so that l̂2, ŝ2, ̂z,
and ̂2, are good quantum numbers whose eigenvalues are specified by respectively l, s = 1

2
,

µ = m± 1
2
, and j = l ± 1

2
. From:

j (j + 1) = ̂ · ̂ = l̂ · l̂ + ŝ · ŝ + 2ŝ · l̂ = l(l + 1) + 3/4 + 2 ŝ · l̂

we then see that

2 ŝ · l̂ = −(1 + κ) =

{
l

−(l + 1)
when j =

{
l + 1

2

l − 1
2

.

Changing to the Pauli spinor representation, ϕκ(ε, r)Yκµ(r̂σ), the radial equation for r ϕκ(ε, r)
is (1), but with

1

c2

((
ε− v(r)

)2 − v′′(r)

2
− v′(r)

r
+ (1 + κ)

v′(r)

r

)
(4)

subtracted from the potential, v (r).
The relativistic terms are seen to have their origin in the regions close to the nuclei where the ve-
locity of the electron is high. Hence, they increase with increasing probability that the electron
is near the nucleus; that is, with increasing Z (approximately ∝ Z2) for a given nl-shell, and
with decreasing n and l for a given Z. The first term in Eq. (4), which is caused by the increase
of the electron’s mass with velocity, is always lowering its energy. The second term, which may
be interpreted as the correction of the electron’s potential energy due to its finite extent of the
order of the Compton wavelength h/m0c, raises the energy of s-electrons, but is negligible for
higher l. Those two first terms are by far the largest. They can be treated essentially exactly
by exchanging the radial Schrödinger equation (1) by the radial scalar Dirac equation, which
is like the perturbative Pauli equation (4), but without its last, SO-coupling term [13]. That
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Fig. 3: Energies, ε5d, and potentials, v(r) and vd(r), entering the radial Schrödinger equa-
tion (1) for atomic and fcc Pt in respectively weak and solid lines. The potentials are lined up
close to the nucleus. MTO is the MT zero. S and SWS are respectively the MT and the WS
radius. The latter is denoted s in the following. 1 Ry=13.6 eV. From Ref. [15].

term, ξ ŝ · l̂, is then added as in the Pauli Hamiltonian (2), but the parameter, ξl (ε), is obtained
accurately from the proper two coupled radial Dirac-equations [14]. The transition-metal band
edges and the SO coupling parameters for the nd-bands shown respectively in Figs. 7 and 10 in
the next section were calculated using the radial Dirac equations.

Finally, a brief reminder about the many-electron wavefunctions and energies of atoms: The
configurations given in the Periodic Table specify the occupations of the open nl-subshells.
Due to the 2(2l+1)-fold m- and σ-degeneracy of such a shell, several Slater determinants cor-
responding to the various possible occupancies ofm and σ may be formed for this configuration.
Since the Hamiltonian is invariant to all rotations, the proper linear combinations of Slater de-
terminants are those which correspond to definite values of L̂2, L̂z, Ŝ2, and Ŝz, and the energy
of such an L-S term, designated 2S+1L, is independent of ML and MS . The terms differ in
energy by intra-atomic Coulomb energies, i.e. eVs. The (2L+1)(2S+1)-fold degeneracy of a
term will be lifted by the SO coupling, in the presence of which L, S, J , and MJ , rather than
L, S, ML, and MS , are good quantum numbers. Here J is the quantum number for the length
of Ĵ ≡ L̂ + Ŝ. An atomic level is thus designated by the symbol 2S+1L2J+1, and the levels of a
given term form its multiplet structure.

For a given configuration the state of the lowest total energy usually follows from the three
Hund rules which dictate that one should first choose the maximum value of S consistent with
the Pauli principle, then the maximum value of L, and finally the minimum value, |L− S|, of J
if the shell is less than half full, and the maximum value, |L+ S|, of J if the shell is more than
half full.
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3 Band structures of the elemental metals

Referring to Walter Harrison’s textbook [4] for a more comprehensive view, I shall concentrate
on the elements in the left part of the periodic table. This part includes the one with d- and f -
electron elements. They become either superconducting (“itinerant”) or magnetic (“localized”)
at low temperature. A table reorganized in such a way that this separation becomes clearly
visible and exhibits the elements of particular interest, namely those (Ce-Pr, Pu-Am, Mn-Fe,
Rh-Co, Pd-Ni) around the border line, was reproduced as Fig. 1 in Richard Martin’s lecture
notes and discussed there [16].

3.1 Separating structure and potential

The structures of the alkali, alkaline earth, transition, noble, rare-earth, and most actinide metals
are close- or closely packed with 12 (fcc, hcp, dhcp) or 8 (bcc) nearest neighbors at ambient
temperature and pressure. The Wigner-Seitz (WS) cells are regular polyhedra with 12 or 8
faces and – as “seen” by an s-, p-, or d-electron with at most 4 orbital lobes – they are almost
spherical, and so is the crystal potential, V(r), inside a WS cell. If we approximate this potential
by a superposition of spherically symmetric potential wells, v(r), centered at the atomic sites:
V(r) ≈

∑
R v(|r−R|), each well can have short range. If we force it to vanish outside the

sphere inscribed the WS cell, this forces the crystal potential to take the form of a muffin-
tin (MT). Such potentials are used to generate the basis sets in the Korringa-Kohn-Rostocker
(KKR) and (linear) augmented plane-wave (L)APW methods of band theory [5, 17]. By being
able to handle slightly overlapping potential wells, muffin-tin orbitals (EMTOs, LMTOs, or
NMTOs) are, individually, more accurate than APWs [18].
The full lines in Fig. 3 show v(r) and vd(r) for the MT potential in fcc Pt, lined up near the nu-
cleus with the weak lines showing those potentials in a neutral Pt atom. In elementary, closely-
packed solids where the WS cells are neutral and nearly spherical, v(r) bends over towards the
value of the self-potential, −2/s, because the charge which in the neutral atom was outside the
WS sphere is compressed into it [19]. Adding now the centrifugal repulsion, we see that vd(r) –
rather than confining ϕd(ε5d, r) as in the atom– develops a barrier through which the 5d states in
the solid can leak out, thus causing the atomic 5d-level to broaden into a band (cross-hatched).
To understand the details of this, we need to consider how ϕl(ε, r) depends on ε in the neigh-
borhood of the atomic eigenvalue, εnl, as dictated by the radial equation (1) and the shape of
vl(r). This is illustrated in Fig. 2 of Ref. [18]. The aim is to find the energies for which we can
join linear combinations of partial waves,

∑
Rlm ϕl(ε, rR)Ylm(r̂R)cRlm [notation: rR ≡ r−R

and rR ≡ |rR|], with different lm and R smoothly across the boundaries of the WS cells and
thus form solutions of the Schrödinger equation for the solid. If it is a crystal with one atom
per cell, the linear combinations in neighboring cells separated by a translation t should merely
differ by the Bloch phase exp(ik · t). This is how Wigner and Seitz posed the band-structure
problem, but it proved difficult to solve in that way. However, the generalized WS rules, used in
the renormalized-atom approach [19], stating that there will be a band of l-character extending
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Fig. 4: Bare canonical d-bands, i.e., the eigenvalues of SR′l′m′,Rlm (k) , for the hcp structure
with c/a =

√
8/3. From Ref. [12].

from the energy, Bl, where ϕl(r) comes in flat to the WS sphere, i.e., ϕ′l(Bl, s) = 0, to the
energy, Al, where ϕl(r) has a node at the sphere, i.e., ϕl(Al, s) = 0, have proved quite accurate
and most useful.
The atomic-sphere approximation (ASA) [20] solved the problem to the extent that charge- and
spin-selfconsistent – and thus DFT – calculations could be carried out. It specified anisotropic
k-dependent boundary conditions for the radial logarithmic derivatives on the WS sphere,

Dl(ε) ≡ D{ϕl(ε, s)} ≡
sϕ′l(ε, s)

ϕl(ε, s)
, (5)

by the set of linear, homogeneous equations∑
lm

(
Sl′m′,lm(k)− Pl′(ε) δl′l δm′m

)
clm = 0 (6)

for the coefficients, clm, of the local partial-wave expansions. In the diagonal of the secular
matrix are l-dependent, ever-increasing potential functions of energy, which are

Pl(ε) ≡ 2(2l+1)
Dl(ε) + l + 1

Dl(ε)− l
≈ ε− Cl

∆l

[
1 + γl

ε− Cl
∆l

]−1

≡ 1

γl

ε− Cl
ε− Vl

, (7)

in terms of the ever-decreasing logarithmic-derivative functions (5). In fact, dDl(ε)/dε =

−〈ϕ2
l (ε)〉/sϕ2

l (ε, s), as follows from partial integration of 〈ϕ(ε′)| − ∇2 + v(r) − ε|ϕ(ε)〉 = 0

and ε′ → ε. On the right-hand side of the approximation (7), the potential functions are
parametrized in terms of potential parameters for the center of the l-band, Cl, its width, ∆l, and
its distortion, γl, or, alternatively, the square-well pseudopotential parameters, Vl ≡ Cl−∆l/γl,
and the band-mass parameters, µl and τl (= 1 for free electrons), to be defined in Eq. (11).
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The matrix Sl′m′,lm(k) is the bare canonical structure matrix, which depends on the Bloch vector
k, but is independent of the energy and the scale of the lattice. Each diagonal block, Slm′,lm(k),
can be diagonalized, once and for all, yielding the so-called canonical bands, Sli(k), which
upon scaling via Pl (ε) become the unhybridized l-bands, εli(k). In Fig. 4 we show the ten
canonical d-bands for the hcp structure with two atoms per primitive cell, the most common
structure of the elemental metals. Obviously, the detail displayed here is way beyond the WS
rules, which merely state that the l-band extends from Dl = 0 to −∞, which rescales to Pl
extending from −2(2l+1)(l+1)/l to 2(2l+1), i.e., from −15 to +10 for the d-band, from −12

to +6 for the p-band, and from −∞ to +2 for the s-band. This agrees surprisingly well with
the more accurate values taken at the edges of the canonical bands, albeit less well in the more
open bcc structure. This may be seen in Figs. 4 and 5, and in Refs. [8, 10–12]. The center of
gravity of a canonical band, i.e., its first moment integrated over the Brillouin zone, is zero, and
so is its average for any k-point, except for the canonical s-band, and for the p-bands at k=0.
Knowledge of the potential parameters, tables of which may also be found in Refs. [8, 10, 11]
and with most detail in [12], allows one to construct the unhybridized energy bands by placing
them at the respective energies, Cl, scaling them by, ∆l, and distorting them by γl. Finally,
the s-, p-, and d-bands belonging to the same irreducible representation (the numbers in Fig. 4)
should be allowed to hybridize by taking the off-diagonal blocks of the structure matrix into
account. This is illustrated in Fig. 6, but since the distortion of the s-band and its hybridization
with the p-band are relatively large, thus developing into a nearly free-electron like sp-band,
the unhybridized bands shown here were defined with respect to the screened structure matrix:
Sγ ≡ S [1− γS]−1. The quantities in this screening equation are matrices and γ is diagonal. In
the γ-representation, the one-electron Hamiltonian takes the simple, orthogonal tight-binding
form [12, 22]

Hγ
R′l′m′,Rlm(k) =

√
∆R′l′ S

γ
R′l′m′,Rlm(k)

√
∆Rl + CR′l′ δR′R δl′l δm′m. (8)

For completeness we have included an index, R, labelling the sites, R, of the atoms in the
primitive cell. For the hcp structure considered in Fig. 4, the two sites are identical, so that the
potential parameters are independent of R, but the dimension of structure matrix is doubled.
The ASA brought the realization that the bewilderingly complication of the band structures of
d- and f -band materials is primarily of structural origin and can be expressed as canonical
bands or hopping integrals. The potential and, hence, the approximations for exchange and
correlation, merely decide the positions and widths of – and the hybridizations between – these
s-, p-, d-, and possibly f -bands. This partly explained why a standard potential construction
could work so well for Fermi surfaces and low-energy excitations [10, 23]. The original KKR
method, has the form (6), but its structure matrix has long |R′−R|-range end thereby depends
strongly on energy so that obtaining the band structure, εj (k), requires a complicated search
for the roots of a secular determinant.
The insight leading to the ASA (6) was that the relevant energies, ε, are less than ∼2 Ry above
the potential, −2/s, in the region between the atoms (Fig. 3), whereby the corresponding wave-
lengths, λ ≡ 2π/κ & 2π/

√
2 a.u., exceed typical interstitial distances in closely packed mate-
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FCC 
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t2g 

BCC 

t2g 
eg 

FERMI SURFACE OF FCC Pd 

t2g 

eg 

FCC 

Fig. 5: Densities of states (DOS) for the bcc, fcc, and hcp
(
c/a =

√
8/3
)

bare canonical d-
bands and their separation into eg and t2g projections for the bcc (bottom left) and fcc (bottom
right) structures. From Ref. [8]. The open, heavy-hole FS-sheet in fcc Pd. The van Hove
singularities caused by the saddlepoints in this 5th band at P1 and P2, lying respectively 2 and
13 mRy below εF , bracket the large DOS peak at the top of the fcc d-bands. From Ref [15]. A
tiny hole pocket (not shown) caused by spin-orbit splitting at L existed in the calculation and
was observed later [21].

rials, and therefore need not be accurate. Similarly, partial waves with l . 3 cannot distinguish
between touching and slightly overlapping MT spheres. The simplest choice was therefore to
join a solution of the Laplace equation smoothly onto the partial wave at the WS radius:

ϕl(ε, r)

ϕl(ε, s)
=
Dl(ε) + l + 1

2l + 1

(
r

s

)l
+
l −Dl(ε)

2l + 1

(
r

s

)−l−1

and then subtract the function which is irregular at infinity

χl(ε, r) ≡ ϕl(ε, s)


ϕl(ε,r)
ϕl(ε,s)

− Dl(ε)+l+1
2l+1

(
r
s

)l
for r ≤ s

l−Dl(ε)
2l+1

(
r
s

)−l−1
for r ≥ s

(9)

to obtain a regular function which decays as an electrostatic 2l-pole field. This is essentially
the 1st-generation MTO whose tail is trivial to expand around other sites, thus giving rise to
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Fig. 6: Bcc vanadium. a): Unhybridized s(dotted)-, p(stippled)-, and d(full)-energy bands,
Cl + ∆lS

γ
li (k). b): Hybridized bands. Here, γs = 0.425, γp = 0.0907, and γd = 0.0095. From

Ref. [12].

the canonical structure matrix. Expressed in real space as two-center hopping integrals between
two MTOs at distance d, with the z-axis chosen along the inter-atomic vector, R−R′, and M
being the common azimuthal quantum number,

Sl′lM = (−1)l+M+1(l′ + l)! 2

√
2l′ + 1

(l′ +M)! (l′ −M)!

√
2l + 1

(l +M)! (l −M)!

(
s

d

)l′+l+1

. (10)

For 1st-generation MTOs the two-center Slater-Koster integrals [24] take the factorized form
Vl′lM =

√
∆R′l′m′ Sl′l m−m′

√
∆Rlm. For a general direction of the z-axis, e.g., the global z-axis

in a crystal, the bare structure matrix is given analytically in Ref. [14]. Using the real-valued
cubic harmonics listed on pp. 7.38/39 in Ref. [24], instead of the spherical harmonics, the bare
canonical two-center integrals are given in Table II of Ref. [25], which – with Vl′lM as given
above – is identical with those in Ref. [24].
The condition that a linear combination of MTOs solves the Schrödinger equation is then, that
inside any sphereR′ and for any l′m′, the sum of the tails from all other sites cancel the artificial,
regular Laplace solution in Eq. (9). Despite the extreme simplicity of expression (10), the long
range of the bare s- and p-MTOs (9) is for most purposes unpractical, and this is the reason why
screened Laplace solutions were chosen for the tails of the 2nd-generation MTOs [12, 22].
Fig. 7 shows the behavior of the Fermi level and the DFT-LDA band edges, Ad, Bd, Bs, and Bp

across the 3d 4sp, 4d 5sp, and 5d 6sp series with respect to the zero of electrostatic potential in
the infinite solid. The sp-bands are so wide that their tops, As and Ap, are beyond the frame
of the figure. The most significant trends follow from the filling of the subshells, like for the
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Fig. 7: Band edges in the elemental, close-packed (n−1)d ns np metals. Bl bottoms of the s
(red), p (green), and d (blue) bands. Ad (dark blue) top of the d band. EF (black) Fermi level.
The filled part of the sp and d bands are respectively dotted and cross hatched. The zero of
energy is the electrostatic potential at the WS sphere. Lu rather than La was taken as the 3rd
5d metal. DFT-LDA and LMTO were used in the calculations. From Table III in Ref. [12].

elements (Figs. 1 and 2): First, and most dramatically, the filling of the ns band going from
the alkalis to the alkaline earths causing Bs, Bp, and Bd to drop sharply and the ns orbital to
contract. Subsequently, the gradual development of the (n−1)d-band from being empty and
free-electron like in the alkali- and alkaline earths, to being an occupied semi-core band beyond
Cu, Ag, and Au, i.e., in Zn, Cd, and Hg. When going from the alkaline earths to the first tran-
sition metal, Bp and Bd move below the Fermi level, but while Bd and Bs continue to drop,
Bp moves up again and more or less stays slightly above εF throughout the transition series.
The shape and occupation of the nearly-free-electron ns np-band thus stay fairly constant. The
Fermi level follows a parabolic, downwards curving trend which results from the combined
effects of filling-up the d-band and lowering its center of gravity. The internal work function,
−εF , differs by the surface dipole from the external work function, which experimentally in-
creases from 3.1 eV in Y to 5.5 eV in Pd, as an example, while −εF merely increases by 0.4 eV
from 2.3 to 2.8 eV. The experimental ionization potential for atoms shown in Fig. 2 increases
from 6.5 to 8.5 eV [26].

Included in the LDA energies in Fig. 7 is the solid-state effect that the filling of first the ns- and
then the (n−1)d-bands causes the lattice to contract (Fig. 8) and this, itself, causes the bands to
broaden. The broadening is most visible for the d-bands whose bandwidth, Ad − Bd = 25∆d,
and reaches its maximum at respectively V, Nb, and Ta. Going from one period to the next,
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Fig. 8: Equilibrium WS radii for the elemental alkali, transition, and nobel metals. Open dots
are the experimental values. The line and the full dots are the results [12] of LDA LMTO [14,26]
calculations. The open triangles are LSD calculations for Fe, Co, and Ni. From Ref. [12].

i.e., increasing n, makes the orbitals expand and with them, the lattice and the bandwidths.
Now, the energy of an electron, free with respect to a flat potential Vs (≡ Bs) is purely kinetic,
and its band therefore scales like s2. In Fig 9, we therefore plot for the 4d 5sp series the filled
free-electron bandwidth s2(εF − Vs), which is seen to be more constant than εF in Fig. 7. The
s2(Cd − Vs)-measure of d-band position, together with the inverse of the mass at the center
of the d-band, Eq. (11), clearly exhibit the drop and narrowing of the d-band with respect to
the sp-band. Fig. 9 finally shows the behavior of the square-well pseudopotentials Vl, and the
inverse of the band masses, τl, at the respective Vl

1

µl
≡ s2∆l =

1

2
s3ϕ2

l (Cl, s) and
1

τl
=

1

2l + 3
s3ϕ2

l (Vl, s) . (11)

These inverse masses are proportional to the respective probability amplitudes at the WS sphere,
i.e., between the atoms. Since the partial waves are normalized to unity in the WS sphere, this
means that, had the partial wave been as in the atom, the band mass would be proportional
to the (re)normalization integral over the WS sphere [19]. The bottom of the 5s-band lies
well above the 4f -pseudopotential which, itself, is close to the potential ∼ −2/s at the WS
sphere. Moreover, the 5s-mass is significantly smaller than unity and attains a minimum, as do
(Vf − Vs) s2 and (−2/s− Vs) s2, near the middle of the series. This means that the 5s-electron
is excluded from the core region (orthogonalization hole). For a further discussion of this point
and other trends in the 4d 5sp series see Ref. [9].
The relativistic corrections (4) originate close to the nuclei and are negligible between the atoms.
But this does not mean that their effects in solids are the same as in atoms: In the ASA we
may, initially, normalize the solution, ϕl (ε, r), of the radial equation to have the same behavior
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Fig. 9: Band positions relative to the bottom of the s-band, Bs=Vs, in dimensionless units,
and intrinsic band masses, τl and µd, on a reciprocal scale, in the 4d 5sp-series; see text.
Open circles from the Mattheiss-Slater [27] construction (from Ref. [8]) and full lines from
the LDA [26] (from Ref. [10, 12]). For Rb, Sr, and Ag, the LDA yield Fermi surfaces in better
agreement with experiments.

near a given nucleus, i.e., integrate the radial equation outwards with the same initial condition
regardless of the surroundings and the energy. In the solid, ϕl (ε, r) must then be (re)normalized
to inside the WS sphere [see, e.g., Eq. (11)], and this makes the magnitudes of the relativistic
effects larger in the solid than in the atom by a factor of approximately 1/ (1− qnl), where
qnl is the fraction of the atomic nl-electron which lies outside the WS sphere. This fraction is
about 0.5 for s-electrons and less than 0.1 for d-electrons. The partial-wave renormalization
furthermore causes the magnitude of the relativistic effects in the solid to increase from the
bottom (Bl) to the top (Al) of the band, and this increase is nearly a factor two! The width
of the l-band is thereby decreased by the relativistic shifts, but increased by the SO splitting.
When going beyond the ASA, such renormalization effects are described by the overlap of the
MTOs (see Fig. 3 in Ref. [18]).

Of the relativistic corrections, the shifts are the most important and they have been included in,
e.g., Figs. 7 and 9. The downwards shift of the center of the ns-band (due to the mass-velocity
minus Darwin terms) with respect to the center of the (n−1)d band (due to mass-velocity),
Cns − C(n−1)d, is about 15 mRy, 75 mRy, and 250 mRy in the middle of the 3d-, 4d-, and 5d-
series, respectively. As a result, the number of non-d-electrons increases from 1.50±0.10 e/atom
in the 3d- and 4d-series to 1.75 ± 0.15 in the 5d-series. Here, the smaller/larger number refers
to the beginning/end of the series. Note also that the bottom, Bp, of the p-band is occupied in
the second half of the 3d- and 5d-, but not in the 4d-series.
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Fig. 10: Left: LSD [26] Stoner parameter, I , at εF calculated [12] with the LMTO method and
using the procedure of Janak [28]. Right: Spin-orbit coupling parameter ξd (Cd) for the center
of the d-band in elemental transition metals as a function of Z2. Note that ξd (ε) increases by
about a factor 2 from the bottom to the top of the d-band. From Ref. [12].

The SO coupling parameters shown in Fig. 10 are typically one order of magnitude smaller
than the relativistic shifts. Moreover, for crystals with inversion symmetry, the SO coupling
cannot split the two spin bands and therefore gives rise to splittings of first order in ξ only in
small regions of k-space near points of degeneracy. SO coupling is important near the top of
the d-bands where the bands have t2g character (see Fig. 5).
The abrupt increase in the size of the relativistic effects seen in Figs. 7 and 10 between the
2nd (Ba) and 3rd (Lu) 5d-elements is caused by the jump of Z due to the insertion of the 14
Lanthanides. All of those are, contrary to the case for the atoms (Fig. 1), trivalent 5d-metals
(4fn5d16s2) with the exceptions of divalent Eu (4f 76s2) and Ce (4fx5d2−x 6s2), whose α-γ
transition was discussed by Richard Martin in last year’s lecture notes [16]. In this connection
it should be mentioned that the actinides are 5fn6d17s2-metals whose 5f -electrons are itinerant
in the first- and localized in the second part of the series.
In the 60ies and 70ies, energy bands computed using the standard, non-selfconsistent, Mattheiss-
Slater construction of the crystal potential [27] were found to give surprisingly good agreement
between experimental and computed Fermi surfaces, and useful optical spectra for nearly all
elemental metals in the 4d- and 5d-series [10]. When in the late 70ies and early 80ies it became
possible to perform selfconsistent DFT calculations [9, 10, 29–31], it turned out that one and
the same local exchange-correlation potential [26] not only gave “bastard” bands which were
nearly identical with those obtained with the Mattheiss-Slater construction (see Fig. 9), but also
gave what DFT was designed for: good total energies, or rather: good total-energy differences,
e.g., lattice constants, structures, trends, and last, but not least, Car-Parrinello molecular dy-
namics [10, 12, 31–33]. Towards the end of the 80ies DFT was accepted in a large part of the
condensed-matter community and rapidly spreading beyond [23].
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3.2 Force theorem, pressures, and structures

The cohesive properties (at T=0) can be computed from the total-energy. But this provides
little insight, because it is expressed in terms of largely cancelling quantities, the selfconsis-
tently calculated Coulomb energies of the electron-electron and proton-proton repulsions and
of the electron-proton attraction, plus the kinetic energy of the electrons. However, the cohe-
sive properties only involve total-energy differences and these are given to first order by the
difference of the one-electron energies calculated for frozen one-electron potentials (i.e., the
difference of kinetic energies avoids double counting of the e-e interactions) plus the difference
of Madelung energies. This so-called force theorem was originally proved within the LDA in
Refs. [10, 34, 35]. With appropriate definitions it holds in general, but only to 1st order [36].
In the following, I shall illustrate this by application to pressure-volume relations and crystal
structures of the closely-packed elemental metals.

3.2.1 Partial pressures

Neglecting the zero-point motion of the nuclei, the pressure, P , which must be applied in order
to keep the crystal in equilibrium at a given volume, V , is the change of the total energy with
uniform compression (see top left part of Fig. 11). In terms of the equation of state, P (V), the
equilibrium atomic volume, V0 = (4π/3) s3

0, is determined by P (V0) = 0, the bulk modulus by
B = −dP /d lnV|V0 and the cohesive energy per atom by

Ecoh = −
∫ ∞
V0
PdV = −

∫ ∞
s0

3PVd (ln s) ,

where s0 is the equilibrium WS radius. With the force theorem, the pressure is most conve-
niently calculated by “peeling the skin off” the self-consistent, cellular potential, moving the
frozen potentials together in the compressed structure, and recalculating the sum of the one-
electron energies. To the change of the latter, should finally be added the change of electrostatic
energy between the cells. I.e.

3PV ≡ −dEtot

d ln s
= −

occ∑
ik

δεi (k)

δ ln s
− δMad

δ ln s
, (12)

where δ indicates the derivative for frozen potentials in the first term and frozen charge densities
in the second [36]. For closely-packed elemental solids, the latter may often by neglected so
that only the one-electron energies remain.
In the ASA (6), only the logarithmic-derivative functions (5) change because they must be re-
evaluated at an infinitesimally smaller WS radius. What happens to the band edges, Bl and Al,
may be understood from the bottom left part of Fig. 11, where the bonding and antibonding
partial waves, ϕl(Bl, r) and ϕl(Al, r), are shown for cases where Bl and Al lie above the value
vl(s) of the effective potential at the sphere (dotted) and where they lie below (full) [see Fig. 3].
In the dotted case, the region between the atoms is classically allowed so that, according to
the radial Schrödinger equation (1), rϕl(ε, r) curves towards the r-axis, whereas in the full,
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Fig. 11: Top left: Total and partial pressure-volume curves (schematic). The bulk modulus is
the slope of the curve, the equilibrium volume is the intersection with the volume axis, and the
cohesive energy is the area below the curve from the intersection to infinity. Bottom left: Radial
wave functions (normalized for r → 0), ϕl(r), at the bottom (Bl) and top (Al) of the l-band.
The dotted/full lines are for cases whereBl andAl are above/below the effective potential, vl(s),
at the WS sphere. The sign of the partial pressure, Pl, is indicated. Right: Partial pressures
calculated with LDA LMTO [12] for the 5sp 4d and 6sp 5d series as functions of the percentage
deviation from the experimental WS radius at zero pressure. The calculated deviations are
indicated by “th”. From Ref. [12].

classically forbidden case, rϕl(ε, r) curves away from the axis and the electron must tunnel out
of the WS sphere in order to get to a neighboring atom.

Now, under compression we need to re-install the bonding/antibonding boundary conditions
at s−ds and to use the fact proved below Eq. (7), that the logarithmic derivative is an ever-
decreasing function of energy. From Fig. 11 we see that if s is classically allowed, the slope
ϕ′l(Bl, s−ds) is positive, so that in order to re-install the zero-slope condition, we must increase
the energy, i.e., the bottom of the l-band goes up upon compression, and this means that it adds
to the pressure, Pl(Bl), i.e., will tend to press the nuclei apart. This is the case for electrons
in bonding states at the bottom of broad bands such as s and p, because their centrifugal re-
pulsion vanishes, or is small, and because the bandwidth is proportional to [−dDl(ε)/dε]

−1 =

sϕ2
l (ε, s)/〈ϕ2

l (ε)〉, the probability of being at the sphere. If, on the other hand, the interstitial
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region is classically forbidden, ϕ′l(Bl, s − ds) is negative and the bottom of the l-band there-
fore goes down in energy upon compression. Its contribution to the pressure is negative, i.e.,
the bonding electrons at the bottom of narrow bands are attractive, they tend to keep the nu-
clei together. This is the case for transition-metal d-bands. At the top of an l-band, the slope
ϕ′l(Al, s − ds) is always negative, so that in order to re-install the ϕl(Al, s) = 0 condition, we
must always increase the energy, and this means that the antibonding electrons at the top of an
l-band are always repulsive, i.e., press the nuclei apart.
The right-hand side of Fig. 11 shows for the metals in the 4d- and 5d-series the partial pressures
as functions of the percentage deviation of s from the experimental low-temperature values. The
values where the total pressure vanishes, the theoretical WS radii, are indicated by arrows. The
experimental and theoretical absolute values were shown in Fig. 8. The picture of the bonding
emerging is that the d-electrons contract the crystal against the repulsion from the “more free”
sp-electrons. This attraction increases until the bonding states in the lower part of the d-band
are full and filling of the antibonding states in the upper part starts. In Au, the d-electrons are
seen to be repulsive (hard core repulsion) while in Ag, they are still attractive. We also note that
the bulk moduli in the 6sp 5d-series are larger than those in 5sp 4d-series. Had it been possible
to decompose the pressures according to an spd-set of local orbitals, rather than partial waves,
the small attractive f -pressures would have been associated with the tails of these orbitals.
The ASA pressure relation was originally derived from the virial theorem and we can get to
the form given by Pettifor [37] by using the radial Schrödinger equation (1) to express the
derivative, δDl(ε)/δ ln s, of the logarithmic-derivative function (5) as

−s
(
s ϕ′

ϕ

)′
= −s(s ϕ)′′

ϕ
+
s ϕ′

ϕ
+

(
s ϕ′

ϕ

)2

=
(
ε− vl(s)

)
s2 +D(ε)

(
D(ε) + 1

)
.

Note in passing, that since Dl(Dl + 1) = (Dl + l + 1)(Dl − l), the contribution to the pressure
by not only electrons at the bottom, Bl, but also at the center, Cl, of the band, and at the energy,
Vl, of the square-well pseudopotential is proportional to ε − vl(s). Now, the energy, εl(D),
corresponding to the boundary condition D at s, i.e., the function inverse to Dl(ε), is

−δεl(ε)
δ ln s

= −δDl(ε)

δ ln s

(
dDl(ε)

dε

)−1

=
((
ε− vl(s)

)
s2 +

(
Dl(ε) + 1

)
Dl(ε)

)
s ϕ2

l (ε, s)

where ϕl(ε, r) is normalized to 1 in the WS sphere. Multiplication by the l-projected DOS and
integration up to the Fermi level yields Pettifor’s pressure relation. The form (12) is more intel-
ligible and, using the Hamiltonian (8) or the full LMTO version, requires the δ ln s-derivatives
of the potential parameters given analytically in, e.g., Ref. [12].

3.2.2 Structures

The structural sequence for the non-magnetic transition metals at low temperature and ambient
pressure is: hcp (Sc, Y, Lu), hcp (Ti, Zr, Hf), bcc (V, Nb, Ta), bcc (Cr, Mo, W), hcp (Tc, Rs), hcp
(Ru, Os), fcc (Rh, Ir), and fcc (Ni, Pd, Pt). Already in the late 60ies [39], it had been pointed out
that this reflects a trend in the sum of the one-electron energies, but the force theorem made the
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Fig. 12: Left: (a) First moment of the canonical d-band density of states in Fig. 5 as function of
its occupancy, nd. Note that negative values are upwards so that the curve resembles that of the
cohesive energy. (b) The bcc-fcc and hcp-fcc structural differences, now with positive moments
upwards. From Refs. [30, 10]. Right: Structural energy differences calculated by LDA-LMTO
for the 4sp 3d, 5sp4d and 6sp 5d series at the experimental equilibrium volumes and plotted as
functions of the calculated number of d-electrons. From Ref. [38].

computational procedure accurate and more generally applicable. Now, if we assume that the
difference between the closely-packed structures, at conserved atomic volume, is a 1st-order
effect, we can use the force theorem with the same atomic-sphere potential in all structures,
and if we use the ASA, the Madelung energy vanishes because the spheres are neutral. If we
finally neglect the s- and p-bands and consider merely the bare, canonical d-bands, the structural
energy difference in units of ∆d is simply the difference between the 1st canonical moments,∫ S(nd)

SNd(S) dS, with nd ≡
∫ S(nd)

Nd(S) dS,

shown to the left in Fig. 12 as a function of the number, nd, of bare, unhybridized d-electrons per
atom. The canonical densities of states, Nd(S), were shown in Fig. 5 and S(nd) is the canonical
Fermi level. As mentioned before, the 1st moment of a bare canonical band always vanishes
when the band is full. HadNd(S) in Fig. 5 been rectangular, the first moment would have been a
parabola resembling the behavior of the cohesive energy as a function of the d-band filling [40].
But now, the structural differences shown at the bottom of Fig. 12 clearly reproduce the observed
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structural sequence. The characteristic two-peak structure in the bcc DOS, makes this structure
stable for materials with the Fermi level in the gap between the peaks. By properly including
the s- and p-bands and the hybridization with them, as well as the Madelung- and the so-called
combined-correction to the ASA, i.e., by doing proper LDA-LMTO calculations, Skriver [38]
obtained the results shown in the right-hand panel. Independent, exhaustive LAPW total-energy
calculations [41] for merely bcc and fcc Cr, Mo, and W agree within 2 mRy with Skriver’s
results, thus confirming his approach. But also the ten-times-smaller energy differences between
the hcp and fcc metals, having merely different stackings along (111) and, hence,Nd(S)-shapes,
give structures in agreement with experiments. Skriver also considered La, Ce, and Lu, as well
as Th and Pa. In fact, of the 39 non-magnetic cases studied, only for Na, Au, Yb, and Pa, the
correct structure was less stable than the one calculated.
Using the same methodology as Skriver, McMahan and Moriarty studied the pressure-induced
phase transitions between the closely-packed structures of Na, Mg, Al, and Si, and found these
transitions to be driven by the hybridization of the occupied sp-bands with the bottom of the
3d-band moving down with pressure. Earlier, and in a similar way, Duthie and Pettifor [42]
had explained the Lanthanide structural sequence: hcp, Sm-type, double-hcp, fcc, observed for
decreasing atomic number and increasing pressure as a result of the increasing population of
the falling 5d-band.

3.3 Band magnetism

The generalization of DFT to a spin-DFT [26, 43] was a first step in “helping” the density
functional, through symmetry breaking, to treat exchange and correlation more accurately than
in the LDA, which merely uses the xc-energy density, εxc(ρ), calculated for the homogeneous
electron gas as a function of its density. In spin-DFT, the independent variable is the space-
diagonal matrix element of the first-order density matrix, ρ(rσ, rσ′), and the self-consistency
condition for the one-electron potential in the Schrödinger equation, which generates the density
as:

ρ(rσ, rσ′) ≡
∑
k

θ(εF − εk)ψ∗k(rσ)ψk(rσ
′) , (13)

is given by

V (rσ, rσ′) = Vext(rσ, rσ
′) + VC(r) + Vxc(rσ, rσ

′) . (14)

Here, Vext is the Coulomb potential of the protons plus an external spin-dependent potential,
such as: −sgn(σ)µBH with sgn(↑↓) = ±, from a uniform magnetic field, VC is the classical
Coulomb potential from all electrons, and Vxc(rσ, rσ′) is the exchange-correlation potential. In
case the potential (14) has translational symmetry, the state-label k is ik. The density generated
self-consistently from this potential minimizes the total-energy functional.
In its local approximation (LSD), spin-DFT uses εxc (ρ↑, ρ↓) for a homogeneous electron gas
subject to a homogeneous magnetic field which creates a density, ρ = ρ↑ + ρ↓, and a spin
density, m = ρ↑−ρ↓. The corresponding exchange-correlation potential is diagonal in spin and
equals ∂(ρ εxc(ρ↑, ρ↓)]/∂ρσ ≡ µxc σ(ρ↑, ρ↓). Expansion around the non spin-polarized values,
ρ↑ = ρ↓ = ρ/2, i.e., in powers of m yields εxc(ρ↑, ρ↓) = εxc(ρ) + ε′′xc(ρ)m2/4 + O(m3), and,
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hence, for the exchange-correlation potential

µxc ↑
↓
(ρ,m) = µxc(ρ)±mρ ε′′xc(ρ)/2 +O(m2). (15)

Here, µxc and ε′′xc(ρ) are both negative, so that increasing m = ρ↑− ρ↓ lowers the potential seen
by a ↑-electron and rises it for a ↓-electron, i.e., exchange tends to align the spins. This leads
to Hund’s 1st rule for degenerate levels (an open shell) in atoms and since the Pauli principle
prevents multiple occupation, level-separation works against spin-polarization.

3.3.1 Ferromagnetism

For a para- or ferromagnet (without SO coupling) in the presence of a uniform magnetic field,
which provides the Zeeman splitting ±µBH, the band-structure problem decouples into sepa-
rate Schrödinger equations (14), one for each direction of spin. By filling the states to a com-
mon Fermi level (13) and solving selfconsistently, the zero-temperature spin-magnetizations,
m = 〈m(r)〉, the uniform susceptibilities, µBdm/dH, and magnetic contributions to the cohe-
sive properties may be computed [30].
This was done in the mid-70ies using the ASA [29] and the results were interpreted in terms of
Stoner theory with the exchange constant, I , obtained from the Stoner equation: Cd↓ − Cd↑ =

mI + 2µBH using the computed magnetization and splitting of the centers of the d-bands.
Gunnarsson [44] used the spin-splitting of the xc-potential to order m in Eq. (15) and treated it
by 1st-order perturbation theory on top of the paramagnetic bands. Hence, the band-splitting is

εj↓(k)− εj↑(k) =
〈
ψjk(r)

∣∣−ρ(r) ε′′xc[ρ(r)]m(r)
∣∣ψjk(r)

〉
+ 2µBH ≈ mI + 2µBH. (16)

In the last approximation, the jk-dependence of I was neglected. Janak [28] evaluated I

from essentially the same expression with the expectation value taken as the average over the
paramagnetic Fermi surface. This is appropriate when subsequently filling the exchange-split
bands (16) to a common Fermi level in order to get, first, the magnetization and, then, the
splitting, m/N(εF ), by dividing m by the paramagnetic DOS per spin. Equating this split-
ting with the approximation (16), yields Stoner’s expression for the exchange-enhanced spin-
susceptibility

χ ≡ µBm/H = 2µ2
BN(εF )

(
1− IN(εF )

)−1

. (17)

The values of I obtained for Fe, Ni, Rh, Ir, Pd, and Pt from LSD ASA calculations of Cd↓−Cd↑
[29,30] and from approximation (16) agree within a few percent. The trends apparent in Fig. 10
were explained by Gunnarsson [44] for the late transition metals plus V, and by Janak [28] for
the entire 3d and 4d series, although in considerably less detail. The dominating trend that I
decreases with increasing Z and, hence, with increasing ρ, is due to εxc being dominated by
εx ∝ ρ1/3, so that the kernel behaves like −ρ ε′′x ∝ ρ−2/3 = (4π/3)2/3r2

s , which decreases
with ρ. For understanding that in a given series, I rises again until it drops sharply at the noble
metals, we use the ASA, i.e., take −ρ(r) ε′′xc[ρ(r)] and m (r) to be spherically symmetric, and
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expand ψjk(r) on the FS in partial waves. Since only partial waves with the same l contribute
to I as defined in (16), we get

I ∼ s

∫ 1

0

(
rs(r)/r

)2
(
α
(
rϕsp(εF , r)

)2
+ (1− α)

(
rϕd(εF , r)

)2
)2

d(r/s), (18)

leaving out constants and using εx instead of εxc.
The form (18) with α = 0 is the one discussed by Gunnarsson for the transition metals [44].
He showed that the factor (rs(r)/r)

2, apart from its general decrease with Z, for Z given and r
increasing, increases outside the last core np-shell, i.e., for r & 0.3s, and peaks for r ∼ 0.8s.
This peaking is the combined result of the general increase of rs(r) with r and the filling of the
nd-shell, whose charge-density peaks for r . 0.5s. One factor (rϕd(εF , r))

2 in (18) comes from
|ψjk(r)|2 and the other from m(r)/m. The product, (rϕd(εF , r))

4, is very strongly peaked at a
value r . 0.5s, which moves towards the edge of the np-shell as the Fermi level moves towards
the top, Ad, of the d-band (Fig. 7) where (rϕd(Ad, r))

4 vanishes smoothly for r approaching s.
This behavior of the integrand (rs(r)/r)

2 (rϕd(εF , r))
4 explains the increase of I through the

second half of a transition series (Fig. 10).
Prior to the filling of a d-shell, i.e., for the alkali-, alkaline-earth, and rare-earth metals, (rs(r)/r)

2

merely increases monotonically with r, once it is outside the core, and its value at the WS sphere
is approximately given by nr3

s(s) = 1, where n =1, 2, 3 is the number of valence electrons
(Fig. 19 in Ref. [12]). The contribution to I of the sp-electrons is taken care of in Eq. (18)
by α ≡ Nsp(εF )

(
Nsp(εF ) + Nd(εF )

)−1, the relative sp-character on the Fermi surface. For
nsp = n = 1 and 2, the factor

(
rϕsp(εF , r)

)4, is the only one relevant, and it is fairly constant
in the outer part of the WS sphere. The decrease of I for n increasing from 1 to 2, thus follows
the factor- 2−2/3 decrease of r2

s(s). How, upon entering a transition series, this decreasing trend
is taken over by the increasing trend at the end of the series, is described by Eq. (18) with α
decreasing from 1 to 0 and rs(r) developing the above-mentioned d-peak. Finally, the relatively
low I-values for the noble metals is due to the sp-character on the FS jumping from about 10 to
50% for Cu and Ag, and to 70% for Ag.
If we use the approximate Stoner equation (16) for a ferromagnet, the condition for spin self-
consistency is that the integral over the paramagnetic DOS (per spin) over the energy range
mI + 2µBH equals the magnetization m. Since the number of electrons, n↑ + n↓, must be kept
constant, m/2 spins must be moved from above the paramagnetic Fermi level, εF , to below.
This is illustrated in the left-hand panel of Fig. 13 using the unhybridized, canonical bcc d-DOS
shown in Fig. 5, which is a good approximation for the d-projected DOS, Nd(ε), in paramag-
netic bcc Fe (see Fig. 7 in Ref. [8]). Insight to the workings of this self-consistency condition
is provided by the construction from Nd(ε) of a function, N̄(n,m), which is the DOS per spin,
averaged around the Fermi level corresponding to an occupancy of n/2 spins, over a range
corresponding to m spins. I.e.: for an assumed m, we move the Fermi level up and down in
the rigid DOS until the integral is respectively increased and decreased by m/2. With4 being
the splitting between these two Fermi levels, N̄(n,m) ≡ m/4. This band-structure function
is shown as a function of m at the bottom. Since, for paramagnetic Fe where nd=6.5, εF is a
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Fig. 13: Left: Stoner construction for ferromagnetism using the canonical, bcc d-DOS in Fig. 5
for Fe. Dotted/full line: I = 0/65 mRy (from Ref. [12]). Right bottom: Canonical fcc N̄ (nd,m)
for varying nd as functions of m. The dots are at the crossing with 1/I at normal pressure. The
reason why mmax is not exactly 10 − nd is that the d-projected DOS for fcc Pd, rather than
the fcc canonical d-band in Fig. 5 was used [30]. Right top: Slater-Pauling curve showing the
magnetization, m, as a function of d-band occupation, nd. The full curves were calculated with
the procedure shown to the left and below using the experimental structures (hcp taken as fcc)
and with I and nd interpolated between the values calculated for Fe, Co, and Ni. Experimental
values were obtained for the pure metals and intermetallic alloys (• NiCu, + CoNi, · FeCo,
� NiFe fcc, � NiFe (bcc), × FeCr). From Ref. [30].

bit below the big bcc DOS peak, N̄d(6.5,m) starts to increase from N(εF ) for m increasing,
but as soon as εF↓ has passed above the top of the peak, N̄ (n,m) drops and eventually hits the
plateau caused by the t2g states at the top of the d-band (see Fig. 5). N̄ finally vanishes when
all mmax ∼3.5 holes at the top of the d-band are filled. Knowledge about the interaction, I , and
with H=0, allows us to find the selfconsistent value of m as the solution of: N̄ (n,m) = I−1.

We see that I ∼67 mRy does not suffice to split εF↓ beyond the edge of the t2g plateau and εF↑
below the bottom of the pseudogap. So Fe is not, like fcc Ni and hcp Co, a strong ferromag-
net, but has a moment of m=2.2µB/atom with 54% eg character [8], as may be imagined from
Fig. 5 and which is in good agreement with the experimental 53%. Similarly, for fcc Ni the
Stoner condition with I=73 mRy and nd=8.7 yields a moment of 0.68µB/atom with only 24%
eg-character, also in agreement with the experimental 19% [45]. The canonical fcc N̄(8.5,m)

shown in Fig. 13 at the bottom to the right (turned by 90o with respect to the bcc N̄(6.5,m) to
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the left) is approximately the one appropriate for Ni, and the dot marks the crossing with I−1.
In the right-hand, upper part of Fig. 13, we show in full line the ferromagnetic moments, m,
as functions of nd, calculated as shown on the left-hand side using the experimental structures
(hcp taken as fcc) and with I and nd interpolated between the values calculated for Fe, Co,
and Ni. This so-called Slater-Pauling curve is compared with experimental values (dots) for
the pure metals and intermetallic alloys. So-called strong ferromagnets are those with εF↓ split
above the top of the d-band and thus have m = 10− nd. The late fcc and hcp metals have high
I-values (Fig. 10), and the high peak in the d-DOS at nd=8.5 (Fig. 5) keeps the average DOS,
N̄ (nd,m) , above I−1 for all m . 10− nd and for nd decreasing from 10 to about 7.2.(Fig. 13
bottom right). At that point, I−1 gets above N̄ (nd,m) for all m. This drop of m happens also
for the real alloys, but at a slightly larger nd. For nd decreasing below 7.3, the structure changes
from fcc (hcp) to bcc and the Fermi level enters the large peak in the bcc DOS and thereby
makes N̄ (nd,m) reach above I−1. By nd=6.5, we have the situation of bcc Fe illustrated to
the left in the figure. For nd decreasing further, I−1 increases and εF moves down-hill on the
low-energy side of the large peak, whereby N̄ (nd,m) flattens out, and by nd ∼5.2, it is entirely
below I−1.

With pressure, mainly the band-width parameter ∆d in the Hamiltonian (8) changes; increasing
approximately like s−5 (note the difference between ∆d and the exchange splitting 4). This
means that if N̄(n,m) refers to the canonical S- or Sγ-scale, the self-consistency condition
becomes: N̄ (n,m) = ∆d(s)/I, whereby the N̄ vs. m curves at the bottom of Fig. 13 become
pressure vs. m curves (see Fig. 5 in Ref. [30]). Under pressure, bcc Fe thus looses its moment
gradually. Had we constructed N̄(6.5,m) using the hcp and fcc DOS curves shown in Fig. 5,
N̄ would with m increasing from 0, start off from a somewhat lower value than for bcc Fe,
but then stay constant, because the canonical DOS for the hcp and fcc structures are fairly flat
around nd=6.5, until dropping to zero near 3.5. For fcc and nd=6.6, this is shown in the bottom
right-hand part of Fig. 13. This means that, since for hcp and fcc Fe N̄(n, 0) is slightly larger
than ∆d/I at normal pressure, this changes as ∆d is increased by a slight lattice compression,
and the moment vanishes abruptly (hcp) or within a small pressure range (fcc) (Figs. 4-6 in
Ref. [30]).
Had it not been for its ferromagnetism, Fe would not have been bcc, but hcp like Ru and Os
with nd ∼ 6.5. This is clearly seen in Fig. 12 on the right-hand side and at the bottom to
the left. The top-left “bond-energy” curve can be used for each direction of spin in bcc Fe
to realize that its bond energy, the value at nd = 6.5 of the chord connecting the values at
6.5∓m, is lower (the sum of one-electron kinetic energies is higher) than those of hcp and fcc
paramagnetic Fe. The energy gain comes from the exchange energy, −m2I/4. Compression
reduces m as explained above, and the point where gain of exchange energy equals the cost in
kinetic energy gives the critical value of the moment for which the structural phase transition
occurs. The observed phase transition from bcc ferromagnetic to hcp non-magnetic Fe, occurs
at a pressure of 100 kbar when m and s have both been reduced by a few per cent. (Actually,
the stability of ferromagnetic bcc Fe over non-magnetic hcp Fe is marginal and depends on the
DFT used [46]).
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The loss of kinetic energy associated with magnetism may in Stoner theory be described as
contribution to the pressure given by:

3PdmagnV = −δ ln∆d

δ ln s

∫ m

0

m′dm′

2N̄ (n,m)
− 1

µd

(
m2I + 2µBH

)
. (19)

Here, −δ ln∆d/δ ln s ∼ 5 and µ−1
d = s2∆d was shown in Fig. 9. From Fig. 8, we realize that

the magnetic metals do have relatively large WS radii (open dots), but that LSD calculations
(open triangles) for Fe, Co, and Ni only account for a fraction of these anomalies.
Turning now to fcc Ni under pressure, we need the canonical fcc N̄ (8.7,m)-curve, but shall
use N̄ (8.5,m) which is shown at the bottom right-hand side of Fig. 13 as a proxy. We see that
the dot marking its crossing with ∆d/I at zero pressure, can be raised by the large factor ∼2.4,
before reaching the peak at m ∼0, which is the one in the canonical DOS caused by the saddle-
points P1 and P2 in the 5th band (Fig. 5). 2.4 is the factor by which the d-bandwidth (∝ ∆d)

can be increased before an fcc ferromagnet (FM) with 8.5 d-electrons looses its moment. Since
Ni under pressure keeps its fcc structure, it also keeps its moment up to several Mbars because
d ln∆d/d ln s ∼ −5, B ∼2 Mbar, and ∂B/∂P ∼4 [29].
If we now increase the saturation moment from the 0.6µB of Ni (0.8µB for the proxy) by
decreasing the number of d-electrons, i.e. moving up the Slater-Pauling curve in Fig. 13 and
the Fermi level moving down the low-energy side of the canonical fcc DOS peak and into the
u-shaped valley in Fig. 5, the fcc N̄ (nd,m)-curves loose their peak and become flat once the
valley is entered. This happens when nd ∼8. From the values of N̄ (nd, 0) , we see that the
bottom of the valley is reached when nd ∼7.4, and that by ∼6.6 the Fermi level has moved
up so high on the low-energy side of the valley that the DOS exceeds ∆d/I and a FM with a
low moment becomes stable. The large-moment FMs exist as long as the high DOS peak at
nd =8.6 continues to raise the average N̄ (nd,m) above ∆d/I, which happens until nd falls
below 7.3. The 8 & nd & 6.5 region is that of the Invar alloys which keep their atomic volume
constant over a useful range of temperatures. In the early 60ies, this was explained as the
effect of competing large-moment large-volume and low-moment low-volume states [47]. With
pressure, the ∆d/I-dots move up their respective fcc N̄ (nd,m)-curves in Fig. 13. We see that
the initial slope, −dm/dP , stays constant until nd=7.4, but that the pressure where the moment
disappears in a 1st-order transition, corresponding to the ∆d/I-line touching the maximum of
N̄ (nd,m), falls rapidly as we move away from Ni.
On exhibit at the entrance to the mineralogical museum in Copenhagen is a 20 tons iron-nickel
meteorite found at Cape York in Greenland. It consists of a bcc and an fcc phase with a common
orientation throughout the entire meteorite, which therefore seems to have been a single crystal
in the mother asteroid. The fcc phase (taenite) has been found to be an simple, ordered FeNi
alloy consisting of alternating (100) layers of Fe and Ni, which disorders by heating to 750 K
for 50 hours [48]. This demonstrates that the meteorite has not –since its formation in the parent
planet– been reheated to a temperature above 730 K for longer than 50 hours.
Attempting to get “insight” to the properties of the Earth’s inner core, we [49] performed a
proper LSD calculation for taenite resulting in Fig 14. In the ferromagnetic DOS, we see the ↑
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Fig. 14: Results of LSD LMTO calculation for fcc FeNi (taenite). Left: Number(A)- and den-
sity(B) of states per FeNi. Fe(C)- and Ni(D)-projected DOS. Right: FM magnetization and
Pressure as functions of the relative deviation of the WS radius from its experimental value at
1 kbar. From Ref. [49].

and ↓ fcc peaks, split on either side of εF , and we also see that the Fe(C)- and Ni(D)-projected
DOS share these peaks, but with the dominant weight on Fe, because Cd lies higher- and ∆d is
broader in Fe than in Ni. Most remarkable: The FM magnetization stays robustly above 2µB
for pressures up to 5 Mbar (causing a 15% compression of s). Using, instead, the rigid-band
picture and N̄ (7.7,m) in Fig. 13, m would drop significantly already at a 20% reduction of
∆d/I, i.e. at a mere 4% reduction of s. So apparently, taenite is special. We were fascinated by
the thought that the earth’s core could be a ferromagnet, but 40 years ago we did not know how
to treat fluctuations at high temperatures.
For more recent LSD calculations of the spin and orbital moments in Fe, Co, and Ni, see
Ref. [50].

3.3.2 Spin spirals

One may go beyond collinear spin-polarization by allowing the direction of spin-quantization
to depend on r, or simpler and more relevant for magnetic order, on the site, t. Let us consider
the case where all spin-quantization axes lie in the same plane, i.e., not on a cone. Provided that
spin-orbit coupling (causing magnetic anisotropy) is neglected, it does not matter which plane
we take. We choose the xy-plane and let φ (t) give the direction of spin on site t. With the
matrix for hopping from site t and spin σ to site t′ and spin σ′ being htt′δσσ′ in the global spin
frame, it becomes:

h̃tσ,t′σ′ =


↑ ↓

↑ cos φ(t′)−φ(t)
2

i sin φ(t′)−φ(t)
2

↓ i sin φ(t′)−φ(t)
2

cos φ(t′)−φ(t)
2

htt′

in the local frame. Here, htt′ could be the ASA Hamiltonian (6), Hγ
t′l′m′,tlm, before Fourier-

summing it to k-space. Including the exchange splitting,4 (t), the total one-electron Hamilto-
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nian in the local frame is therefore

H̃tσ,t′σ′ ↑ ↓
↑ −4(t)

2
δt,t′ + cos φ(t′)−φ(t)

2
htt′ i sin φ(t′)−φ(t)

2
htt′

↓ i sin φ(t′)−φ(t)
2

htt′
4(t)

2
δt,t′ + cos φ(t′)−φ(t)

2
htt′

,

h00 is the on-site orbital Hamiltonian. 4 (t) is an orbital matrix, which is approximately diago-
nal, with4 in the d-block, possibly with different eg and t2g elements, and zero in the sp-blocks.
With4 positive, ↑ will be the majority spin.
If the sites, t, now form a lattice and all atoms are equivalent, i.e. we have 1 atom per transla-
tional cell, then htt′ = h (t′ − t) . If also 4 (t) and φ (t′) − φ (t) are translationally invariant,
i.e. equal to respectively 4 and φ (t′ − t) , then the Hamiltonian, H̃tσ,t′σ′ = H̃ (t′ − t)σ,σ′ , is
translationally invariant and therefore diagonal in the Bloch representation

H̃ (k)σ,σ′ ↑ ↓
↑ −4

2
+
∑

t e
ik·t cos φ(t)

2
h (t) i

∑
t e

ik·t sin φ(t)
2
h (t)

↓ i
∑

t e
ik·t sin φ(t)

2
h (t) 4

2
+
∑

t e
ik·t cos φ(t)

2
h (t)

.

The hopping matrix, h (t) becomes h (k) , e.g. Hγ
l′m′,lm (k) , in the Bloch representation. For a

spin spiral of wave-vector q,
φ (t) ≡ q · t, (20)

we therefore get

2H̃ (q,k)σ,σ′ ↑ ↓
↑ −4+h (k + q) + h (k) h (k + q)− h (k)

↓ h (k + q)− h (k) 4+ h (k + q) + h (k)

where we have redefined k to have its origin at −q/2. This representation in which the local
exchange splitting, 4, appears in the diagonal and the hopping difference in the off-diagonal,
is the natural one when4 is large and q is small. However, a unitary transformation brings the
Hamiltonian into the simplest form

H̃ (q,k) (↑ − ↓) /
√

2 (↑ + ↓) /
√

2

(↑ − ↓) /
√

2 h (k) 4
2

(↑ + ↓) /
√

2 4
2

h (k + q)

, (21)

where the paramagnetic bands are in the diagonal and 4 is in the off diagonal. For small 4,
this form is the natural one.
We recapitulate: All spins have been chosen to lie in the same plane, which in the absence
of spin-orbit coupling is arbitrary. In all planes perpendicular to q, all spins are identical, but
as we progress by t in the plane, they turn by the angle t · q. For q=0, we get back to the
FM Hamiltonian (but doubly degenerate). If in the xy-plane the lattice is square with lattice
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constant 1, q=(π, 0) gives an antiferromagnet (AF) with stripe-order and q=(π, π) an AF with
checkerboard-order.
Incommensurability is no complication as long as SO coupling is neglected. We simply must
have the same Abelian group in configuration and spin space. In configuration space, the gen-
erators of this group are the primitive lattice translations. In spin space, they are the primitive
lattice translations, times turning the axes of spin quantization by a fixed angle: Subject yourself
(being either a charge or a spin) to such an operation, look around, and you cannot see that you
moved. It is of course essential that only the direction, and not magnitude of the magnetization
changes. The band structure in the presence of the spin spiral has lost the crystalline point-group
symmetry, but the number of states remains 1 per primitive cell and BZ, i.e.: the problem can
be solved for any q without increasing the size of the primitive cell. This is all not obvious and
I believe that Sadratskii was the first who realized it [51].
The reduction to the Stoner model has the conceptual advantage of cutting the self-consistency
loop into a band-structure part, which for a given spin order, q, site, and orbital-dependent
exchange-splitting field, 4, yields the site and orbital-dependent spin-moments, m (q) , plus
a self-consistency condition which states that m (q) /4 = I−1. The band-structure part gives
insight into the complicated static response, χ (q) ≡ m (q) /4, of the non-interacting system,
and not only in the linear regime [52].

3.3.3 Local exchange couplings

The spatial dependence of the magnetic coupling in metals, i.e. the change in total energy
upon turning the direction of one spin with respect that of a neighbor is needed to calculate
for instance Curie temperatures and magnon spectra. By considering infinitesimal spin rota-
tions rather than spin flips, Lichtenstein and Katsnelson could use the force theorem locally
and derived an elegant expression for the second derivative of the total energy in terms of the
one-electron Green function ,

[
(ε− i0) δRR′δll′δmm′ −Hγ

Rlm,R′l′m′

]−1. Their expression has be-
come a standard tool for complex magnetic systems and made it possible to simulate magnetic
properties of real materials via ab initio spin models [53–55].

3.4 Fermi surfaces and mass renormalizations

For the elemental metals in the 4d- and 5d-series the Fermi surfaces (FSs) calculated using LDA
(or Mattheiss-Slater) agree with de-Haas-van-Alphen (dHvA) measurements of the extremal
areas of the cyclotron orbits on the FS to an accuracy better than what corresponds to a 15 mRy-
shift in the position of the d- with respect to the non-d bands [10]. For the fcc late 5d- and
4d-metals [15], the agreement is even beyond 5 mRy – and best for Pt and Pd where over 80%
of the DOS at the Fermi level, N(εF ), is contributed by the large, 5th-band d-hole sheet shown
in Fig. 5, the same, which in combination with the larger Stoner I (Fig. 10) and the smaller
3d-bandwidth is responsible for the FM in fcc Ni.
Pd is nearly ferromagnetic and its uniform, static spin-susceptibility (17) is enhanced by a
Stoner factor ∼10, over the Pauli value, which is proportional to N (εF ) like the electronic-
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specific heat coefficient. In the late 60ies it had been suggested [56] that such ferromagnetically
correlated, paramagnetic (PM) spin fluctuations would be detrimental for the singlet Cooper
pairs formed via the electron-phonon interaction and, hence, could be the reason why Pd does
not become a superconductor at low temperature like e.g. its neighbor Ir. Moreover, the inter-
action of the conduction electrons with these spin fluctuations would lead to an enhancement of
the electronic mass and specific-heat coefficient, initially estimated –using a spherical FS– to
be a factor 4. Comparison of the measured specific-heat coefficients with N (εF ) for the above-
mentioned calculated band structures gave mass enhancements of 1.37 for Ir, 1.44 for Rh, 1.63
for Pt, and 1.66 for Pd [15]. Experimental results for the cyclotron masses (energy-derivatives
of the extremal areas on the FS) did not exist for Ir, and dHvA for Rh only gave masses for the
smaller orbits. They exceed the calculated band masses by factors around 1.1, except for the
largest orbit where the mass enhancement was 1.3. So, presumably, the mass-enhancement for
the large, 5th-band sheet, which for Rh and Ir is Γ -centered and closed, is the 1.44 obtained
from the specific heat. Also for Pd, no masses could be detected from orbits around the 5th-
band sheet, but only from a smaller d-like sheet and the large sp-like sheet. In all those cases,
the masses exceeded those calculated by factors 1.5-1.7, which is consistent with the factor 1.66
obtained from the specific heat. For Pt, masses from several orbits on all three sheets could be
measured and were found to be enhanced by factors of 1.44, 1.45, and 1.54 for the orbits on the
sp-sheet, and by 1.30, 1.68, and 1.72 for those on the large d-hole sheet; thus consistent with the
specific heat enhancement. In the 80ies, this was supported by more detailed experiments and
analyses [57]. In conclusion, a mass enhancement of∼1.4 was attributed to the electron-phonon
interaction (λep ∼0.4) [58]. This agreed with McMillans estimate for the superconductor Ir and
with rigid-MT calculations of λep in the early 80ies, and with S.Y. and D.Y. Savrasov’s DFT
linear-response calculations [59] in the mid 90ies. The remaining mass-enhancement in Pd was
attributed to the PM spin fluctuations (λe−sf ∼0.25). The results of the first spin-fluctuation cal-
culation using LDA bands to calculate e.g. χ (q,q′, ω) [60] and of Savrasov’s linear-response
calculations from the late 90ies [61] agreed with this small value.
For the exchange-split FS of ferromagnetic bcc Fe, dHvA experiments [62] found surprisingly
good agreement with the FS calculated with LSD [63], e.g., the sum of- and difference between-
the numbers, n↑=5.08 and n↓=2.93, extracted from the extremal areas agree closely with the
number of electrons, 8, and Bohr magnetons, 2.12. The mass-enhancements, found to range
between 1.5 and 3.0, were larger than for, e.g., Pd.

4 Post 1986

The discoveries beginning in 1986 of high-temperature superconducting materials (HTSCs)
which without doping are AF insulators –as is the case for cuprates– or AF metals –in case of
iron pnictides and chalcogenides– caused enormous interest in the role of AF-correlated spin
fluctuations as mediators of the superconductivity [64–67].
In the ruthenates, depending on the distortion of the RuO6-octahedra building these corner-
sharing perovskites [68, 69], not only AF- but also FM spin fluctuations exist. This was shown
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by Mazin and Singh by demonstrating, first, that the diverse magnetic properties of the 3D
ruthenates, SrRuO3, CaRuO3, and Sr2YRuO6 follow from the Stoner band-picture as conse-
quences of differences in oxygen positions and Ru-O-Ru hopping paths (Ca makes the oxygen
octahedra rotate and Y blocks the paths). In these materials the detailed lattice structure is thus
crucial for the magnetic properties. Next, they found 2D Sr2RuO4 to have strong FM spin fluc-
tuations causing susceptibility- and mass renormalizations, as well as a critical temperature for
triplet p-wave-pairing superconductivity, which agreed quantitatively with observations. The
subsequent experimental observation of AFM in Ca2RuO4, lead Mazin and Singh to calculate
the susceptibility of Sr2RuO4 for all q-vectors. That revealed competing AF spin fluctuations
(confirmed later by neutron scattering), and concomitant singlet d-wave pairing. This, finally,
led them to suggest that the actual superconducting ground state of Sr2RuO4 is determined by a
competition between the p- and d-wave-pairing states [70].

4.1 ARPES

The intensive interest in HTSC lead to a development of angle-resolved photo-electron spec-
troscopy (ARPES) which, by the end of the millennium, was able to observe single-particle ex-
citations from the occupied bands with 2-meV accuracy and 0.2◦ angular resolution and thereby,
in some people’s view, obviated the need for band-structure calculations. But of course, ARPES
has problems of its own, such as surface-, final-state, and matrix-element effects [71].

After much smoke had cleared, the LDA FSs predicted a decade earlier for the HTSCs in their
normal state usually turned out to be correct, e.g. for the YBa2Cu3O7 FS with sheets from the
two plane-bands and the chain-band [72–74]. This being settled –more or less– the challenge
was –and remains– to observe how the bands get from kF , where they agree with the LDA,
but have a smaller, renormalized slope to join the LDA bands again, deeper down, below the
Fermi level. These are the effects of the real part of the self-energy describing the interactions
with e.g. phonons and spin-fluctuations. The imaginary part produces broadening. The mass
renormalization is a measure of the strength of the interaction, and the energy over which this ς-
shaped anomaly (kink) occurs, is determined by the energy-spectrum of the interacting boson.
For phonons, this energy is the Debye energy, for spin-fluctuations it is wider, but less well
known. And then, there are competing phases. To observe and understand what happens to the
anomaly when entering the superconducting state is the holy grail, so let us therefore leave the
HTSC and return to Pd.

For fcc Pd, it has been possible with polarization-dependent, high-resolution ARPES to study
the self-energy effects of the sp-like band along ΓK, where the large d-sheet (Fig. 5) is avoided
[75]. The anomaly was found to be 20 meV below εF , in agreement with the Debye energy,
and the renormalization of the Fermi velocities were found to yield λep=0.39±0.05 in agree-
ment with the above-mentioned, previous studies. For this sp-like band, it was estimated that
λee ∼0.02. Analysis of the anomaly indicated a possible contribution from PM spin-fluctuations
down to 100±50 meV below εF , and that λe−sf ∼0.06 for the sp-like band.
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4.2 Static and dynamical mean-field approximations

LSD worked surprisingly well for the elemental metals. Even for the actinides and the transition-
metal oxides, CaO through NiO, it reproduced the onset of antiferromagnetism and the asso-
ciated large lattice expansion upon passing the middle of the series [34]. But LSD failed to
reproduce the proper band gap, by an order of magnitude in MnO and NiO, and FeO and CoO
were even metals! However, it was not until 5 years later when LSD was applied unwisely to
the Mott insulator NiO [76], and another 4 years when it failed to reproduce the antiferromag-
netism –a ground-state property– in undoped La2CuO4 –I being ∼5 times too small– that the
failures became widely recognized [77].

This then gave birth to the self-energy-corrected (SIC) LDA [78], a proper DFT which, however,
gave bad bands, and the LDA+U which, like LSD, helped the functional, but by using Hubbard
U instead of Stoner I in a static mean-field approximation [79, 80]. Values of U, the properly
screened, on-site Coulomb integral, had previously been calculated by constrained LDA [81,82]
for use in the Anderson impurity model whose Coulomb repulsion is merely on the impurity
site [83]. LDA+U works successfully for insulators with spin- or orbital order [84–87], but the
description of (finite-temperature) paramagnetic Mott-insulating states, or of spectra of corre-
lated metals are entirely out of reach. This problem is related to the dynamical nature of electron
correlations not accounted for in static mean-field approximations.

In 1989, Metzner and Vollhardt [88] had observed that the single-band Hubbard model with
Coulomb repulsion, U, between two electrons on the same site and integral, t, for hopping
between nearest-neighbor sites becomes far more tractable, while preserving much of its inter-
esting correlation physics, if taken at infinite dimensions (after appropriate scaling). Moreover,
the correlation energy in the weak-coupling limit turns out to be nearly the same for D=∞, as
for D=3. Hence, the D=∞-Hubbard model seemed to be not only simple, but also realistic.

(Although two decades earlier, I had set out to provide many-body theorists with a simple way
to obtain realistic band structures and had exploited, that in metals there are usually far more
neighbors than lobes in a d-orbital, had I come across Ref. [88], I could not have cared less.
This is the danger of having no training in many-body physics).

Georges and Kotliar [89] soon realized that the D=∞-Hubbard model can be mapped ex-
actly onto the Anderson impurity model –supplemented by a self-consistency condition for
the energy-dependent (dynamical) coupling to the non-interacting medium. Hence, the quasi-
particle peak of the Hubbard model may arise self-consistently from the Kondo resonance of
the impurity model [90]. So what they achieved was to construct a mean-field picture of the
Hubbard model which becomes exact as D → ∞, and to provide an idea about how to solve
the D=∞-Hubbard model. The immediate question was whether the D=∞-Hubbard model
at half filling exhibits a metal-insulator Mott transition in the high-temperature, paramagnetic
phase, i.e. whether, upon increasing U, the quasiparticle peak will develop into a gap by trans-
fer of weight to the lower and upper Hubbard bands. The affirmative answer was found within
months by Georges and Krauth who solved the Anderson impurity problem numerically and,
independently, also by Rozenberg, Zang, and Kotliar. This dynamical mean-field approximation
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(DMFT) is what eventually opened the door for theoretical treatment of correlated electrons in
real materials [91, 92].
(Although we had, for the impurity model, been computing realistic Coulomb integrals and
hybridization-functions, and for alloys had been computing band structures using the coherent-
potential approximation [93], we did not get the idea to combine them).
By suggesting the so-called LDA++ scheme, Lichtenstein and Katsnelson [94] proposed how
model Hamiltonians of strongly correlated materials could be derived from DFT and thereafter
solved by techniques like the Hubbard-I approximation or DMFT [95]. Together with an inde-
pendent, simultaneous contribution by Anisimov, Kotliar et al. [96], this work marks the birth
of the LDA+DMFT scheme which brings numerical LDA realism to DMFT [97].
But since that is at the heart of this series of autumn schools, I will proceed with a short de-
scription of a few of the applications in which I happened to be involved.

4.3 Transition-metal oxides (TMOs)

The TM sp-orbitals are far more extended than its d-orbitals, and in the oxides, the former
therefore hybridize stronger with the O 2p orbitals than the latter. This pushes the TM sp-bands
up, above the top of the d-bands, and can formally be neglected. For most transition-metal
oxides, the d-bands lie completely above the O 2p bands (see Fig. 2), and the hybridization
between them splits the d-bands into e.g. t2g- and eg-subbands [69, 98].

4.3.1 Wannier Orbitals

Since it makes the chemistry and physics intelligible, and because DMFT requires a small basis
set of correlated single-particle orbitals [100], it has become customary to project out of the
Rydbergs-wide DFT Band structure a set (or sets) of so-called maximally localized Wannier
functions, which span for instance the O 2p and the TM d-bands, and, hence, have the TM sp-
orbitals folded down into the tails of mainly the O 2p orbitals, or merely the eg-band with the
tails of the O 2p- as well as those of the sp- and t2g-orbitals on the TM neighbors folded in.
We prefer to generate such Wannier orbitals (WOs) directly, as symmetrically orthonormalized,
minimal basis sets of NMTOs [18]. These are like linear MTOs (LMTOs), which use a linear
{ϕ (r) , ϕ̇ (r)}-expansion of the energy dependence of the partial waves. If the downfolding
is massive and the range of the MTOs therefore long and their energy dependence strong, the
expansion needs to be of higher than linear order, hence of order N > 1.
The WOs can also be used to form intelligible tight-binding (TB) models [98, 101]. For the
HTSCs, we [102] for instance found the empirical trend (Fig. 4 in Refs. [103] or [104]) that
the transition temperature, Tc max, for optimal doping increases with the ratio t′/t between the
2nd and 1st-nearest-neighbor hopping integrals in a massively downfolded, half-full one-band
model (Cu d9−x). The connection between t′/t and the chemistry, i.e. the structures and com-
positions of the 15 different families of HTSCs whose t′/t are shown in the figure, we have
understood: These hopping integrals are between effective Cu 3dx2−y2 orbitals sitting on a
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square lattice with primitive translations (1, 0) and (0, 1) , and with each Cu connected by oxy-
gens at (1

2
, 0) and

(
0, 1

2

)
. The t-hop is along x, from dx2−y2 at (0, 0) to dx2−y2 at (1, 0) , via O

px at
(

1
2
, 0
)
, or equivalently, along y. The t′-hop is from (0, 0) to (1, 1) . In this description,

all orbitals (partial waves) are thus folded down into one, effective Cu dx2−y2 orbital. But this
orbital does, of course, have tails of O 2px at

(
±1

2
, 0
)

and of O 2py at
(
0,±1

2

)
, to which the

hopping in an up-folded three-band model is antibonding pdσ. The t′ hop is “around the corner”
on the square CuO2 lattice, and proceeds via a so-called axial orbital which is a particular hy-
brid of Cu 3d3z2−1, Cu 4s, apical O 2pz, and whatever the latter bonds covalently to, such as La
5d3z2−1. Note that the TB Hamiltonian is now up-folded to have four orbitals. Apical oxygens
are those forming the apexes of the elongated CuO6 octahedron, and the t′/t trend is caused
by differences in this elongation, i.e. distance to apical oxygen, and in what the 2pz-orbital on
the latter binds to out there in the “doping” layers. But the physics, the correlation with Tc max,

remains to be understood or disproved.
In the cuprates the center of the Cu 3d band is only a few eV above that of the O 2p bands and
the hopping between the two is so large that they form a common band. The strongest hopping
integral is pdσ and it creates for the CuO2 plane a bonding-, a non-bonding-, and an antibonding-
band spanning about 8 eV in the LDA. It is the latter band which the above-mentioned t, t′, t′′

model describes.

4.3.2 Metal-insulator transition in V2O3

The theoretical Mott-transition is the one in the single-band Hubbard model investigated by
Georges and Krauth, and by Rozenberg, Zang, and Kotliar. But the DMFT+LDA NMTO cal-
culations in which I have been involved, of experimentally observed metal-insulator transitions
in TMOs, all dealt with multi-band systems where the isostructural (not-symmetry breaking)
metal-insulator transition was basically the opening a gap between occupied and unoccupied
bands by moving them apart.
V2O3, for instance, undergoes an isostructural phase transition from a paramagnetic metal (PM)
to a paramagnetic insulator (PI) upon raising the temperature from 20◦ C to about 400◦, the
transition temperature depending on the Cr-content in the 1% range. All V atoms and all O
atoms are equivalent, and since each V brings in 5 electrons and each O has two holes to be
filled, there remains 2 electrons per V. The VO6 octahedra are nearly perfect and since the
pdσ interaction is stronger than the pdπ interaction, the more antibonding V 3d-like eg level lies
above the less antibonding V 3d-like t2g level. As a consequence, the electronic configuration
is V t22g. All three orbitals hop to their neighbors, and with 4 formula units per primitive cell in
this corundum structure, the LDA band structure is a solid mess of 12 bands, spread over 2.5
eV and 1/3 filled; a metal (see Fig. 15).
There is a slight displacement of the V ions along the 3-fold [111] axis, away from the centers
of their octahedra, so that the distance between a vertical (≡111) V2-pair whose octahedra in
this corundum structure share a (111) face, is slightly longer than the distance between the
centers of their octahedra. The xy, yz, and xz orbitals therefore rehybridize into one orbital,
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Fig. 15: The V2O3 story (see text). Three first panels: Experimental PM structure at 20 ◦C.
1st panel: LDA hopping integral between effective a1g (light) and eπg (dark) orbitals, −0.25 eV
(upper left), and between a1g orbitals on the vertical pair, −0.49 eV (upper right). LDA t2g
bands with- (lower left) and without (lower right) all a1g-eπg hops. 2nd panel: Input Hamil-
tonian, DMFT output Hamiltonian, energy-linearized quasiparticle (QP) Hamiltonian and its
band structure. 3rd panel: DMFT spectrum. 4th panel: Experimental PI structure at 400 ◦C.
LDA hopping integral between vertical pair, –0.41 eV (upper). LDA a1g-eπg unhybridized band
structure (lower). From Ref. [99].

(xy + yz + xz) /
√

3 = 3z2
111 − 1, of symmetry a1g and two degenerate orbitals of symmetry

eg, called eπg , whereby the t2g level is split into an upper a1g and a lower, doubly degenerate eπg
level. But this trigonal crystal-field splitting is 0.3 eV, an order of magnitude smaller than the
bandwidth. At the Γ point, the center of the Brillouin zone, where a1g and eπg cannot mix, the
4 a1g levels are raised with respect to the 8 eg levels by the 0.3 eV. The pure a1g- and eπg - band
structures, obtained by settting all hopping integrals between a1g and eg orbitals to zero, shows
that the bottom of the a1g and the top of the eg band are at Γ, so that their distance, 2.0 eV of
which the trigonal splitting contributes −0.3 and the hoppings 2.3 eV, can be read off the fully
hybridized LDA bands.
The on-site Coulomb repulsion, however, prefers by 3J = 2.1 eV to have one ↑ electron in each
eg orbital, and none in the a1g orbital. And this is basically what our DMFT calculation [99]
at 100◦ C provides: It, first of all, “spin-polarizes” the bands and moves the ↓-weight to a very
broad, incoherent upper Hubbard band lying U = 4.2 eV above the partly occupied ↑-band. For
the latter, it then enhances the crystal-field splitting from 0.3 to 1.85 eV, whereby the a1g bands
essentially empties into the eπg band; the bottom of the former merely dips a 0.15 eV below the
top of the latter.
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With the splitting almost as large as the bandwidth, the a1g-eg hopping is strongly reduced,
whereby the dispersion resembles that of pure LDA a1g and eg bands. But on top of this, there
are quasiparticle renormalization by factors 2.5 and 5 for respectively the a1g- eπg -bands, and,
finally, inside the eπg -band there is strong e-e scattering which makes it incoherent. The metallic
quasiparticles are those on the small a1g sheet of FS.
Upon increasing the temperature across the metal-insulator transition, there is an increase of
the so-called umbrella distortion which changes the LDA band structure. In particular, the
distortion makes the effective ddσ hopping integral between vertical V2 pair decrease from
−0.49 to −0.41 eV, whereby the distance between bottom of the a1g and the top of the eπg LDA
bands, is reduced from 2.0 to 1.7 eV. A Coulomb-enhanced crystal-field splitting of 1.85 eV
would thus suffice to separate the bands. Sure enough, the DMFT calculation with the new
LDA bands for the high-temperature structure, but the values of U and J unchanged, yields a
small, insulating gap. This, we felt, demystified what for more than 30 years was considered
the Mott transition.

4.4 Elemental metals

The e-e interaction effects in V2O3 are really drastic in comparison with those in Pd. Savrasov et
al. [105] recently returned to the problem of calculating the effects on the self-energy, Σ (ω,k) ,

from the interaction with the paramagnons in Pd and included the k-dependence by combining
the LDA with the fluctuational exchange (FLEX) approximation. By including ladder diagrams,
FLEX can describe spin-fluctuations, in contrast to quasi-particle self-consistent GW (QSGW )
approach (see below). As the results turned out to have only a small k-dependence, they were
compared with those of LDA+DMFT, and found to be in better agreement with experiments,
yielding λ=0.1–0.3 for U=1–2 eV.
From ARPES for ferromagnetic bcc Fe, it was concluded in 2010 [106] that previous estimates
of the d -band narrowing due to many-electron effects were too large due to neglect of SO-
splitting in the LSD calculations, and of final-state transitions plus final-state broadening in
the photoemision analysis. As a result, many-electron effects seem to narrow the d-band by
merely 10%. In accord with the measured cyclotron masses [62] and the LSD calculations,
the renormalizations of the Fermi velocities are in the range 1.5−3, presumably with λep ∼0.4
like for Pd, and a similar contribution from the electron-magnon interaction. However, whereas
the two latter are expected to extend down to respectively 40 and 300 meV below εF , the self-
energy anomaly was observed down to at least 500 meV, and finally attributed to many-electron
effects.
The quasi-particle self-consistent GW (QSGW ) approach which has been most successful in
describing weak, but k-dependent correlations, was recently applied to bcc Fe and fcc Ni by
Schilfgaarde et al. [107]. For Fe, the agreement with the available FS data from dHvA was
perfect, and the mass enhancements and the ARPES were well described. Due to its Σ (ω)

lacking k-dependence, DMFT does less well for ARPES. QSGW gave a 25% narrowing of the
d-bandwidth, but that may have been due to neglect of SO splitting as suggested in Ref. [106].
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For Ni, the PM part of the QSGW bands were in excellent agreement with experiments, but
the exchange splitting was overestimated by a factor 2, even more than in the LSD, and the
moment was overestimated by 20% and, hence, much worse than in the LSD. This problem is
known for itinerant magnets, the iron pnictides, in particular. This failure was ascribed to the
inability of GW to treat spin-fluctuations, and it was demonstrated by use of QSGW+DMFT,
that a reasonable, simple cure is to add an external magnetic field adjusted get the moment right.
The approach by Mazin et al., who adjust the Stoner I, is at least based on Morya’s fluctuation
theory [108].
Friedel once asked me about the real-space reason for the double-peak in the bcc DOS, which
for instance is crucial for the martensitic transformation in steels. As seen in Fig. 5, the reason
is not a separation of eg- and t2g-characters. But what is seen in this figure, is that in FM bcc Fe,
the FS has mostly t2g character (the ↑-sheet exclusively) and the big peak mostly eg character.
This was recently found to have consequences for the real-space exchange interactions [109]:
The t2g states are itinerant and determined by FS nesting, while the eg states form localized
moments which must be treated by DMFT. Most important was the subsequent insight [110]
that for both fcc and bcc structures, and throughout the 3d series, the exchange coupling between
an eg orbital and a t2g orbital on a near neighbor vanishes.
Most recently the local magnetic moments in Fe and Ni at ambient and Earth’s-core conditions
were studied [111] using an arsenal of methods, in particular DMFT. At normal pressure, the
Curie temperature of Fe comes out about 30% too large while that of Ni is slightly too low. The
authors (re-)discovered the van Hove singularities in fcc Ni and concluded that without these, Ni
would not be a strong-coupling quantum magnet. Moreover: “The most important implication
of our results for Ni comes from the observation that even at a pressure of hundreds of GPa
(Mbars), the position and shape of these sharp features in the DOS do not change dramatically.
Ni remains in its fcc structure up to even larger pressures and its magnetic moments, though
smaller, are much more robust than those of Fe”.
Well, in the process of substituting I with U, and static- with dynamical mean-field theory,
insights from canonical band theory were apparently forgotten. In the end, AI may take over.
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1 Introduction

Were it not for the electron-electron (e-e) interaction in many-electron systems such as atoms,
molecules and solids, we would not observe fascinating phenomena such as superconductivity,
phase transitions, magnetism and many others. At the same time, it is this electron-electron
interaction that makes solving the many-electron Hamiltonian exceedingly difficult. Solving the
many-electron problem is perhaps one of the general goals in condensed matter theory. Direct
methods for solving the many-electron Hamiltonian by, e.g., expanding the many-electron wave
function as a linear combination of Slater determinants, are however not very fruitful when the
number of electrons is large (∼ 1023), which is the case in real materials. The number of
Slater determinants required for a reasonably accurate solution becomes enormously large and
unfeasible to handle in practice.
One successful approach for handling the many-electron problem is to first identify a subspace
of the full Hilbert space in which e-e interaction plays a decisive role in determining the physical
properties of interest. The basic idea is to treat the e-e interaction explicitly within the limited
subspace whereas the influence of the rest of the Hilbert space is accounted for in a mean-field
approximation. Thus the many-electron problem is reduced to a subspace and fortunately the
size of the relevant subspace is in many cases relatively small compared to the full Hilbert space.
However, the reduction of the many-electron problem to a limited subspace entails the need to
renormalize the e-e interaction resulting in an effective interaction. Physically, the renormaliza-
tion of the e-e interaction arises from the screening processes that have been eliminated when
reducing the many-electron problem to the limited subspace.
A well-known example of an effective many-electron Hamiltonian is the Hubbard model [1],
which in its simplest form is given by

H = −t
∑
i6=j,σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (1)

The first term describes electron hopping with the same spin σ from site j to site i whereas the
second term describes the interaction of electrons of opposite spin when they are on the same
site i. The Hubbard model was introduced by Hubbard, Gutzwiller, and Kanamori at about
the same time in the early 1960’s as a phenomenological model to describe localized or semi-
itinerant 3d states in transition metals. It is physically feasible that the bare e-e interaction is
screened so that the on-site component of the screened interaction is the most important. The
Hubbard model is well suited to study the electronic structure of strongly correlated systems
in which on-site electron correlations are strong, due to the localized nature of the 3d- or 4f -
orbitals. The model describes the competition between the kinetic energy represented by the
hopping term and electron repulsion represented by the U term. For the half-filled case (one
electron per site), as U becomes larger than t it is energetically more favorable for the electrons
to be localized on their respective sites in order to avoid the large repulsion arising from having
two electrons on the same site. As U increases further, each electron is locked on its site and the
system turns into a Mott insulator. Since the Hubbard model is phenomenological, it is common
practice to treat U/t as a parameter.
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In the simplest form there is only one orbital per site but in general there can be several orbitals
per site so that the hopping parameter t and the effective e-e interaction U (the Hubbard U ) are
matrices instead of single numbers

H =
∑

Ri,R′j,σ

tσRi,R′j c
†
RiσcR′jσ +

1

2

∑
R,R′,ijkl,σσ′

Uσσ′

ijkl(R,R
′) c†Riσc

†
R′jσ′cR′kσ′cRlσ . (2)

A set of localized orbitals {ϕRiσ} defining the annihilation and creation operators are assumed.
The subscripts R and i label the site and the orbital, while σ denotes the spin variable. The
parameters Uσσ′

ijkl(R,R
′) are the matrix elements of the effective e-e interaction U(r, r′)

Uσσ′

ijkl(R,R
′) =

∫
d3rd3r′ ϕ∗Ri(r)ϕ

∗
R′j(r

′)U(r, r′)ϕR′k(r
′)ϕRl(r). (3)

We have assumed that the effective interaction is static and orbitals with the same position
variable belong to the same atomic site. In general U depends on four atomic sites.
In the last couple of decades there has been an increasing interest in combining the Hubbard
model with realistic band structure calculations in order to study the electronic structure of
strongly correlated materials from which various physical properties can be derived. Each ma-
terial is then characterized by hopping parameters tσRi,R′j , which determine the underlying one-
particle band structure, and by Uσσ′

ijkl(R,R
′), which determine the effective e-e interaction. The

hopping parameters can be determined from realistic band structure calculations, commonly
done within the local density approximation (LDA) [2], by a tight-binding fit. However, it is
much less obvious how to determine the effective e-e interaction. If we wish to make quantita-
tive predictions about the physical properties of a material, it is necessary to compute the matrix
U from first-principles, rather than treating it as an adjustable parameter. A model Hamiltonian
with adjustable parameters runs the risk of producing certain properties in good agreement with
experiment not for a theoretically justifiable reason but rather due to a fortuitous cancellation
between an inappropriate choice of the parameters and inaccurate theoretical approximations
employed in solving the model.
The purpose of this lecture is to describe a systematic way of determining the effective e-e
interaction corresponding to a chosen subspace into which the many-electron problem is down-
folded. The method is quite general and it yields U(r, r′;ω) so not only local but also non-local
matrix elements can be extracted. Moreover, the method delivers a frequency-dependent U ,
which encapsulates the dynamics of the screening processes determining the effective e-e inter-
action in the chosen subspace. The resulting effective interaction can be used in a model Hamil-
tonian or in an effective-action formalism, which is then solved by using many-body techniques
such as dynamical mean-field theory (DMFT) [3] and quantum Monte Carlo methods.

2 Theory

The determination of the Hubbard U has a long history. Perhaps the earliest attempt was made
by Herring [4] who defined U as the energy cost of transferring an electron between two atoms
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in a crystal. If E(N) is the energy per atom in the initial configuration with N electrons,
removing an electron from a given site costs E(N − 1) − E(N) and putting the removed
electron to another site costs E(N + 1)− E(N) so the total cost is then

U =
[
E(N + 1)− E(N)

]
+
[
E(N − 1)− E(N)

]
= E(N + 1)− 2E(N) + E(N − 1). (4)

We are usually interested in U associated with localized orbitals such as the 3d-orbitals of
transition metals or the 4f -orbitals of the lanthanides. If nd labels the occupation number of a
3d-orbital, treating it as a continuous variable we may write Eq. (4) as

U =
∂2E

∂n2
d

. (5)

The change in the total energy associated with the change in the occupation number is given by
δE = εdδnd, where εd is the orbital energy, so that U can be expressed as the change in the
orbital energy with respect to the occupation number:

U =
∂

∂nd

(
∂E

∂nd

)
=
∂εd
∂nd

. (6)

Early calculations of U for transition metals using this formula were made by Cox et al. [5].
The eigenvalues are calculated for the three different configurations 3dn4s1, 3dn+14s0, 3dn−14s2

by solving an atomic problem self-consistently with an appropriate boundary condition at the
Wigner-Seitz sphere boundary to mimic the atomic environment in the crystal. The change in
the atomic wave function from configuration 3dn4s1 to configurations 3dn+14s0 and 3dn−14s2

captures, respectively, the effects of screening arising from adding and removing an electron
from the 3d-shell. The result shows an almost linear increase across the 3d-series from 1.3 eV
for Sc to 3.3 eV for Ni. A similar approach was also employed by Herbst [6] to compute U for
the 4f -series.
A constrained LDA (cLDA) approach was later introduced by Dederichs et al. [7] who used it
to compute U for Ce. The total energy as a function of the 4f occupation number is given by

E(nf ) = min

{
E[ρ(r)] + vf

(∫
RS

d3rρf (r)− nf
)}

, (7)

where RS is the radius of the Wigner-Seitz sphere, nf and ρf are respectively the occupation
number and density of the 4f -orbital and vf is a Lagrange multiplier corresponding to the con-
straint that the occupation number of the 4f -orbital is given by nf . The Lagrange multiplier vf
can be interpreted as a constant projection potential that acts only on the 4f -orbitals. The con-
straint only applies to the 4f -electrons while other electrons (spd) within the atomic sphere as
well as in the neighboring cells can relax in the self-consistency cycle to minimize the total en-
ergy. By calculating E(nf ) in Eq. (7) as a function of nf around the unconstrained equilibrium
value the Hubbard U can then be computed using the formula in Eq. (5).
The cLDA method can also be formulated using the supercell approach in which the constraint
is implemented by cutting off hopping integrals from the 3d/4f -orbitals in the central atom in
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the supercell to neighboring atoms, thus fixing the number of the 3d/4f -electrons, while other
electrons can relax and screen the 3d/4f -electrons [8]. Hybertsen et al. [9] and Cococcioni
and Gironcoli [10] improved the cLDA method by taking into account the change in the kinetic
energy, the latter based on linear response theory.
In this note, we will describe a different method based on the idea that the effective e-e inter-
action in the chosen subspace corresponding to the model Hamiltonian must be such that when
it is screened by the electrons in the model, it reproduces the fully screened interaction of the
real system. This suggests that screening channels associated with the model must be removed
when computing U [11].

2.1 Screening and screened potential

The underlying concept common to methods for determining U is screening. Consider a many-
electron system such as a solid in its ground state and let us apply a time-dependent external
field Vext(r, t). We wish to study within linear response theory how this external potential is
screened by the electrons in the system. The external field induces a change in the electron
density, which is given by

ρind(r, t) =

∫
d3r′dt′R(r, r′; t− t′)Vext(r′, t′) , (8)

where R(r, r′; t− t′) is the linear density response function, which depends only on the relative
time t − t′ since the Hamiltonian of the system is assumed to be time-independent, and it is a
property of the system, independent of the applied external field Vext. The induced density ρind,
in turn, generates an induced potential

Vind(r, t) =

∫
d3r′ v(r− r′) ρind(r

′, t) , (9)

where v(r − r′) = 1/|r − r′| is the Coulomb interaction. The total potential or the screened
potential is then given by

Vscr(r, t) = Vext(r, t) + Vind(r, t) . (10)

Using Vind in Eq. (9) and ρind in Eq. (8) we find

Vscr(r, t) = Vext(r, t) +

∫
d3r′ v(r− r′) ρind(r

′, t)

= Vext(r, t) +

∫
d3r′ v(r− r′)

∫
d3r′′ dt′R(r′, r′′; t− t′)Vext(r′′, t′) . (11)

It is convenient to work in frequency space by using the Fourier transform defined according to

f(ω) =

∫
dt eiωtf(t) and f(t) =

∫
dω

2π
e−iωtf(ω) . (12)

Since the second term in the last line of Eq. (11) is a convolution in time, applying the Fourier
transform to Eq. (11) yields

Vscr(r, ω) = Vext(r, ω) +

∫
d3r′d3r′′ v(r− r′)R(r′, r′′;ω)Vext(r

′′, ω) , (13)
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Regarding Eq. (13) as a matrix equation we have

Vscr(ω) =
[
1 + vR(ω)

]
Vext(ω) , (14)

which allows us to identify 1 + vR(ω) as the inverse dielectric matrix

ε−1(ω) = 1 + vR(ω). (15)

2.2 Screened Coulomb interaction

We can now apply the general formulation in the previous section to write down the screened
Coulomb interaction. As the external field we consider the instantaneous bare electron-electron
interaction

Vext(rt, r
′t′) = v(r− r′) δ(t− t′) , (16)

where we treat (r′, t′) as parameters. Without loss of generality we may set t′ = 0. This external
field can be interpreted as an instantaneous Coulomb potential at point r arising from a point
charge located at r′. Its Fourier transform is given by

Vext(r, r
′;ω) = v(r− r′) . (17)

Since
δ(t− t′) =

∫
dω

2π
e−iω(t−t

′) , (18)

the external field v(r−r′) δ(t−t′) can also be regarded as a superposition of harmonic potentials
with a common strength v(r− r′). From Eq. (13) the screened Coulomb interaction, which we
now call W , fulfills the equation

W (r, r′;ω) = v(r− r′) +

∫
d3r1d

3r2 v(r− r1)R(r1, r2;ω) v(r2 − r′)

=

∫
d3r′′ ε−1(r, r′′;ω) v(r′′ − r′) , (19)

where we have used the definition of the inverse dielectric matrix in Eq. (15). In other words,
W (r, r′;ω) exp (−iωt) is the screened interaction of the external field v(r − r′) exp (−iωt).
The screened Coulomb interaction W plays an important role in Green function theory since it
determines the self-energy, e.g., in the Hedin equations [12–14].
We may introduce a polarization function defined as

ρind(r, t) =

∫
d3r′dt ′P (r, r′; t− t′)Vscr(r′, t′) , (20)

i.e., as a response function but defined with respect to the screened potential given in Eq. (10).
We therefore have from Eq. (8)

ρind = RVext = PVscr = P (Vext + Vind). (21)
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Since
Vind = vρind = vRVext (22)

we obtain
RVext = P (1 + vR)Vext . (23)

Since Vext is arbitrary, we find

R = P (1 + vR) = Pε−1. (24)

In terms of the polarization function the screened interaction in Eq. (19) can then be written as

W = v + vRv = v + vPε−1v = v + vPW. (25)

Solving for W we find
W = [1− vP ]−1v, (26)

which allows us to identify the dielectric matrix as

ε = 1− vP. (27)

2.3 Linear density response function

The exact expression for the linear density response function (hereafter referred to as response
function) was derived by Kubo using time-dependent perturbation theory [15]. It can also be de-
rived more conveniently using Green function theory in the interaction representation described
in the Appendix. The exact expression for the time-ordered response function is given by

iR(1, 2) = 〈Ψ0|∆ρ̂H(2)∆ρ̂H(1)|Ψ0〉 θ(t2 − t1) + 〈Ψ0|∆ρ̂H(1)∆ρ̂H(2)|Ψ0〉 θ(t1 − t2) , (28)

where we have used the notation 1 = (r1, t1), etc., Ψ0 is the many-electron ground state and

∆ρ̂H(1) = ρ̂H(1)− ρ(1) (29)

is the density fluctuation operator in the Heisenberg picture

∆ρ̂H(r, t) = eiĤt∆ρ̂(r)e−iĤt. (30)

Ĥ is the Hamiltonian of the many-electron system, assumed to be independent of time.
The Fourier transform of the response function is given by (see Appendix)

R(r, r′;ω) =
∑
n

[
〈Ψ0|∆ρ̂(r) |Ψn〉 〈Ψn|∆ρ̂(r′)|Ψ0〉

ω − En + E0 + iη
− 〈Ψ0|∆ρ̂(r′) |Ψn〉 〈Ψn|∆ρ̂(r)|Ψ0〉

ω + En − E0 − iη

]
, (31)

where Ĥ|Ψn〉 = En|Ψn〉. The term n = 0, corresponding to the ground state, is zero since
〈Ψ0|∆ρ̂(r)|Ψ0〉 = 0.
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2.4 Random phase approximation

For real materials it is virtually impossible to compute the exact response function, so in practice
we must resort to approximations. The most successful approximation is the random phase
approximation (RPA) developed by Bohm and Pines in the 1950’s [16]. The RPA was originally
derived from the equation of motion for the density fluctuation. Some years later Gell-Mann
and Brueckner derived the RPA using a diagrammatic technique. It was later recognized that
the RPA can be regarded simply as the time-dependent Hartree approximation, which can be
seen most clearly within Green function theory described in the Appendix.
In the RPA, it is assumed that the density response of the many-electron system to an external
perturbation is the same as the response to the screened potential, Vscr = Vext+Vind, but as if the
system is non-interacting. Thus, if P 0 is the non-interacting response function corresponding
to some mean-field approximation for the many-electron system, then schematically

ρind = RVext = P 0(Vext + Vind). (32)

Since Vind = vρind = vRVext and Vext is arbitrary, we obtain

R = P 0 + P 0vR . (33)

It is the same equation as Eq. (24) except that P has been replaced by P 0. The time-ordered
non-interacting response function is given by (see Appendix)

P 0(r, r′;ω) = −2
occ∑
i

unocc∑
j

(
fij(r, r

′)

ω + (εj − εi − iδ)
−

f ∗ij(r, r
′)

ω − (εj − εi − iδ)

)
, (34)

where
fij(r, r

′) = ψi(r)ψ
∗
j (r)ψ

∗
i (r
′)ψj(r

′). (35)

It can also be obtained from the exact expression for the response function in Eq. (31) by using
non-interacting many-electron states (single Slater determinants). The factor of two accounts
for the two spin channels in the paramagnetic case and for a spin-polarized system we add
up the polarization from each channel. {ψi, εi} are the eigenfunctions and eigenvalues of the
non-interacting system, which are commonly chosen to be those of the LDA.
In practice both the polarization function and the response function are expanded according to

P (r, r′;ω) =
∑
kαβ

Bkα(r)Pαβ(k, ω)B
∗
kβ(r

′), (36)

where {Bkα} is a set of (two-particle) basis functions fulfilling the Bloch theorem

Bkα(r+T) = eik·TBkα(r). (37)

For example,Bkα(r) = exp[i(k+G)·r], in which the label α denotes the reciprocal lattice vec-
tor G. Another example is a product basis [14] based on the linear muffin-tin orbital (LMTO)
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method [17]:

Bkα(r) =
∑
T

eik·TbRα(r−T), (38)

bRα(r) = χRL(r)χRL′(r), (39)

where χRL is an LMTO centered at atom R with angular momentum L and α = (L,L′). It
is worth noting that the basis {Bkα} is by construction complete for P and R, but it is not in
general complete for W . As can be seen in Eq. (19), to expand W a complete basis for the bare
Coulomb interaction is needed.

2.5 The constrained RPA method

Our aim is to determine the effective e-e interaction among electrons residing in a given sub-
space, which can represent a partially filled narrow band across the Fermi level typically orig-
inating from 3d- or 4f -orbitals found in strongly correlated systems. The physical assumption
is that when the effective e-e interaction is screened by electrons residing in the subspace, the
resulting screened interaction should reproduce the screened interaction of the full system [11].
If P is the polarization of the full many-electron system the screened interaction is given by

W = v + vPW. (40)

Let P d be the polarization of the subspace such as the 3d- or 4f -band in the Hubbard model.
We refer to this subspace as d-subspace and the rest of the Hilbert space as r-subspace. We
require that

W = U + UP dW (41)

=
(
1− UP d

)−1
U (42)

which defines U as the effective e-e interaction in the d subspace. It is given by

U = W
(
1− P dW

)−1
. (43)

Within the RPA, P = P 0 as given in Eq. (34) and P d is given by the same expression except that
the single-particle wave functions are restricted to those of the d-subspace. Eq. (43) provides
an operational means for computing U .
Alternatively, U can be written in a physically more transparent form. The total polarization
can be decomposed according to

P = P d + P r, (44)

which is illustrated in Fig. 1. From Eq. (26) we have [11]

W = (1− vP )−1v
= (1− vP r − vP d)−1v

=
(
(1− vP r)

(
1− (1− vP r)−1vP d

))−1
v

=
(
1− (1− vP r)−1vP d

)−1
(1− vP r)−1v
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Polarisation: P = Pd + Pr

EF

Fig. 1: Schematic illustration of the definitions of P d and P r. The former is confined to tran-
sitions inside the d-subspace whereas the latter contains both transitions inside the r-subspace
as well as between the d- and r-subspaces.

Upon comparison with Eq. (42) we can verify that U

U = (1− vP r)−1v (45)

U = v + vP rU (46)

which is consistent with the interpretation of U as the effective e-e interaction in the d-subspace
since the bare interaction v is screened by P r, which consists of those polarization channels that
do not include the channels within the d-subspace.
Similar to the screened interaction W in Eq. (19) we may write

U = v + vRrv, (47)

where Rr satisfies

Rr = P r + P rvRr, (48)

Rr = (1− P rv)−1P r. (49)

Writing out in full in position representation we obtain

U(r, r′;ω) = v(r− r′) +

∫
d3r1d

3r2 v(r− r1)R
r(r1, r2;ω) v(r2 − r′) . (50)

Expanding Rr as in Eq. (36) we obtain

U(r, r′;ω) = v(r− r′) +
∑
kαβ

Ckα(r)R
r
αβ(k, ω)C

∗
kβ(r

′), (51)
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where

Ckα(r) =

∫
d3r1 v(r− r1)Bkα(r1) . (52)

The constrained RPA (cRPA) method provides an effective e-e interaction as a function of posi-
tions (r, r′) and frequency ω from which matrix elements of U , both local and non-local, needed
as input in a model Hamiltonian can be extracted. Since the d-subspace usually corresponds to
a partially filled narrow band across the Fermi level, as illustrated in Fig. 1, P d contains the
metallic screening whereas P r = P − P d, which determines U , contains no metallic screening
so that U is intrinsically long range since the screening is incomplete, similar to the screened
interaction in semiconductors and insulators.

2.6 Wannier orbitals

In most applications involving strongly correlated systems, we need to define a set of localized
orbitals defining the annihilation and creation operators in the model Hamiltonian.The choice
of localized orbitals is arbitrary. For example, they could be a set of pre-processed linearized
muffin-tin orbitals (LMTO) [17] or a set of post-processed maximally localized Wannier or-
bitals [18] constructed from Bloch eigenstates generated from a band structure calculation. The
Wannier function with band index n at cell R is defined by

|ϕRn〉 =
Ω

(2π)3

∫
BZ

d3k e−ik·R|ψ(w)
kn 〉, (53)

where Ω is the cell volume and |ψ(w)
nk 〉 is a linear combination of the eigenfunctions of a mean-

field Hamiltonian
|ψ(w)

kn 〉 =
∑
m

|ψkm〉 Umn(k). (54)

In practical implementations, the Kohn-Sham wavefunctions are usually used for |ψkm〉. In
the maximally localized Wannier function scheme, the coefficients Umn(k)’s are determined by
minimizing the extent of the Wannier orbitals [18]

Ω =
∑
n

(〈ϕ0n|r2|ϕ0n〉 − |〈ϕ0n|r|ϕ0n〉|2). (55)

After defining a set of localized orbitals we now compute the matrix elements of U in these
orbitals. From Eq. (51), taking the matrix elements of U as defined in Eq. (3), we obtain

Uσσ′

ijkl(R,R
′;ω) = vσσ

′

ijkl(R,R
′) +

∑
kαβ

〈ϕRiϕ
∗
Rl|Ckα〉Rr

αβ(k, ω)〈Ckβ|ϕ∗R′jϕR′k〉, (56)

where Ckα is defined in Eq. (52) and

Uσσ′

ijkl(R,R
′;ω) =

∫
d3rd3r′ϕ∗Ri(r)ϕ

∗
R′j(r

′)U(r, r′;ω)ϕR′k(r
′)ϕRl(r). (57)
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2.7 cRPA for entangled bands

For isolated bands the Wannier orbitals are well defined and they reproduce the bands. However,
in many applications it may happen that the narrow bands which are to be modelled are not
isolated so the Wannier orbitals are not unique. For this case, we optimize Umn(k) with m

limited to the states inside a chosen energy window. For a given k-point the number of bands
is equal to or larger than the number of m. The Wannier functions are more localized the larger
the energy window, since optimization is done in a wider Hilbert space. The band structure
{ψ̃km, ε̃km} computed using these Wannier orbitals will not in general reproduce the original
band structure. {ψ̃km} define the d-subspace and we introduce the projection operator [19]

Pk =
∑
m

|ψ̃km〉〈ψ̃km|. (58)

We define the r-subspace as follows:

|φkn〉 = (1− Pk)|ψkn〉, (59)

where {ψkn} are the original Bloch states. The states {φkn} are not orthonormal but they are
evidently orthogonal to the d-subspace. The one-particle Hamiltonian is now calculated using
{ψ̃km} and {φkn} as basis functions, but as an approximation, the coupling between the d- and
r-subspaces is set to zero

H =

[
Hdd 0

0 Hrr

]
, (60)

where Hdd is the Hamiltonian matrix calculated in the d-subspace, which is already diagonal,
{ψ̃km} and Hrr is calculated in the subspace of {φkn}.
The total polarization function is then computed from the new disentangled band structure ob-
tained from the Hamiltonian in Eq. (60) and P d is computed from {ψ̃km, ε̃km}. It would seem
reasonable to use the total polarization function P calculated from the original band structure
but this procedure leads to oscillations in U at low energy due to the presence of low-lying
polarizations not completely eliminated from P when calculating P r = P − P d.

3 Examples

In the following we will describe applications of the cRPA method to some real materials to
illustrate what information can be extracted from the calculations.

3.1 Cubic perovskite SrVO3

As a first example, we consider a prototype of a correlated metal, the cubic perovskite SrVO3.
This example has been considered before in Ref. [20] but it is included here since it provides an
ideal illustration for the cRPA method. As can be seen in Fig. 2 the t2g-bands cross the Fermi
level and are well isolated from other bands. These three t2g-bands form the d-subspace, which
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Fig. 2: The LDA band structure of metallic SrVO3 with cubic perovskite structure. The red lines
correspond to the three t2g-bands which define the d-subspace and are isolated from the rest of
the bands [20].

Fig. 3: The maximally localized Wannier functions of SrVO3 centered at vanadium of xy, yz,
or xz character. If the horizontal and vertical directions are respectively assigned to be the x
and z axes the shown Wannier function corresponds to xz character. The red (blue) represents
the positive (negative) contour. (Green sphere = strontium, white sphere = oxygen). Left figure:
The Wannier orbital is constructed from the vanadium t2g-bands only. We note that the Wannier
function has tails on the oxygen sites. Right figure: The Wannier orbital is constructed from the
vanadium (t2g + eg)- bands and oxygen p-bands, which makes it clearly more localized on the
vanadium site compared to the one on the left figure [20].

corresponds to the Hilbert space of the Hubbard model. One of the Wannier orbitals constructed
from these t2g-bands is shown on Fig. 3 (left). If the d-subspace is extended to include the eg-
bands and the oxygen p-bands, the Wannier orbitals of t2g-symmetry become more localized,
as can be seen on the right figure of Fig. 3.
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Fig. 4: Illustration of how the on-site Hubbard U = Uσσ

iiii(R,R;ω) depends on the choice of the
d-subspace indicated by the legends in the figure. The subscript i labels one of the t2g-orbitals
(xy, yz, or xz) and R labels the vanadium atom. W is the fully screened interaction. The
definitions of the models are summarized in Table 1 below. The left and right figures correspond
respectively to the real and imaginary parts of U [20].

The on-site Hubbard U as a function of frequency for several choices of d-subspace is illus-
trated in Fig. 4. Several conclusions can be drawn from examining the imaginary part of W
and U . Im(W ) exhibits several sharp peaks, which correspond to collective excitations in the
system. The peak at 2 eV arises from collective charge oscillations (plasmons) of electrons in
the t2g-bands whereas the peak at 15 eV corresponds to a plasmon excitation of electrons in the
whole system. In the t2g-model and other models, the peak at 2 eV disappears, which confirms
the interpretation of it as a collective excitation of the t2g-electrons since polarizations within
the t2g-bands are excluded in the models. We can also conclude that the 15 eV plasmon is dom-
inated by the oxygen p-to-vanadium 3d transitions since this peak disappears in the dp-model
in which p-to-d polarizations are excluded. The p-to-eg polarizations are apparently stronger
than the p-to-t2g polarizations since in going from the t2g-model to the (t2g + p)-model, the
plasmon peak at 15 eV is greatly reduced. As can be seen on the left of Fig. 4 the real part of
U becomes increasingly constant as the d-subspace is enlarged and eventually it will approach
the bare Coulomb interaction value, as expected.

Table 1: Definitions of models

model: t2g d t2g+p dp
d- subspace: V t2g V (t2g + eg) V t2g+O p V (t2g + eg)+O p
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Fig. 5: LDA band structure of La2CuO4. The green dashed lines are the bands obtained from
the Wannier orbitals and represent the d-subspace. Left figure: one-band model (anti-bonding
O px,y-Cu dx2−y2). Right figure: Emery’s three-band model (Cu dx2−y2 and O px, py) [21].

3.2 Undoped cuprate La2CuO4

The LDA band structure of La2CuO4, the parent compound of a prototype of high-temperature
superconductors, is displayed in Fig. 5. The relevant bands arise from the copper dx2−y2 orbital
and the two oxygen px and py orbitals on the CuO2 plane in which superconductivity is believed
to originate. Since the bands to be modelled are not entirely isolated, the disentanglement
procedure described in a previous section has been applied and the bands generated from the
Wannier orbitals do not completely reproduce the original LDA bands.
The effective one-band model consists of a single orbital of dx2−y2 character at each Cu site.
The three-band model includes also the two in-plane Wannier orbitals of O px/py character.
Although the conduction bands in the two models look very similar the Wannier orbitals cor-
responding to the Cu dx2−y2 character are actually very different. In the one-band model the
Cu-centered Wannier orbital is constructed from a few bands close to the Fermi energy, which
leads to more delocalized Wannier orbitals than in the three-band model, in which more states
are used to construct the Wannier orbitals. In the one-band model there is a one-to-one corre-
spondence between the conduction band and the Wannier orbital of dx2−y2-character spanning
the d-subspace, while in the three-band model the conduction band is the antibonding com-
bination of the p- and d-states and the two valence bands are the bonding and nonbonding
combinations. The main d-weight is in the conduction band but there is also a small d-weight
in the valence bands.
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Fig. 6: The Hubbard U for La2CuO4 for the one-band model (left panel) and the three-band
model (right panel). Udd and Upp are respectively the on-site U on the copper and oxygen sites
and Upd is the off-site U between the copper and oxygen sites [21].

The Hubbard U for the one- and three-band models are shown in Fig. 6. It is to be noted that
in both models, only transitions within the conduction band are excluded when calculating U .
From the point of view of cRPA, the d-subspace is spanned by the conduction band only. The
strong peak at 9 eV can be traced back to p-to-d transitions corresponding to the collective
charge oscillation of the oxygen p-electrons. It is interesting to note that the peak is not present
in Upp, indicating that the collective excitation has its main weight on the copper site [21]. A
comparison between the left and right panels of Fig. 6 suggests different magnitudes of U for
the two models. The reason for the larger magnitude of Udd in the three-band model is due
mainly to the more localized Wannier orbital. In the full three-band model in which the oxygen
p-orbitals are treated as part of the d-subspace, the magnitude of U will be even larger since
p-to-d transitions are excluded when computing U .
Noteworthy is the significant size of the off-site Upd, which evidently should not be neglected.
It may, however, be sufficient to treat the effects of Upd at the mean-field level.

3.3 Early lanthanides series

As a further example, the static U corresponding to the 4f -bands of the early lanthanides series
is shown in Fig. 7 (left) together with experimental estimates from XPS and BIS spectra. The
cRPA values tend to be lower than the experimental estimates but noticeably follow the trend
across the series rather closely and especially the jump at Eu and Gd is correctly captured [22].
The lower cRPA values are most likely due to the well known LDA problem in describing
the band structure of the 4f -series. Gadolinium may serve as an illustration for the problem
with the LDA. In Fig. 8 the LDA 4f density of states is compared with that of the LDA+U,
the latter is known to be in good agreement with the experimental photoemission and inverse
photoemission data. As can be seen, the LDA exchange splitting separating the occupied and
unoccupied 4f -bands is severely underestimated. Since the LDA 4f -bands are too close to the
Fermi level, cRPA calculations based on this LDA band structure overestimate screening and
result in too small U . Indeed, when the band structure is calculated self-consistently within
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Fig. 7: Left: The average diagonal matrix element of the fully screened interaction W and the
Hubbard U for the lanthanides at ω = 0. W is calculated both using the original states (Worig)
and the disentangled states (Wdis). The experimental data are estimations of U from XPS and
BIS spectra. The inset shows the average diagonal element of the bare interaction across the
series. Right: The average exchange matrix element of the fully screened interaction (W x), the
partially screened interaction (J) and the bare interaction (vx) for the lanthanides [22].
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down

Fig. 8: LDA+U band structure, density of states (DOS) and partial f -DOS (blue) for gadolin-
ium. The calculations were done using the parameters U = 12.4 eV and J = 1.0 eV.
The experimental exchange splitting is approximately 12-13 eV. The displayed directions are
1
2
(1, 1, 1) → Γ → (1, 0, 0). For comparison, we also show the partial f -DOS from a spin-

polarized LDA calculation [23].

the LDA+U scheme, the cRPA value increases significantly and in better agreement with the
experimental estimate [24]. This illustrates the importance of the one-particle part of the model
Hamiltonian in capturing the correct Coulomb correlations.
In Fig. 7 (right) the exchange J across the series is also shown and compared with the bare
values. It can be seen that the common procedure for approximating J by its unscreened atomic
value is quite reasonable. This is as anticipated since the exchange interaction, which does not
contain a l = 0 charge component, is relatively immune to screening.
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Since the 4f -bands are entangled, as can be seen, e.g., in the case of gadolinium, the disentan-
glement procedure described above is also applied here. To measure quantitatively the quality
of the disentangled band structure, the fully screened interactions computed using the origi-
nal and disentangled band structures are compared in Fig. 7. With the exception of Eu, the
small difference between the two indicates that the entangled band structure provides a good
representation of the original band structure.

4 Summary

The reliable determination of the Hubbard U based on a realistic band structure of a given
material has become feasible, allowing for a first-principles study of the electronic structure of
strongly correlated materials. Theoretical calculations of the Hubbard U eliminate uncertainties
and ambiguities associated with treating U as adjustable parameters. By analyzing the effects of
the individual screening channels on the screened interaction, we can discern which screening
channels are important, providing valuable physical insights and a guide for constructing a
model Hamiltonian.
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Appendix

A Response functions from Green function formalism

The response functions can be derived from Green function by introducing a probing time-
dependent field ϕ(r, t) that couples to the charge density. In the presence of a time-dependent
field it is convenient to work in the Dirac or interaction representation. In this representation
the Green function is defined as, with the notation 1 = (r1, t1) etc.,

iG(1, 2) =
〈Ψ0|T [Ŝψ̂D(1)ψ̂D(2)]|Ψ0〉

〈Ψ0|Ŝ|Ψ0〉
(61)

where Ψ0 is the many-electron ground state, ψ̂D is the field operator in the interaction picture

ψ̂D(r, t) = eiĤtψ̂(r)e−iĤt, (62)

where Ĥ is the many-electron Hamiltonian without the probing field ϕ(r, t). It is worth not-
ing that in the interaction picture, the field operator does not depend on the probing field ϕ.
The time-ordering operator T chronologically orders the field operators so that the operator
containing the earliest time stands farthest to the right. Ŝ is the scattering operator

Ŝ = ÛD(∞,−∞), (63)

where ÛD is the time-evolution operator in the interaction picture

ÛD(t, t
′) = T exp

(
−i
∫ t

t′
dτ φ̂(τ)

)
, (64)

and
φ̂(t) =

∫
d3r ρ̂(r, t)ϕ(r, t). (65)

The Green function satisfies the equation of motion(
i
∂

∂t1
− h(1)

)
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1− 2), (66)

where h is the one-particle part of the Hamiltonian that includes the probing field ϕ and the
Hartree potential VH

h = −1

2
∇2 + Vext + VH + ϕ. (67)

The time-ordered linear density response function is defined as

R(1, 2) =
δρ(1)

δϕ(2)
. (68)

It is advantageous to work with the time-ordered response function since we are not restricted
to t1 > t2, as in the case of the retarded version, so the functional derivative can be taken freely.
The charge density can be obtained from the diagonal element of the Green function

ρ(1) = −iG(1, 1+) , (69)
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where 1+ indicates that t+1 = t1 + η where η is a positive infinitesimal. When taking the
functional derivative of G with respect to the probing field ϕ, only the scattering operator Ŝ is
affected since the field operator in the interaction picture is independent of ϕ. The functional
derivative of Ŝ with respect to ϕ is given by

δŜ

δϕ(2)
=

δ

δϕ(2)
T exp

(
−i
∫
d1 ρ̂(1)ϕ(1)

)
= −iT

(
Ŝ ρ̂(2)

)
. (70)

The response function is then

R(1, 2) =
δρ(1)

δϕ(2)
= −i δG(1, 1

+)

δϕ(2)
=

δ

δϕ(2)

〈
Ψ
∣∣∣T(Ŝρ̂D(1))∣∣∣Ψ〉〈
Ψ
∣∣∣ Ŝ ∣∣∣Ψ〉

= −
i
〈
Ψ
∣∣∣T(Ŝρ̂D(2)ρ̂D(1))∣∣∣Ψ〉〈

Ψ
∣∣∣ Ŝ ∣∣∣Ψ〉 +

i
〈
Ψ
∣∣∣T(Ŝρ̂D(1))∣∣∣Ψ〉〈Ψ ∣∣∣T(Ŝρ̂D(2))∣∣∣Ψ〉〈

Ψ
∣∣∣ Ŝ ∣∣∣Ψ〉2

(71)

After taking the functional derivative of the density ρ(1) = −iG(1, 1+) with respect to the
applied field ϕ, we set ϕ = 0. This implies that Ŝ = 1 and the Dirac field operator becomes the
Heisenberg field operator. We obtain the time-ordered linear density response function

iR(1, 2) = 〈Ψ |∆ρ̂H(2)∆ρ̂H(1)|Ψ〉 θ(t2 − t1) + 〈Ψ |∆ρ̂H(1)∆ρ̂H(2)|Ψ〉 θ(t1 − t2) , (72)

where the density fluctuation operator is given by

∆ρ̂H(1) = ρ̂H(1)− ρ(1) . (73)

To obtain the response function in the frequency representation we first insert a complete set
of eigenstates of Ĥ in between the density operators and use the definition of the Heisenberg
operator, yielding

iR(1, 2) =
∑
n

〈
Ψ0

∣∣∣eiĤt2∆ρ̂(r2)e−iĤt2∣∣∣Ψn〉〈Ψn ∣∣∣eiĤt1∆ρ̂(r1)e−iĤt1∣∣∣Ψ〉 θ(t2 − t1)
+
∑
n

〈
Ψ0

∣∣∣eiĤt1∆ρ̂(r1)e−iĤt1∣∣∣Ψn〉〈Ψn ∣∣∣eiĤt2∆ρ̂(r2)e−iĤt2∣∣∣Ψ0

〉
θ(t1 − t2)

=
∑
n

〈Ψ0|∆ρ̂(r2) |Ψn〉 〈Ψn|∆ρ̂(r1)|Ψ0〉 e−i(En−E0)(t2−t1)θ(t2 − t1)

+
∑
n

〈Ψ0|∆ρ̂(r1) |Ψn〉 〈Ψn|∆ρ̂(r2)|Ψ0〉 e−i(En−E0)(t1−t2)θ(t1 − t2) (74)

Performing the Fourier transform
∫
dτ exp(iωτ)R(τ), where τ = t1 − t2, yields

R(r, r′;ω) =
∑
n

[
〈Ψ0|∆ρ̂(r) |Ψn〉 〈Ψn|∆ρ̂(r′)|Ψ0〉

ω − En + E0 + iη
− 〈Ψ0|∆ρ̂(r′) |Ψn〉 〈Ψn|∆ρ̂(r)|Ψ0〉

ω + En − E0 − iη

]
. (75)
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The corresponding retarded response function, the well-known Kubo’s formula, is given by

Rret(r, r′;ω) =
∑
n

[
〈Ψ0|∆ρ̂(r) |Ψn〉 〈Ψn|∆ρ̂(r′)|Ψ0〉

ω − En + E0 + iη
− 〈Ψ0|∆ρ̂(r′) |Ψn〉 〈Ψn|∆ρ̂(r)|Ψ0〉

ω + En − E0 + iη

]
,

(76)
which, in contrast to the time-ordered one, has all poles in the lower half plane. The response
function gives information about the excitation spectrum of the system: ImR(ω) has peaks
whenever ω = En − E0, corresponding to the N -particle excitation energies.
If there is no magnetic field, i.e., if time-reversal symmetry is obeyed,

〈Ψ0|∆ρ̂(r′) |Ψn〉 〈Ψn|∆ρ̂(r)|Ψ0〉 = 〈Ψ0|∆ρ̂(r) |Ψn〉 〈Ψn|∆ρ̂(r′)|Ψ0〉 (77)

is real so that R satisfies
R(r, r′;−ω) = R(r, r′;ω), (78)

R(r, r′;ω) = R(r′, r;ω). (79)

The response function R is the time-ordered response which differs from the retarded response
Rret. The two are related as

ReR(ω) = ReRret(ω), (80)

ImR(ω)sgn(ω) = ImRret(ω), sgn(ω) ≡ ω/|ω|, (81)

valid for real ω.
Compared with the original derivation of Kubo, the Schwinger functional derivative technique
provides a simple way of deriving the response functions. We have derived the Kubo for-
mula specifically for linear density response function. However, the method is applicable to a
more general response function since any expectation value of a single-particle operator in the
ground state is expressible in terms of the Green function. Moreover, higher-order density re-
sponse functions can be readily worked out. For example, calculating the second-order density
response function given by

R(1, 2, 3) =
δ2ρ(1)

δϕ(3) δϕ(2)
=
δR(1, 2)

δϕ(3)
, (82)

is just a matter of inserting δŜ/δϕ at the appropriate places.
In reality, we must resort to approximations for the response function. A commonly used ap-
proximation is the RPA which can be derived from the equation of motion of the Green function
in Eq. (66). We obtain after multiplying both sides of the equation by G−1(

i
∂

∂t1
− h(1)

)
δ(1− 2)−Σ(1, 2) = G−1(1, 2), (83)

Since
h = −1

2
∇2 + Vext + VH + ϕ (84)
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we find
δG−1(1, 2)

δϕ(3)
= −δ(1− 2)

(
δ(1− 3) +

δVH(1)

δϕ(3)

)
− δΣ(1, 2)

δϕ(3)
. (85)

We wish, however, to calculate δG/δϕ, which can be obtained by using the identity∫
d4

(
δG−1(1, 4)

δϕ(3)
G(4, 2) +G−1(1, 4)

δG(4, 2

δϕ(3)

)
= 0 , (86)

which follows from taking the functional derivative with respect to ϕ of∫
d4G−1(1, 4)G(4, 2) = δ(1− 2). (87)

From Eq. (86) we find

δG(1, 2)

δϕ(3)
= −

∫
d4 d5G(1, 4)

δG−1(4, 5)

δϕ(3)
G(5, 2). (88)

The response function is then

R(1, 2) =
δρ(1)

δϕ(2)
= −i δG(1, 1

+)

δϕ(2)
= i

∫
d3 d4G(1, 3)

δG−1(3, 4)

δϕ(2)
G(4, 1+). (89)

Using Eq. (85) with δΣ/δϕ = 0 yields the RPA

R(1, 2) = −i
∫
d3 d4G(1, 3) δ(3− 4)

(
δ(3− 2) +

δVH(3)

δϕ(2)

)
G(4, 1+)

= −i
∫
d3G(1, 3)

(
δ(3− 2) +

δVH(3)

δϕ(2)

)
G(3, 1+). (90)

Identifying the polarization function as

P (1, 2) = −iG(1, 2)G(2, 1+) (91)

and using

VH(3) =

∫
d4 v(3− 4) ρ(4) (92)

we obtain the RPA equation

R(1, 2) = P (1, 2) +

∫
d3 d4P (1, 3) v(3− 4)R(4, 2) . (93)

Using the convolution theorem, the Fourier transform of the polarization function becomes

P (r, r′;ω) = −i
∫
dω′

2π
G(r, r′;ω + ω′)G(r′, r;ω′). (94)

If we use a non-interacting Green function,

G0(r, r′;ω) =
occ∑
n

ψn(r)ψ
∗
n(r
′)

ω − εn − iδ
+

unocc∑
n

ψn(r)ψ
∗
n(r
′)

ω − εn + iδ
, (95)

and perform the frequency integral, we obtain the expression in Eq. (34). The RPA is sometimes
referred to as the time-dependent Hartree approximation because when calculating the response
function only the change in the Hartree potential with respect to the probing field is taken into
account whereas the change in the self-energy, δΣ/δϕ, is neglected.
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[7] P.H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett. 53, 2512 (1984)

[8] O. Gunnarsson, O.K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 1708 (1989)
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1 Introduction

In this Lecture the foundations of dynamical mean-field theory (DMFT) for interacting electrons
will be reviewed along the following route. As already described in the Lecture of D. Vollhardt,
the first step involves the limit of infinite lattice dimension, d → ∞. We will discuss this
limit for fermions in Sec. 2. The resulting scaling of hopping parameters with d then makes
the effect of electronic interactions in Hubbard-type models more manageable, as discussed in
Sec. 3. Namely, the Feynman diagrams contributing to the Green function in perturbation the-
ory simplify, and as a result the self-energy becomes local, i.e., independent of momentum. The
derivation of DMFT is then completed by mapping Hubbard-type models in infinite dimensions
to single-site impurity models with a self-consistency condition (Sec. 4), which have the same
self-energy but can be solved numerically. Note that other derivations of this last step are avail-
able [1–5]. Note also that the present lecture notes draw largely on a previous presentation [6].

The Hubbard model is the simplest model for describing the physics of correlated electrons,
i.e., electrons which do not behave independently due to their Coulomb interaction. For a single
band it can be written as

H = H0 +H1 , (1a)

H0 =
∑
ijσ

tij c
†
iσcjσ =

∑
kσ

εk c
†
kσckσ , (1b)

H1 = U
∑
i

ni↑ni↓ , (1c)

where tij is the hopping amplitude from site i to j, and the dispersion relation εk is its Fourier
transform; for our purposes we will assume a tight-binding form. For each doubly occupied
site the Hubbard interaction U is contributed to the energy of a state. To describe the electronic
structure of correlated materials, more complicated models and methods are typically needed,
e.g., involving several bands as obtained from density functional theory, including more com-
plicated on-site interactions, taking retardation effects into account, reconciling a calculated
charge distribution with the model parameters determined by it, nonlocal and nonequilibrium
effects, and so on. For these topics we refer to the other Lectures in this book. In these contexts,
as well as for (1), the goal and spirit of DMFT is to provide a controlled starting point for a
reliable treatment of interactions and the induced electronic correlations.

2 Fermions in the limit of infinite lattice dimension

We begin with the limit of infinite spatial dimensions, d→∞, as introduced in Ref. [7]. First
the three-dimensional simple cubic lattice is generalized to the d-dimensional hypercubic lattice
in order to obtain the corresponding tight-binding dispersion for nearest-neighbor hopping. The
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hypercubic lattice simply has the unit cell basis vectors

e1 = (1, 0, 0, . . . , 0) ,

e2 = (0, 1, 0, . . . , 0) ,

. . .

ed = (0, 0, 0, . . . , 1) . (2)

A nearest-neighbor hopping amplitude tij and corresponding dispersion then have the form

tij = t(Ri −Rj) =

−t if Ri −Rj = ±en ,

0 otherwise ,
(3)

εk = −2t
d∑
i=1

cos ki . (4)

We will proceed in two ways to obtain the corresponding density of states (L: number of lattice
sites)

ρ(ω) =
1

L

∑
k

δ(ω − εk) . (5)

A succinct technique is to employ the central limit theorem for probability distributions [7]. One
defines random variables Xi =

√
2 cos ki in terms of independent random variables ki, which

are independently and uniformly distributed in the interval [−π, π]. SinceXi has zero mean and
unit variance, the random variable Xd =

1√
d

∑d
i=1Xi converges in law to a normal distributed

random variable X , again with zero mean and unit variance. Here convergence in law means
that the distribution function of Xd converges to the normal distribution exp(−x2/2)/

√
2π. If

we then consider the density of states ρ(ε) as the distribution function of the random variable√
2d tXd, we see that a finite density of states is obtained only if we scale the hopping amplitude

is proportional to d−1/2 for d → ∞. We thus have, replacing the sum over the first Brillouin
zone in (5) by an integral in the thermodynamic limit,

ρ(ε) =

∫
ddk

(2π)d
δ(ε− εk) =

1

2π|t∗|
exp

[
− ε2

2t2∗

]
for t =

t∗√
2d
, (6)

where t∗ is independent of d. We thus obtain a Gaussian density of states with finite variance,
and hence also a finite kinetic energy per lattice site. With the scaling t ∝ 1/

√
d the kinetic

energy and the Hubbard interaction energy thus remain of the same order of magnitude in the
limit d→∞ and hence in competition with each other. Fig. 1 depicts several densities of states
for different d, showing the approach to a Gaussian for large d.
Alternatively, one can follow the idea of the proof of the central limit theorem, which uses
Fourier transforms of probability distributions. We thus consider the Fourier transform of
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ρ(ω)

Fig. 1: Density of states for hopping on hypercubic lattice for several d, compared to the Gaus-
sian that is obtained in d→∞. From Ref. [2].

ρ(ε) [8], which separates into independent factors for each dimension,

Φ(s) =

∞∫
−∞

dε eisε ρ(ε) =

∫
ddk

(2π)d
eisεk =

 π∫
−π

dk

2π
exp

(
−2ist∗√

2d
cos k

)d

= J0

(
2st∗√
2d

)d
=

[
1− t2∗s

2

2d
+O

(
1

d2

)]d
= exp

[
−t

2
∗s

2

2
+O

(
1

d

)]
. (7)

Here J0(z) is a Bessel function, which has been Taylor expanded, integrated, and reexponenti-
ated. Performing the inverse transform yields

ρ(ε) =

∞∫
−∞

dε

2π
e−isε Φ(s) =

1

2π|t∗|
exp

[
− ε2

2t2∗
+O

(
1

d

)]
, (8)

By keeping more terms in the Taylor expansion of the Bessel function one can derive further
terms in an asymptotic series in powers of 1/d [8].
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We conclude that the nearest-neighbor hopping amplitude must be scaled with 1/
√
d to obtain

a meaningful large-dimensional limit. More generally, each hopping amplitude tn must be
scaled proportional to 1/

√
Zn, where the coordination number Zn denotes the number of sites

which are connected to a given site by tn, e.g., Z1 = 2d for nearest-neighbor hopping and Z2

= (2d − 1)2d = (Z − 1)Z for next-nearest-neighbor hopping on the hypercubic lattice, and
so on. The density of states for a more complicated hopping matrix can also be obtained. For
example, for nearest-neighbor and next-nearest-neighbor hopping a singularity develops at one
of the band edges [9]. A general mapping can be constructed between the hopping matrix on
the hypercubic lattice and its density of states [10, 11], which also to determine the hopping
amplitudes for a given density of states.

A conceptual and practical drawback of a Gaussian density of states is that it extends up to in-
finite positive and negative energies ε. For other generalized lattices, such as the face-centered-
hypercubic lattice [12] (which is asymmetric and has one finite band edge) or the hyperdiamond
lattice [13] (for which the symmetric density of states vanishes at ε = 0), the bandwith is also
infinite. One of the few lattices with finite bandwidth for nearest-neighbor hopping is the Bethe
lattice, i.e., an infinite Cayley tree of which each node has Z nearest neighbors. This recursively
defined lattice (which is not a periodic crystal lattice) has a semi-elliptic density of states with
a finite bandwidth in the limit Z →∞ for scaled nearest-neighbor hopping t = t∗/

√
Z,

ρBethe(ε) =


√
4t2∗ − ε2
2πt2∗

for |ε| ≤ 2|t∗|

0 otherwise
. (9)

For comparison, for finite coordination number Z, the density of states reads ρBethe,Z(ε) =

ρBethe(ε) / [ Z
Z−1 −

ε2

t∗/
√
Z−1 ]. These results can be obtained, e.g., with recursive methods (see

Refs. [14, 15] and references therein), which can also be used to find the density of states for
longer-range hopping or to construct a set of hopping parameters yielding a given density of
states.

It is rather typical for tight-binding dipersions in infinite dimensions to lead to one or both
band edges at infinite energy. This is a qualitative difference to a finite-dimensional system
which always has finite band edges for finite hopping amplitudes. In practice one therefore
regards the simplifications following from the infinite-dimensional limit (discussed below) as
independent of the dispersion, and simply uses the density of states of the finite-dimensional
system of interest in the calculations. This is justified in particular for single-particle quantities
into which only the dispersion εk enters in infinite dimensions (but no detailed dependence
on k). If necessary one can use one of the procedures, i.e., for the hypercubic [10] or Bethe
lattice [14], to construct a set of hopping amplitudes that realizes a given density of states of
a finite-dimensional lattice. Any density of states with finite bandwidth can be represented in
infinite dimensions in this way, although long-ranged hopping amplitudes are typically required.
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3 Consequences for many-body theory

The scaling of hopping amplitudes with negative powers of the dimension (or coordination
number), discussed in the previous section, leads to simplifications in the many-body theory for
Hubbard-type models such as (1). However, these simplifications will not hold at the Hamil-
tonian level, but rather at the level of Green functions and effective actions. We, therefore,
first review some definitions and basic concepts of many-body theory that are essential for the
formulation and understanding of DMFT.

3.1 Green function, spectral function, self-energy, quasiparticles

The simplest dynamical quantity which measures the equilibrium properties of a correlated
electron system is the electronic Green function [16–18]. A Green functionGAB is defined as an
expectation value of operators A and B taken at different (real or imaginary) times in a thermal
state, i.e., with density matrix ∝ exp(−β(H−µN)) corresponding to the temperature T=1/β,
or possibly the ground state. Hence it measures the probability amplitude for a propagation of
a particle or hole excitation in an equilibrium state if A and B are annihilation and creation
operators. Note that this involves eigenstates of the Hamiltonian that differ by one in particle
number, and which can describe quite different physical states in the presence of interactions.
In finite-temperature problems one uses the imaginary-time-ordered (fermionic) single-particle
Green function Gαβ(τ), i.e., we put A = cα, B = c†β , with α, β being general momentum or
site indices, including also spin and orbital quantum numbers. For imaginary-time Heisenberg
operators A(τ) = eHτAe−Hτ (so that A†(τ) 6= (A(τ))†), one defines

Gαβ(τ) = −〈Tτcα(τ)c
†
β(0)〉 = −

 〈cα(τ)c
†
β(0)〉 τ > 0

−〈c†β(0)cα(τ)〉 τ ≤ 0
(10a)

= −Gαβ(τ + β) for − β < τ < 0. (10b)

(Note that in Ref. [17] the prefactor −1 is not part of the definition.) The dependence only on
time differences and the anti-periodicity (10b) follow from the cyclic properties of the trace and
the fermionic anticommutation relations. The so-called Matsubara Green function Gαβ(iωn) is
obtained by Fourier transforming,

Gαβ(iωn) =

∫ β

0

dτ Gαβ(τ) e
iωnτ , (11)

Gαβ(τ) = T

+∞∑
n=−∞

Gαβ(iωn) e
−iωnτ , (12)

with fermionic Matsubara frequencies iωn = 2πT (n + 1/2). An explicit expression for the
Green function can be obtained by inserting the complete set of eigenstates of the Hamiltonian.
One then obtains the spectral representation

Gαβ(iωn) =

∫ ∞
−∞
dω

Aαβ(ω)

iωn − ω
, (13)
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with the spectral function Aαβ(ω) given by its so-called Lehmann representation as

Aαβ(ω) =
1

Z

∑
n,m

〈n|c†β|m〉〈m|cα|n〉 (e
−βEm − e−βEn) δ(ω − (En − Em)) , (14)

whereZ is the partition function andEn eigenvalues and |n〉 the eigenstates ofH−µN . We note
that in particularAαα(ω)≥ 0. In practice the spectral or Green function can be evaluated via the
Lehmann representation only for sufficiently small systems, i.e., when the many-body energy
eigenvalues and eigenstates can be obtained directly. For a finite system, the spectral function
(and Green function) consists of a finite sum of delta functions, but in the thermodynamic limit
these functions typically become continuous just like the non-interacting density of states.
The spectral function occurs not only in the finite-temperature Matsubara Green function, but
also, e.g., in the retarded Green function,

Gret
αβ(ω) =

∫ ∞
−∞
dω′

Aαβ(ω
′)

ω + i0+ − ω′
, (15)

which corresponds to a Green function in the time domain that involves real-time Heisenberg
operators. From the pole structure it follows that

Aαβ(ω) = −
1

π
Im Gret

αβ(ω) , (16)

and that the retarded Green function can be obtained from the Matsubara Green function by
analytic continuation from iωn to ω + i0+. (The advanced Green function, which is not dis-
cussed here, corresponds to the replacement of iωn by ω− i0+) Note that in a Matsubara Green
function this replacement may only be done at the very end of a calculation, because the anti-
periodicity in imaginary time must typically have been at work first. In view of the spectral
representations (13) and (15) on often writes Gαβ(ω) for both the Matsubara or retarded Green
function, with the understanding that the argument is either iωn for the former or ω + i0+ for
the latter, and hence is never purely real.
The indices α, β, . . . represent lattice site or momentum k, as well as spin index σ (and possibly
orbital or band index). The real-space and momentum-space Green functions are related by a
Fourier transform. Of particular importance is the local Green function

Giiσ(ω) = Gσ(ω) =
1

L

∑
k

Gkσ(ω) , (17)

Aiiσ(ω) = Aσ(ω) = −
1

π
Im Gσ(ω + i0+) , (18)

where translational invariance has been assumed, e.g., as in (3).
For non-interacting particles, with HamiltonianH0−µN =

∑
kσ(εk−µ) c

†
kσckσ, the free Green

function G(0)
kσ(ω) and the free density of states ρ(ε) are obtained as

G
(0)
kσ(ω) =

1

ω + µ− εk
, (19)

ρ(ω) = A(0)
σ (ω) =

1

L

∑
k

δ(ω − εk) . (20)
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For interacting systems the self-energy Σk(ω) is defined as the difference between free and
interacting reciprocal Green functions:

Gkσ(ω)
−1 = G

(0)
kσ(ω)

−1 −Σkσ(ω) , (21a)

Gkσ(ω) =
1

ω + µ− εk −Σkσ(ω)
. (21b)

For a translationally invariant system the Green function and self-energy are diagonal in mo-
mentum space. It can also be useful instead to use a matrix notation in site indices, Gijσ(iωn) =

(G)ij,σ,n etc., for which

G−1 = G(0)−1 − ΣΣΣΣΣΣΣΣΣ , (22a)

G = G(0) +G (0)ΣΣΣΣΣΣΣΣΣG . (22b)

Eq. (21) or (22) are referred to as the (lattice) Dyson equation.
Without interactions, single-particle excitations simply correspond to the creation or removal
of a particle in an eigenstate of H0, and as such they propagate freely through the lattice. This
perfectly sharp excitation occurs as a δ-function in the free spectral function (omitting spin
indices for now),

A
(0)
k (ω) = δ(ω + µ− εk) . (23)

The situation in a many-body system with interactions is different: adding a particle or hole to
an eigenstate does not give an eigenstate again, but rather a massive superposition of eigenstates.
As a consequence, particle or hole excitations will usually be damped and have a finite lifetime.
This is encoded in the complex (retarded) self-energy Σk(ω), in terms of which the spectral
function becomes

Ak(ω) =
1

π

ImΣk(ω)

(ω + µ− εk − ReΣk(ω))2 + (ImΣk(ω))2
. (24)

This reduces to a δ-function only if ImΣk(ω)→ 0−. On the other hand, if ImΣk(ω) is finite
and not too large, the maxima of Ak(ω) are located approximately at the zeros ω = Ek of

ω + µ− εk − ReΣk(ω) = 0 . (25)

In the vicinity of Ek the Green function can then be approximated to lowest order as

Gk(ω) =
Zk(Ek)

ω − Ek + iτk(Ek)−1
, (26a)

Zk(ω) = [1− ReΣk(ω)]
−1 , (26b)

τk(ω) = [−Zk(ω) ImΣk(ω)]
−1 , (26c)

where Zk and τk play the role of a quasiparticle weight and lifetime. In analogy to the non-
interacting case, the maxima Ek of Ak(ω) yield the electronic dispersion, i.e., the relation
between crystal momentum and excitation energy, although this maximum may be quite broad.
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A reliable quasiparticle picture is guaranteed in a Landau Fermi liquid close to the Fermi sur-
face, i.e., near ω = 0, because then ReΣk(ω) is linear and ImΣk(ω) quadratic in ω for small
frequencies at zero temperature. Near ω = 0 this leads to

Ek = Zk(0)
(
εk − µ+ReΣk(0)

)
, (27)

i.e., a linear relation between non-interacting and interacting dispersion. However angle-resolved
photoemission (ARPES) nowadays provides a means to measure Ak(ω) (times the Fermi func-
tion) even deep below the Fermi energy with high accuracy (see, e.g., Ref. [19]). Therefore the
resonances given by (25) are relevant even if these excitations are not as coherent as low-energy
excitations near the Fermi surface in a Landau Fermi liquid.

3.2 Hubbard bands and the Mott transition

Let us consider the atomic limit of the Hubbard model, i.e., no hopping, tij = 0. The Green
function then becomes momentum-independent and reads

Gat
kσ(ω) =

n−σ
ω + µ− U

+
1− n−σ
ω + µ

, (28)

which corresponds to a spectral function with two δ-peaks separated by an energy U , and the
system is insulating, as there is no hopping at all. Next let us consider the situation for small
hopping tij . Compared to the atomic limit the δ-peaks in the spectral function will broaden,
i.e., two subbands develop, the Hubbard bands. The nature of these subbands is quite different
from that of one-electron bands in non-interacting systems. For example, the upper Hubbard
band describes charge excitations on top of the filled lower Hubbard band. If the hopping is
increased further, or the Hubbard interaction U decreased, these Hubbard bands will eventually
overlap and the system will become metallic at a critical value Uc on the order of the bandwidth.
This correlation-induced metal-insulator transition does not break translational invariance and
is called the Mott transition [20].
When starting from the atomic limit, a standard but unreliable method to capture the Mott
metal-insulator transition is the so-called Hubbard-I approximation. Here one uses the atomic
self-energy, obtained from (28),

Σat
kσ(ω) = Un−σ + U2 n−σ(1− n−σ)

ω + µ− U(1− n−σ)
, (29)

in the Dyson equation (21), which provides the Green function. However, this ad-hoc approx-
imation exhibits several unphysical properties (discussed, e.g., in Ref. [21]). Starting from the
weak-coupling side, a simple, rough picture of the Mott transition is provided by the Gutzwiller
wave function (see [22] for a review), which describes a Mott insulator at half-filling when U
becomes so large that all doubly occupied sites are projected out: this is the so-called Brinkman-
Rice transition. These approximate understandings are quantitatively rathe inaccurate. Indeed,
one of the successes of DMFT has been its description of the Mott metal-insulator transition in
the infinite-dimensional Hubbard model, as discussed in Sec. 4.4 below.
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3.3 Diagrammatic perturbation theory

The self-energy, according to (22), represents the contribution to the (inverse) Green function
which is due to interactions. The perturbation theory for these quantities can be organized
effectively into Feynman diagrams as follows [16–18].
Feynman diagrams for single-particle Green functions (for arbitrary quadratic H0 and two-
particle interaction H1) are built from the following pieces:

= non-interacting Green function lineG(0), (30a)

= interaction vertex, (30b)

= full (interacting) Green function lineG . (30c)

The perturbation expansion in H1 then produces a series of diagrams (unlabeled [17], and ar-
rows omitted throughout) for the Green function

= + + + + + + · · ·

(31)
We will not review the diagrammatic rules here, but we note that each Green function line comes
with a Matsubara frequency (or imaginary time) argument and a momentum (or site) argument,
energy and momentum conservation holds at the interaction vertices, all variables of internal
lines are integrated over, while the variables of external lines are held fixed.
Since some parts of the diagrams are repeating, one defines so-called proper self-energy dia-
grams, which are “one-particle irreducible” (i.e., cannot be cut in two pieces by cutting a single
solid line) and have their external vertices amputated, which means that the non-interacting
Green functions, which would normally be connected to external vertices, are omitted (because
they already occur in other parts of the diagram). Some examples are:

proper proper not proper proper

(32)

The Dyson equation (21) can be expressed with Feynman diagrams as

= + Σ , (33)

where the self-energy now has the following expansion,
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Σ = + + + + · · · , (34)

which, combined with (33), recovers (30).
This perturbation series for the self-energy has so far been written in terms of free Green func-
tions, i.e.,ΣΣΣΣΣΣΣΣΣ depends on the function G(0) in the sense that the whole matrix G(0)(iωn) for all
frequency arguments enters intoΣΣΣΣΣΣΣΣΣ. In other words,ΣΣΣΣΣΣΣΣΣ =ΣΣΣΣΣΣΣΣΣ[G(0)] is a functional of G(0). The
diagrams forΣΣΣΣΣΣΣΣΣ[G(0)] still contain self-energy insertions in their internal lines, i.e., some inter-
nal parts of the diagrams repeat which have already been enumerated. One can thus proceed to
construct the so-called skeleton expansion which instead uses full (interacting) Green function
linesG

Σ = + + + · · · (35)

The diagrams in the skeleton expansionΣΣΣΣΣΣΣΣΣ[G] no longer contain self-energy insertions on the
Green function lines so that each self-energy diagram does not occur more than once.

3.4 Power counting in 1/d

The consequences that the scaling in the limit d→∞ has for many-body theory [8, 23] is best
discussed in terms of the Feynman diagrams for Green functions and the self-energy discussed
above, in particular using the skeleton expansion.
We first consider the d dependence of Gijσ(ω) in the limit d→∞, for scaled hopping ampli-
tudes

tij = t∗ij d
− 1

2
||Ri−Rj || . (36)

Here ||Ri −Rj|| is the fewest number of lattice steps that connectRi toRj on the hypercubic
lattice, and hence proportional to the number of sites connected by the hopping amplitude tij ,
so that (36) has the correct scaling. By our construction the kinetic energy is finite in the limit
d→∞, which can be expressed in terms of the Green function,

Ekin,σ =
∑
ij

tij〈c†iσcjσ〉 =
∑
ij

tij

∞∫
−∞

dω

2πi
Gijσ(ω) e

iω0+ = O(d0) . (37)

Here the double sum yields a contribution of order Ld||Ri−Rj ||. Hence we conclude

Gijσ(ω) = O(d−
1
2
||Ri−Rj ||) , Giiσ(ω) = O(d0) , (38)

i.e., the off-diagonal Green function decays rapidly with distance, which leads to simplifications
for the Feynman diagrams.
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3.5 Local self-energy

For the discussion of the self-energy we will work with so-called Hugenholtz diagrams instead,
which combine direct and exchange diagrams into a box vertex [17]. However, for the Hubbard
interaction there are no exchange diagrams anyway. We thus replace

i, σ i,−σ = Uni↑ni↓ = (39)

again omitting the arrows on the diagrams. We can then write the skeleton expansion as

Σ = + + + · · · (40)

The skeleton expansion has the property that any two vertices are joined through Green function
lines via at least three independent paths. Namely, suppose there is only one such path; then the
diagram is one-particle irreducible, a contradiction. If there are only two paths, then they must
run through a diagram part which is a self-energy insertion, which is also a contradiction.
Now consider an arbitrary diagram (in position space, so that the interaction vertices are labeled
by lattice site vectors), in which two internal vertices labeled by i and j appear,

i

j
(41)

Let us hold i fixed for the moment. We now compare the case j 6= i with the case j = i.
Suppose j 6= i. As discussed above, there are three independent paths from the vertex i to the
vertex j. The Green function lines on these paths can thus contribute at most O(d− 3

2
||Ri−Rj ||)

(or even less if there is another intermediate site Rk on a path). Although the summation
over j contributes a factor of order O(d||Ri−Rj ||), on the whole, any skeleton diagram is thus
suppressed at least by a factor O(d− 1

2
||Ri−Rj ||). As an example, consider

i

j

(42)

Even if the boxes without labels correspond to site j, there are three lines connecting i with j
and only one summation over j.
By contrast, for j = i the Green functions are of order O(d0), and there is no summation. We
thus conclude that only the case i = j contributes in the limit d → ∞, i.e., all diagrams in
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the skeleton expansion ΣΣΣΣΣΣΣΣΣ[G] have the same lattice site label at all their internal and external
vertices. Hence the self-energy is site-diagonal (“local”),

Σijσ(ω) = δij Σiiσ(ω) = δij Σσ(ω) , (43)

or, equivalently, momentum-independent in k space,

Σkσ(ω) = Σσ(ω) . (44)

Furthermore, the self-energy Σσ(ω) is a functional only of the local Green function Gσ(ω),
because all internal vertices in the skeleton expansion have the same site label.
The simple form of the self-energy has some immediate consequences also for the Green func-
tion (22), namely

Gkσ(ω) =
1

ω + µ− εk −Σσ(ω)
= G

(0)
kσ

(
ω −Σσ(ω)

)
. (45)

Summing over k gives us the local Green function as

Gσ(ω) =

∫
ddk

(2π)d
1

ω + µ− εk −Σσ(ω)
(46)

=

∞∫
−∞

dω
ρ(ε)

ω + µ−Σσ(ω)− ε
. (47)

The last equation thus provides a relation between the local self-energy and the local Green
function. It involves only the dispersion via the non-interacting density of states. This relation
is one of the ingredients of DMFT, as discussed below.

4 Dynamical mean-field theory

As seen above, the self-energy becomes site-diagonal and thus momentum-independent in the
limit d → ∞. The last step is now to actually construct the functional Σσ[Gσ] [1–3, 24, 25],
which will complete the derivation of the DMFT equations.

4.1 Path-integral representation

Green functions for many-body systems may be represented in a path integral representa-
tion [17]. The partition function and the imaginary-time-ordered Green function for the fermionic
HamiltonianH({c†α}, {cα}) can be written in terms of functional integrals over Grassmann vari-
ables

Z = Tre−β(H−µN) =

∫
φα(β)=−φα(0)

D(φ∗α(τ), φα(τ)) exp(A) , (48)

Gαβ(τ) =
1

Z

∫
φα(β)=−φα(0)

D(φ∗, φ) φα(τ)φ∗β(0) exp(A) , (49)



4.14 Marcus Kollar

with the action

A = −
∫ β

0

dτ

[∑
α

φ∗α (∂τ − µ)φα +H({φ∗α}, {φα})

]
. (50)

Note that the Grassmann fields φ∗α(τ) and φα(τ) are independent (i.e., they are not complex or
Hermitian conjugates of each other, even though they represent creation and annihilation oper-
ators) and antiperiodic boundary conditions are imposed on the latter. Path-integral expressions
such as (49) and (50) are actually just abbreviations for limits of expressions that are discretized
in imaginary time τ . We refer to Ref. [17] for details.

4.2 Mapping onto effective impurity models

It is now possible to construct an effective single-site action which matches that of the Hubbard
model in infinite dimensions [24]. For this purpose let us consider an action, A = A1 + A2,
consisting of a quadratic part and an interaction, which only involves one lattice site

A1 =

β∫
0

dτ

β∫
0

dτ ′
∑
σ

c∗σ(τ)G−1σ (τ, τ ′) cσ(τ
′) =

∑
n,σ

c∗σ(iωn)Gσ(iωn)
−1 cσ(iωn), (51a)

A2 = −U
β∫

0

dτ c∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ), (51b)

with some as yet unfixed “free” Green function (GGG−1)τ,τ ′ = G−1σ (τ, τ ′), which also depends only
on imaginary-time differences.
We can calculate the imaginary-time-ordered Green function of the single degree of freedom c

from the action (51), and Fourier transform to Matsubara frequencies. This is abbreviated as

Gσ(iωn) = 〈cσ(iωn)c∗σ(iωn)〉A[G] . (52)

Correspondingly, we define the impurity impurity self-energy Σ̃ΣΣΣΣΣΣΣΣ via the impurity Dyson equa-
tion,

G =
[
GGG−1 − Σ̃ΣΣΣΣΣΣΣΣ

]−1
. (53)

Now consider the diagrams in the skeleton expansion of Σ̃ΣΣΣΣΣΣΣΣ[G] ,

Σ̃ΣΣΣΣΣΣΣΣ[G] = + + + · · · , (54)

in which of course only the single site of (51) occurs. However, since the local Hubbard inter-
action is the same both for the lattice Hubbard model and the single-site action, this skeleton
expansion is exactly the same as that for the Hubbard model (35), i.e.,

Σ̃ΣΣΣΣΣΣΣΣ[G] =ΣΣΣΣΣΣΣΣΣ[G] . (55)

This shows that the self-energy skeleton functional Σσ[Gσ] can be obtained by solving the
single-site problem (51). In the next section we discuss how to choose Gσ appropriately.
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4.3 Dynamical mean-field equations

Putting everything together, we arrive at three DMFT equations, which determine three un-
knowns: the local Green function Gσ(iωn), the dynamical mean field (or Weiss field) Gσ(iωn),
and the local self-energy Σσ(iωn):

Gσ(iωn)= 〈cσ(iωn)c∗σ(iωn)〉A[G], (DMFT-1)

Gσ(iωn)=
[
Gσ(iωn)−1 −Σσ(iωn)

]−1
, (DMFT-2)

Gσ(iωn) =

∫
dε

ρ(ε)

iωn + µ−Σσ(iωn)− ε
. (DMFT-3)

Note that the self-consistency equation (47) provides precisely the needed relation (DMFT-3)
to fix the Weiss field Gσ. This ensures that one solves the correct single-site problem, i.e., the
one which corresponds to the Hubbard model on a lattice with density of states ρ(ε).
A typical iterative solution then proceeds a follows: Start with some Weiss field Gσ, obtain Gσ

from (DMFT-1), determineΣσ from the impurity Dyson equation (DMFT-2), calculateGσ from
the self-consistency equation (DMFT-3), obtain Gσ by using (DMFT-2) again, and repeat until
convergence is reached.
One can check that the DMFT equations reproduce the correct non-interacting and atomic lim-
its. (i) In the non-interacting case we have U = 0 and thus Σσ(iωn) = 0. Furthermore it
follows from (DMFT-3) that then Gσ(iωn) = G

(0)
σ (iωn). Finally (DMFT-2) gives Gσ(iωn) =

Gσ(iωn), and this agrees with (DMFT-1) for U = 0. (ii) On the other hand, in the atomic
limit we have tij = 0 and εk = 0, i.e., ρ(ε) = δ(ε). From (DMFT-3) we obtain Gσ(iωn) =

[iωn + µ − Σσ(iωn)]
−1, and (DMFT-2) yields Gσ(iωn)−1 = iωn + µ, i.e., G−1σ (τ) = −∂τ + µ,

which agrees with (DMFT-1) for tij = 0.
For a given non-zero value of the Hubbard interaction U the Green function obtained from the
local action (51) clearly represents the most difficult of the DMFT equations. To obtain the
impurity Green function from it, a dynamical single-site problem must be solved, usually with
numerical methods. For finite temperatures quantum and thermal averages this can be stochas-
tically sampled with quantum Monte Carlo (QMC) methods. The older Hirsch-Fye QMC al-
gorithm [25–27] uses a fixed imaginary time-grid, whereas the more effective continuous-time
(CT) QMC [28–30] samples creation and annihilation of particles at arbitrary imaginary times.
Methods that also work for zero temperature include exact diagonalization (ED) [31–33], the
numerical renormalization group (NRG) [34, 35] and the density-matrix renormalization group
(DMRG) [36, 37]. Several of these methods are discussed in the other lectures of this book. A
number of perturbative or semianalytic methods is also available [1].
To use these “impurity solvers”, the single-site action (51) is often not used directly, but rather
an impurity problem defined by a Hamiltonian is considered, usually by constructing a single-
impurity Anderson model (SIAM)

HSIAM =
∑
`σ

ε` a
†
`σa`σ +

∑
`σ

V` (a
†
`σcσ + c†σa`σ) + U c†↑c↑c

†
↓c↓ . (56)
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Fig. 2: Zero-temperature spectral function for the homogeneous phase of the Hubbard model
on the Bethe lattice with nearest-neighbor hopping and bandwidth W = 4|t∗| at half-filling,
evaluated with NRG. From Ref. [34].

Here the fermions a`σ represent a non-interacting bath which hosts the interacting fermion cσ.
This bath can be at once integrated out from the action which represents HSIAM, because this
involves only Gaussian (path) integrals. The resulting action is then precisely of the form (51),
with

G−1σ (iωn) = iωn + µ− 1

π

∞∫
−∞

dω
∆(ω)

iωn − ω
, ∆(ω) = π

∑
`

V 2
` δ(ω − ε`) , (57)

where ∆(ω) is called the hybridization function. In the DMFT iteration cycle one must now
find the parameters V` and ε` that allow a self-consistent DMFT solution. Then the SIAM has
been determined which properly represents the infinite-dimensional Hubbard model in DMFT.
For reference we note that the self-consistency equation (DMFT-3) yields a simple relation for
nearest-neighbor hopping t∗ on the Bethe lattice with density of states (9),

Gσ(iωn) = iωn + µ− t2∗G(iωn) . (58)

This relation and generalizations for other types of hopping are discussed in Refs. [1,10,11,14,
15].

4.4 Results for the Hubbard model

Some aspects of the spectrum and the DMFT phase diagram of the Hubbard model were dis-
cussed already in the Lecture of D. Vollhardt. Fig. 2 shows the zero-temperature spectral
function for the homogeneous phase of the Hubbard model on the Bethe lattice with nearest-
neighbor hopping and bandwidth W = 4|t∗| at half-filling, evaluated with NRG. Three values
of U are shown, one in the metallic phase (three peaks in the spectral function), one close to
the critical value Uc, and one for the insulating phase (with gap in the spectral function). At the
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Fig. 3: Quasiparticle weight Z for the half-filled Hubbard model on the Bethe lattice (with
t∗ = 1) in DMFT. Crosses +: NRG; squares: ED; crosses × and circles: QMC extrapolations;
lower gray line: 2nd order perturbation theory in U , upper gray line: 4th order perturbation
theory in U . From Ref. [10].

Fermi energy the spectral function has the same value for all U in the metallic phase; this is a
consequence of Luttinger’s theorem [8]. In the metallic phase the weight of the central peak is
proportional to the Fermi liquid quasiparticle renormalization factor Z (see (27)), whereas the
outer two peaks are the developing Hubbard bands. Note that the energy resolution of NRG
is best near the Fermi surface, i.e., near ω = 0. Higher-resolution DMRG calculations have
shown that there is actually a more pronounced substructure at the inner edges of the Hubbard
bands close to Uc [36, 37], which has been attributed to the effective interaction of so-called
doublon-holon pairs [38].
Fig. 3 shows the renormalization factor Z in the limit of zero temperature obtained with various
methods. It starts from Z = 1 for the non-interacting case and decreases as U is increased,
corresponding to the decreasing width of the central peak in the spectral function and an in-
creasingly flatter dispersion. At Uc, the half-filled system undergoes a Mott metal insulator
transition, i.e., it becomes localized and Z vanishes accordingly.

4.5 Results for the Falicov-Kimball model

The Falicov-Kimball model is a simplified version of the Hubbard model, in which only one of
the two spin species is mobile (relabeled as di), while the other (relabeled as fi) is not. For this
model the Green function can be derived explicitly from the DMFT action [39]; higher-order
Green functions can also be obtained [40, 41]. The Hamiltonian reads

H =
∑
ij

tij d
†
idj + Ef

∑
i

f †i fi + U
∑
i

d†idif
†
i fi , (59)
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Fig. 4: Spectral function of itinerant d electrons for the Falicov-Kimball model in DMFT for
nearest-neighbor hopping on the Bethe lattice, homogeneous phase, nd = nf = 1/2, and
U = 0.5, 1.0, . . . 3.0. From Ref. [39].

i.e., the d electrons are moving against a background of static f electrons, whose configuration
is chosen such that it optimizes the free energy. In principle this makes the model quite com-
plicated, as one needs the spectrum of H for all the possible f configurations. In dimensions
d ≥ 2 it is known that at half-filling on a bipartite lattice checkerboard order of the f electrons
appears in the ground state and persists up to a finite critical temperature [42]. Here we consider
only the homogeneous phase in DMFT for simplicity.
Since there is no hopping amplitude for the f electrons, the DMFT self-consistency yields at
once G−1f = −∂τ + µ + Ef , as explained above for the atomic limit. The DMFT action is thus
given by

A =

β∫
0

dτ

β∫
0

dτ ′d∗(τ)G−1d (τ, τ ′) d(τ ′)

+

β∫
0

dτf ∗(τ)(∂τ − µ+ Ef ) f(τ)− U
β∫

0

dτ d∗(τ)d(τ)f ∗(τ)f(τ). (60)

Now the f electrons can be integrated out at each lattice site, i.e., they are in the atomic limit
(cf. Sec. 3.2). This leads to

Gd(iωn) = 〈d(iωn)d∗(iωn)〉A =
nf

Gd(iωn)−1 − U
+

1− nf
Gd(iωn)−1

, (61)

which must be solved together with the other two DMFT equations

Gd(iωn) =

∞∫
−∞

dε ρd(ε)

iωn + µ−Σd(iωn)− ε
, (62)

Gd(iωn)
−1 = Gd(iωn)−1 −Σd(iωn) . (63)
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This set of equations determines the d-electron Green functionGd(iωn) for any density of states
ρd(ε). Analytic continuation to real frequencies shows at once that the spectra in the homoge-
neous phase are independent of temperature. Note that this no longer holds in the checkerboard
phase). Fig. 4 shows the spectral function Ad(ω) for several U for the Bethe lattice (with
nearest-neighbor hopping t∗ = 1). In particular there is a Mott metal-insulator transition taking
place at Uc = 2; for larger U a band gap develops. Nevertheless, the transition is qualitatively
different from that in the Hubbard model. For example, for the Falicov-Kimball model it can
be shown from the low-energy form of the self-energy that for 0 < U < Uc the metallic state is
not a Landau Fermi liquid; as a consequence, the spectral function is not pinned at the Fermi
surface.
It is also possible to solve for the d self-energy as a functional of the d Green function, i.e., for
the skeleton expansion Σd[Gd] [21]

Σd(iωn) =
U

2
− 1

2Gd(iωn)
±

√(
U

2
− 1

2Gd(iωn)

)2

+
Unf

Gd(iωn)
, (64)

which is independent of the density of states ρ(ε). Note that in contrast to the Hubbard model,
for the Falicov-Kimball model the skeleton functional is in fact only a function of the Green
function, i.e., Σd(iωn) depends only on Gd(iωn) at the same Matsubara frequency.

5 Summary and outlook

In this lecture we reviewed the foundations of dynamical mean-field theory for the infinite-
dimensional single-band Hubbard model, i.e., the scaling of hopping amplitudes, the local na-
ture of the self-energy, and the mapping onto a dynamical single-site problem in an effective
bath which has to be determined self-consistently. Some of the numerical approaches to the
effective single-site problem, also for the multiband case, are discussed in the other lectures in
this school. Also, important generalizations beyond single-site DMFT to clusters and beyond
local self-energies are discussed there, which are important for the accurate description of in
fact finite-dimensional systems. DMFT therefore leads not only to nonperturbative numerical
solutions to Hubbard-type models in infinite dimensions, but it is also a robust starting point for
approximate theories of finite-dimensional systems.
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1 Introduction

Cluster extensions of dynamical mean-field theory (DMFT) are popular approximation schemes
developed for systems of interacting electrons on low-dimensional lattices with local inter-
actions to get access to their thermal equilibrium properties and to their single-electron excita-
tions. This topic came up soon after the development of dynamical mean-field theory [1–4] and
has been reviewed in a couple of papers [4–6]. Important milestones defining the field begin
with the proposal for a dynamical cluster approximation (DCA) in 1998 [7], a cluster exten-
sion formulated in reciprocal k-space. The real-space perspective was emphasized in 2000 [8]
with a cluster DMFT approach applied to the two-dimensional Hubbard model. Its formal
framework is the cellular dynamical mean-field theory (C-DMFT), suggested in 2001 [9]. An
alternative simplified cluster approach, the variational cluster approach (VCA) was introduced
in 2003 [10]. All cluster approaches rely on a number of basic concepts, such as the many-body
problem, lattice-fermion models, the mean-field idea, and the DMFT itself.

The many-body problem is a complexity problem. For a classical or quantum system consisting
of a few particles the fundamental equations of motion can be solved analytically or at least
numerically with machine precision. Condensed-matter theory, however, is confronted with
many-particle systems, in particular with quantum systems with a macroscopic number of elec-
trons. In these cases, to aim at the complete information on the microscopic degrees of freedom
is a meaningless concept, and a quantum-statistical approach must be employed. Most of the
experimentally accessible macroscopic system properties are described by thermodynamics in
a phenomenological way and are derived from the underlying laws of microscopic fundamental
interactions by statistical physics. The thermodynamics of a macroscopically large system of
valence electrons is completely determined by a thermodynamical potential F (T, µ, x), which
depends on temperature T , the chemical potential µ, and other macroscopic control param-
eters x. Its direct computation via F = −T lnZ(T, µ, x) from the grand partition function
Z(T, µ, x) = Tr exp(−β(H(x) − µN)) (with β = 1/T , kB ≡ 1) is practically impossible for
generic HamiltoniansH(x) since the trace is actually a high-dimensional sum over a Fock-space
basis. Hence, approximations are inevitable.

DMFT and its cluster extensions aim at a description of strongly interacting electron sys-
tems. The presence of interactions prohibits a simple factorization of the partition function,
Z =

∏
k Zk, into simple partition functions Zk for the different one-particle degrees of freedom,

which is known from the textbook treatment of the noninteracting Fermi gas. The Coulomb
interaction, which is the relevant type of interaction for almost all interesting properties of con-
densed matter, must be regarded as “strong”, meaning that a perturbative theoretical approach
is expected to fail. On the other hand, strongly interacting electron systems are highly interest-
ing. Interactions are responsible for many famous collective quantum effects which only show
up in interacting quantum Fermi systems in the thermodynamic limit. Some examples are the
Kondo effect, i.e., the collective screening of a magnetic moment by a mesoscopically large
number of valence electrons in states close to the Fermi energy [11], collective magnetism, i.e.,
the collective order of magnetic moments below a characteristic transition temperature [12,13],
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mean-field theory

cluster 
mean-field theory

Fig. 1: Left: Spin configuration of the Ising model on the square lattice. Middle: Ising spin in
a mean field. Right: Configuration of an Ising-spin cluster in a mean field.

unconventional high-temperature superconductivity [14, 15], or interaction-induced Mott insu-
lating behavior [16]. The essence of those effects is captured with surprisingly simple lattice
fermion or effective spin models, such as the Hubbard and the Heisenberg model, the Kondo-
lattice model, the periodic Anderson model, other multi-orbital lattice models etc.

The mean-field approach to strongly interacting lattice fermion models is borrowed from the
simple Weiss theory of the Ising model, see Fig. 1. For the Ising model with nearest-neighbor
exchange J between spin Si = ±1 on the D = 2-dimensional square lattice with L sites, the
left panel shows one of the 2L spin configurations which must be summed over in an exact
computation of the partition function. Note that the number of configurations increases expo-
nentially with L. The middle panel sketches the idea of a single-site mean-field theory. It takes
a local point of view and picks a representative spin Si at site i which experiences a fluctuat-
ing local field ∼ J

∑2D
j=1 Sj created by the spin exchange with its 2D nearest neighbors. In

the mean-field approximation, this fluctuating local field is replaced by a constant mean field
Beff . Note that, due to the central-limit theorem, this replacement can be justified in the limit
of infinite dimensions D → ∞. The mean or Weiss field adds to a possibly nonzero physical
magnetic field B. Correspondingly, the exact Ising Hamiltonian is replaced by a mean-field
Hamiltonian HMF = −(Beff + B)

∑
i Si. This implies a dramatic simplification of the origi-

nal model as the partition function factorizes. One must merely solve the remaining impurity
problem, i.e., a single spin coupled to a mean field or “bath”. As the bath actually represents
the average nearest-neighbor spin configuration, it should be calculated from the thermal ex-
pectation value of Si. Hence, the solution of the impurity problem and the determination of
the bath must be done self-consistently, and the condition fixing the bath is therefore called the
self-consistency condition. A mean-field theory replaces a lattice model by an impurity model
where the impurity is self-consistently embedded in a bath.

Dynamical mean-field theory is in many respects the optimal mean-field theory for a lattice-
fermion model like the Hubbard model as a prototype. It self-consistently maps the original
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model onto a much simpler reference system which consists of a fermionic impurity, a Hubbard
site, for example, which is embedded in a continuum of fermionic bath degrees of freedom. It
is not surprising that this bath is much more complicated compared to the bath in the Weiss
theory of the simple classical Ising model and that fixing the continuous bath requires a quite
different self-consistency condition opposed to fixing a single number, namely Beff , in the case
of the Ising system. The formulation in fact requires a frequency-dependent one-particle Green
function and thus explains the term dynamical mean-field theory as opposed to the static Weiss
theory. The DMFT is a big landmark in the landscape of various mean-field-like approximation
techniques and serves as a point of orientation, as it combines a number of attractive features:
The theory is formally not restricted to certain parameter ranges, such as weak interaction, low
density etc. It works without internal inconsistencies in the entire parameter regime of the
model under consideration. In this sense, it is a nonperturbative theory. The DMFT can be
seen as the exact theory of the lattice-fermion model in a special limit, namely for an infinite-
dimensional lattice. This limit, however, must be defined carefully to keep the balance between
the one- and the two-body terms in the Hamiltonian. The power of DMFT very much results
from the fact that the according D = ∞ models are highly nontrivial with nontrivial phase
diagrams, excitation spectra, and also nontrivial real-time dynamics. Usually, however, it is
employed as an approximation to treat finite-dimensional lattice models. The DMFT is able
to describe spontaneous symmetry breaking and states of matter with collective order, such as
magnetism, superconductivity, charge order, orbital order etc. It is a beautiful and robust theory
on the formal level, which can be derived in various ways and starting from various setups.
Most importantly, however, DMFT has turned out as highly successful in practice, including
particularly applications to real materials which so far, on the conventional basis of density-
functional theory and the local-density approximation, could not be addressed properly since
strong electron correlations are essential for their observable properties.

Still, there are a couple of remaining problems which are related to the mean-field character
and the local nature of the theory. For example, while DMFT is able to describe phases with
long-range order, it insufficiently treats short-range correlations, particularly the feedback of
short-range magnetic correlations on the one-electron Green function. It can describe two-
particle correlation functions, such as the spin-structure factor or the conductivity but those
do not affect the self-consistent determination of the bath. This has decisive consequences for
the application to low-dimensional lattice models and can result in qualitatively wrong phase
diagrams. In fact, as will be discussed later, it can spectacularly fail for models inD = 2 dimen-
sions. Furthermore, the restriction to a single-site impurity implies that the DMFT cannot de-
scribe symmetry-broken phases with nonlocal order parameters, which unfortunately includes
unconventional d-wave superconductivity. DMFT also shares with all mean-field-like theories
the inability to predict the correct critical behavior in the parametric vicinity of second-order
phase transitions, it violates exact Ward identities and theorems such as the Mermin-Wagner
theorem [17]. Clearly, DMFT cannot be the end of the story as it is approximative when ap-
plied to a finite-dimensional lattice model. What is needed here is a systematic route starting
from DMFT towards the exact solution.
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One idea, and this is the theme of this review and lecture, is to extend the self-consistent embed-
ding of a single site to an embedding of a cluster consisting of several sites Lc. This is displayed
in the right panel of Fig. 1. Without having detailed the precise form of a cluster extension of the
DMFT, it is already clear that this is a systematic approach to the full solution. There is simply
no need for a self-consistent embedding of a cluster cut out of an infinite lattice-fermion model
if the cluster itself has infinite size. On the other hand, it is also obvious from the beginning
that the computational effort will drastically increase with increasing Lc. The construction of a
cluster DMFT should therefore be guided by the goal to achieve fast convergence for Lc →∞.
We will see that there is more than one way to perform this construction, and we will also see
some common intrinsic advantages and deficiencies of the cluster approach as such.

2 Lattices, reciprocal lattices, and superlattices

To develop the formal framework of cluster extensions of DMFT, we will first discuss some
geometrical issues. We start with a D-dimensional Bravais lattice spanned by the basis vectors
a1, ...,aD. The points of the lattice are given by lattice vectors

R ≡ Ri =
D∑

α=1

iαaα , (1)

where i = (i1, ..., iD) with arbitrary integers iα ∈ Z. For each lattice, we have a reciprocal
lattice which is spanned by the basis vectors b1, ..., bD. These are defined as the unique solution
of the linear system of equations

aαbβ = 2π δαβ . (2)

Points in the reciprocal lattice are given by reciprocal lattice vectors

G ≡ Gj =
D∑

β=1

jβbβ , (3)

where j = (j1, ..., jD) with jβ ∈ Z. The parallelepiped defined by the basis a1, ...,aD is a
primitive cell C of the lattice, whereas b1, ..., bD define a primitive cell of the reciprocal lattice,
a reciprocal unit cell RC. For their volumes we have the relation VCVRC = (2π)D. Primitive
cells are not unique. Another reciprocal unit cell, with higher symmetry group, is the well-
known Brillouin zone (BZ).
There is a symmetry between the original and reciprocal lattice. We immediately have the
identity

exp(iGR) = 1 , (4)

and the reciprocal lattice of the reciprocal lattice is the original lattice. The reciprocal lattice
can be used to expand a function f(x) that is lattice periodic, f(x +Ri) = f(x), in a Fourier
series

f(x) =
∑

G

fG e
iGx , fG =

1

VC

∫

C
dDr f(x) e−iGx . (5)
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object, quantity symbol, definition properties, relations
basis spanning the lattice aα α = 1, ..., D

volume of a primitive cell VC = det({aα})
lattice vectors R = Ri =

∑
α iαaα iα ∈ Z, 1 ≤ iα ≤ Lα

basis vectors of reciprocal lattice bβ aαbβ = 2πδαβ
volume of a reciprocal unit cell VRC = det({bj}) VRC = (2π)D/VC

reciprocal lattice vectors G = Gj =
∑

β jβbβ jβ ∈ Z,GR ∈ 2πZ
basis spanning the superlattice ãα ãα = Lc,αaα

volume of a superlattice cell VSC = det({ãα}) VSC = LcVC
superlattice vectors R̃ = R̃i =

∑
α iαãα iα ∈ Z, 1 ≤ iα ≤ L/Lc,α

basis of reciprocal superlattice b̃β ãαb̃β = 2πδαβ
volume of a rec. superlattice cell VRSC = det({b̃j}) VRSC = (2π)D/VSC

reciprocal superlattice vectors G̃ = G̃j =
∑

β jβb̃β G̃R̃ ∈ 2πZ
vectors spanning the system Aα Aα = Lαaα = (L/Lc,α)ãα

system volume V = det({Ai}) V = LVC
discrete wave vectors k kAα ∈ 2πZ

volume element in k-space ∆Dk ∆Dk = (2π)D/V

Table 1: Overview of the various quantities defining the lattice and the reciprocal lattice, the
system volume and the k-space.

On a suitably defined Hilbert space of functions f(x), this expansion results from the fact
that the functions exp(iGx) form an orthonormal basis: 1

VC

∫
Cd

Dr e−iGx eiG
′x = δG,G′ . A

completely analogous construction can be made for functions g(p) with g(p+Gj) = g(p).
While one is eventually interested in the properties of a lattice-fermion model, such as the
Hubbard model, on a lattice with an infinite number of lattice sites L, it is convenient to first
consider a finite lattice and to solve the problem for L <∞,

L = L1 × · · · × LD, (6)

and a certain finite number of fermions N , and finally to perform the thermodynamical limit
L → ∞, N → ∞ with n ≡ N/L = const. This raises the question of boundary condi-
tions. Excluding systems in a critical state, where system properties are infinitely susceptible
to small perturbations, the precise form of the boundary conditions does not matter in the ther-
modynamic limit. In the case of open boundaries, the system volume is spanned by a set of
vectors A1, ...,AD, such that the system volume is V = det(A1, ...,AD). We should impose
consistency constraints,Aα = Lαaα, to respect the underlying lattice structure.
Periodic boundary conditions are much more convenient. Here, we identify vectors x and
x + Ai. The geometrical perspective is that the macroscopic system topology is that of a D-
dimensional torus TD. An equivalent point of view is that all real-space functions f(x) with
x ∈ RD respect the conditions f(x+Ai) = f(x) and, therefore, can be expanded in a Fourier
series, f(x) =

∑
k exp(ikx)fk, where the wave vectors k can be seen as the reciprocal-lattice

vectors of the real-space lattice spanned byA1, ...,AD. Hence, exp(ikAi) = 1, and the volume
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element in k space is ∆Dk = (2π)D/V . This also implies that the number of k-points in the
reciprocal unit cell, VRC/∆Dk, equals the number of sites in the system L, since

∆Dk =
(2π)D

V
=

(2π)D

VC

VC
V

= VRC
1

L
. (7)

Some overview of the notations used and of the basic relations is given in table 1.
For cluster extensions of the DMFT, there is a third pair of lattice and corresponding reciprocal
lattice to be considered. The original lattice of L sites is tiled into L/Lc identical clusters with
a finite number of Lc sites each. Each of the identical clusters has a cluster origin, which can
be chosen as a particular site in the cluster, such that all cluster origins are equivalent and form
a superlattice. We define the primitive vectors of the superlattice ãα for α = 1, ..., D, and we
impose consistency constraints, such as ãα = Lc,αaα in the most simple case, to respect the
underlying lattice structure. Hence, the number of cluster sites is given byLc = Lc,1×· · ·×Lc,D.
The volume of the unit cell of the superlattice is given by VSC = det({ãα}), and we have
VSC = LcVC = (Lc/L)V .
The reciprocal superlattice consists of the vectors G̃ ≡ G̃j =

∑
β jβb̃β and is spanned by the

basis of the reciprocal superlattice {b̃β} with j = (j1, ..., jD) ∈ ZD. The real-space consistency
constraints imply that b̃β = bβ/Lc,β . We have exp(iG̃R̃) = 1, where R̃ ≡ R̃i =

∑
α iαãα

are the superlattice vectors. Furthermore, the number of reciprocal superlattice vectors in the
reciprocal unit cell, VRC/VRSC , is given by Lc, since

VRSC =
(2π)D

VSC
=

(2π)D

VC

VC
VSC

= VRC/Lc . (8)

Fig. 2 provides an example of a D = 2-dimensional lattice.

3 Discrete Fourier transformations

Figure 2 also demonstrates that any lattice vector

R = R̃+ r (9)

can be uniquely decomposed into a vector of the superlattice R̃, i.e., the position vector to the
respective cluster origin, and a position vector r to the respective site in the cluster, referring to
the cluster origin. Note that there are L lattice points R, and L/Lc clusters with Lc sites each.
Vice versa, for a given wave vector k there is the unique decomposition

k = k̃ + G̃, (10)

where G̃ are the reciprocal superlattice vectors. Note that in a reciprocal unit cell there are L
wave vectors k and Lc reciprocal superlattice vectors G̃, and there are L/Lc wave vectors k̃.
Let us consider the L× L matrix U with elements

UR,k =
1√
L
eikR , k ∈ RC , (11)
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a2<latexit sha1_base64="Jlle3yAmka55K0lyhBmvzafohjw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFwZznO/5dsNp+ksgTaJW5IGlOj69tc4jEkaUaEJx0qNXCfRXoalZoTTvDZOFU0wmeMpHRkqcESVly2z5+jSKCGaxNIcodFS/b2R4UgV6cxkhPVMrXuF+J83SvWk7WVMJKmmgqwemqQc6RgVRaCQSUo0XxiCiWQmKyIzLDHRpq6aKcFd//Im6beartN0768bnXZZRxXO4QKuwIUb6MAddKEHBJ7gGV7hzcqtF+vd+liNVqxy5wz+wPr8AaiGlMo=</latexit><latexit sha1_base64="Jlle3yAmka55K0lyhBmvzafohjw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFwZznO/5dsNp+ksgTaJW5IGlOj69tc4jEkaUaEJx0qNXCfRXoalZoTTvDZOFU0wmeMpHRkqcESVly2z5+jSKCGaxNIcodFS/b2R4UgV6cxkhPVMrXuF+J83SvWk7WVMJKmmgqwemqQc6RgVRaCQSUo0XxiCiWQmKyIzLDHRpq6aKcFd//Im6beartN0768bnXZZRxXO4QKuwIUb6MAddKEHBJ7gGV7hzcqtF+vd+liNVqxy5wz+wPr8AaiGlMo=</latexit><latexit sha1_base64="Jlle3yAmka55K0lyhBmvzafohjw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFwZznO/5dsNp+ksgTaJW5IGlOj69tc4jEkaUaEJx0qNXCfRXoalZoTTvDZOFU0wmeMpHRkqcESVly2z5+jSKCGaxNIcodFS/b2R4UgV6cxkhPVMrXuF+J83SvWk7WVMJKmmgqwemqQc6RgVRaCQSUo0XxiCiWQmKyIzLDHRpq6aKcFd//Im6beartN0768bnXZZRxXO4QKuwIUb6MAddKEHBJ7gGV7hzcqtF+vd+liNVqxy5wz+wPr8AaiGlMo=</latexit><latexit sha1_base64="Jlle3yAmka55K0lyhBmvzafohjw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFwZznO/5dsNp+ksgTaJW5IGlOj69tc4jEkaUaEJx0qNXCfRXoalZoTTvDZOFU0wmeMpHRkqcESVly2z5+jSKCGaxNIcodFS/b2R4UgV6cxkhPVMrXuF+J83SvWk7WVMJKmmgqwemqQc6RgVRaCQSUo0XxiCiWQmKyIzLDHRpq6aKcFd//Im6beartN0768bnXZZRxXO4QKuwIUb6MAddKEHBJ7gGV7hzcqtF+vd+liNVqxy5wz+wPr8AaiGlMo=</latexit>

b2
<latexit sha1_base64="3GKEYm/GGfsDDwdoJgc+Mr3bjW8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFxZkOd+y7cbTtNZAm0StyQNKNH17a9xGJM0okITjpUauU6ivQxLzQineW2cKppgMsdTOjJU4IgqL1tmz9GlUUI0iaU5QqOl+nsjw5Eq0pnJCOuZWvcK8T9vlOpJ28uYSFJNBVk9NEk50jEqikAhk5RovjAEE8lMVkRmWGKiTV01U4K7/uVN0m81Xafp3l83Ou2yjiqcwwVcgQs30IE76EIPCDzBM7zCm5VbL9a79bEarVjlzhn8gfX5A6oOlMs=</latexit><latexit sha1_base64="3GKEYm/GGfsDDwdoJgc+Mr3bjW8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFxZkOd+y7cbTtNZAm0StyQNKNH17a9xGJM0okITjpUauU6ivQxLzQineW2cKppgMsdTOjJU4IgqL1tmz9GlUUI0iaU5QqOl+nsjw5Eq0pnJCOuZWvcK8T9vlOpJ28uYSFJNBVk9NEk50jEqikAhk5RovjAEE8lMVkRmWGKiTV01U4K7/uVN0m81Xafp3l83Ou2yjiqcwwVcgQs30IE76EIPCDzBM7zCm5VbL9a79bEarVjlzhn8gfX5A6oOlMs=</latexit><latexit sha1_base64="3GKEYm/GGfsDDwdoJgc+Mr3bjW8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFxZkOd+y7cbTtNZAm0StyQNKNH17a9xGJM0okITjpUauU6ivQxLzQineW2cKppgMsdTOjJU4IgqL1tmz9GlUUI0iaU5QqOl+nsjw5Eq0pnJCOuZWvcK8T9vlOpJ28uYSFJNBVk9NEk50jEqikAhk5RovjAEE8lMVkRmWGKiTV01U4K7/uVN0m81Xafp3l83Ou2yjiqcwwVcgQs30IE76EIPCDzBM7zCm5VbL9a79bEarVjlzhn8gfX5A6oOlMs=</latexit><latexit sha1_base64="3GKEYm/GGfsDDwdoJgc+Mr3bjW8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmKYJcFNy4r2Ae0IUwm03boZBJmJmIJ+RU3LhRx64+482+ctFlo64FhDufcy5w5QcKZ0o7zbVW2tnd296r7tYPDo+MT+7TeV3EqCe2RmMdyGGBFORO0p5nmdJhIiqOA00Ewvy38wSOVisXiQS8S6kV4KtiEEayN5Nv1bBzEPFSLyFxZkOd+y7cbTtNZAm0StyQNKNH17a9xGJM0okITjpUauU6ivQxLzQineW2cKppgMsdTOjJU4IgqL1tmz9GlUUI0iaU5QqOl+nsjw5Eq0pnJCOuZWvcK8T9vlOpJ28uYSFJNBVk9NEk50jEqikAhk5RovjAEE8lMVkRmWGKiTV01U4K7/uVN0m81Xafp3l83Ou2yjiqcwwVcgQs30IE76EIPCDzBM7zCm5VbL9a79bEarVjlzhn8gfX5A6oOlMs=</latexit>

b1
<latexit sha1_base64="V/qn+ErQ+6Lc8GM1Wo7FZwFhnUU=">AAAB+3icbVBPS8MwHP11/pvzX51HL8EheBqtCO448OJxgtuErZQ0TbewNC1JKo7Sr+LFgyJe/SLe/DamWw+6+SDk8d7vR15ekHKmtON8W7WNza3tnfpuY2//4PDIPm4OVJJJQvsk4Yl8CLCinAna10xz+pBKiuOA02Ewuyn94SOViiXiXs9T6sV4IljECNZG8u1mPg4SHqp5bK48KArf9e2W03YWQOvErUgLKvR8+2scJiSLqdCEY6VGrpNqL8dSM8Jp0RhniqaYzPCEjgwVOKbKyxfZC3RulBBFiTRHaLRQf2/kOFZlOjMZYz1Vq14p/ueNMh11vJyJNNNUkOVDUcaRTlBZBAqZpETzuSGYSGayIjLFEhNt6mqYEtzVL6+TwWXbddru3VWr26nqqMMpnMEFuHANXbiFHvSBwBM8wyu8WYX1Yr1bH8vRmlXtnMAfWJ8/qIqUyg==</latexit><latexit sha1_base64="V/qn+ErQ+6Lc8GM1Wo7FZwFhnUU=">AAAB+3icbVBPS8MwHP11/pvzX51HL8EheBqtCO448OJxgtuErZQ0TbewNC1JKo7Sr+LFgyJe/SLe/DamWw+6+SDk8d7vR15ekHKmtON8W7WNza3tnfpuY2//4PDIPm4OVJJJQvsk4Yl8CLCinAna10xz+pBKiuOA02Ewuyn94SOViiXiXs9T6sV4IljECNZG8u1mPg4SHqp5bK48KArf9e2W03YWQOvErUgLKvR8+2scJiSLqdCEY6VGrpNqL8dSM8Jp0RhniqaYzPCEjgwVOKbKyxfZC3RulBBFiTRHaLRQf2/kOFZlOjMZYz1Vq14p/ueNMh11vJyJNNNUkOVDUcaRTlBZBAqZpETzuSGYSGayIjLFEhNt6mqYEtzVL6+TwWXbddru3VWr26nqqMMpnMEFuHANXbiFHvSBwBM8wyu8WYX1Yr1bH8vRmlXtnMAfWJ8/qIqUyg==</latexit><latexit sha1_base64="V/qn+ErQ+6Lc8GM1Wo7FZwFhnUU=">AAAB+3icbVBPS8MwHP11/pvzX51HL8EheBqtCO448OJxgtuErZQ0TbewNC1JKo7Sr+LFgyJe/SLe/DamWw+6+SDk8d7vR15ekHKmtON8W7WNza3tnfpuY2//4PDIPm4OVJJJQvsk4Yl8CLCinAna10xz+pBKiuOA02Ewuyn94SOViiXiXs9T6sV4IljECNZG8u1mPg4SHqp5bK48KArf9e2W03YWQOvErUgLKvR8+2scJiSLqdCEY6VGrpNqL8dSM8Jp0RhniqaYzPCEjgwVOKbKyxfZC3RulBBFiTRHaLRQf2/kOFZlOjMZYz1Vq14p/ueNMh11vJyJNNNUkOVDUcaRTlBZBAqZpETzuSGYSGayIjLFEhNt6mqYEtzVL6+TwWXbddru3VWr26nqqMMpnMEFuHANXbiFHvSBwBM8wyu8WYX1Yr1bH8vRmlXtnMAfWJ8/qIqUyg==</latexit><latexit sha1_base64="V/qn+ErQ+6Lc8GM1Wo7FZwFhnUU=">AAAB+3icbVBPS8MwHP11/pvzX51HL8EheBqtCO448OJxgtuErZQ0TbewNC1JKo7Sr+LFgyJe/SLe/DamWw+6+SDk8d7vR15ekHKmtON8W7WNza3tnfpuY2//4PDIPm4OVJJJQvsk4Yl8CLCinAna10xz+pBKiuOA02Ewuyn94SOViiXiXs9T6sV4IljECNZG8u1mPg4SHqp5bK48KArf9e2W03YWQOvErUgLKvR8+2scJiSLqdCEY6VGrpNqL8dSM8Jp0RhniqaYzPCEjgwVOKbKyxfZC3RulBBFiTRHaLRQf2/kOFZlOjMZYz1Vq14p/ueNMh11vJyJNNNUkOVDUcaRTlBZBAqZpETzuSGYSGayIjLFEhNt6mqYEtzVL6+TwWXbddru3VWr26nqqMMpnMEFuHANXbiFHvSBwBM8wyu8WYX1Yr1bH8vRmlXtnMAfWJ8/qIqUyg==</latexit>

A1
<latexit sha1_base64="P47SsFqzSSxa0RYDRpj/aiGYLv0=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEsMuKG5cV7APaECaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cAwh3PuZc4cP+FMadv+tiobm1vbO9Xd2t7+weFR/bjRV3EqCe2RmMdy6GNFORO0p5nmdJhIiiOf04E/uy38wSOVisXiQc8T6kZ4IljICNZG8uqNbOzHPFDzyFzZTZ57jldv2i17AbROnJI0oUTXq3+Ng5ikERWacKzUyLET7WZYakY4zWvjVNEEkxme0JGhAkdUudkie47OjRKgMJbmCI0W6u+NDEeqSGcmI6ynatUrxP+8UarDtpsxkaSaCrJ8KEw50jEqikABk5RoPjcEE8lMVkSmWGKiTV01U4Kz+uV10r9sOXbLub9qdtplHVU4hTO4AAeuoQN30IUeEHiCZ3iFNyu3Xqx362M5WrHKnRP4A+vzB3YClKk=</latexit><latexit sha1_base64="P47SsFqzSSxa0RYDRpj/aiGYLv0=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEsMuKG5cV7APaECaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cAwh3PuZc4cP+FMadv+tiobm1vbO9Xd2t7+weFR/bjRV3EqCe2RmMdy6GNFORO0p5nmdJhIiiOf04E/uy38wSOVisXiQc8T6kZ4IljICNZG8uqNbOzHPFDzyFzZTZ57jldv2i17AbROnJI0oUTXq3+Ng5ikERWacKzUyLET7WZYakY4zWvjVNEEkxme0JGhAkdUudkie47OjRKgMJbmCI0W6u+NDEeqSGcmI6ynatUrxP+8UarDtpsxkaSaCrJ8KEw50jEqikABk5RoPjcEE8lMVkSmWGKiTV01U4Kz+uV10r9sOXbLub9qdtplHVU4hTO4AAeuoQN30IUeEHiCZ3iFNyu3Xqx362M5WrHKnRP4A+vzB3YClKk=</latexit><latexit sha1_base64="P47SsFqzSSxa0RYDRpj/aiGYLv0=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEsMuKG5cV7APaECaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cAwh3PuZc4cP+FMadv+tiobm1vbO9Xd2t7+weFR/bjRV3EqCe2RmMdy6GNFORO0p5nmdJhIiiOf04E/uy38wSOVisXiQc8T6kZ4IljICNZG8uqNbOzHPFDzyFzZTZ57jldv2i17AbROnJI0oUTXq3+Ng5ikERWacKzUyLET7WZYakY4zWvjVNEEkxme0JGhAkdUudkie47OjRKgMJbmCI0W6u+NDEeqSGcmI6ynatUrxP+8UarDtpsxkaSaCrJ8KEw50jEqikABk5RoPjcEE8lMVkSmWGKiTV01U4Kz+uV10r9sOXbLub9qdtplHVU4hTO4AAeuoQN30IUeEHiCZ3iFNyu3Xqx362M5WrHKnRP4A+vzB3YClKk=</latexit><latexit sha1_base64="P47SsFqzSSxa0RYDRpj/aiGYLv0=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEsMuKG5cV7APaECaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cAwh3PuZc4cP+FMadv+tiobm1vbO9Xd2t7+weFR/bjRV3EqCe2RmMdy6GNFORO0p5nmdJhIiiOf04E/uy38wSOVisXiQc8T6kZ4IljICNZG8uqNbOzHPFDzyFzZTZ57jldv2i17AbROnJI0oUTXq3+Ng5ikERWacKzUyLET7WZYakY4zWvjVNEEkxme0JGhAkdUudkie47OjRKgMJbmCI0W6u+NDEeqSGcmI6ynatUrxP+8UarDtpsxkaSaCrJ8KEw50jEqikABk5RoPjcEE8lMVkSmWGKiTV01U4Kz+uV10r9sOXbLub9qdtplHVU4hTO4AAeuoQN30IUeEHiCZ3iFNyu3Xqx362M5WrHKnRP4A+vzB3YClKk=</latexit>

A2
<latexit sha1_base64="zXIuX9UsBxGdVPiWOSYVO26NZBU=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkR7LLixmUF+4A2hMlk0g6dZMLMRCwhv+LGhSJu/RF3/o2TNgttPTDM4Zx7mTPHTzhT2ra/rY3Nre2d3cpedf/g8Oi4dlLvK5FKQntEcCGHPlaUs5j2NNOcDhNJceRzOvBnt4U/eKRSMRE/6HlC3QhPYhYygrWRvFo9G/uCB2oemSu7yXOv5dUadtNeAK0TpyQNKNH1al/jQJA0orEmHCs1cuxEuxmWmhFO8+o4VTTBZIYndGRojCOq3GyRPUcXRglQKKQ5sUYL9fdGhiNVpDOTEdZTteoV4n/eKNVh281YnKSaxmT5UJhypAUqikABk5RoPjcEE8lMVkSmWGKiTV1VU4Kz+uV10m81Hbvp3F81Ou2yjgqcwTlcggPX0IE76EIPCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB3eGlKo=</latexit><latexit sha1_base64="zXIuX9UsBxGdVPiWOSYVO26NZBU=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkR7LLixmUF+4A2hMlk0g6dZMLMRCwhv+LGhSJu/RF3/o2TNgttPTDM4Zx7mTPHTzhT2ra/rY3Nre2d3cpedf/g8Oi4dlLvK5FKQntEcCGHPlaUs5j2NNOcDhNJceRzOvBnt4U/eKRSMRE/6HlC3QhPYhYygrWRvFo9G/uCB2oemSu7yXOv5dUadtNeAK0TpyQNKNH1al/jQJA0orEmHCs1cuxEuxmWmhFO8+o4VTTBZIYndGRojCOq3GyRPUcXRglQKKQ5sUYL9fdGhiNVpDOTEdZTteoV4n/eKNVh281YnKSaxmT5UJhypAUqikABk5RoPjcEE8lMVkSmWGKiTV1VU4Kz+uV10m81Hbvp3F81Ou2yjgqcwTlcggPX0IE76EIPCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB3eGlKo=</latexit><latexit sha1_base64="zXIuX9UsBxGdVPiWOSYVO26NZBU=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkR7LLixmUF+4A2hMlk0g6dZMLMRCwhv+LGhSJu/RF3/o2TNgttPTDM4Zx7mTPHTzhT2ra/rY3Nre2d3cpedf/g8Oi4dlLvK5FKQntEcCGHPlaUs5j2NNOcDhNJceRzOvBnt4U/eKRSMRE/6HlC3QhPYhYygrWRvFo9G/uCB2oemSu7yXOv5dUadtNeAK0TpyQNKNH1al/jQJA0orEmHCs1cuxEuxmWmhFO8+o4VTTBZIYndGRojCOq3GyRPUcXRglQKKQ5sUYL9fdGhiNVpDOTEdZTteoV4n/eKNVh281YnKSaxmT5UJhypAUqikABk5RoPjcEE8lMVkSmWGKiTV1VU4Kz+uV10m81Hbvp3F81Ou2yjgqcwTlcggPX0IE76EIPCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB3eGlKo=</latexit><latexit sha1_base64="zXIuX9UsBxGdVPiWOSYVO26NZBU=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkR7LLixmUF+4A2hMlk0g6dZMLMRCwhv+LGhSJu/RF3/o2TNgttPTDM4Zx7mTPHTzhT2ra/rY3Nre2d3cpedf/g8Oi4dlLvK5FKQntEcCGHPlaUs5j2NNOcDhNJceRzOvBnt4U/eKRSMRE/6HlC3QhPYhYygrWRvFo9G/uCB2oemSu7yXOv5dUadtNeAK0TpyQNKNH1al/jQJA0orEmHCs1cuxEuxmWmhFO8+o4VTTBZIYndGRojCOq3GyRPUcXRglQKKQ5sUYL9fdGhiNVpDOTEdZTteoV4n/eKNVh281YnKSaxmT5UJhypAUqikABk5RoPjcEE8lMVkSmWGKiTV1VU4Kz+uV10m81Hbvp3F81Ou2yjgqcwTlcggPX0IE76EIPCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB3eGlKo=</latexit>

eR
<latexit sha1_base64="TqD3qifs+xbdwt5e24YKTk034OA=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBjcsq9gFNKJPJTTt0MgkzE6WEgBt/xY0LRdz6E+78GydtFtp6YJjDOfdy7z1+wqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ar41QQ6JCYxaLvYwmMcugoqhj0EwE48hn0/MlV4ffuQUga8zs1TcCL8IjTkBKstDQ0j9wHGoCiLIDM9WMWyGmkv+w2z4dm3W7YM1jLxClJHZVoD80vN4hJGgFXhGEpB46dKC/DQlHCIK+5qYQEkwkewUBTjiOQXja7IbdOtRJYYSz048qaqb87MhzJYjddGWE1loteIf7nDVIVNr2M8iRVwMl8UJgyS8VWEYgVUAFEsakmmAiqd7XIGAtMlI6tpkNwFk9eJt3zhmM3nJuLeqtZxlFFx+gEnSEHXaIWukZt1EEEPaJn9IrejCfjxXg3PualFaPsOUR/YHz+AFhBmJE=</latexit><latexit sha1_base64="TqD3qifs+xbdwt5e24YKTk034OA=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBjcsq9gFNKJPJTTt0MgkzE6WEgBt/xY0LRdz6E+78GydtFtp6YJjDOfdy7z1+wqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ar41QQ6JCYxaLvYwmMcugoqhj0EwE48hn0/MlV4ffuQUga8zs1TcCL8IjTkBKstDQ0j9wHGoCiLIDM9WMWyGmkv+w2z4dm3W7YM1jLxClJHZVoD80vN4hJGgFXhGEpB46dKC/DQlHCIK+5qYQEkwkewUBTjiOQXja7IbdOtRJYYSz048qaqb87MhzJYjddGWE1loteIf7nDVIVNr2M8iRVwMl8UJgyS8VWEYgVUAFEsakmmAiqd7XIGAtMlI6tpkNwFk9eJt3zhmM3nJuLeqtZxlFFx+gEnSEHXaIWukZt1EEEPaJn9IrejCfjxXg3PualFaPsOUR/YHz+AFhBmJE=</latexit><latexit sha1_base64="TqD3qifs+xbdwt5e24YKTk034OA=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBjcsq9gFNKJPJTTt0MgkzE6WEgBt/xY0LRdz6E+78GydtFtp6YJjDOfdy7z1+wqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ar41QQ6JCYxaLvYwmMcugoqhj0EwE48hn0/MlV4ffuQUga8zs1TcCL8IjTkBKstDQ0j9wHGoCiLIDM9WMWyGmkv+w2z4dm3W7YM1jLxClJHZVoD80vN4hJGgFXhGEpB46dKC/DQlHCIK+5qYQEkwkewUBTjiOQXja7IbdOtRJYYSz048qaqb87MhzJYjddGWE1loteIf7nDVIVNr2M8iRVwMl8UJgyS8VWEYgVUAFEsakmmAiqd7XIGAtMlI6tpkNwFk9eJt3zhmM3nJuLeqtZxlFFx+gEnSEHXaIWukZt1EEEPaJn9IrejCfjxXg3PualFaPsOUR/YHz+AFhBmJE=</latexit><latexit sha1_base64="TqD3qifs+xbdwt5e24YKTk034OA=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBjcsq9gFNKJPJTTt0MgkzE6WEgBt/xY0LRdz6E+78GydtFtp6YJjDOfdy7z1+wqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ar41QQ6JCYxaLvYwmMcugoqhj0EwE48hn0/MlV4ffuQUga8zs1TcCL8IjTkBKstDQ0j9wHGoCiLIDM9WMWyGmkv+w2z4dm3W7YM1jLxClJHZVoD80vN4hJGgFXhGEpB46dKC/DQlHCIK+5qYQEkwkewUBTjiOQXja7IbdOtRJYYSz048qaqb87MhzJYjddGWE1loteIf7nDVIVNr2M8iRVwMl8UJgyS8VWEYgVUAFEsakmmAiqd7XIGAtMlI6tpkNwFk9eJt3zhmM3nJuLeqtZxlFFx+gEnSEHXaIWukZt1EEEPaJn9IrejCfjxXg3PualFaPsOUR/YHz+AFhBmJE=</latexit>

eG
<latexit sha1_base64="DigxCy+AsQcDcs0ltEIHWdAwFck=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBhS4r2Ac0oUwmN+3QySTMTJQSAm78FTcuFHHrT7jzb5y0WWjrgWEO59zLvff4CaNS2fa3UVlZXVvfqG7WtrZ3dvfM/YOujFNBoENiFou+jyUwyqGjqGLQTwTgyGfQ8ydXhd+7ByFpzO/UNAEvwiNOQ0qw0tLQPHIfaACKsgAy149ZIKeR/rLrPB+adbthz2AtE6ckdVSiPTS/3CAmaQRcEYalHDh2orwMC0UJg7zmphISTCZ4BANNOY5Aetnshtw61UpghbHQjytrpv7uyHAki910ZYTVWC56hfifN0hV2PQyypNUASfzQWHKLBVbRSBWQAUQxaaaYCKo3tUiYywwUTq2mg7BWTx5mXTPG47dcG4v6q1mGUcVHaMTdIYcdIla6Aa1UQcR9Iie0St6M56MF+Pd+JiXVoyy5xD9gfH5A0d/mIY=</latexit><latexit sha1_base64="DigxCy+AsQcDcs0ltEIHWdAwFck=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBhS4r2Ac0oUwmN+3QySTMTJQSAm78FTcuFHHrT7jzb5y0WWjrgWEO59zLvff4CaNS2fa3UVlZXVvfqG7WtrZ3dvfM/YOujFNBoENiFou+jyUwyqGjqGLQTwTgyGfQ8ydXhd+7ByFpzO/UNAEvwiNOQ0qw0tLQPHIfaACKsgAy149ZIKeR/rLrPB+adbthz2AtE6ckdVSiPTS/3CAmaQRcEYalHDh2orwMC0UJg7zmphISTCZ4BANNOY5Aetnshtw61UpghbHQjytrpv7uyHAki910ZYTVWC56hfifN0hV2PQyypNUASfzQWHKLBVbRSBWQAUQxaaaYCKo3tUiYywwUTq2mg7BWTx5mXTPG47dcG4v6q1mGUcVHaMTdIYcdIla6Aa1UQcR9Iie0St6M56MF+Pd+JiXVoyy5xD9gfH5A0d/mIY=</latexit><latexit sha1_base64="DigxCy+AsQcDcs0ltEIHWdAwFck=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBhS4r2Ac0oUwmN+3QySTMTJQSAm78FTcuFHHrT7jzb5y0WWjrgWEO59zLvff4CaNS2fa3UVlZXVvfqG7WtrZ3dvfM/YOujFNBoENiFou+jyUwyqGjqGLQTwTgyGfQ8ydXhd+7ByFpzO/UNAEvwiNOQ0qw0tLQPHIfaACKsgAy149ZIKeR/rLrPB+adbthz2AtE6ckdVSiPTS/3CAmaQRcEYalHDh2orwMC0UJg7zmphISTCZ4BANNOY5Aetnshtw61UpghbHQjytrpv7uyHAki910ZYTVWC56hfifN0hV2PQyypNUASfzQWHKLBVbRSBWQAUQxaaaYCKo3tUiYywwUTq2mg7BWTx5mXTPG47dcG4v6q1mGUcVHaMTdIYcdIla6Aa1UQcR9Iie0St6M56MF+Pd+JiXVoyy5xD9gfH5A0d/mIY=</latexit><latexit sha1_base64="DigxCy+AsQcDcs0ltEIHWdAwFck=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgqiQi2GXBhS4r2Ac0oUwmN+3QySTMTJQSAm78FTcuFHHrT7jzb5y0WWjrgWEO59zLvff4CaNS2fa3UVlZXVvfqG7WtrZ3dvfM/YOujFNBoENiFou+jyUwyqGjqGLQTwTgyGfQ8ydXhd+7ByFpzO/UNAEvwiNOQ0qw0tLQPHIfaACKsgAy149ZIKeR/rLrPB+adbthz2AtE6ckdVSiPTS/3CAmaQRcEYalHDh2orwMC0UJg7zmphISTCZ4BANNOY5Aetnshtw61UpghbHQjytrpv7uyHAki910ZYTVWC56hfifN0hV2PQyypNUASfzQWHKLBVbRSBWQAUQxaaaYCKo3tUiYywwUTq2mg7BWTx5mXTPG47dcG4v6q1mGUcVHaMTdIYcdIla6Aa1UQcR9Iie0St6M56MF+Pd+JiXVoyy5xD9gfH5A0d/mIY=</latexit>

R = eR + r
<latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit>

�2k
<latexit sha1_base64="j9qPK5La5VF8SYJ3VvDuJRm55FU=">AAACEHicbVDLSsNAFJ34rPUVdekmWEQ3hqQI7bKgC5cV7AOaWCaT23boTBJmJkIJ+QQ3/oobF4q4denOv3HSdqGtB4Y5nHMv994TJIxK5Tjfxsrq2vrGZmmrvL2zu7dvHhy2ZZwKAi0Ss1h0AyyB0QhaiioG3UQA5gGDTjC+KvzOAwhJ4+hOTRLwOR5GdEAJVlrqm2feNTCFvZFMMIHswrFrnOdZfl/1gpiFcsL1l43zvllxbGcKa5m4c1JBczT75pcXxiTlECnCsJQ910mUn2GhKGGQl71Ugh45xkPoaRphDtLPpgfl1qlWQmsQC/0iZU3V3x0Z5rJYTVdyrEZy0SvE/7xeqgZ1P6NRkiqIyGzQIGWWiq0iHSukAohiE00wEVTvapERFpgonWFZh+AunrxM2lXbdWz39rLSqM/jKKFjdILOkYtqqIFuUBO1EEGP6Bm9ojfjyXgx3o2PWemKMe85Qn9gfP4AN7+dTw==</latexit><latexit sha1_base64="j9qPK5La5VF8SYJ3VvDuJRm55FU=">AAACEHicbVDLSsNAFJ34rPUVdekmWEQ3hqQI7bKgC5cV7AOaWCaT23boTBJmJkIJ+QQ3/oobF4q4denOv3HSdqGtB4Y5nHMv994TJIxK5Tjfxsrq2vrGZmmrvL2zu7dvHhy2ZZwKAi0Ss1h0AyyB0QhaiioG3UQA5gGDTjC+KvzOAwhJ4+hOTRLwOR5GdEAJVlrqm2feNTCFvZFMMIHswrFrnOdZfl/1gpiFcsL1l43zvllxbGcKa5m4c1JBczT75pcXxiTlECnCsJQ910mUn2GhKGGQl71Ugh45xkPoaRphDtLPpgfl1qlWQmsQC/0iZU3V3x0Z5rJYTVdyrEZy0SvE/7xeqgZ1P6NRkiqIyGzQIGWWiq0iHSukAohiE00wEVTvapERFpgonWFZh+AunrxM2lXbdWz39rLSqM/jKKFjdILOkYtqqIFuUBO1EEGP6Bm9ojfjyXgx3o2PWemKMe85Qn9gfP4AN7+dTw==</latexit><latexit sha1_base64="j9qPK5La5VF8SYJ3VvDuJRm55FU=">AAACEHicbVDLSsNAFJ34rPUVdekmWEQ3hqQI7bKgC5cV7AOaWCaT23boTBJmJkIJ+QQ3/oobF4q4denOv3HSdqGtB4Y5nHMv994TJIxK5Tjfxsrq2vrGZmmrvL2zu7dvHhy2ZZwKAi0Ss1h0AyyB0QhaiioG3UQA5gGDTjC+KvzOAwhJ4+hOTRLwOR5GdEAJVlrqm2feNTCFvZFMMIHswrFrnOdZfl/1gpiFcsL1l43zvllxbGcKa5m4c1JBczT75pcXxiTlECnCsJQ910mUn2GhKGGQl71Ugh45xkPoaRphDtLPpgfl1qlWQmsQC/0iZU3V3x0Z5rJYTVdyrEZy0SvE/7xeqgZ1P6NRkiqIyGzQIGWWiq0iHSukAohiE00wEVTvapERFpgonWFZh+AunrxM2lXbdWz39rLSqM/jKKFjdILOkYtqqIFuUBO1EEGP6Bm9ojfjyXgx3o2PWemKMe85Qn9gfP4AN7+dTw==</latexit><latexit sha1_base64="j9qPK5La5VF8SYJ3VvDuJRm55FU=">AAACEHicbVDLSsNAFJ34rPUVdekmWEQ3hqQI7bKgC5cV7AOaWCaT23boTBJmJkIJ+QQ3/oobF4q4denOv3HSdqGtB4Y5nHMv994TJIxK5Tjfxsrq2vrGZmmrvL2zu7dvHhy2ZZwKAi0Ss1h0AyyB0QhaiioG3UQA5gGDTjC+KvzOAwhJ4+hOTRLwOR5GdEAJVlrqm2feNTCFvZFMMIHswrFrnOdZfl/1gpiFcsL1l43zvllxbGcKa5m4c1JBczT75pcXxiTlECnCsJQ910mUn2GhKGGQl71Ugh45xkPoaRphDtLPpgfl1qlWQmsQC/0iZU3V3x0Z5rJYTVdyrEZy0SvE/7xeqgZ1P6NRkiqIyGzQIGWWiq0iHSukAohiE00wEVTvapERFpgonWFZh+AunrxM2lXbdWz39rLSqM/jKKFjdILOkYtqqIFuUBO1EEGP6Bm9ojfjyXgx3o2PWemKMe85Qn9gfP4AN7+dTw==</latexit>

SC
<latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit>

C
<latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="feYzCSbqj61LrrcowietRi1DSP8=">AAAB5HicbVDLSgNBEOz1GddX9OplMAiewq4XPQpePEYwD0hCmJ3tTYbMzi4zvUJY8gMevIh49Zu8+TdOHqAmFjQUVd10d0W5kpaC4Mvb2Nza3tmt7Pn7B/7h0XH1pGWzwghsikxlphNxi0pqbJIkhZ3cIE8jhe1ofDfz209orMz0I01y7Kd8qGUiBScnNQbVWlAP5mDrJFySGiwxqH724kwUKWoSilvbDYOc+iU3JIXCqd8rLOZcjPkQu45qnqLtl/Mzp+zCKTFLMuNKE5urvydKnlo7SSPXmXIa2VVvJv7ndQtKbvql1HlBqMViUVIoRhmb/cxiaVCQmjjChZHuViZG3HBBLhnfZRCufrxOWlf1MKiHDz9hQAXO4BwuIYRruIV7aEATBMTwDK/eyHvx3rz3ReOGt5w4hT/wPr4BGDqLAg==</latexit><latexit sha1_base64="Ek295dnaWqDA7CVa33LsfvGS6DU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKex6MUchF48RzAOSJcxOZpMxszPLTK8QlvyDFw+KePV/vPk3Th6gJhY0FFXddHdFqRQWff/LK2xsbm3vFHdLe/sHh0fl45OW1ZlhvMm01KYTUculULyJAiXvpIbTJJK8HY3rM7/9yI0VWt3jJOVhQodKxIJRdFKrx6gk9X654lf9Ocg6CZakAks0+uXP3kCzLOEKmaTWdgM/xTCnBgWTfFrqZZanlI3pkHcdVTThNszn107JhVMGJNbGlUIyV39P5DSxdpJErjOhOLKr3kz8z+tmGNfCXKg0Q67YYlGcSYKazF4nA2E4QzlxhDIj3K2EjaihDF1AJRdCsPryOmldVQO/Gtz9pAFFOINzuIQAruEGbqEBTWDwAE/wAq+e9p69N+990VrwljOn8Afexze0I44f</latexit><latexit sha1_base64="k/5lhehzUAL44uXOMT1KXOXhSyo=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBIvgqkwqat0J3bisYB/QDiWTZtrYTDIkGaEM/Qc3LhRx6/+4829MH+IDPXDhcM693HtPmAhurO+/e7ml5ZXVtfx6YWNza3unuLvXNCrVlDWoEkq3Q2KY4JI1LLeCtRPNSBwK1gpHtanfumPacCVv7DhhQUwGkkecEuukZpcSgWq9YskvV6uVk9MT5Jf9GRzBPr44wwgvlBIsUO8V37p9RdOYSUsFMaaD/cQGGdGWU8EmhW5qWELoiAxYx1FJYmaCbHbtBB05pY8ipV1Ji2bq94mMxMaM49B1xsQOzW9vKv7ldVIbVYOMyyS1TNL5oigVyCo0fR31uWbUirEjhGrubkV0SDSh1gVUcCF8for+J82Ki6WMr7/SgDwcwCEcA4ZzuIQrqEMDKNzCPTzCk6e8B+/Ze5m35rzFzD78gPf6AfiPjk4=</latexit><latexit sha1_base64="VZr9pllCNJZ9jZxKm/RrdwKz36k=">AAAB7XicdVBNSwMxEJ2tX7V+VT16CRbBU8m2qOut0IvHCrYW2qVk02wbm80uSVYoS/+DFw+KePX/ePPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrK6tbxQ3S1vbO7t75f2Djo5TRVmbxiJW3YBoJrhkbcONYN1EMRIFgt0Gk+bcv71nSvNY3phpwvyIjCQPOSXGSp0+JQI1B+UKrnperX5WR7iKF7DExe7luYvcXKlAjtag/N4fxjSNmDRUEK17Lk6MnxFlOBVsVuqnmiWETsiI9SyVJGLazxbXztCJVYYojJUtadBC/T6RkUjraRTYzoiYsf7tzcW/vF5qQs/PuExSwyRdLgpTgUyM5q+jIVeMGjG1hFDF7a2Ijoki1NiASjaEr0/R/6RTs7FU3WtcaXh5HEU4gmM4BRcuoAFX0II2ULiDB3iCZyd2Hp0X53XZWnDymUP4AeftExz2jsY=</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit>

RC
<latexit sha1_base64="BEHK0GWawytbIpGjE0AzCNiD9ZI=">AAAB7nicdVDLSsNAFL2pr1pfVZduBovgqiStj7grdOOyin1AG8pkOmmHTiZhZiKU0I9w40IRt36PO//GaRpBRQ9cOJxzL/fe48ecKW3bH1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT5sLv3tPpWKRuNOzmHohHgsWMIK1kboDgjm6bQ7LFbvqurX6eR3ZVTuDIY7tXF04yMmVCuRoDcvvg1FEkpAKTThWqu/YsfZSLDUjnM5Lg0TRGJMpHtO+oQKHVHlpdu4cnRhlhIJImhIaZer3iRSHSs1C33SGWE/Ub28h/uX1Ex24XspEnGgqyHJRkHCkI7T4HY2YpETzmSGYSGZuRWSCJSbaJFQyIXx9iv4nnZqJpercnFUabh5HEY7gGE7BgUtowDW0oA0EpvAAT/Bsxdaj9WK9LlsLVj5zCD9gvX0CwWqPJg==</latexit><latexit sha1_base64="BEHK0GWawytbIpGjE0AzCNiD9ZI=">AAAB7nicdVDLSsNAFL2pr1pfVZduBovgqiStj7grdOOyin1AG8pkOmmHTiZhZiKU0I9w40IRt36PO//GaRpBRQ9cOJxzL/fe48ecKW3bH1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT5sLv3tPpWKRuNOzmHohHgsWMIK1kboDgjm6bQ7LFbvqurX6eR3ZVTuDIY7tXF04yMmVCuRoDcvvg1FEkpAKTThWqu/YsfZSLDUjnM5Lg0TRGJMpHtO+oQKHVHlpdu4cnRhlhIJImhIaZer3iRSHSs1C33SGWE/Ub28h/uX1Ex24XspEnGgqyHJRkHCkI7T4HY2YpETzmSGYSGZuRWSCJSbaJFQyIXx9iv4nnZqJpercnFUabh5HEY7gGE7BgUtowDW0oA0EpvAAT/Bsxdaj9WK9LlsLVj5zCD9gvX0CwWqPJg==</latexit><latexit sha1_base64="BEHK0GWawytbIpGjE0AzCNiD9ZI=">AAAB7nicdVDLSsNAFL2pr1pfVZduBovgqiStj7grdOOyin1AG8pkOmmHTiZhZiKU0I9w40IRt36PO//GaRpBRQ9cOJxzL/fe48ecKW3bH1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT5sLv3tPpWKRuNOzmHohHgsWMIK1kboDgjm6bQ7LFbvqurX6eR3ZVTuDIY7tXF04yMmVCuRoDcvvg1FEkpAKTThWqu/YsfZSLDUjnM5Lg0TRGJMpHtO+oQKHVHlpdu4cnRhlhIJImhIaZer3iRSHSs1C33SGWE/Ub28h/uX1Ex24XspEnGgqyHJRkHCkI7T4HY2YpETzmSGYSGZuRWSCJSbaJFQyIXx9iv4nnZqJpercnFUabh5HEY7gGE7BgUtowDW0oA0EpvAAT/Bsxdaj9WK9LlsLVj5zCD9gvX0CwWqPJg==</latexit><latexit sha1_base64="BEHK0GWawytbIpGjE0AzCNiD9ZI=">AAAB7nicdVDLSsNAFL2pr1pfVZduBovgqiStj7grdOOyin1AG8pkOmmHTiZhZiKU0I9w40IRt36PO//GaRpBRQ9cOJxzL/fe48ecKW3bH1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT5sLv3tPpWKRuNOzmHohHgsWMIK1kboDgjm6bQ7LFbvqurX6eR3ZVTuDIY7tXF04yMmVCuRoDcvvg1FEkpAKTThWqu/YsfZSLDUjnM5Lg0TRGJMpHtO+oQKHVHlpdu4cnRhlhIJImhIaZer3iRSHSs1C33SGWE/Ub28h/uX1Ex24XspEnGgqyHJRkHCkI7T4HY2YpETzmSGYSGZuRWSCJSbaJFQyIXx9iv4nnZqJpercnFUabh5HEY7gGE7BgUtowDW0oA0EpvAAT/Bsxdaj9WK9LlsLVj5zCD9gvX0CwWqPJg==</latexit>

RSC
<latexit sha1_base64="+uII9F5ToJyAR60F2xalf8d70q8=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjJ1auuu0I3L+ugD2qFk0kwbmsmMSUYoQ3/CjQtF3Po77vwbM20FFT0QODnnXu69x485UxqhDyu3srq2vpHfLGxt7+zuFfcP2ipKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJ43M79xTqVgkbvU0pl6IR4IFjGBtpG6fYA6vbxqDYgnZqIrOnDJEtltxq+cZMX/3ogIdG81RAks0B8X3/jAiSUiFJhwr1XNQrL0US80Ip7NCP1E0xmSCR7RnqMAhVV4633cGT4wyhEEkzRMaztXvHSkOlZqGvqkMsR6r314m/uX1Eh3UvJSJONFUkMWgIOFQRzA7Hg6ZpETzqSGYSGZ2hWSMJSbaRFQwIXxdCv8n7bLtINu5ckv12jKOPDgCx+AUOKAK6uASNEELEMDBA3gCz9ad9Wi9WK+L0py17DkEP2C9fQJ85I+T</latexit><latexit sha1_base64="+uII9F5ToJyAR60F2xalf8d70q8=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjJ1auuu0I3L+ugD2qFk0kwbmsmMSUYoQ3/CjQtF3Po77vwbM20FFT0QODnnXu69x485UxqhDyu3srq2vpHfLGxt7+zuFfcP2ipKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJ43M79xTqVgkbvU0pl6IR4IFjGBtpG6fYA6vbxqDYgnZqIrOnDJEtltxq+cZMX/3ogIdG81RAks0B8X3/jAiSUiFJhwr1XNQrL0US80Ip7NCP1E0xmSCR7RnqMAhVV4633cGT4wyhEEkzRMaztXvHSkOlZqGvqkMsR6r314m/uX1Eh3UvJSJONFUkMWgIOFQRzA7Hg6ZpETzqSGYSGZ2hWSMJSbaRFQwIXxdCv8n7bLtINu5ckv12jKOPDgCx+AUOKAK6uASNEELEMDBA3gCz9ad9Wi9WK+L0py17DkEP2C9fQJ85I+T</latexit><latexit sha1_base64="+uII9F5ToJyAR60F2xalf8d70q8=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjJ1auuu0I3L+ugD2qFk0kwbmsmMSUYoQ3/CjQtF3Po77vwbM20FFT0QODnnXu69x485UxqhDyu3srq2vpHfLGxt7+zuFfcP2ipKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJ43M79xTqVgkbvU0pl6IR4IFjGBtpG6fYA6vbxqDYgnZqIrOnDJEtltxq+cZMX/3ogIdG81RAks0B8X3/jAiSUiFJhwr1XNQrL0US80Ip7NCP1E0xmSCR7RnqMAhVV4633cGT4wyhEEkzRMaztXvHSkOlZqGvqkMsR6r314m/uX1Eh3UvJSJONFUkMWgIOFQRzA7Hg6ZpETzqSGYSGZ2hWSMJSbaRFQwIXxdCv8n7bLtINu5ckv12jKOPDgCx+AUOKAK6uASNEELEMDBA3gCz9ad9Wi9WK+L0py17DkEP2C9fQJ85I+T</latexit><latexit sha1_base64="+uII9F5ToJyAR60F2xalf8d70q8=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjJ1auuu0I3L+ugD2qFk0kwbmsmMSUYoQ3/CjQtF3Po77vwbM20FFT0QODnnXu69x485UxqhDyu3srq2vpHfLGxt7+zuFfcP2ipKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJ43M79xTqVgkbvU0pl6IR4IFjGBtpG6fYA6vbxqDYgnZqIrOnDJEtltxq+cZMX/3ogIdG81RAks0B8X3/jAiSUiFJhwr1XNQrL0US80Ip7NCP1E0xmSCR7RnqMAhVV4633cGT4wyhEEkzRMaztXvHSkOlZqGvqkMsR6r314m/uX1Eh3UvJSJONFUkMWgIOFQRzA7Hg6ZpETzqSGYSGZ2hWSMJSbaRFQwIXxdCv8n7bLtINu5ckv12jKOPDgCx+AUOKAK6uASNEELEMDBA3gCz9ad9Wi9WK+L0py17DkEP2C9fQJ85I+T</latexit>

real space
<latexit sha1_base64="mVnO8BgKIMYKFgLFQJk55y1mmQo=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkR7LLgxmUF+4C2lEx6pw3NY0gyahn7KW5cKOLWL3Hn35i2s9DWA4HDOfckNydKODM2CL69tfWNza3twk5xd2//4NAvHTWNSjWFBlVc6XZEDHAmoWGZ5dBONBARcWhF4+uZ37oHbZiSd3aSQE+QoWQxo8Q6qe+XuiJSj5mLcGwSQmHa98tBJZgDr5IwJ2WUo973v7oDRVMB0lJOjOmEQWJ7GdGWUQ7TYjc14G4ekyF0HJVEgOll89Wn+MwpAxwr7Y60eK7+TmREGDMRkZsUxI7MsjcT//M6qY2rvYzJJLUg6eKhOOXYKjzrAQ+YBmr5xBFCNXO7YjoimlDr2iq6EsLlL6+S5kUlDCrh7WW5Vs3rKKATdIrOUYiuUA3doDpqIIoe0DN6RW/ek/fivXsfi9E1L88coz/wPn8AjrqUJQ==</latexit><latexit sha1_base64="mVnO8BgKIMYKFgLFQJk55y1mmQo=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkR7LLgxmUF+4C2lEx6pw3NY0gyahn7KW5cKOLWL3Hn35i2s9DWA4HDOfckNydKODM2CL69tfWNza3twk5xd2//4NAvHTWNSjWFBlVc6XZEDHAmoWGZ5dBONBARcWhF4+uZ37oHbZiSd3aSQE+QoWQxo8Q6qe+XuiJSj5mLcGwSQmHa98tBJZgDr5IwJ2WUo973v7oDRVMB0lJOjOmEQWJ7GdGWUQ7TYjc14G4ekyF0HJVEgOll89Wn+MwpAxwr7Y60eK7+TmREGDMRkZsUxI7MsjcT//M6qY2rvYzJJLUg6eKhOOXYKjzrAQ+YBmr5xBFCNXO7YjoimlDr2iq6EsLlL6+S5kUlDCrh7WW5Vs3rKKATdIrOUYiuUA3doDpqIIoe0DN6RW/ek/fivXsfi9E1L88coz/wPn8AjrqUJQ==</latexit><latexit sha1_base64="mVnO8BgKIMYKFgLFQJk55y1mmQo=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkR7LLgxmUF+4C2lEx6pw3NY0gyahn7KW5cKOLWL3Hn35i2s9DWA4HDOfckNydKODM2CL69tfWNza3twk5xd2//4NAvHTWNSjWFBlVc6XZEDHAmoWGZ5dBONBARcWhF4+uZ37oHbZiSd3aSQE+QoWQxo8Q6qe+XuiJSj5mLcGwSQmHa98tBJZgDr5IwJ2WUo973v7oDRVMB0lJOjOmEQWJ7GdGWUQ7TYjc14G4ekyF0HJVEgOll89Wn+MwpAxwr7Y60eK7+TmREGDMRkZsUxI7MsjcT//M6qY2rvYzJJLUg6eKhOOXYKjzrAQ+YBmr5xBFCNXO7YjoimlDr2iq6EsLlL6+S5kUlDCrh7WW5Vs3rKKATdIrOUYiuUA3doDpqIIoe0DN6RW/ek/fivXsfi9E1L88coz/wPn8AjrqUJQ==</latexit><latexit sha1_base64="mVnO8BgKIMYKFgLFQJk55y1mmQo=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkR7LLgxmUF+4C2lEx6pw3NY0gyahn7KW5cKOLWL3Hn35i2s9DWA4HDOfckNydKODM2CL69tfWNza3twk5xd2//4NAvHTWNSjWFBlVc6XZEDHAmoWGZ5dBONBARcWhF4+uZ37oHbZiSd3aSQE+QoWQxo8Q6qe+XuiJSj5mLcGwSQmHa98tBJZgDr5IwJ2WUo973v7oDRVMB0lJOjOmEQWJ7GdGWUQ7TYjc14G4ekyF0HJVEgOll89Wn+MwpAxwr7Y60eK7+TmREGDMRkZsUxI7MsjcT//M6qY2rvYzJJLUg6eKhOOXYKjzrAQ+YBmr5xBFCNXO7YjoimlDr2iq6EsLlL6+S5kUlDCrh7WW5Vs3rKKATdIrOUYiuUA3doDpqIIoe0DN6RW/ek/fivXsfi9E1L88coz/wPn8AjrqUJQ==</latexit>

reciprocal space
<latexit sha1_base64="c3z9t7VtV+Q4g/LcnIwlk3F+NQw=">AAACAHicbVDLSgMxFM3UV62vURcu3ASL4KrMiGCXBTcuK9gHtEPJpHfa0GQyJBmxDLPxV9y4UMStn+HOvzFtZ6GtBwKHc+5Nck6YcKaN5307pbX1jc2t8nZlZ3dv/8A9PGprmSoKLSq5VN2QaOAshpZhhkM3UUBEyKETTm5mfucBlGYyvjfTBAJBRjGLGCXGSgP3pC9C+ZgpoCxRkhKOdUIo5AO36tW8OfAq8QtSRQWaA/erP5Q0FRAbyonWPd9LTJARZRjlkFf6qQZ784SMoGdpTAToIJsHyPG5VYY4ksqe2OC5+nsjI0LrqQjtpCBmrJe9mfif10tNVA8yFiepgZguHopSjo3EszbwkNnkhk8tIVQx+1dMx0QRamxnFVuCvxx5lbQva75X8++uqo16UUcZnaIzdIF8dI0a6BY1UQtRlKNn9IrenCfnxXl3PhajJafYOUZ/4Hz+AGkDluE=</latexit><latexit sha1_base64="c3z9t7VtV+Q4g/LcnIwlk3F+NQw=">AAACAHicbVDLSgMxFM3UV62vURcu3ASL4KrMiGCXBTcuK9gHtEPJpHfa0GQyJBmxDLPxV9y4UMStn+HOvzFtZ6GtBwKHc+5Nck6YcKaN5307pbX1jc2t8nZlZ3dv/8A9PGprmSoKLSq5VN2QaOAshpZhhkM3UUBEyKETTm5mfucBlGYyvjfTBAJBRjGLGCXGSgP3pC9C+ZgpoCxRkhKOdUIo5AO36tW8OfAq8QtSRQWaA/erP5Q0FRAbyonWPd9LTJARZRjlkFf6qQZ784SMoGdpTAToIJsHyPG5VYY4ksqe2OC5+nsjI0LrqQjtpCBmrJe9mfif10tNVA8yFiepgZguHopSjo3EszbwkNnkhk8tIVQx+1dMx0QRamxnFVuCvxx5lbQva75X8++uqo16UUcZnaIzdIF8dI0a6BY1UQtRlKNn9IrenCfnxXl3PhajJafYOUZ/4Hz+AGkDluE=</latexit><latexit sha1_base64="c3z9t7VtV+Q4g/LcnIwlk3F+NQw=">AAACAHicbVDLSgMxFM3UV62vURcu3ASL4KrMiGCXBTcuK9gHtEPJpHfa0GQyJBmxDLPxV9y4UMStn+HOvzFtZ6GtBwKHc+5Nck6YcKaN5307pbX1jc2t8nZlZ3dv/8A9PGprmSoKLSq5VN2QaOAshpZhhkM3UUBEyKETTm5mfucBlGYyvjfTBAJBRjGLGCXGSgP3pC9C+ZgpoCxRkhKOdUIo5AO36tW8OfAq8QtSRQWaA/erP5Q0FRAbyonWPd9LTJARZRjlkFf6qQZ784SMoGdpTAToIJsHyPG5VYY4ksqe2OC5+nsjI0LrqQjtpCBmrJe9mfif10tNVA8yFiepgZguHopSjo3EszbwkNnkhk8tIVQx+1dMx0QRamxnFVuCvxx5lbQva75X8++uqo16UUcZnaIzdIF8dI0a6BY1UQtRlKNn9IrenCfnxXl3PhajJafYOUZ/4Hz+AGkDluE=</latexit><latexit sha1_base64="c3z9t7VtV+Q4g/LcnIwlk3F+NQw=">AAACAHicbVDLSgMxFM3UV62vURcu3ASL4KrMiGCXBTcuK9gHtEPJpHfa0GQyJBmxDLPxV9y4UMStn+HOvzFtZ6GtBwKHc+5Nck6YcKaN5307pbX1jc2t8nZlZ3dv/8A9PGprmSoKLSq5VN2QaOAshpZhhkM3UUBEyKETTm5mfucBlGYyvjfTBAJBRjGLGCXGSgP3pC9C+ZgpoCxRkhKOdUIo5AO36tW8OfAq8QtSRQWaA/erP5Q0FRAbyonWPd9LTJARZRjlkFf6qQZ784SMoGdpTAToIJsHyPG5VYY4ksqe2OC5+nsjI0LrqQjtpCBmrJe9mfif10tNVA8yFiepgZguHopSjo3EszbwkNnkhk8tIVQx+1dMx0QRamxnFVuCvxx5lbQva75X8++uqo16UUcZnaIzdIF8dI0a6BY1UQtRlKNn9IrenCfnxXl3PhajJafYOUZ/4Hz+AGkDluE=</latexit>

r
<latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit>

ek
<latexit sha1_base64="3v0P5UMT9AlnBrm8wmqn/L8HbAg=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFclUQEuyy4cVnBPqAJZTK5aYdOZsLMRCkh4MZfceNCEbf+hDv/xmmbhbYeGOZwzr3ce0+YMqq0635bK6tr6xubla3q9s7u3r59cNhRIpME2kQwIXshVsAoh7ammkEvlYCTkEE3HF9P/e49SEUFv9OTFIIEDzmNKcHaSAP72A8Fi9QkMV/uP9AINGUR5OOiGNg1t+7O4CwTryQ1VKI1sL/8SJAsAa4Jw0r1PTfVQY6lpoRBUfUzBSkmYzyEvqEcJ6CCfHZD4ZwZJXJiIc3j2pmpvztynKjpmqYywXqkFr2p+J/Xz3TcCHLK00wDJ/NBccYcLZxpIE5EJRDNJoZgIqnZ1SEjLDHRJraqCcFbPHmZdC7qnlv3bi9rzUYZRwWdoFN0jjx0hZroBrVQGxH0iJ7RK3qznqwX6936mJeuWGXPEfoD6/MHfxmYqg==</latexit><latexit sha1_base64="3v0P5UMT9AlnBrm8wmqn/L8HbAg=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFclUQEuyy4cVnBPqAJZTK5aYdOZsLMRCkh4MZfceNCEbf+hDv/xmmbhbYeGOZwzr3ce0+YMqq0635bK6tr6xubla3q9s7u3r59cNhRIpME2kQwIXshVsAoh7ammkEvlYCTkEE3HF9P/e49SEUFv9OTFIIEDzmNKcHaSAP72A8Fi9QkMV/uP9AINGUR5OOiGNg1t+7O4CwTryQ1VKI1sL/8SJAsAa4Jw0r1PTfVQY6lpoRBUfUzBSkmYzyEvqEcJ6CCfHZD4ZwZJXJiIc3j2pmpvztynKjpmqYywXqkFr2p+J/Xz3TcCHLK00wDJ/NBccYcLZxpIE5EJRDNJoZgIqnZ1SEjLDHRJraqCcFbPHmZdC7qnlv3bi9rzUYZRwWdoFN0jjx0hZroBrVQGxH0iJ7RK3qznqwX6936mJeuWGXPEfoD6/MHfxmYqg==</latexit><latexit sha1_base64="3v0P5UMT9AlnBrm8wmqn/L8HbAg=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFclUQEuyy4cVnBPqAJZTK5aYdOZsLMRCkh4MZfceNCEbf+hDv/xmmbhbYeGOZwzr3ce0+YMqq0635bK6tr6xubla3q9s7u3r59cNhRIpME2kQwIXshVsAoh7ammkEvlYCTkEE3HF9P/e49SEUFv9OTFIIEDzmNKcHaSAP72A8Fi9QkMV/uP9AINGUR5OOiGNg1t+7O4CwTryQ1VKI1sL/8SJAsAa4Jw0r1PTfVQY6lpoRBUfUzBSkmYzyEvqEcJ6CCfHZD4ZwZJXJiIc3j2pmpvztynKjpmqYywXqkFr2p+J/Xz3TcCHLK00wDJ/NBccYcLZxpIE5EJRDNJoZgIqnZ1SEjLDHRJraqCcFbPHmZdC7qnlv3bi9rzUYZRwWdoFN0jjx0hZroBrVQGxH0iJ7RK3qznqwX6936mJeuWGXPEfoD6/MHfxmYqg==</latexit><latexit sha1_base64="3v0P5UMT9AlnBrm8wmqn/L8HbAg=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFclUQEuyy4cVnBPqAJZTK5aYdOZsLMRCkh4MZfceNCEbf+hDv/xmmbhbYeGOZwzr3ce0+YMqq0635bK6tr6xubla3q9s7u3r59cNhRIpME2kQwIXshVsAoh7ammkEvlYCTkEE3HF9P/e49SEUFv9OTFIIEDzmNKcHaSAP72A8Fi9QkMV/uP9AINGUR5OOiGNg1t+7O4CwTryQ1VKI1sL/8SJAsAa4Jw0r1PTfVQY6lpoRBUfUzBSkmYzyEvqEcJ6CCfHZD4ZwZJXJiIc3j2pmpvztynKjpmqYywXqkFr2p+J/Xz3TcCHLK00wDJ/NBccYcLZxpIE5EJRDNJoZgIqnZ1SEjLDHRJraqCcFbPHmZdC7qnlv3bi9rzUYZRwWdoFN0jjx0hZroBrVQGxH0iJ7RK3qznqwX6936mJeuWGXPEfoD6/MHfxmYqg==</latexit>

k = eG + ek
<latexit sha1_base64="u6DPH4VoSbP+xXbRzi9gKXsmtSk=">AAACMXicdVDLSgMxFM3UV62vUZdugkUQhDIjgt0IBRd2WcE+oC0lk7ltQzOTIckoZZhfcuOfiJsuFHHrT5i2s6itHgg5nHMv997jRZwp7TgTK7e2vrG5ld8u7Ozu7R/Yh0cNJWJJoU4FF7LlEQWchVDXTHNoRRJI4HFoeqPbqd98BKmYCB/0OIJuQAYh6zNKtJF6drXjCe6rcWC+ZJTiG7wodJ6YD5pxH5K7NMUX/5mjNO3ZRafkzIBXiZuRIspQ69mvHV/QOIBQU06UartOpLsJkZpRDmmhEyuICB2RAbQNDUkAqpvMLk7xmVF83BfSvFDjmbrYkZBATdc0lQHRQ7XsTcW/vHas++VuwsIo1hDS+aB+zLEWeBof9pkEqvnYEEIlM7tiOiSSUG1CLpgQ3OWTV0njsuQ6Jff+qlgpZ3Hk0Qk6RefIRdeogqqohuqIomf0ht7Rh/ViTaxP62temrOynmP0C9b3D4bArDU=</latexit><latexit sha1_base64="u6DPH4VoSbP+xXbRzi9gKXsmtSk=">AAACMXicdVDLSgMxFM3UV62vUZdugkUQhDIjgt0IBRd2WcE+oC0lk7ltQzOTIckoZZhfcuOfiJsuFHHrT5i2s6itHgg5nHMv997jRZwp7TgTK7e2vrG5ld8u7Ozu7R/Yh0cNJWJJoU4FF7LlEQWchVDXTHNoRRJI4HFoeqPbqd98BKmYCB/0OIJuQAYh6zNKtJF6drXjCe6rcWC+ZJTiG7wodJ6YD5pxH5K7NMUX/5mjNO3ZRafkzIBXiZuRIspQ69mvHV/QOIBQU06UartOpLsJkZpRDmmhEyuICB2RAbQNDUkAqpvMLk7xmVF83BfSvFDjmbrYkZBATdc0lQHRQ7XsTcW/vHas++VuwsIo1hDS+aB+zLEWeBof9pkEqvnYEEIlM7tiOiSSUG1CLpgQ3OWTV0njsuQ6Jff+qlgpZ3Hk0Qk6RefIRdeogqqohuqIomf0ht7Rh/ViTaxP62temrOynmP0C9b3D4bArDU=</latexit><latexit sha1_base64="u6DPH4VoSbP+xXbRzi9gKXsmtSk=">AAACMXicdVDLSgMxFM3UV62vUZdugkUQhDIjgt0IBRd2WcE+oC0lk7ltQzOTIckoZZhfcuOfiJsuFHHrT5i2s6itHgg5nHMv997jRZwp7TgTK7e2vrG5ld8u7Ozu7R/Yh0cNJWJJoU4FF7LlEQWchVDXTHNoRRJI4HFoeqPbqd98BKmYCB/0OIJuQAYh6zNKtJF6drXjCe6rcWC+ZJTiG7wodJ6YD5pxH5K7NMUX/5mjNO3ZRafkzIBXiZuRIspQ69mvHV/QOIBQU06UartOpLsJkZpRDmmhEyuICB2RAbQNDUkAqpvMLk7xmVF83BfSvFDjmbrYkZBATdc0lQHRQ7XsTcW/vHas++VuwsIo1hDS+aB+zLEWeBof9pkEqvnYEEIlM7tiOiSSUG1CLpgQ3OWTV0njsuQ6Jff+qlgpZ3Hk0Qk6RefIRdeogqqohuqIomf0ht7Rh/ViTaxP62temrOynmP0C9b3D4bArDU=</latexit><latexit sha1_base64="u6DPH4VoSbP+xXbRzi9gKXsmtSk=">AAACMXicdVDLSgMxFM3UV62vUZdugkUQhDIjgt0IBRd2WcE+oC0lk7ltQzOTIckoZZhfcuOfiJsuFHHrT5i2s6itHgg5nHMv997jRZwp7TgTK7e2vrG5ld8u7Ozu7R/Yh0cNJWJJoU4FF7LlEQWchVDXTHNoRRJI4HFoeqPbqd98BKmYCB/0OIJuQAYh6zNKtJF6drXjCe6rcWC+ZJTiG7wodJ6YD5pxH5K7NMUX/5mjNO3ZRafkzIBXiZuRIspQ69mvHV/QOIBQU06UartOpLsJkZpRDmmhEyuICB2RAbQNDUkAqpvMLk7xmVF83BfSvFDjmbrYkZBATdc0lQHRQ7XsTcW/vHas++VuwsIo1hDS+aB+zLEWeBof9pkEqvnYEEIlM7tiOiSSUG1CLpgQ3OWTV0njsuQ6Jff+qlgpZ3Hk0Qk6RefIRdeogqqohuqIomf0ht7Rh/ViTaxP62temrOynmP0C9b3D4bArDU=</latexit>

Fig. 2: Example of a lattice/superlattice in D = 2 dimensions. Real space, left: A system
consisting of L = 36 sites on a square lattice with periodic boundary conditions. C: unit
cell. a1,a2: basis vectors of the lattice. Lines: tiling into clusters with Lc = 4 sites. Orange
sites: cluster origins, forming a superlattice structure of L/Lc = 9 clusters. SC: unit cell of
the superlattice. ã1, ã2: superlattice basis vectors. Any lattice vector R can be decomposed
uniquely into a superlattice vector R̃ and a cluster vector r. A1,A2: primitive translations
defining the periodic boundary conditions and the total system size. Reciprocal space, right:
b1, b2 reciprocal basis spanning a reciprocal unit cell RC containing L = 36 k-points. ∆2k =
(2π)/V : volume element. TheRC contains Lc = 4 reciprocal supercells (RSC) with L/Lc = 9

wave vectors k̃ each. Their volume is VRSC = VRC/Lc. Any wave vector k can be decomposed
uniquely into a reciprocal superlattice vector G̃ and a wave vector k̃.

and the L/Lc × L/Lc matrix V with elements

VR̃,k̃ =
1√
L/Lc

eik̃R̃ , k̃ ∈ RSC , (12)

and the Lc × Lc matrixW with elements

Wr,G̃ =
1√
Lc
eiG̃r , G̃ ∈ RC . (13)

The unitary matrices U , V andW define discrete Fourier transformations between the respec-
tive real and reciprocal spaces. We refer to the different transformations as the lattice Fourier
transformation (U ), the superlattice Fourier transformation (V ), and the cluster Fourier trans-
formation (W ). For example, one can straightforwardly prove that

1

L

∑

R

e−i(k−k
′)R =

∑

R

U †k,RUR,k′ = δk,k′ ,
1

L

RC∑

k

eik(R−R′) =
∑

k

UR,kU
†
k,R′ = δR,R′ (14)
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and thus, for someR-dependent observable OR,

Ok =
1√
L

∑

R

eikROR , OR =
1√
L

∑

k

e−ikROk . (15)

Analogous relations hold for the other two cases. The formal structure of the proof is the same
in all cases. Although there is a one-to-one relation between R and (R̃, r) and between k and
(k̃, G̃), the lattice Fourier transformation U involving lattice vectorsR cannot be decomposed
into the superlattice transformation involving superlattice vectors R̃ and the cluster transforma-
tion involving cluster vectors r, i.e., U 6= VW = WV . We note that a quantity AR,R′ which
is invariant under lattice translations R0, i.e. AR+R0,R′+R0 = AR,R′ , is diagonalized by U :
(U †AU )kk′ = A(k) δk,k′ . A quantity AR,R′ which is invariant under superlattice translations
R̃0 as well as under cluster translations r0 (i.e., which is cyclic on the cluster), AR+R̃0,R′+R̃0

=

AR+r0,R′+r0 = AR,R′ , is diagonalized by VW : (W †V †AVW )
k̃G̃,k̃′G̃′ = A(k̃, G̃)δk̃,k̃′δG̃,G̃′ .

4 Single-electron Green function

DMFT and its cluster extensions are theories based on the single-particle Green functionGR,R′(ω)

which, at T = 0, for complex ω 6= R (and using units with ~ = 1) is defined as

GR,R′(ω) =

〈
0

∣∣∣∣c
†
R′,σ

1

ω − E0 +H
cR,σ

∣∣∣∣ 0
〉

+

〈
0

∣∣∣∣cR,σ
1

ω + E0 −H
c†R′,σ

∣∣∣∣ 0
〉
. (16)

Here, c†R,σ is the creation operator of an electron with spin projection σ =↑, ↓ at lattice site R,
and cR,σ is the corresponding annihilator. |0〉 is the ground state of the Hamiltonian H , and E0

is the ground-state energy. Note that 1/(...) stands for the operator inverse. We assume that H
is spin-independent, such that the Green function is diagonal in the spin-projection indices and
spin-independent. Furthermore, H shall be invariant under lattice translations, cR,σ → cR+R0,σ

and c†R,σ → c†R+R0,σ
. Then, the Green function is invariant under lattice translations as well,

GR+R0,R′+R0(ω) = GR,R′(ω). (17)

This implies that the matrixG(ω) with elementsGR,R′(ω) is diagonalized by the lattice Fourier
transformation

(U †G(ω)U)kk′ = G(k, ω) δk,k′ . (18)

From the retarded Green function G(ret)(ω) ≡ limη↘0G(ω + iη) ≡ G(ω + i0+) with ω ∈ R
we obtain the spectral density

A(k, ω) = − 1

π
ImG(k, ω + i0+). (19)

This is a central observable which is related, for ω < 0, to the k-resolved (angle-resolved)
photoemission spectrum (PES), and, for ω > 0, to the inverse photoemission spectrum (inverse
photoemission, IPE). PES and IPE probe the occupied and the unoccupied part of the electronic
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structure in the vicinity of the Fermi energy (ω = 0), respectively. With the help of the Dirac
identity, limη↘0 1/(x+ iη) = P(1/x)− iπδ(x), we also have the expression

AR,R′(ω) =
〈

0
∣∣∣c†R′,σ δ(ω − E0 +H) cR,σ

∣∣∣ 0
〉

+
〈

0
∣∣∣cR,σ δ(ω + E0 −H) c†R′,σ

∣∣∣ 0
〉

(20)

for real ω, and

GR,R′(ω) =

∫ ∞

−∞
dω′

AR,R′(ω′)

ω − ω′ . (21)

The simplest case is that of a noninteracting tight-binding model with Hamiltonian

H0 =
∑

RR′σ

tRR′ c†RσcR′σ. (22)

Expressing the δ-function in Eq. (20) as δ(ω) = (2π)−1
∫
dt e−iωt, using the Baker-Campbell-

Hausdorff formula, eBAe−B = e−LBA for operators A,B and LBA ≡ [A,B], and the elemen-
tary commutator [cRσ, H0] =

∑
R′ tR,R′ cR′σ, we find

A(ω) = δ(ω − t) , A(k, ω) = δ(ω − ε(k)) , (23)

where ε(k) are the eigenvalues of the hopping matrix t, i.e., the tight-binding dispersion. Here,
we discuss the case of electrons on a two-dimensional square lattice with hopping between
nearest neighbors only, i.e., tR,R′ = −t if R, R′ are nearest-neighbor sites. t = 1 fixes
the energy scale. The dispersion is obtained by lattice Fourier transformation, ε(k) δkk′ =

(U †tU)kk′ , with
ε(k) = −2t(cos kx + cos ky). (24)

With this we obtain the noninteracting spectral density as displayed in Fig. 3 (left). A(k, ω)

has exactly one δ-singularity for each k in the reciprocal unit cell, e.g., in the first Brillouin
zone. There is a well-defined Fermi surface, given by all k-points in the BZ with vanishing
excitation energy: ω = ε(k) = 0. The band is half-filled. Different band fillings are obtained
by introducing a chemical potential µ 6= 0 via the substitution H0 7→ H0 − µN , where N is the
particle-number operator.
The interacting spectral density Fig. 3 (right) looks quite different. The example showsA(k, ω)

for the same tight-binding model but with an additional on-site Coulomb interaction

H1 =
U

2

∑

Rσ

nRσnR−σ (25)

of strength U , where nRσ ≡ c†RσcRσ is the occupation-number operator. H = H0 + H1 is
the famous Hubbard model [18–20] which frequently serves as a prototype for method devel-
opments. The computation of the spectral density in the interacting cases is, of course, by no
means trivial. The example shown here displays quantum Monte-Carlo data for the Hubbard
model on L = Lx × Ly = 64 sites from a study performed about 20 years ago [21]. Since then
we have seen various improvements of the QMC method but the infamous sign problem, which
prevents an efficient simulation of the model off half-filling, for example, is still unsolved in
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Fig. 3: Spectral function A(k, ω) for the two-dimensional Hubbard model at half-filling along
high-symmetry paths in the first Brillouin zone. Γ = (0, 0), X = (π, 0), M = (π, π). The
nearest-neighbor hopping is set to t = 1. Left: Result for U = 0. Here, A(k, ω) = δ(ω− ε(k)),
where ε(k) is the tight-binding dispersion. Right: Quantum Monte-Carlo result for U = 8.
Figure adapted from Refs. [21, 22].

general. At half-filling, however, the lattice QMC approach is very powerful. This is obvious
when comparing to exact diagonalization (ED) techniques, for example, which suffer from the
exponentially growing Hilbert-space with increasing system size. The enormous size of the
Hilbert space dimension for L = 64 is way beyond what can be accessed by ED.

5 Local and nonlocal correlations

The results displayed in Fig. 3 have been computed for the Hubbard model at U = 8, i.e.,
U = W , where W is the width of the noninteracting band, and µ = U/2, which enforces half-
filling, and a high inverse temperature β = 10. The example is very instructive as it embodies a
couple of famous many-body effects: First of all, it is obvious that the single-electron excitations
are gapped in the interacting case; there is no finite spectral weight in the vicinity of ω = 0 and
thus no Fermi surface. This is a nice demonstration of Mott-insulating behavior, i.e., the system
is an interaction-driven insulator. The standard explanation is that, for strong U , each site of the
lattice is almost perfectly occupied by exactly one electron as the gain in kinetic energy∼ t due
to delocalization of the electrons in the ground state is much smaller than the energy penalty
∼ U that would have to be paid when double occupancies were created. An excitation of the
ground state carrying charge must therefore bridge a large gap of the order of U . This explains
the insulating character of the system.
Second, while there are well-defined and dispersing single-electron excitations visible, these
are not δ-function-like but smeared out in energy to some degree. The intrinsic broadening of
the excitations is in fact due to their decay as mediated by the interaction. This lifetime effect is
clearly beyond the simple bandstructure picture. Quite generally, there are typically large ranges
in the (k, ω)-plane, where the spectral weight is finite but where there are no well-defined peaks.
This “incoherent background” must be seen as the result of complicated decay products. The
initial excitation of the system affects a single electron only. The remaining final state c(†)

Rσ|0〉,
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IPE

U

PES

Fig. 4: Schematic representation of the high-energy single-electron excitations of the half-filled
Hubbard model for strong U . The lower Hubbard band results from ω < 0 (photoemission,
PES) excitations leaving a hole in the final state which propagates through the lattice. The
upper Hubbard band results from ω > 0 (inverse photoemission, IPE) excitations leaving a
propagating double occupancy in the final state.

however, is not an eigenstate. It may decay in a high-order process, involving high powers
of H0 and H1, into states with many low-energy excitations of many electrons. The phase
space for such complex decay processes is not very much restricted by energy and momentum
conservation, it is huge, and thus one would expect a broad and featureless continuum.
Third, there are still some well-defined structures with high spectral weight. For example, there
are two “bands” with high spectral weight, one around Γ at negative frequencies ω ≈ −6

(PES) and another one around the M points at positive frequencies ω ≈ −6 (IPE), rather
than a single band as in the U = 0 limit. These are the so-called lower (LHB) and upper
Hubbard bands (UHB), see Fig. 4. They are related to each other via the general constraint
A(k, ω) = A(k+Q,−ω) withQ = (π, π), which results from particle-hole symmetry present
at half-filling and a bipartite lattice with nearest-neighbor hopping. Note that the bandstructure
paradigm cannot explain those “bands”: Irrespective of the form of H0, there is exactly one (δ-
like) peak per k-point on the ω axis. One therefore speaks about correlation-induced satellites.
Physically, the lower Hubbard band results from the propagation of the hole in the final state of
the electron-removal (photoemission) process. In theU →∞ limit we expect that the final-state
hole propagates almost freely through the lattice, such that a dispersive structure with spectral
width of WLHB = 8 is generated. An analogous explanation holds for the upper Hubbard band
seen in IPE. Here, the electron-addition (inverse photoemission) process produces an itinerant
doubly occupied site in the final state resulting in a dispersive excitation with WUHB = 8 for
strong U . The excitation energies can be read off from Eq. (20) (however, one has to include
the µ-shift in addition): The lower Hubbard band is centered around ω = E0−En−µ ≈ −µ =

−U/2 while the upper Hubbard band lies at ω = En − E0 − µ ≈ U − µ = +U/2, such that
their energy difference, the Hubbard gap, is given by ∆UHB−LHB ≈ U for U → ∞. Apart
from their dispersion, the existence of the Hubbard bands is due to a local effect, namely due
to the local charge correlation at the site where the (inverse) photoemission process takes place.
Hubbard bands are said to be an effect of local correlations.
Besides the Hubbard bands at high excitation energies, there are rather well-defined low-energy
structures in the spectrum at ω ≈ ±3. These result from nonlocal correlations, in particular
from nonlocal antiferromagnetic correlations, as is explained by the superexchange mechanism,
see Fig. 5: Recall that for strong U , the occupancy of each site is almost unity in the ground
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superexchange

U
t
t

Fig. 5: Superexchange mechanism in the Hubbard model at half-filling and for strong U . See
text for explanation.

state of the system. If the occupancy was perfectly unity, the ground state would have a macro-
scopic 2L-fold degeneracy as each localized electron corresponds to a local spin-1/2. The true
ground state, however, has a small but important admixture of configurations with somewhat
delocalized electrons. These result from the fact that the ground-state energy can be lowered
by a second-order hopping process gaining delocalization energy, while a double occupancy is
merely created virtually. Due to the Pauli principle, however, such superexchange processes
are only possible, if neighboring spins align antiferromagnetically. Hence, the ground state is a
nondegenerate singlet in which neighboring local spins

sR ≡
1

2

∑

σσ′

c†Rσ τσσ′ cRσ′ (26)

(τ = (σx, σy, σz) is the vector of Pauli matrices) are antiferromagnetically correlated. In fact,
using strong-coupling perturbation theory at second order in t/U , one can map the low-energy
sector of the Hubbard model onto the spin-1/2 Heisenberg model with antiferromagnetic ex-
change interaction J = 4t2/U [23]. Hence, the low-energy excitations of the Hubbard model
are nonlocal spin excitations with a band width of about 2J (with 2J = 1 at U = 8). These spin
excitations couple to the single-electron excitations, they “dress” the moving hole (PES) or the
moving doublon (IPE), i.e., the hole / doublon constantly emits and reabsorbs spin excitations
during its motion through the antiferromagnetic spin structure. This gives rise to a renormaliza-
tion of the Hubbard “bands” but also to novel structures in A(k, ω) at low frequencies (here, at
intermediate U , at ω ≈ ±3) which must be seen as fingerprints of nonlocal antiferromagnetic
correlations.
Much higher resolution would be necessary to get still deeper insight into the physics of the
model. Resolution is limited, however, by various factors: (i) The finite lattice size leads to an
artificial discretization of k-space. With L = 64, as in the present example, the spacing between
k-points along Γ -X , i.e., along the kx-line in the BZ (−π < kx < π) is ∆kx = 2π/8; there
are 4 k-points only between Γ and X . (ii) The QMC calculations must be run at finite temper-
atures. Here, the inverse temperature is β = 10 which already has some unwanted impact, such
as thermal broadening and thermally induced decay of correlations. (iii) For technical reasons,
QMC is implemented on the imaginary time (τ ) axis. Data obtained for A(k, τ) must be ex-
trapolated, using the maximum-entropy method, for instance, to the real-frequency axis. This
produces an additional unwanted broadening of spectral structures.
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6 Cluster perturbation theory

Roughly, DMFT treats local correlations correctly but is not able to account for the effects of
nonlocal correlations. The importance of the latter is a strong motivation to construct cluster
extensions of the DMFT. To develop the main ideas and to get first insights, we will start with a
much simpler approach, namely with the cluster perturbation theory (CPT) [24, 25].
Consider again the simple noninteracting tight-binding model H0, as given by Eq. (22). The
left diagram in Fig. 6 represents H0 for the two-dimensional case and for hopping between
nearest neighbors only. Next, we consider a model which is obtained from H0 by grouping the
L sites of the lattice into L/Lc identical clusters consisting of Lc sites each and by neglecting
the hopping between the clusters, see Fig. 6 (middle). The corresponding Hamiltonian is

H ′0 =
∑

R1R2σ

t′R1,R2
c†R1σ

cR2σ
. (27)

This system is called the reference system opposed to the original system with Hamiltonian H0.
If t with elements tR1,R2 is the hopping matrix of the original system, and t′ the hopping matrix
of the reference system, then

V = t− t′ (28)

is the neglected inter-cluster hopping, see Fig. 6, right. Obviously, the translation symmetry
group of H ′0 is described by a superlattice.
The Green function of the model H0 is

G0(ω) =
1

ω + µ− t . (29)

Here, we have explicitly introduced the chemical potential µ (which is not important here but
will be used later). Furthermore, we again employ a matrix notation and write ω rather than ω1
for short etc. Note that (· · · )−1 and 1/(· · · ) mean matrix inversion.
The reference system’s Green function is

G′0(ω) =
1

ω + µ− t′ . (30)

In this case the matrix inverse is in a way simpler to compute since the hopping matrix t′ has
a block structure as it does not connect sites in different clusters. Therefore, the following
question comes up: Having the Green function of the reference system at hand, how can we
get the Green function of the original model H0? With some algebra, one easily derives the
equation

G0(ω) = G′0(ω) +G′0(ω)V G0(ω), (31)

which is solved by

G0(ω) =
1

G′0(ω)−1 − V . (32)

We see that using Green functions it is formally rather easy to couple a system of isolated
clusters. For the noninteracting system this is not of much importance. In particular, in Eq. (32)
the block structure is lost when adding −V toG′0(ω)−1.
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= +

Fig. 6: Left: Graphical representation of a tight-binding model with hopping between nearest
neighbors on a square lattice. Hopping matrix t. Middle: The same model but with vanishing
hopping between identical clusters consisting of Lc = 16 sites each. Hopping matrix t′. Right:
The neglected inter-cluster hopping V . Taken from Ref. [26].

However, we are actually interested in interacting systems. Let us, therefore, take the Hub-
bard model as our original system H = H0 + H1 with the interaction term given by Eq. (25).
The reference model shall again be defined by switching off the inter-cluster hopping V . Its
Hamiltonian is H ′ = H0(t′) + H1. Note that since H1 consists of completely local terms, the
reference system consists of a set of interacting but decoupled clusters. Therefore, it is com-
paratively easy to solve the problem exactly (by numerical means if necessary), while for the
original lattice model this is a hard problem. Of course, there is no simple relation between the
Green functions of the original and of the reference system like Eq. (31). Nevertheless, it is
very tempting to assume thatG(ω) satisfies

G(ω) = G′(ω) +G′(ω)V G(ω), (33)

where both G and G′ are interacting Green functions. This equation constitutes the cluster
perturbation theory [24,25]. The CPT provides an approximate expression forG which is easy
to compute (numerically) if Lc is not too large.
There is an independent and equivalent way to motivate the CPT: It starts from the Dyson
equation for the reference system

G′(ω) = G′0(ω) +G′0(ω)Σ′(ω)G′(ω), (34)

which may be solved for the self-energy, i.e., Σ′(ω) = G′0(ω)−1 −G′(ω)−1. Assuming that
Σ′(ω) is a good approximation for the self-energy of the original system,

Σ(ω) ≈ Σ′(ω) , (35)

and inserting into the Dyson equation of the original system,

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (36)

immediately yields the CPT equation (33) when using Eqs. (29) and (30).
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assembling clusters

0

4
2

−4
−6
−8

ΓMXΓ
k

8

−2

6
E!<latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit>

0

4
2

−4
−6
−8

ΓMXΓ
k

8

−2

6
E!<latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit>

0

4
2

−4
−6
−8

ΓMXΓ
k

8

−2

6
E

−8
−6
−4

2

−2
0

6
8

4

0

4
2

−4
−6
−8

ΓMXΓ
k

8

−2

6
ω

−8
−6
−4

2

−2
0

6
8

4

Γ X M Γ

ω

ω

CPT

QMC

V−CPT

!
<latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit><latexit sha1_base64="lG30MxnOwwtH5vtSgE16OQC/CzY=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOOsmQmdllZlYISz7CiwdFvPo93vwbZ5M9aGJBQ1HVTXdXlAhurO9/e6WNza3tnfJuZW//4PCoenzSNnGqGbZYLGLdjahBwRW2LLcCu4lGKiOBnWh6l/udJ9SGx+rRzhIMJR0rPuKMWid1+rHEMa0MqjW/7i9A1klQkBoUaA6qX/1hzFKJyjJBjekFfmLDjGrLmcB5pZ8aTCib0jH2HFVUogmzxblzcuGUIRnF2pWyZKH+nsioNGYmI9cpqZ2YVS8X//N6qR3dhhlXSWpRseWiUSqIjUn+OxlyjcyKmSOUae5uJWxCNWXWJZSHEKy+vE7aV/XArwcP17XGdRFHGc7gHC4hgBtowD00oQUMpvAMr/DmJd6L9+59LFtLXjFzCn/gff4AwnaPIQ==</latexit>

Fig. 7: The same as in Fig. 3 for U = 8 but results are obtained with the CPT using Lc = 10-site
clusters. See inset for cluster geometry. Figure adapted from Ref. [22].

The idea to approximate the self-energy by the self-energy of the reference system is moti-
vated by the fact that the self-energy of the Hubbard model or, more generally, of models with
local interactions, is a quantity that is “more local” than the Green function. In the limit of
a high-dimensional hypercubic lattice with nearest-neighbor hopping tRR′ = const/D1/2, for
example, the nearest-neighbor elements of the self-energy scale as ΣRR′σ(ω) ∼ 1/D3/2 while
GRR′σ(ω) ∼ 1/D1/2 [4]. While the CPT is a systematic approximation, which is controlled by
the size of the clusters in the reference system and which trivially becomes exact in the infinite-
cluster limitLc →∞, it must be seen as a comparatively crude approximation for typical cluster
sizes used in practice, see Ref. [27] and references therein, for instance. For cluster size Lc = 1

it reduces to the simple Hubbard-I approximation. Still, the CPT can provide us with a rather
good first idea about the Green function and the spectral density. This is demonstrated with Fig.
7 which shows the spectral density of the Hubbard model, as in Fig. 3, but obtained by CPT for
clusters with Lc = 10 sites. The cluster geometry is shown in the inset. One can easily see that
this can be used for a tiling of the two-dimensional square lattice. As a rule of thumb, compact
but asymmetric cluster shapes are preferable. Indeed, the CPT result quite nicely reproduces
the results of the much more elaborate QMC approach.

7 Periodization schemes

There is an obvious problem, which is actually shared by any cluster approach that is formu-
lated in real space. Namely, as the reference system is given by a set of decoupled clusters,
the approximate self-energy does not preserve the translational symmetries of the original lat-
tice. The CPT Green function GR,R′(ω) = GR̃R̃′,rr′(ω) is merely invariant under superlattice
translations R̃ → R̃ + ∆R̃. (Note that we use a notation with the spin-projection index σ
suppressed). This means GR̃R̃′,rr′(ω) = GR̃+∆R̃,R̃′+∆R̃,r,r′(ω). Hence, Fourier transformation
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V , see Eq. (12), diagonalizesG with respect to the superlattice indices

Lc
L

∑

R̃R̃′

V †
k̃,R̃

GR̃R̃′,rr′(ω)VR̃′,k̃′ = Grr′(k̃, ω) δk̃k̃′ (37)

with

Grr′(k̃, ω) =

(
1

ω + µ− t(k̃)−Σ(ω)

)

rr′

. (38)

Here, the V -Fourier transform t(k̃) of the hopping matrix tR̃R̃′,rr′ is an Lc × Lc matrix with

elements trr′(k̃) for each wave vector k̃ in the reciprocal supercell. The self-energy is “cluster-
local”, i.e., it is diagonal in the superlattice indices R̃, R̃′, and thus, after V -Fourier transfor-
mation, is independent of k̃. The “cluster-local” elements of G with R̃ = R̃′ are obtained
by

G
(loc)
rr′ (ω) =

Lc
L

∑

k̃∈RSC

(
1

ω + µ− t(k̃)−Σ(ω)

)

rr′

. (39)

From the fully local elements G(loc)
rr (ω) we then get the local interacting density of states

(LDOS) at a siteR = (R̃, r) as

AR(ω) = − 1

π
ImGrr(ω + i0+). (40)

One would expect that the LDOS exhibits the same (translational) symmetries as the Hamil-
tonian of the original system and of the original lattice: AR(ω) = A(ω). Within the CPT,
however, there is an artificial dependence of the LDOS on r.
A modified cluster-perturbation theory, constructed in the same way as the standard CPT but
considering periodic boundary conditions for each of the individual clusters, has been suggested
by Zacher et al. [28]. It has been recognized [29], however, that this gives less convincing
results in practice. The modified CPT makes the Green function invariant under translations
within each cluster. However, since U 6= VW , there is also no improvement on the formal
level.
One could also try to transform the original model and the reference system as well to reciprocal
space. This straightforward idea means to express H and H ′ in terms of annihilators ck rather
than cR and analogously for the creators and to employ the CPT decoupling thereafter. Clearly,
H ′ will exhibit the full translational symmetry. However, the idea will not work for models with
local interactions, such as the Hubbard model. A local interaction in real space transforms into
a delocalized one in k-space where the interaction parameters Ukk′k′′k′′ basically couple any k
point to any other.
With respect to the local spectral density (40), a pragmatic way out would be to average over
the cluster sites

A(ω) ≡ 1

Lc

∑

r

A(R̃,r)(ω) =
1

L

∑

R

AR(ω) . (41)
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One thus distinguishes between the CPT spectral density on the one hand and the translationally
invariant (“physical”) spectral density on the other. Generally, a periodization operator T̂ can
be defined which, for example, enforces a translationally invariant Green function: G(ω) 7→
T̂ [G](ω). A possible construction of T̂ is to start with a U -Fourier transform of the CPT
Green function from R-space to k-space. As the Green function does not fully respect the
translation symmetries, this transformation does not fully diagonalize the Green function, and
we get Gkk′(ω) with nonzero elements for k 6= k′. Periodization is then achieved by replacing
Gkk′(ω) 7→ Gkk(ω) δk,k′ ≡ T̂ [G]kk′(ω). This provides us with a translationally invariant
(physical) Green function T̂ [G](ω). In real space, this periodization reads

T̂ [G]RR′ =
1

L

∑

R′′R′′′

δR−R′,R′′−R′′′GR′′R′′′ . (42)

ForR = R′, in particular, we have

T̂ [G]RR(ω) =
1

L

∑

R′′R′′′

δR′′R′′′GR′′R′′′(ω) =
1

L

∑

R

GRR(ω) =
1

Lc

∑

r

Grr(ω), (43)

consistent with Eq. (41). This periodization is actually a standard procedure and has also been
used to produce the results displayed in Fig. 7. In addition a smoothening of the spectrum has
been employed by replacing the positive infinitesimal 0+ with a small but finite value η > 0 in
Eq. (19). This is necessary since the Green function of the reference system and thus the CPT
self-energy consists of a finite number of poles only such that, even after periodization Eq. (41),
the LDOS is composed of a finite number of δ-peaks only.
A different periodization scheme is given by periodizing the CPT self-energy,

Σ(ω) 7→ T̂ [Σ](ω) . (44)

Concretely, with Σ(R̃,r),(R̃′,r′)(ω) = Σr,r′(ω) δR̃,R̃′ , we have

T̂ [Σ](R̃,r),(R̃′,r′)(ω) =
1

Lc

∑

r′′,r′′′

δR̃+r−R̃′−r′,r′′−r′′′Σr′′,r′′′(ω) . (45)

This produces a self-energy which fully respects the translational symmetries and thus, via Eq.
(36), a fully translationally invariant Green function. Both periodization schemes share the
same ad hoc character. The periodization of the self-energy appears a bit more artificial, as the
necessary ad hoc approximation is performed at an earlier stage of the theory rather than at the
very end.
Note that any periodization scheme can also be used to restore point-group symmetries of the
original lattices which are usually violated by the plain CPT as well. Fig. 8 gives some examples
for various cluster sizes. In most cases, and already for Lc = 2, the reference system has a lower
point-group symmetry. The periodization operator, Eq. (42), can be seen as an average over all
possible translations. In basically the same way, by properly generalizing the operator T̂ , one
can restore not only the translational but also the discrete rotational and reflection symmetries.
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Lc=10

Lc=8

Lc=6

Lc=4 Lc=2Lc=1

Fig. 8: Different tilings of the square lattice into clusters with Lc sites each. See text for
discussion.

A completely different idea to generate a CPT-based approximation respecting the discrete sym-
metries is the “periodic CPT” which has been suggested by Tran Minh-Tien [30] and which is
inspired by the dynamical cluster approximation (DCA) discussed below. Here, one modifies
the hopping matrix of the original system, t 7→ t, rather than the hopping of reference sys-
tem t′. The latter is still taken as a system consisting of identical isolated clusters but with
periodic boundary conditions for each individual cluster. For a one-dimensional system, Fig.
9 illustrates the hopping matrix of the original system (a) and of the reference system (b).
The symmetries of the latter are given by (i) the intra-cluster translations r and by (ii) the
superlattice translations R̃. Now, the construction of t is such that it exhibits the same transla-
tional symmetries. Consider a cluster translation (R̃, r) 7→ (R̃, r + ∆r) with ∆r connecting
nearest neighbors in a cluster (with periodic boundary conditions on the cluster). The cor-
responding transformation of the hopping amplitudes of the reference system is a symmetry:
t′
R̃,r,R̃′,r′ 7→ t′

R̃,r+∆r,R̃′,r′+∆r
= t′

R̃,r,R̃′,r′ . To make it a symmetry of the hopping of the orig-
inal system as well, some hopping amplitudes must be added. Panel (c) of the figure gives
an example for a specific nearest-neighbor cluster translation which is equivalent with a cyclic
permutation of the sites within each cluster. The upper part shows the hopping amplitudes
present in t, while the lower one shows those that are generated by the translation. The hopping
amplitudes generated by all cluster translations are included in the new hopping matrix t, see
panel (d).
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C
<latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="feYzCSbqj61LrrcowietRi1DSP8=">AAAB5HicbVDLSgNBEOz1GddX9OplMAiewq4XPQpePEYwD0hCmJ3tTYbMzi4zvUJY8gMevIh49Zu8+TdOHqAmFjQUVd10d0W5kpaC4Mvb2Nza3tmt7Pn7B/7h0XH1pGWzwghsikxlphNxi0pqbJIkhZ3cIE8jhe1ofDfz209orMz0I01y7Kd8qGUiBScnNQbVWlAP5mDrJFySGiwxqH724kwUKWoSilvbDYOc+iU3JIXCqd8rLOZcjPkQu45qnqLtl/Mzp+zCKTFLMuNKE5urvydKnlo7SSPXmXIa2VVvJv7ndQtKbvql1HlBqMViUVIoRhmb/cxiaVCQmjjChZHuViZG3HBBLhnfZRCufrxOWlf1MKiHDz9hQAXO4BwuIYRruIV7aEATBMTwDK/eyHvx3rz3ReOGt5w4hT/wPr4BGDqLAg==</latexit><latexit sha1_base64="Ek295dnaWqDA7CVa33LsfvGS6DU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKex6MUchF48RzAOSJcxOZpMxszPLTK8QlvyDFw+KePV/vPk3Th6gJhY0FFXddHdFqRQWff/LK2xsbm3vFHdLe/sHh0fl45OW1ZlhvMm01KYTUculULyJAiXvpIbTJJK8HY3rM7/9yI0VWt3jJOVhQodKxIJRdFKrx6gk9X654lf9Ocg6CZakAks0+uXP3kCzLOEKmaTWdgM/xTCnBgWTfFrqZZanlI3pkHcdVTThNszn107JhVMGJNbGlUIyV39P5DSxdpJErjOhOLKr3kz8z+tmGNfCXKg0Q67YYlGcSYKazF4nA2E4QzlxhDIj3K2EjaihDF1AJRdCsPryOmldVQO/Gtz9pAFFOINzuIQAruEGbqEBTWDwAE/wAq+e9p69N+990VrwljOn8Afexze0I44f</latexit><latexit sha1_base64="k/5lhehzUAL44uXOMT1KXOXhSyo=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBIvgqkwqat0J3bisYB/QDiWTZtrYTDIkGaEM/Qc3LhRx6/+4829MH+IDPXDhcM693HtPmAhurO+/e7ml5ZXVtfx6YWNza3unuLvXNCrVlDWoEkq3Q2KY4JI1LLeCtRPNSBwK1gpHtanfumPacCVv7DhhQUwGkkecEuukZpcSgWq9YskvV6uVk9MT5Jf9GRzBPr44wwgvlBIsUO8V37p9RdOYSUsFMaaD/cQGGdGWU8EmhW5qWELoiAxYx1FJYmaCbHbtBB05pY8ipV1Ji2bq94mMxMaM49B1xsQOzW9vKv7ldVIbVYOMyyS1TNL5oigVyCo0fR31uWbUirEjhGrubkV0SDSh1gVUcCF8for+J82Ki6WMr7/SgDwcwCEcA4ZzuIQrqEMDKNzCPTzCk6e8B+/Ze5m35rzFzD78gPf6AfiPjk4=</latexit><latexit sha1_base64="VZr9pllCNJZ9jZxKm/RrdwKz36k=">AAAB7XicdVBNSwMxEJ2tX7V+VT16CRbBU8m2qOut0IvHCrYW2qVk02wbm80uSVYoS/+DFw+KePX/ePPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrK6tbxQ3S1vbO7t75f2Djo5TRVmbxiJW3YBoJrhkbcONYN1EMRIFgt0Gk+bcv71nSvNY3phpwvyIjCQPOSXGSp0+JQI1B+UKrnperX5WR7iKF7DExe7luYvcXKlAjtag/N4fxjSNmDRUEK17Lk6MnxFlOBVsVuqnmiWETsiI9SyVJGLazxbXztCJVYYojJUtadBC/T6RkUjraRTYzoiYsf7tzcW/vF5qQs/PuExSwyRdLgpTgUyM5q+jIVeMGjG1hFDF7a2Ijoki1NiASjaEr0/R/6RTs7FU3WtcaXh5HEU4gmM4BRcuoAFX0II2ULiDB3iCZyd2Hp0X53XZWnDymUP4AeftExz2jsY=</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit><latexit sha1_base64="dAVmNH6maAgKZO8jWBlns74N3Ws=">AAAB7XicdVDLSgNBEOyNrxhfUY9eBoPgKewmPtZbIBePEcwDkiXMTmaTMbMzy8ysEEL+wYsHRbz6P978GyfJCipa0FBUddPdFSacaeO6H05uZXVtfSO/Wdja3tndK+4ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbDcX3ut++p0kyKWzNJaBDjoWARI9hYqdUjmKN6v1hyy75fqZ5XkVt2F7DEc72rCw95mVKCDI1+8b03kCSNqTCEY627npuYYIqVYYTTWaGXappgMsZD2rVU4JjqYLq4doZOrDJAkVS2hEEL9fvEFMdaT+LQdsbYjPRvby7+5XVTE/nBlIkkNVSQ5aIo5chINH8dDZiixPCJJZgoZm9FZIQVJsYGVLAhfH2K/ietio2l7N2clWp+FkcejuAYTsGDS6jBNTSgCQTu4AGe4NmRzqPz4rwuW3NONnMIP+C8fQIeNo7K</latexit>

r
<latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit><latexit sha1_base64="4bpQxqif47nSh28gZ57k4CA+5jk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F6Zmo+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifP0cskvk=</latexit>

a
<latexit sha1_base64="ybexmHpkvRblzM2QSc2MW8mUXwI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4Zno+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPy1Xkug=</latexit><latexit sha1_base64="ybexmHpkvRblzM2QSc2MW8mUXwI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4Zno+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPy1Xkug=</latexit><latexit sha1_base64="ybexmHpkvRblzM2QSc2MW8mUXwI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4Zno+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPy1Xkug=</latexit><latexit sha1_base64="ybexmHpkvRblzM2QSc2MW8mUXwI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4Zno+qNbfuLoDWiVeQGhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1HF1YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5CaqOlnTCSpoYIsH4pSjoxEeQUoZIoSw2eWYKKYzYrIBCtMjC2qYkvwVr+8TrpXdc+te3fXtVazqKMMZ3AOl+BBA1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPy1Xkug=</latexit>

H
<latexit sha1_base64="nndXjcwcEIGbsQvoGgEJ57NyyR8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IQ1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VbqtTyOIlzAJVyDB3dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AmneMwg==</latexit><latexit sha1_base64="nndXjcwcEIGbsQvoGgEJ57NyyR8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IQ1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VbqtTyOIlzAJVyDB3dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AmneMwg==</latexit><latexit sha1_base64="nndXjcwcEIGbsQvoGgEJ57NyyR8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IQ1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VbqtTyOIlzAJVyDB3dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AmneMwg==</latexit><latexit sha1_base64="nndXjcwcEIGbsQvoGgEJ57NyyR8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IQ1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VbqtTyOIlzAJVyDB3dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AmneMwg==</latexit>

H 0
<latexit sha1_base64="0nl4gSodhuR+K1HD9ZUeET9PN/Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEsMeClx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKD43LQbniVt0FyDrxclKBHM1B+as/jFkacYVMUmN6npugn1GNgkk+K/VTwxPKJnTEe5YqGnHjZ4tLZ+TCKkMSxtqWQrJQf09kNDJmGgW2M6I4NqveXPzP66UY1vxMqCRFrthyUZhKgjGZv02GQnOGcmoJZVrYWwkbU00Z2nBKNgRv9eV10r6uem7Vu7+p1Gt5HEU4g3O4Ag9uoQ4NaEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8Afq/jPM=</latexit><latexit sha1_base64="0nl4gSodhuR+K1HD9ZUeET9PN/Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEsMeClx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKD43LQbniVt0FyDrxclKBHM1B+as/jFkacYVMUmN6npugn1GNgkk+K/VTwxPKJnTEe5YqGnHjZ4tLZ+TCKkMSxtqWQrJQf09kNDJmGgW2M6I4NqveXPzP66UY1vxMqCRFrthyUZhKgjGZv02GQnOGcmoJZVrYWwkbU00Z2nBKNgRv9eV10r6uem7Vu7+p1Gt5HEU4g3O4Ag9uoQ4NaEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8Afq/jPM=</latexit><latexit sha1_base64="0nl4gSodhuR+K1HD9ZUeET9PN/Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEsMeClx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKD43LQbniVt0FyDrxclKBHM1B+as/jFkacYVMUmN6npugn1GNgkk+K/VTwxPKJnTEe5YqGnHjZ4tLZ+TCKkMSxtqWQrJQf09kNDJmGgW2M6I4NqveXPzP66UY1vxMqCRFrthyUZhKgjGZv02GQnOGcmoJZVrYWwkbU00Z2nBKNgRv9eV10r6uem7Vu7+p1Gt5HEU4g3O4Ag9uoQ4NaEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8Afq/jPM=</latexit><latexit sha1_base64="0nl4gSodhuR+K1HD9ZUeET9PN/Y=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEsMeClx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKD43LQbniVt0FyDrxclKBHM1B+as/jFkacYVMUmN6npugn1GNgkk+K/VTwxPKJnTEe5YqGnHjZ4tLZ+TCKkMSxtqWQrJQf09kNDJmGgW2M6I4NqveXPzP66UY1vxMqCRFrthyUZhKgjGZv02GQnOGcmoJZVrYWwkbU00Z2nBKNgRv9eV10r6uem7Vu7+p1Gt5HEU4g3O4Ag9uoQ4NaEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8Afq/jPM=</latexit>

R = eR + r
<latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit><latexit sha1_base64="xwd37XW5fnGFZCO1+c+8qt4fIB4=">AAACKHicbVDLSsNAFJ34rPUVdelmsAiCUBIR7EYsuHFZxT6gCWUyuW2HTh7MTJQS8jlu/BU3Iop065c4abOwrQeGOZxzL/fe48WcSWVZE2NldW19Y7O0Vd7e2d3bNw8OWzJKBIUmjXgkOh6RwFkITcUUh04sgAQeh7Y3us399hMIyaLwUY1jcAMyCFmfUaK01DNvUseLuC/Hgf7ShyzD184z80Ex7sOSd47nJJFlPbNiVa0p8DKxC1JBBRo988PxI5oEECrKiZRd24qVmxKhGOWQlZ1EQkzoiAygq2lIApBuOj00w6da8XE/EvqFCk/Vvx0pCWS+m64MiBrKRS8X//O6ierX3JSFcaIgpLNB/YRjFeE8NewzAVTxsSaECqZ3xXRIBKFKZ1vWIdiLJy+T1kXVtqr2/WWlXiviKKFjdILOkI2uUB3doQZqIope0Bv6RF/Gq/FufBuTWemKUfQcoTkYP79il6iV</latexit>

H
<latexit sha1_base64="TLXXT4Z2kyEo2fA9u+yRohUB6mY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYJcFN11WsA/oDCWTZtrQTDIkGWEY+htuXCji1p9x59+YaWehrQcCh3Pu4d6cMOFMG9f9dipb2zu7e9X92sHh0fFJ/fSsr2WqCO0RyaUahlhTzgTtGWY4HSaK4jjkdBDO7wt/8ESVZlI8miyhQYyngkWMYGMl35fWLLJ5ZzGuN9ymuwTaJF5JGlCiO65/+RNJ0pgKQzjWeuS5iQlyrAwjnC5qfqppgskcT+nIUoFjqoN8efMCXVllgiKp7BMGLdXfiRzHWmdxaCdjbGZ63SvE/7xRaqJWkDORpIYKsloUpRwZiYoC0IQpSgzPLMFEMXsrIjOsMDG2ppotwVv/8ibp3zQ9t+k93DbarbKOKlzAJVyDB3fQhg50oQcEEniGV3hzUufFeXc+VqMVp8ycwx84nz9ziJHo</latexit><latexit sha1_base64="TLXXT4Z2kyEo2fA9u+yRohUB6mY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYJcFN11WsA/oDCWTZtrQTDIkGWEY+htuXCji1p9x59+YaWehrQcCh3Pu4d6cMOFMG9f9dipb2zu7e9X92sHh0fFJ/fSsr2WqCO0RyaUahlhTzgTtGWY4HSaK4jjkdBDO7wt/8ESVZlI8miyhQYyngkWMYGMl35fWLLJ5ZzGuN9ymuwTaJF5JGlCiO65/+RNJ0pgKQzjWeuS5iQlyrAwjnC5qfqppgskcT+nIUoFjqoN8efMCXVllgiKp7BMGLdXfiRzHWmdxaCdjbGZ63SvE/7xRaqJWkDORpIYKsloUpRwZiYoC0IQpSgzPLMFEMXsrIjOsMDG2ppotwVv/8ibp3zQ9t+k93DbarbKOKlzAJVyDB3fQhg50oQcEEniGV3hzUufFeXc+VqMVp8ycwx84nz9ziJHo</latexit><latexit sha1_base64="TLXXT4Z2kyEo2fA9u+yRohUB6mY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYJcFN11WsA/oDCWTZtrQTDIkGWEY+htuXCji1p9x59+YaWehrQcCh3Pu4d6cMOFMG9f9dipb2zu7e9X92sHh0fFJ/fSsr2WqCO0RyaUahlhTzgTtGWY4HSaK4jjkdBDO7wt/8ESVZlI8miyhQYyngkWMYGMl35fWLLJ5ZzGuN9ymuwTaJF5JGlCiO65/+RNJ0pgKQzjWeuS5iQlyrAwjnC5qfqppgskcT+nIUoFjqoN8efMCXVllgiKp7BMGLdXfiRzHWmdxaCdjbGZ63SvE/7xRaqJWkDORpIYKsloUpRwZiYoC0IQpSgzPLMFEMXsrIjOsMDG2ppotwVv/8ibp3zQ9t+k93DbarbKOKlzAJVyDB3fQhg50oQcEEniGV3hzUufFeXc+VqMVp8ycwx84nz9ziJHo</latexit><latexit sha1_base64="TLXXT4Z2kyEo2fA9u+yRohUB6mY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYJcFN11WsA/oDCWTZtrQTDIkGWEY+htuXCji1p9x59+YaWehrQcCh3Pu4d6cMOFMG9f9dipb2zu7e9X92sHh0fFJ/fSsr2WqCO0RyaUahlhTzgTtGWY4HSaK4jjkdBDO7wt/8ESVZlI8miyhQYyngkWMYGMl35fWLLJ5ZzGuN9ymuwTaJF5JGlCiO65/+RNJ0pgKQzjWeuS5iQlyrAwjnC5qfqppgskcT+nIUoFjqoN8efMCXVllgiKp7BMGLdXfiRzHWmdxaCdjbGZ63SvE/7xRaqJWkDORpIYKsloUpRwZiYoC0IQpSgzPLMFEMXsrIjOsMDG2ppotwVv/8ibp3zQ9t+k93DbarbKOKlzAJVyDB3fQhg50oQcEEniGV3hzUufFeXc+VqMVp8ycwx84nz9ziJHo</latexit>

a)
<latexit sha1_base64="M5JmkpsWrz4R8opay4sS7CLjOBU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3o1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASPTjQ4=</latexit><latexit sha1_base64="M5JmkpsWrz4R8opay4sS7CLjOBU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3o1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASPTjQ4=</latexit><latexit sha1_base64="M5JmkpsWrz4R8opay4sS7CLjOBU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3o1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASPTjQ4=</latexit><latexit sha1_base64="M5JmkpsWrz4R8opay4sS7CLjOBU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3o1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASPTjQ4=</latexit>

b)
<latexit sha1_base64="ND4qzIWQ/A8rLJ9FcKjhRw08rko=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPQRXg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxaXzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMyf5sMheYM5dQSyrSwtxI2ppoytOGUbAje6svrpH1d9dyqd1+rNOp5HEU4g3O4BA9uoAF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5AyVYjQ8=</latexit><latexit sha1_base64="ND4qzIWQ/A8rLJ9FcKjhRw08rko=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPQRXg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxaXzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMyf5sMheYM5dQSyrSwtxI2ppoytOGUbAje6svrpH1d9dyqd1+rNOp5HEU4g3O4BA9uoAF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5AyVYjQ8=</latexit><latexit sha1_base64="ND4qzIWQ/A8rLJ9FcKjhRw08rko=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPQRXg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxaXzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMyf5sMheYM5dQSyrSwtxI2ppoytOGUbAje6svrpH1d9dyqd1+rNOp5HEU4g3O4BA9uoAF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5AyVYjQ8=</latexit><latexit sha1_base64="ND4qzIWQ/A8rLJ9FcKjhRw08rko=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPQRXg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxaXzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMyf5sMheYM5dQSyrSwtxI2ppoytOGUbAje6svrpH1d9dyqd1+rNOp5HEU4g3O4BA9uoAF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5AyVYjQ8=</latexit>

c)
<latexit sha1_base64="5Z2N0CXj76wDVzOIujoY2082LW4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3Y1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASbdjRA=</latexit><latexit sha1_base64="5Z2N0CXj76wDVzOIujoY2082LW4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3Y1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASbdjRA=</latexit><latexit sha1_base64="5Z2N0CXj76wDVzOIujoY2082LW4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3Y1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASbdjRA=</latexit><latexit sha1_base64="5Z2N0CXj76wDVzOIujoY2082LW4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyWRgj0WvHisYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlB3Y1KFfcqrsAWSdeTiqQozkof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1w6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEdT/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6uem7Vu69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8ASbdjRA=</latexit>

d)
<latexit sha1_base64="nQkmdRzL3CwaeniztwLGiUcYXCg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSQi2GPBi8cq9gPaUDabSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0EF4OKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n80un5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0xU93Mu08ygZItFUSaIScjsbRJyhcyIiSWUKW5vJWxEFWXGhlO2IXjLL6+S9lXNc2ve/XW1US/iKMEpnMEFeHADDbiDJrSAQQTP8Apvzth5cd6dj0XrmlPMnMAfOJ8/KGKNEQ==</latexit><latexit sha1_base64="nQkmdRzL3CwaeniztwLGiUcYXCg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSQi2GPBi8cq9gPaUDabSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0EF4OKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n80un5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0xU93Mu08ygZItFUSaIScjsbRJyhcyIiSWUKW5vJWxEFWXGhlO2IXjLL6+S9lXNc2ve/XW1US/iKMEpnMEFeHADDbiDJrSAQQTP8Apvzth5cd6dj0XrmlPMnMAfOJ8/KGKNEQ==</latexit><latexit sha1_base64="nQkmdRzL3CwaeniztwLGiUcYXCg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSQi2GPBi8cq9gPaUDabSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0EF4OKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n80un5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0xU93Mu08ygZItFUSaIScjsbRJyhcyIiSWUKW5vJWxEFWXGhlO2IXjLL6+S9lXNc2ve/XW1US/iKMEpnMEFeHADDbiDJrSAQQTP8Apvzth5cd6dj0XrmlPMnMAfOJ8/KGKNEQ==</latexit><latexit sha1_base64="nQkmdRzL3CwaeniztwLGiUcYXCg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSQi2GPBi8cq9gPaUDabSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqz0EF4OKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n80un5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0xU93Mu08ygZItFUSaIScjsbRJyhcyIiSWUKW5vJWxEFWXGhlO2IXjLL6+S9lXNc2ve/XW1US/iKMEpnMEFeHADDbiDJrSAQQTP8Apvzth5cd6dj0XrmlPMnMAfOJ8/KGKNEQ==</latexit>

SC
<latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit><latexit sha1_base64="n76Yn0otP2pAO9vKIdaXIhlVSnc=">AAAB7nicdVDLSgMxFL1TX7W+qi7dBIvgasjUqa27QjcuK9oHtEPJpGkbmnmQZIQy9CPcuFDErd/jzr8x01ZQ0QOBk3Pu5d57/FhwpTH+sHJr6xubW/ntws7u3v5B8fCoraJEUtaikYhk1yeKCR6yluZasG4sGQl8wTr+tJH5nXsmFY/COz2LmReQcchHnBJtpE6fEoFuG4NiCdu4ii+cMsK2W3Grlxkxf/eqghwbL1CCFZqD4nt/GNEkYKGmgijVc3CsvZRIzalg80I/USwmdErGrGdoSAKmvHSx7hydGWWIRpE0L9RooX7vSEmg1CzwTWVA9ET99jLxL6+X6FHNS3kYJ5qFdDlolAikI5TdjoZcMqrFzBBCJTe7IjohklBtEiqYEL4uRf+Tdtl2sO3cuKV6bRVHHk7gFM7BgSrU4Rqa0AIKU3iAJ3i2YuvRerFel6U5a9VzDD9gvX0C2U2PNw==</latexit>

�t
<latexit sha1_base64="Z2mqNenuVkwN4tiMdi8WpLocTcQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVzhoFxxq+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8WlM3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIM634mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9XPbfq3dcqjXoeRxHO4BwuwYMbaMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AEZ7jSU=</latexit><latexit sha1_base64="Z2mqNenuVkwN4tiMdi8WpLocTcQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVzhoFxxq+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8WlM3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIM634mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9XPbfq3dcqjXoeRxHO4BwuwYMbaMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AEZ7jSU=</latexit><latexit sha1_base64="Z2mqNenuVkwN4tiMdi8WpLocTcQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVzhoFxxq+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8WlM3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIM634mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9XPbfq3dcqjXoeRxHO4BwuwYMbaMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AEZ7jSU=</latexit><latexit sha1_base64="Z2mqNenuVkwN4tiMdi8WpLocTcQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgj0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPVzhoFxxq+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8WlM3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIM634mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6aV9XPbfq3dcqjXoeRxHO4BwuwYMbaMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AEZ7jSU=</latexit>

U
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Fig. 9: Construction of the modified original system H for a one-dimensional lattice. a) Orig-
inal system H , black lines: nearest-neighbor hopping −t, on-site Hubbard interaction U , unit
cell C. b) Reference system H ′: superlattice (basis) vector R̃, cluster vector r, supercell SC
with Lc = 3 (cf. Fig. 2). c) A cyclic permutation of the sites within each cluster is a symmetry
of H ′. Black lines in the upper panel: nearest-neighbor hopping parameters related to a given
cluster. Lower panel: resulting hopping parameters after the transformation. d) Hopping pa-
rameters of the Hamiltonian H , which is invariant (i) under all intra-cluster translations and
(ii) under all superlattice translations.

Note that for Lc → ∞ the inclusion of the additional hopping amplitudes becomes irrelevant.
Hence, the replacement t 7→ t is controlled by Lc, i.e., it becomes exact, up to irrelevant
boundary terms, in the infinite-cluster limit. The explicit construction of t is the following

t = (VW )U † t U (VW )†. (46)

Let us stress once more, that VW 6= U for clusters of finite size Lc. The first transformation
U †tU diagonalizes the hopping matrix t, and the diagonal elements are given by ε(k) = ε(G̃+

k̃) with a uniquely defined reciprocal superlattice vector G̃ and a uniquely defined wave vector
k̃ ∈ RSC. Double back transformation using V andW then yields:

tRR′ = tR̃,r;R̃′,r′ =
1

Lc

∑

G̃

eiG̃(r−r′) Lc
L

∑

k̃

eik̃(R̃−R̃′) ε(k̃ + G̃) . (47)

Obviously, t is invariant under both, superlattice translations as well as cluster translations.
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Applying CPT to the original system Fig. 9(d) using the reference system Fig. 9(b) yields

G(ω) =
1

ω + µ− t+Σ(ω)
. (48)

As the self-energy is taken from the reference system, it is diagonal with respect to superlattice
translations R̃ and is R̃-independent. Since the original as well as the reference system share
the same symmetries both,Σ(ω) and t are diagonalized by VW

G(k̃ + G̃, ω) =
1

ω + µ− ε(k̃ + G̃) +Σ(G̃, ω)
. (49)

Note that we have replaced the diagonal elements ε(k̃, G̃) of (VW )†t(VW ) by the diagonal
elements ε(k̃+G̃) ofU †tU , which becomes correct for Lc →∞ as discussed above. Likewise,
again using the unique decomposition k = k̃ + G̃, we interpret G(k̃ + G̃, ω) ≡ G(k̃, G̃, ω) as
G(k, ω), i.e., as the diagonal elements of U †G(ω)U . In this way we have achieved our goal,
and we get a CPT Green function respecting the full translational symmetries of the original
lattice. Obviously, the periodized CPT (P-CPT) employs an implicit periodization scheme,
which is approximate for any finiteLc but becomes exact, as the CPT approximation itself, in the
Lc →∞ limit. We note that for finite Lc, the k-dependence of the self-energy is discontinuous:
Σ(k̃ + G̃) = Σ(G̃) is k̃-independent, i.e., within each of the Lc “patches” RSC of the full
reciprocal unit cell RC of the original lattice, the self-energy is constant, while it jumps when
crossing the boundaries between the patches. This unphysical feature of the P-CPT must be
tolerated.

8 Self-consistent cluster-embedding approaches

A big disadvantage of the CPT and related cluster approximations is the lacking self-consistency.
Let us recall that a generic mean-field theory not only takes a local perspective and focusses on
a single site or on a small cluster cut out of an infinite lattice but also aims at a proper embed-
ding of the site or the cluster in a mean field. The purpose of this mean field is to approximately
account for the neglected environment of the cluster. The mean-field feeds back to the cluster
problem but beyond that the quality of the mean-field theory improves considerably when the
cluster observables feed back to the mean field as well, i.e., when cluster observables and mean
field are determined self-consistently.
Table 2 gives an overview of various cluster approximations without (first column) and with
self-consistent cluster embedding. Taking the self-energy of a single Hubbard site (Lc = 1),

ΣRR′σ(ω) = δRR′ U〈nR−σ〉+ δRR′
U2〈nR−σ〉(1− 〈nR−σ〉)
ω + µ− U(1− 〈nR−σ〉)

, (50)

as an approximation to compute the Green function for the Hubbard model is the essence of the
Hubbard-I approximation. (Let us note that, in a strict sense, the Hubbard-I approximation does
include some self-consistency and thus does not perfectly fit to the classification, see Ref. [18]).
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impurity / cluster approaches with self-consistent embedding
Hubbard-I approach [18] DMFT [1, 4]

CPT [24, 25] cellular DMFT (C-DMFT) [9, 8]
simplified PC-DMFT periodized C-DMFT [31]

periodic CPT [30] DCA [7]

Table 2: Different cluster approximations. See text for discussion.

The DMFT is a single-site mean-field theory as well (Lc = 1) but with a self-consistent em-
bedding of the site. It is important to realize that this is a dramatic improvement. Even though
the DMFT self-energy is local, ΣRR′σ(ω) = δRR′ ΣR(ω), it has a realistic ω dependence with
the typical branch cuts on the real axis rather than the simplistic single-pole structure of the
Hubbard-I self-energy. The self-consistent DMFT embedding scheme is constructed such that
one even recovers the exact solution of the Hubbard model in the limit, where the self-energy is
local in fact [32], namely in the limit of infinite spatial dimensions [1].
Let us briefly recall the main idea for the Hubbard model as the original lattice model. To
construct the single-site DMFT, we assume that the self-energy be local. In addition, a homo-
geneous (and nonmagnetic) phase is anticipated such that ΣRR′σ(ω) = δRR′ Σ(ω). We note in
passing that this condition can be relaxed; this leads to real-space DMFT [33]. The most gen-
eral reference system with a local self-energy and arbitrary ω-dependence is given by a single
interacting (“impurity”) site with U 6= 0 hybridizing with a continuum of noninteracting bath
degrees of freedom, i.e., by the single-impurity Anderson model

H ′ =
∑

σ

εimp c
†
σcσ +

U

2

∑

σ

nimp,σ nimp,−σ +
∑

kσ

εk a
†
kσakσ +

∑

kσ

(
Vk c

†
σakσ + H.c.

)
. (51)

The local Green function on the impurity site is

G(imp)(ω) =
1

ω + µ− εimp −∆(ω)−Σ ′(ω)
. (52)

The bath parameters, namely the hybridization strengths Vk and the on-site energies εk, enter
the formalism via the hybridization function only:

∆(ω) =
∑

k

V 2
k

ω + µ− εk
. (53)

We will use the self-energy of the reference system as an approximation for the lattice model,
Σ(ω) = Σ ′(ω). Obviously, a condition is needed to fix the hybridization function and therewith
the parameters of the reference system. This self-consistency condition is obtained from the
observation that the skeleton-diagram expansion leads to a functional relation between the self-
energy and the Green function, Σ = Σ̂[G], that is independent from the relation provided by
the Dyson equation, see Fig. 10. On the single-site mean-field level or, equivalently, in the
limit of infinite spatial dimensions, this functional is local, i.e., Σ(ω) = Σ̂[G(loc)](ω) where
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Fig. 10: Diagrammatic representation of the Dyson equation, G(ω) = G0(ω) +
G0(ω)Σ(ω)G(ω) (top). Representation of the skeleton-diagram expansion of the self-energy,
Σ(ω) = Σ̂[G](ω) (bottom).

G(loc)(ω) = GRR(ω) is the local (on-site) element of the Green function. Hence, the functional
relation Σ̂[..] is exactly the same as that of the reference system: Σ ′(ω) = Σ̂[G(imp)](ω). With
Σ(ω) = Σ ′(ω) this implies that

G(imp)(ω) = G(loc)(ω) , (54)

which is the famous self-consistency condition of DMFT.
The step from single-site DMFT to cellular DMFT is conceptually simple and corresponds to
the step from the Hubbard-I approach to the CPT (see Tab. 2). One merely has to treat a finite
Hubbard cluster with Lc > 1 sites as a “super site” and adopt the same strategy. The actual work
to be done consists in the numerical computation of the self-energy Σ ′rr′(ω) of the Anderson
“cluster” model

H ′ =
∑

rr′σ

trr′ c†rσcr′σ +
U

2

∑

rσ

nrσ nr−σ +
∑

kσ

εrk a
†
rkσarkσ +

∑

rkσ

(
Vrk c

†
rσarkσ + H.c.

)
, (55)

which is a small Hubbard model of Lc correlated sites, where each correlated site r hybridizes
with an infinite number (k = 1, ...,∞) of bath sites. The Lc × Lc self-energy matrix is taken
to approximate the “cluster local” self-energy of the Hubbard model, ΣR̃R̃,rr′(ω) = Σ ′rr′(ω).
With this at hand, one can compute the “cluster-local” elements of the Green function of the
original model using the Dyson equation, cf. Eq. (39),

G
(loc)
rr′ (ω) =

Lc
L

∑

k̃∈RSC

(
1

ω + µ− t(k̃)−Σ(ω)

)

rr′

(56)

and therewith the cluster Green function of the reference system via the C-DMFT self-consis-
tency equation G(cluster)

rr′ (ω) = G
(loc)
rr′ (ω). Using the cluster analog of Eq. (52), where G(imp)(ω)

is replaced by the Lc×Lc matrixG(cluster)(ω), Σ ′(ω) by the matrixΣ′(ω), εimp by the Lc×Lc
intra-cluster hopping matrix t′ = t, and ∆(ω) by the diagonal matrix ∆(ω), the diagonal
elements of the latter are found as

∆r(ω) =
∑

kσ

V 2
rk

ω + µ− εrk
= ω + µ− trr −Σrr(ω)−

(
G(cluster)

)−1

rr
(ω) . (57)

The parameters of the reference system (55) are obtained as the poles and the weights of∆r(ω),
such that an updated cluster self-energy can be computed. This self-consistency cycle must be
iterated until convergence is achieved.
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The C-DMFT does not respect the translational symmetries of the underlying lattice. One way
to restore the correct symmetry is the so-called periodized C-DMFT (PC-DMFT) [31], see
third row in Tab. 2. Here, one employs the periodization operator T̂ to get a translationally
invariant self-energy. The local Green function can thus be computed by U -Fourier transform
and summation of k. This yields the following PC-DMFT self-consistency equation:

G
(cluster)
rr′ (ω) = G

(loc)
rr′ (ω) =

1

L

∑

k

eik(r−r′)

ω + µ− ε(k)− T̂ [Σ](k, ω)
. (58)

The main difference as compared to the C-DMFT, Eq. (56), is that the periodized self-energy is
used at each step in the self-consistency cycle.
For the dynamical cluster approximation (DCA, fourth row in Tab. 2), one must replace the
original hopping t by t only [31]. Both, t and t, are invariant under superlattice translations. So
we can compare trr′(k̃) = (V †tV )rr′(k̃) with trr′(k̃) = (V †tV )rr′(k̃). One easily finds that
these are equal up to a phase factor

trr′(k̃) =
1

Lc

∑

G̃

eiG̃(r−r′) ε(k̃ + G̃)

=
Lc
L

∑

R̃R̃′

e−ik̃(R̃+r−R̃′−r′) tR̃+r,R̃′+r′

= e−ik̃(r−r′) trr′(k̃) . (59)

This is very easily implemented numerically. The DCA self-consistency condition reads

G
(cluster)
rr′ (ω) = G

(loc)
rr′ (ω) =

Lc
L

∑

k̃∈RSC

(
1

ω + µ− t(k̃)−Σ(ω)

)

rr′

. (60)

The decisive difference as compared to the C-DMFT is that t is also invariant under cyclic
cluster translations, as it is the case for t′. Hence, all matrices are simultaneously diagonalized
by the cluster Fourier transformationW , and we get a scalar self-consistency equation

G(cluster)(G̃, ω) =
Lc
L

∑

k̃

1

ω + µ− ε(k̃ + G̃)−Σ(G̃, ω)
. (61)

Which of the three cluster approaches, the C-DMFT, the PC-DMFT, and the DCA is the best
one? This is a question that comes up immediately. An answer could be expected from a meta
theory unifying all cluster approaches in a common theoretical framework. The self-energy-
functional theory (SFT) [34,10,6] is in fact able to re-derive various approximations as station-
ary points of a general functional Ωt,U [Σ] for a given original lattice model with parameters t
andU . A particular approximation is defined by the choice of a reference system, with possibly
different one-particle parameters t′ but the same interaction U . The reference system could be
a system of decoupled clusters, also including noninteracting bath degrees of freedom, and is
fixed by the structure of the t′ matrix. The self-energy of the reference system, Σt′,U (ω) is
considered as a trial self-energy which must be optimized via the stationarity condition
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∂Ωt,U [Σt′,U ]/∂t′ = 0 , (62)

i.e., the self-energy is optimized by varying the one-particle parameters of the reference system.
Taking the single-impurity Anderson model, Eq. (51), as a reference system, Eq. (62) recovers
the DMFT self-consistency condition. For an Anderson cluster model, Eq. (55), the C-DMFT
self-consistency condition is found. The DCA is obtained with the same reference system (with
periodic boundaries) but applied to a different original model with t replaced by t. Thereby, a
set of external parameters of the self-energy functional is changed, Ωt,U [Σ] → Ωt,U [Σ], such
that an unbiased comparison of the resulting optimal free energies is not possible. In case of
the PC-DMFT, the parameters t and U remain unchanged, and the PC-DMFT self-consistency
equation is also re-derived with the same reference system. Unfortunately, the form of the
self-energy functional must be changed for this purpose, Ωt,U [Σ] → Ωt,U [T̂ [Σ]], and this
means that a fair comparison is again not possible. One should note that the modification of the
parameters of the original system (DCA) or the modification of the functional form (PC-DMFT)
keep the systematic nature of the approach, i.e., they become irrelevant in the infinite-cluster
limit and must therefore be considered as formally well justified. The SFT does provide the
expected hierarchy among different approaches within each row of Tab. 2. E.g. the C-DMFT
must be seen as superior compared to the CPT. In between, we find the variational cluster
approach (VCA) which is defined by the same reference system as used for the CPT but with
variational optimization of the intra-cluster hopping and the one-particle energies. There is also
an interesting new approximation suggesting itself: Starting with the modified hopping t and
the reference system in Fig. 9b, generates a simplified DCA without bath degrees of freedom.
This stands between the periodic CPT and the full DCA, see last row of Tab. 2.
Another criterion to decide between the different cluster approaches, could be their conver-
gence behavior for Lc → ∞. Consider first a local observable, such as the double occupancy
in the Hubbard model or the local density of states, at a central site in an isolated cluster with
Lc sites. Since nonlocal elements of Green functions typically decay exponentially with in-
creasing distance, if the system is not at a critical point, one would expect an exponentially
fast convergence of the observable with Lc → ∞. This is the case for the C-DMFT, as the
bath only couples to the surface sites of the cluster (assuming hopping between nearest neigh-
bors only). The latter is easily seen by expanding both sides of the C-DMFT self-consistency
equation, G(cluster)

rr′ (ω) = G
(loc)
rr′ (ω), and Eq. (57) in powers of 1/ω keeping terms of the order

1/ω3, which eventually implies Vrk 6= 0 for surface sites r only. Extended observables, e.g., the
k-dependent Green function or the free energy, converge to the exact results with corrections
∼ 1/L1, where Lc = LD1 for a D-dimensional hypercubic cluster. This is obvious since only
2DLD−1

1 surface sites contribute to the average hybridization function compared to the total
number of cluster sites LD1 . For the DCA, on the other hand, where all sites in the cluster are
coupled to the bath, convergence is faster with corrections ∼ 1/L2

c . A detailed discussion can
be found in Ref. [5]. One should keep in mind, however, that with the cluster sizes that can be
treated in practical calculations one is typically far from the regime where this scaling behavior
can be seen.
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A further important issue to be discussed is the description of spontaneous breaking of trans-
lational symmetry, e.g., in antiferromagnetic phases, charge-density-wave states, stripe order
etc. Within the C-DMFT, if the cluster is large enough to contain the new unit cell, such phases
can be found easily as there is no assumption made on the translational symmetry of the clus-
ter self-energy. The DCA, on the other hand, does require translation symmetry on the cluster
when using the self-consistency equation (61) formulated in reciprocal space. Symmetry break-
ing must then be anticipated and, considering e.g. antiferromagnetic order, one must introduce
a reduced Brillouin zone and a constraint for the self-energy relating k and k + QAF, where
QAF determines the type of antiferromagnetic ordering. The real-space formulation, Eq. (60)
is much more elegant, as translation symmetry in the cluster can be broken spontaneously and
arbitrarily, such that there is no need to anticipate a specific ordering pattern. In any case and for
both, C-DMFT and DCA, it is clear, however, that a selected cluster size and cluster shape will
necessarily bias to some degree the spatial modulation of the order parameter one is looking
for. Calculations with different cluster geometries and sizes are therefore necessary. This must
be seen as a big intrinsic disadvantage of the cluster approach. Finally, the description of the
broken translation symmetries in the PC-DMFT is much more complicated and is discussed in
Ref. [31], for example.

9 Discussion of selected results

One of the main topics of DMFT is the Mott metal-insulator transition in the Hubbard model [4].
For U = 0 the system is a noninteracting metallic Fermi gas while for strong U the zero-
temperature phase is a Mott insulator due to the high penalty for hopping processes producing
doubly occupied sites. As a function of U , the single-site DMFT predicts a continuous metal-
insulator transition at T = 0, see the T = 0 end of the dashed line in Fig. 11 (left) [35]. The
yellow area marks a coexistence regime, where the metallic and the insulating solution of the
DMFT coexist. At finite temperatures, the free energy decides which one is stable, and the
transition becomes discontinuous with a jump of, e.g., the double occupancy at the critical in-
teraction Uc(T ). The dashed line of first order transitions ends in a second-order critical end
point at UMIT. At still higher temperatures there is a smooth crossover only, separating a bad-
metal from a bad-insulator regime. The phase diagram, calculated for the Hubbard model on
the square lattice, has the same structure as the corresponding phase diagram for the D = ∞
hypercubic lattice. This unphysical essential independence of the results on the lattice dimen-
sion is characteristic for a mean-field approach. There is another serious problem. Namely,
there is a macroscopically high entropy of the T = 0 Mott-insulating ground state due to the
2L-fold degeneracy with respect to the orientation of the local magnetic moments. Within the
DMFT, this degeneracy can only be lifted by long-range magnetic order, and in fact in the
true DMFT ground state the system is an antiferromagnetic insulator for strong U . As has
been discussed above (see Fig. 5), this is due to the superexchange mechanism favoring anti-
ferromagnetic alignment of neighboring moments. This Heisenberg-insulator state, however, is
suppressed in the DMFT calculation by enforcing spin symmetric solutions. The motivation is



Cluster Extensions of DMFT 5.27

the numerically exact continuous time quantum
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
Uc2ðTÞ, we find a metallic solution while forU >Uc1ðTÞ, a
Mott insulating solution exists. The two transition lines
Uc1ðTÞ and Uc2ðTÞ cross at a second order endpoint, at
temperature TMIT # 0:09t and interaction strength UMIT #
6:05t. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U=t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMFT critical Uð#6:05tÞ is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This criticalU will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping t0 has this effect and was studied in
Ref. [16]. (ii) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T # 0:1t in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of logð2Þ in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disorderedMott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the ‘‘valence
histogram’’ shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of logð2Þ, populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and criticalU decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at Uc1 and not at Uc2

as in DMFT.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V2O3, the
reentrant shape of the cluster-DMFT transition resembles
more the !-organic diagram [17] as pointed out in Ref. [4].
To understand the effects brought about by the short

range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below Uc1 [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of
Ur ¼ U%UMIT

UMIT
is used. The critical value of U is UMIT ¼ 6:05t in

the cluster case and UMIT ¼ 9:35t in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for
which we present the local spectral functions in Fig. 2.
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the numerically exact continuous time quantum
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
Uc2ðTÞ, we find a metallic solution while forU >Uc1ðTÞ, a
Mott insulating solution exists. The two transition lines
Uc1ðTÞ and Uc2ðTÞ cross at a second order endpoint, at
temperature TMIT # 0:09t and interaction strength UMIT #
6:05t. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U=t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMFT critical Uð#6:05tÞ is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This criticalU will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping t0 has this effect and was studied in
Ref. [16]. (ii) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T # 0:1t in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of logð2Þ in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disorderedMott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the ‘‘valence
histogram’’ shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of logð2Þ, populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and criticalU decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at Uc1 and not at Uc2

as in DMFT.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V2O3, the
reentrant shape of the cluster-DMFT transition resembles
more the !-organic diagram [17] as pointed out in Ref. [4].
To understand the effects brought about by the short

range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below Uc1 [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of
Ur ¼ U%UMIT

UMIT
is used. The critical value of U is UMIT ¼ 6:05t in

the cluster case and UMIT ¼ 9:35t in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for
which we present the local spectral functions in Fig. 2.
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the numerically exact continuous time quantum
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
Uc2ðTÞ, we find a metallic solution while forU >Uc1ðTÞ, a
Mott insulating solution exists. The two transition lines
Uc1ðTÞ and Uc2ðTÞ cross at a second order endpoint, at
temperature TMIT # 0:09t and interaction strength UMIT #
6:05t. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U=t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMFT critical Uð#6:05tÞ is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This criticalU will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping t0 has this effect and was studied in
Ref. [16]. (ii) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T # 0:1t in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of logð2Þ in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disorderedMott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the ‘‘valence
histogram’’ shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of logð2Þ, populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and criticalU decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at Uc1 and not at Uc2

as in DMFT.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V2O3, the
reentrant shape of the cluster-DMFT transition resembles
more the !-organic diagram [17] as pointed out in Ref. [4].
To understand the effects brought about by the short

range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below Uc1 [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of
Ur ¼ U%UMIT

UMIT
is used. The critical value of U is UMIT ¼ 6:05t in

the cluster case and UMIT ¼ 9:35t in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for
which we present the local spectral functions in Fig. 2.
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the numerically exact continuous time quantum
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
Uc2ðTÞ, we find a metallic solution while forU >Uc1ðTÞ, a
Mott insulating solution exists. The two transition lines
Uc1ðTÞ and Uc2ðTÞ cross at a second order endpoint, at
temperature TMIT # 0:09t and interaction strength UMIT #
6:05t. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U=t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMFT critical Uð#6:05tÞ is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This criticalU will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping t0 has this effect and was studied in
Ref. [16]. (ii) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T # 0:1t in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of logð2Þ in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disorderedMott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the ‘‘valence
histogram’’ shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of logð2Þ, populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and criticalU decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at Uc1 and not at Uc2

as in DMFT.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V2O3, the
reentrant shape of the cluster-DMFT transition resembles
more the !-organic diagram [17] as pointed out in Ref. [4].
To understand the effects brought about by the short

range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below Uc1 [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of
Ur ¼ U%UMIT

UMIT
is used. The critical value of U is UMIT ¼ 6:05t in

the cluster case and UMIT ¼ 9:35t in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for
which we present the local spectral functions in Fig. 2.
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Fig. 11: Phase diagram of the paramagnetic Hubbard model at half-filling on the square lattice.
Left: single-site DMFT. Right: C-DMFT, Lc = 4. Ur ≡ (U − UMIT)/UMIT with UMIT = 9.35t
(DMFT), UMIT = 6.05t (C-DMFT). Reprinted figure with permission from [35]. Copyright
(2008) by the American Physical Society.

to uncover in this way the Mott transition in the paramagnetic state at temperatures below the
Néel temperature TN(U). In the paramagnetic state and at finite temperatures, the large entropy
stabilizes the Mott insulator as compared to the metallic Fermi-liquid state.
The C-DMFT can cure this defect since it incorporates the feedback of short-range antiferro-
magnetic correlations, i.e., the spin degeneracy can be lifted by forming a nonlocal spin-singlet
state on neighboring sites within the reference system and thus corrects the cluster self-energy.
Fig. 11 (right) shows the phase diagram as obtained with a Lc = 4-site (plaquette) calculation.
It turns out that salient features of the DMFT phase diagram are preserved. In particular, there
is again a coexistence of a metallic and an insulating phase in a certain U -T range of the phase
diagram, and a first-order transition line separating the metallic Fermi liquid at weaker U from
the Mott insulator at stronger U . On the other hand, there are a couple of differences: First
of all, the critical interaction is substantially reduced (see caption of Fig. 11). Second, the line
of first-order transitions remains first order down to T = 0, i.e., the T = 0 Mott transition is
discontinuous rather than continuous as predicted by DMFT, see Ref. [36]. Most important,
however, as the insulating phase at low temperatures now has a very small entropy, a decreasing
temperature favors the insulator over the metal. At high temperatures, one expects and finds
the same trend of the crossover lines since here correlations are broken up thermally. At low T ,
however, the first-order transition line bends back, and Uc(T ) decreases with decreasing T .
The importance of short-range antiferromagnetic correlations is also highlighted by the local
spectral function A(ω) calculated within the DCA for Lc = 4 shown in Fig. 12 [37]. Note
that A(ω) (black solid line) is slightly asymmetric. This is a slight artifact of the maximum-
entropy method that must be employed to obtain real-frequency data from the Green function
given on the Matsubara frequencies on the imaginary-ω axis, on which the numerical evaluation
of the theory must be implemented when using a quantum Monte-Carlo cluster solver. Still
there is a clear four-peak structure visible in A(ω). This exactly in line with the lattice QMC
results shown in Fig. 3. Hence, one would expect that the low-excitation-energy peaks signal

http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
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Local order and the gapped phase of the Hubbard model: A plaquette dynamical mean-field investigation
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Fig. 2: Solid line: on-site spectral function computed by
maximum entropy analytical continuation of QMC data for
U = 6t and doping x= 0. Dashed line: spectral function in the
P = (0,π), (π, 0)-momentum sector. Dotted and dash-dotted
lines: P = (0,π), (π, 0) and local spectral functions obtained
by performing the DCA momentum averages of the standard
SDW mean-field expressions for the Green function, with gap
∆= 1.3t.

N = 1 and U ! 10t G(0,β/2) increases as T decreases,
indicating the development of a coherent Fermi-liquid
state. In the 4-site DCA results a transition is evident as U
is increased through U∗ ≈ 4.2t: for U <U∗ A(0) increases
slowly as T is decreased, as in the single-site model, but for
U >U∗, A(0) decreases, signalling the opening of a gap.
The very rapid change across U =U∗ is consistent with
a first-order transition, as found in the careful CDMFT
analysis of Park et al. [21]. The critical U is seen to
be essentially independent of temperature indicating that
the entropies of the metallic and non-metallic states are
very similar. The end point of the first-order transition
is at about T = 0.25t which is approximately the Néel
temperature of the single-site method, at U = 4t [23].
Figure 2 shows as the solid line the local electron spec-

tral function computed by maximum entropy analytical
continuation of our QMC data for U = 6t and n= 1.
Analytical continuation is well known to be an ill-posed
problem, with very small differences in imaginary time
data leading in some cases to very large differences in the
inferred real-axis quantities. A measure of the uncertain-
ties in the present calculation comes from the difference
between the spectra in the positive-energy and negative-
energy regions, which should be equal by particle-hole
symmetry. We further note that the gap is consistent with
the behavior shown in fig. 1. The local spectral function
exhibits a characteristic two-peak structure found also
in CDMFT calculations [21]. The dotted line gives the
spectral function for the Px-sector, corresponding to an
average of the physical spectral function over the region
(π/2< px < 3π/2), (−π/2< py < π/2); this is seen to be
the origin of the gap-edge structure.
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Fig. 3: Temperature dependence of double occupancy ⟨n↑n↓⟩
computed using the 1-site and 4-site DCA methods as a
function of temperature for the half-filled Hubbard model at
U = 5t (upper panel) and U = 10t (lower panel). The 1-site
calculations are done for both paramagnetic and antiferro-
magnetic phases, whereas the 4-site calculation is done for the
paramagnetic phase only.

We present in fig. 3 the temperature dependence of the
double-occupancy D= ⟨n↑n↓⟩ computed using the 1-site
and 4-site DCA for a relatively weak and a relatively
strong correlation strength. In the single-site approxi-
mation antiferromagnetic correlations are absent in the
paramagnetic phase and become manifest below the Néel
temperature; the difference between paramagnetic and
antiferromagnetic phases therefore gives insight into the
physics associated with the antiferromagentic correlations.
For the weaker interaction strength U = 5t, the develop-
ment of Fermi-liquid coherence as T is decreased in the
paramagnetic phase means that the wave function adjusts
to optimize the kinetic energy, thereby pushing the inter-
action term farther from its extremum and increasing D.
At this U the magnetic transition is signaled by a rapid
decrease in D, indicating that the opening of the gap
enables a reduction of interaction energy, as expected if
Slater physics dominates. For the larger U = 10t in the

37009-p3

Fig. 12: Local density of states A(ω) for the half-filled Hubbard model at U = 6t as obtained
by the DCA with Lc = 4. Figure adapted from Ref. [37].

nonlocal antiferromagnetic correlations. This is corroborated by comparing with the spectral
density obtained by a static (Hartree-Fock) mean-field calculation for the symmetry-broken
antiferromagnetic state with the same gap (see dash-dotted line). The similarity to the DCA
results in the low-frequency range emphasizes the importance of nonlocal correlations again.
More than this, it also suggests that the gap is not necessarily a Mott-Hubbard gap but rather a
“Slater” gap. In the static mean-field Slater theory, long-range antiferromagnetic order implies
a doubling of the unit cell with a gap opening at the boundary of the reduced Brillouin zone.
The Mermin-Wagner theorem [17] actually excludes a spontaneous breaking of the SU(2) spin-
rotational symmetry at any finite temperature in two spatial dimensions. Hence, antiferromag-
netic order obtained in the static mean-field theory but also in the C-DMFT and DCA at low
but finite temperatures (if solutions are not enforced to be spin-symmetric) must be seen as
artifacts. However, this does not imply that the Slater mechanism for the gap opening is ir-
relevant. Namely, for small clusters, the antiferromagnetic correlation length well exceeds the
linear cluster extension at low T . It has, indeed, been suggested that the metal-insulator transi-
tion is in fact of the Slater type in D = 2 [37]. However, another important observation is that
the transition is orbital (or k) selective [35, 36]. In the Lc = 4 calculation, two of the orbitals
(π, 0) and (0, π) exhibit a Mott-like transition where the spectral gap is opened because the
self-energy Σ(π,0)(ω) develops a pole at ω = 0 while the remaining orbitals (0, 0) and (π, π)

undergo a Slater-type transition. In a single-site mean-field theory, on the other hand, such
momentum-space differentiation is impossible.
More recent studies [38] using lattice QMC as well as the DΓA, a diagrammatic extension of
DMFT [39], demonstrate that at low temperatures strong nonlocal antiferromagnetic correla-
tions are responsible for opening a gap even at arbitrarily weak U . The system evolves from
a Slater-like to a Heisenberg-like antiferromagnet at low but finite T but without explicitly
breaking the SU(2) symmetry. This implies that actually no metal-insulator transition can be
identified for D = 2 and that the system is a paramagnetic insulator for all U .



Cluster Extensions of DMFT 5.29

VCA to the high-TC problem
3

FIG. 1: AF (bottom) and dSC (top) order parameters for
U = 8t as a function of the electron density (n) for 2 × 3,
2 × 4 and 10-site clusters. Vertical lines indicate the first
doping where only dSC order is non-vanishing.

FIG. 2: AF and dSC order parameters as a function of the
electron density on a 2 × 4 cluster for U = 6t, U = 8t and
U = 12t.

large, n = 0.87 to n = 0.93 for L = 10 for example. Un-
fortunately, finite cluster effects do not allow us to obtain
reliable results for larger dopings for either the hole or
electron cases. The dSC order parameter is not present
on bonds between clusters, making the results more sen-
sitive to size effects than in the case of the AF phase.
Fig. 1 also shows, in the electron-doped case, a AF+dSC
phase where AF and dSC order parameters are both non-
vanishing [18, 19, 20]. We verified that, as expected from
symmetry, the π-triplet order parameter is non-vanishing
in that phase[21, 22], which is separated from a pure dSC
phase by a quantum critical point around 13% doping,

near the value suggested by experiment [23, 24]. The sit-
uation is less clear on the hole-doped side where the L = 6
cluster has a very small doping range for the AF+dSC
phase, the L = 8 cluster a large one, while the L = 10
cluster shows none. This suggests that the way in which
the AF and dSC phases approach each other on the hole-
doped side cannot be accurately described by the small
variational space that we use. Additional order parame-
ters, such as stripe [2] or checkerboard orders [3] observed
in certain cuprates may be necessary to get the full pic-
ture. No SO(5) symmetric point [25] appears in our cal-
culation in a size-independent way. On the other hand,
our results for D0 in Fig. 1 show unambiguously that
the pure dSC phase appears over a much broader range
of dopings for hole- than for electron-doped cuprates, as
observed experimentally.

It is also instructive to know how the ground-state or-
der parameters vary with interaction strength U , espe-
cially because several normal-state calculations for the
pseudogap [26, 27] show that the interaction strength for
electron-doped cuprates near optimal doping should be in
the weak to intermediate coupling range (U ∼ 6t), with
U increasing as n decreases. A look at Fig. 2 for D0 and
M0 shows that the range of dopings where only D0 is
non-vanishing is larger on the hole than on the electron-
doped side for all values of U . That range increases with
U in all cases so that a drop in U as n increases rein-
forces the electron-hole difference in the size of the pure
dSC region. The range where only the dSC order pa-
rameter is finite nearly doubles in going from U = 6t to
U = 12t but the maximum value of D0 decreases, at least
on the hole-doped side. A stronger repulsion allows sys-
tems with more holes to be superconducting, but at the
same time suppresses superconductivity more effectively
closer to half-filling. Note that the dSC order parameter
D0 should not be confused with the critical temperature:
The maximum in D0 that appears near n = 0.9 on the
hole-doped side does not mean that the maximum Tc is
around that doping. Instead, the maximum comes from
the growth of D0 towards half-filling until proximity with
the AFM phase makes it fall rapidly [22]. Finally, as seen
in previous calculations, as U increases from 6t to 12t, the
AF phase does not extend as far on the electron-doped
side, [28] whereas the value of the order parameter M0

at half-filling increases [29].

Fig. 3 shows intensity plots of the spectral functions at
the Fermi level, for U = 8t, in the first quadrant of the
Brillouin zone. The left illustrates a hole-doped system
in a pure dSC phase. The spectral weight is concentrated
along the diagonal. This is observed even without long-
range order [26], but is also compatible with the vanish-
ing of the dSC gap along the diagonal. On the right, we
display an electron-doped system in a AF+dSC phase.
The spectral weight is depleted along the diagonal and
concentrated near the zone boundaries ((π, 0) and (0, π)).
This is also observed in the absence of long-range order

Senechal et al. (2004)!
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Fig. 13: Superconducting (top) and antiferromagnetic order parameter (bottom) as a function
of the electron density n in the D = 2 Hubbard model at T = 0 and U = 8t. VCA results for
different clusters: 2×3-, 2×4- and 10-site clusters. Reprinted figure with permission from [40].
Copyright (2005) by the American Physical Society.

Let us finally discuss an application of a cluster approach to the D = 2 Hubbard model which
focusses on unconventional d-wave superconductivity. At zero temperature, spontaneous sym-
metry breaking is no longer excluded by the Mermin-Wagner theorem. A single-site mean-field
theory, however, cannot treat symmetry-broken phases that are characterized by nonlocal or-
der parameters. Fig. 13 displays results obtained by means of the VCA [40] for the Hubbard
model on the D = 2 square lattice with nearest-neighbor (t = 1), next-nearest-neighbor di-
agonal (t′ = −0.3) and third-neighbor hopping (t′′ = 0.2t) at U = 8t and T = 0. Within
the VCA, there is no bath continuum to be optimized but two symmetry-breaking Weiss fields
which couple to the reference system H ′ of disconnected clusters. In particular,

H ′M =
∑

i

(−1)i(ni↑ − ni↓) (63)

probes antiferromagnetic order and

H ′D =
∑

ij

∆ij(ci↑cj↓ + H.c.) (64)

d-wave superconductivity with ∆ij = D if sites i, j are nearest neighbors along the x axis and
∆ij = −D if sites i, j are nearest neighbors along the y axis. The corresponding AF and SC
order parameters, MAF and DSC can be obtained from the normal and from the anomalous el-
ements of the one-particle Green function in the Nambu formalism (see Ref. [40] for details)
and are plotted in Fig. 13 as function of the filling n. The figure demonstrates that antiferro-
magnetism persists up to about δ ≡ |1 − n| = 15% doping on the electron-doped side (n > 1)
and about 6% on the hole-doped side. Superconductivity coexists with antiferromagnetism, but
a pure SC phase is found as well, particularly at higher hole-doping levels. Unfortunately, there
are strong finite-size and cluster-geometry effects such that, even if these results are physically
very appealing and plausible, improved and more systematic cluster calculations are necessary
to prove that the D = 2 Hubbard model has a d-wave superconducting ground state.

http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevLett.94.156404
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10 Conclusions and open problems

Dynamical mean-field theory is in many cases too strong an approximation for the description
of physical phenomena in low-dimensional lattice models. Conceptually, cluster extensions
of the DMFT are highly important as they are able to bridge the gap between the single-site
mean-field approach and the exact solution. In practice, however, it very much depends on the
capabilities of the “cluster solver” if the cluster size Lc that can still be treated numerically is
sufficiently large. In almost all interesting cases, i.e., for not too high temperatures etc., the
accessible cluster sizes are unfortunately too small to allow for a systematic and reliable finite-
size scaling, and thus we have to await further progress in the development of solver techniques
(see Ref. [41], for example).
Still the cluster concept represents a big step forward. Its predictions can be checked system-
atically by comparing results for different cluster sizes, it provides complementary information
to plain finite-size simulations, and it does account for important physics that is not captured
by the single-site DMFT. In particular, by self-consistent mapping of the lattice problem onto a
cluster with Lc > 1, it is possible to include the feedback of nonlocal two-particle correlations
on the one-particle quantities, such as the formation of nonlocal opposed to local spin singlets.
Nonlocal correlations on the length scale given by the linear extension of the cluster are treated
accurately, while longer-range correlations are captured on the static mean-field level only.
The application of a cluster approach is thus advisable whenever the physics is crucially af-
fected by nonlocal but short-range correlations. This is the case for the Mott transition in two
dimensions, for example [35,36,38]. To describe phases with spontaneously broken symmetries
that are characterized by a nonlocal order parameter, such as unconventional d-wave supercon-
ductivity, a cluster approach is even necessary.
The cluster extension of the DMFT is not unique. Among the various different approaches, the
cellular DMFT and the dynamical cluster approximation are the most popular. Both are clearly
superior as compared to the more simple cluster-perturbation theory. The variational cluster ap-
proximation stands in between and is attractive if an exact-diagonalization-based cluster solver
shall be employed. If an absent or mild the fermionic sign problem permits the use of a quantum
Monte-Carlo solver, the C-DMFT or DCA represent the methods of choice since the treatment
of the noninteracting bath degrees of freedom comes “for free” and even tend to attenuate the
sign problem. The periodized cellular approach is closely related but appears a bit inconvenient
when systems with broken translation symmetries shall be studied. As a rule of thumb, the
C-DMFT is preferable if local quantities are addressed while observables extending over the
cluster size converge faster with increasing Lc within the DCA.
One should also be aware about a couple of remaining problems. Common to all cluster tech-
niques is the problem that translation symmetries are broken artificially, as is most obvious in the
CPT and the C-DMFT. Additional periodization schemes must be employed which, however,
have some ad hoc character and do not remove a possible intrinsic bias of the approximation
when studying phase diagrams involving spontaneously broken translation symmetries. The
DCA involves a periodization scheme at a deeper level but is also not free of related artifacts
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such as the discontinuous k-dependence of the self-energy. A problem related to artificially
broken translation symmetries is given by lattice models with strongly reduced or even absent
translation symmetries, such as impurities in a correlated lattice, nanostructures at solid sur-
faces, etc. Opposed to the real-space DMFT for inhomogeneous systems, there is no straight-
forward inhomogeneous cluster approach. Another problem, already present on the single-site
mean-field level, is the proper treatment of models with nonlocal or even long-ranged inter-
actions. Here, the cluster concept would allow for an explicit consideration of short-range
nonlocal interactions on the scale of the cluster while an additional static mean-field decoupling
was required for interaction terms across the cluster boundaries. There are, however, other and
probably superior ways to tackle this problem, such as extended DMFT [42] or the dual-boson
method [43].
Diagrammatic routes to treat nonlocal correlations beyond dynamical mean-field theory [39]
represent a very promising alternative to cluster approaches. Here, the idea is compute cor-
rections to the DMFT self-energy through additional Feynman diagrams and to start from a
local approximation for the two-particle vertex instead of the bare Coulomb interaction as a
building block. One of the big advantages is that nonlocal correlations can be accounted for
without breaking translational symmetries. Compared to cluster extensions of DMFT, however,
diagrammatic routes appear less systematic in approaching the full solution of correlated lattice
fermion models.
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[29] D. Sénéchal, D. Pérez, and D. Plouffe, Phys. Rev. B 66, 075129 (2002)

[30] T. Minh-Tien, Phys. Rev. B 74, 155121 (2006)

[31] G. Biroli, O. Parcollet, and G. Kotliar, Phys. Rev. B 69, 205108 (2004)

[32] E. Müller-Hartmann, Z. Phys. B 76, 211 (1989)

[33] M. Potthoff and W. Nolting, Phys. Rev. B 59, 2549 (1999)

[34] M. Potthoff, Euro. Phys. J. B 32, 429 (2003)

[35] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008)
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1 Introduction

The last twenty years have witnessed extraordinary progress in the theoretical description and
modeling of so-called strongly correlated materials. In these realistic condensed matter systems,
the screening of the Coulomb interaction between electrons is too weak to rely on effective
single-particle approaches. The electron-electron interaction becomes a natural competitor of
the basic hopping processes, thus intriguing electronic many-body instabilities characterized by
different degrees of itinerancy and localization occur.
The combination of density-functional theory (DFT) with dynamical mean-field theory (DMFT)
emerged as a major approach to tackle the challenges of strongly correlated systems on a realis-
tic level. Metal-insulator transitions, local-moment formation, spin and charge fluctuations,
finite-temperature effects on correlated electron states, or the interplay of correlations with
spin-orbit coupling are only a few hallmark topics that have been studied successfully with
the so-called DFT+DMFT scheme. As a hybrid method, interfacing band theory and quantum
chemistry for demanding condensed-matter problems, the basic formalism is delicate. In this
chapter, the goal is to shed light on the specific aspect of “self-consistency” in numerical ac-
counts of the correlated electronic structure of materials. Though there are various techniques
where this issue applies, in order to keep the discussion straight and within reasonable length,
the main body of this treatise will focus on the matter within DFT+DMFT, which is nowadays
the key method for strongly correlated materials.
Briefly, in basic mathematical terms, self-consistency is figured as the both-way matching of
an implicit defining function, e.g., a potential v(r), with a depending function, e.g., a wave
function ψ(r), that are related by a set of (partial) differential equations derived from a varia-
tional treatment of the (free) energy of the system. Since such a set of equations is usually not
solvable by analytical means, a numerical solution may be reached iteratively. Starting from
some reasonable initial guess, consecutive constructions of ψv and vψ will eventually result in
a self-consistent solution for {v(r), ψ(r)} subject to the governing set of equations. Note that
there are also still other kinds of (self-)consistencies in iterative mathematical equations, such
as, e.g., for the Verhulst equation. In the DFT+DMFT context, and depending on how this ap-
proach is put into practice, we will encounter different situations of self-consistency of the given
kind. Among those, charge self-consistency plays a singular role, as it closes the calculational
iteration loop (in the sense sketched above) of the complete scheme on the outermost level.
In the present scope, charge self-consistency is attributed to a necessary incoherent theoretical
description of an electronic system. In the simplest manner, one imagines the whole system
being divided into two subsystems which are treated by a different degree of sophistication.
Then, charge self-consistency holds if three features are installed:

1. Exchange of charge between the two subsystems is possible.

2. Even without explicit charge flow inbetween, the electronic structure within one subsys-
tem (i.e., its field) affects the electronic structure in the other subsystem (and vice versa).

3. The combined theoretical scheme as a whole is self-consistent in the sense that the com-
plete electronic structure is at a stationary point of the thermodynamics.
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Although investigations without charge self-consistency may often provide already valuable
insight into the physics of correlated materials, it turns out that in several important cases this
form of self-consistency does not only matter by quantitative means. Qualitative differences,
e.g., wether a given compound is Mott insulating or not, do occur.
The text is organized as follows. In section 2 the basic forms of self-consistency in the original
Hartree-Fock method as well as in pure DFT and pure DMFT will be reviewed to set the stage.
Section 3 then deals with a description of the DFT+DMFT approach, both on a formal and on a
practical level. Emphasis will be put on the latter, especially on the relevance of the charge self-
consistent aspect. To illustrate the presented theoretical concepts at work, a concrete materials
examples is discussed in the final section 4.

2 Self-consistency in numerical approaches to
many-electron systems

In order to get acquainted with the basic ideas and mechanisms of self-consistency problems
in advanced quantum mechanics, let us first start with a condensed reminder of the canonical
schemes of computational many-body theory for electronic systems. As for the complete rest
of the paper, we will remain within the Born-Oppenheimer approximation of separating elec-
tronic and ionic degrees of freedom, focussing on the former one. Furthermore, we remain in
the nonrelativistic regime, hence exclude, e.g., spin-orbit effects to keep the discussion elemen-
tary. Three different key observables will be discussed, namely the many-body wave function
Ψ({rσ}) in the context of Hartree-Fock, the electronic charge density ρ(r) in the context of
DFT and the one-particle Green function G(k, ω) in the context of DMFT.

2.1 Hartree-Fock method

The Hartree-Fock (HF) method (see e.g. Ref. [1] for a review) is routed in quantum chemistry,
providing basic access to the electronic system of atoms and molecules with N electrons. It
serves as the starting point for more involved approaches such as, e.g., Møller-Plesset theory or
the configuration-interaction scheme.
Key idea is the ansatz for the many-body wave function Ψ({riσi}) =: Ψ({xi}) as a single Slater
determinant , i.e.

ΨHF({xi}) =: Ŝ−

N∏
i

ϕi(r)χi(σ) = Ŝ−

N∏
i

φi(x) , with ϕi(r) =
M∑
ν

Aiν Bν(r) . (1)

Here, Ŝ− is the antisymmetrization operator, ϕ the real-space function, χ the spin function and
i = 1, N . The functions ϕi are expanded into M basis functions Bν , usually of atomic kind,
with expansion coefficients Aiν . In the end, the Aiν are the parameters that will be optimized
for the solution. It is very important to realize that the ansatz (1) marks the simplest possible
wave function for an electronic system, describing independent electrons only subject to the
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Pauli exclusion principle. The Hamiltonian of the electronic system with momenta pi and the
potential Vi of the nuclei is straightforwardly written as

Ĥ =
N∑
i

(
p̂2
i

2m
+ V̂i

)
+

1

2

∑
ij

v̂ij =:
N∑
i

ĥi +
1

2

∑
ij

v̂ij . (2)

The two-particle operator v̂ij represents the Coulomb interaction between the electrons. To
obtain a working scheme for the optimization of our trial wave function with regard to the given
problem, we make use of the Ritz variational principle

δ

(
〈ΨHF|Ĥ|ΨHF〉
〈ΨHF|ΨHF〉

)
!
= 0 , (3)

with the relevant expectation value reading

〈ΨHF|Ĥ|ΨHF〉 =
∑
i

〈φi|ĥ|φi〉+
1

2

∑
ij

(
〈φjφi|v̂|φjφi〉︸ ︷︷ ︸

Coulomb (Hartree) term

− 〈φjφi|v̂|φiφj〉︸ ︷︷ ︸
exchange (Fock) term

)
, (4)

and the corresponding real-space matrix elements

〈φi|ĥ|φi〉 =
∫
drϕ∗i (r)h(r)ϕi(r) , (5)

〈φiφj|v̂|φkφl〉 = δσiσkδσjσl

∫
drdr′ ϕ∗i (r)ϕ

∗
j(r
′) v(r, r′)ϕk(r)ϕl(r

′) . (6)

Note that the general Coulomb matrix element is spin dependent, though the interaction surely is
not. The reason is the enforcement of the Pauli principle in electron-electron scattering process.
The Ritz principle is most effectively put into practice via minimizing the functional form

F [ΨHF] = 〈ΨHF|Ĥ|ΨHF〉 −
∑
i

εi〈φi|φi〉 , with δF !
= 0 , (7)

whereby the εi serve as lagrange multipliers. The variation implies here a functional differenti-
ation with φi → φi + δφi. This leads to the single-particle or Hartree-Fock equations governed
by the so-called Fock operator F̂ , i.e.

F̂ |φi〉 = εi |φi〉 ∀ i (8)

and are written in real-space representation as (~ = 1)(
− 1

2m
∆+ V (r) + e2

∑
j 6=i

∫
dr′
|ϕj(r)|2
|r− r′|

)
φi(r)− e2

∑
j 6=i

δσiσj

∫
dr′

ϕ∗j(r)ϕ
∗
i (r
′)

|r− r′| φj(x) = εiφi(x)

(9)

⇒
(
− 1

2m
∆+ V (r) + vH(r)

)
ϕi(r) +

∫
dr′ vX(r, r

′)ϕi(r) = εiϕi(r) . (10)

The local Hartree potential vH(r) describes the Coulomb repulsion between electrons, as famil-
iar from classical electrostatics. The nonlocal exchange potential vX(r, r

′) adds unique quantum
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physics due to the Pauli principle: electrons with equal spin effectively feel a repelling potential
to avoid each other not to join a common quantum state. Note already here that, in a quantum-
chemistry definition, there is still a third mechanism, also of pure quantum kind, that influences
the concerted arrangement among the electrons. It is called correlation, not directly related
to spin, and goes beyond the Hartree-Fock picture, since it is encrypted in more complicated
many-electron wave functions than the most simple one of single Slater-determinant kind. It is
thus very important for the understanding of the Hartree-Fock equations to appreciate the ansatz
(1) that lead to eq. (10).
For us here, the principle solution of the Schrödinger-like eq. (10) is the main concern. It
becomes clear from (9) that contrary to the standard nuclear potential V (r), the Hartree and
exchange potential are not given from the beginning. They explicitly dependent on the wave
functions ϕi we are actually looking for. Therefore, the implicit character of the Hartree-Fock
equations forms a natural self-consistency problem. In the literature, these equations are thus
also often termed self-consistent field (SCF) equations. Literally, the solution is defined by an
iterative cycle as follows:

1. Start with an educated guess for the single-particle functions ϕi(r) = ϕ
(1)
i (r) by invoking

suitable linear combinations of the basis functions. For instance, an adequate kind of spn

hybridization function might be meaningful for a carbon-based molecule.

2. Construct a first associated Hartree potential v(1)
H (r) = v

{ϕ(1)
i }

H (r) and exchange potential

v
(1)
X (r) = v

{ϕ(1)
i }

X (r, r′) and solve the Hartree-Fock equations for a new set of eigenfunc-
tions ϕ(2)

i (r).

3. Go back to step 2 and repeat p times until you reach convergence in the potentials, i.e.,
|v(p)

H − v
(p−1)
H | < η and |v(p)

X − v
(p−1)
X | < η holds for small η.

We will remark in section 2.4 on further relevant technical aspects of performing this self-
consistency cycle. If this cycle converges, it is obvious for us physicists that the resulting
functions ϕ(p)

i along with their eigenvalues ε(p)
i represent a faithful solution to the problem. A

principle convergence is ensured by the variational character of how we casted the problem. But
note that in general, such self-consistency problems can underlie the issues of local vs. global
minimum, existence of saddle-points, etc.. In this text however, we will not delve into these
mathematical aspects of the solution space.
We have now encountered a first concrete self-consistency problem for many-electron systems.
This Hartree-Fock method obviously may also be termed a charge self-consistent method, as
the electronic charge density ρ(r) is implicitly also iterated in the cycle given above and can be
expressed via a sum over the occupied orbitals

ρ(r) =
occ∑
i

|ϕi(r)|2 . (11)

Thus the charge distribution always matches the associated electron states and also the total
charge is conserved. By this statement, we have assumed that all electrons of the system enter
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in eq. (10). If instead, one decides to, e.g., “freeze” some core electrons in their atomic state and
to only Hartree-Fock converge chosen valence electrons, then complete charge self-consistency
would in principle not be achieved. Neither valence nor core charge density would be in accor-
dance with the distribution at the global stability point of the system. Further relaxation of the
core states could still modify the charge density of the whole system.
We leave the further analysis of the Hartree-Fock solution as well as the description of the
plethora of different method flavors to the numerous textbooks on this matter, and continue by
an theory advancement that builds up directly on the electronic charge density ρ(r).

2.2 Density-functional theory (DFT) in Kohn-Sham representation

Besides the obvious flaw of Hartree-Fock in missing the effect of correlation, there are further
serious drawbacks. The scheme is ill-defined for crystalline systems and the nonlocal exchange
potential is computationally delicate and expensive. Instead of working directly with a many-
body wave function Ψ({xi}), it appears also more attractive to deal with a physically more
tangible object.
Density-functional theory (DFT) puts the electronic charge density ρ(r) in the focus and has
become the workhorse of quantum-mechanical calculations for materials since more than thirty
years (see e.g. Refs. [2, 3] for reviews). It builds upon the theorems by Hohenberg and Kohn,
stating, in short, first that ρ(r) bears in principle the same physically-relevant information as the
much more complex Ψ({xi}). Second, the functional E[ρ] of the system’s total energy has a
minimum for the correct ground state charge density ρ0(r), thus ensuring a variational principle.
Equipped with the already gathered knowledge, we may cast such a functional straightforwardly
(by adjusting to the community-established nomenclature) in the form

E[ρ] = T [ρ] +

∫
dr ρ(r)vext(r) + EH[ρ] + EQMB[ρ] . (12)

The kinetic-energy contribution is denoted T [ρ], vext(r) is nothing but the former nuclear po-
tential V (r) and EH[ρ] describes the Hartree energy. All the remaining (and notorious) explicit
quantum many-body terms, namely the effect of Pauli principle and correlation, enter the func-
tional EQMB[ρ]. The expression (12) is also important because of its hierarchical structure: in
direct comparison, all but the term EQMB are reasonably large.
To proceed towards a practical formalism, one invokes in the so-called Kohn-Sham (KS) repre-
sentation of DFT a virtual non-interacting electron system [4]. Such a system is surely exactly
represented by a single Slater determinant. As a key step, we demand that the electronic charge
density, and then obviously also the total energy, of the real system and the virtual system co-
incide. This means that in our virtual system, there must be a rather tricky effective potential
vKS(r) at work that enforces this demand. It is hence natural to continue as follows

E[ρ]
!
= Evirt. sys.[ρ] := TS[ρ] +

∫
dr ρ(r)vKS(r) (13)

= TS[ρ] +

∫
dr ρ(r)vext(r) +

e2

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′| + Exc[ρ] . (14)
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Equation (14) again establishes an educated guess based on what we learned from embarking
on Hartree-Fock theory. The total energy has to consist of four terms: a kinetic energy TS now
of non-interacting electrons, an electron-nuclear interaction, a classical Hartree term, and last
but not least a term that includes the quantum many-body terms, here named Exc. Note that
the latter exchange-correlation functional does not only include the effect of Pauli exchange
and correlation, but also the difference T−TS from implicit quantum many-body effects in the
kinetic energy.
Why should the form (14) be preferred over the expression (12)? Because (14) is amenable
to straightforward numerical treatment. Since deep down there may be only single-particle
wave functions that build up the expression (14), we can immediately formulate the according
variational principle

δ

(
E[n]−

∑
i

εi〈ϕi|ϕi〉
)

!
= 0 , (15)

leading to the so-called Kohn-Sham equations(
− 1

2m
∆+ vKS(r)

)
ϕi(r) = εi ϕ(r) (16)

of effective-single-particle kind. Accordingly, the effective, or KS, potential reads

vKS(r) = vext(r) + vH(r) + vxc(r), with vxc(r) =
δExc

δρ
. (17)

In practice, the total energy is usually computed via expressing the kinetic-energy term through
the eigenvalue sum, resulting in

EDFT =
∑
i

εi −
e2

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′| −
∫
dr ρ(r)vxc(r) + Exc[ρ] . (18)

It is clear that the exchange-correlation part asks for approximations. Originally, reference to
a numerically-exact quantum Monte-Carlo treatment of the homogeneous electron gas is made
and the exchange-correlation energy (in fact, the correlation part, since the exchange part is
analytically known) extracted via an analytical fit εxc(ρ). The resulting ansatz

Exc[ρ] =

∫
dr ρ(r)εxc(ρ(r)) (19)

defines the so-called local-density approximation (LDA) . Further approximations for Exc[ρ],
such as the generalized gradient approximation (GGA) which includes gradient terms of the
charge density, exist. Finally, the electronic charge density is again expressed by the sum over
the occupied effective single-particle states, i.e., of form (11). The careful reader may have
noted that we did not include the spin degree of freedom by explicit means in our argumentation.
This is due to the fact that in exact DFT, this degree of freedom is not of evident relevance,
as an exact exchange-correlation functional incorporates the effect of spin. In practical and
eventually approximate Kohn-Sham representation, eq. (16) gains a spin index describing spin-
up and spin-down charge densities and the canonical xc-approximation is the local spin-density
approximation (LSDA).
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It is obvious from eqns. (16) and (17) that the practical Kohn-Sham scheme is again based
on a self-consistency cycle similar to that described for the Hartree-Fock method. Here, the
local Kohn-Sham potential vKS(r) has to be iterated until convergence. Charge self-consistency
is naturally ensured in KS calculations, although in principle, also here a possibly different
treatment of, e.g., core and valence electrons would abandon an exact charge self-consistent
state. Such differences indeed occur in various KS-based electronic structure codes of, e.g.,
selected augmented-wave or pseudopotential kind. However, the differences in the total charge
density (especially in the relevant spatial regions) are very small and the resulting physics of
interest is not affected. Thus for the rest of these notes, KS-based DFT is understood as a charge
self-consistent framework.
Especially for solid-state system, Kohn-Sham calculations greatly improve on Hartree-Fock
studies, since the reasonable treatment of the exchange and correlation within LDA enables the
important description of screening of the Coulomb potential. For further aspects of density-
functional theory and the Kohn-Sham representation we refer to the various excellent reviews.
In the following, to simplify the writing, it is understood that “DFT” refers to the KS-represen-
tation of density-functional theory.

2.3 Dynamical mean-field theory (DMFT)

In terms of electronic correlations, we advanced from no consideration at all in Hartree-Fock to
a reasonably-well treatment for many materials within DFT. Still, for some materials classes,
e.g., transition-metal oxides, the DFT description of the correlated behavior of electrons remains
insufficient. Most notably, in these systems the delicate competition among electrons between
itinerancy and the tendency to localize in real space asks for a better modeling. The dynamical
mean-field theory (DMFT) [5,6] is a hallmark condensed-matter framework that faces this task
best for such strongly correlated materials. It utilizes the one-particle Green function as key to
provide seminal access to the spectral properties and the total energy of an interacting electron
system on a lattice, and was originally constructed in a model-Hamiltonian context.
Contrary to Hartree-Fock and original DFT, the DMFT approach is designed to work at finite
temperature T . Hence we introduce fermionic Matsubara frequencies ωn := (2n+1)πT to write
the correct Green function for the Hamiltonian H(k) at wave vector k in reciprocal space as

G(k, iωn) =
(
iωn + µ−H(k)−Σ(k, iωn)

)−1
, (20)

whereby µ is the chemical potential and Σ(k, iωn) the so-called self-energy of the system.
Expression (20) looks quite different from the electronic-state descriptions we encountered so
far. But the Green function formalism is just a different representation of the physics, especially
tailored to systems with sizable correlations in the solid state. For instance, we could also easily
express the Hartree-Fock or DFT pictures therein, namely via the according self-energies

ΣHF(k, iωn) =
∑
q

(vkqkq − vqkkq)
(
eβ(εq−µ) + 1

)−1
, (21)

ΣDFT(k, iωn) =
∑
q

(vH + vxc)kqkq
(
eβ(εq−µ) + 1

)−1
, (22)
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DMFT loop

impurity solver

Gimp
mm′(τ − τ ′) = −〈T̂ ĉmσ(τ)ĉ

†
m′σ′(τ ′)〉

self-consistency condition: construct Ĝloc

Ĝ−1
0 = Ĝ−1

loc + Σ̂imp

Ĝloc
!= Ĝimp

Σ̂imp = Ĝ−1
0 − Ĝ−1

imp

Fig. 1: Self-consistency loop of DMFT. The heavy task is performed by the impurity solver,
computing the impurity Green function, e.g., in imaginary time τ using quantum Monte Carlo.

with β = 1/T and where the matrix elements are reminiscent to their real-space analog (6).
Note that both approaches display no true frequency dependence, the second factor in each
expression, respectively, merely represents the simplest form of temperature dependence via
the effect of the Fermi function. But importantly, frequency (or energy) dependence is a very
relevant issue for describing interacting electrons: it regulates the impact of correlations on
different energy scales due to the electrons’ Janus-faced character hesitating between itinerancy
and localization.
Eventually, DMFT is a theory that is designed to take care of that. Originally, it assumes a
strong, i.e., only weakly-screened, local Coulomb interaction U effective on each lattice site.
Then, in order to keep the full frequency dependence, but in the same time keeping the formal-
ism operable, one drops the k dependence in the self-energy, i.e.

GDMFT(k, iωn) :=
(
iωn + µ−H(k)−Σimp(iωn)

)−1
. (23)

The self-energy Σimp(iωn) is then linked to a quantum-impurity problem of the general form

Σimp(iωn) = G0(iωn)
−1 −Gimp(iωn)

−1, (24)

where the so-called Weiss field G0(iωn) is a unique function of the local Hamiltonian (expressed
within a localized basis). To close the equations, the DMFT self-consistency condition reads

GDMFT
loc (iωn) =

∑
k

[iωn + µ−H(k)−Σimp(iωn)]
−1 !

= Gimp(iωn) . (25)

The resulting iterative loop that is thereby implied to converge the DMFT self-energy is de-
picted in Fig. 1. Drawing a conceptual parallel between DFT and DMFT, while the former
theory maps the interacting-electron problem onto the problem of non-interacting electrons in
a highly-complicated potential, DMFT maps it to the problem of an interacting site within a
self-consistent bath.
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The challenging part is given by solving the quantum-impurity problem, to be done, e.g., with
quantum Monte Carlo, Exact Diagonalization, etc.. Note that many-body wise, local-interaction
diagrams are included to all orders in this non-perturbative theory. The vital energy dependence
of the Weiss field ensures the qualitatively correct description of low-energy quasiparticle (QP)
features as well as high-energy incoherent (Hubbard) excitations. Extensions to overcome the
restriction to a k-independent self-energy, e.g., via cluster schemes, are available. But those
will not be further pursued in the present text.
As for the previous approaches, charge self-consistency holds also for the DMFT method. But
the issue of “self-consistency” has a more intriguing character than in Hartree-Fock and DFT.
First, identical to these approaches, it serves to actually render the framework computationally
feasible via the loop in Fig 1. But second, we deal with the structure of an explicit mean-field
theory. This means that we replace the true surrounding of an interacting site by a field. This
replacement itself is not an approximation, since “someone” could endow us with the exact field,
just as “someone” could provide us the exact exchange-correlation functional in DFT. However
here, we define this field by our self-consistent mean-field construction, hence marking the
approximation.

2.4 Mixing

Before we move on to discuss the combined approach of DFT and DMFT in the next section, a
few technical comments in view of solving the encountered self-consistency cycles are in order.
In practice, the sketched flowcharts of iterating potentials (or self-energies) by directly replacing
input- and output functions in a p-step process are in most cases extremely unstable. One needs
to damp the whole iteration, usually via “mixing in” the potentials from previous steps, i.e.,

v(p+1) = v(p+1)(v(p), v(p−1), . . .) . (26)

Linear mixing is the simplest form of this and reads

v
(p+1)
inp = (1− α) v(p)

inp + α v
(p)
out , 0 < α < 1 , (27)

with v(p)
inp(out) as the input(output) of step p. This means, not the straightforward output potential

v
(p)
out is used for the input potential in step p+1, but a weighted mixture of the old input potential
v

(p)
inp and v(p)

out. With a small enough mixing parameter α, convergence is nearly always ensured,
yet then at the price of a slow and inefficient performance. More sophisticated variations of this
kind of mixing, such as, e.g., Anderson mixing, may accelerate the convergence.
The mixing problem can also be approached more rigorously by formulating the search for a
self-consistent solution as a root-finding problem of a tailored functional:

F [vinp] = vout[vinp]− vinp
!
= 0 . (28)

As it is known from schooldays for ordinary functions f(x), the Newton-Raphson method
which involves the first derivative f ′(x) deals with such a task. Similarly, for our problem
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the first derivative of F is needed which corresponds in physical terms to the dielectric function
ε(r, r′) or in mathematical terms to the Jacobian matrix J. However, computing this first deriva-
tive may be cumbersome and often also the resulting mixing based on that generalized Newton-
Raphson scheme turns out too hard. It proves more successful to invoke another scheme for an
iterative approximation of the Jacobian matrix (or variations thereof). Those so-called quasi-
Newton schemes with the Broyden method as its most familiar representative improve in every
iteration step the approximation to J and are rather powerful in solving the mixing problem (28)
especially for high-dimensional energy landscapes.
A good mixing scheme is very important to converge (or accelerate the convergence of) non-
trivial self-consistency loops. In some cases, as, e.g., for many DMFT self-energies with sta-
tistical errors due to quantum Monte-Carlo, linear mixing may be sufficient. But especially for
variational (saddle-point) problems, the mixing method often eventually decides if the whole
framework converges and yields exploitable results. So even if “mixing” is not a highlighted
physics theory like DFT or DMFT, it is very worthy and pays off to invest some time in dealing
with it.

3 Realistic many-body account of correlated materials

Correlated materials are insufficiently described by DFT with conventional exchange-correla-
tion functionals. There are static improvements, e.g., via methods like self-interaction correc-
tion, DFT+U, or hybrid functionals. While such schemes may mimic some physics of Mott-
insulating systems, they usually show substantial deficiencies for the most-challenging problem
of strongly correlated metals with a large deal of quantum fluctuations. The DMFT approach
on the other hand is too heavy to be implemented in a complete realistic setting, since only a
number of M < 10 local orbitals can so far be handled in accurate quantum-impurity solvers.
Therefore, the hybrid approach of DFT and DMFT early on appeared as a natural combination
to tackle electronic correlations on a realistic level beyond model-Hamiltonian descriptions.
And indeed, nowadays the DFT+DMFT framework belongs to the hallmark electronic struc-
ture approaches, and is unrivaled within the field of strongly correlated materials.

3.1 Combining DFT and DMFT: functionals

Our introduction to DFT+DMFT starts on a formal level, to convince the reader that though this
approach has a hybrid character, it is by no means a wild heuristic patchwork method leading to
all kind of unphysical results. On the contrary, it is a physical and mathematically well-defined
formalism built upon on a rock-solid functional description (for details see e.g. Refs. [7, 8]).
The idea is to identify a so-called correlated subspace C in a complete DFT-pictured electronic
system, e.g., a 3d orbital manifold on a selected lattice site, where a DMFT treatment is neces-
sary. First, we try to collect all relevant functions that govern such a combined scheme. From
the DFT side, the electronic charge density ρ and the Kohn-Sham potential vKS come to our
mind. From the DMFT side in the correlated subspace, it is expected that the Green function
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GC as well as the self-energy ΣC matter. The potential vKS and the self-energy ΣC serve as
sources from a field-theoretical perspective. Note that ρ and GC are independent, since there
is no way to reconstruct the full real-space charge density from a given Green function in C.
By hand, we need to account for a double-counting (DC) correction, since electron-electron
interaction in C is treated in both, DMFT and DFT, and enters the definition of ΣC .
The free energy of the whole system may than represented by the general Baym-Kadanoff
functional form

Ω[G] = Tr lnG− tr
(
(G−1

0 −G−1)G
)
+ Φ[G] , (29)

with G as the full system Green function, G0 as the non-interacting Green function. The expres-
sion Φ[G] marks the Luttinger-Ward functional, which describes the universal part of interact-
ing electron systems. The Baym-Kadanoff representation of a DFT+DMFT system accordingly
reads, avoiding explicit matrix notation,

ΩDFT+DMFT[ρ,GC; vKS, ΣC] =− Tr ln

(
iωn + µ+

1

2m
∆− vKS(r)− P †ΣC(iωn)P

)
−
∫
dr
(
vKS(r)− vext(r)

)
ρ(r)− Tr

(
GC(iωn)ΣC(iωn)

)
+ EH[ρ(r)] + Exc[ρ(r)] + ΦC[GC(iωn)] . (30)

The objects P, P † are projection operators that here “upfold” the self-energy ΣC from the corre-
lated subspace to the full Hilbert space of the system. The given functional can readily be varied
with respect to our source terms, resulting in the known expressions for the charge density and
the Green function GC

δΩ

δvKS

= 0 ⇒ ρ(r) =
1

β

∑
n

〈r|Ĝ|r〉 , (31)

δΩ

δΣC
= 0 ⇒ GC(iωn) = P G(iωn)P

† , (32)

with
Ĝ =

(
iωn + µ− ĤKS − P̂ † Σ̂C P̂

)−1

. (33)

Equations (31) and (32) are very important for several reasons: They make clear, that although
ρ and GC are independent, there is surely a coupling via the full Green function. Charge self-
consistency is implied when converging the general charge density, carrying the effects from
DFT as well as DMFT. Furthermore, the “downfolding” from the full Hilbert space to the cor-
related subspace again via the projection operators P, P † is described. It becomes also obvious
that our original set of governing functions is overcomplete, as at a stationary point the potential
vKS and the self-energy ΣC are direct functions of ρ and GC . To explore this, one may formally
write Ω̃DFT+DMFT[ρ,GC; vKS, ΣC] = ΩDFT+DMFT[ρ,GC; vKS[ρ,GC], ΣC[ρ,GC]] and perform

δΩ̃

δρ
= 0 ⇒ vKS(r) = vext(r) + vH(r) + vxc(r) , (34)

δΩ̃

δGC
= 0 ⇒ ΣC(iωn) =

δΦC
δGC

:= Σimp(iωn)−ΣDC , (35)
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whereby we introduced the DC correction ΣDC. Thus formally, the original relations for the
Kohn-Sham potential and the DMFT self-energy are retained. The set of equations (31-35)
define the working scheme of the DFT+DMFT approach.
Let us finally find an expression for the total energy. By defining the Kohn-Sham Green function

GKS(k, iωn) :=
(
iωn + µ− εKS

k

)−1 (36)

one can rewrite the free-energy functional as

ΩDFT+DMFT = ΩDFT + Tr lnG−1
KS − Tr lnG−1 − Tr(GCΣC) + ΦC , (37)

where ΩDFT is the free-energy analog to expression (14). For T → 0, this leads to

EDFT+DMFT = EDFT −
∑
kν

εKS
kν + Tr(GHKS) + Tr(GCΣimp)− EDC . (38)

In this total-energy formula, the term EDFT corresponds to (18) and εKS
kν are the Kohn-Sham

eigenvalues with band index ν and EDC is the double-counting correction to the energy. Note
that the band sum

∑
kν ε

KS
kν = Tr(GKSHKS) is already included in EDFT and has to be sub-

tracted, as it is replaced by the interaction-dressed Tr(GHKS). Importantly, in the latter term
the trace is performed with respect to the full interacting Green function G.
This concludes the formal discussion of the DFT+DMFT scheme and we will turn in the next
section to the more practical aspects of an implementation of it.

3.2 Combining DFT and DMFT: in practice

First concrete implementations of the DFT+DMFT approach appeared at the end of the 1990s [9,
10]. Those original schemes performed in a so-called “one-shot” or “post-processing” manner.
After a converged DFT calculation, the density of states (and later the full Kohn-Sham Hamilto-
nianHKS) of the correlated subspace C entered an otherwise disjunct DMFT calculation. Hence
within the one-shot approach, there was no feedback of the DMFT self-energy on the general
electronic structure and charge self-consistency is not reached.
State-of-the-art implementations of the full scheme are charge self-consistent (e.g. [11–14]).
A pictorial sketch of the framework, in line with the demonstrations in the last subsection,
is given in Fig. 2. Both original self-consistency cycles of DFT and DMFT are interweaved
to establish a novel self-consistent solution for the realistic correlated electronic structure. It
becomes obvious, that especially the link between both traditional schemes, i.e., the down- and
upfolding to/from the correlated subspace, is key to the method. As C is by definition a local
region in real space, a (partly) local-orbital representation is thus an essential building block of
the DFT+DMFT framework [15]. Linear-muffin-tin-orbitals [16], Wannier(like) functions, e.g.,
of maximally-localized kind [17], or projected-local orbitals [18, 19] may provide a convenient
representation thereof.
In the following, the implementation based on projected-local orbitals will be discussed (see Ref.
[18] for more details). Let us start by defining m = 1, . . . ,M orthonormal orbitals {χR

m} on the
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upfold

charge update

DFT step

DMFT step

self−energy update

CT−QMC impurity solution

downfold

Kohn−Sham equations

Fig. 2: State-of-the-art charge self-consistent DFT+DMFT loop. The calculation usually starts
from a self-consistent Kohn-Sham solution. The correlated subspace is defined and the initial
Weiss field G0 constructed. Afterwards, a single (or more) DMFT step(s) is(are) performed.
The impurity solution may, e.g., be achieved with the continuous-time quantum Monte-Carlo
(CT-QMC) method. The obtained self-energies are upfolded and an updated charge density
ρ(r) is computed. A new charge density implies a new Kohn-Sham potential, and a single new
Kohn-Sham step is performed, from which a new Weiss field is generated, etc..

lattice site R in C. By the use of the complete set of KS states {ψkν} at point k in reciprocal
space, the Bloch transform of these local orbitals may be expressed via

|χR
km〉 :=

∑
T

eik·(T+R)|χR
m〉 =

∑
ν

|ψkν〉〈ψkν |χR
km〉 =

∑
ν

〈ψkν |χR
km〉 |ψkν〉 , (39)

whereby T denotes a Bravais lattice vector and the sum over ν covers the whole set of bands.
Thus the Bloch transform represents a Wannier function. To render the approach more flexible,
it proves useful to extend the concept of the correlated subspace also to energy space and to
permit a restriction in the noted band sum to an energy windowW , i.e.

|χ̃R
km〉 =

∑
ν∈W

〈ψkν |χR
km〉 |ψkν〉 . (40)

The resulting Bloch transform is then not anymore a true Wannier function. Yet one may pro-
mote it to one by proper orthonormalization

|wR
km〉 =

∑
R′m′

(
O(k)−1/2

)RR′

mm′ |χ̃R′

km′〉 , (41)

using the overlap matrix ORR′

mm′(k) := 〈χ̃R
km|χ̃R′

km′〉. To enable flexible transformations between
the system’s complete Bloch space (spanned by {ψkν}) and the correlated subspace (spanned
by {wR

km}) it proves useful to define the projection functions

PR
mν(k) :=

∑
R′m′

(
O(k)−1/2

)RR′

mm′ 〈χR
km|ψkν〉 . (42)
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For instance, the transformation from Bloch to Wannier space readily reads

|wR
km〉 =

∑
ν∈W

PR∗
νm (k) |ψkν〉 . (43)

Assuming the full Green function operator of the system in the form (33), the Bloch Green
function is given by

GBloch
νν′ (k, iωn) = 〈ψkν |Ĝ|ψkν′〉 . (44)

The downfolding equation from Bloch space to correlated subspace for the Green function and
the upfolding equation from C to Bloch space for the self-energy are then straightforwardly
written as

GR
mm′(iωn) =

∑
k,(νν′)∈W

PR
mν(k)G

Bloch
νν′ (k, iωn)P

R∗
ν′m′(k) , (45)

ΣBloch
νν′ (k, iωn) =

∑
R,mm′

PR∗
νm (k)ΣR

mm′(iωn)P
R
m′ν′(k) . (46)

The local self-energy is given by the DMFT impurity solution corrected by the double-counting
term through

ΣR(iωn) = ΣR
imp(iωn)−ΣR

DC . (47)

Once the upfolding of the self-energy to the whole space is achieved, the complete charge
density ρ(r) may be updated. At this point, a practical comment on the charge treatment in the
different stages of the self-consistency cycle is in order. In principle, the sum rule for the total
charge holds for the full DFT+DMFT charge density and the associated chemical potential µ.
However, it is surely advisable to have the correct total charge of the system already within the
DFT part of the calculation. Otherwise the numerics may be cumbersome due to an ill-defined
Coulomb balance between electrons and nuclei. Therefore we redefine the Kohn-Sham Green
function (36) as

GKS(k, iωn) :=
(
iωn + µKS − εKS

k

)−1
, (48)

with the chemical potential µKS chosen such as to enforce the correct total electronic charge
N =

∫
dr ρ(r) in the DFT part. The full charge density is then split into two parts, namely

ρ(r) = ρKS(r) +∆ρ(r) =
1

β

∑
n

(
〈r|ĜKS|r〉+ 〈r|Ĝ− ĜKS|r〉

)
, (49)

with ĜKS in analogy to (36). Since due to our choice of ρKS already carrying the total charge, the
correction term ∆ρ amounts to a redistribution of the charge density such that

∫
dr∆ρ(r) = 0

holds. The correction kernel beyond DFT can also be rewritten as

〈r|Ĝ− ĜKS|r〉 = 〈r|ĜKS(Ĝ
−1
KS − Ĝ−1)Ĝ|r〉 = 〈r|ĜKS (Σ̂

Bloch − (µ− µKS)1̂) Ĝ|r〉 . (50)

If we then define

∆Nνν′(k) :=
1

β

∑
n,ν′′ν′′′∈W

GKS
νν′′(k, iωn)

(
ΣBloch
ν′′ν′′′ (k, iωn)− (µ− µKS) δν′′ν′′′

)
Gν′′′ν′(k, iωn),

(51)



6.16 Frank Lechermann

the charge-correction term ∆ρ reads

∆ρ(r) =
∑

k,νν′∈W

〈r|ψkν〉∆Nνν′(k) 〈ψkν′ |r〉 . (52)

As the DFT contribution ρKS is by definition diagonal in the band indices, the complete corre-
lated charge density after a DFT+DMFT step reads

ρ(r) =
∑
k,νν′

〈r|ψkν〉
(
f(ε̃KS

kν ) δνν′ +∆Nνν′(k)
)
〈ψkν′|r〉 , (53)

where f is the Fermi-Dirac function and ε̃KS
kν = εKS

kν − µKS. Thus, because of the inadequacy
of a pure band picture of strongly correlated materials additional off-diagonal terms in the
band index contribute in the many-body system with additional real-space excitations. This
updated charge density then defines a new Kohn-Sham effective potential vKS and the charge
self-consistency loop is closed.
Let us at the end of this section briefly comment on additional aspects of the DFT+DMFT
formalism. So far, we did not say anything at all about the interacting Hamiltonian that governs
the correlated subspace and which explicitly enters the DMFT iterations. Basically, one utilizes
an m-orbital generalized Hubbard Hamiltonian, e.g., of Slater-Kanamori type

ĤCint =
∑

〈RR′〉mm′σ

tmm
′

RR′ ĉ
†
Rmσ ĉR′m′σ + U

∑
iRm

n̂Rm↑n̂Rm↓

+
1

2

∑
R,m6=m′,σ

(
(U − 2JH) n̂Rmσn̂Rm′σ̄ + (U − 3JH) n̂Rmσn̂Rm′σ

)
+

1

2

∑
Rm6=m′,σ

JH

(
ĉ†Rmσ ĉ

†
Rm′σ̄ ĉRmσ̄ ĉRm′σ + ĉ†Rmσ ĉ

†
Rmσ̄ ĉRm′σ̄ ĉRm′σ

)
. (54)

Here, t refers to the Kohn-Sham hopping matrix, U marks the Hubbard interaction, JH the
Hund’s exchange and n̂ = ĉ†ĉ. For a discussion of this and related Hamiltonians we refer
to [20]. The DMFT impurity solution subject to such Hamiltonian forms may nowadays, e.g., be
obtained from the continuous-time quantum Monte-Carlo (CT-QMC) method (see e.g. Ref. [21]
for a review). The interaction parameters are either chosen from a reasonable guess (often by
connecting also to experimental data) or are computed from first-principles schemes such as the
constrained random-phase approximation (cRPA).
The issue of double-counting is a well-known feature of DFT+DMFT and various forms are
available for the correction term ΣDC. Since conventional DFT exchange-correlation func-
tionals are not representable within standard many-body diagrams, a straightforward analytical
solution of the DC problem is not available. Usually, the double counting is assumed orbital in-
dependent (i.e. spherical) and a commonly used formula is based on the so-called fully-localized
or atomic limit [22]

ΣDC
Rmσ = U

(
(〈n̂R〉 −

1

2

)
− JH

(
〈n̂Rσ〉 −

1

2

)
. (55)
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Albeit the general topic is heavily debated, nonetheless, many results on the qualitative and even
(semi)-quantitative physics of strongly correlated materials are not that sensitive to the details
of double counting. Otherwise the DFT+DMFT approach would not be that successful. A so-
lution to the DC problem may be achieved by abandoning the concrete KS-DFT environment
and replace it by a true (weakly-correlated) many-body setting. The numerically very heavy
GW+DMFT scheme [23] provides such a description.
Finally, note that in various multi-atom unit cells, the correlated subspace is often not only as-
sociated with a single lattice site, as already anticipated in our sums over the sites R (e.g. in
eq. (46)). For symmetry-equivalent sites, it suffices to compute the self-energy for a represen-
tative site and transfer it to the remaining sites via proper symmetry relations. In the case of
various sites which are inequivalent by symmetry, e.g., the Fe sites with octahedral or tetrahedral
environment in magnetite Fe3O4, a different impurity problem is defined for each symmetry-
inequivalent site R through [24]

GR0 (iωn)
−1 = GR(iωn)

−1 +ΣR
imp(iωn), (56)

and the coupling is realized via the DFT+DMFT self-consistency condition invoking the com-
putation of the complete lattice Green function.

3.3 Relevance of charge self-consistency

There is surely an intuitive believe that charge self-consistency is a good thing to have in an
electronic structure calculation. But let us try to identify concrete features from a DFT+DMFT
perspective that renders it superior to the simpler one-shot framework. Before doing so, one
should mention that charge self-consistent DFT+DMFT calculations are numerically heavier
than the latter. Not only because of the additional solution of a DFT problem at each iteration
step, though especially for large supercell computations this further effort is still not negligible.
What matters more is the usually slower convergence when demanding charge self-consistency,
since the correlation-induced charge redistributions need additional numerical steps to settle.
Concerning the advantageous features, several points are noteworthy. First, the orbital occu-
pations within the correlated subspace are due to change because of the relaxing surrounding
electron structure. Second, importantly, the remaining electronic structure outside the corre-
lated subspace C (i.e. ligand states, etc.) may also “react” to the local-Coulomb effect within C.
The interweaving of both of these effects is very important for, e.g., orbital polarizations, local
magnetic moments, magnetic exchange, and, not to forget, the total energy EDFT+DMFT. Thus,
for instance, even if the local orbital occupations within C do not change much with charge
self-consistency, the effect on a possible magnetic ordering may still be crucial.
It is obvious that the degree of correlation-induced charge redistributions also depends on the
symmetry of the system. In highly-symmetric compounds, such as the cubic perovskite and
“DMFT pet” SrVO3, the impact of charge self-consistency is expected to be minor. But for
lower-symmetry problems, often associated with various symmetry-inequivalent sites (such as
oxide heterostructures), the effects can be crucial. Furthermore, for materials close to a Mott
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transition, the systems are very susceptible to perturbations in the electronic structure, and
charge self-consistency can have obvious qualitative effects, even if the crystal symmetry is
seemingly high. We will discuss in section 4 the metal-insulator transition in V2O3 as a promi-
nent example.
Two general features are often observed in charge self-consistent DFT+DMFT. In cases where
one-shot calculations lead to strong orbital polarization, e.g., within a crystal-field split 3d(t2g)
manifold, charge self-consistency weakens this tendency. This is understandable from the fact
that a strong orbital polarization affects the ligand neighborhood in order to relax the elec-
tronic structure. This relevant “reaction” of the neighboring electrons has usually the effect of
screening the original strong orbital polarization, i.e., reducing it from its one-shot magnitude.
Second, it is furthermore observed that charge self-consistency tends to wash out differences
between varying double-counting schemes [25].

4 An illustrative materials example:
Metal-insulator transition in V2O3

After all the formal theory, the last section shall be used to discuss a concrete application of
charge self-consistent DFT+DMFT to a challenging materials problem. We will realize that
the theoretical description of the famous V2O3 problem, benefits strongly from charge self-
consistency.

4.1 Phase diagram and basic materials characteristics

Since about fifty years, vanadium sesquioxide V2O3 poses a demanding problem in the under-
standing of correlated materials [26–28]. In the field of realistic interacting solid-state systems,
the compound has without doubt the second most prominent phase diagram [26, 27], after the
one of high-Tc cuprates. Its canonical finite-temperature form (see Fig. 3a) includes three key
phases, namely a paramagnetic-metallic (PM) one, a paramagnetic-insulating (PI) one, and an
antiferromagnetic-insulating (AFI) phase at finite T . At ambient T and pressure, the stoichio-
metric compound is stable in the PM phase with a corundum crystal structure, i.e., the system
is metallic at room temperature. The corundum structure (cf. Fig. 3b) has trigonal symmetry
with V dimers along the c-axis and a V-based honeycomb lattice in the ab-plane. Upon lower-
ing the temperature, a metal-insulator transition (MIT) towards the AFI phase, with notably a
monoclinic crystal structure, occurs at TN ∼ 155 K.
Formally, in V2O3, vanadium is in the oxidation state 3+, i.e., a valence configuration 3d2.
Within the VO6 octahedra, the V(3d) manifold is first split into higher-energy eg and lower-
energy t2g states due to the octahedral crystal field. Because of the tilted orientation of those
octahedra, the additional trigonal crystal field splits threefold V-t2g into a1g and two degenerate
eπg states. There are numerous DFT investigations of this compound [29–33]. On the corre-
sponding level, a low-energy V-t2g bandwidth of W ∼ 2.6 eV (see Fig. 4), harboring the two
electrons in the occupied part, results around the Fermi level εF. The a1g orbital points along the
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Fig. 3: Basic information on V2O3. (a) Temperature vs. pressure/doping phase diagram with
the following phases: paramagnetic metal (PM), paramagnetic insulator (PI) and antiferro-
magnetic insulator (AFI). The ’CO’ area marks the PI-PM crossover region. (b) Corundum
structure with V (blue) and O (red), left: view with c-axis vertical; and right: view along c-axis.

c-axis and along the V-V dimers, which therefore display a pronounced bonding/anti-bonding
splitting. The eπg orbitals point inbetween the oxygens and are expected to describe more local-
ized behavior than a1g. An orbital polarization n(eπg )/n(a1g) = 1.44/0.56 = 2.57 in favor of
eπg is obtained in DFT. Note that in the low-T monoclinic AFI phase, the V-V dimer distance
grows and does not shrink as in the akin VO2 compound. Thus a straightforward Peierls-like
mechanism due to dimerization is not at the origin of the metal-insulator transition. But the in-
plane degeneracy in the V-V distances within the honeycomb lattice is broken in the monoclinic
phase. Thus after cubic and trigonal components in the crystal field, there is yet a further mono-
clinic one appearing, eventually splitting the eπg degeneracy. As seen in Fig. 3a, doping with Cr
(or application of negative pressure) at ambient temperature results in another metal-insulator
transition from the PM to the PI phase for about 1.5% of Cr dopants. This MIT is particu-
larly interesting, since apparently no global symmetry is broken, i.e., the corundum symmetry
and paramagnetism remain vital. Hence, seemingly, the V2O3 phase diagram displays all char-
acteristics of a “model phase diagram” for a strongly correlated system on a lattice: strong
electronic correlations create local magnetic moments that order at low temperature via a MIT
in an antiferromagnetic phase; upon application of negative pressure the lattice expands and a
different MIT occurs due to a reduction of the hopping, while application of positive pressure
or Ti doping stabilizes the metal due to a strengthening of the hopping. So far, so nice. But
this simplistic model picture of V2O3 has attained serious cracks over the many years of inves-
tigation, suggesting that especially the doping with Cr or Ti results in much more intriguing
physics than originally envisioned. This lecture is not the place to go into full detail of this, but
let us remark on only one relevant aspect (for more on this matter see, e.g., Ref. [34]). Though
Cr(Ti) doping has the same phenomenological effect as negative(positive) pressure, i.e., driving
localization(itinerancy), they do not coincide in terms of the microscopic mechanism. Namely,
while Cr doping indeed expands the lattice [35], Ti doping does not contract the lattice, but
actually also expands it (albeit not as strongly as Cr doping) [36].
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Fig. 4: Local V-t2g density of states (DOS) for V2O3.

4.2 Electronic correlations within DFT+DMFT

When going beyond DFT for this strongly correlated material, the transition-metal t2g electrons
are usually chosen to form the correlated subspace of V2O3. An interacting Hamiltonian of
Slater-Kanamori form (54), is conveniently governing this subspace. From a Hubbard U∼5 eV,
the ratio U/W ∼ 2 puts the V2O3 system well into the strongly correlated regime. As the
corundum structure builds up on two formula units in its primitive cell, there are four symmetry-
equivalent V ions to take care of in multi-site DFT+DMFT. Also on the latter level, there exist
already many studies for this hallmark material [37–39, 14, 40–43].
In the following, we want to the restrict the discussion to the paramagnetic regime. We set
the local Coulomb interactions to U = 5 eV and JH = 0.7 eV and perform the calculations
for T = 387 K (β = 30 eV−1) and T = 193 K (β = 60 eV−1). The focus is on two structural
cases, namely the stoichiometric corundum unit-cell and the effective 2.8% Cr-doped corundum
unit-cell, both based on the crystal data of Dernier [35]. Note importantly, that the cell with
effective Cr doping differs only via the lattice parameters and the Wyckoff positions of V and O
compared to the stoichiometric cell. In other words, the effect of 2.8% Cr dopants is taken into
account only on the average by an effective refinement of the vanadium and oxygen positions.
The explicit effects of the different valence of Cr compared to V as well as local structural
relaxations due to Cr impurities are neglected. This approximation of the effect of Cr doping
renders the computations in the doped case simple, but it is also a rough one. Nonetheless,
this approximate treatment of Cr doping has nearly exclusively been used in former theoretical
assessments of Cr-doped V2O3.
Figure 5 displays the k-integrated spectral functions A(ω) at stoichiometry and with effec-
tive Cr doping. From the total spectral functions, three observations are readily made. First,
vanadium sesquioxide is indeed a strongly correlated material, since it shows a substantially
renormalized quasiparticle peak and lower/upper Hubbard bands due to the spectral-weight
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Fig. 5: DFT+DMFT k-integrated spectral functions A(ω) for stoichiometric and effective Cr-
doped (see text) V2O3 at T = 387K (top) and T = 193K (bottom), respectively. (a) total A(ω)
and (b) local V-t2g A(ω).

transfer to incoherent local excitations at higher energy. Second, in line with the experimental
phase diagram, with effective Cr doping the system is indeed more strongly correlated than at
stoichiometry. Third, the spectral-weight transfer from low energy to high energy is stronger
at higher temperatures. This means, that there is a rather small coherence scale of the QPs,
leading to an increasing effective localization of the corresponding electrons for T larger than
that scale. On the local level, the orbital polarization between eπg and a1g is increased with
correlations, actually from the DFT value n(eπg )/n(a1g) = 1.44/0.56 to the DFT+DMFT val-
ues n(eπg )/n(a1g) = 1.58/0.42 at stoichiometry and n(eπg )/n(a1g) = 1.60/0.40 for effective Cr
doping. The increase of orbital polarization is explained by a trigonal-crystal-field enhancement
due to electronic correlations [38, 39].
For completeness, Fig. 6 exhibits the k-resolved spectral function of stoichiometric V2O3 along
high-symmetry lines in the first Brillouin zone. Note that because of the strong correlations,
the dispersion of the QPs is now “squeezed” in an energy window [−0.3, 0.3] eV, whereas on
the DFT level we remember an effective bandwidth of W ∼ 2.6 eV. The spectral weight in
this low-energy region is already substantially broadened, only along kz, i.e., the line Z-Γ ,
displays a rather coherent QP part. The spectrum is in good agreement with recent angle-
resolved photoemission (ARPES) experiments by Vecchio et al. [44], though the electron pocket
at Γ is even deeper in energy within the experimental data.
Let us finally compare the electronic charge density ρ(r) from DFT and from charge self-
consistent DFT+DMFT. Figure 7a shows the bonding charge density ρbond = ρ − ρatomic

within the ab-plane of V2O3. The function ρbond is often more instructive than the pure ρ, since
the latter is a large-valued function that mainly marks the ionic positions on the lattice with
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Fig. 6: DFT+DMFT k-resolved spectral functionA(k, ω) for stoichiometric V2O3 at T = 193K
along high-symmetry lines in the first Brillouin zone.

its maxima. On the other hand, ρbond as a difference function has more contrast and reveals
the charge redistributions due to the crystal environment. Here, one can see the charge trans-
fer from V to O, especially originating from V-eg. This is reasonable since V-eg is strongly
hybridized with O(2p), which mainly responsible for the crystal bonding. The difference plot
of ρdiff = ρDFT+DMFT − ρDFT between DFT+DMFT and DFT in Fig. 7b verifies the already
mentioned observation of enhanced V-eπg filling with correlations.

4.3 Charge self-consistency vs. one-shot

All the shown data corresponds to charge self-consistent DFT+DMFT. The relevance of charge
self-consistency becomes already clear from our last finding of increased V-eπg filling with cor-
relations. This increased filling affects the surrounding electronic structure and therefore has to
be included on a complete self-consistent level.
However in V2O3, there are even much more dramatic consequences of charge self-consistency,
which partly only become clear if one performs the same calculations at the simple one-shot
level. If one does so, two major differences are observed. First, the orbital polarization al-
ready at stoichiometry is much larger [38,39] than with charge self-consistency [14,41–43,34],
nearly close to fully polarized V-eπg . Hence the trend of trigonal-crystal-field enhancement
due to correlations is artificially too strong because of the missing feedback of the rest of
the system. This is verified by the recent ARPES measurements [44] at stoichiometry, which
show a sizable a1g occupation close to the finding with charge self-consistency. Second, and
maybe even more relevant, the effective Cr-doped structure is already insulating in one-shot
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(a)

(b)

Fig. 7: Inclined view on the charge density within the ab-plane of V2O3. (a) DFT+DMFT bond-
ing charge density ρbond = ρ− ρatomic. Black lines are guides to the eye for the V-based honey-
comb structure. Note that this is an effective honeycomb lattice, which is not exactly flat due two
different height positions of V along c. (b) Charge-density difference ρdiff = ρDFT+DMFT−ρDFT

between DFT+DMFT and DFT. Note the enlarged occupation of the signatures of the V-eπg or-
bitals within DFT+DMFT (deep red parts).

DFT+DMFT (e.g. Ref. [39]). Now one could say that is a good thing, because it matches with
the phase diagram for that amount of doping. But one has to remember the strong simplifica-
tions that are used to arrive at that result: neglect of charge self-consistency as well as neglect
of the explicit defect chemistry due to the Cr dopants. Thus, this “positive” result truly emerges
from the (neglect-)error cancellation, and does not explain the true driving force behind the
PM-PI transition.

In fact recent work [34] shows, that an honest treatment of both electronic correlations and
explicit defect chemistry due to doping is relevant to understand the phase diagram of V2O3.
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5 Concluding remarks

In this short lecture, we introduced the self-consistency cycles of different electronic structure
approaches with an emphasis on charge self-consistency in DFT+DMFT. The interplay between
the basic-formal schemes as well as rather technical-numerical aspects is of natural importance
in this field. Furthermore, although the described methodologies and their concrete computer-
code implementations are often very elaborate, one should never use them in a “black-box”
manner. It remains very important as a physicist or materials scientist to interpret and weigh the
obtained data, if possible by thoughtful consideration of experimental knowledge. Hence, true
scientific results only appear after the numerical data is processed by a critical mind.
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7.2 Eva Pavarini

1 Introduction

Most electronic properties of solids and molecules can be described – in the non-relativistic
limit and in the Born-Oppenheimer approximation – by the electronic many-body Hamiltonian

ĤNR
e = −1

2

∑

i

∇2
i −

∑

i

Z

ri
+
∑

i>j

1

|ri − rj|
. (1)

In practice, finding the exact eigenvalues and eigenvector of this Hamiltonian for a given sys-
tem is impossible, unless the number of electrons is very small. This might sound as a gloomy
conclusion for condensed-matter physics. The positive side is that, however, the exact solution
of the many-body Hamiltonian (1) is, most likely, not even useful for understanding the prop-
erties of matter. One can grasp the reason by looking to a many-body problem for which an
exact solution was found, the classical gravitational N -body system. Even without the compli-
cation of quantum mechanics, describing the behavior of many interacting classical bodies is a
formidable task. This complexity is remarkable, since in the absence of interactions everything
seems beautifully simple. Let us remind ourselves why. If a system is made of a single body
with mass m1, and its initial position, r1(0), and velocity, ṙ1(0), are known, we can predict its
position at any time in the future by solving the trivial equation

m1r̈1 = 0.

If our system contains two such bodies, we can just do the same, the only possible complication
being collisions; as a matter of fact, if we exclude collisions, the first body does not influence at
all the second. The system of independent equations that we have to solve is just

m1r̈1 = 0 ∧ m2r̈2 = 0.

In the large-N limit, assuming that all bodies have the same mass mi = m and collisions are
elastic, the system behaves as an ideal gas, whose macroscopic properties are described by the
famous ideal-gas law PV = NkBT . As soon as we switch on the gravitational interaction, how-
ever, everything is suddenly awfully complicated. The two-body problem is already difficult by
itself. The system of equations is now

{
m1r̈1 = +F12

m2r̈2 = −F12

where

F12 = −Gm1m2r̂

r2
, r = r1 − r2

is the force that the second body exerts on the first. This system can be solved exactly after
changing variables to the center-of-mass and relative coordinates. Its solution yields a surprising
emerging behavior, i.e., closed elliptical orbits. Let us add now one body more





m1r̈1 = +F12 + F13

m2r̈2 = −F12 + F23

m3r̈3 = −F13 − F23.

(2)
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The three-body problem (2) was a mystery for a long time. It can even present chaotic effects;
when chaos reigns, the behavior of the system in the future is very sensitive to small changes
in the initial conditions. The problem was solved by Karl F. Sundman at the beginning of last
century, who found – few cases excluded – a convergent series solution in powers of t1/3 [1].
The extension to the general N -body problem arrived in 1991 thanks to Qiudong Wang, at the
time a young researcher. This story is nicely told in a review article by Florin Diacu [2], who
concludes

Did this mean the end of the N -body problem? Was this old question – unsuccess-
fully attacked by the greatest mathematicians of the last three centuries – merely
solved by a student in a moment of rare inspiration? [..] Paradoxically [..] not; in
fact we know nothing more than before having that solution.

The explanation is that

[..] these series solutions [...] have very slow convergence. One would have to sum
up millions of terms to determine the motions of the particles for insignificantly
short intervals of time. The round-off errors make these series unusable in numer-
ical works. From the theoretical point of view, these solution add nothing to what
was previously known about the N -body problem.

Indeed, we are not even interested in knowing where all particles are at each moment. We
do not want to reproduce the complete history of the formation of the solar system, atom by
atom. We rather look for answers to questions such as “Is the solar system stable? If not, in
what time frame will chaotic behavior manifest itself?”. We can now foresee that a similar
conclusion would likely apply to the quantum case, had we at hand the exact solution of this,
even more complex, N -body problem. Such a solution would contain too much information.
We would need the lifetime of the universe or longer for extracting the answer to one of our
questions, e.g., “why are some systems metals and other insulators?” or “ what is the origin
of superconductivity?”. We would perfectly reproduce experimental phenomena, without being
able to tell anything about their origin.1 We have thus to abandon the idea that all problems
can be solved by a single magic algorithm which returns the exact solution, unless we can,
in addition, build an oracle machine powerful enough to eliminate all the irrelevant data and
identify the essential elements, providing answers to the real questions. We cannot exclude that
one day artificial intelligence will be able to do that for us [3]. In the mean time, the strategy
is to build minimal materials-specific models which capture the essence of the phenomenon we
want to understand, and solve them as accurately as possible. Unfortunately, even for those
models, in most cases only approximate solutions are available. Thus the simplifications made
and the approximations adopted have to be put to the test. In this imperfect world, in which
neither the model nor the solution method are exact, and in which there is no guarantee that the
choices we made are indeed good enough, we have to try to explain reality. Finding realistic

1Indeed, agreement with experiments is highly overrated. A useful theory should explain, not merely reproduce,
experimental measurements.
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but minimal models (and, at the same time approximate methods of solution that work) is, of
course, not at all trivial, and often involves refinements and corrections. This approach, despite
its non-systematic, trial-and-error nature, proved itself very successful and allowed physicists to
understand superconductivity, the Kondo effect, the metal-insulator transition, and much more.
The first step to make progress is to rewrite the Hamiltonian in second quantization, the formal-
ism that allows us to deal with many-body states and operators in a compact and elegant way.
It is worth to remind ourselves that setting up the Hamiltonian in second quantization requires
to identify and choose a complete one-electron basis. The selection of the basis is important,
because certain choices allow us to build better models than others. Here better indicates a
more advantageous compromise between two competing needs, (i) that the model is as realis-
tic as possible and (ii) that its associated Fock space is as small as possible. The role of the
basis becomes perhaps more clear with a simple example. The low-energy bound states of the
hydrogen atom can be described, of course, in a basis of plane waves; the number of plane
waves required is extremely high, however. In the many-body case, the basis might make the
difference between being able to solve the relevant model or not. In this lecture we will adopt
as basis Wannier functions, ψimσ(r). First we will write the Hamiltonian using the complete
set, and later we will see how to construct minimal models. Using a complete set of Wannier
functions, the Hamiltonian (1) can be expressed as Ĥe = Ĥ0 + ĤU . The one-electron term, Ĥ0,
describes the kinetic energy and the attraction between electrons and nuclei, and is given by

Ĥ0 = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′ c
†
imσci′m′σ.

Here c†imσ (cimσ) creates (destroys) an electron with spin σ in orbital m at site i. The on-site
(i = i′) terms yield the crystal-field matrix εm,m′ = ti,im,m′ while the i 6= i′ contributions are the
hopping integrals. The parameters are given by

ti,i
′

m,m′ = −
∫
drψimσ(r)

(
−1

2
∇2 + vR(r)

)
ψi′m′σ(r), (3)

where vR(r) is the electron-nuclei interaction. The electron-electron repulsion ĤU is

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′ c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ,

where the (bare) Coulomb integrals can be expressed as

U iji′j′

mp m′p′ =

∫
dr1

∫
dr2 ψimσ(r1)ψjpσ′(r2)

1

|r1 − r2|
ψj′p′σ′(r2)ψi′m′σ(r1).

The simplest version of Ĥe is the so-called Hubbard model, in which we consider only one
orbital (m=m′=p=p′) and we assume that the Coulomb term is local (i=i′=j=j′). This yields

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓ =
∑

kσ

εkc
†
kσckσ + U

∑

i

n̂i↑n̂i↓. (4)

Even this apparently simple model cannot be solved exactly in the general case. This is because
it contains already all the essence of the electronic many-body problem.
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2 LDA+DMFT

The Hubbard model (4) and its multi-orbital generalizations are the minimal models for de-
scribing the Mott metal-insulator transition. The most successful method of solution capturing
the nature of the Mott transition is DMFT, dynamical mean-field theory [4–7]. It is based on
the local self-energy approximation, i.e., the assumption that Σσ(k, ω) ∼ Σσ

l (ω). DMFT is
exact for U = 0 (band limit), for ti,i′ = 0 (atomic limit), and in the limit of infinite coordination
number [4, 5]. In the present section we will illustrate the basic ideas of this approach. First
we will use a toy model that can be solved analytically, the Hubbard dimer. For this model the
coordination number is equal to one, and thus, as one might expect, a local self-energy is a bad
approximation. The example is nevertheless very useful to explain the essence of the method.
Next we will extend to the one-band Hubbard model, and finally we will generalize to realistic
multi-orbital many-body Hamiltonians.

2.1 DMFT for the Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓,

with i = 1, 2. The ground-state for N = 2 electrons (half filling) is the singlet2

|G〉H = |2, 00〉− =
a2√

2

[
c†1↑c

†
2↓ − c†1↓c†2↑

]
|0〉+

a1√
2

[
c†1↑c

†
1↓ + c†2↑c

†
2↓

]
|0〉 (5)

with

a2
1 =

1

∆(t, U)

∆(t, U)− U
2

, a2
2 =

4t2

∆(t, U)

2

∆(t, U)− U ,

and

∆(t, U) =
√
U2 + 16t2.

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
.

In the T → 0 limit, the exact local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

1

4

[
1 + w

iνn − (E0(2)− εd + t− µ)
+

1− w
iνn − (E0(2)− εd − t− µ)

+
1− w

iνn − (−E0(2) + U + 3εd + t− µ)
+

1 + w

iνn − (−E0(2) + U + 3εd − t− µ)

]
,

2You can find all eigenstates and eigenvalues of this model for arbitrary filling in my chapter in Ref. [8].
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where νn = π(2n + 1)/β are fermionic Matsubara frequencies, µ = εd + U/2 is the chemical
potential, and the weight isw = 2a1a2. The local Green function can be rewritten as the average
of the Green function for the bonding (k = 0) and the anti-bonding state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0, iνn)︸ ︷︷ ︸
Gσ(0,iνn)

+
1

iνn + µ− εd − t−Σσ(π, iνn)︸ ︷︷ ︸
Gσ(π,iνn)

)
.

The self-energy is given by

Σσ(k, iνn) =
U

2
+
U2

4

1

iνn − eik 3t
.

The self-energies Σσ(0, iνn) and Σσ(π, iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π, iνn) +Σσ(0, iνn)

)
=
U

2
+
U2

4

iνn
(iνn)2 − (3t)2

.

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π, iνn)−Σσ(0, iνn)

)
,

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

which for U = 0 becomes

F σ
0 (iνn) =

t2

iνn
.

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

.

It is important to point out that the local Green function and the local self-energy satisfy the
following local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

,

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
.
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Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is close to the local
Green function of the original problem. Is this possible? Let us adopt as auxiliary model the
Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓. (6)

The first constraint would be that Hamiltonian (6) has a ground state with the same occupations
of the 2-site Hubbard model, i.e., at half filling, nd = ns = 1. The condition is satisfied if
εs = µ. This can be understood by comparing the Hamiltonian matrices of the two models in
the Hilbert space with N = 2 electrons. Let us order the two-electron states of the Hubbard
dimer as

|1〉 = |2, 1, 1〉 = c†1↑c
†
2↑|0〉,

|2〉 = |2, 1,−1〉 = c†1↓c
†
2↓|0〉,

|3〉 = |2, 1, 0〉 = 1√
2
[c†1↑c

†
2↓ + c†1↓c

†
2↑]|0〉,

|4〉 = |2, 0, 0〉 = 1√
2
[c†1↑c

†
2↓ − c†1↓c†2↑]|0〉,

|5〉 = |2, 0, 0〉1 = c†1↑c
†
1↓|0〉,

|6〉 = |2, 0, 0〉2 = c†2↑c
†
2↓|0〉.

In this basis the Hamiltonian has the matrix form

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




.

The ground state, the singlet given in Eq. (5), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




.
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By comparison, we may see that if εs = εd + U/2, the ground-state of ĤA
2 has the form of the

ground-state for the Hubbard dimer, i.e.,

|G〉A =
α2√

2

[
c†d↑c

†
s↓ − c†d↓c†s↑

]
|0〉+

α1√
2

[
c†d↑c

†
d↓ + c†s↑c

†
s↓

]
|0〉.

The values of α1 and α2, as well as the complete list of eigenvalues and eigenvectors of the
Anderson molecule for εs = εd + U/2 and arbitrary electron number N , can be found in the
Appendix. The impurity Green function takes then the form

Gσ
d,d(iνn) =

1

4

[
1 + w′

iνn − (E0(2)− E−(1)− µ)
+

1− w′
iνn − (E0(2)− E+(1)− µ)

1 + w′

iνn − (E−(3)− E0(2)− µ)
+

1− w′
iνn − (E+(3)− E0(2)− µ)

]
,

where

E0(2)− E±(1)− µ = −1

4

(
2∆(t, U/2)±∆(t, U)

)
,

E±(3)− E0(2)− µ = +
1

4

(
2∆(t, U/2)±∆(t, U)

)
,

w′ =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
.

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

.

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

.

The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
.

For U = 0, Gσ
d,d(iνn) equals the non-interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
.

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.
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Fig. 1: Green functions of the Hubbard dimer (t = 1, U = 4) and the Anderson molecule
(εs = εd+U/2) in the zero temperature limit. Left panels, blue: Hubbard dimer with local self-
energy only, i.e., with ∆Σσ

l (ω) = 0. Left panels, orange: Anderson molecule. Right panels:
Exact Green function of the Hubbard dimer. Dashed lines: poles of the Green function of the
Anderson molecule (left) or Hubbard dimer (right).

In Fig. 1 we show the impurity Green function of the Anderson molecule (orange, left panels)
and the local Green function of the 2-site Hubbard model, in the local self-energy approximation
(blue, left panels) and exact (blue, right panels). Comparing left and right panels we can see
that setting ∆Σσ

l (ω) = 0 yields large errors. The left panels demonstrate, however, that the
spectral function of the Anderson molecule is quite similar to the one of the Hubbard dimer
with ∆Σσ

l (ω) = 0. The small remaining deviations come from replacing, in the impurity
Dyson equation, the non-interacting impurity Green function with Gσ

i,i(iνn) in the local self-
energy approximation, i.e., with the bath Green function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
,

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

.



7.10 Eva Pavarini

We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (6) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.

3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

[
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

]
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn − εa
+

1

iνn + εa

)

where p2 = U2/8ε2
a and εa =

√
9t2 + U2/4. If we use the Anderson molecule as quantum-

impurity model we neglect ∆Fl(iνn); the error made is small, as shown in the left panels of
Fig. 1. To further improve we would have to modify the auxiliary model adding more bath sites.
Remaining with the Anderson molecule, let us compare in more detail its spectral function with
the exact spectral function of the Hubbard dimer. Fig. 2 shows that the evolution as a function
of U is different for the two Hamiltonians. Anticipating the discussion of next session, if we
compare to the spectral function of the actual lattice Hubbard model, we could say that the
Anderson molecule partially captures the behavior of the central “quasi-particle” or “Kondo”
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Fig. 2: Imaginary part of the Green function of the Anderson molecule (orange) and Hubbard
dimer (blue) in the zero temperature limit. For the Hubbard dimer the exact Green functions
are used, as in the right panels of Fig. 1. Parameters: t = 1, εs = µ. Top: U = 0 (left) and
U = 4t (right). Bottom: evolution with increasing U from 0 to 4t in equal steps.

peak with increasing U , although the Kondo effect itself is unrealistically described; as a matter
of fact, the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case
of the Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic
bath. On the other hand, the Hubbard dimer captures well the Hubbard bands and the gap in the
large-U limit. The example of the Anderson molecule also points to the possible shortcomings
of calculations for the lattice Hubbard model (4), in which the DMFT quantum-impurity model
is solved via exact diagonalization, however using a single bath site or very few; this might
perhaps be sufficient in the limit of large gap,3 but is bound to eventually fail approaching
the metallic regime. Indeed, this failure is one of the reasons why the solution of the Kondo
problem required the development of – at the time new – non-perturbative techniques such as
the numerical renormalization group.

3For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [9].
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2.2 DMFT for the one-band Hubbard model

The Hubbard Hamiltonian (4) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (7)

where 〈ii′〉 is a sum over first neighbors. For U = 0, at half-filling, this Hamiltonian describes
a metallic band. For t = 0 it describes an insulating collection of disconnected atoms. Some-
where in between, at a critical value of t/U , a metal to insulator transition must occur. In this
section we will discuss the DMFT solution of (7) and the picture of the metal-insulator transi-
tion emerging from it. The first step consists in mapping the original many-body Hamiltonian
into an effective quantum-impurity model, such as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

.

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group or quantum Monte
Carlo (QMC). Here we describe the DMFT self-consistency loop for a QMC quantum-impurity
solver. Solving the quantum-impurity model yields the impurity Green function Gσ

d,d(iνn).
From the impurity Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
.

Next, we adopt the local approximation, i.e., we assume that the self-energy of the Hubbard
model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

,

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, and

Gσ
ic,ic(iνn) = Gσ

d,d(iνn).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking at a simpler self-
consistent method, the static mean-field or Hartree-Fock approach.4 In the static mean-field

4Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 3: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

approximation we replace the Coulomb interaction of the Hubbard model (7) with a one-body
operator

Un̂i↑n̂i↓ −→ U
(
n̄i↑n̂i↓ + n̂i↑n̄i↓ − n̄i↑n̄i↓

)
,

where n̄iσ is the expectation value of n̂iσ; for simplicity, here we additionally assume that
n̄iσ = n̄σ. The approximation is then identical to replacing the Hamiltonian with

ĤMF =
∑

kσ

[
εk + U

(
1

2
− σm

)]
n̂kσ, (8)

where σ = +1 for spin up and σ = −1 for spin down; thus heff = 2Um plays the role of an
effective field (Weiss field). The self-consistency criterion is simply

n̄σ = 〈n̂σ〉MF,

where the expectation value 〈n̂σ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β[εk+U( 1
2
−σm)−µ]

1 + e−β[εk+U( 1
2
−σm)−µ]

.

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (8) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U , however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin
up and spin down bands split, and eventually a gap can open. This is shown in Fig. (3). The
static mean-field correction in Eq. (8) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
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Fig. 4: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [10]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [11].

phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in
a correlated metal. In DMFT the role of the Weiss field is played by the bath Green function
Gσi,i(iνn). The emerging picture of the Mott transition is described in Fig. 4 for a representative
single-band material. In the U = 0 limit, the spectral function A0(ω) is metallic at half filling
(top left panel). For finite U , if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency
loop starts with A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still
similar to A0(ω). This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 4. Further
increasing U/t, sizable spectral weight is transferred from the zero-energy quasi-particle peak
to the lower (LH) and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed
in the U = 1 panel of Fig. 4. The system is still metallic, but with strongly renormalized masses
and short lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than
a critical value (U ≥ 1.5 in the figure) a gap opens and the system is a Mott insulator. When
this happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+

A

ω + i0+
.

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W , where W is the bandwidth.
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2.3 DMFT for multi-orbital models

The multi-orbital Hubbard-like Hamiltonian has the form

Ĥ = Ĥ0 + ĤU

Ĥ0 = −
∑

ii′

∑

σ

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ,

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this form, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn + µ)→ (iνn + µ)1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the unity matrix. As a consequence, the local Green function, the bath Green func-
tion, the hybridization function and the self-energy also become matrices in spin-orbital space

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 5.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive – how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [10]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
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Fig. 5: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

is the SO(3) rotational invariance of spins, from which follows

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn),

where A = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Aσ,σ
′

m,m′(τ) = δσ,σ′ Am,m′(τ) = δσ,σ′ Am′,m(τ).

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 5.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Aσ,σ
′

m,m′(τ) = δσ,σ′ Am,m(τ) δm,m′ .
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2.4 Minimal material-specific models from LDA

How do we build realistic Hubbard-like models for correlated materials? The state-of-the art
approach relies on constructing, for a given system, material-specific Wannier functions. The
latter can be obtained via electronic structure calculations based on density-functional theory
(DFT) [12,13]. If we construct a complete basis of Wannier functions, the complete many-body
Hamiltonian takes the form that we have seen in the introduction, Ĥ = Ĥ0 + ĤU , with

Ĥ0 = ĤLDA = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′c
†
imσci′m′σ,

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ.

The potential entering in the hopping integrals, Eq. (3), is given by the self-consistent DFT
reference potential

vR(r) = ven(r) + vH(r) + vxc(r) = −
∑

α

Zα
|r −Rα|

+

∫
dr′

1

|r − r′| + vxc(r).

The formula above shows that vR(r) includes Coulomb effects, via the long-range Hartree term
vH(r) and the exchange-correlation contribution vxc(r); for the latter we use, e.g., the LDA
approximation. Thus in our Hamiltonian some Coulomb effects are included both in Ĥ0, via
vR(r), and in ĤU . In order to avoid double counting, we have then to subtract from ĤU the
effects already included in Ĥ0. Thus we have to replace

ĤU → ∆ĤU = ĤU − ĤDC,

where ĤDC is the so-called double-counting correction. Unfortunately we do not know which
correlation effects are indeed included in Ĥ0 via the LDA reference potential, and therefore the
exact expression of ĤDC is also unknown. The remarkable successes of the LDA suggest, how-
ever, that in many materials the LDA is overall a good approximation, and therefore, in those
systems at least, the term ∆ĤU can be completely neglected. What about strongly-correlated
materials? Even in correlated systems, most likely the LDA works rather well for the delocal-
ized electrons or in describing the average or the long-range Coulomb effects. Thus one can
think of separating the electrons into uncorrelated and correlated; only for the latter we do take
the correction ∆ĤU into account explicitly, assuming furthermore that ∆ĤU is local or almost
local [12]. Typically, correlated electrons are those that partially retain their atomic character,
e.g., those that originate from localized d and f shells; for convenience, here we assume that
in a given system they stem from a single atomic shell l (e.g., d for transition-metal oxides or
f for heavy-fermion systems) and label their states with the atomic quantum numbers l and
m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.
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Fig. 6: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [14].

Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given
by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure, however.
By splitting electrons into correlated and uncorrelated we implicitly assume that the main effect
of the latter is the renormalization or screening of parameters for the former, in particular of
the Coulomb interaction. The computation of screening effects remains, unfortunately, a chal-
lenge. The calculation of exact screening would require the (impossible) solution of the original
many-body problem, taking all degrees of freedom into account. Commonly-used approximate
schemes are the constrained LDA approximation (cLDA) and the constrained random-phase
approximation (RPA) [12, 13]. Both methods give reasonable estimates of screened Coulomb
parameters for DMFT calculations. Typically cRPA calculations include more screening chan-
nels and are performed for less localized bases than cLDA calculations; thus cRPA parameters
turn out to be often smaller than cLDA ones. To some extent, the difference can be taken as an
estimate of the error bar. After we have selected the electrons for which we think it is necessary
to include explicitly the Hubbard correction, in order to build the final Hamiltonian for DMFT
calculations, it is often convenient to integrate out or downfold, in part or completely, the weakly
correlated states. There are different degrees of downfolding. The two opposite extreme lim-
its are (i) no downfolding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states
(ii) massive downfolding, i.e., downfold all weakly correlated states. If we perform massive
downfolding, e.g., downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian
relevant for DMFT takes a simpler form. The LDA part is limited to the selected orbitals or
bands, which, in the ideal case, are decoupled from the rest

ĤLDA = −
∑

σ

∑

ii′

∑

mαm
′
α

ti,i
′

mα,m
′
α
c†imασ ci′m′ασ.
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The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamil-
tonian containing also, e.g., O p states, or we rather downfold all states but the 3d and work
with a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals
in the quantum-impurity problem is the same.5 One advantage of massive downfolding is that
the double-counting correction typically becomes a shift of the chemical potential, and it is
therefore not necessary to calculate it explicitly. A second important advantage is that the in-
terpretation of the final results is simpler. Instead, a disadvantage is that the basis functions are
less localized, and therefore the approximation of the Coulomb interaction to a local operator
might be less justified, and in some cases it might be necessary to include non-local Coulomb
terms. The effect of downfolding on the localization of Wannier functions is illustrated for
example in Fig. 6. Considered all advantages and disadvantages, what is then the best way of
performing DMFT calculations? There is no universal answer to this question; it depends on the
problem we are trying to solve and the system we are studying. Independently on the degree of
downfolding we chose, it is important to point out that a clear advantage of Wannier functions
in general is that they carry information about the lattice, bonding, chemistry and distortions.
This can be seen once more in Fig. 6, where orbitals are tilted and deformed by the actual struc-
ture and chemistry of the compound. Indeed, one might naively think of using an “universal”
basis, for example atomic functions, the same for all systems. Apart the complications arising
from the lack of orthogonality, such a basis has no built-in material-specific information, except
lattice positions. It is therefore a worse starting point to describe the electronic structure, even
in the absence of correlations; larger basis sets are required to reach the same accuracy. From
the point of view of LDA+DMFT, an advantage of an universal basis would be that it is free
from double-counting corrections; on the other hand, however, exactly because we do not use
the LDA potential to calculate the hopping integrals, we also cannot count on the successes
of LDA in the description of average and long-range Coulomb effects. For these reasons ab-
initio Wannier functions remain so far the basis of choice. They can be built via the Nth-Order
Muffin-Tin Orbital (NMTO) method [14], the maximal-localization scheme [15] or projectors.
Fig. 6 shows examples of NMTO-based Wannier functions.
No matter what construction procedure is used, a common characteristic of ab-initio Wannier
functions is that they are site-centered and localized.6 Thus a question naturally arises: How
important is it to use localized functions as one-electron basis? In the extreme limit in which
the basis functions are independent of the lattice position (i.e., they are totally delocalized), the

5The choice might influence how severe the QMC sign problem is, however.
6 Differences in localizations between the various construction procedures are actually small for the purpose of

many-body calculations, provided that the same bands are spanned in the same way.
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Fig. 7: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

Coulomb interaction parameters would be the same for every couple of lattice sites, no matter
how distant. Thus a Hubbard-like model would be hard to justify. In the other extreme case, we
could, hypothetically, adopt a basis so localized that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′δ(r − Ti). Even
for such a basis, the unscreened Coulomb interaction is not local. It is given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti − Tj|
,

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justi-
fies Hubbard-like models. The example illustrates also how far we can go. A major problem
with the basis discussed above is that it would be impossible to properly describe bonding,
since the hopping integrals would be zero. Although such a basis is, of course, never used to
build many-body models, there is a tempting approximation that has similar flaws. If one uses
DFT-based electronic-structure techniques that tile the space in interstitial and non-overlapping
atomic spheres (e.g., the LAPW method), it is tempting to use as basis for correlated electrons
the atomic functions defined inside the atomic spheres. These functions are, by construction,
much more localized than Wannier orbitals (even if no downfolding is performed in the Wannier
construction). However, they do not form a complete basis set in the space of square-integrable
functions. This is obvious because such a basis does not even span the LDA bands; to reproduce
the bands we need, in addition, functions defined in the interstitial region. This is illustrated in
Fig. 7 for a simple example of two quantum well potentials.7 We therefore cannot use it to
write the many-body Hamiltonian in the usual form Ĥ0 + ĤU . In conclusion, a basis which, as
ab-initio Wannier functions, is complete and indeed spans the bands, is better justified, although
we somewhat lose in localization.

7 Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 8: The crystal structure of the tetragonal layered perovskite Sr2RuO4. The figure has been
adapted from Ref. [16].

3 Multi-orbital Hubbard models

In this section we will discuss some of the specific effects emerging in multi-orbital Hubbard
models, pointing out the differences with respect to the case of the one-band Hubbard model.
As examples we will use perovskites with partially filled t2g shells. A representative system
of this kind is Sr2RuO4, whose layered crystal structure is shown in Fig. 8. The LDA bands
of Sr2RuO4 around the Fermi level (4d t42g configuration) are shown in Fig. 9. The figure
shows the 4d t2g bands crossing the Fermi level, in red the xz, yz bands and in blue the xy
band. Due to the layered structure, the xz and yz bands are quasi one-dimensional and the xy
band is quasi two-dimensional. Thus, they give rise, in first approximation, to a Fermi surface
made of four crossing lines (from the xz, yz bands) and a circle (from the xy band). This
is shown schematically in the left panel of Fig. 9. Experimentally, Sr2RuO4 is a correlated
metal down to 1.5 K; below this temperature it becomes an anomalous superconductor. The
two other examples considered in this lecture are orbitally ordered Mott insulators. The first is
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Fig. 9: Schematic representation of the Fermi surface of the tetragonal t42g system Sr2RuO4

(left) and the associated LDA band structure (right). The figure is rearranged from Ref. [16].
The band structure was calculated using the Nth-Order Muffin-Tin Orbital (NMTO) method.

Ca2RuO4, isoelectronic and very similar to Sr2RuO4, except that its crystal symmetry is lower
than tetragonal. The second is the 3-dimensional orthorhombic perovskite YTiO3, with the
electronic configuration 3d t12g. For all these materials, if we massively downfold all bands but
the t2g, the associated 3-band Hubbard model becomes

Ĥ =
∑

iσ

∑

mm′

εm,m′ c
†
imσcim′σ −

∑

σ

∑

i6=i′

∑

mm′

ti,i
′

m,m′ c
†
imσci′m′σ

+U
∑

i m

n̂im↑n̂im↓ +
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

− J
∑

i m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
,

where m,m′ = xy, yz, xz, and where U and J are the direct and exchange screened Coulomb
integrals for t2g electrons. The Coulomb interaction ĤU is here assumed to have full O(3)

rotational symmetry, as in the atomic limit.8 The first two terms of ĤU are the so-called density-
density terms, and the last two are the pair-hopping and spin-flip interaction. In the Hamiltonian
above we dropped the double-counting correction ĤDC, which in this case is a mere shift of the
chemical potential, as we will see later. The energies εm,m′ are the crystal-field matrix, and thus,
in principle, in the atomic limit εm,m′ = εd δm,m′ . In the following sections we will however
consider as atomic limit the case in which only the hopping integrals ti,i

′

m,m′ are zero.

8For the derivation of the Coulomb interaction ĤU for t2g electrons starting from the complete Coulomb tensor
of the free atom, see my chapter in Ref. [12].
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3.1 Atomic limit, multiplets and cubic crystal field

Let us start considering the atomic limit. For the one-band Hubbard model, in the atomic limit,
the local spectral function at half filling (d1 electronic configuration) is given by

Gσ
ii(iνn) =

1

2

[
1

iνn − ( εd − µ︸ ︷︷ ︸
E(N)−E(N−1)−µ

)
+

1

iνn − ( εd + U − µ︸ ︷︷ ︸
E(N+1)−E(N)−µ

)

]

with µ = εd + U/2. The gap is Eg(1) = U and the spectral function displays a lower and
an upper Hubbard peaks, located at energy ±U/2. In the presence of many orbitals, the Hub-
bard peaks acquire a complicated structure. This is due to the fact that the eigenstates of the
Coulomb matrix for a given number of electrons form multiplets with different energies. For
the dn configuration there are three independent Coulomb parameters on which the energy of
a multiplet depends: the direct term U , the Hund’s rule exchange coupling for t2g electrons,
J=J1, and the Hund’s rule exchange coupling for eg electrons, J2. For a free atom (symmetry
O(3)), the ground multiplet is determined by the three Hund’s rules. The first of these rules
says that the ground state has the maximum possible total spin S. Thus, for configuration d4,
the ground multiplet has S=2. Let us call −∆H the Hund’s rule energy gain, i.e., the energy
difference between the ground and the first excited spin multiplet; ∆H is a function of J1 and
J2 and is zero for J1 = J2 = 0. In cubic symmetry, the crystal field splits eg and t2g states, and
εC=εeg−εt2g>0; if εC is very large, the first Hund’s rule can be violated. In LaMnO3, where
the energy loss due to εC is smaller than ∆H , the ground multiplet has configuration t32ge

1
g and

indeed S=2 (high spin), in line with the first Hund’s rule. In Sr2RuO4 and Ca2RuO4, however,
the cubic crystal field prevails, and the ground configuration is t42ge

0
g, with S=1 (intermediate

spin). Thus, if the crystal field εC is large and n ≤ 6, the eg orbitals will stay empty, hence,
we can restrict the discussion to the t2g orbitals and the tn2ge

0
g configuration. The energy of

the corresponding multiplets are given in Tab. 1, assuming εm,m′ = εt2g δm,m′ , and setting for
convenience εt2g = 0. In the t12g configuration, the atomic Matsubara Green function is

Gσ
m(iνn) =

1

6

[
1

iνn + (εt2g − µ)
+

3

iνn − (εt2g + U − 3J − µ)

+
5/3

iνn − (εt2g + U − J − µ)
+

1/3

iνn − (εt2g + U + 2J − µ)

]
, (9)

and it is the same for all orbitals. The associated spectral function has one peak corresponding
to E(1) − E(0) − µ. This happens because there is only one state with zero electrons, the
vacuum. Instead, there are three peaks corresponding to energy E(2) − E(1) − µ; they are
associated with different multiplets of the t22g configuration (Fig. 10). The atomic gap takes the
value Eg(1) = U − 3J , i.e., it is smaller than in the case J = 0 and it is smaller than in the
one-orbital case. This expression of the atomic gap is also valid for other configurations, t22g,
t42g, and t52g. Instead, at half filling (t32g), the atomic gap is Eg(3) = U + 2J , i.e., it is enhanced
and not reduced by J . This can be easily verified by using Tab. 1.
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|N ;S,mS〉 E(N,S)

|0〉
|1; 1

2
, σ

2
〉 = c†mσ|0〉

|2; 0, 0〉a = 1√
3

[
c†xz↑c

†
xz↓ + c†yz↑c

†
yz↓ + c†xy↑c

†
xy↓

]
|0〉 U + 2J

|2; 0, 0〉b = 1√
6

[
c†xz↑c

†
xz↓ + c†yz↑c

†
yz↓ − 2c†xy↑c

†
xy↓

]
|0〉 U − J

|2; 0, 0〉c = 1√
2

[
c†xz↑c

†
xz↓ − c†yz↑c†yz↓

]
|0〉 U − J

|2; 1, σ,m′′〉 = c†mσc
†
m′σ|0〉 U − 3J

|2; 1, 0,m′′〉 = 1√
2

[
c†m↑c

†
m′↓ + c†m↓c

†
m′↑

]
|0〉 U − 3J

|2; 0, 0,m′′〉 = 1√
2

[
c†m↑c

†
m′↓ − c†m↓c†m′↑

]
|0〉 U − J

|3; 3
2
, 3σ

2
〉 = c†xzσc

†
yzσc

†
xyσ|0〉 3U − 9J

|3; 3
2
, σ

2
〉 = 1√

3

[
c†xzσc

†
yzσc

†
xy−σ + c†xzσc

†
yz−σc

†
xyσ + c†xz−σc

†
yzσc

†
xyσ

]
|0〉 3U − 9J

|3; 1
2
, σ

2
〉a = 1√

6

[
−2c†xzσc

†
yzσc

†
xy−σ + c†xzσc

†
yz−σc

†
xyσ + c†xz−σc

†
yzσc

†
xyσ

]
|0〉 3U − 6J

|3; 1
2
, σ

2
〉b = 1√

2

[
c†xzσc

†
yz−σ − c†xz−σc†yzσ

]
c†xyσ|0〉 3U − 6J

|3; 1
2
, σ

2
,m〉a = 1√

2

[
c†m′↑c

†
m′↓ + c†m′′↑c

†
m′′↓

]
c†mσ|0〉 3U − 4J

|3; 1
2
, σ

2
,m〉b = 1√

2

[
c†m′↑c

†
m′↓ − c†m′′↑c†m′′↓

]
c†mσ|0〉 3U − 6J

|4; 1, σ,m′′〉 = c†mσc
†
m′σc

†
m′′↑c

†
m′′↓|0〉 6U − 13J

|4; 1, 0,m′′〉 = 1√
2

[
c†m↑c

†
m′↓ + c†m↓c

†
m′↑

]
c†m′′↑c

†
m′′↓|0〉 6U − 13J

|4; 0, 0,m′′〉 = 1√
2

[
c†m↑c

†
m′↓ − c†m↓c†m′↑

]
c†m′′↑c

†
m′′↓|0〉 6U − 11J

|4; 0, 0〉a = 1√
3

[
c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ + c†yz↑c

†
yz↓c

†
xy↑c

†
xy↓ + c†xy↑c

†
xy↓c

†
xz↑c

†
xz↓

]
|0〉 6U − 8J

|4; 0, 0〉b = 1√
6

[
c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ + c†yz↑c

†
yz↓c

†
xy↑c

†
xy↓−2c†xy↑c

†
xy↓c

†
xz↑c

†
xz↓

]
|0〉 6U − 11J

|4; 0, 0〉c = 1√
2

[
c†xz↑c

†
xz↓c

†
yz↑c

†
yz↓ − c†yz↑c†yz↓c†xy↑c†xy↓

]
|0〉 6U − 11J

|5; 1
2
, σ

2
〉 = c†mσc

†
m′↑c

†
m′↓c

†
m′′↑c

†
m′′↓|0〉 10U − 20J

|6〉 = c†xz↑c
†
xz↓c

†
yz↑c

†
yz↓c

†
xy↑c

†
xy↓|0〉 15U − 30J

Table 1: The atomic t2g states (m = xy, xz, yz) in the basis which diagonalize the Coulomb
interaction. The label σ in the first column takes the value ±1, while in the states it has the
meaning ↑ or ↓. The labels m, m′ and m′′ indicate different orbitals.
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U-3J

U-J

U+2J

S=1

S=0

S=0

U-3J

U-2J

U

Fig. 10: Atomic spectrum for the t22g configuration. Left: exact. Right: density-density approxi-
mation (spin-flip and pair-hopping terms set to zero). In the density-density approximation the
total spin is not a good quantum number: The lower-energy block of states collects theMs = ±1
states of the S = 1 triplet, and the middle block mixes S = 0 and S = 1 states. The average
Coulomb interaction is U − 2J , both in the exact and the approximate case. The spectrum is
identical for the t42g configuration, provided that all energies are shifted by 5U − 10J .

3.2 Low-symmetry crystal field, orbital order and orbital degeneracy

When the symmetry is lower that cubic, the t2g levels can split. For example, if the symmetry
is tetragonal, the t2g states split into a doublet, xz, yz, and a singlet, xy; the tetragonal energy
splitting is εCF = εxy − εxz/yz. In metallic Sr2RuO4 the splitting εCF is relatively small (∼ 120

eV), and the LDA+DMFT occupations of the different orbitals remain similar. In the insulating
S-Pbca phase of Ca2RuO4, εCF is larger, ∼ 300 meV, and the LDA+DMFT occupations are
close to those of the xy2xz1yz1 configuration (xy orbital-order). The Mott insulator YTiO3 has
even lower symmetry; because of the t12g configuration, only the lowest energy t2g crystal-field
level is actually occupied. Let us consider an oversimplified model for YTiO3, i.e., a tetragonal
system which, in the atomic limit, has configuration xy1xz0yz0 at T = 0. How does the atomic
Green-function matrix change with respect to the cubic case, Eq. (9)? The tetragonal symmetry
implies that the imaginary time Green function has the matrix form

Gσ
im,im′(τ) =




Giσ
xy(τ) 0 0

0 Giσ
xz(τ) 0

0 0 Giσ
yz(τ)


 , with Giσ

xz(τ) = Giσ
yz(τ).

For kBT � εCF � U , the xy Matsubara Green function is given by

Giσ
xy(iνn) ∼1

6

(
3

iνn + (εxy − µ)
+

2

iνn − (εxy + U − J − µ)
+

1

iνn − (εxy + U + 2J − µ)

)
.
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Fig. 11: The LDA+DMFT spectral function matrix of the orbitally-ordered t12g system YTiO3,
in the (xz, yz, xy) basis (left panels) and in the crystal-field basis (right panels) [14, 17].

Here we neglected the small mixing of the three high-energy S = 0 multiplets of the t22g con-
figuration (εCF � U ). The xz and yz Matsubara Green functions take instead the form

Giσ
xz/yz(iνn) ∼1

4

(
3

iνn − (εxz/yz + U − 3J − µ)
+

1

iνn − (εxz/yz + U − J − µ)

)
.

The atomic-limit gap is then

Eg(1) ∼ U − 3J + εCF.

From the expressions above we can see that the gap is inter-orbital and εCF increases it by
a small amount. If the symmetry is lower than tetragonal, as in the case of YTiO3, the Green
function, the spectral-function and the self-energy become full 3×3 matrices. Still, in the atomic
limit, a crystal-field splitting favors the occupation of the lowest energy t2g crystal-field orbital.
This remains true beyond the atomic limit: YTiO3 is, indeed, an orbitally ordered Mott insulator
with a gap of about 1 eV. This can be seen in the DMFT spectral-function matrix in Fig. 11.
The crystal-field splitting not only increases the gap but also reduces orbital degeneracy, favor-
ing the onset of a orbitally order Mott-insulating state. The importance of orbital degeneracy
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for the Mott gap was explained for the first time by E. Koch, O. Gunnarsson and R.M. Mar-
tin [18, 19]. The argument presented in their works is the following. Let us assume that a
system is described by the multi-orbital Hubbard model for t2g electrons with, however, J = 0.
Let us assume that, in addition, its ground state is antiferromagnetic, as it typically is. The states
relevant for the gap are those generated by adding or removing one electron from the ground
state. In the large-U limit their energy is approximately given by

E(N + 1) ∼ nU + E(N)−
√
k+W/2

E(N − 1) ∼ (n− 1)U + E(N)−
√
k−W/2,

where n is the number of electrons per site and W is the band-width. The gap is then

Eg(N) ∼ U −
√
k− +

√
k+

2
W. (10)

With respect to the atomic limit a term proportional to the bandwidth reduces the gap. To
understand its origin we can go back to the case of the Hubbard dimer. For the dimer, the
ground state is the singlet |G〉H , given in Eq. (5). In the large-U limit

|G〉H = |N〉 ∼ 1√
2

[
c†1↑c

†
2↓ − c†1↓c†2↑

]
|0〉.

By creating or removing an electron at site 1, we generate the states

c1↑|N〉 ∼ +
1√
2
c†2↓|0〉 = +

1√
2
|N − 1〉2

c†1↑|N〉 ∼ −
1√
2
c†1↑c

†
1↓c
†
2↑|0〉 = − 1√

2
|N + 1〉2

By applying the non-interacting Hamiltonian, Ĥ0, we then have

Ĥ0|N − 1〉2 = − t c†1↓|0〉 = −t |N − 1〉1
Ĥ0|N + 1〉2 = + t c†2↑c

†
2↓c
†
1↑|0〉 = +t |N + 1〉1

In the atomic limit, the states
(
|N − 1〉1, |N − 1〉2

)
and the states

(
|N + 1〉1, |N + 1〉2

)
are

degenerate. For t 6= 0, in the spaces defined by each one of these couple of degenerate states,
the Hamiltonian is

ĤN± =

(
E(N±) ±t
±t E(N±)

)

with N± = N ± 1. Thus the actual ground state is the bonding combination, and the associated
bonding-energy gain is the square root of the second moment

M
(2)
± = 1〈N±|Ĥ2

0 |N±〉1 = t2 = k±(W/2)2

where W = 2t (energy difference between antibonding and bonding state), and k+ = k− = 1.
The ground-state correction of atomic energies in first order degenerate perturbation theory is
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site 1 site 2

Fig. 12: Possible hopping paths for an extra hole and an extra electron in the case of orbital
degeneracy d = 2 and one electron per site. For simplicity only hopping between the same
orbitals on neighboring sites is allowed. This figure was adapted from Fig. 4 of Ref. [19].

thus ∆E(N±) = −
√
M

(2)
± . Indeed, as one can verify from the exact Green function given in

section 2.1, in the large-U limit, the gap of the Hubbard dimer at half filling is Eg(1) ∼ U − 2t.
We can now generalize to the multi-orbital case. The second moment of the Hamiltonian is
then M (2)

± = 〈N i
±|Ĥ2

0 |N i
±〉 =

∑
j |〈N i

±|Ĥ0|N j
±〉|2, where |N i

±〉 is the state generated by adding
or removing from the ground state an electron at site i, and |N j

±〉 are all the degenerate states
generated from |N i

±〉 by hopping. For the single orbital dimer, as we have seen, there is only
one |N j

±〉 state. If the number of degenerate orbitals d increases, however, so do the hopping
possibilities; k+ and k− equal the number of available hopping paths, which depends of course
on the actual model. Let us assume that n = 1 and ti,i

′

m,m′ = t
〈i,i′〉
m,mδm,m′ , i.e., only intra-orbital

hopping between nearest neighbors is possible. If the model has two degenerate orbitals, k− =

1. There are, however, two hopping possibilities for the extra electron, hence k+ = 2. This is
schematically illustrated in Fig. 12. As a result, in the orbitally-degenerate case there is a gap
reduction with respect to the one-orbital case. This reduction, given in Eq. (10), can be viewed
as a hopping enhancement. At half filling the enhancement factor is proportional to

√
d [18,19].

The relevance of orbital degeneracy for the Mott gap and thus for the Mott transition became
apparent in many cases. For example, orbital degeneracy can be reduced by a relatively small
crystal-field splitting, as it was shown in Ref. [17] for the series of 3d1 perovskites. This happens
because the crystal-field splitting makes some of the states higher in energy, so that they do
not contribute to the second moment. Orbital degeneracy is also reduced by the Hund’s rule
coupling J , which makes some of the multiplets higher in energy, with similar effects. This
effect plays a key role for Hund’s metals [20].
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3.3 Spin-orbit interaction

The main relativistic effect in solids is the spin-orbit interaction, whose strength grows increas-
ing the atomic number Z. In correlated materials, the spin-orbit interaction competes with the
Coulomb parameters, the crystal field, and the hopping integrals in determining magnetic and
electronic properties. In the atomic limit, for the d shells the spin-orbit interaction is

ĤSO =
∑

µ

λµ
∑

mm′

∑

σσ′

εµmσ,m′σ′ c
†
mσcm′σ′ , εµmσ,m′σ′ = 〈mσ|lµsµ|m′σ′〉,

where µ = x, y, z, and λµ are the spin-orbit couplings, with λµ = λ in O(3) symmetry, and

λ ∼ gµ2
B

〈
1

r

d

dr
vR(r)

〉
.

Let us assume that, according to the first and second of Hund’s rules, S is the total spin and
L the total angular momentum of the ground multiplet; these LS states are (2L + 1)(2S + 1)-
fold degenerate. If the spin-orbit coupling λ is small compared to the Hund’s rule couplings J1

and J2, the spin-orbit interaction can be treated as a perturbation splitting the LS manifold in
eigenstates of the total angular momentum j. The third Hund’s rule states that, if the outermost
shell is less than half filled, the ground multiplet is the one with j = L − S; if, instead, it is
more than half filled, it is the one with j = L+S. For the d1 configuration, L = 2 and S = 1/2,
so that the quartet j = 3/2 is the ground multiplet. In materials, the second and third of Hund’s
rules, and sometimes, as we have discussed, even the first, can be violated. This happens also in
Mott insulators, where the atomic character is preserved to a large extent. A source of Hund’s
rules breakdown is the crystal field. The strength of the spin-orbit interaction λ has therefore
to be compared not only to J1 and J2 but also to the relevant crystal-field couplings. In that
respect, it is important to notice that ĤSO couples eg and t2g states. If, however, the cubic
crystal field εC is large compared to λ, as typically is the case for 4d systems, and the electronic
configuration without spin-orbit interaction is tn2ge

0
g, we can safely downfold the eg states. For

cubic t2g systems of this kind, the spin-orbit Hamiltonian can then be rewritten as

ĤSO =
iλ

2

(∑

σ

σ c†yzσcxzσ + c†xz↑cxy↓ + ic†yz↑cxy↓ + c†xz↓cxy↑ − ic†yz↓cxy↑
)

+ h.c.

=− λ

2

[∑

σm

mσc†mσcmσ +
√

2
(
c†−1↑c0↓ + c†0↑c+1↓ + c†+1↓c0↑ + c†0↓c−1↑

)]
, (11)

where

c†+1,σ =− c†xz,σ + ic†yz,σ√
2

, c†−1,σ =
c†xz,σ − ic†yz,σ√

2
, c†0,↓ =− ic†xy,σ.

In the last line of Eq. (11) we have brought the spin-orbit interaction in the form it takes for p
electrons (effective angular momentum l = 1), apart, however, a minus sign in front. For the t12g
configuration the effective total angular momentum j can thus have the values 3/2 and 1/2. The
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local Green function matrix reflects the presence of spin-orbit interaction via extra off-diagonal
terms. For a t2g system with cubic symmetry its most general form is [21, 23]

Gσ,σ′

im,im′(τ) =




Gi↑↑
xy (τ) 0 0 0 Gi↑↓

y (τ) −iGi↑↓
x (τ)

0 Gi↑↑
yz (τ) iGi↑↑

z (τ) −Gi↑↓
y (τ) 0 0

0 −iGi↑↑
z (τ) Gi↑↑

xz (τ) iGi↑↓
x (τ) 0 0

0 −Gi↓↑
y (τ) −iGi↓↑

x (τ) Gi↓↓
xy (τ) 0 0

Gi↓↑
y (τ) 0 0 0 Gi↓↓

yz (τ) −iGi↓↓
z (τ)

iGi↓↑
x (τ) 0 0 0 iGi↑↑

z (τ) Gi↓↓
xz (τ)




where all Giσσ′
m (τ) are real functions, and Giσσ′

m (τ) = Giσ′σ
m (τ), while Giσσ′

x (τ) = Giσσ′
y (τ) =

Giσσ′
z (τ), and Giσσ

xz (τ) = Giσσ
yz (τ) = Giσσ

xy (τ). The local Green function above is diagonal in the
basis of the eigenstates of the total angular momentum of the t12g configuration. Among those,
the j = 3/2 quartet is generated by the creation operators

c†− 3
2

=c†−1,↓ c†− 1
2

=
c†−1,↑ +

√
2c†0,↓√

3
c†

+ 1
2

=
c†+1,↓ +

√
2c†0,↑√

3
, c†

+ 3
2

=c†+1,↑.

Instead, the j = 1/2 doublet is generated by the creation operators

d†− 1
2

=

√
2c†−1,↑ − c†0,↓√

3
d†

+ 1
2

=

√
2c†+1,↓ − c†0,↑√

3
.

By inverting these relations, we can express the t2g creation and destruction operators as

c†xz,↓ =
1√
6

[
−
√

3c†− 3
2

+ c†1
2

+
√

2d†1
2

]
c†xz,↑ =

−1√
6

[
−
√

3c†3
2

+ c†− 1
2

+
√

2d†− 1
2

]

c†yz,↓ =
i√
6

[
+
√

3c†− 3
2

+ c†1
2

+
√

2d†1
2

]
c†yz,↑ =

i√
6

[
+
√

3c†3
2

+ c†− 1
2

+
√

2d†− 1
2

]

c†xy,↓ =
i√
3

[
+
√

2c†− 1
2

− d†− 1
2

]
c†xy,↑ =

i√
3

[
+
√

2c†1
2

− d†1
2

]
,

and rewrite the Green function matrix in the new basis. It takes the simple form

Gj,j′

imj ,imj′
(τ) = Gi↑↑

3
2

(τ)Î 3
2

+Gi↑↑
1
2

(τ)Î 1
2
,

where Îj is the identity matrix of dimension 2j + 1. The spin-orbit Hamiltonian has the same
diagonal form

ĤSO = −λ
2

+ 3
2∑

m=− 3
2

n̂ 3
2
,m + λ

+ 1
2∑

m=− 1
2

n̂ 1
2
,m.
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One could thus conclude that the total angular momentum basis is the ideal one in the presence
of spin-orbit interaction. We have, however, to pay attention to the fact that the crystal-field
Hamiltonian is not diagonal in the angular momentum basis. Furthermore, if we change basis
in the way just described, we have to transform accordingly ĤU , the Coulomb part of the Hamil-
tonian. We can see some of the effects of this transformation by considering a tetragonal system
for which εCF, the tetragonal crystal-field splitting, is very large. In such a case the xy orbital
is basically decoupled and we can assume ĤSO ∼ Ĥz

SO = iλz
2

∑
σ σ c†yzσcxzσ. The interaction

Ĥz
SO is diagonal in the basis of spherical harmonics. The corresponding creation operators are

c†− 3
2

=c†−1,↓ c†− 1
2

=c†−1,↑ c†
+ 3

2

=c†+1,↑ c†
+ 1

2

=c†+1,↓.

In the spherical harmonics basis the Coulomb interaction for xz/yz orbitals takes the form

ĤU =(U − J)
(
n̂ 3

2
n̂ 1

2
+ n̂− 3

2
n̂− 1

2
+ n̂ 3

2
n̂− 3

2
+ n̂ 1

2
n̂− 1

2

)

+(U − 3J)
(
n̂ 3

2
n̂− 1

2
+ n̂− 3

2
n̂ 1

2

)
− 2J

(
c†3

2

c 1
2

c†− 3
2

c− 1
2

+ c†− 1
2

c− 3
2

c†1
2

c 3
2

)
.

Thus, we can see that in the new basis the pair-hopping terms are zero and the density-density
terms have a different prefactor than in the original xz, yz basis.9

What about LDA+DMFT calculations with spin-orbit interaction? Although ĤSO looks like an
innocent one-body term, it turns out that, for real materials, calculations including this term
are more difficult. This has two reasons: (i) they involve larger Green function matrices, e.g.,
6×6 as in the case just discussed, hence they are more demanding computationally and (ii)
they are often hampered by a much stronger sign problem. Thus, specific basis choices and
approximations are used. A possible approach consists in working in the basis that diagonalizes
the non-interacting local Green function or the non-interacting local Hamiltonian; such a basis
typically reduces the sign problem, as was first shown in Ref. [10] for the case without spin-orbit
interaction. For a system with tetragonal symmetry, the states that diagonalize the local Green
function belong either to the Γ6 or to the Γ7 irreducible representations, both 2-dimensional.
There are two (coulped) Γ7 representations, defining the space Γ ′7⊕Γ ′′7 . The analytic expression
of these states can be found in Refs. [16, 21, 23]. The transformation to the Γ6 ⊕ Γ ′7 ⊕ Γ ′′7 basis
is, of course, in principle, a mere basis change. Approximations are made, however, if all off-
diagonal elements of the Green function are set to zero or the Coulomb tensor is truncated, as
often done, e.g., to further tame the sign problem.
In the presence of crystal-field splitting, if the spin-orbit interaction does not dominate, it is
often preferable to perform the calculations in the t2g basis. To this end, it is key to make
QMC codes very efficient in order to reduce as much as possible statistical errors and increase
the average sign. Exact LDA+SO+DMFT calculations in the t2g basis have been successfully
performed for Sr2RuO4, using an interaction-expansion continuous-time quantum Monte Carlo
solver, and an orbital-dependent phase which makes the Green function matrix real [21, 23].

9For the transformation of the full Coulomb tensor from cubic to spherical harmonics, see, e.g., my chapter in
Ref. [12]. It goes without saying that the total Green function (hence the gap) and the energy of the multiplets do
not change if we change basis, although the components of the Green functions are basis dependent.



7.32 Eva Pavarini

α

β

γ

M

X

Γ

(a) (b)

(c) (d)

Fig. 13: Fermi surface of Sr2RuO4 calculated with LDA (a), LDA+SO (b), LDA+DMFT (c) and
LDA+SO+DMFT (d) [21]. The grey maps are experimental results from Ref. [22].

This approach allowed us to study, for example, the effects of the spin-orbit interaction on
the Fermi surface without approximations. The results are shown in Fig. 13 in comparison
with experimental data; we will discuss them in the next section. In Fig. 14 we show instead
another example of LDA+SO+DMFT calculations, the orbital-resolved spectral function matrix
of Ca2RuO4. The figure compares the spectral function matrices for the metallic L-Pbca phase
and the insulating S-Pbca phase, both with and without spin-orbit interaction. In the case of the
S-Pbca phase, the spectral function matrix shows that the system is orbitally ordered, with the
configuration ∼ xy2 xz1 yz1 corresponding to xy orbital order. The small gap is inter-orbital,
and more specifically xy → xz, yz.
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Fig. 14: Spectral function matrix for the t42g system Ca2RuO4. Left: high-temperature L-Pbca
metallic phase. Right: Low-temperature insulating S-Pbca phase.

3.4 Non-spherical Coulomb terms and double-counting correction

Up to now we have considered the Coulomb tensor spherical (symmetry O(3)). This is exact
for a free atom. The screened Coulomb tensor has, however, in general, the symmetry of the
lattice. Taking into account non-spherical Coulomb terms is, in general hard, both because they
make QMC calculations more difficult and can worsen the sign problem, and because in their
presence the double-counting correction has to be explicitly accounted for, even when massive
downfolding is used. For these reasons they are typically neglected. Recently it was shown that
they can play a very important role for the Fermi surface, however [21]. Let us therefore discuss
how the double-counting correction can be treated in the presence of such terms, following the
approach of Ref. [21]. One of the classical approximations for the double-counting correction
is the so called “around mean-field” approximation. The idea is that LDA describes well the
average Coulomb term, in the absence of orbital polarization. This is equivalent to using as
double-counting correction the Hartree term of the Coulomb interaction tensor, i.e., the operator

ĤDC
U = U

∑

m

(
n̂m↑n̄m↓ + n̄m↑n̂m↓

)
+ (U − 2J)

∑

m6=m′

(
n̂m↑n̄m′↓ + n̄m↑n̂m′↓

)

+ (U − 3J)
∑

σ

∑

m>m′

(n̂mσn̄m′σ + n̄mσn̂m′σ)− µN̂d

− U
∑

m

n̄m↑n̄m↓ + (U − 2J)
∑

m6=m′
n̄m↑n̄m′↓ + (U − 3J)

∑

σ

∑

m>m′

n̄mσn̄m′σ
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where n̄mσ = n/d, if n is the number of the correlated electrons per site and d the orbital
degeneracy. Within this approximation we have, after collecting all terms,

ĤDC
U =(δµ− µ)N̂d −

n2

d

[
U (2d− 1)− 5 (d− 1)

]

δµ =
n

d

[
U(2d− 1)− 5J(d− 1)

]
.

If we perform massive downfolding to the correlated bands, as previously mentioned, this is
merely a shift of the chemical potential and can therefore be neglected. Let us now consider the
case in which the Coulomb interaction has an additional term that does not change the averageU
but has tetragonal symmetry

∆ĤU =
∆U

3

(
2n̂xy↑n̂xy↓ − n̂xz↑n̂xz↓ − n̂yz↑n̂yz↓

)

We can now use the around mean-field approximation for this term as well. We find

∆ĤDC
U =

n

6

∆U

3

∑

σ

(
2n̂xyσ − n̂xzσ − n̂yzσ

)
=
n

6
∆U

∑

σ

n̂xyσ − δµ′N̂

δµ′ =
n

6

∆U

3
.

This term, in addition to a shift of the chemical potential, yields an effective change of the
crystal-field splitting εCF, and has therefore to be accounted for explicitly.
How does ∆U changes the Fermi surface of Sr2RuO4? The Fermi surface is determined by the
poles of the Green function at zero frequency. These depend on the non-interacting Hamiltonian
and the self-energy matrix at zero frequency. In the Fermi-liquid regime, and within the DMFT
local approximation, the effect of the self-energy is merely to modify the on-site part of the
Hamiltonian, i.e., the crystal-field splitting and the spin-orbit couplings

εCF →εCF +∆εCF(0),

λµ →λµ +∆λµ(0).

Both ∆εCF(0) and ∆λµ(0) are positive for Sr2RuO4, and lead to an almost doubling of the
LDA parameters. The positive ∆εCF(0) shrinks the β sheet (xz/yz bands) and enlarges the
γ (xy band) sheet. This can be understood from the schematic Fermi surface and the LDA
band structure in Fig. 9. Enhancing the crystal-field splitting corresponds to slightly moving
the xy band downwards and the xz/yz bands upwards with respect to the Fermi level. The
enhancement of the spin-orbit couplings has a large Hartree-Fock component [23], since the
spin-orbit interaction yields a small but finite off-diagonal occupation matrix. For a O(3)-
symmetric Coulomb tensor, the Hartree-Fock enhancement of the spin-orbit coupling is thus

∆λz
2

= i(U − 3J)n↑↑xz,yz

∆λy
2

= − (U − 3J)n↑↓xy,yz,

∆λx
2

= −i(U − 3J)n↑↓xy,xz,
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Fig. 15: The LDA+SO+DMFT Fermi surface of Sr2RuO4 calculated including the effects of the
non-spherical Coulomb term ∆U .

where nσσ′m,m′ are the off-diagonal elements of the density matrix. The Coulomb-enhanced spin-
orbit coupling improves the agreement with the experimental Fermi surface at the degeneracy
points (e.g., along the Γ -X direction). The agreement with ARPES data, however, further
deteriorates for the γ sheet. This can be seen in Fig. 13, in which the LDA and LDA+DMFT
Fermi surface are shown on top of ARPES data from Ref. [22].

Including correlation effects has thus two opposite effects: on the one hand, the agreement with
experiments improves with respect to LDA for the β sheet; on the other hand, it deteriorates for
the γ sheet. This can be seen comparing either panels (a) and (c) or panels (b) and (d) in Fig. 13.
Introducing tetragonal terms, and in particular the term ∆U , however, reduces the crystal-field
enhancement to

εCF → εCF +∆ε′CF(0),

where ∆ε′CF(0) becomes almost zero for cRPA-based estimates of ∆U . This leads to an almost
perfect Fermi surface, as shown in Fig. 15. Non-spherical Coulomb terms turn out to be more
important for properties that reflect the point symmetry of the lattice, like the Fermi surface,
than for properties that average over orbitals, like total spectral function [23].
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4 Conclusion

The many-body problem is the grand challenge of solid-state physics. The result of many
electrons interacting together is a plethora of co-operative emergent properties. Among these
are heavy quasiparticles and the Coulomb-driven metal-insulator transition. The LDA+DMFT
approach has opened the possibility of describing and understanding these phenomena in real
materials. This approach is based on the DMFT local approximation for the self-energy. DMFT
is exact in several limits: the non-interacting limit, the atomic limit, and the limit of infinite
coordination number. In typical strongly-correlated materials it turns out to be an excellent ap-
proximation. Approaches that go beyond the local approximation range from cluster extensions
to various diagrammatic methods, among which the dual-particle based techniques. A key as-
pect of DMFT remains model building. Essential to that is the basis choice. The basis should be
as localized as possible but should also carry as much information as possible about the actual
system. Crucial is to chose a basis which indeed spans the whole space of correlated electrons,
even if this reduces localization. Wannier functions built from LDA/GGA calculations satisfy
all these requirements. It is also important to take into account the symmetry of the system, and
consider the effect of small distortions – unless including them makes calculations impossible.
We have seen in many cases that small details do matter. A small crystal-field can favor the onset
of the metal-insulator transition [17]. Small non-spherical Coulomb terms can sizably deform
the Fermi surface of a multi-band correlated metal [21]. Improving the models and develop-
ing new methods to solve complex realistic models is therefore key for future progress. While
numerical codes become always more sophisticated, many-body physics is primarily driven by
experimental discoveries, novel phenomena whose interpretation remain often a mystery for
decades. Indeed, one can identify only very few cases in which theory has predicted unknown
emergent phenomena. A famous example is anti-ferromagnetism, which was predicted using
static mean-field theory. Remarkably, it turned out later that the original theoretical description
was wrong. In the future there will be new classes of supercomputers and algorithms which
will allow us to run always more realistic simulations. Although prediction will remain dif-
ficult, our ability of reconstructing experimental results will steadily increase. As physicists,
however, our role is to understand and explain phenomena, not merely reproduce them. Even a
calculation that reproduce exactly experiments does not add new knowledge, if it does not help
us in explaining the origin of the observed phenomenon. This would be like having the exact
solution of the classical N -body problem discussed in the introduction, from which we are not
able to learn anything. Our major task remains thus to identify, with the help of computers and
algorithms, the mechanisms behind phenomena, building a coherent picture.
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Appendices

A The Anderson molecule

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 0〉 = 1√
2

[
c†1↑c

†
2↓ + c†1↓c

†
2↑

]
|0〉 2 1 εd + εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

[
c†1↑c

†
2↓ − c†1↓c†2↑

]
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εd + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U

For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 1
2

[
εd + εs +

√
(εd − εs)2 + 4t2

]
2

|1, 1/2, σ〉− = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 1
2

[
εd + εs −

√
(εd − εs)2 + 4t2

]
2
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where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

[
U ±∆(U, t)

]
,

where

∆(t, U) =
√
U2 + 16t2.

The parameters α1 and α2 of the corresponding eigenvectors are

α2
1 =

1

∆(t, U)

∆(t, U)− U
2

α2
2 =

4t2

∆(t, U)

2

∆(t, U)− U

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

[|2, 0, 0〉1 + |2, 0, 0〉2] 2εd + U
2

+ 1
4

[
U + 2∆(t, U

2
)
]

1

|2, 0, 0〉o = 1√
2

[|2, 0, 0〉1 − |2, 0, 0〉2] 2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

[|2, 0, 0〉1 + |2, 0, 0〉2] 2εd + U
2

+ 1
4

[
U − 2∆(t, U

2
)
]

1

where

a2
1 =

1

∆(t, U
2

)

∆(t, U
2

)− U
2

2
a2

2 =
4t2

∆(t, U
2

)

2

(∆(t, U
2

)− U
2

)

These states have the same form as in the case of the Hubbard dimer, but the ground state energy
and the values of a1 and a2 are different. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1/2, σ〉+ = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 3εd + U + 1
4
[U +∆(t, U)

]
2

|3, 1/2, σ〉− = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 3εd + U + 1
4
[U −∆(t, U)] 2
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1 Introduction

The spectacular physical properties often observed in materials containing transition-metal and
rare-earth elements challenge our comprehension of solid-state physics. Their properties in-
clude superconductivity, unusually large magneto-resistance, metal-insulator transitions, heavy-
fermion behavior, multi-ferroicity, and phenomena involving topologically protected states. We
would like to understand how the electrons in these materials interact with each other so that
they generate those unusual quantum phenomena. From a theoretical point of view it is clear
that the equations we have to solve are so complicated that we will not be able to obtain exact
solutions. In addition, to make things worse but also more fascinating, tiny changes in tem-
perature, pressure, or the material’s composition may cause large changes of their properties.
Hence, it appears that there are many solutions available that are very close in energy.
With exact solutions out of reach, the objective is then to find smart approximations by which
we can capture the essential physics to describe the correlated motion of the electrons in such
materials. Experiments are necessary to determine which aspects of the electronic and lattice
degrees of freedom are the important ones. Although conceptually clean and beautiful, theo-
retical simplifications in terms of, for instance, a Heisenberg model or a single band Hubbard
model turn out to be inadequate. It now becomes more and more clear that the interplay between
the relevant charge, orbital, and spin degrees of freedom of the transition metal and rare earth
ions involved determines the intricate balance between band formation and electron correlation
effects. This is shown very vividly, for example, for the metal-insulator-transitions taking place
in V2O3, Ca2−xSrxRuO4, VO2, and Ti2O3 [1–8]. It may very well be that we need to develop
and use different approximations for different materials or properties.
While a variety of experimental techniques are available to determine the relevant spin and
charge quantum numbers, the detection of the active orbital wave functions remains a rather
delicate endeavor. The standard experimental technique for 4f systems is inelastic neutron
scattering [9–13], but the analysis of magnetic intensities is often hampered by broadened lines,
phonons in the same energy window as the magnetic excitations, or strong absorption of one
of the sample’s constituents (e.g. Rh, In, B, or Sm). For transition metal ions, the energy scale
of the local excitations is usually much too large for neutrons. Another experimental method
is x-ray absorption spectroscopy on single crystals, where the polarization dependence of the
dipole-allowed core-level excitations, e.g., 2p→3d or 3d→4f transitions, encodes the desired
information concerning the orbital wave function [1, 2, 6, 8, 14–18].
However, this method which is based on dipolar electronic transitions has the limitation that
symmetries with higher than twofold rotational symmetry cannot be detected (unless it is ac-
companied by a sufficiently large energy difference), e.g., for cubic systems.
We will present here the opportunities provided by a new x-ray technique, namely core-level
non-resonant inelastic x-ray scattering (NIXS). This photon-in photon-out technique with hard
x-rays has become feasible thanks to the high brilliance of modern synchrotrons and advanced
instrumentation. The available large momentum transfers allow studying excitations that are
dipole forbidden. These so-called beyond dipole or multipolar excitations contain extra infor-
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mation, thus enabling us to obtain very detailed insight into the ground-state symmetry of the
ion of interest. The interpretation of the spectra is straightforward and quantitative, facilitated
also by the fact that the multipolar excitations are more excitonic than the dipole ones. Exper-
imentally, NIXS comes also with the advantage that it is a bulk sensitive technique thanks to
the large penetration depth of the hard x-rays used, meaning that there is no need to use ultra-
high vacuum or special surface preparation procedures as commonly employed in more surface
sensitive probes like soft-x-ray absorption or photoelectron spectroscopies. With the hard x-ray
beams typically having a spot size of 50 µm or smaller, NIXS allows also the measurement
of much smaller samples than typically required for neutron experiments. In addition, NIXS
is suitable for high pressure experiments, pressure being an important tuning parameter when
studying phase diagrams.
We will discuss our case for the example of SmB6, a material currently under intense inves-
tigation because of the expectation that it may be the first strongly correlated system that has
non-trivial topological properties. The manuscript is organized as follows: We first describe
the basic principles of the spectroscopic method NIXS. We then apply the method to CeB6,
which is a well studied material having the same crystal structure as SmB6. Our objective here
is to demonstrate that NIXS is indeed able to determine unambiguously and correctly the local
ground state wave function in a cubic system. Finally, we present the NIXS results on SmB6,
which carries also the complication of having an intermediate valence state. We will show the
consequences of our findings, not only for the experimental search for the properties of the
topological surface states but, above all, for the theoretical modeling of this complex strongly
correlated system.

2 Non-resonant inelastic scattering (NIXS)

The theoretical description of inelastic x-ray scattering can be found in a number of publica-
tions, see e.g. [19–27]. The double differential cross-section is the product of the Thomson
photon cross section

(
dσ
dΩ

)
Tho and the dynamical structure factor S(~q, ω)

d2σ

dΩdω
=

(
dσ

dΩ

)
Tho
S(~q, ω) . (1)

The dynamical structure factor is a function of the scattering vector ~q = ~ki − ~kf and the energy
loss ω = ωi − ωf

S(~q, ω) =
∑
f

∣∣〈f |ei~q·~r|i〉∣∣2 δ(~ωi − ~ωf − ~ω). (2)

Here i and f are the initial and final states. The transition operator ei~q·~r can be expanded in
semi-normalized (Racah’s normalization) spherical harmonics C q̂∗

km and C r̂
km. This results in a

sum over spherical Bessel functions jk(~q · ~r) and the wave functions can be factorized into a
radial and angular part so that S(~q, ω) can be written as

S(~q, ω)=
∑
f

∣∣∣∣∣
∞∑
k

ik(2k + 1)〈Rf |jk(~q · ~r)|Ri〉
k∑

m=−k

〈
φf |C q̂∗

kmC
r̂
km|φi

〉∣∣∣∣∣
2

×δ(~ωi−~ωf−~ω). (3)
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Fig. 1: Left: kth order term of the radial part of S(~q, ω) for a Ce 4f 1 ion as a function of
momentum transfer. Right: kth order contribution of the angular part of the scattering function
expressed in terms of S(ω) versus energy transfer for 〈Rf |jk(~q · ~r)|Ri〉 = 1, see Eq. (3).

Let us consider the 4d→ 4f (N4,5) core-level transitions for rare-earth ions. Due to the triangle
condition and parity selection rules, only terms with k=1(dipole), 3(octupole), and 5(triakon-
tadipole) contribute. The radial part 〈Rf |jk(~q · ~r)|Ri〉 of the wave functions have been calcu-
lated for a Ce 4f 1 ion within the Hartree-Fock approximation using Cowan’s code [28] and the
kth contributions are shown as function of momentum transfer |q| in the left panel of Fig. 1.
For moderate magnitudes of |~q | the radial part is dominated by dipole scattering, but already at
5 Å−1 octopole scattering is non-negligible, and at even higher momentum transfers the scat-
tering is dominated by the higher multipoles. This behavior is commonly called q-dependent
multipole selection rules. The right panel of Fig. 1 shows the kth order of the angular part as
function of energy loss. Higher multipoles have different selection rules so that extra intensity
at different energy losses becomes visible in the angular part, when at large |~q | octupole and
triakontadipole transitions take place.
Having described the |~q | dependence of the NIXS intensities, we now focus on the vector q̂
dependence which is at the heart of our study. We first of all show the sensitivity of NIXS at the
N4,5 edge to anisotropies in the wave function in general, by comparing simulated spectra for
different directions of q̂. These anisotropies arise, for example, when the initial and final states
in Eq. (3) are eigenstates of a Hamiltonian that contains in addition to the atomic Coulomb and
spin-orbit interactions also crystal-field terms.
We note that the interference terms which vanish if the angular intensity is integrated over all
directions q̂ [25, 26] are included in our calculations. Figure 2 shows the simulation of S(~q, ω)
for large momentum transfers for the three pure Jz states of a J = 5/2 ion like Ce3+ with one
f electron (f 1 configuration). Some realistic broadening due to life time and instrumental res-
olution has been considered (see below). Here [001] is the quantization axis. The pure states
have rotational symmetry perpendicular to the quantization axis so that we compare so-called
in-plane scattering (q̂‖[100]) with scattering out-of-plane, i.e., for q̂‖[001] and some direction
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‖ [001] 
‖ [111] 
‖ [100] 

Energy transfer (eV) 
Fig. 2: Simulations for a Ce 4f 1 ion: Comparison of the in-plane and out-of-plane scattering
function S(~q, ω) of pure Jz states, in-plane q̂‖[100] (blue), out-of-plane q̂‖[001] (red), and in
between q̂‖[101] (orange). The calculations are for |~q | =9.3 Å−1 and are convoluted with a
Lorentzian with FWHM=0.3 eV and a Gaussian with FWHM=1.32 eV. Adapted from Ref. [27]

in between (q̂‖[111]). There is a clear directional dependence, so that the different Jz states are
distinguishable. This is at first sight similar or analogous to the in-plane/out-of-plane polariza-
tion dependence in soft x-ray absorption at the cerium M4,5 edge (3d→ 4f ) [18, 29]. However,
on a closer look one can observe that the spectrum for (q̂‖[111]) can not be expressed as a linear
combination of the q̂‖[100] and q̂‖[001] spectra. This shows that the directional dependence in
NIXS contains more information than the polarization dependence in XAS.
A nice demonstration that NIXS provides more information than XAS is given by the study by
Willers et al. [27]. Let us consider a Ce 4f 1 ion in a tetragonal crystal field. The sixfold degener-
ate Hund’s rule ground state of Ce3+(J = 5/2) is split into three Kramer’s doublets and the eigen-
functions can be represented in the basis of |Jz〉 when the fourfold symmetric tetragonal [001]
axis is chosen as quantization axis. There are two Γ7 doublets Γ 1

7 = α|±5/2〉+
√
1− α2|∓3/2〉

and Γ 2
7 =
√
1− α2| ± 5/2〉 − α| ∓ 3/2〉, and one Γ6 which is a pure | ± 1/2〉 doublet. The Γ6

as a pure | ± 1/2〉 has full rotational symmetry around [001] but the mixed Γ7 states do not.
Both Γ7 states have a fourfold symmetry around [001] and for a given spatial distribution of the
two Γ7 states there are two solutions which differ in their orientations within the (001) plane
by 45◦. Which orientation applies to the ground state depends on the sign of α. For α > 0

the wings of a Γ7 ground state point along [100] and for α < 0 along [110]. The situation for
α = −0.68 < 0 is depicted in Fig. 3, together with the corresponding NIXS spectra calculated
for q̂‖[100] and q̂‖[110]. It clearly shows that the two spectra are distinguishable and a NIXS
experiment (see Ref. [27]) has proven the feasibility. In XAS the situation is very different.
The signal in XAS is purely dipole and can therefore not give any insight into the orientation
of these fourfold rotational invariant orbitals; the spectra look identical for any polarization
perpendicular to the c-axis.
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Fig. 3: Simulation (top): The scattering function S(~q, ω) for two in-plane directions q̂‖[100]
(blue) and q̂‖[110] (green) assuming a Γ 1

7 = α| ± 5/2〉 +
√
1− α2| ∓ 3/2〉 ground state for a

Ce 4f 1 ion in a tetragonal crystal field with α < 0. The calculations are convoluted with a
Lorentzian with FWHM=0.3 eV and a Gaussian with FWHM=0.7 eV.

We note that for a 45◦ rotation around the c-axis [001], i.e., for a positive value of α, the NIXS
spectra are inverted. We found that these in-plane NIXS spectra are fairly insensitive to the
precise value of α as long as α is neither zero nor one. In the latter case the orbital would have
full rotational symmetry around [001] and consequently S(~q, ω) would look the same for both
in-plane directions.
To conclude this section, NIXS is a spectroscopic method that can determine the active local
orbital wave function with great detail due to the fact that higher than dipole transitions are
utilized if the measurement is carried out with high momentum transfers.

3 The local ground state wavefunction of CeB6

The material class of rare earth hexaborides has attracted considerable attention over the years.
It comprises of a variety of different fascinating ground states (see Ref. [30] and references
therein) which include exotic magnetically ordered phases, heavy fermion behavior, as well
as Kondo insulating ground states. CeB6 is an important member of this material class and
has been intensively studied for its rich magnetic phase diagram [31]. It crystallizes in the
cubic CsCl structure. Fig. 4 displays how the crystal-electric field splits the sixfold degenerate
j = 5/2 multiplet state of the Ce 4f 1 into a Γ8 quartet and Γ7 doublet.
Upon cooling CeB6 enters a hidden-order phase at 3.2 K followed by an antiferromagnetic
phase below 2.4 K. The application of an external field induces a dipole component with the
wave vector of the quadrupolar ordering [33]. Theory suggests that the multipolar moments
of the localized 4f electrons interact with each other via the itinerant 5d conduction electrons,
breaking up the fourfold ground-state degeneracy of the Ce 4f wave function in the cubic crys-
tal field stabilizing an antiferro-quadrupolar (AFQ) order [34, 35], a conjecture that by now
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Fig. 4: Electron density plots for an f -electron in Ce3+, left for tetragonal and right for cubic
point symmetry. For tetragonal symmetry the crystal-field states expressed in Jz representation
are Γ6 = | ± 1/2〉, Γ 1

7 =α| ± 5/2〉 −
√
1− α2| ∓ 3/2〉 and Γ 2

7 =
√
1− α2| ± 5/2〉+α| ∓ 3/2〉

with α2≤ 1; for cubic symmetry α =
√

1/6 so that Γ 1
7 =
√
1/6| ± 5/2〉 −

√
5/6| ∓ 3/2〉 and

Γ8 = (| ± 1/2〉;
√
5/6| ± 5/2〉+

√
1/6| ∓ 3/2〉). Figure adapted from Ref. [32]

has received credibility from studies using resonant x-ray diffraction [36, 37], inelastic neutron
scattering [38–40], and electron spectroscopy [41, 42].
The quartet ground state had been originally deduced from an unusual low temperature shift of
the crystal-field excitation at 46 meV in Raman and inelastic neutron scattering data [43, 44].
The energy shift was interpreted as a splitting of the quartet ground state in the low tempera-
ture phase in accordance with electron paramagnetic resonance (EPR) measurements [45]. A
quartet ground state is also consistent with findings of the magnetic anisotropy [46], magnetic
neutron form factor measurements [47], as well as x-ray diffraction (XRD) measurements of
the electron density distribution at low temperatures and 300 K [48] with the claim that a level
inversion may occur at higher temperatures [49].
Our objective now is to apply NIXS on this cubic system in the paramagnetic phase using the
CeN4,5 (4d → 4f ) excitation and to verify that the local ground state wave function is indeed
the quartet Γ8.
The NIXS measurements were performed at the beamline P01 of PETRA-III. The incident
energy was selected with a Si(311) double monochromator. The P01 NIXS end-station has a
vertical geometry with twelve Si(660) 1 m radius spherically bent crystal analyzers that are ar-
ranged in 3×4 array (see Fig. 5). The fixed final energy was 9690 eV. The analyzers were posi-
tioned at scattering angles of 2 θ≈ 150◦, 155◦, and 160◦ which corresponds at elastic scattering
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Fig. 5: Scattering geometry of the NIXS experiment for a typical N4,5 edge scan with q̂ ‖ [100].
Figure adapted from Ref. [32].

to an averaged momentum transfer of |~q |= (9.6± 0.1) Å−1. The scattered beam was detected
by a position sensitive detector. The instrumental energy resolution was ≈ 0.7 eV. A sketch of
the scattering geometry, showing the incoming and outgoing photons as well as the transferred
momentum |~q |, is given in Fig. 5 for a scan with q̂ ‖ [100] in specular geometry. In order to
realize another crystallographic direction, e.g., q̂ ‖ [110], the sample can be turned with respect
to the scattering triangle, or a different sample with another polished surface may be mounted
in specular geometry.
Figure 6 shows the NIXS spectrum across the CeN4,5 (4d → 4f ), N2,3 (4p → 4f ), and
N1 (4s → 4f ) edges. The clear presence of the N2,3 and N1 edges demonstrates unambigu-
ously that higher than dipole transition operators are active here. The accompanying Compton
contribution has its maximum at about 350 eV energy transfer. It is important to note that
the Ce white lines are clearly discerned from the Compton scattering, and that especially the
CeN4,5 white lines stand out with an excellent signal to background ratio, i.e., N4,5 NIXS is an
extremely powerful spectroscopic method.
The bottom set of curves in the top panel of Fig. 7 shows the CeN4,5 NIXS spectra of CeB6

(dots) taken at 17 K, for the three momentum directions q̂ ‖ [100] (black dots), ‖ [110] (green
dots), and ‖ [111] (red dots). The temperature of 17 K is low enough to assure that only the local
ground state is populated since the excited crystal-field state is at 46 meV [43, 44]. A constant
background has been subtracted to account for the (weak) Compton signal (about 12% of the
signal peak) (see Fig. 6).
There is a clear directional dependence that shows up strongest in the energy interval of 103
to 106 eV. Especially the q̂ ‖ [100] direction differs from the q̂ ‖ [110] and [111]. We can
obtain a more detailed view of the directional dependence by constructing the difference spectra
Iq̂ ‖ [100]−Iq̂ ‖ [110] that is displayed as dichroism in the bottom panel of Fig. 7 (black dots).
The CeN4,5 NIXS data are simulated by calculating the 4d104f 1→ 4d94f 2 transition using the



Orbitals and NIXS 8.9

0 100 200 300 400 500
0

1

2

3

q ≈ −1

q

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Fig. 6: Experimental NIXS spectra of CeB6: a wide scan covering the Ce O5, N4,5, N2,3, and
N1 edges, the B K edge as well as the Compton signal. The direction of momentum transfer is
q̂ ‖ [100]. Figure adapted from Ref. [32].

full multiplet code Quanty [50] which includes Coulomb as well as spin-orbit interactions. A
Gaussian and a Lorentzian broadening of FWHM = 0.7 eV and 0.4 eV, respectively, are used to
account for the instrumental resolution and life time effects. The atomic Hartree-Fock values
were adjusted via the peak positions, resulting in reductions of 30 % and 22 % for the 4f -4f and
4d-4f Coulomb interactions, respectively. The reduction accounts for configuration-interaction
effects not included in the Hartree-Fock scheme [16]. A momentum transfer of |~q |= 9.2 Å−1

has been used for the simulations (and not the experimental value of 9.6± 0.1) Å−1) so that the
experimental peak ratio of the two main features around 108 and 110 eV is reproduced best.
This fine tuning optimizes the multipole contributions to the scattering functions to mimic a
minor adjustment of the calculated radial wave functions of the Ce3+ atomic wave function
(see e.g. Ref. [27]).

We now compare the measured spectra and the dichroism therein with the simulations for the
two possible scenarios, namely one with the Γ7 doublet as ground state and the other with
the Γ8 quartet. The results are plotted in Fig. 7 (a). The Γ8 quartet scenario reproduces in
great detail the experimental spectra for all three q̂ directions. In contrast, the simulation based
on the Γ7 doublet exhibits large discrepancies with respect to the experiment: the intensities
of several features in the spectra are not correct. To make the difference between the two
scenarios even more contrasting, we compare the experimental and calculated dichroic spectra,
i.e. Iq̂ ‖ [100]−Iq̂ ‖ [110], as displayed in bottom panel (b). There is an excellent match for the Γ8

quartet ground state scenario but a large mismatch for the Γ7 doublet. From these comparisons
we can unambiguously conclude that the Γ8 quartet forms the ground state in CeB6.
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Fig. 7: Top panel (a): calculated and experimental NIXS spectra of the Ce N4,5-edge of CeB6

for the three transferred momentum directions q̂ ‖ [100], [110], and [111]. Bottom panel: dif-
ference spectra I(q̂ ‖ [100])−I(q̂ ‖ [110]) (black dots) (b) at low T and (c) at room temperature
and respective simulations (see text). Figure adapted from Ref. [32].

We have also taken spectra at T = 295 K. The spectra look very similar to the low temperature
data but the dichroism is reduced by about 20%, see bottom panel (c) of Fig. 7. This reduction
in the dichroism is fully consistent with a partial population of the excited Γ7 state at 46 meV.
A simulation in which the Boltzmann weighted contributions of the Γ8 and Γ7 states are taken
into account is represented by the magenta line in panel (c) of Fig. 7. The excellent agreement
provides yet another evidence for the thorough understanding we have obtained using NIXS on
the Ce 4f symmetry and crystal-electric field effects in CeB6.
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4 The local ground state wavefunction of intermediate valent
SmB6

Having established that core-level NIXS is a powerful and reliable spectroscopic method to
determine the local ground state wavefunction for CeB6, we are now ready to tackle the puz-
zle of SmB6. The intermediate valent and Kondo insulator SmB6 [51–55] has attracted con-
siderable attention recently due to the prediction that this system should be a topological in-
sulator [56–61]. If true, SmB6 would be the material to qualify as the first strongly corre-
lated topological insulator. Indeed, the robust metallicity which is attributed to a topologi-
cally protected surface state could be a promising explanation for the long-standing mysterious
low-temperature residual conductivity of SmB6 [53, 54, 62]. Many experimental techniques
like angle-resolved photoelectron spectroscopy (ARPES) [63–71], scanning tunneling spec-
troscopy [72–76], resistivity and surface conductance measurements [77–84] have been applied
to unveil its topological properties. A review is given by Ref. [85, 86].
In SmB6, the strong hybridization of the low lying 4f states with conduction band d states gives
rise to a hybridization gap of the order of 20 meV [63–68] and also leads to a partial occupation
of the 4f shell or a mixture of the Sm f 6 (2+) and f 5 (3+) configurations. For the valence at low
temperatures, values of around 2.6 have been determined experimentally [87–93]. Hence the
local electronic structure is described by the Hund’s rule ground states of the Sm f 6 (2+) and
f 5 (3+) configurations with total orbital momenta of J = 0 and 5/2, respectively. The J = 5/2

multiplet is further split into a Γ7 doublet and a Γ8 quartet due to the cubic crystal-electric
field (CEF). Fig. 8 shows the ground- and first excited state of the two Sm configurations plus
their electron charge density distributions. The charge densities of the J = 0 and 1 states are
spherical since neither the J = 0 or 1 are split in a cubic potential [95]. This is contrasted by the
charge densities of the CEF-split J = 5/2 multiplet (and J = 7/2, not shown) that are anisotropic.
The CEF scheme of SmB6 is however, not established. The classical tool, inelastic neutron scat-
tering, has not been able to identify the CEF states, possibly due to the superposition of both
Sm f 5 and f 6 configurations in this mixed valent compound and the strong neutron absorption
despite double isotope samples [10,11,96]. A sharp excitation at 14 meV close to the hybridiza-
tion gap was reported. It was assigned to a spin exciton and not to a CEF excitation since its
intensity does not follow the 4f magnetic form factor. Further magnetic intensities at about
35 meV, 115 meV, and 85 meV have been assigned to the inter-multiplet transitions of the Sm2+

configuration and of the CEF split Sm3+ configuration (see Fig. 8), and to some magnetoelastic
coupling, respectively. In-gap transitions at about 15 meV in Raman spectra could be inter-
preted as CEF excitations but Raman does not yield the information about which state forms
the ground state [97, 98]. A semi-empirical extrapolation method can predict CEF parameters
across the rare earth series for highly diluted systems [99]. Applying such an extrapolation to
the measured CEF schemes of REB6 with RE = Ce, Pr, and Nd [43,100] yields for SmB6 a CEF
splitting of the order of 15 meV with the Γ8 quartet as the ground state. However, the Kondo
insulator SmB6 is not a highly diluted system and it is definitely not an ionic system but highly
intermediate valent instead, questioning the validity of such an extrapolation.
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Fig. 8: Sm2+ and Sm3+ total energy level diagram. The Sm2+ configuration is split into a J=0
and J=1, and the Sm3+ into a J=5/2 and J=7/2 multiplet. The label n indicates the degen-
eracy. The Sm3+ multiplets are further split (Γi) by the cubic crystal-electric field. The insets
show the corresponding charge densities for six and five electrons and their 2D projections,
respectively. Figure adapted from Ref. [94].

We have carried out N4,5 NIXS experiments on SmB6 and also on Sm2O3, and Eu2O3 which we
used as 4f 5 and 4f 6 reference systems, respectively. Fig. 9 shows the spectra: SmB6 (blue dots),
Sm2O3 (purple dots) and Eu2O3 (dark yellow dots) after subtraction of a linear background and
scaling to the Compton background. We have artificially shifted the Eu2O3 spectrum by 6.8 eV
to lower energies in order to account for the higher atomic number. We also have multiplied the
Sm2O3 spectrum by a factor 0.6 and the Eu2O3 one by 0.4. We have done this in order to inves-
tigate whether the SmB6 spectrum can be interpreted using those of Sm2O3 and Eu2O3. We thus
compare the weighted sum of Sm2O3 and Eu2O2 (see dark cyan line) with the SmB6 spectrum,
and we can observe that the weighted sum spectrum provides a satisfactory reproduction. This
means that our NIXS data indicates that the Sm valence is about 2.6, in good agreement with
other studies using a variety of different experimental methods [87–93].

Fig. 9 (b) shows the N4,5 full multiplet simulation for the Sm3+ (purple line) and Sm2+ (dark
yellow line). The weighted sum (60% and 40%) of the simulated curves (dark cyan) describes
the SmB6 spectrum very well in the energy region between 120 and 135 eV. This is the region
where the high multipole scattering dominates. In the region above ≈ 135 eV, where the spec-
trum is given mostly by the dipole transitions the simulation produces spectral features that are
too sharp with respect to the experiment because the interference with the continuum states is
not included in the calculations. The high multipole excitations are more realistically repro-
duced since they are lower in energy and therefore further away from the continuum states and
consequently more excitonic [101].



Orbitals and NIXS 8.13

0.0

0.5

1.0

115 120 125 130 135 140 145 150

0.0

0.5

1.0

(a)

energy transfer (eV)

 SmB6 [100]
 0.4 x Eu2O shifted
 0.6 x Sm2O3

 incoherent sum

NIXS 
N4,5-edge
  

 

 

in
te

ns
ity

 (r
el

. u
ni

ts
)

(b)

dipole dominated regime 

 

 

Full multiplet
simulation 
N4,5-edge
  

 0.4 x Sm2+

 0.6 x Sm3+

 incoherent sum

Fig. 9: (a) Experimental SmB6 data for q̂‖[100] (blue dots) together with the weighted sum
(dark cyan line) of the experimental Sm2O3 (f 5) (purple dots) and energy-shifted experimental
Eu2O3 (f 6) (dark yellow dots). (b) Full multiplet simulation of Sm3+ (purple line) and Sm2+

spectra (dark yellow line) and their weighted sum (dark cyan). Figure adapted from Ref. [94].

Figure 10 shows the directional dependence of the Sm N4,5 of SmB6. Although the effect is
small, there are clear differences between the spectra in the energy regions marked with red
arrows. At about 126 eV energy transfer the scattering of the q̂‖[110] (light green dots) and
q̂‖[111] (dark green dots) directions are both stronger than for the q̂‖[100] (blue dots), and at
about 140 eV it is opposite. To show these directional differences in a more transparent manner,
we also present in Fig. 10 the difference spectrum between the q̂‖[100] and q̂‖[111] (black
dots): this so-called dichroic spectrum has unambiguously a negative peak at 126 eV whereas
it displays positive intensity in a broader region around 140 eV.
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Fig. 10: SmB6 NIXS data at 16 K for q̂‖[100] (blue dots), q̂‖[110] (dark green dots), and
q̂‖[111] (light green dots). The difference spectrum between the q̂‖[100] and q̂‖[111] directions
is also displayed (black dots). Figure adapted from Ref. [94].

To interpret the observed directional dependence, it is important to know how each CEF state or
multiplet component contributes to the dichroic signal. Therefore, S(~q, ω) has been calculated
taking into account a cubic CEF for the Sm3+ f 5 ground state multiplet with J = 5/2 assum-
ing a Γ8 quartet or a Γ7 doublet ground state, and for the Sm2+ f 6 multiplets with J = 0 or
J = 1 (see Fig. 8). The calculations were performed for the two directions q̂‖[100] and q̂‖[111]
and in Fig. 11 (a) the resulting dichroic signals are plotted. Here only the multipole scattering
contributes to the dichroism, the dipole does not because the Sm site symmetry is cubic.

The first important finding is that the Sm2+ configuration does not show any dichroism at all
(see dark red and green lines at zero dichroism) as we would expect for states with spherical
charge densities, see Fig. 8. Hence, the observed directional dependence of the signal is solely
due to the initial state of the Sm3+ Hund’s rule ground state. The second important finding is
that the Γ8 and Γ7 CEF states exhibit different and opposite dichroism (see orange and light blue
lines), consistent with their opposite anisotropy in the charge densities, see Fig. 8. The opposite
dichroism at 125 and 140 eV reduces the experimental challenge to a simple yes/no experiment
and makes the determination of the CEF ground state of Sm3+ in SmB6 straightforward.

Figure 11 (b) shows the experimental dichroic spectrum (black dots) together with the calculated
ones. The two possible CEF states of the J = 5/2 configuration have now been scaled down
to 60% to quantitatively account for the Sm3+ component in intermediate valent SmB6. We
can clearly observe that in the regions of pronounced dichroism (see red arrows) the sign of
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Fig. 11: (a) simulation of the q̂‖[100] vs. q̂‖[111] dichroic spectrum for the J=0 (brown) and
J=1 (green) multiplet states of the Sm2+ configuration as well as for the Γ8 quartet (orange)
and Γ7 doublet (light blue) of the J=5/2 Sm3+ configuration; (b) experimental dichroic spec-
trum (black dots) and simulated dichroic spectra for the Γ8 quartet (orange) and Γ7 doublet
(light blue) scaled with the factor of 0.6 to account for the Sm3+ component of the ground
state; dashed lines with energy independent broadening, solid lines with extra broadening in
the dipole region (see text). Figure adapted from Ref. [94].

the experimental dichroic signal is correctly explained by the Γ8 quartet (orange line) but not
at all by the Γ7 doublet state (light blue line). In addition, the Γ8 reproduces the experimental
dichroism quantitatively in the high multipole region (see red arrow 1). The dichroism also
fits quantitatively in the dipole region (see red arrow 2) when an extra broadening is applied
(FWHM ≥ 4 eV beyond ≈135 eV energy transfer) to mimic the interference with continuum
states. Note that sum rules still apply, i.e., the interference with the continuum states does not
change the polarization, it only affects the broadening. The dashed lines correspond to the
dipole calculation without the extra broadening. These results unambiguously establish that the
CEF ground state of the Sm f 5 component in SmB6 is the Γ8 quartet.
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5 Discussion and concluding remarks

The finding that the Γ8 quartet forms the ground state of the Sm f 5 component in SmB6 has
several consequences:
First of all, the theoretical predictions for the spin texture of the sought-after topological surface
states depend very much whether the ground state of the f 5 J = 5/2 configuration is the Γ8

quartet or the Γ7 doublet CEF state [102–104]. In fact, the winding of the spin textures is
opposite for the two scenarios. Our finding of the Γ8 quartet supports very much the results of
spin resolved APRES [69]. Xu et al. find spin polarized surface states, fulfilling time reversal as
well as crystal symmetry, that have spins locked to the crystal momenta k such that at opposite
momenta the surface states have opposite spins. The anticlockwise spin texture is in agreement
with spin expectation values calculated by Baruselli and Vojta for a Γ8 ground state [102,104].
Second, details of the character of the Sm 4f bands matter for the formation of the hybridization
gap [56–61]. Using ab-initio band structure calculations [105, 106, 59, 107] as a starting point,
the intermediate valence of the Sm is associated with the fact that the Sm 4f5/2 bands are fully
below the Fermi level for all k-points of the Brillouin zone except in the vicinity of theX-point.
There the strongly dispersing Sm 5d band is positioned below the Fermi level; otherwise, i.e.,
at other k points, the Sm 5d is unoccupied. The symmetry of the Sm 5d band that is below the
Fermi level at the X-point carries the label X+

7 . The Sm 4f5/2 states splits into three bands at
the X-point, and have the symmetry labels X−7 , X−7 , and X−6 . One of the X−7 bands is made of
the local Γ7 wave function, while the other X−7 band and the X−6 band originate from the local
Γ8 wave function. See for example Kang et al. [107].
In order to have an insulating state, the highest and thus unoccupied 4f5/2 band must be aX−7 as
to ensure a non-crossing situation between the X−7 band of the 4f5/2 and the X+

7 band of the 5d
in the region around the X-point due to hybridization. If the highest and unoccupied 4f5/2 band
were a X−6 , then there were no hybridization with the X+

7 band of the 5d in the region around
the X-point, with the result that the two bands cross and no gap is opened. This means that a
local Γ7 ground state would guarantee the formation of a gap, while a Γ8 may or may not open
a gap. Further material specific details then determine whether the highest band is X−7 or X−6 .
So our finding of the Γ8 as the local ground state wave function does not explain why SmB6 is
insulating. Reversely, knowing that SmB6 is an insulator, our results then fix the energy order
of the bands at the X-point: the highest (and unoccupied) is the X−7 from the Γ8, followed by
the X−6 from Γ8, and the lowest is the X−7 from the Γ7.
Third, our finding of a Γ8 local ground-state symmetry contradicts in fact the outcome of several
density functional band structure calculations [105,106,59,107]. In band theory, the search for
the ground state symmetry in SmB6 translates into the question in which band the hole in the
J = 5/2 manifold resides. Kang et al. reported for the X-point an unoccupied 4f X−7 state of
Γ7 origin [107]. Also their k-integrated 4f J = 5/2 partial density of states (pDOS) shows the
hole residing in the Γ7 band, in line with the fact that the center of gravity of the Γ7 pDOS is
higher in energy than that of the Γ8. We would like to note that many theoretical studies have
quoted these band structure calculations for having produced a local Γ8 ground state! This is
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incorrect. Perhaps the mistake has been made by looking at the Γ -point: there the Γ−7 band
is indeed lower than the Γ−8 band which is closer to the Fermi level giving rise to the wrong
expectation that the local Γ8 is the state with the hole. However, we would like to point out that
looking at just one particular point in the Brillouin zone is not sufficient for extracting the local
crystal field scheme. It can only be deduced from the integration over the entire Brillouin zone.
In fact, realizing that crystal-field effects are determined mainly by hybridization, the Γ -point
is perhaps the worst possible location in k-space to look at since there the 4f and the 5d are
non-bonding due to opposite parity, a virtue that is the very starting point for proposing SmB6

to be topologically non-trivial.
Fourth, we would like to note that the experimentally observed dichroism in our NIXS spectra
can be explained by a pure Γ8 state, weighted with 0.6 to account for the contribution of the
4f 5 configuration in the ground state of SmB6, see Fig. 11. This is surprising in view of the
intermediate valent state of the compound, and in view that bands are important for the much
discussed low energy properties. A conclusion that could be drawn from this is that the 4f bands
may be extremely narrow, much narrower than the crystal-field splitting between the Γ8 and Γ7

states. The fact that the spectral responses of 4f ions are dominated by multiplet structures
suggests that the hopping integral for the transfer of a electron from a 4f 6 to a neighboring 4f 5

site will be hampered by the fact that the ground state of a 4f 6 ion is a J = 0 state and that
of a 4f 5 ion a J = 5/2. It is not impossible to convert a 4f 6 J = 0 to a 4f 5 J = 5/2 and
simultaneously a 4f 5 J = 5/2 to a 4f 6 J = 0 by transferring only an s = 1/2 particle without
energy cost, but the probability for such a large change in quantum numbers is tiny and is given
by the fractional parentage as described in the recent lecture notes of Sawatzky [108].
To summarize, we have utilized the high multipole contributions in the core-level non-resonant
inelastic x-ray scattering process to determine the symmetry of the Sm crystal-field ground
state 4f wave function in SmB6. We have found a clear directional dependence of the spec-
tra that allows for the unambiguous identification of the Γ8 quartet state of the Sm f 5 J=5/2
configuration as the state which governs the topological properties of SmB6. Follow-up calcu-
lations should be performed within a reduced basis of only Γ8 states for the construction of a
low-energy many-body Hamiltonian.
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N.Y. Shitsevalova, V.B. Filipov, L.L. Lev, V.N. Strocov, J. Ollivier, and D.S. Inosov,
Nat. Commun. 7, 10876 (2016)

[43] E. Zirngiebl, B. Hillebrands, S. Blumenröder, G. Güntherodt, M. Loewenhaupt,
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1 Introduction

The computationally most difficult task in Dynamical Mean Field Theory (DMFT) [1–4] is the
calculation of the self energy Σ(ω) or, equivalently, the spectral function A(ω). For typical
physically relevant systems with three or five orbital impurities, this becomes demanding, and
the energy resolution of standard techniques has been limited. In this chapter, a new method
is described, dubbed Fork Tensor Product States (FTPS) [5, 6], which is as efficient as the
best established methods for multiple orbitals, but has much better energy resolution at large
energies, by way of using real-time evolution of an excited state. It is based on so-called Matrix
Product State (MPS) techniques [7], which are related to the Density Matrix Renormalization
Group (DMRG) [8].
The new method and the results described in this chapter are largely the work of my former
student Daniel Bauernfeind, described in detail in his Ph.D. thesis [9]. I would like to thank
him very much for a great collaboration.

1.1 Impurity solvers in DMFT

For the description of a material in DMFT, one first calculates the band structure by some variant
of Density-Functional Theory (DFT) and projects the spectrum onto a few low lying effective
orbitals, from which an effective Hamiltonian is constructed. Some aspects of this procedure
will be discussed later in the results section. DMFT then treats the effective Hamiltonian locally,
for example on a single site, which will be discussed here. The effect of all other sites is
subsumed by the interaction with an effective bath, resulting in an effective Anderson Impurity
Model (AIM) like

HAIM = Hloc +
∑
k

Vk

(
c†kc0 + h.c.

)
+
∑
k

εknk . (1)

Here, Hloc is the local interacting Hamiltonian, k is, e.g., a momentum space index numbering
the noninteracting bath sites with local energy εk and occupation number nk = c†kck, and Vk is
the hopping strength from the impurity (indicated by index zero) to the bath site.
For this model, the impurity spectral function A(ω) has to be calculated. It is then used together
with the lattice structure of the material examined to determine new bath parameters Vk, εk in
an iteration of the DMFT loop, until self-consistency is reached.
The bath represents a continuous spectrum of energies of the material around the impurity.
Therefore the number NB of sites in the bath and the corresponding spacing of the energies εk
(as well as the choice of their values) limits the energy resolution which can be achieved. Often,
the AIM is transformed into an equivalent representation as a Wilson chain [10, 11], i.e., a tight
binding chain of length NB with the impurity site coupled at one end.

Let us very briefly touch on some of the current impurity solvers and their strengths and weak-
nesses.



DMRG Multiband Solver 9.3

Fig. 1: Anderson impurity model in two different representations. The circle marked by U
represents the interacting site. Left: star geometry, a direct representation of Eq. (1). Right:
Wilson chain, obtained after a unitary transformation.

Continuous time quantum Monte Carlo

The state of the art work horse for DMFT calculations is probably Continuous Time Quantum
Monte Carlo (CTQMC) [12, 13], usually in its CT-HYB variant. Here, the impurity problem
is expressed in a Lagrangian formulation in continuous imaginary time, with a chain of length
β = 1/T , the inverse of the temperature. The Green function G(τ) is measured, with statis-
tical errors, in imaginary time, and needs to be transformed by a so-called analytic continu-
ation to real time / real frequency, usually done with some variant of the Maximum Entropy
method. This transformation is badly conditioned, especially for non-exact data. One of the
consequences is that the energy resolution of the resulting spectrum becomes rather bad at large
energies. We will see some examples in the section on results. The computational effort for
CTQMC usually grows exponentially with the number of orbitals. An additional difficulty of
CTQMC is a potential Monte-Carlo sign problem which then drastically limits the attainable
inverse temperatures and numbers of orbitals.

Exact diagonalization / Configuration interaction

When there are not too many bath sites, the impurity spectral function A(ω) can be calculated
with Exact Diagonalization (ED) [14–16], but will then consist of a limited number of delta-
peaks. This can be improved, for example by using different bath discretizations within the
same calculation or by optimizing the discretization in Configuration Interaction (CI) schemes
[17, 18]. For a single orbital, spectra with good resolution have been achieved. However, for
more orbitals, the energy resolution has been very limited by, for example, only 3 bath sites for
3 orbitals in Ref. [17].

Numerical Renormalization Group

The Numerical Renormalization Group (NRG) [10,11] provides one of the standard approaches
to impurity solvers. It works on the real frequency axis, successively integrating out degrees of
freedom on high energy scales in a logarithmic fashion in a Wilson chain. It can provide very
good energy resolution at low energies, even for several orbitals [19–21], but by construction is
rather coarse at large energies. The number of orbitals enters exponentially into the computa-
tional effort. NRG amounts to a calculation with matrix product states (see below).
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Dynamical DMRG

The so-called Dynamical DMRG (DDMRG) [22–25] and Correction Vector (CV) [26] ap-
proaches are variants of DMRG in which A(ω) can be calculated very precisely, although with
some broadening, directly at a chosen frequency. However, a separate calculation is necessary
for every frequency, so that multiple orbitals become infeasible.

Time evolution with matrix product states

Matrix product state methods also provide precise techniques to calculate the time evolution
of pure states after a local excitation at the impurity site. Most methods have been developed
in a closely related variant using Chebyshev polynomials [27–30] for up to 2 orbitals [30].
Direct real time evolution has been employed for one and two orbitals by Ganahl et al. [31],
with very good energy resolution. However, the computational effort may grow exponentially
with the number of orbitals and has in the past been far too large for more than two orbitals.
More orbitals have only been reached in imaginary time [32], with associated energy resolution
difficulties. In the present chapter we will see how to overcome these problems.

1.2 Calculation of impurity Green function in time evolution approaches

Impurity solvers using time evolution techniques employ the following general steps (leaving
out spin and orbital indices for simplicity):

• Given the bath parameters, calculate the ground state |ψ0〉 of the corresponding Anderson
impurity model, with energy E0.

• Apply an annihilation operator to obtain the excited state |ψ1〉 = c0|ψ0〉.
• Time evolve, i.e., calculate eiHt |ψ1〉.
• Calculate the overlap with |ψ1〉, namely G<(t) = 〈ψ1| eiHt |ψ1〉 e−iE0t, which provides

one part of the Green function.

• The resulting function G(t) can, if desired, be post-processed with so-called linear pre-
diction [27, 7, 31] (essentially a fit with O(100) Lorentzians) in order to further improve
the energy resolution.

• Fourier transform to obtain A(ω).

More details can be found in Refs. [31,5,6,9]. The Fork Tensor Product State (FTPS) approach
to be described in the present chapter is based on the Matrix Product State (MPS) formalism,
which we will therefore first discuss in some detail. For FTPS we will then introduce a special
efficient tensor geometry. Both MPS (and DMRG) as well as FTPS require an essentially
linear bath geometry. Yet we shall see that, quite surprisingly, it will be much more efficient to
directly enumerate the sites k of the bath degrees of freedom (the so-called star geometry) along
an artificial chain, instead of employing Wilson chains for the bath. At the end of the chapter
we will discuss results and performance of the new method.
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2 Matrix product state techniques

2.1 Matrix product states (MPS)

Matrix product states constitute the formalism behind DMRG. In order to understand the FTPS
method, we need to go into some detail on the MPS approach. For a much more complete
exposition, including all the references to the original literature, I refer to the great review by
U. Schollwöck [7]. For a quick reading of this section, the graphical representation Fig. 2 and
its explanation contain some of the most important aspects.

The state space of many-particle models grows exponentially with the number of particles in-
volved. Such models can therefore be treated exactly only for very small systems. The MPS
approach permits very precise and efficient approximations even for very large systems. It has
allowed for, e.g., DMRG calculations of the ground state energy of Heisenberg models on sev-
eral hundred sites to 10-digit precision, and can also be used to time-evolve a state. Note that a
convenient library of tensor routines is available for such calculations [33].

2.1.1 Example: Heisenberg spin chain

In order to keep notation reasonably simple for the discussion of MPS, in this section we shall
treat the one-dimensional spin-1/2 Heisenberg model with open boundary conditions

Ĥ =
L−1∑
i=1

Ĥi with Ĥi =
Jxy
2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ JzS

z
i S

z
i+1 , (2)

where S±j = Sxj ± iS
y
j , thus S+

j | ↓ 〉j = | ↑ 〉j and S−j | ↑ 〉i = | ↓ 〉j . The representation of Sαj in
the z-basis at site j is σα/2 (we leave out ~).

A chain of L sites has 2L basis states, which are |s1, s2, . . . , sL〉 with sj ∈ { ↑, ↓ } in the z-basis.
In case of isotropic couplings Jxy = Jz =: J we get Ĥ = J

∑
j
~Sj · ~Sj+1. This model is also a

good approximation of the strongly repulsive Hubbard model (U � t) at half filling.

Note that on a one-dimensional chain, the Heisenberg model is equivalent to a model of tight-
binding spinless fermions

Ĥ =
L−1∑
j=1

t
(
c†jcj+1 + h.c.

)
+ V n̂jn̂j+1 −

V

2

(
n̂j + n̂j+1

)
+

1

4

by the Jordan-Wigner transformation. With fermions, the only new aspect for MPS is the minus
sign that appears upon interchanging two fermions. It can be dealt with by a suitable operator
which we will discuss in the chapter on FTPS.
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A
α

[1] s

1

1
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[2] s
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2
A

[3] s

α   α2 3

3
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L−1
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L

A
[L] s L

L−1α    

Fig. 2: Graphical representation of an MPS. Black circles represent matrices A. Lines con-
nected to the circles represent indices, which are summed over when the lines of two circles are
connected. The horizontal set of circles and lines therefore represents the product of matrices
in Eq. (4). The vertical lines denote the remaining physical indices si.

2.1.2 Matrix product state ansatz

A general state of the Heisenberg chain is

|ψ〉 =
∑

s1,s2,...,sL

cs1,s2,...,sL |s1, s2, . . . , sL〉 (3)

with 2L complex numbers as coefficients. We will now write the coefficients in a different way,
as a product of matrices, with one matrix for every lattice-site. This can always be done exactly
(see later) when the matrices are chosen big enough, namely up to 2L/2 × 2L/2. We will later
see that much smaller matrices (O(100) × O(100)) can already provide an extremely good
approximation to physically relevant states. The ansatz is

|ψ〉 =
∑

s1,s2,...,sL

∑
α1,α2,...,αL−1

A[1]s1
α1

A[2]s2
α1,α2

A[3]s3
α2,α3

. . . A[L−1]sL−1
αL−2,αL−1

A[L]sL
αL−1

|s1, s2, . . . , sL〉. (4)

The A can be taken to be square matrices (except for the first and last A, which are vectors),
and αj = 1 . . . χ are the matrix indices. The upper index [j] numbers the lattice sites. The
matrices A usually differ from site to site. At each site j, there are two matrices, A[j]↑, and
A[j]↓, corresponding to the values sj =↑ and sj =↓ in the basis vector |s1, s2, . . . , sL〉. For a
given state, the matrices A are not unique: one can replace any pair of matrices A[j]A[j+1] by
(A[j]X) (X−1A[j+1]), with any invertible matrix X . It is very helpful to denote this ansatz for
the coefficients in a graphical way, as shown in Fig. 2. Let us look at some simple examples.
• Single basis state (product state) A state like | ↓ ↓ ↑ ↓ ↑ ↓ 〉 is called “product state” since it
can be written as a product | ↓ 〉1 | ↓ 〉2 | ↑ 〉3 | ↓ 〉4 | ↑ 〉5 | ↓ 〉6 and it does not contain any linear
combination.

|ψ〉 = | ↓ ↓ ↑ ↓ ↑ ↓ 〉

j = 1 2 3 4 5 6

A↑j = 0 0 1 0 1 0

A↓j = 1 1 0 1 0 1

The “matrices” A are just single numbers here.
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• Singlet, L=2 sites

|ψ〉 =
1√
2

( ∣∣ ↑↑ ↓↓
〉

−
∣∣ ↓↓ ↑↑

〉 )
A↑j = (1, 0), −

(
0

1

)
/
√

2

A↓j = (0, 1),

(
1

0

)
/
√

2

• Nonlocal singlet

|ψ〉 = 1√
2

( ∣∣ ↓ ↓ ↑↑ ↓ ↓ ↓↓ ↓ ↓
〉

−
∣∣ ↓ ↓ ↓↓ ↓ ↓ ↑↑ ↓ ↓

〉 )
A↑j = 0, 0, (1, 0),

(
0 0

0 0

)
,

(
0 0

0 0

)
, −

(
0

1

)
/
√

2, 0, 0

A↓j = 1, 1, (0, 1),

(
1 0

0 1

)
,

(
1 0

0 1

)
,

(
1

0

)
/
√

2, 1, 1

2.1.3 Singular value decomposition (SVD)

The SVD is an extremely important and versatile tool from linear algebra and the central tech-
nical ingredient of MPS techniques. It is different from the familiar eigenvalue decomposition
(see below), and it exists for every real or complex matrix. It is widely used for, e.g., image
processing, signal processing, optimizations, etc. Every real or complex n ×m matrix M can
be decomposed like

M = U D V † (5)

with a diagonal matrix D that contains only positive real numbers (or zero), which are called
the singular values of M . It is of dimension N = min(n,m). Furthermore,

U †U = 1, V †V = 1, D =



λ1
. . .

λr
0

. . .
0


. (6)

We will always order λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = 0 = · · · = λN = 0.. The number r
of non-zero entries λ is called the rank of the matrix M, which need not be square. When, e.g.,
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m ≤ n, the SVD looks like M = U D V † and V † cannot be unitary.
This version of the SVD, with (in general) non-square matrices U and V †, is called a “thin
SVD”. The values λi are uniquely determined. The matrices U and V † are not unique: within
each subspace (dimension ≥ 1) of equal singular values, one can multiply U with a unitary
matrix and V † with the inverse, without changingM . WhenM is real, thenU and V † can also be
chosen real. WhenM is real and quadratic, then U and V † are rotations (basis transformations),
andD scales the directions in the intermediate basis. The eigenvalue decomposition of matrices
M †M and MM † both have eigenvalues λ2

j . When M is quadratic and all eigenvalues are ≥ 0,
then the eigenvalue decomposition M = UDU † is the same as the SVD.
The computational cost of a SVD is min(mn2,m2n). Many applications of the SVD involve
truncation: one replaces small singular values by zero. This provides an approximation to
M , which is usually very good and often of far smaller dimension, providing for much lower
computational cost.

Representation of the SVD with square matrices

When M is not quadratic, then either U or V † is not quadratic in the SVD M = UDV †.
Alternatively, one can write the SVD with unitary quadratic matrices Ũ and Ṽ :

M = UDV † = ŨD̃Ṽ † (7)

This can be interpreted as a basis transformation by Ṽ †, a weighting of directions by D̃, and
another basis transformation by Ũ . When M is m × n dimensional, then Ũ is m × m, D̃ is
m× n, and Ṽ † is n× n.

• Case m ≤ n: M = U D — 0 0 0

V †

(rest)

In this case, Ũ = U . The lower rows of Ṽ † contain extra eigenvectors, beyond those in
V †. They do not contribute to M because of the zeroes in D̃. Since the eigenvectors in
Ṽ † are orthogonal, the application of M to such a vector gives zero, i.e., they belong to
the null space of M . (The directions j beyond the rank r, with vanishing singular value
λj>r = 0 also belong to the null space). When considering the action of M on the full
vector space, this null space can be ignored (see below).

• Case m ≥ n: M = U (rest)

D

0 V †

Now Ṽ = V .
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Pseudoinverse

We first discuss the case of a square matrix M . Formally, the inverse is

M−1 =
(
Ũ D̃ Ṽ †

)−1

= Ṽ D̃−1 Ũ †, (8)

since Ũ and Ṽ are unitary. But the matrix M can contain singular values λj>r = 0. In these
directions j, M does not act, and the inverse D̃−1 would contain infinity.
It is much better to exclude this null space completely also from the inverse, i.e., to set D̃−1 to
zero there. This is called the pseudoinverse

λj 7→
1

λj
, but 0 7→ 0. (9)

In practice, one maps singular values to zero when they are below some threshold (e.g. 10−10).
Using the pseudoinverse, M−1M becomes

M−1M = Ṽ D̃−1 Ũ † Ũ D̃ Ṽ † =


1

. . .
1

0
. . .

0

 = . . . = MM−1 (10)

in which only (up to) the first r components correspond to the unity matrix, while the rest
vanishes. The same considerations apply when M is not square, n > m or m > n. Then
M−1M is an n× n matrix. and MM−1 is m×m. They are both of the form Eq. (10).

2.1.4 Schmidt decomposition, reduced density matrix, and entanglement

Consider any quantum-mechanical system and two arbitrarily chosen subsystems A and B, for
instance the left and right side of a one dimensional chain with some arbitrary split. Let |j〉A
be the orthonormal basis states of subsystem A, and |k〉B those of subsystem B. Then a general
pure state of the total system is

|Ψ〉 =
∑
j,k

cjk |j〉A |k〉B, (11)

where cjk are coefficients. We now regard cjk as a matrix and look at its singular value decom-
position

cjk = Ũ D̃ Ṽ †, with Ũ and Ṽ unitary. (12)

Written in matrix components, this becomes cjk =
∑χ

α=1 λα Ũjα (Ṽ †)αk, where χ is the rank of
the matrix cjk, the so called Schmidt-rank. Since Ũ and Ṽ are unitary, it is possible to perform
two basis transformations: |A〉α :=

∑
j Ũjα|j〉A and |B〉α :=

∑
k(Ṽ

†)αk|k〉B and express the
state |Ψ〉 in the new basis

|Ψ〉 =

χ∑
α=1

λα |A〉α |B〉α, with χ ≤ min(dim(A), dim(B)). (13)
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This Schmidt-decomposition of a general state |Ψ〉 always exists. The normalization 〈Ψ |Ψ〉 = 1

implies ∑
α

λ2
α = 1 . (14)

Reduced density matrix of a pure state

The density matrix of a pure state is ρ̂ = |Ψ〉〈Ψ |, which can be written

ρ̂ =

χ∑
α=1

χ∑
β=1

λαλβ|A〉α|B〉α β〈A| β〈B| .

The reduced density matrix for the subsystem A is

ρ̂A = trB ρ̂ =
∑
γ

γ〈B|ρ̂|B〉γ =

χ∑
γ=1

λ2
γ |A〉γ γ〈A| , (15)

since the bases |A〉 and |B〉 are orthonormal. This is a sum over eigenvalues λ2
γ times a corre-

sponding projection operator |A〉γ γ〈A|. When the Schmidt rank χ is larger than one, the state
is entangled and the reduced density matrix represents a mixed state, as we will see next.

Von Neumann entanglement entropy

Similar in definition to the entropy of a statistical system S = − tr(ρ̂ ln ρ̂), the von Neumann
entanglement entropy between two subsystemsA andB is defined as the entropy of the reduced
density matrix:

SA := − trA(ρ̂A ln ρ̂A) (16)

When the Schmidt decomposition of |ψ〉 and thus the reduced density matrix Eq. (15) is known,
the von Neumann entropy is simply

SA = −
χ∑
γ=1

λ2
γ lnλ2

γ = SB . (17)

SA takes its maximum possible value of lnχ when all λγ are of equal value. Note that the
entanglement entropy between two subsystems is invariant under unitary transformations within
a subsystem, but usually not under a transformation which mixes both subsystems, like e.g., a
spatial Fourier transform.

Examples for a two site system

For a product state, |Ψ〉 = | ↑A↑B〉 = | ↑ 〉A| ↑ 〉B is already the Schmidt decomposition. The
reduced density matrix is ρ̂A = | ↑ 〉A A〈 ↑ |, which is a pure state, and the entanglement entropy
between the two sites is SA = SB = −12 ln 12 = 0.
For a singlet, |Ψ〉 = 1√

2

(
| ↑ 〉A| ↓ |, 〉B − | ↑ 〉B| ↓ 〉A

)
is also already the Schmidt decomposition,

the reduced density matrix is ρ̂A =
∑2

α=1 λ
2
α|A〉α α〈A| =

1
2

(
| ↑ 〉A A〈 ↑ |+ | ↓ 〉A A〈 ↓ |

)
, which in

matrix notation is one half the unit matrix, and the entanglement entropy is SA=−2 1
2

ln 1
2
= ln 2.
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2.2 Different MPS representations of a state
2.2.1 Exact representation

The coefficients of any pure state |Ψ〉 =
∑

s1...sL
cs1...sL |s1 . . . sL〉 can be written as a “matrix

product state” by going through the system site by site and performing Schmidt decompositions,
i.e., basis transformations, at each site.
First site. We treat the coefficients cs1,(s2...sL) as a matrix with row index s1 and column index
(s2 . . . sL) and apply an SVD

cs1,(s2...sL) =
2∑

α1=1

U [1]
s1α1︸ ︷︷ ︸

2x2 matrix

λ[1]
α1
V †α1(s2...sL)

The upper index [1] denotes the first lattice site. Since the index s1 has only two values, s1 = ↑
and s1 = ↓ , the matrix U [1] is (2 × 2) dimensional. We split it into two (1 × 2)-matrices A[1]↑

and A[1]↓ for the two spin components ↑ and ↓.

U
[1]
s1α1

α1 = 1, 2

=

s↑1

s↓1

α1 = 1, 2

=:

A↑α1

A↓α1

α1 = 1, 2

U is a unitary matrix. It contains a basis transformation from the basis s1 = ↑, s1 = ↓ to a
new basis with indices α1 = 1, 2. Similarly, V † defines a basis transformation on the vectors
|s2, s3, . . . , sL〉, i.e., we get the Schmidt decomposition

|Ψ〉 =
2∑

α1=1

λ[1]
α1

∣∣ΦLα1

〉∣∣ΦRα1

〉
, (18)

where L(R) denote the left(right) subsystem.
Second site. We now regard λα1

V †α1(s2...sL) (including the diagonal matrix λ) as a matrix ele-
ment with row index (α1s2) and column index (s3 . . . sL) and decompose it with an SVD

λα1
V †α1(s2...sL) =

4∑
α2=1

U
[2]
(α1s2)α2︸ ︷︷ ︸

4x4 matrix

λ[2]
α2
V †α2(s3...sL).

The summation index α2 now goes up to 4, because of the possible combinations of α1 = {1, 2}
and s2 = {↑, ↓}.1 The 4×4 matrix U [2] is again unitary and a basis transformation from {α1s2}
to {α2} which we split up into two 2× 4 matrices A[2]↑ and A[2]↓ for the two spin indices s2

U
[2]
α1s2α2

α2 = 1 . . . 4

=:

A↑α2

A↓α2

α2 = 1 . . . 4

1The actual range of α can be smaller, when the coefficients of |Ψ〉 are such that the SVD has a lower rank,
e.g., for a product state (rank 1).
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After iteration up to site j. we get the following representation of the state |Ψ〉

|Ψ〉 =
∑
s1...sL

2∑
α1

4∑
α2

8∑
α3

. . . U [1]
s1α1

U
[2]
(α1s2)α2

. . . U
[j]
(αj−1sj)αj

λ[j]
αj
V †αj(sj+1...sL) |s1 . . . sL〉. (19)

This is also a Schmidt decomposition of |Ψ〉, between sites j and j + 1. By splitting up each
U -matrix into two distinct matrices for ↑ and ↓ spin indices, we can also write

U [1]
s1α1

U
[2]
(α1s2)α2

U
[3]
(α2s3)α3

· · · = A[1]s1
α1

A[2]s2
α1α2

A[3]s3
α2α3

. . .

Exact MPS representation of |Ψ〉. Continuing until the last lattice site, we find that indeed an
arbitrary state |Ψ〉 can be represented exactly by a matrix product state

|Ψ〉 =
∑
s1...sL

∑
{αi}

A[1]s1
α1

A[2]s2
α1α2

A[3]s3
α2α3

. . . A[L−1]sL−1
αL−2αL−1

A[L]sL
αL−1

|s1 . . . sL〉 (20)

represented graphically in Fig. 2. The range of the intermediate indices αi is equal to the rank of
the corresponding SVD. Note that between sites L−1 and L, this rank is a most 2, and between
sites L− 2 and L− 1, it is at most 4. Thus, an exponentially large maximum rank of up to 2L/2

is reached in the middle of the chain for a general state.

2.2.2 Left-Normalization

Each of the matrices U [i] comes from an SVD and therefore satisfies U [j]†U [j] = 1, which also
provides for normalized basis transformations. In terms of the matrices A[j] this becomes∑

sj

A[j]sj†A[j]sj = 1 (21)

Written in matrix components, this equation reads

∑
sj ,aj−1

A
∗[j]sj
αj−1α′ A

[j]sj
aj−1α

= δαα′ or graphically s
j

α
j−1

A
[j]

*

A
[j]

δαα ’

α
j
’

α
j

= (22)

In the graphical representation, closed lines imply a summation. The normalization of the
whole MPS, 〈Ψ |Ψ〉 = 1, can now be deduced in a simple way, by applying the graphical form
of Eq. (22) site by site. The state Eq. (4) and Fig. 2, written with A-matrices, is called left-
normalized.

2.2.3 Canonical form of an MPS

Each Schmidt decomposition in the derivation of the MPS also gave us the singular values λα,
i.e., information about the reduced density matrix at that step. We now write this information
explicitly in the MPS. We take the singular values λα out of the A-matrices; this defines new
matrices Γ

A[j]sj
αj−1 αj

=: λ[j−1]
αj−1

Γ [j]sj
αj−1 αj

(23)
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Γ
[L−1] s

α     αL−2 L−1

L−1

αL−1
λ

[L−1]

s
L−1

s
L

L−1α   
Γ

[2] s

α   α1 2

2

α1
λ

[1]

2
λ

[2]

α

s
1

s
2

α1
Γ

[L] s L

αL
λ

[L]

Lα   α0
λ

[0]
[1] s 1Γ
α0

Fig. 3: Graphical representation for the canonical form of MPS matrices.

When the A-matrices are given, one can obtain the Γ matrices by multiplying A with the pseu-
doinverse of λ. Graphically, the “MPS state” (actually the coefficient cs1s2...sL) is shown in
Fig. 3, where we the diagonal denote λ-matrices by crosses, and Γ -matrices by squares. The
λ[j] are located between sites j and j + 1. They are the singular values of the Schmidt decom-
position at that bond, cs1s2...sL = UλV †. In a product state, all Γ [i] are numbers 0 or 1, and all
λ[i]

= 1. Since the first “matrix”A[1]s1
α1 is just a vector, the first index α0 on Γ [1]s1

α0α1 is superfluous.
We still write Γ [1]s1

α0α1 as a matrix, for easier notation later on, by letting the index α0 only have
one value α0 = 1 and λ[0]

α0 ≡ 1. Similarly, αL has only the one value αL ≡ 1 and Γ [1]s1
αL−1αL is

actually a vector. At the right hand side we have introduced a final λ[L]
αL ≡ 1. The normalization

Eq. (22) now becomes an equation for Γ and λ, shown below on the left hand side

∑
sj

(
Γ [j]sj

)† (
λ[j−1]

)2
Γ [j]sj = 1

s
j

α
j−1

[j−1]

λ

*[j−1]

λ Γ
[j]

*

Γ
[j]

β

α

=

α

β

= δ
αβ

∑
sj

Γ [j]sj
(
λ[j]
)2 (

Γ [j]sj
)†

= 1

α

β

sj

Γ
[j] [j]

λ

*[j]
λΓ

[j] *

α

β

α j δ
αβ

= =

(24)

A similar normalization can also be shown to hold when summing over the second matrix index
of Γ [j] by an iterative construction of the MPS from the right. This normalization is displayed
on the right side of the equation above.

2.2.4 B-matrices, right-normalization, and mixed normalization

Instead of combiningA[j] = λ[j−1]
Γ [j] as in Eq. (23), one can group the matrices of the canon-

ical representation via B[j] = Γ [j] λ[j], so that instead of Eq. (4) we get an equivalent product
of B-matrices for the coefficients of |ψ〉. The B-matrices are right-normalized, as spelled out
on the right side of Eq. (24).

In DMRG, the coefficients of states are usually expressed in the so-called mixed-canonical form
AA . . . AλB . . . BB which follows directly from the canonical form in Fig. 3. The diagonal
matrix λ contains the singular values of a Schmidt decomposition at the corresponding bond.

An unnormalized state can be brought into one of the canonical forms essentially by repeating
an analogue of the steps outlined in section 2.2.1: successive SVDs from one end to the other.
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Truncation

In order to achieve an efficient representation of a state, with relatively small matrices, we can
approximate the state by discarding small singular values λα. This needs to be done in the
canonical or mixed canonical representation, in which the λα do contain the Schmidt singular
values. When all λ[j]

α>α0
are discarded, the matrices Γ [j] and Γ [j+1] can be truncated corre-

spondingly beyond matrix index α0. One can either discard values below a certain threshold
ε (e.g. 10−10), which results in a varying matrix dimension, or one can set a maximum matrix
dimension χmax beyond which all singular values are discarded.
The quality of the approximation is related to how much of the reduced density matrix ρ =

diag(λ2
1,λ

2
2, . . . ) is discarded. This can be quantified by the so-called truncated weight

tw = 1−
∑χmax

α=1 λ
2
α, (25)

which should stay below some small threshold like� 10−8 for precise calculations. In order to
keep the state normalized, we have to re-normalize the remaining λα

λα → λα/
√

1− tw , so that
∑

α λ
2
α = 1 . (26)

The normalizations of the A-matrices and the Γ -matrices are unaffected by the truncation, ex-
cept that the matrix 1 in Eq. (21) is also truncated.

How large do the matrices need to be?

The discarded weight tw is small when the singular values λα decay quickly. This is the case
when the entanglement entropy Eq. (17), SA = −

∑χ
γ=1 λ

2
γ lnλ2

γ is small. We saw earlier that
the maximum entanglement entropy of a reduced density matrix of size χ is lnχ. Thus one
can estimate that one may need matrices of up to order χmax ∼ eSA for a good representation
of a state. In 1D, the border of two subsystem A and B is just a point. All entanglement
between A and B must go through this point. One can show that for the ground state of gapped
Hamiltonians with local couplings one needs only about χmax ∼ ξ where ξ is the maximum of
the spatial correlation length and the size of the system. This is the reason why matrix product
states work so well in one-dimensional physical systems. However, in general dimension D,
Smax ∼ LD−1, the so-called area-law, which implies that the matrix dimension will need to
grow exponentially in more than 1D.

Expectation values of one-site operators

A big advantage of the MPS representation is that only a few local matrices are needed to
calculate the effect of a local operator on the state (see below), or its expectation value. We will
here look at the expectation value of a one-site operator Ô[j] that acts only on the spin at site j,
for example Ŝ[j]

z , whose matrix representation is the third Pauli matrix. Its expectation value is

〈Ψ |Ô[j]|Ψ〉 =
∑
{s},{s′}

〈s′1 . . . s′L| . . .λ
∗[j]
Γ ∗[j]s

′
jλ∗[j−1]

. . . O
[j]

sjs′j
. . .λ[j−1]

Γ [j]sjλ[j]
. . . |s1 . . . sL〉

(27)



DMRG Multiband Solver 9.15

In graphical representation, this becomes

λ
α0

λ
α

**[0] *
Γ

α   α0 1

1[1] s’

λ
α

*

1
λ

α

[1] * *
Γ

1 2

2

α   α

[2] s’

1

1       1s  = s’α0

*
Γ

α    αL−1   L

[L] s’L
λ

α

[L] *

L

λ
α0

λ
α

[0]

Γ
α   α0 1

[1] s

λ
α1

λ
α

[1]

Γ
1 2

2

α   α

[2] s

2       2s  = s’

Γ
α    αL−1   L

[L] s L

λ
α

[L]

L

L       Ls  = s’ αLO

Γ
α     α j−1

 j

s’

 js

*
Γ

[ j ] s’

α      α j−1      j

 j

[ j ] s

λ
α

*[j−1]

 j
λ

α

*[ j ]

 j
λ

α

[ j ]

 j−1
λ

α

[ j−1]

 j−1

    j

 j

At the interior vertical lines, the spins si′ from the bra vector 〈ψ| and si from the ket vector |ψ〉
meet. Since 〈s′i|si〉 = δsis′i , they have to be equal, except at the location j of the operator Ô[j].
Note that all lambda values are actually real, since they are singular values.
This expression can now be simplified by using the normalization Eqs. (24), which iteratively
cause all matrices from both ends of the chain up to site j to just contribute Kronecker deltas.
The remaining contribution is, in graphical representation

s
 j

α
j−1

α
j

 * *

s
 j
’

O

Γ
[ j ] [ j ]

λ
[ j−1]

λ

λ
[ j−1]  * [ j ]

λΓ
[ j ]

With M sj
αj−1αj := λ[j−1]

α Γ
[j] sj
αj−1αj λ

[j]
αj

this becomes

〈ψ|Ô[j]|ψ〉 =
∑
s,s′

〈s′| Ô |s〉 tr
(
M s′

)†
M s. (28)

2.3 Time evolution

The time evolution of a state in the Schrödinger picture for a time-independent Hamiltonian is
given by |Ψ(t)〉 = e−iĤt|Ψ(0)〉. We will discuss the case of Hamiltonians with local or nearest
neighbor interactions, like in (2).

2.3.1 Trotter Suzuki decomposition

The difficulty now is that the Hamiltonians of adjacent sites do not commute, [Ĥi, Ĥi+1] 6= 0

and as a consequence the exponential e−iĤt cannot be expressed as a product of local oper-
ators e−iĤt 6=

∏
j e
−iĤjt. But the Hamiltonians of next nearest neighbor sites do commute:

[Ĥi, Ĥi+2] = 0. It is thus helpful to decompose Ĥ into a sum of even and odd site Hamiltonians

Ĥ = Ĥeven + Ĥodd =
∑
j,odd

Ĥj +
∑
j,even

Ĥj (29)

such that
e−iĤeven t =

∏
j,even

e−iĤjt and e−iĤodd t =
∏
j,odd

e−iĤjt . (30)



9.16 Hans Gerd Evertz

Within Ĥeven, all terms commute, and also withinHodd, but [Ĥeven, Ĥodd] 6= 0. Next we subdivide
the time t into small “time slices” of length ∆t

e−iĤt =
(
e−iĤ∆t

) t
∆t

=
(
e−i(Ĥeven+Ĥodd)∆t

) t
∆t
.

Now we use the Baker-Hausdorff formula to get

e−iĤt =

(
e−iĤeven∆t e−iĤodd∆t

(
1 +O

(
(∆t)2[Ĥeven, Ĥodd]

))) t
∆t

.

Writing this product of t/∆t terms explicitly yields

e−iĤt =
(
e−iĤeven∆t e−iĤodd∆t e−iĤeven∆t . . . e−iĤeven∆t

)(
1 +O(∆t)

)
. (31)

We lost one order of ∆t because of the (t/∆t) many factors. The Trotter-Suzuki decomposition
leads to a series of operators e−iĤjt which only act on two adjacent sites at once. The time
evolution of the system is traced back to application of these 2-site operators. This strategy was
introduced in the context of quantum Monte Carlo by Suzuki. It is also used for several popular
MPS time evolution methods.
The smaller the time step ∆t, the smaller the error in the method. One can gain another order
of ∆t with almost no effort by the 2nd order Trotter Suzuki approximation

e−iĤ∆t = e−iĤeven∆t/2 e−iĤodd∆t e−iĤeven∆t/2 +O
(
(∆t)3

)
. (32)

For the time evolution of a state |Ψ〉 this requires no more effort than the first order approxima-
tion, because e−iĤeven∆t/2 e−iĤeven∆t/2 = e−iĤeven∆t. The only difference occurs when measure-
ments are performed: for the 2nd order approximation, measurements have to be performed
after half-time-steps e−iĤeven∆t/2.

2.3.2 Application of 2-site operators

In order to calculate the time evolution, we need to apply the 2-site operators Ĥi to |Ψ〉. For a
general 2-site operator, we want to calculate

|Ψ ′〉 = Ô[j,j+1] |Ψ〉. (33)

The structure of MPS as products of matrices located on individual sites is again very helpful.
Since Ô[j,j+1] acts on sites j and j + 1, only the Γ -matrices at these sites and the λ-matrix
in between are affected, but not the outer λ-matrices containing the entanglement with the
environment. Let χ be the dimension of all these matrices. The calculations turn out to be
easier when one also includes the two outer λ-matrices. We therefore look at the part of the
MPS shown in Fig. 4. This object has spin indices sj, sj+1 on which the operator will act, and
free matrix indices α and γ. It is the graphical representation of

ψsj sj+1
αγ :=

∑
β

λ[j−1]
α Γ

[j] sj
αβ λ[j]

β Γ
[j+1] sj+1

βγ λ[j+1]
γ . (34)
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sj+1sj

Γ
[j] s

α β
Γ

β γ
λ

[j]

β
λ

[j−1]

γ
λ

[j+1]

α

j [j+1] s j+1

α γ

Fig. 4: The coefficients ψsj sj+1
αγ of an MPS affected by two-site operators.

In the context of DMRG, it is called the wave-function. The application of Ô on ψ yields

ψ̃
s′j s
′
j+1

αγ :=
∑
sj ,sj+1

〈s′j s′j+1| Ô |sj sj+1〉ψsj sj+1
αγ . (35)

We want to express |Ψ ′〉 as a normalized MPS, similar to |Ψ〉. We therefore need to write ψ̃ in
the same form as the original ψ, with new normalized matrices Γ̃

[j]s′j
αβ , λβ , and Γ̃

[j+1]s′j+1

βγ .
In order to get there, we first interpret ψ̃ as a matrix with two indices, a row index (αs′j) and a
column index (γs′j+1)

ψ̄(αs′j),(γs
′
j+1) := ψ̃

s′j s
′
j+1

αγ . (36)

Next we perform an SVD on ψ̄

ψ̄(αs′j),(γs
′
j+1) =

2χ∑
β=1

U(αs′j)β λ̃β V
†
β (γs′j+1). (37)

Note that U is the unchanged λ[j−1] times a new Γ [j] and is equivalent to a new A-matrix, and
V † is a new Γ [j+1] times the unchanged λ[j+1], equivalent to a new B-matrix.
Because of the presence of s′j and s′j+1 in the indices (with 2 values ↑, ↓), this SVD has a Schmidt
rank up to twice the rank of the original matrices Γ, λ. If we kept this increased rank, then the
matrix dimensions would explode exponentially during the time evolution. We therefore need to
truncate the matrix dimensions, for example back to the original χ, by discarding the smallest
singular values in λ̃. We then need to calculate the discarded weight tw and re-normalize λ̃β →
λ̃β /
√

1− tw. The matrices U and V † are also truncated at the new size.
In the so-called tebd algorithm [34, 35], which works in the canonical representation, new Γ -
matrices are then extracted, by splitting the unchanged outer matrices λ[j−1] and λ[j] off U and
V †, by means of applying the pseudoinverse:

Γ̃
[j]s′j
αβ = (λ[j−1]

α )inv U(αs′j)β , Γ̃
[j+1]s′j+1

βγ = V †β (γs′j+1) (λ[j+1]
γ )inv. (38)

As desired, this results in updated χ× χ matrices Γ̃
[j]s′j
αβ , λ̃β , and Γ̃

[j+1]s′j+1

βγ . This method has
the disadvantage of potential instabilities from the divisions. They can also be avoided [7].
A different valid time-evolution with similarly small Trotter error, which is not commonly used
but will be employed in the FTPS method, does not step by two sites in even/odd fashion,

but steps only by one site, using λ̃
[j]
V [j+1]† from Eq. (37) multiplied from the right with

Γ [j+2] λ[j+2] as the next ψsj+1 sj+2 to be updated.
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A mathematical equivalent of tebd is the t-DMRG algorithm [36, 37], which works in the
mixed-canonical representation, i.e., with only A and B matrices, and with the even/odd Trotter
split. When moving from the left to the right, the U matrix from the SVD defines the matrixA[j]

of the updated state. In order to step another site to the right, ψsj+1 sj+2 introduced in the previ-
ous paragraph is subjected to another SVD: ψ = UDV †, which yields A[j+1] from U , while D
should be the unchanged λ[j+1] and V † the unchanged Γ [j+2]λ[j+2]. Multiplying DV † from the
right by the next B-matrix (=Γ [j+3]λ[j+3]) provides the next wave function ψ in t-DMRG, at the
disadvantage of an additional SVD operation.
Another possibility for time evolution is by way of repeated application of the complete Hamil-
tonian to the state, in the simplest case as (1 + H∆t)t/(∆t). The complete Hamiltonian can be
applied as a so-called Matrix-Product Operator (MPO), to be discussed next.

Swap gate

A swap gate switches the physical role of two neighboring sites in an MPS [38, 7]. It amounts
to applying the two-site operator

Sij = δsi,s′j δsj ,s′i (−1)ninj (39)

to a state with physical indices si, sj . The sign factor provides for fermion anticommutation.

2.4 Matrix product operators (MPO) and DMRG

In the same way as the coefficients of a state can be expressed as a product of matrices in
Eq. (4) this can also be done for the coefficients of a many-particle operator Ô in terms of
matrices W [si,s

′
i]

αi−1αi

Ô =
∑
{si},{s′i}

W s1,s′1 W s2,s′2 . . .W sL,s
′
L |s′1, s′2, . . . , s′L〉〈s1, s2, . . . , sL| , (40)

where the internal matrix indices αi have been omitted. The graphical representation of this
MPO is shown in Fig. 5. Methods for obtaining the W-matrices can, e.g., be found in Ref. [7].
For a simple Anderson impurity model, they will be shown explicitly below.

2.4.1 DMRG ground state search

The DMRG method [8,7] optimizes the energy of a state |ψ〉 site by site (or in pairs of sites) in
order to find the state with minimum energy. Here we just provide a brief idea of the method. It
works in the mixed canonical representation. Each optimization of a local MPS matrix A[i] can
be formulated as a linear equation

Heff
i A

[i] = λA[i], (41)

for which the matrix with the lowest eigenvalue λ needs to be found, for example with a Lanczos
method. The effective Hamiltonian Heff is most easily expressed in graphical form, as in Fig. 5.
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s1 s6

s′1 s′6

L RW si,s
′
i

Fig. 5: Left: graphical representation of a matrix product operator. The disconnected lines
symbolize again physical degrees of freedom si. The operator connects to an MPS with the
lower indices, which implies a summation over {si}, producing a new MPS with indices {s′i}.
Right: Effective Hamiltonian for DMRG. It is applied to an MPS matrix A[si]

αi−1αi on the bottom,
producing an effective A-matrix on the top, which has to satisfy Eq. (41).

This local minimization works amazingly well, as mentioned earlier. Sometimes it can, how-
ever, get stuck in local minima. Because of the limited amount of entanglement available in
an MPS, DMRG tends, for example, to converge to an ordered state, like, e.g., a Néel state in
case of an antiferromagnet. Care must be taken to either avoid this or to correctly interpret the
resulting state.

2.4.2 MPO representation of an Anderson impurity model Hamiltonian

Let us now explicitly discuss an MPO which represents an Anderson impurity model Hamilto-
nian. More details can be found in Ref. [9]. To keep indices manageable, we will first discuss
the standard AIM with a single orbital

H =
∑
kσ

εk nkσ +
∑
kσ

Vk
(
c†0σckσ + h.c.

)
+
∑
σ

ε0 n0σ + U n0↑n0↓ . (42)

We number sites like in Fig. 6. We will need MPOs of internal dimension 4 in order to code the
four terms in H . For the leftmost site, the W -tensor of the MPO is a vector in internal MPO
space. (This space is denoted by the horizontal indices in Fig. 5.) The physical indices are not
written explicitly in the equations below; they are implied by the operators.

W1↑ =
(
ε1 n1↑ 1 V1c1↑ V1c

†
1↑
)

(43)

↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓a.)

1 2 3 4 4 3 2 10 0b.)

Fig. 6: Numbering of sites for a single orbital Anderson impurity model. Here the number of
bath sites for each spin is NB = 4.
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Each following site of the left bath gets

Wk↑ =


1 0 0 0

εknk↑ 1 Vkck↑ Vkc
†
k↑

0 0 p 0

0 0 0 p

 (44)

as a W -tensor. The operator p = (−1)n provides for a Jordan-Wigner transformation, i.e., it
ensures fermionic commutation rules. Now

Nb∏
k=1

Wk↑ =

(
Nb∑
k=1

εknk↑ 1

Nb∑
k=1

Vkck↑

Nb∑
k=1

Vkc
†
k↑

)
(45)

(with the p operators omitted in the last equation).
W -tensors for the spin-down chain are equivalent, but with transposed matrices, and a column
instead of a vector for the rightmost MPO. Finally, the W -tensors for the impurity sites are

W0↑ =


0 1 0

1 ε0n0↑ n0↑

0 c†0↑ 0

0 c0↑ 0

 , W0↓ =

1 ε0n0↓ c†0↓ c0↓
0 1 0 0

0 Un0↓ 0 0

 . (46)

Multiplying all these matrices together produces the desired Hamiltonian Eq. (42).

2.5 Previous MPS impurity solvers

As spelled out in the introduction, we need to calculate the ground state of an Anderson Impurity
Model (AIM), apply a creation or annihilation operator, and time evolve. In order to do this
efficiently with MPS, where the computational effort for matrix dimension m grows like m3,
we need small matrices and few physical degrees of freedom per site. For a single spinful
orbital, it turns out that it is best to split spin-up and spin-down into the chain geometry of
Fig. 6 (top). Using real-time evolution, this allows for a very precise impurity solver, with large
baths (easily O(100) and more) and with excellent energy resolution in DMFT [31]. With two
orbitals, a successful strategy has been to split the orbitals into two separate chains, which also
provided a precise impurity solver [31]. An advantage of this geometry is that the spins of each
orbital, which are likely to be entangled, are located together. However, now the local Hilbert
space at each MPS site has doubled, from two states (occupied, unoccupied) to the four states
of a spinful orbital. Unfortunately this squares the computational effort. With a geometry like
in Fig. 6, the computational effort will grow like

computational effort ∼ m3×norbital . (47)

More than two orbitals have turned out to be infeasible with this geometry, and the MPS ap-
proach to impurity solvers was stuck at this stage for a while.
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3 Fork tensor product state (FTPS) method

3.1 Geometry and tensors

The key ingredient of the new FTPS method is the geometry of Fig. 7. This is a special case
of a so-called Tree Tensor Network. For a 2-orbital NRG calculation such a geometry was also
employed in Ref. [39]. Each bath chain has a fixed spin and orbital, i.e., the local Hilbert space
dimension in the bath is only two (occupied/unoccupied). In addition, the interacting impurity
site is also split up into a chain of FTPS sites with dimension two (single orbital of fixed spin).
An apparent disadvantage of the FTPS geometry seems to be that entanglement between bath
sites of different spin or different orbitals has to be transported by the encoding matrices over
a large distance, so that each bond may have to carry a lot of entanglement. This is however
similar to the situation in Fig. 6 and turns out not to be a big problem on the bonds between
the bath sites. The actual bottleneck in this approach is the entanglement on the vertical bonds
in the figure, between the sites representing the impurity, which must contain the entanglement
between the baths as well as additional large entanglement from the interaction between the
impurity degrees of freedom. As we will see, the computational effort for precise calculations
will still remain reasonable.
The FTPS sites for the impurity (like B↑) now each contain a tensor with three instead of two
bond indices, and one physical index, like Isαβγ . Because of the geometric tree structure, a
cut through any bond still bipartitions the system into two subsystems. Therefore one can still
obtain a Schmidt decomposition. In the case of MPS, we needed to combine one bond index α
with a physical index s of an MPS ”matrix”Asαβ in order to obtain an matrixA(αs),β to which an
SVD can be applied. For FTPS, we need to combine the indices of the impurity tensors. To get
an idea of the computational effort, suppose that the impurity bond dimensions are m, the bath
bond dimension at the impurity is n, and the physical Hilbert space dimension is d(=2). Then
the size of the matrix is mnd×m and the computational effort for the SVD will beO(m3 n d).
For all bipartitions, one can also obtain properly normalized states, and therefore apply all the
usual MPS and DMRG algorithms. Note that off-diagonal hybridizations can in principle be
incorporated into the method [5].

V1

V2

B ↓

B ↑

A ↓

A ↑

Impurity site Bath site

Fig. 7: Tensor geometry of the Anderson impurity model for the FTPS method, drawn for two
orbitals A and B. Further orbitals can be incorporated with additional bath chains. From [5].
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3.2 Star representation of the bath orbitals

A second ingredient of FTPS is a special encoding of the bath. Usually, the bath has been
represented in MPS approaches as a tight binding Wilson chain, which can be obtained from
Eq. (1) by a basis transformation. The Wilson chain appears natural for MPS since it is a
one-dimensional physical system with only nearest neighbor hopping and local energies for
occupied sites. It was shown by Wolf et al. [40], that, quite surprisingly, it can be better to
use the original bath sites k of Eq. (1) sequentially as the sites of a bath chain. This so-called
star geometry (see Fig. 1) is also used in FTPS. One can, for example, number the sites by
increasing local energy εk. The advantage is that sites with low εk will be almost completely
occupied, and sites with large εk almost completely unoccupied, so that they do not contribute
much to the entanglement. Only sites with intermediate εk will have sizeable contributions
from both occupied and unoccupied basis states and therefore contribute to the entanglement.
Wolf et al. [40] showed that the maximum matrix dimension necessary in star geometry can be
considerably lower than in the Wilson chain representation.
The disadvantage of the star geometry comes from artificially putting it on a chain of sites in
order to apply the MPS formalism. Each bath site interacts with the impurity, by the hopping
strength Vk, but not with its neighbors. We thus have many non-local couplings, from each
bath site to the impurity, which are usually difficult and expensive for MPS approaches. Wolf
et al. [40] treated the nonlocal hopping with a Krylov based [41] method.
We will instead use successive swap operations which effectively transport the impurity site
(like B↑) along its chain, and later back, so that interactions become local. Details will be
described below. It turns out that this approach, together with a specific Trotter breakup, has a
very small error in time evolution, which is more than an order of magnitude better than with
the Wilson chain representation for similar computational effort.

3.3 Kanamori Hamiltonian and FTPOs

In the results section, we will treat the multi-orbital Kanamori Hamiltonian

H = Hloc +Hbath (48)

Hloc = ε0

∑
mσ

nm0σ +HDD +HSF +HPH

HDD = U
∑
m

nm0↑nm0↓ + (U − 2J)
∑

m′>m,σ

nm0σnm′0σ̄ + (U − 3J)
∑

m′>m,σ

nm0σnm′0σ

HSF = J
∑
m′>m

(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)
HPH = −J

∑
m′>m

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

)
Hbath =

∑
mlσ

εlnmlσ + Vl

(
c†m0σcmlσ + h.c.

)
,

where m numbers the orbitals.
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HDD contains density interactions and HSF and HPH incorporate spin-flip and pair-hopping
terms. For our FTPS geometry, the MPOs (”Matrix Product Operators”) now become FTPOs
(”Fork Tensor Product Operators”) with tensors in the same geometry as the FTPS in Fig. 7.
For the bath, the W -tensors are very similar to the single orbital case. For the impurities, one
needs tensors with two or three auxiliary indices for the connections in the fork structure, and
two physical indices. Since the Kanamori Hamiltonian contains more terms than the simple
AIM Hamiltonian in Eq. (42), the W -tensors become much larger, up to 8 × 13 × 4, with 4

corresponding to the MPO dimension of the bath tensors, Eq. (45), for one bath chain. Details
can be found in Ref. [9].

3.4 Ground state and time evolution
Ground state

Given the FTPO representation of the Kanamori Hamiltonian and the tree geometry which
assures a bipartition of the system at every bond, the ground state can now be calculated by the
DMRG method. For FTPS, this takes a considerable amount of computer time, and care needs
to be taken that the true ground state is reached.
The most expensive parts of the calculation are SVDs. For the bath chains this is relatively inex-
pensive, since they have the structure of an MPS and the entanglement in the chains is relatively
small in practice. The most expensive part is in the optimization of the impurity tensors and
the accompanying SVDs. When the bonds between impurity tensors have dimension m and the
bonds from the last bath tensor to the corresponding impurity tensor has dimension n, the cost
for two-site DMRG will scale like O(mnd)3, where d = 2 is the physical dimension.

Time evolution of the FTPS

The time evolution operator for a small time step can be decomposed by repeated application
of the second order Suzuki Trotter approximation into [5]

e−i∆tH≈
∏
m′>m

e−i
∆t
2

(HSFm,m′+HPHm,m′ ) e−i
∆t
2
HDD e−i∆tHfree e−i

∆t
2
HDD

∏
m′>m

e−i
∆t
2

(HSFm,m′+HPHm,m′ ),

(49)
where Hfree = Hbath + ε0

∑
mσ nm0σ. Note that HSF and HPH commute with each other, but

not with HDD. The time evolution operators for HDD, HSF, and HPH can each be written as
an FTPO, i.e., an operator acting on the impurity tensors in the FTPS: HDD does not change
particle numbers. Therefore fermion anticommutation plays no role and the FTPO for e−i∆tHDD

can be constructed by exponentiating the 4Norb × 4Norb matrix of HDD and then bringing it into
FTPO-form (i.e. a product of local tensors) by repeated SVDs.
HSF and HPH do move fermions between orbitals, so that the fermion sign needs to be treated.
Both cases can be simplified in the same way because Â3 = Â for JÂ = HSF and for −JÂ =

HPH. Then
e−i∆tJÂ = 1 + Â2

(
cos(∆tJ)− 1

)
− iÂ sin(∆tJ). (50)
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FTPOs for Â and Â2 with the correct fermion signs can be constructed directly. With respect
to bond indices connecting impurity orbitals, they become sparsely populated matrices of sizes
up to 6× 10 [9]. To perform time evolution with, e.g., e−i∆tHDD , one applies the corresponding
FTPO and subsequently brings the state back into normalized form. This leaves the time evolu-
tion with Hfree to be performed. Since in Eq. (48) there are no terms connecting different baths,
it decomposes directly into separate time evolutions for each bath chain.

Time evolution of a bath chain in star representation

As mentioned above, we choose the star representation for the baths. In Ref. [40], the time
evolution was done by a Krylov technique, which involves multiple applications of the MPO
for Hfree constructed in section 2.4. In the best case, up to two orders of magnitude were saved
in CPU time vs. a Wilson chain calculation. In our FTPO method we use a different technique
based on a Trotter expansion. A comparison between different techniques for the star geometry
has not yet been performed.
Each chain (m,σ) is evolved independently. For ease of notation, we leave out the orbital and
spin indices m and σ and now number the sites from left to right as 0 (impurity), 1, 2, 3, . . . , NB

(cf. Eq. (51)). Defining V0 = 0 we can write Hfree =
∑NB

l=0Hl with Hl = εlnl+Vl

(
c†0cl + h.c.

)
and use the second order Trotter expansion e−i∆tHfree = e−i

∆t
2
H0e−i∆t

∑NB
l=1 Hle−i

∆t
2
H0 +O(∆t3),

which after iteration becomes

e−i∆tHfree =

NB∏
l=0

e−i
∆t
2
H0

0∏
l=NB

e−i
∆t
2
H0 +O(∆t3). (51)

At first glance this looks just like a first order Trotter expansion with two time steps of size
∆t/2, but due to the reversed order in the second part, the expansion is in fact of second order.
Eq. (51) still contains long-range hopping. We solve this problem by use of swap gates: First
apply the nearest neighbor two-site operator e−i

∆t
2
H0 which connects an impurity site and the

first bath site and subsequently swap these two sites. These two operations can be combined
into a single two-site gate, so that no additional SVD is necessary. Now the impurity is located
between bath sites 1 and 2 and we can apply e−i

∆t
2
H1 followed by another swap of the impurity

to the right, and so on. The procedure is graphically depicted in Fig. 8. After reaching the last
bath site on the right, the time evolutions continue to the left, following Eq. (51) until at the end
the impurity site is back at its original location.
We find [42] that this time evolution in star geometry produces results which are more than
an order of magnitude more precise than results with a Wilson chain geometry. Furthermore,
indirectly due to the almost diagonal nature of Eq. (42), the error does almost not grow with
bath size NB, differently from what would have been expected naively from Eq. (51).
This completes the steps listed in section 1.2 for the impurity solver, i.e., for calculating the
spectral function A(ω), which can then be fed into the DMFT iteration to obtain an improved
bath spectral function, until the DMFT loop converges.
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↓ ↓ ↓ ↓

∆t
2

Combine Gates

∆t
2

∆t
2

∆t

∆t
2

∆t
2

Fig. 8: Sequence of time evolution gates for the bath.

4 Results

In order to provide an impression of the possibilities and limitations of the real time FTPS
solver, we will consider some examples. Further details can be found in Refs. [5,6]. Before we
go to DMFT spectra, let us first look at the parameters involved in an FTPS calculation, and at
related checks of correctness, robustness, and convergence.
Correctness. The solver and its implementation was checked by comparison to exact solutions
of small interacting and large non-interacting systems, as well as by comparison to results of an
earlier one- and two-orbital MPS solver [31], which itself had been thoroughly verified.
Bath size. FTPS work on a discretized bath representing the hybridization function ∆(ω), with
completely flexible discretization. It becomes more precise when the number NB of sites in the
bath chains is increased, which is quite inexpensive to do because the MPS calculations on the
bath in star geometry are very efficient (in contrast to, e.g., Exact Diagonalization). Baths of
O(100) sites per orbital and spin can be treated and the results shown are converged in NB up
to some small variations [5, 6].
Matrix dimension and truncated weight. The numerical approximation in MPS/FTPS methods
is in the finite bond dimension achievable (O(100) − O(1000)), associated with a truncated
weight tW , usually of the order of 10−8. Convergence of results was verified in Ref. [5].
Time evolution. Time evolution is done in finite steps, e.g., ∆t = 0.01 eV, small enough so
that the associated Trotter errors are not important. However, during time evolution, the en-
tanglement increases, making larger matrices necessary, and eventually limiting the maximum
time which can be reached reliably. Fortunately, the Green function G(t) only involves a local
excitation from the ground state at the impurity, for which entanglement growth is quite slow.
In the examples below, time evolution was done both forward and backward in time [43] and
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typical total times reached were 16 eV−1. The finite maximum time puts some limit on the
energy resolution. This can be improved by so-called ,,linear prediction” [27, 7, 31] of the time
series, which is badly named and actually amounts to a clever way of describing the spectrum
with O(100) or more Lorentzians. The reliability of this procedure for a DMFT solver, includ-
ing very sharp spectral features, was investigated in detail in [31]. In the FTPS calculations for
SrVO3, the extrapolation is, for example, done to 250 eV−1. In order to avoid effects of the
remaining cut-off and potential inaccuracies, the Fourier transform from G(t) to A(ω) in these
calculations was performed with a broadening of η = 0.02 eV. The full five-orbital calcula-
tions for SrMnO3 were more demanding. A maximum bath size of NB = 49 was used, during
the DMFT loop a broadening of η = 0.2 eV, and for the final spectrum a broadening of only
η = 0.01 eV in order to obtain optimal energy resolution.

4.1 SrVO3: 3 orbitals

Fig. 9 shows DMFT spectra obtained with the FTPS solver [5] for the benchmark material
SrVO3 modeled by the Kanamori Hamiltonian with 3 orbitals, in comparison to results ob-
tained by CTQMC at similar computational effort. Both spectra show a compatible central
peak, an excitation below, and an upper Hubbard peak around 3 eV. However, the FTPS spec-
trum resolves much more detailed structure, especially within the upper Hubbard band, and
even peaks around 8 eV. Both are missing in the CTQMC results. In Ref. [5] it is shown that
this is due to the analytic continuation (by a standard Maximum Entropy technique) from the
imaginary times/frequencies of the CTQMC to the real frequencies of the Green function. In-
deed, when one transforms the FTPS Green function to imaginary frequency, it is compatible
with the CTQMC Green function, which however has fairly large statistical errors. When one
adds such noise to the FTPS Green function in imaginary frequency and transforms back to real
frequency, the result is almost identical to the CTQMC spectrum, without structure in the upper
Hubbard band and beyond.
At the central peak, FTPS is less precise than CTQMC, because very small frequencies cor-
respond to very large times, which are less precisely calculated in FTPS. Conversely, high
energies (small times) are easiest to resolve with FTPS. The structure of the spectrum in the
upper Hubbard band contains interesting physics. In Ref. [5] it is shown that the peaks corre-
spond directly to the excitations of the atomic model, i.e., the Kanamori Hamiltonian without
bath, but shifted and broadened by the interaction with the bath. The atomic energies and cor-
responding states are shown in Table 1. From the positions of the peaks, one can thus extract
couplings for an effective atomic model which would have peaks at the same positions (with
some slight variations). The bare U = 4 eV becomes Ueff = 5.97 eV, ε0 = −0.86 eV goes
to ε0,eff = −2.00 eV and the Hund’s coupling becomes Jeff = 0.59(6) eV, 0.66(3) eV, and
0.72(2) eV at bare couplings of 0.5 eV, 0.6 eV, and 0.7 eV, respectively. The amplitude of the
peaks relates to their degeneracy in the atomic description. However, the detailed shape of the
peaks is entirely due to the interaction with the bath and is not covered by this effective atomic
model.
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Fig. 9: DMFT spectra for SrVO3, at U = 4 eV and J = 0.6 eV, for a case without spin-flip and
pair-hopping terms. With full rotational symmetry, i.e., including those terms, similar results
are obtained. From Ref. [5].

particle sector atomic energy degeneracy state
0 ε0 1 |0, 0, 0〉
1 0 6 |↑, 0, 0〉 . . .

U − 3J + ε0 6 |↑, ↑, 0〉 . . .
2 U − 2J + ε0 6 |↑, ↓, 0〉 . . .

U + ε0 3 |↑↓,0,0〉 . . .
3U − 9J + 2ε0 2 |↑, ↑, ↑〉 . . .

3 3U − 5J + 2ε0 6 |↑, ↑, ↓〉 . . .
3U − 7J + 2ε0 12 |↑↓,↑,0〉 . . .

Table 1: States of the Kanamori Hamiltonian without spin-flip and pair-hopping terms.

Amazingly, even the next set of excitations, around 8 eV, is resolved very well by the FTPS
calculation, even though the amplitudes are very small. Again the individual peaks correspond
to atomic excitations, however with somewhat different effective couplings. This set of peaks is
entirely missing in the CTQMC results, likely because analytic continuation becomes extremely
difficult at high energies.

4.2 SrMnO3: 5 orbitals

Finally, we will briefly discuss results for a full five-orbital calculation with FTPS, for the ma-
terial SrMnO3. In Ref. [6], such calculations were used to examine the influence of different
strategies for getting from a DFT spectrum to an effective Hamiltonian, specifically which or-
bitals and which range of energies of the DFT spectrum to include. It was shown that for
SrMnO3, it is important to use a wide energy range and to include the eg orbitals. In the DFT
spectrum (not shown), the eg orbitals have are almost completely located above the Fermi en-
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Fig. 10: DMFT spectra for SrMnO3 in a five orbital description, from FTPS calculations and
from CTQMC. From [6].

ergy. Fig. 10 shows DMFT spectra for five-orbital calculations with a wide energy window. The
FTPS spectra are compatible with the CTQMC but show considerably more detail. CTQMC
is especially difficult for the eg orbitals here because they are almost unoccupied, which makes
the number of events for measuring the Green function in the Monte Carlo small.

From the combined spectrum in Fig. 10 (bottom) one sees that the size of the gap is in fact
determined by the eg contribution to the spectrum. Here one can also identify the eg vs. t2g
nature of the successive peaks in the spectrum.

Fig. 11 compares the total FTPS DMFT spectrum to experimental results for the Mn-3d or-
bitals in SrMnO3 obtained by Kim et al. [44] with two different experimental techniques: photo
emission spectroscopy (PES) below the Fermi energy and xray absorption spectroscopy (XAS)
above. The normalization of the experimental results is arbitrary; they were therefore nor-
malized to the same area as the corresponding parts of the FTPS spectrum in the figure. The
absolute position of the XAS spectrum is not well known; for the figure it was shifted by 0.8 eV
to lower energies.

The theoretical prediction from FTPS and the experimental result in Fig. 11 then agree rather
well, both in the peak structure and in their bandwidths below and above the Fermi energy.
Notably, the assignment of orbitals to peaks from the experimental conclusions agrees with
those of the theoretical peaks and their atomic nature (similar to table 1 [6]).
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Fig. 11: Spectrum for SrMnO3 obtained by FTPS compared to experimental results [44],
from [6]. The assignment of orbitals to peaks above the Fermi energy is from the experimental
paper. Spin up refers to an excitation with majority spin, and spin down with minority spin.

Encouragingly for the new method, the new FTPS calculations took about the same computa-
tional time (about 700 CPU hours on 8 cores) per DMFT iteration as the CTQMC calculations
for this full five-orbital calculation, while providing considerably better energy resolution.

5 Conclusions

The new FTPS impurity solver for DMFT is based on the Matrix Product State (MPS) formalism
that is also the basis for DMRG, and on tensor extensions thereof. It works by calculating the
ground state for an impurity model with a given hybridization function, generating an excitation,
and then time evolving it directly in real time. It reaches very good energy resolution even and
especially at high energies, impossible to achieve for example with CTQMC. The latter can
have an advantage at very small frequencies.
The key new ingredient with respect to numerous earlier MPS based methods is the fork-like
structure of Fig. 7, which separates the baths for different impurities and spin directions as much
as possible and makes the method very efficient – as fast as CTQMC for three- and five-orbitals
in calculations done so far. The FTPS method is very new. Its possibilities and limitations
remain to be explored. Further improvements and generalizations are likely possible. The
method will hopefully enable new investigations and physical insight in DMFT calculations.
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Phys. Rev. X 5, 041032 (2015)

[33] ITensor library, http://itensor.org/

[34] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

[35] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)

[36] S.R. White and A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)

[37] A.J. Daley, C. Kollath, U. Schollwöck, and G. Vidal,
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1 Introduction

Fermion-boson systems play an important role in many domains of physics. An example in the
solid state is the electron-phonon problem that leads to many collective phenomena such as su-
perconductivity [1–3], charge density waves [4,5], and topological effects [6,7]. In high energy
physics, especially lattice gauge theories, the bosonic modes account for the gauge fields that
mediate interactions between fermion matter fields. Recently a number of so called designer
Hamiltonians have been introduced to describe a variety of phases and quantum phase transi-
tions [8–14]. As we will see, these models all fall in the class of electron-boson Hamiltonians
and are designed to capture the essential physics at hand without encountering the infamous
sign problem. In doing so, nematic and ferromagnetic quantum phase transitions in metals as
well as topological states of matter can be studied unbiasedly and on large system sizes.

In a former issue of these lecture notes [15] we had already considered this problem, but for
the special case of non-interacting bosons coupled to interacting fermions. We had adopted
an action based formalism and integrated-out the bosonic degrees of freedom in favor of a
fermion-only problem, albeit with retarded interactions. Such action-based problems are con-
veniently solved within the continuous-time interaction-expansion (CT-INT) algorithm [16,17]
that is very powerful for a variety of models including the electron-phonon problem [18–20].
Integrating-out the phonons certainly facilitates things and local sampling strategies turn out to
be efficient in many cases. However the approach has some drawbacks. i) The computational
effort scales as the cube of the number of (interacting) fermion sites, N , times the cube of the
inverse temperature β. Even if the pre-factor of this scaling law is small, it will ultimately be
hard to reach very large system sizes. For example, for the one dimensional Holstein model, a
very efficient directed loop algorithm for retarded interactions has been formulated that clearly
out-preforms the CT-INT approach [21]. ii) Integrating-out the bosons actually can generate a
negative sign problem which would not occur in formulations where the bosons are explicitly
taken into account. This happens in the two dimensional case [22]. iii) Finally, integrating-out
the bosonic modes is only possible if they do not interact.

In this review we will discuss various formulations of the auxiliary-field QMC (AFQMC) ap-
proach for electron-boson systems. We will concentrate only on models where the so called neg-
ative sign problem is absent, such that the problem reduces to the sampling of a non-local prob-
ability distribution in a high dimensional space. There has recently been tremendous progress in
defining the class of problems that can be solved without encountering the negative sign prob-
lem [23–26]. The models we will define here are certainly inspired from these new insights.
In particular we will start with a many body classic, the Su-Schrieffer-Heeger (SSH) model [6]
introduced to study soliton excitations in polyacetylene. Here we will consider the two dimen-
sional case, and show that in limiting cases the model is equivalent to Z2 lattice gauge theories
where the Gauss law is dynamically imposed at low temperatures. Models with Z2 symme-
tries, local or global, are more easily formulated by considering Ising bond variables coupled to
fermions. This class of problems shows extremely rich phase diagrams [8–14] and it is of great
interest to find efficient algorithms to simulate them.
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Since, as mentioned above, the infamous negative sign problem is absent in the class of models
we will consider, the reader could ask the pertinent question: what is then so hard? It is the
sampling. For fermion-boson problems, the major issue that we will encounter are very long
autocorrelation times [27] when adopting simple single spin-flip updates. Historically for the
Ising model cluster updates circumvent critical slowing down [28]. The beauty of these algo-
rithms is that, as one approaches the critical point, blocks of spins, the size of which tracks the
correlation length, are flipped and accepted with unit probability. Cluster algorithms have been
formulated for problems where the action is local. For fermion systems the action is highly
non-local and defining cluster algorithms for fermions is an open question.
Faced with this challenge, one can progress in various ways. One approach is to use concepts of
machine learning, more specifically so called self-learning algorithms [29,30]. Here the idea is
to define a simpler auxiliary model on the same configuration space as the original one endowed
with a set of free parameters. Assume that one has a representative set of configurations and
associated weights for the original model, then we can train (i.e. tune the free parameters) of
the auxiliary model, so as to at best reproduce the data set of configurations and weights. If this
step is successful, one will then use the auxiliary model to propose new configurations.
In this review we will adopt other strategies, presented in [31], to argue that so called hybrid
molecular-dynamics sampling is the method of choice for a class of electron-boson problems.
We will combine two approaches: the Blankenbecler-Scalapino-Sugar (BSS) formulation [32]
of the AFQMC supplemented by a hybrid molecular-dynamics sampling of the fields [33, 34].
This review is organized as follows. In the next section we will first introduce a set of mod-
els, that are all free of the negative sign problem and that fall in the category of fermion-boson
problems. They all have in common an O(2N) symmetry where N corresponds to the number
of fermion flavors. In Sec. 3 we will derive in all details the equations required to formulate the
AFQMC. Our approach will be based on the Grassmann algebra, aspects of which are reviewed
in Appendix A. It is however beyond the scope of this monograph to discuss the detailed im-
plementation of the algorithm. For this, we refer the reader to [35] and to [36] for a generic
implementation of the AFQMC. In the last section, we will give some reasons why single spin-
flip updates suffer from long autocorrelation times. To circumvent this problem we will discuss
alternative forms of sampling strategies, in particular Langevin and hybrid molecular dynamics.
We have tested favorably these ideas in Ref. [31]. Finally, we give our conclusions.

2 Model systems

In this section we review a number of models that show extremely rich phase diagrams with
exotic phases and quantum phase transitions. They are all related to each other, and fall in
the greater class of fermion-boson models. We will start with the canonical Su-Schrieffer-
Heeger (SSH) model and show that in limiting cases it maps onto unconstrained Z2 lattice gauge
theories. Using duality transformations we can map Z2 lattice gauge theories, in the absence
of visons, to Falikov-Kimball models [37]. Finally, breaking the local Z2 symmetry to a global
one, naturally leads to the problem of fermions coupled to an Ising model in a transverse field.
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2.1 The Su-Schrieffer-Heeger model

In the one-dimensional case, the SSH model describes solitonic excitations in polyacetylene [6].
In this dimension, the model can be solved efficiently with the CT-INT approach [38, 15]. In
higher dimensions the phase diagram of the model is essentially unknown and the CT-INT
approach suffers form a negative sign problem. The model is given by

Ĥ = Ĥel + Ĥph + Ĥep. (1)

Here
Ĥel = −t

∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉj,σ ĉ

†
i,σ

)
, (2)

is the kinetic energy and 〈i, j〉 denotes the nearest neighbors of a square lattice. ĉ†i,σ creates an
electron in a Wannier state centered around lattice site i, and with flavor index σ. We allow
the flavor index to take any integer value. Remarkably, this will not introduce a negative sign
problem. Harmonic oscillators on links account for the lattice vibrations,

Ĥph =
∑
〈i,j〉

(
p̂2〈i,j〉
2m

+
mω2

2
x̂2〈i,j〉

)
, (3)

with p̂, x̂ being the canonical conjugate momentum and position operators. The electron-phonon
coupling leads to a modulation of the hopping matrix element:

Ĥep = g
∑
〈i,j〉,σ

x̂〈i,j〉

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
(4)

with coupling strength g. To simplify the notation we label bond indices as

b := 〈i, j〉 , (5)

and introduce the bond hopping as

K̂b :=
∑
σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
. (6)

2.2 Unconstrained lattice gauge theories

Unconstrained lattice gauge theories can be derived from the above SSH model, provided that
we set the hopping matrix element to zero. This step certainly violates the harmonic approxi-
mation central to the very definition of phonons. Nevertheless the model is well defined, and
the flexibility inherent to systems of cold atoms trapped in optical lattices may offer possible
realizations of such systems [39]. Introducing the boson operators,

b̂†〈i,j〉 =
ωmx̂〈i,j〉 − ip̂〈i,j〉√

2ωm
, (7)



QMC for Fermion-Boson Systems 10.5

we can rewrite the model as

ĤZ2 = g

√
1

2ωm

∑
〈i,j〉

(
b̂†〈i,j〉 + b̂〈i,j〉

)
K̂〈i,j〉 + ω

∑
b

b̂†〈i,j〉b̂〈i,j〉. (8)

Due to the lack of a direct hopping term, the above model acquires a local symmetry. In par-
ticular, the boson parity on the four links emanating from site i times the fermion parity on the
site is a local conserved Ising variable. That is, for

Q̂i = (−1)n̂
b
〈i,i+ax〉

+n̂b〈i,i−ax〉
+n̂b〈i,i+ay〉

+n̂b〈i,i−ay〉(−1)n̂ci (9)

we have [
Q̂i, ĤZ2

]
= 0 with Q̂2

i = 1 and
[
Q̂i, Q̂j

]
= 0. (10)

In the above, n̂b〈i,j〉 = b̂†〈i,j〉b̂〈i,j〉 and n̂ci =
∑

σ ĉ
†
i,σ ĉi,σ. Q̂i defines a Z2 charge that is conserved

locally in space but not in time.1 To see this we note that[
Q̂i, b̂〈n,m〉

]
= 2Q̂ib̂〈n,m〉 (δi,m + δi,n) and

[
Q̂i, ĉj,σ

]
= 2Q̂iĉj,σ δi,j (11)

such that
〈ĉiĉ

†
j〉 = δi,j (12)

and a similar equation holds for the bosons. The above merely states that since the electron
carries a Z2 charge that is locally conserved in space, the equal time propagator between differ-
ent lattice sites has to vanish. The difference between the above Hamiltonian and lattice gauge
theories is that the Z2 charge is not conserved along the imaginary time axis: 〈ĉi(τ) ĉ

†
j〉 = δi,j

with ĉi(τ) = eτĤ ĉi e
−τĤ . Such so called unconstrained gauge theories, where the Gauss law is

not imposed, have recently attracted considerable interest [10, 40, 41].
The above model has the same symmetries as a Z2 lattice gauge theory and the exact relationship
can be obtained by restricting the boson Hilbert space to two states: the vacuum and the first
excited state,

{
|0〉, |1〉 = b̂†|0〉

}
. This reduction of the Hilbert space amounts to replacing the

soft core bosons by hard core ones, b̂†b̂† = 0, which is certainly a valid approximation in the
antiadiabatic limit, ω →∞. Next, we define Ising variables: |±〉 = 1√

2
(|1〉 ± |0〉) such that for

X̂bbb = 2b̂†bbb b̂bbb − 1, Ẑbbb = b̂†bbb + b̂bbb (13)

X̂bbb|±〉 = |∓〉 and Ẑbbb|±〉 = ±|±〉. (14)

With this reading, the SSH model reduces, up to a constant, to

ĤZ2 =
∑
〈i,j〉

Ẑ〈i,j〉K̂〈i,j〉 − h
∑
〈i,j〉

X̂〈i,j〉 (15)

Here we have set g/
√
2ωm = 1 such that h = −g2/4m. Under the above mapping the con-

served Z2 charge transforms to

Q̂i = X̂〈i,i+ax〉X̂〈i,i−ax〉X̂〈i,i+ay〉X̂〈i,i−ay〉(−1)n̂
c
i . (16)

1 This stems from the fact that the constraint, say Q̂i = 1, is not imposed on the Hilbert space.
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The above model has captured a considerable amount of interest [10, 11, 14]. It is extremely
simple and hosts deconfined and confined phases of matter as well as exotic quantum phase
transitions (see Fig. 1).

2.3 Duality transformations and a Falikov-Kimball model

In interacting systems, interaction terms that do not break the macroscopic symmetries of the
model will generically be dynamically generated. For example in the functional renormalization
group [42] flow, one will be able to study the dynamically generated interactions in various
channels. Let us follow this idea in the context of the above unconstrained lattice gauge theories.
On a square lattice, the flux term

ĤF = F
∑
i

Ẑ〈i,i+ax〉 Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 (17)

does not break any symmetries of the model and will hence be dynamically generated. In fact,
for h = 0 in Eq. (15), the Ising fields will order so as to accommodate a π-flux (Ẑ〈i,i+ax〉
Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 = −1) per plaquette [10, 43], so as to dynamically gen-
erate Dirac fermions. A Falikov-Kimball model [37] is related to Eq. (15) in the sector where
the flux per plaquette vanishes

Ẑ〈i,i+ax〉 Ẑ〈i+ax,i+ax+ay〉 Ẑ〈i+ax+ay ,i+ay〉 Ẑ〈i+ay ,i〉 = 1. (18)

This corresponds to the zero vison, i.e., plaquettes with π-flux, sector. Let us work in a basis
where Ẑ is diagonal and consider a zero vison state. The transverse Ising field term creates a
pair of visons on neighboring plaquettes and thereby violates the zero vison constraint. The first
non-trivial term that complies with the constraint reads

h̃
∑
i

X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉. (19)

The zero vison constraint can be satisfied with the Ansatz

Ẑ〈i,j〉 = τ̂ zi τ̂
z
j where τ̂ z =

(
1 0

0 −1

)
. (20)

With this rewriting

X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉 = τ̂xi with τ̂x =

(
0 1

1 0

)
. (21)

Hence in the zero vison sector, the unconstrained Z2 lattice gauge theory, is given by

ĤFK =
∑
〈i,j〉,σ

(
τ̂ zi c

†
i,σ τ̂

z
j cj,σ + h.c.

)
− h̃

∑
i

τ̂xi (22)

and the local conservation law reads

Q̂i = X̂〈i,i+ax〉 X̂〈i,i−ax〉 X̂〈i,i+ay〉 X̂〈i,i−ay〉 (−1)n̂
c
i ≡ τ̂xi (−1)n̂

c
i . (23)
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AFMVBS
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DQCP

Z D 2

 

CDW
(N=1)

Z D 2

VBS
(N=3)

AFM 
(N=3)

(e)(d)

(b) (c)

(a)

Fig. 1: Schematic zero temperature phase diagram of the model in Eq. (15) in the N vs. h
plane (a) as well as cartoons (b)-(e) of a selected number of phases. The fermions carry a
global U(1) electrical charge as well as a local Z2 one. (a): We observe a Z2 Dirac deconfined
phase (Z2D), a Néel antiferromagnet phase (AFM) (or a superconductor (SC), depending on
the pattern of particle-hole symmetry breaking), a charge density wave (CDW) phase as well
as a valence bond solid (VBS). For N = 1, we do not find evidence for a Z2D phase beyond
h = 0, consistent with the arguments in the main text. The phase transitions from the Z2D
to AFM/SC (N = 2) and VBS (N = 3) are seemingly continuous. At N = 3 we observe a
deconfined quantum critical point (DCQP) between the VBS and AFM phases. (b)-(e) Cartoons
of the corresponding phases. Circles correspond to fermions and the color code to the flavor
index. Circles with two colors represent a pair of fermions on a site with corresponding flavors.
The low energy properties of the Z2D phase resemble SU(N) fermions propagating freely in
space-time and connected by a Z2 gauge string (b). The symmetry broken phases correspond
to the confined phases of the model. At N = 3 the AFM phase, (e), has the fundamental
(conjugate) representation of SU(3) on sublattice A (B). The corresponding Young tableaux are
included. The VBS phase, (d), corresponds to a pattern of inter-site SU(3) singlets. This Figure
is reproduced from Ref. [10].
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The explicit form of the Falikov-Kimball model can now be obtained by defining the fermion
operator f̂ †i,σ = τ̂ zi c

†
i,σ and noting that τ̂xi = Q̂i(−1)n̂

f
i. Finally, since (−1)n̂

f
i=
∏

σ(2f̂
†
i,σf̂i,σ−1)

we obtain
ĤFK =

∑
〈i,j〉,σ

(
f †i,σfj,σ + h.c.

)
− h̃

∑
i

Q̂i

∏
σ

(
2f̂ †i,σf̂i,σ − 1

)
. (24)

Since Qi is a Z2 local conserved quantity, it can be interpreted as the static density of spinless
fermions in a SU(N) symmetric Falikov-Kimball model [37]. A detailed study of this model
shows that it harbors fractionalized orthogonal metal phases at finite temperature [44], while at
low temperatures the Ising variables order (Q̂i = 1), such that the physics of the Hubbard model
is recovered. Finally in the particle-hole symmetric case and in the limit of infinite dimensions,
the model is equivalent to the Hubbard model [45, 44].

2.4 Models of fermions coupled to Ising spins

The common feature of this class of models is again to couple fermion degrees of freedom to
Ising spins. However, and in contrast to the above, one will allow spontaneous Z2 symmetry
breaking such that the ordering of the Ising spins can trigger a transition in the fermionic system.
This route to engineer models that can be simulated without encountering the infamous negative
sign problem has recently been very successful [8–14].
The models presented in the above section have an extensive set of conserved local quantities,
Q̂i, and as a consequence the correlation functions 〈ẐbẐb′〉 vanishes for b 6= b′. In other words,
there is a local Z2 symmetry, and local symmetries cannot be broken [46]. To avoid this, one
has to add terms that reduce the local Z2 symmetry of the model from to a global one. Among
many choices, one can add an Ising term of the form

J
∑
〈b,b′〉

Ẑb Ẑ
′
b (25)

between nearest neighbor bonds, as well as a direct hopping

− t
∑
b

K̂b (26)

such that the general model we will consider is given by

Ĥ =
∑
b

(
−t+ gẐb

) N∑
σ=1

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
− h

∑
〈i,j〉

X̂〈i,j〉 + J
∑
〈b,b′〉

Ẑb Ẑ
′
b. (27)

The last two terms correspond to an Ising model in a transverse field. When formulating the
path integral for this model, one will notice that it is identical to a D+1 Ising model,2 albeit
with space-time anisotropic couplings. Since anisotropies in the couplings are irrelevant in
the sense of the renormalization group, the critical phenomena of the model fall in the D+1-
dimensional Ising universality class. Coupling to gapless fermions can be relevant and lead to

2 D corresponds to the spacial dimension
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novel critical points. This idea has been successfully used to study a variety of phenomena such
as the dynamical generation of quantum spin Hall [47] and Kekule mass terms [13] in Dirac
systems as well as Ising nematic [48] and ferromagnetic [12] transitions in metals. This very
rich set of phenomena can be studied by merely appropriately choosing the lattice, the coupling
between the Ising and fermion degrees of freedom, as well as the interaction between the Ising
spins.

2.5 Symmetries

The symmetries of the model will be very important to avoid the negative sign problem. In the
form of Eq. (27) the SU(N) spin symmetry is manifest. On bipartite lattices this symmetry is
enhanced to a O(2N) one. To see this, we define the Majorana fermions

γ̂i,σ,1 = ĉi,σ + ĉ†i,σ, γ̂i,σ,2 =
1

i

(
ĉi,σ − ĉ

†
i,σ

)
(28)

on sub-lattice A, and

γ̂i,σ,1 =
1

i

(
ĉi,σ − ĉ

†
i,σ

)
, γ̂i,σ,2 = −

(
ĉi,σ + ĉ†i,σ

)
(29)

on sub-lattice B. The above Majorana fermions satisfy the anti-commutation relations{
γ̂i,σ,n, γ̂j,σ′,n′

}
= 2δi,j δσ,σ′ δn,n′ . (30)

Provided that the hopping matrix elements occur only between the two sub-lattices, the Hamil-
tonian can be written as

Ĥ =
∑
〈i,j〉

(
−t+ g Ẑ〈i,j〉

) N∑
σ=1

2∑
n=1

i

2
γ̂i,σ,nγ̂j,σ,n − h

∑
〈i,j〉

X̂〈i,j〉 +
∑
b.b′

Jb,b′Ẑb Ẑ
′
b. (31)

Here the global O(2N) symmetry, γ̂i → Oγ̂i where O corresponds to an orthogonal O(2N)

transformation and γ̂ T
i =(γ̂i,1,1 · · · γ̂i,N,1, γ̂i,1,2 · · · γ̂i,N,2), is manifest. This symmetry plays an

important role in the formulation of the negative sign free Monte Carlo algorithm.

3 General formulation of the BSS algorithm

In this section, we will show how to simulate the model of Eq. (27). It is beyond the scope of this
article to offer a detailed account of the auxiliary-field QMC approach, and for a detailed review
the interested reader is referred to Ref. [35]. We also note that an open-source implementation of
this algorithm is available online at https://alf.physik.uni-wuerzburg.de [36]. This
implementation allows to simulate the model defined in Eq. (27). Here we will concentrate on
the general formulation and place emphasis on issues arising when considering boson-fermion
problems. For the numerical stabilization of the algorithm as well as for an efficient implemen-
tation, the reader is referred to the aforementioned references.
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3.1 Partition function: discrete variables

The Hilbert space of the Hamiltonian of Eq. (27) accounts for the Ising degree of freedom per
bond and to N -flavored fermions per site. Thereby, the partition function reads

Z = Tr
(
e−βĤ

)
= Tr

((∏
b

e−∆τ(−t+gẐb)K̂b
)
e−∆τ

∑
b,b′ Jb,b′ Ẑb Ẑ

′
b e∆τh

∑
b X̂b

)Lτ

+O
(
∆τ 2

)
,

(32)
where the trace runs over the fermion Fock space and the bond Ising degrees of freedom. In
the above β = Lτ∆τ , and we have used an asymmetric Trotter decomposition that introduces a
systematic error of order ∆τ 2.3 We carry out the trace over the Ising variables by introducing a
complete set of Ising spins on each time slice

Ẑb|s1, · · · , sNb〉 = sb|s1, · · · , sNb〉 ,
∑

s1,··· ,sNb

|s1, · · · sNb〉〈s1, · · · sNb| = 1̂I . (33)

Here Nb counts the number of bonds and 1̂I is the unit operator in the Ising space. Noting that

〈
s
∣∣∣e∆τh∑b X̂b

∣∣∣ s′〉 = γNb eK
∑
b sbs

′
b with tanh(K) = e−2∆τh , γ =

e∆τK

2 cosh(∆τh)
(34)

and |s〉 = |s1, · · · , sNb〉 we obtain

Z = γNbLτ
∑

s1,··· ,sLτ

e−S0({s}) TrF

(∏
τ,b

e−∆τ(−t+g sb,τ )K̂b

)
. (35)

Here s has acquired an imaginary time index with boundary condition s0 = sLτ and

S0 ({s}) =
Lτ∑
τ=1

(∑
b,b′

∆τJb,b′sb,τsb′,τ −K
∑
b

sb,τsb,τ−1

)
. (36)

Using the determinant formulas derived in the appendix, we can integrate out the fermions, to
obtain

Z = γNbLτ
∑

s1,··· ,sLτ

e−S0({s}) det

(
1 +

∏
τ,b

e−∆τ(−t+gsb,τ )Kb

)N

, (37)

where the sparse matrices Kb are defined as K̂b =
∑

σ,i,j ĉ
†
i,σ (Kb)i,j ĉj,σ. Note that since the

fermions symmetrically couple to the Ising fields sb,τ the trace is block diagonal in the flavor
index σ = 1, . . . , N . Thereby we just have to compute the determinant for one flavor and
elevate it to the power N . This explicitly reflects the SU(N) symmetry of our formulation.

3Strictly speaking the error should be of order ∆τ . However, one can show that for our specific model the
coefficient of the linear in ∆τ error vanishes [49].
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3.2 From discrete to continuous fields

In the above formulation, the configuration space for the Monte Carlo sampling will corre-
sponds to a set of discrete Ising fields. As will be apparent, it may be more efficient to consider
continuous fields, for which sampling strategies such as hybrid molecular or Langevin dynam-
ics can be used. Instead of considering the discrete Ising spin we will introduce a Gaussian
transformation that formulates the problem in terms of the average magnetization. These types
of transformations explicitly show the equivalence between Ising and scalar fields. We use the
short hand notation

S0 ({s}) =
1

2
sssTAAAsss, (38)

whereAAA is a NbLτ ×NbLτ matrix and sssT =
(
sT1 , · · · , sTLτ

)
, and will assume thatAAA is positive

definite. Here there is no loss of generality since sssTsss = NbLτ such that we can add a constant
toAAA so as to guarantee that all the eigenvalues are positive. Next we use the Gaussian identity∫

RNbLτ
dφ1 · · · dφNbLτ︸ ︷︷ ︸

≡Dφφφ

e−
1
2
φφφTAAA−1φφφ−sssTφφφ = (2π)NbLτ/2

√
detAAA e

1
2
sssTAAAsss. (39)

With C = (2π)NbLτ/2
√
detAAA, the partition function reads

Z = C

∫
RNbLτ

Dφφφ e−
1
2
φφφTAAA−1φφφ TrF

(∏
τ,b

( ∑
s=±1

e−sφb,τ e−∆τ(−t+gs)K̂b
))

, (40)

and we can evaluate
∑

s=±1 e
−sφb,τ e−∆τ(−t+gs)K̂b using the fact that ∆τ is small∑

s=±1

e−sφb,τ e−∆τ(−t+gs)K̂b =
∑
s=±1

e−sφb,τ
(
1−∆τ(−t+ gs)K̂b

)
+O(∆τ 2)

= 2 cosh(φb,τ )
(
1−∆τ(−t+ g tanh(φb,τ )K̂b

)
+O(∆τ 2)

= 2 cosh(φb,τ ) exp
(
−∆τ(−t+ g tanh(φb,τ ))K̂b

)
+O(∆τ 2). (41)

Thereby, the partition function can now be written as

Z = 2NbLτC

∫
RNbLτ

Dφφφ e−
1
2
φφφTAAA−1φφφ+

∑
b,τ log cosh(φb,τ ) TrF

(∏
τ,b

e−∆τ(−t+g tanh(φb,τ ))K̂b

)
, (42)

where we have omitted the Trotter error. Using the determinant formula for fermions, we see
that

Z = 2NbLτC

∫
RNbLτ

Dφφφ e−S(φφφ) (43)

with
S(φφφ) =

1

2
φφφTAAA−1φφφ−

∑
b,τ

log cosh(φb,τ )−N log detMMM(φφφ) (44)

and

MMM(φφφ) = 1 +

(∏
τ,b

e−∆τ(−t+g tanh(φb,τ ))Kb

)
. (45)
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For future purposes, it will be useful to introduce the super-index

t = (τ, b) (46)

that runs over the sequence of space-time bonds, and the propagators

Ûφ(t2, t1) =

t2∏
t=t1+1

e−∆τ(−t+g tanh(φt))K̂bt for t2 ≥ t1. (47)

Note that Ûφ(t, t) = 1̂.

3.3 Positivity of the determinant

An exact enumeration of the Ising spins for large euclidean volumes NbLτ is prohibitively
expensive. A way out is to estimate the sum stochastically with importance sampling methods.
This reading requires

P ({s}) =
e−S0({s}) det

(
1 +

∏
τ,b e

−∆τ(−t+gsb,τ )Kb
)N

∑
s1,··· ,sLτ

e−S0({s}) det
(
1 +

∏
τ,b e

−∆τ(−t+gsb,τ )Kb
)N (48)

to be positive. Obviously, for even values of N and since Kb are real symmetric matrices,
the weight will be positive for each configuration. What about odd values of N? Using the
Majorana basis introduced above, we have for a single flavor

TrF
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )(ĉ
†
i ĉj+ĉ

†
j ĉi) =

TrM
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
γ̂iγ̂j

2

. (49)

Here TrM corresponds to the trace over a single Majorana mode. We now want to show that
TrM

∏
τ,b=〈i,j〉 e

−∆τ(−t+gsb,τ ) i2 γ̂iγ̂j is a real number

TrM
∏

τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
γ̂iγ̂j = TrM

∏
τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
−i
2
γ̂iγ̂j = TrM

∏
τ,b=〈i,j〉

e−∆τ(−t+gsb,τ )
i
2
η̂iη̂j

(50)
with

η̂i =

{
γ̂i for i ∈ A
−γ̂i for i ∈ B

(51)

Since the above is a canonical transformation, the trace over the η̂’s is equal to that of the γ̂’s.
Note that we have used the fact that the hopping links only the A and B sub-lattices. Thereby
the O(2N) symmetry of the model allows us to show that for arbitrary number of colors P ({s})
is positive semidefinite. For more general symmetry based arguments that lead to the absence
of a negative sign problem, the reader is referred to Refs [23, 25, 26, 50]. In Appendix B we
summarize some useful determinant identities for Majorana fermions. Note that the positivity
of the determinant is valid for both discrete or continuous fields.
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3.4 Calculation of observables

The calculation of observables proceeds as follows. Let us consider observables Ô that involve
only fermionic degrees of freedom such that

〈O〉 = 1∫
Dφφφ e−S(φφφ)

∫
Dφφφ e−S(φφφ)

TrF
(
Ûφ(LτNb, 0) Ô

)
TrF Ûφ(LτNb, 0)

. (52)

We now consider observables of the form

Ô = T ĉi1(t1) ĉ
†
i′1
(t′1) · · · ĉin(tn) ĉ

†
i′n
(t′n) (53)

with

ĉi(t) = Û−1φ (t, 0) ĉi Ûφ(t, 0). (54)

In this section we omit the spin or flavor index. T corresponds to the time ordering in which
the time indices, t, are organized in ascending order. To achieve this ordering, one will permute
operators and not forget to include the sign of the permutation in the result. For example,
T ĉi(1) ĉ

†
j(3) = −ĉ

†
j(3) ĉi(1). Using the Grassmann algebra briefly introduced in Appendix A

we can show that

TrF
(
Ûφ(LτNb, 0) Ô

)
TrF Ûφ(LτNb, 0)

=

∫ ∏
i,t

dξ†i(t) dξi(t) e
−

∑
i,t,i′,t′

ξ†i(t)G
−1
i,i′ (t,t

′)ξ
i′(t
′)

ξi1(t1) ξ
†
i′1
(t′1) · · · ξin(tn) ξ

†
i′n
(t′n)∫ ∏

i,t

dξ†i(t) dξi (t) e
−

∑
i,t,i′,t′

ξ†i(t)G
−1
i,i′ (t,t

′)ξ
i′(t
′)

= det

Gi1,i′1
(t1, t

′
1) · · · Gi1,i′n(t1, t

′
n)

... . . . ...
Gin,i′1

(tn, t
′
1) · · · Gin,i′n(tn, t

′
n)

 . (55)

The last equation corresponds to Wick’s theorem, the demonstration of which can be found in
Ref. [51]. Hence the knowledge of the Green functionG is sufficient to compute any correlation
function. For t ≥ t′

Gi,i′(t, t
′) =

TrF
(
Ûφ(LτNb, t) ĉi Ûφ(t, t

′) ĉ†i′ Ûφ(t
′, 0)
)

TrF Ûφ(LτNb, 0)
. (56)

Noting that

Û−1φ (t, t′) ĉi Ûφ(t, t
′) =

∑
j

Bφ(t, t
′)i,j ĉj (57)

with

Bφ(t2, t1) =

t2∏
t=t1+1

e−∆τ(−t+g tanh(φt))Kbt for t2 ≥ t1, (58)
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the calculation of the imaginary time displaced Green function reduces to the calculation of the
equal time one

Gi,i′(t
′, t′) =

TrF
(
Ûφ(LτNb, t

′) ĉi ĉ
†
i′ Ûφ(t

′, 0)
)

TrF Ûφ(LτNb, 0)

= δi,i′ −
∂

∂η
logTrF

(
Ûφ(LτNb, t

′) eη c
†O(i′,i) c Ûφ(t

′, 0)
)∣∣∣
η=0

(59)

with c†O(i′,i) c = ĉ†i′ ĉi. Using the determinant formula and the fact that detA = eTr logA one
obtains

G(t′, t′) =
(
1 +Bφ(t

′, 0)Bφ(LτNb, t
′)
)−1

. (60)

The equal time Green function allows to compute any equal time correlation function and as we
will see it will also determine the Monte Carlo dynamics. For a given operator Ô, we denote by
〈〈Ô〉〉φφφ the result of the Wick decomposition for a given field configuration φφφ.

3.5 Summary

All in all, we have now recast our problem into a form where importance sampling can be used.
Our probability distribution

P (φφφ) =
e−S(φφφ)∫
Dφφφ e−S(φφφ)

(61)

is positive semi-definite and for each configuration of fields we are in the position of computing
the expectation value of any operator Ô. Our task is now to sample P (φφφ) so as to compute
quantities of the form

〈Ô〉 =
∫
Dφφφ P (φφφ) 〈〈Ô〉〉φφφ. (62)

4 Sampling strategies

The semi-positiveness of the determinant allows us to avoid the negative sign problem, and
to thereby potentially formulate a code that scales polynomially in the Euclidean system size.
However, care has to be taken with sampling strategies. We will argue below that single spin
flips algorithms are bound to fail for small values of h and that a possible remedy stems from
using global updating schemes such as hybrid molecular or Langevin dynamics. Both these
updating schemes can only be formulated for continuous fields.

4.1 Single spin flips

Just by analyzing the form of the action, S0, one will readily see that single spin flips are bound
to be inefficient in the small h limit. The first term, −K

∑
b,τ sb,τ sb,τ+1, corresponds to a one-

dimensional ferromagnetic Ising model at K = arctanh
(
e−2∆τh

)
. For this problem [52] the

correlation length is set by ξ−1 = log(coth(K)) = 2∆τh. Thereby, kinks or domain walls of
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the ferromagnetic order in the imaginary time direction will be separated by a length scale set
by ξ. However single spin flips produce pairs of kinks separated by the imaginary time step
∆τ and will be very inefficient if ∆τ/ξ is small. Since ∆τ is dimension full we have to set a
scale to appreciate this result. Let us consider the model of Eq. (27), and let us assume that g
is the largest scale which we set to unity. We will then have to choose ∆τ � 1 to validate the
Trotter decomposition, such that ∆τ/ξ = ∆τ 2h � 1, and the single spin flip update will be
very inefficient. This argument is based on the discreetness of the imaginary time such that with
continuous time methods it may be possible to circumvent sampling issues using Ising fields.

4.2 Langevin and molecular dynamics: calculation of forces

In Langevin and hybrid molecular dynamics the key point is to compute the forces

∂S(φφφ)

∂φφφ
(63)

and to assess if they are bounded or not. For our bosonic problems we can show explicitly
that the determinant is positive semi-definite and we will make the bold assumption that it
vanishes only at isolated points. Away from these isolated points, the forces will be bounded
and we foresee that the Langevin and hybrid molecular dynamics walks through configuration
space will be smooth. As argued in Ref. [31] this is not the case for the Hubbard model. In fact
choosing a Hubbard-Stratonovich transformation that couples to the z-component of spin, splits
the configuration space in distinct regions separated by logarithmic barriers where the forces
diverge. For these types of landscapes formulating Langevin and hybrid molecular dynamics is
very challenging. In Ref. [31] we have tested positively the above assumption for the special
case of the SSH model.
Starting from the action of Eq. (44) the forces can are computed as

∂S(φφφ)

∂φt
=

1

2

(
AAA−1φφφ+ φφφTAAA−1

)
t
− tanhφt +Ng∆τ

(
1− tanh2 φt

)
Tr
(
Kt(1−G(t, t))

)
. (64)

Here we see that the equal time Green function, G(t, t), is the only fermionic quantity required
to compute the forces.

4.3 Langevin dynamics

Langevin dynamics corresponds to a stochastic differential equation for the fields φφφ. They
acquire a Langevin time tl and satisfy the stochastic differential equation

φt(tl + δtl) = φt(tl)−
∂

∂φt(tl)
S(φφφ) δtl +

√
2 δtl ηt. (65)

Here, ηt are independent Gaussian stochastic variables satisfying

〈ηt〉η = 0 and 〈ηt ηt′〉η = δt,t′ . (66)
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We refer the reader to Ref. [53] for a more in depth introduction to stochastic differential equa-
tions. To see that the above indeed produced the desired probability distribution in the long
Langevin time limit, we can transform the Langevin equation to the corresponding Fokker-
Planck equation. Let P (φφφ, tl) be the distribution of fields at Langevin time tl. Then

P (φφφ, tl + δtl) =

∫
Dφ′φ′φ′ P (φφφ′, tl)

〈
δ

(
φφφ−

(
φ′φ′φ′ − ∂S(φ′φ′φ′)

∂φ′φ′φ′
δtl +

√
2δtlηηη

))〉
η

(67)

where δ corresponds to the LτNb dimensional Dirac δ-function. Taylor expanding up to order
δtl and averaging over the stochastic variable yields

P (φφφ, tl+δtl)=

∫
Dφ′φ′φ′ P (φφφ′, tl)

(
δ(φφφ′−φφφ)−∂S(φ

′φ′φ′)

∂φ′φ′φ′
∂

∂φ′φ′φ′
δ(φφφ′−φφφ)δtl+

∂

∂φ′φ′φ′
∂

∂φ′φ′φ′
δ(φφφ′−φφφ)δtl

)
+O(δt2l ).

(68)
Integration by parts and taking the limit of infinitesimal time steps gives the Fokker-Planck
equation

∂

∂tl
P (φφφ, tl) =

∂

∂φφφ

(
P (φφφ, tl)

∂S(φφφ)

∂φφφ
+
∂P (φφφ, tl)

∂φφφ

)
. (69)

The stationary, ∂
∂tl
P (φφφ, tl) = 0, normalizable solution to the above equation corresponds to the

desired probability distribution

P (φφφ) =
e−S(φφφ)∫
Dφφφ e−S(φφφ)

. (70)

As mentioned above, Langevin dynamics will work well provided that the forces show no sin-
gularities. The great advantage of such an updating scheme is that there is no rejection and
that all fields are updated at each step. The following points that highlight potential issues with
Langevin dynamics are in order:

• Langevin dynamics will be carried out at a finite Langevin time step and thereby we have
introduced a further source of systematic error.

• The factor
√
2δtl multiplying the stochastic variable makes the noise dominant on short

time scales. On these times scales Langevin dynamics essentially corresponds to a ran-
dom walk. This has the advantage that one can circumvent potential barriers, but may
render the updating scheme less efficient than the hybrid molecular dynamics approach.

4.4 Hybrid molecular dynamics

Hybrid molecular dynamics circumvents the aforementioned drawbacks of Langevin dynamics.
It does not introduce a systematic error and does not boil down to a random walk at small time
steps. The approach is based on the Metropolis-Hastings importance sampling formula. (The
reader is referred to the lecture notes in Ref. [15] by the same author, where aspects of the
theory of Monte Carlo sampling are discussed in Appendix A.) Let C and C ′ be configurations
in the Monte Carlo space. The probability of accepting a move form C to C ′ is given by

P (C → C ′) = max

(
T0(C

′ → C)P (C ′)

T0(C → C ′)P (C)
, 1

)
, (71)
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where T0(C ′ → C) is the probability of proposing a move fromC ′ toC. In the Monte Carlo ap-
proach, we will iterate the above procedure so as to generate a time series of configurations Cm.
Provided that we are able to reach all configurations in the Monte Carlo space from any starting
configuration,

lim
n→∞

1

n

n∑
m=1

δCm,C = P (C). (72)

Ideally, one would like to propose global, ergodic moves that satisfy P (C → C ′) = 1 and
thereby hope to have small autocorrelation times. This is a property of cluster algorithms such
as the loop [35], SSE [54], or Wolff [28] algorithms.
We will start by expanding the configuration space to C = {ppp,φφφ} and define the Hamiltonian

H(ppp,φφφ) =
ppp2

2
+ S(φφφ). (73)

ppp and φφφ are canonical conjugate. Clearly,

〈Ô〉 =
∫
Dφφφ e−S(φφφ)〈〈Ô〉〉φφφ∫

Dφφφ e−S(φφφ)
=

∫
DφφφDppp e−H(ppp,φφφ)〈〈Ô〉〉φφφ∫

DφφφDppp e−H(ppp,φφφ)
(74)

and in the hybrid molecular dynamics scheme we sample

P (ppp,φφφ) =
e−H(ppp,φφφ)∫

DφφφDppp e−H(ppp,φφφ)
. (75)

Hybrid molecular dynamics consists of two steps:
Step 1: Updating the momenta ppp
Here we choose

T0 (C
′ = {ppp′,φφφ} → C = {ppp,φφφ}) = e−ppp

2∫
dppp e−ppp2

(76)

such that P (C → C ′) = 1.
Step 2: Updating the positions φφφ
This step is numerically expensive and uses the Hamiltonian equations of motion

ṗpp = −∂H
∂φφφ

and φ̇φφ =
∂H

∂ppp
(77)

that conserve energy, H , for time independent Hamiltonians. As for the Langevin dynamics,
the fields acquire an additional time index, tm, and φ̇φφ = dφφφ

dtm
. We can propagate the fields over a

given molecular dynamics time interval, TM , to obtain

{ppp,φφφ}(tm + Tm) = UH
Tm

(
{ppp,φφφ}(tm)

)
(78)

where UH
Tm

(
{ppp,φφφ}(tm)

)
propagates the initial state {ppp,φφφ}(tm) with Hamiltonian dynamics for

a time interval Tm. The Hamiltonian equations of motion are time reversal symmetric and,
according to Liouville’s theorem, conserve volumes in phase space. Thereby,

T0({ppp,φφφ}(tm + Tm)→ {ppp,φφφ}(tm)) e−H({ppp,φφφ}(tm+Tm))

T0({ppp,φφφ}(tm)→ {ppp,φφφ}(tm + Tm)) e−H({ppp,φφφ}(tm))
= 1 (79)
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and the acceptance will be of unity. Clearly this corresponds to the ideal case, and in practice the
integration will be carried out with a finite time step such that the energy will not be conserved
exactly and the acceptance will not be unity. Provided that we choose an integrator that is
time reversal symmetric (see below) then the Monte Carlo acceptance-rejection step will cure
this systematic error. The acceptance-rejection step of the molecular dynamics trajectory is the
reason why this updating scheme is coined hybrid molecular dynamics. The algorithm then
proceeds by iterating step 1 followed by step 2.

4.4.1 The leap-frog integrator

In practice one will adopt an integrator that conserves time reversal symmetry such as the
Leapfrog algorithm. Our Hamiltonian can be split into H1 = ppp2/2 and H2 = S(φφφ). Propa-
gating with H1 only allows for an exact solution since in this case ppp is constant and φφφ(t) =

φφφ(t = t0) + (t − t0)ppp. Similarly for H2, φφφ is constant and ppp(t) = ppp(t = t0) − (t − t0)∂S(φφφ)∂φφφ
.

Hence both for H1 and H2 the propagation can be carried out exactly, such that time reversal
symmetry and Liouville’s theorem hold. In very much the same manner as for the symmetric
Trotter decomposition, the leapfrog approach carries out a δtm time interval propagation of the
full Hamiltonian H = H1 +H2 as

UH
δtm = UH1

δtm/2
◦ UH2

δtm
◦ UH1

δtm/2
+O

(
δt2m
)
. (80)

Clearly time reversal is satisfied and because of this property the error contains only even powers
of the time step. The energy H = H1 +H2 will however not be conserved exactly such that, as
mentioned above, the molecular dynamics trajectory will be accepted according to:

max

(
T0({ppp,φφφ}(tm + Tm)→ {ppp,φφφ}(tm)) e−H({ppp,φφφ}(tm+Tm))

T0({ppp,φφφ}(tm)→ {ppp,φφφ}(tm + Tm)) e−H({ppp,φφφ}(tm))
, 1

)
=max

(
e−H({ppp,φφφ}(tm+Tm))

e−H({ppp,φφφ}(tm))
, 1

)
.

(81)

5 Conclusions

In these notes, we have discussed a set of very interesting boson-fermion models that are free
of the negative sign problem, but that are numerically challenging due to sampling issues. The
case was made that the underlying O(2N) symmetry of the Hamiltonians we considered render
hybrid molecular dynamics an attractive sampling strategy. This statement was partially tested
in Ref. [31]. More work is required to further test this conjecture that will hopefully allow us to
unravel many salient aspects of a class of boson-fermion problems.
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Appendices

A Determinant formula for fermions

In this appendix, we derive a set of so called determinant formulas for fermions. They are the
basis for various forms of fermion Monte Carlo approaches and an elegant derivation is based
on fermion coherent states. The reader is referred to Ref. [51] for a detailed introduction to
the Grassmann algebra. Here we will briefly summarize the important formulas and concepts.
Grassmann numbers, ξ, anti-commute and are defined as

ĉx|ξ〉 = ξx|ξ〉 (82)

with {
ξ#x , ξ#

′

x′

}
=
{
ξ#x , ĉ#

′

x′

}
= 0 (83)

and
|ξ〉 =

∏
x

(
1− ξxĉ†x

)
|0〉. (84)

In the above the subscript x denotes the quantum numbers of a single particle state and # = †, ·.
Integration over Grassmann variables is defined as∫

dξx ξx = 1 ,

∫
dξx = 0, (85)

such that for example
∫
dξx dξ

†
x ξx ξ

†
x = −1 due to the anticommuting properties of the algebra.

The following identities for overlaps

〈ξ|ξ′〉 = e
∑
x ξ
†
xξ
′
x , (86)

the resolution of unity in the Fock space

1̂ =

∫ ∏
x

dξ†x dξx e
−

∑
x ξ
†
xξx|ξ〉〈ξ|, (87)

and the trace over the Fock space

Tr Â =

∫ ∏
x

dξ†x dξx e
−

∑
x ξ
†
xξx〈−ξ|Â|ξ〉 (88)

hold. Finally, we will need the determinant formula∫ ∏
x

dξ†x dξx e
−

∑
x,y ξ

†
xMx,yξy = detM. (89)

As mentioned above, these formulas are standard and can be found in Ref. [51].
Our aim is compute

Tr
(
eĉ
†Anĉ eĉ

†A2ĉ · · · eĉ†A1ĉ
)
, (90)
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where ĉ† = (ĉ†1, · · · , ĉ
†
Ns
) with Ns the number of single particle states. The first step is to

transform eĉ
†Aĉ into a normal ordered expression. We will see that for a general A

eĉ
†Aĉ = :eĉ

†(eA−1)ĉ : , (91)

where : Ô : denotes the normal ordering of the operator Ô. To prove the above, we diagonal-
ize A: λ = UAU−1, with λ a diagonal matrix, and define η̂† = ĉ†U and γ̂ = U−1ĉ . These
operators satisfy the anti-commutations rules{

η̂†x, γ̂y
}
= δx,y, and

{
η̂†x, η̂

†
y

}
=
{
γ̂x, γ̂y

}
= 0 (92)

such that

eĉ
†Aĉ=

∏
x

eλxη̂
†
xγ̂x=

∏
x

(
1+(eλx−1)η̂†xγ̂x

)
=
∏
x

:eη̂
†
x(e

λx−1)γ̂x: =:e
∑
x η̂
†
x(e

λx−1)γ̂x: =:eĉ
†(eA−1)ĉ: .

(93)
With the above, we can evaluate the matrix element

〈ξ|eĉ†Aĉ |ξ′〉 = eξ
†(eA−1)ξ′〈ξ|ξ′〉 = eξ

†(eA)ξ′ . (94)

Using the Grassmann trace formula and inserting the resolution of unity between the operators,
we obtain

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
=

∫ n∏
x,τ=1

dξ†x(τ) dξx(τ) e
−
(∑n

x,τ=1 ξ
†
x(τ)ξx(τ)−

∑n
τ=1 ξ

†(τ+1)eAτ ξ(τ)
)

=

∫ n∏
x,τ=1

dξ†x(τ) dξx(τ)e
−ξ†x(τ)G−1

(x,τ),(x′,τ ′) ξx′ (τ
′)
. (95)

In the above, the Grassmann fields have acquired an extra dimension τ and we have defined
ξ†x(n+1) = −ξ†x(1). Finally with the determinant formula we can integrate over the Grassmann
variables and obtain

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
= det


1 0 · · · 0 eAn

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−1 1

 . (96)

The size of the this matrix is of nNs × nNs, and is the starting point for many applications in
the realm of the so called hybrid QMC approaches used in the high energy community. For
many applications in the solid state, it is more convenient to reduce the size of the matrix down
to Ns ×Ns. This can be achieved with Schur’s determinant identity

det

(
A B

C D

)
= det(D) det(A−BD−1C) (97)
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Setting D = 1, corresponding to the bottom right unity matrix, C = (0, · · · ,−e−An−1) and
BT = (eAn , · · · 0) gives

det


1 0 · · · 0 eAn

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−1 1

 = det


1 0 · · · 0 eAneAn−1

−eA2 1 · · · 0 0
... . . . · · · 0

0 · · · · · · −eAn−2 1

 . (98)

Iteration produces the final result

Tr
(
eĉ
†Anĉ · · · eĉ†A2ĉ eĉ

†A1ĉ
)
= det

(
1 + eAn · · · eA2eA1

)
. (99)

B Determinant formula for Majoranas

Here we will prove the following identity

TrM
(
eiγ̂

TT1γ̂ · · · eiγ̂TTLγ̂
)
=
√

det(1 + e4iT1 · · · e4iTL) , (100)

where Tτ are skew symmetric real matrices of even dimension (T Tτ = −Tτ ), and γ̂T = (γ̂1,1, γ̂1,2
· · · , γ̂n,1, γ̂n,2) are Majorana fermions.
First, we show that one can find an antisymmetric matrix h that satisfies

eiγ̂
TT1γ̂ · · · eiγ̂TTLτ γ̂ = eiγ̂

T hγ̂. (101)

The above follows from the fact that, using the anti-commutation rules of Majorana fermions,

d

dτ
e−iτ γ̂

TT γ̂ γ̂i e
iτ γ̂TT γ̂︸ ︷︷ ︸

≡γ̂i (τ)

= 4i
∑
j

Ti,j γ̂j(τ) (102)

such that
γ̂(τ) = e4iτT γ̂. (103)

Iteration gives

e−iγ̂
TTLγ̂ · · · e−iγ̂TT1γ̂ γ̂ eiγ̂TT1γ̂ · · · eiγ̂TTLγ̂ = e4iT1 · · · e4iTL γ̂ ≡ e−iγ̂

T hγ̂ γ̂i e
iγ̂T hγ̂. (104)

The last equality is the defining equation for h and leads to

e4iT1 · · · e4iTL = e4ih. (105)

That h is skew symmetric stems from the fact that, by definition, e4ih
(
e4ih
)T

= 1. We will pro-
ceed by assuming that h is a real skew symmetric matrix.4 Thereby one can find an orthogonal
transformation O such that

OThO = diag

((
0 λ1
−λ1 0

)
, · · · ,

(
0 λn
−λn 0

))
≡ λ. (106)

4A generalization to complex skew symmetric matrices is mentioned in Ref. [50]
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Since O is orthogonal, η̂ ≡ OT γ̂ are Majorana fermions and

TrMeiγ̂
T h γ̂ = TrMeiγ̂

T OλOT γ̂ = TrM
n∏
i=1

e2iλi η̂i,1 η̂i,2 = TrM
n∏
i=1

(
cosh(2λi)+sinh(2λi)η̂i,1 η̂i,2

)
.

(107)
We can now refermionize the Majorana operators

η̂i,1 = ĉi + ĉ†i , η̂i,2 =
1

i
(ĉi − ĉ

†
i ), (108)

and carry out the trace for each fermion flavor, to obtain

TrMeiγ̂
T hγ̂ = TrF

n∏
i=1

(
cosh(2λi) + sinh(2λi)

1

i
(2ĉ†i ĉi − 1)

)
=

n∏
i=1

2 cosh(2λi) =

(
n∏
i

(
e4λi + e−4λi + 2

))1/2

=
(
det(1 + e4iO

T hO)
)1/2

=
(
det(1 + e4ih)

)1/2
=
(
det(1 + e4iT1 · · · e4iTL)

)1/2
. (109)
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The analytic continuation of Monte Carlo data may appear as an exercise in achieving the un-
achievable. To understand why, let us consider the example of a fermionic finite-temperature
Matsubara Green function G(τ). For imaginary times τ ∈ [0, β] it is related to the spectral
function ρ(ω) by the integral equation

G(τ) = − 1

2π

∫ ∞
−∞

e−ωτ

1 + e−βω
ρ(ω) dω .

While calculating G(τ) from ρ(ω) is a straightforward integral, the inverse problem is hard.
This is not because we have to solve a Fredholm equation of the first kind, the difficulty rather
arises from the remarkable insensitivity of the imaginary-time data on changes in the spectral
function. To illustrate this, we write the spectral function as a sum of delta-peaks wi δ(ω − εi),
for which the imaginary-time Green function becomes a linear combination of exponentials

G(τ) = − 1

2π

∑
i

wi
(
1− nFD(εi)

)
e−εiτ = − 1

2π

∑
i

wi nFD(εi) e+εi(β−τ),

where we have introduced the Fermi-Dirac distribution nFD(ε) = 1/(e+βε+1). While a peak at
zero energy simply contributes a constant toG(τ), the contribution of peaks at large frequencies,
|ε| � 0, is only noticeable close to τ = 0 or β, while inside the interval (0, β) it becomes
exponentially small. To reconstruct the spectral function reliably over the entire ω-range, we
thus need to know G(τ) very accurately very close to the boundaries of the interval (0, β).
Numerical simulations can give, however, only a finite number of data points, G(τj). Appar-
ently, this does not provide enough information to reconstruct a continuous spectral function:
we expect that there are many different spectral functions ρ(ω) that reproduce a given set of
data points {G(τj)}. Such a problem without a well-defined solution is called ill posed [1]. If
we insist on obtaining a unique result, we need to add constraints, e.g., by including additional
information about what kind of solution we consider reasonable. In addition, Monte Carlo data
are noisy. When reconstructing the spectral function, we thus need to take the accuracy of the
data into account and quantify how reliable the result is, given the noise in the input. Both types
of information, the estimate of the reliability of the data and our expectations about a reasonable
solution of the inverse problem, can be handled using Bayesian reasoning [2].
In the following we will introduce the analytic properties that allow the continuation of Green
and correlation functions. We then describe how to quantify the statistical errors in the numer-
ical data and to set up the inverse problem. In the main part we use this to give an overview
of methods to solve the inverse problem. The most straightforward approach simply performs
a least-squares fit to the data points. We explain why this approach is ill posed and how it fails
spectacularly. We then discuss the idea of regularization by introducing assumptions about a
reasonable solution. This makes the problem well posed, but dependent on prior information.
The effect of the prior information included in the regularizer can be quantified using Bayesian
techniques. We discuss how they are used to argue for the different flavors of the Maximum
Entropy method. Finally we introduce the average spectrum method which tries to avoid in-
troducing prior information by calculating ρ(ω) as a functional integral over the space of all
possible spectral functions.
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1 Setting the stage

1.1 Analytic continuation

A system at finite temperature with time-independent Hamiltonian H is described as an ensem-
ble of eigenstates, H|n〉 = En|n〉, weighted by their Boltzmann factor. The expectation value
of an operator A is thus given by

〈A〉 =

∑
n e
−βEn〈n|A|n〉∑
n e
−βEn

=
1

Z
Tr
(
e−βHA

)
. (1)

For a canonical ensemble the trace is over the N -electron Hilbert space. For a grand-canonical
ensemble we get the same expression when measuring energies relative to the chemical poten-
tial, i.e., choosing µ = 0, and taking the trace over the entire Fock space.
Time correlation functions can be calculated using the Heisenberg picture〈
A(t′ + t)B(t′)

〉
=

1

Z
Tr e−βH eiH(t′+t)Ae−iH(t′+t) eiHt′Be−iHt′ =

〈
A(t)B

〉
=
〈
AB(−t)

〉
,

(2)
where the t′-independence follows from the cyclic property of the trace TrABC = TrCAB.
Monte Carlo techniques are ideal to evaluate the high-dimensional sums needed to calculate
such traces [3]. But since the time-evolution leads to complex coefficients, Monte Carlo sam-
pling will have to fight with a serious phase-problem. This can be avoided using a Wick rotation,
i.e., working in imaginary time. For this we need to analytically continue (2). This is straight-
forward: simply replace t in the analytic expression by the complex variable ζ = t − iτ and
determine for what values of ζ the result is well defined. This is most easily done using the
spectral representation, i.e., evaluating the trace in the basis of eigenfunctions

〈A(t− iτ)B〉 =
1

Z
Tr e(it+τ−β)HA e−(it+τ)HB =

1

Z

∑
n,m

e(it+τ−β)En e−(it+τ)Em〈n|A|m〉〈m|B|n〉.

(3)
For systems with a finite number of states the sum is always analytic, while for systems where
the spectrum is not bounded from above, we need β ≥ τ ≥ 0 to maintain absolute convergence.
Thus (2) can be analytically continued to a stripe below the real axis {ζ ∈ C |−β ≤ Im ζ ≤ 0}.
We can then use quantum Monte Carlo to sample the function CAB(τ) := 〈A(−iτ)B〉 for
τ ∈ [0, β]. The analytic continuation back to the real axis is a bit less obvious, since QMC
only gives us the function values, i.e., the left hand side of (3) for t = 0, but not the explicit
functional form on the right hand side, for which we would have to know all eigenenergies
and matrix elements. We can, however, define a spectral function that neatly contains all the
required information by taking the Fourier transform∫ ∞

−∞
dt eiωt

〈
A(t)B

〉
=

2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em − En)

)
=: ρAB(ω) (4)

in terms of which we can write (3) as〈
A(t− iτ)B

〉
=

1

2π

∫ ∞
−∞

dω e−(it+τ)ωρAB(ω) . (5)
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For the special case t = 0 this gives us an integral equation directly relating ρAB(ω) to CAB(τ)

CAB(τ) =
1

2π

∫ ∞
−∞

dω e−ωτρAB(ω) , (6)

which is, however, not suited for practical calculations since the integral kernel, exp(−ωτ),
diverges for ω → −∞. We can get around this problem by modifying the kernel, dividing it by
a function that makes it finite, and correspondingly multiplying the spectral function to leave
the integral unchanged

C(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

µ(ω)
µ(ω)ρAB(ω)︸ ︷︷ ︸

=:ρ̃(ω)

. (7)

A suitable kernel modification would be µ(ω) = 1 ± e−βω, which makes the kernel finite for
ω → −∞ as long as τ ≤ β, while keeping it finite for ω → +∞. To analytically continue
CAB(τ) = 〈A(−iτ)B〉 to the real axis we then solve the integral equation (with finite kernel)

CAB(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) (8)

for ρ̃±AB(ω) and use ρAB(ω) = ρ̃±AB(ω)/(1±e−βω) in (5) to calculate the analytical continuation
on the real axis. Note that 1/(1± e−βω) ∈ [0, 1]. In fact, for the plus sign it is the Fermi-Dirac
function nFD(−ω) = 1− nFD(ω), while for the minus it is −nBE(−ω) = nBE(ω)− 1.
It is reasonable to expect that ρ̃±AB(ω) is a spectral function in its own right. Reordering the
spectral representation (4), we can write it as

ρ̃±AB(ω) = ρAB(ω)± ρAB(ω) e−βω

= ρAB(ω)± 2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em − En))

)
e−β(Em−En)

= ρAB(ω)± ρBA(−ω) . (9)

Comparing with (3) and (4) we see that ρ̃±AB(ω) is the spectral function of

iG±AB(t) :=
〈
A(t)B

〉
±
〈
B(−t)A

〉
=
〈
A(t)B

〉
±
〈
BA(t)

〉
=
〈
[A(t), B]±

〉
, (10)

which, for t > 0, is the retarded correlation function GR±
AB(t) = Θ(t)G±AB(t), with Θ the step

function,Θ(t > 0) = 1 andΘ(t < 0) = 0. As discussed above, the first term can be analytically
continued to {ζ ∈ C | − β ≤ Im ζ ≤ 0}, while the second term can be continued to the stripe
of width β above the real axis. It is thus natural to define the Matsubara function

−GM±
AB (τ) :=

〈
T ±τ A(−iτ)B(0)

〉
(11)

with the imaginary-time ordering T ±τ A(−iτ)B(0) = Θ(τ)A(−iτ)B(0)∓Θ(−τ)B(0)A(−iτ)

taking care of selecting the appropriate analytic term for the given τ . This introduces a discon-
tinuity at τ = 0

GM±
AB (0+)−GM±

AB (0−) = −
〈
[A, B]±

〉
. (12)
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From the cyclic property of the trace in (3), it follows that the Matsubara functions for positive
and negative τ are related (anti)symmetrically, i.e. for τ ∈ (0, β)

GM±
AB (β − τ) = −

〈
A(−i(β − τ))B

〉
= −

〈
B(−iτ)A

〉
= −

〈
BA( iτ)

〉
= ∓GM±

AB (−τ). (13)

For τ ∈ (0, β] we obviously have (remember the sign introduced in (11)) GM±
AB (τ) = −CAB(τ),

so that from (8) we obtain

GM±
AB (τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) for τ ∈ [0, β]. (14)

It is convenient to choose the sign in the kernel modification to obtain a simple relation for the
sum rule, which directly follows from the spectral representation, using |n〉〈n| = 1

1

2π

∫ ∞
−∞

dω ρ̃±AB(ω) =
〈
[A, B]±

〉
. (15)

For observables and bosonic operators we thus choose the commutator, while for fermionic
Green functions it is more convenient to choose the anticommutator.
For the special case B = A† we find

ρ̃±
AA†

(ω) =
2π

Z

∑
n,m

(
e−βEn ± e−βEm

)
|〈n|A|m〉|2 δ

(
ω − (Em − En)

)
, (16)

which is obviously non-negative for the fermionic case, for the bosonic sign choice it is non-
negative for ω = (Em − En) > 0, non-positive for ω < 0, and vanishes at least linearly at
ω = 0. We can thus define a non-negative function ρ̃−AB(ω)/ω which is regular at ω = 0

lim
ω→0

ρ̃−AB(ω)

ω
=

2πβ

Z

∑
n,m

e−βEn |〈n|A|m〉|2 δ(En − Em) (17)

so that we can rewrite (14) with non-negative functions as

GM+
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1 + e−βω
ρ̃+
AA†

(ω) (18)

GM−
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
ω e−ωτ

1− e−βω
ρ̃−
AA†

(ω)

ω
, (19)

which, when A is an annihilator, applies to the diagonal elements of Green functions.
When A is an observable, we see from (9) that ρ̃−AA(ω) = −ρ̃−AA(−ω), so that we can restrict
the integral to ω > 0

GM−
AA (τ) = − 1

2π

∫ ∞
0

dω
ω
(
e−ωτ + e−ω(β−τ)

)
1− e−βω

ρ̃−AA(ω)

ω
when A hermitian. (20)

We could actually cancel the factor ω in the integrand since ρ̃−AA(ω ≥ 0) is non-negative by
itself, but when calculating susceptibilities it is common to keep it, since it shows the behavior
for ω → 0, (17), more clearly.
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1.2 Analytic properties of the integral equations

We can gain some insight into the integral equations (18) and (19) by realizing that they are
intimately related to the Euler and Bernoulli polynomials [4]. Introducing the reduced variables
x = βω and y = τ/β ∈ [0, 1] and the functions f(x) = ρ̃±(x/β)/β (scaled to conserve the
sum rule) and g(y) = GM±(βy) we obtain, for the fermionic case

g(y) = − 1

2π

∫ ∞
−∞

dx
e−xy

1 + e−x
f(x) , (21)

from which we see that, for fixed kernel, the spectral function is spread out over an ever wider
range as we go to lower temperatures. The scaled kernel of this equation is essentially the
generating function of the Euler polynomials En(s) on s ∈ [0, 1], which are defined by

2est

et + 1
=
∞∑
n=0

En(s)
tn

n!
. (22)

With s = τ/β and t = −βω we find from (18)

GM+(τ) = − 1

4π

∞∑
n=0

En(τ/β)
(−β)n

n!

∫ ∞
−∞

dω ωn ρ̃+(ω) (23)

that the fermionic Matsubara function is a linear combination of Euler polynomials, where the
expansion coefficients of En(τ/β) is proportional to the n-th moment of the spectral function.
Since the Euler polynomials are not orthogonal, to determine the moments of ρ̃ from GM+(τ),
we first have to find the dual functions En(s) with

∫ 1

0
dsEn(s)Em(s) = δn,m. Integrating them

with the generating function (22) we obtain∫ 1

0

dsEn(s) est =
tn

n!

et + 1

2
, (24)

which is solved by

En(s) =
(−1)n

2 n!

(
δ(n)(s− 1) + δ(n)(s)

)
, (25)

where δ(n)(s−a) is the n-th derivative of the delta function at s = a (to make the evaluation for
a = 0 and 1 unique, we consider the limit from inside the interval of integration). Integration
by parts then produces (−1)n times the n-th derivative of the rest of the integrand at a. Using
this in (23) and rewriting the Matsubara function at β as that at 0−, eq. (13), we find that the
discontinuity in the n-th derivative of the Matsubara function is proportional to the n-th moment
of the spectral function

dnGM+(β)

d τn
+
dnGM+(0)

d τn
=
dnGM+(0+)

d τn
− d

nGM+(0−)

d τn
= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (26)

The higher moments contain the information about the spectral function at large frequencies.
Extracting the derivatives from Monte Carlo data for G(τ) is difficult. Instead, they can be
sampled directly: For τ > 0 we have, (11),

−GM+(τ) =
〈
A(−iτ)B

〉
=

1

Z
Tr e−βHeτHAe−τHB . (27)
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Fig. 1: Dependence of the scaled Legendre kernel (2l + 1)i
(1)
l (x/2)/cosh(x/2) on the order l.

For l = 0, Gl contains information about the spectral function close to the Fermi level, while
for increasing l it probes ever larger frequencies. As the Legendre polynomials themselves, the
kernel is even/odd for even/odd l.

Taking the derivative with respect to τ brings down the Hamiltonian to the left and the right
of A, producing 〈[H, A(−iτ)]B〉. Repeated derivatives produce repeated commutators defined
by [H; A]n = [H; [H; A]n−1] and [H; A]0 = A as in the Baker-Campbell-Hausdorff formula.
The moments can then be determined directly by sampling the expectation values〈[

[H; A]n, B
]〉

= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (28)

Working with the Euler polynomials can become cumbersome due to their lack of orthogonality.
This inconvenience can be overcome by expressing them in terms of orthogonal polynomials,
e.g., shifted Legendre polynomials Pl(2y−1). When the Matsubara function is expanded as [5]

GM+(τ) =
∞∑
l=0

√
2l + 1

β
Gl Pl(2τ/β − 1) with Gl=

√
2l + 1

∫ β

0

dτ Pl(2τ/β − 1)GM+(τ)

the expansion coefficients are related to the spectral function via (18) by

Gl = (−1)l+1
√

2l + 1
β

4π

∫ ∞
−∞

dω
i
(1)
l (βω/2)

cosh(βω/2)
ρ̃(ω) , (29)

where i
(1)
l (x) are the modified spherical Bessel functions of first kind. As shown in Fig. 1, for

increasing l the integral kernel probes spectral features at higher and higher frequencies. From
the derivatives of the recursion relation (2l + 1)Pl(x) = P ′l+1(x) − P ′l−1(x) and (26) we find
that the n-th moment of the spectral function is given by a sum over all even or odd Legendre
coefficients, starting at l = n

(−1)n+1 2

n!

∞∑
k=0

√
4k + 2n+ 1

β2k+n+1

(2(k + n))!

(2(k − n))!
G2k+n =

1

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (30)

For bosonic Matsubara functions we can obtain similar results using the Bernoulli polynomials
Bn(s) whose generating function is directly related to the bosonic kernel.
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1.3 Preparing the data

Certainly the most important aspect of preparing Monte Carlo data for analytic continuation
is the decision what data to sample. As we have seen, the information about spectral features
further away from the chemical potential is concentrated in the Matsubara function extremely
close to τ = 0 and β. Reconstructing the spectral function from data given on a uniform τ -grid,
we can therefore only expect to get reasonable results close to the chemical potential. Using, on
the other hand, the derivatives of the Matsubara function at τ = 0 and β gives us the moments
of the spectral function, which, as we know, e.g., form the Lanczos method [6], accurately
characterize the spectral function over the entire frequency range using just a few tens of the
lowest moments.
The second concern is to properly characterize the statistical errors in the Monte Carlo data.
Considering the integral equation

g(y) =

∫
K(y, x) f(x) dx , (31)

the actual numerical data is not given as the function g(y) but as vectors of M discrete data
points g = (g1, . . . , gM)† representing g(y). The mean over K independent samples is then

ḡ =
1

K

K∑
k=1

gk (32)

with its statistical uncertainty being characterized by the M×M covariance matrix

C =
1

K(K − 1)

K∑
k=1

(gk − ḡ)(gk − ḡ)†. (33)

By the central limit theorem the probability density of measuring ḡ with covariance matrix C
instead of the exact result gexact is then

p(ḡ,C| gexact) =
1

(2π)M/2 detC
e−(ḡ−gexact)†C−1(ḡ−gexact)/2. (34)

This probability will play a central role in the reconstruction of the spectral function represent-
ing gexact. It is, therefore, crucial to have an accurate estimate of C. Rewriting it as

C =
1

K(K − 1)

∑
k

(gk − ḡ)(gk − ḡ)† =
1

K(K − 1)

∑
k

gk g
†
k −

1

K − 1
ḡ ḡ†

and realizing that g g† is the (scaled) projector onto g, we see that the covariance matrix is a
linear combination of K projectors to one-dimensional subspaces. We therefore need K > M

independent samples gk in (33) to have a chance of obtaining a non-singular covariance ma-
trix. Thus, reducing the discretization error requires taking more samples. The easiest way for
obtaining independent samples are independent Monte Carlo runs, e.g., on a parallel computer.
If we do not have enough CPUs available, we need to construct independent samples from a
sequential run. This can be done, e.g., using the blocking technique described in appendix, A.1.
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For the numerical solution of the integral equation (31) we also have to discretize f(x) into a
vector f = (f1, . . . , fN)†, e.g., by representing it as a piecewise constant function of value fn
on interval n. The integral equation then becomes a simple linear equation g = Kf , where the
kernel matrix is obtained, e.g., from the Riemann sum [7]

g(ym) =
∑
n

K(ym, xn)wn f(xn) , (35)

with wn the width of interval n or, when the functions are expanded in an orthonormal set of
functions |ψm〉 like in the Legendre expansion of the Green function, it is given by

gm =
∑
n

∫
dy

∫
dxψm(y)K(y, x)ϕn(x) fn =

∑
n

〈ψm|K|ϕn〉 fn . (36)

Assuming f is the exact model, i.e., it gives the exact data,Kf = gexact, it follows from (34)

p(ḡ,C|f) ∝ e−(ḡ−Kf)†C−1(ḡ−Kf)/2 (37)

Factorizing the inverse covariance matrix, C−1 = T †T , e.g., by Cholesky decomposition, we
can absorb the explicit dependence on C by introducing g̃ := T ḡ and K̃ := TK

(ḡ −Kf)†C−1(ḡ −Kf) = (g̃ − T̃ f)†(g̃ − T̃ f) = ||g̃ − T̃ f ||2. (38)

The covariance of the transformed data g̃ is then the unit matrix, i.e. the transformation produces
uncorrelated data point g̃n that all have the same (unit) errorbar.

2 Optimization methods

After discretization of model f and data g and transformation to g̃, analytic continuation is
reduced to solving the linear system

g̃ = K̃f . (39)

Nothing could be easier than that! When the number of data points M we are given equals the
number of points N at which we want to know the model, the solution is unique, f = K̃−1g̃,
as long as the kernel is not singular. When M > N the model is overdetermined so that in
general there will be no solution. Normally, however, we want to know the model at many more
positions than we are given data points, M < N so that the solution is underdetermined. A
natural choice is then the f that gives the best fit to the data.

2.1 Least squares and singular values

When we ask for a best-fit, we first have to define what we mean by that. Least-squares methods
define “best” in the least-squares sense: minimize χ2(f) := ||g̃ − T̃ f ||2. We can justify this
choice using Bayesian reasoning: As we have noted in (37), the probability of measuring g̃
when the true model is f is given by p(g̃|f) = (2π)−M/2 exp(−χ2(f)/2). We can invert
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this relation using Bayes’ theorem [2], p(B|A) p(A) = p(A,B) = p(A|B) p(B), stating that
the probability of outcome A and B can be written as the probability of B given A times the
probability of A, or, equivalently, as the probability of A given B times that of B. For the
relation between model and data this implies

p(f | g̃) =
p(g̃|f) p(f)

p(g̃)
. (40)

The most probable model f given g̃ thus maximizes p(g̃|f) p(f). In the absence of any further
information about possible models it is reasonable to assume that p(f) is the same for all f , i.e.,
to use an “uninformative prior”. A model that maximizes p(f | g̃) is then one that maximizes
exp(−χ2(f)/2). It is called a “maximum likelihood estimator” and gives a best fit in the least-
squares sense. Since the rank of the kernel matrix, rankK ≤ min(N,M), for M < N the
least-squares solution will not be unique: We can add any vector that is mapped byK into zero,
without changing the fit. The least-squares problem is thus ill-posed. The usual way of making
the solution unique is to ask in addition that fLS has vanishing overlap with any vector that is
mapped to zero, i.e., fLS is orthogonal to the null space of K̃.
A practical tool for the theoretical analysis of least-squares problems as well as for numerical
calculations is the singular value decomposition (SVD) of the matrix K̃ = UDV †, whereU is
a unitary M×M matrix whose column vectors |um〉 define an orthonormal basis in data space
and V likewise is a unitary N×N matrix with columns |vn〉 spanning the space of models,
while D is a diagonal M×N matrix with diagonal elements d1 ≥ d2 ≥ . . . ≥ dmin(N,M) ≥ 0.
For the underdetermined case, M < N , the singular value decomposition can be pictured as

K̃ =
U D

V † .

For the least-squares solution it is convenient to define the reduced singular value decomposi-
tion, where the null space of K̃ is dropped in V , pictorially,

K̃ = U D̂ V̂ † .

The singular value decomposition provides a spectral representation of the kernel

K̃ =

min(M,N)∑
i=1

|ui〉 di 〈vi| (41)

which allows us to write the residue vector for M < N as

|g̃〉 − K̃|f〉 = |g̃〉 −
∑
i

|ui〉 di 〈vi|f〉 =
∑
i

|ui〉
(
〈ui|g̃〉 − di〈vi|f〉

)
(42)

so that the least-squares solution (for which the residue vanishes when dM > 0) is

|fLS〉 =
∑
i

〈ui|g̃〉
di

|vi〉 or, equivalently, fLS = V̂ D̂−1U †g̃ . (43)
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Fig. 2: Least-squares solution for the analytical continuation of a fermionic imaginary-time
Green function. The exact data (bottom left) is constructed from a simple model spectral func-
tion consisting of three Lorenz peaks (top left). We add noise of amplitude 10−8 to the data
(bottom right). The least-squares solution given the noisy data is shown in the top right panel.
It varies over ten orders of magnitude showing no resemblance at all to the original model.

As simple and elegantly the least-squares solution can be constructed, as useless it is for the
analytic continuation problem. This is illustrated in Fig. 2, showing that fLS, despite giving a
perfect fit to the data and, in particular, fulfilling the sum rule for

∑
n fn, is completely domi-

nated by numerical noise. What is the reason for this catastrophic failure? Making the noise in
the data explicit, g̃ = g̃exact +∆g̃ we see that

|fLS〉 = |fexact〉+
∑ 〈ui|∆g̃〉

di
|vi〉 . (44)

When the kernel has close to vanishing singular values, the noise component is divided by a
number close to numerical accuracy. This is, in fact, what we are seeing in Fig. 2: dividing
noise of order 10−8 by the numerical epsilon of double precision numbers (of order 10−16),
we would expect the least-squares solution to vary over about eight orders of magnitude. We
can verify this picture more quantitatively by looking at the singular values of the kernel matrix,
shown in Fig. 3. The exponential decay of the singular values seen in this example actually is the
hallmark of an ill-conditioned problem. It is a consequence of the orthogonality of the modes
|vi〉: With increasing i they develop more and more nodes. Integrating over these oscillating
modes with the positive fermionic Green function kernel means that the integral will decrease
with the number of nodes. Once the singular value reaches the machine precision, the singular
modes become numerically degenerate. These modes contribute negligibly to the fit of the data,
but cause the catastrophic numerical instability of the least-squares result.
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Fig. 3: Singular values of the kernel matrix used in Fig. 2 on a logarithmic scale. The singular
values decay exponentially until leveling off at a value determined by the numerical accuracy of
the calculation. The insets show some of the singular modes |vi〉. With increasing mode index i,
i.e., decreasing singular value, they have an increasing number of nodes. Once the singular
value reaches the numerical accuracy, the singular modes become numerically degenerate so
that the SVD routine returns arbitrary linear combinations as exemplified here for |v80〉.

2.2 Non-negative least-squares

When motivating the least-squares approach using Bayesian reasoning, (40), one assumption
was that we have no knowledge whatsoever about the possible models. When we are interested,
e.g., in a diagonal spectral function, this is not quite true: We actually do know that f cannot
be negative, cf. (18). To incorporate this information, the prior probability p(f) should, in
fact, vanish when f has a component fn < 0. In other words, we really should maximize
the likelihood over non-negative models only: maxf≥0 exp(−χ2(f)). This approach is called
non-negative least squares fitting (NNLS). A practical algorithm is discussed in A.2. It will, in
general, not give a perfect fit, χ2(fNNLS) > 0, but what is not fitted is the part of the data that is
incompatible with a non-negative model, i.e., pure noise.
As shown in Fig. 4, using non-negative least squares gives a dramatic improvement over the
least-squares solution. Just incorporating the information about the non-negativity of the model
reduces the oscillations in the result by nine orders of magnitude, bringing it into a reasonable
range. This is because the amplitude of oscillating modes is now strongly limited by non-
negativity. In fact, the constraints give the modes with small singular value or in the null space
an important role: All modes except the first have nodes, so they can often not be included in the
solution with their optimal value (43) without violating the constraint. Since the contribution of
the modes with tiny singular value to the fit is tiny, they are free to arrange such that the modes
with larger di can move closer to their optimum. Thus in NNLS the behavior of all modes is
coupled, making the fit much more robust. Moreover, the non-negativity constraint makes the
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Fig. 4: Non-negative least-squares solution of the same problem as in Fig. 2. Using our knowl-
edge about the non-negativity of the spectral function gives a dramatic improvement, bringing
the solution form a scale of the order of ±1010 to a positive function with peaks of the order of
102 so that the original model shown on the left can actually also be seen in the plot on the right
(dashed line). While the NNLS solution does show some resemblance to the original function it
is far to spiky, even in the present case of exceedingly small noise (∼ 10−8) in the data.

problem well posed, i.e., giving a unique solution. Still, the spiky NNLS solutions indicate that
we are still overfitting the noise in the data and this problem becomes stronger when considering
data with noise levels larger than the ∼ 10−8 used for the example.
While the least-squares approaches do take information about the covariance of the data into
account, via the modification of the kernel from K to K̃, so that the data points that are given
with higher accuracy have more weight, the result are completely independent of the absolute
scale ofC: Multiplying it by a scalar σ2 simply rescales all singular values of K̃ by 1/σ, which
is compensated but the same rescaling of g̃, leaving the solution unchanged. Thus the least-
squares type solutions completely neglect the information about the overall noise in the data.
This problem can be addressed when we include our intuition that the “true” solution should
show some degree of smoothness. We then have to introduce a measure of smoothness, which
puts an absolute scale in the fitting problem. This is the idea behind regularization approaches.

2.3 Linear regularization

To understand the failure of the least-squares methods better, we expand the noisy data and
the fit in their respective singular modes |um〉 and |vn〉. For the example of Fig. 2 this is
shown in Fig. 5. It shows that, initially, the expansion parameters of g decrease somewhat
faster with the mode index i than the singular values. Consequently the expansion of the least
squares solution also decrease with i. But once the 〈ui|g〉 reach the level of the noise in the
data, here σ = 10−8, at i ≈ 30, the expansion coefficients of the data remain constant while
the singular values decrease further, leading to exponentially increasing contributions of the
highly oscillating modes with large i that render the least-squares solution useless. The situation
is quite similar for the non-negative least squares solution. The main difference is that the
contributions of the modes with small or vanishing singular value are bounded |〈vn|fNNLS〉| . 1

by the non-negativity combined with the sum-rule for the model.
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Fig. 5: Picard plot for the example of Fig. 2. Since the model is symmetric, the expansion coef-
ficients for the odd modes should vanish. For noisy data, instead of vanishing, the coefficients
of odd modes are at the noise level. The even coefficients initially decay somewhat faster than
the singular values so that the corresponding coefficients of the least-squares solution decrease
with i. Once the 〈ui|g〉 have decreased to the noise level, here 10−8, they remain at that level
while the singular values decrease further. This leads to exponentially increasing contributions
of the corresponding modes to the least-squares solution.

By maximizing the likelihood e−χ
2(f)/2, with or without non-negativity constraint, we appar-

ently overfit the noise that becomes most visible in the modes for which the singular value
is below their contribution to the (noisy) data. The assumption behind this is that the exact
solution cannot be dominated by the highly oscillating modes with vanishing singular value,
i.e., that 〈ui|gexact〉/di, for large i decreases with the mode index. This is called the Picard
condition. When it is not fulfilled, the reconstruction of the exact model is hopeless, since the
relevant information is contained in vanishingly small coefficients 〈ui|gexact〉 that will be com-
pletely masked by the noise, cf. (44). When the exact model is not highly oscillating, the Picard
condition holds and we have a chance of reconstructing the model from noisy data.
When the Picard condition is fulfilled we can get rid of a large part of the noise by suppressing
the contribution of modes with singular value below the noise level in the data. This amounts
to a least-squares fit with a truncated singular value decomposition, where the singular values
beyond a limiting index are set to zero, di>itrunc := 0.
A somewhat more refined method is to continuously switch off the small singular modes. This is
called Tikhonov regularization. Introducing a regularization parameter α, the Tikhonov solution
is given by

fT(α) =
M∑
i=1

di
d2
i + α2

〈ui|g̃〉, (45)

which in the limit α → 0 becomes the least-squares solution (43), while for α → ∞ the
solution vanishes. For finite regularization parameter modes with large singular value di � α

are not affected, while the contribution of small singular values to fT(α) vanishes. To employ
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Fig. 6: Non-negative Tikhonov regularization for the example of Fig. 2, but with noise level
increased from 10−8 to 10−4. The insets show the solutions fT(α) at selected values of α. The
dotted line shows the exact model for comparison. For small α the method overfits the noise,
leading to strongly oscillating solutions, while the quality of the fit changes little. For large α
the method underfits the data, leading to a rapid increase in χ2(fT(α) and a loss of structure
in the reconstructed models. The solid line indicates the expected noise in the data, χ2 = M ,
relevant for the discrepancy principle.

Tikhonov regularization for non-negative models we need to formulate it as an optimization
problem. Expanding in singular modes and completing the square, it can be written as

||K̃f − g̃||2+α2||f ||2 =
M∑
i=1

(
〈ui|g̃〉 − di〈vi|f〉

)2
+ α2

N∑
n=1

〈vi|f〉2 (46)

=
M∑
i=1

α2〈ui|g̃〉
d2
i + α2

+

(
di〈ui|g̃〉√
d2
i + α2

+
√
d2
i + α2〈vi|f〉

)2+ α2

N∑
n=M+1

〈vi|f〉2

which attains its minimum
∑

i α
2〈ui|g̃〉/(d2

i + α2) for the unique solution (45). In Bayesian
terms, (40), Tikhonov regularization chooses p(f) ∝ e−α

2||f ||2/2 as prior probability.
Alternatively, we can express Tikhonov regularization as a least-squares problem with an ex-
panded kernel and data as

min
f

(
||K̃f − g̃||2 + α2||f ||2

)
= min

f

∣∣∣∣∣
∣∣∣∣∣
(
K̃

α1N

)
f −

(
g̃

0N

)∣∣∣∣∣
∣∣∣∣∣
2

. (47)

Performing the minimization over all models gives Tikhonov regularization, restricting the op-
timization to f ≥ 0 defines the non-negative Tikhonov regularization method.
The crucial question is how to choose the regularization parameter α. Fig. 6 shows the results of
non-negative Tikhonov regularization for the example of Fig. 2 increasing, however, the noise
level from 10−8 to 10−4 to make the problem not too easy. For small α the solutions show
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strong oscillations, while the mean-square misfit, χ2, increases only little with α. For large α
the solution becomes featureless except for the peak at the Fermi level, which is already present
in the leading singular mode, cf. Fig. 3, while χ2(fT(α)) rapidly gets worse. A compromise
between overfitting of the noise in the data and smoothness of the model should be reached
when α is chosen such that the deviation from the optimum fit χ2(fT(α)) = ||g̃ − K̃fT(α)||2

equals the noise expected in M data points g̃m with unit covariance: χ2 = M . This criterion for
choosing the regularization parameter is called the discrepancy principle [8]. We can formulate
it as a constrained optimization problem with α−2 playing the role of the Lagrange parameter:

min
f
||f ||2 +

1

α2

(
||g̃ − K̃f ||2 −M

)
(48)

has the same variational equation as (46).
The regularization parameter α is the crucial ingredient of any regularization approach. Its role
is to strike a balance between fitting the noisy data and keeping the solution smooth in some
sense. While it is clear that with increasingly accurate data the chosen α should get smaller,
there is no unique procedure for actually determining its value. The discrepancy principle is just
one very reasonable way of choosing α but there is a plethora of other approaches, see [8] for a
first overview. Likewise, the choice of the regularizer is not unique. Instead of ||f ||2 = 〈f |1|f〉
we could choose any positive semidefinite N×N matrix M and use 〈f |M |f〉 ≥ 0 instead.
An obvious choice follows when we remember that f is the discretized version of the model
function f(x). As in (35), assuming a uniform x-grid, we can then write

1

N
||f ||2 =

1

N

N∑
n=1

|fn|2 ≈
∫
dx |f(x)|2. (49)

Changing the integration variable from x to z, the integral and its Riemann sum in the new
coordinates becomes∫

dx |f(x)|2 =

∫
dz

dx

dz
|f(x(z))|2 ≈ 1

N

N∑
n=1

dx(zn)

dz
|f(x(zn))|2 (50)

so that Tikhonov regularization, M = 1, on the old grid becomes regularization on the z-grid
with a diagonal matrixM that contains the Jacobian factors Mnn = dx(zn)

dz
on the diagonal.

Alternative choices ofM impose smoothness by implementing finite-difference versions of the
first or higher derivatives, choosing, e.g.,

N−1∑
n=1

|fn − fn+1|2 = 〈f |



1 −1 0 0 · · · 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
...

...
0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1


|f〉. (51)
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A regularizer that penalizes the k-th derivative does not have full rank. For, e.g., the first deriva-
tive matrix in (51), all constant models give zero. In practice there is, however, no problem
since the information about the low moments of the model are usually well contained in the
modes with the largest singular values.
Going back to the Tikhonov regularizer, we might wonder why it actually has the effect of
smoothing the solution. After all, ||f ||2 =

∑
n |fn|2 is local, i.e., does not depends on the

change in neighboring values. So if we permuted the coordinate values {1, . . . , N} in an ar-
bitrary way, the value of ||f ||2 would remain unchanged. The main reason why the identity
regularizer M = 1 leads to smooth models is that it reduces the effect of modes with small
singular value. As we have seen in Fig. 3 these modes are highly oscillatory, while the modes
that are least affected are the ones with few nodes that are relatively smooth. Still, even the
leading mode is not entirely featureless. While a simple first derivative regularizer like (51)
would reduce the contribution of such a mode, that is usually strongly supported by the data,
Tikhonov will leave it largely unaffected. In that sense, Tikhonov regularization respects the
variations in the important modes. To emulate this with a derivative regularizer would require
to laboriously taylor anM suitable for every specific kernel K̃.
There is also a second aspect. As we noted above, fT(α → ∞) = 0. When we impose a sum
rule, however, we force the solution to be finite and find from

min
f

(∑
n

f 2
n + λ0

(
1−

∑
n

fn

))
(52)

that the Tikhonov regularizer prefers a flat solution, fn = 1/N , or, in the case of a general
diagonal matrix, fn ∝ 1/Mnn. These are the models resulting in the absence of data, i.e., for
diverging variance resulting in vanishing K̃ and g̃, except for the 0-th moment sum-rule. They
are called the default model of the regularizer.
We are, of course, not limited to bilinear regularizers of the type 〈f |M |f〉. An important non-
linear regularizer is the entropy of the model. It is the basis of the maximum entropy approach.

2.4 Maximum entropy

Maximum entropy methods differ from Tikhonov-type regularization in the assumptions they
make about the solutions. While Tikhonov is based on the Picard condition giving preference
to the modes with large singular value, maximum entropy favors models that contain as little
information as possible. This is measured by the information entropy, see A.3 for details. Using
the generalized entropy (89)

H(f ;ρ) = −
∑
n

(
fn ln

fn
ρn
− fn + ρn

)
(53)

as regularizer that should be maximized, we have to solve the non-linear optimization problem

min
f

(
χ2(f)− αH(f ;ρ)

)
, (54)
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where we use α instead of α2 as in (46) to conform with the conventions used, e.g., in [9].
A convenient property of the non-linear entropy regularizer is that it automatically ensures the
positivity of the solution since the gradient

− ∂H(f ;ρ)

∂fn
= ln

fn
ρn

(55)

diverges for fn → 0 while the gradient of the fit function

∂ 1
2
χ2(f)

∂fn
=

∂

∂fn

1

2

∑
m

(
g̃m −

∑
n′

K̃mn′fn′
)2

= −
∑
m

K̃†nm

(
g̃m −

∑
n′

K̃mn′fn′
)

(56)

is always finite, so that any solution of the variational equations fn has the same sign as ρn.
Since it is straightforward to also calculate the Hessians

∂2 1
2
χ2(f)

∂fn′∂fn
=
∑
m

K̃†nmK̃mn′ and − ∂2H(f ;ρ)

∂fn′∂fn
=

1

fn
δnn′ (57)

it is straightforward to solve the non-linear minimization problem using, e.g., the Levenberg-
Marquardt method. The only slight complication being that finite steps in the iteration might
change the sign of some component fn.
In the absence of data, minimizing (54), i.e, setting (55) to zero, we find f = ρ. Thus ρ is
the default model and, as in (88) or (50) it can be related to the choice of the grid. Even when
we have decided on a default model, we still have to determine the value of the regularization
parameter. Choosing it according to the discrepancy principle is called historic MaxEnt [9].
Other flavors of the maximum entropy method determine the regularization parameter using
Bayesian methods. For this we write the entropy regularizer as a prior probability

p(f |ρ, α) ∝ e+αH(f ;ρ) (58)

so that the minimization (54) becomes equal to maximizing the posterior probability, cf. (40),

p(f |g̃,ρ, α) =
p(g̃ |f ,ρ, α) p(f |ρ, α)

p(g̃)
∝ e−χ

2(f)/2+αH(f ;ρ) , (59)

where we have used that the QMC data g̃ is actually independent of our choice of regulariza-
tion parameter and default model. The Bayesian approach to determining the regularization
parameter uses the posterior probability of α

p(α |g̃,ρ) =

∫ ∏
n

dfn√
fn

p(f , α |g̃,ρ) =

∫ ∏
n

2d
√
fn

p(f |g̃,ρ, α) p(α |g̃,ρ)

p(g̃,ρ)
(60)

obtained from marginalizing out f , i.e., integrating over the space of models f . The peculiar
choice of the integration measure, 2d

√
fn, is discussed in [9]. It naturally appears in the ex-

pression for the entropy when using Stirling’s approximation to one order higher than in the
derivation given in A.3, which rather suggests that the factor 1/

√
fn should be considered part

of the entropic prior and not the integration measure.
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For historic MaxEnt it was not necessary to know the normalized probabilities (58) and (59).
When, however, we want to compare the probabilities of different renormalization parameters,
we need to determine the normalization of the distributions that depend on α by, again, inte-
grating over f

Zχ2(g̃) =

∞∫
−∞

∏
n

dfn e−χ
2(f) = (2π)M/2 (61)

ZH(ρ, α) :=

∫ ∏
n

dfn
e+αH(f ,ρ)∏
n′

√
fn′

(62)

Since the likelihood is a Gaussian, the integral is straightforward, cf. (34). The normalization
of the entropic prior is more difficult. In MaxEnt such functional integrals are approximated by
Gaussian integrals obtained from expanding the exponent to second order about its maximum.
As already discussed above, the entropy term is maximized when the model equals the default
model. The second-order expansion (57) is thus given by the diagonal matrix −δnn′/ρn, i.e.,
the entropy becomes just a Tikhonov regularizer with general diagonal matrix. Also expanding
1/
√
fn ≈ (1−(fn−ρn)/2ρn)/

√
ρn, the normalization of the entropy prior thus is approximated

by that of the simple Tikhonov prior without non-negativity constraint [9]

ZH(ρ, α) ≈
∏
n

∞∫
−∞

dfn
e−

α(fn−ρn)2

2ρn

√
ρn

(
1− fn − ρn

2ρn

)
=

(
2π

α

)N/2
. (63)

To calculate p(α |g̃,ρ), (60), we still have to choose a prior probability p(α |g̃,ρ). From the
discrepancy principle it seems reasonable that it should be independent of the data normalized
to have a unit covariance matrix. If we also assume that α is independent of the default model,
we only have to choose p(α). Assuming that the prior is scale invariant

p(α) dα
!

= p(sα) d(sα) (64)

one obtains the Jeffreys prior p(α) ∝ 1/α [2], which might not be the most appropriate choice,
since the scale of the regularization parameter is fixed by the noise in the data, which we know.
Using all this for calculating the posterior probability of the renormalization parameter, there
are two different flavors of how α enters the analytical continuation: Historic MaxEnt chooses
the α that maximizes p(α |g̃,ρ) to determine fhistoric = f(αmax). Bryan’s method no longer
insists on picking a specific value of α. The approach rather determines the model as the average
over all regularization parameters, weighted with their posterior probability

fBryan =

∫ ∞
0

dα f(α) p(α |g̃, ρ) . (65)

It might seem that the MaxEnt approaches could be improved by actually performing the in-
tegrals over model space exactly rather than using simple Gaussian approximations that even
violate the non-negativity of the models, which is one of the precious priors that we are sure
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of. But doing these integrals is fiendishly hard. A second drawback of MaxEnt, or rather of
all regularization approaches, is the need to deal with a regularization parameter, introducing
the need for making assumptions about its behavior, its prior probability and the like, for which
there is no apparent solution. If only we could efficiently integrate over model space there might
be a way of eliminating all these complication arising from the need to regularize. Instead of
looking for a solution that maximizes some posterior probability, we could ask for the average
over all possible models, weighted with their likelihood. This approach which is free of explicit
regularization parameters is the average spectrum method.

3 Average spectrum method

The average spectrum methods is an appealing alternative to the optimization approaches. It
was probably first proposed by White [10] and reinvented several times after. The basic idea
is of striking elegance: The spectral function is obtained as the average over all physically
admissible functions, weighted by how well they fit the data

fASM(x) :=(2π)−M/2

∫
f(x)≥0

Df f(x) e−χ
2[f ]. (66)

Due to the ill-conditioning of the inverse problem there are very many functions that differ
drastically but essentially fit the data equally well. Taking the average, we can thus expect that
the spectral features not supported by the data will be smoothed out, providing a regularization
without the need for explicit parameters. So far the practical application of this conceptually
appealing approach has, however, been hampered by the immense computational cost of nu-
merically implementing the functional integration.
It is worth emphasisizing that the non-negativity constraint is essential. An unconstrained in-
tegration over the Gaussian in (66) actually produces a least-squares solution. Since the width
of the likelihood increases with the inverse of the singular value this would, of course, be nu-
merically very inefficient, and since the width diverges for the modes in the null space of the
kernel, their contribution will never converge to a definite value, reflecting that the problem is
underdetermined.
When we discretize the model function f(x) as discussed in Sec. 1.3, the functional integral
becomes

fASM ∝
N∏
n=1

∫ ∞
0

dfn f e−χ
2(f)/2, (67)

where the N -dimensional integral can be evaluated by Monte Carlo techniques. The most
straightforward approach is to perform a random walk in the space of non-negative vectors f ,
updating a single component, fn → f ′n, at a time. Detailed balance is fulfilled when we sample
the new component f ′n for the conditional distribution ∝ e−χ

2(f ;f ′n)/2 with

χ2(f ; f ′n) := || g̃ − K̃f + K̃nfn︸ ︷︷ ︸
=:g̃n

−K̃nf
′
n||2 = K̃†nK̃n

(
f ′n − K̃†n g̃n/K̃†nK̃n

)2

, (68)
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where K̃n is the n-th column of K̃. We thus have to sample f ′n from a univariate Gaussian of
width σ = 1/||K̃n|| centered at µ = K̃†n g̃n/||K̃n||2 and truncated to the non-negative values
f ′n ∈ [0,∞). This can be done very efficiently, e.g., as described in A.4.
Still, sampling components can be very slow because the width of the Gaussian (68) is, in
general set by the inverse of the largest singular value, i.e., the random walk performs only
exceedingly small steps. This is even more evident when sampling spectral functions, where
we cannot change just a single fn without violating the sum-rule (15). A way around is to
introduce global moves along the principal axes of χ2, i.e., along the singular modes.
Transforming to the new bases h := U †g̃ in data and e := V †f in model space diagonalizes

χ2(f) = ||U †g̃ −DV †f ||2 =
M∑
i=1

(hi − diei)2 (69)

so that in the new basis the integral (67) factorizes into Gaussian integrals

eASM
i ∝

∫
f≥0

dei ei e
−(hi−diei)2/2. (70)

Without non-negativity constraint the integrals would be independent and result in a least-
squares solution. With the constraint they are coupled via their range of integration. Updating
modes ei → e′i is restricted by the condition f ′ = f + (e′i − ei)Vi ≥ 0, where Vi is the i-th
column vector of V . This is equivalent to e′i ≥ ei− fn/Vni for Vni > 0 and correspondingly for
Vni < 0 so that e′i is constrained to

max

{
fn
Vni

∣∣∣∣Vni < 0

}
≤ ei − e′i ≤ min

{
fn
Vni

∣∣∣∣Vni > 0

}
. (71)

Sampling modes is usually much more efficient than sampling components: For modes with
large singular value the Gaussian is narrow so that the random walk quickly jumps close to
the optimal value hi/di and then takes small steps around there. For modes with small or
zero singular value the distribution is very broad so that the random walk can take large steps,
allowing for an efficient sampling. Still, sampling may become inefficient when non-negativity
restricts a mode to a very narrow interval. This will happen when f has regions where it
becomes very small, e.g., in the tail of the spectral function. Then the scale for the step size is
not given by the singular value but rather by the width of the interval (71). Also this problem
can be overcome by using a real space renormalization group technique, introducing blocks
of varying size in which modes are sampled. This way the method can interpolate efficiently
between sampling components, i.e., blocks of size 1, and sampling modes, i.e., blocks of sizeN .
Details of the method and its performance are given in [11, 12].
Using this method, we find that the results of the average spectrum method actually depend
on the choice of the discretization (67). This is not a problem of the particular method, but a
general feature of the functional integral and would also affect, e.g., MaxEnt were it to do the
normalization and marginalization integrals exactly, see e.g. Sec. 6.2 of [2]. We find that the
choice of the coordinates for the discretization grid plays the role of a default model, while the
number of grid points N acts as a regularization parameter.
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fit histogram: reliable results

result for N>8 independent of N: 
default model consistent with data

too few points: 

bad numerics

Fig. 7: Average spectrum method on a Gaussian grid determined from NNLS for an optical
conductivity reconstructed from Matsubara data [11]. The resulting spectral shown below are
rather insensitive to the choice of the regularization parameter, the number of grid points N ,
except for N = 8 where the coarse grid leads to discretization errors when evaluating the
Fredholm integral. The exact model is shown as the dashed line for comparison. The top panel
shows the histograms of χ taken during the Monte Carlo sampling of the functional integral.
The small variations in the histograms indicate a robust choice of the grid.

The reason for this is that the notion of sampling uniformly, i.e., with a flat prior, is tied to the
choice of a specific grid. This is most easily understood when we consider what happens when
we double the number of grid points. On the original grid we sample f ∈ [0,∞). On the denser
grid we represent f over the large interval by two values f̂1 and f̂2 over intervals of half the
width, so that f = f̂1 + f̂2. If we sample the f̂i ∈ [0,∞) with a flat prior, p(f̂i) = const., this
implies a probability distribution for f

p(f) =

∫ ∞
0

df̂1 p(f̂1)

∫ ∞
0

df̂2 p(f̂2) δ(f̂1 + f̂2 − f) ∝
∫ f

0

df̂1 = f (72)

which is not flat. Properly defining the flat prior as p(f̂i) = limλ→∞ e−f̂i/λ/λ, p(f) becomes a
gamma distribution. More generally, we find that sampling with a flat distribution on a particular
grid defines a measure for the functional integral (66) represented by a gamma process [11].
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fit histogram: unreliable results

too few points: 

bad numerics

result for N>8 shift with N: 
default model not consistent with data

Fig. 8: Average spectrum method on a Lorentzian grid of the same width as the Gaussian in
Fig. 7. The resulting spectral functions shown below are now quite sensitive to the choice of
the regularization parameter, the number of grid points N . In the top panel we see from the
histograms of χ that the fit sizeably deteriorates with increasing N , indicating problems with
the choice of the grid.

Still, we can give a practical recipe for determining the regularization parameters and checking
the quality of the results. To find the grid type (default model), we use non-negative least-
squares to determine the width of the spectrum. This implies a Gaussian grid of particular width.
We then vary the number of grid points to check how the results change with increasing N .
When N is too small, the result will be inaccurate because of discretization errors in evaluating
the integral (31) entering χ2. When N becomes to large there is a rapidly increasing number
of vectors f that, despite having a small weight e−χ

2(f)/2, contribute to the average due to their
sheer number. In between there will be a region, where the results are fairly independent of the
actual choice of N . This is shown in Fig. 7. When the grid is not chosen well, as in Fig. 8,
where the grid uses a Lorentzian density of the same width as the Gaussian in the previous
figure, results vary strongly with N .
This approach gives already reliable and robust results. When we have to deal with particu-
larly difficult cases, we can use Bayesian techniques to make the method even more robust by
sampling over different grids, albeit at an increased computational cost [11].
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4 Conclusions

As for so many problems, there is no magic solution to the problem of analytic continuation.
Any method can only reconstruct what is in the data and must substitute missing information
ideally by exact prior knowledge or, otherwise, by mere assumptions about the solution. The
most important aspect of analytic continuation is thus encountered already before the solution of
the inverse problem is even started. Depending on what features of the model we are interested
in, we have to decide where to measure the data. If we want, e.g., to reconstruct the spectral
function far from the Fermi level, it does not help to just have highly accurate values for the
Green function when they are not close enough to τ = 0 or β to give information about the
discontinuity in its derivatives.
Moreover, it is deceiving to just look at the single result returned by a regularization approach.
There is not “the” solution, rather every method produces an expected solution with its uncer-
tainty quantified by a non-intuitive N×N covariance matrix. This is, however, rarely analyzed
because it is hard to calculate and difficult to interpret. Still, there are approaches to estimate
the error in observables derived by integrating over the spectrum. They are nicely discussed
in [9] and should be used wherever possible.
We have presented the approaches to the analytic continuation problem in the order of increasing
sophistication and accuracy – and numerical cost. The analysis of QMC data should ideally fol-
low this progression until the desired information about the spectral function has been reliably
obtained. A Picard plot will give a first impression of how much information is actually con-
tained in the data and what can be expected from a straightforward linear regularization. Despite
the uncontrolled approximations in the practical flavors of MaxEnt, the approach has developed
into the standard approach for analytical continuation. The average spectrum method, that is
now numerically competitive, provides an appealing alternative since it makes all assumptions
via the choice of the discretization explicit, while being numerically exact.
The most important lesson is that results of analytic continuation must not be overinterpreted.
When the results depend on the details of the method, they rather reflect the choices made by
the approach than the data. Thus before interpreting details of the spectral function, we have
to make sure that they are robust under (reasonable) variations in the regularization parameters.
The discrepancy principle and the fit histogram are practical methods for doing this.
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A Technical appendices

A.1 Blocking method for correlated data

Let us assume we have an ergodic Markov chain Monte Carlo method, e.g., using Metropolis
sampling, that generates a set of K data points m1, . . . ,mK drawn from a probability distribu-
tion p(m) dm and we are interested in the mean value µ =

∫
dmp(m)m. The obvious estimate

for µ is the average m̄ =
∑K

k=1 mk/K. It will, of course, be different for different Monte Carlo
runs, but, by the central limit theorem, for large K the averages m̄ of different runs will tend to
be distributed as a Gaussian centered at µ with variance

σ2(m̄) = 〈m̄2〉 − 〈m̄〉2 =
1

K2

K∑
k,l=0

(
〈mkml〉 − 〈mk〉〈ml〉

)
, (73)

where 〈 · 〉 is the average over all possible Monte Carlo runs producing K data points. How can
we estimate σ2(m̄) from the simulation data of a single run? Splitting the double sum

σ2(m̄) =
1

K

1

K

K∑
k=1

(
〈m2

k〉 − µ2
)

︸ ︷︷ ︸
=〈m2〉−µ2=:s0

+
1

K2

∑
k 6=l

(
〈mkml〉 − µ2

)
(74)

we see that for uncorrelated data, 〈mkml〉 = 〈mk〉〈ml〉 for k 6= l, the variance is given by
s0/K. But in general, samples obtained from Markov chain Monte Carlo will be positively
correlated, so that σ2(m̄) ≥ s0/K. We can eliminate this correlation using an elegant renor-
malization group technique [13]. For this we consider the transformation of the original data
set m1, . . . ,mK of K samples (assuming K is even) into half as many data points, obtained by
averaging

m̂k̂ :=
m2k̂−1 +m2k̂

2
. (75)

Obviously, the average of the new data points
∑K/2

k̂=1
m̂k̂/(K/2) is still m̄ and thus must have

the same distribution as the averages of the original data. Consequently, σ2(m̄) must remain in-
variant under the blocking transformation (75). Looking at the uncorrelated part of the variance
for the blocked data m̂k̂ and remembering that the ensemble average 〈m2

k〉 is independent of k,
we see that

ŝ0 =
1

K/2

K/2∑
k̂=1

(
〈m2

2k̂−1
+ 2m2k̂−1m2k̂ +m2

2k̂
〉

4
− µ2

)
=
s0

2
+

1

2K/2

K/2∑
k̂=1

(
〈m2k̂−1m2k̂〉 − µ

2
)

(76)
contains part of the correlations not contained in s0. Therefore ŝ0/(K/2) ≥ s0/K. Under
repeated blocking transformations the uncorrelated part of the variance will thus increase. When
it reaches a plateau, i.e., a fixed-point under the blocking transformation, it becomes equal to
σ2(m̄) and the blocked data has become uncorrelated.
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Fig. 9: Estimate of the standard deviation of the average of correlated data obtained with the
blocking method. Initially the variance is severely underestimated but the estimate increases
with each blocking step until a plateau is reached, at which point the blocked data has become
uncorrelated. By that time the distribution of the m̂k̂ has become Gaussian of width ĉ0, as shown
in the insets. Eventually the number of blocked samples, K̂ = K/2n, become so small that the
estimates become unreliable.

We can try to estimate the ensemble average s0 from the data from one specific simulation run
as
∑K

k=1(m2
k − m̄2)/K. Taking the ensemble average and comparing to s0

1

K

K∑
k=1

(
〈m2

k〉 − 〈m̄2〉
)

=
1

K

K∑
k=1

(
〈m2

k〉 − 〈m̄〉2
)
−
(
〈m̄2〉 − 〈m̄〉2

)
= s0

(
1− 1

K

)
we find that the unbiased estimator actually is

s0 ≈ c0 :=
1

K − 1

K∑
k=1

(
m2
k − m̄2

)
⇒ σ2(m̄) ≈ 1

K(K − 1)

K∑
k=1

(
m2
k − m̄2

)
. (77)

In an actual implementation of the blocking method, we repeatedly block the data and calculate
the corresponding estimator of the uncorrelated variance ŝ0/K̂. An example is shown in Fig. 9.
As expected, ĉ0/K̂ increases with each blocking step until it reaches a plateau. There the
blocked data m̂k̂ are uncorrelated and, by the central limit theorem, approach Gaussian variables
of variance σ2(m̂) = K̂σ2(m̄). For such variables the variance of the variance σ2(m̄) is given
by 〈(ĉ0/K̂)2〉 − 〈ĉ0/K̂〉2 = 2σ4(m̄)/(K̂ − 1), which provides us with the errorbars. Since the
number of blocked data points is halved in each step, eventually the blocked sample becomes
very small and ĉ0/K̂ starts to fluctuate, also indicated by rapidly increasing errorbars. We
can then identify the plateau by checking when ŝ0/K̂ does not change between blocking steps
within its error bar.
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A.2 Non-negative least-squares algorithm (NNLS)

The model f fitting a given data vector g best in the least-squares sense minimizes the norm of
the residual vector χ2(f) = ||Kf − g||2. At the minimum fLS the gradient w vanishes

wn(fLS) :=
1

2

∂ χ2(f)

∂fn

∣∣∣∣
LS

= Re
(
K†(KfLS − g)

)
n

= 0 ∀n . (78)

Since χ2 is a non-negative quadratic form in f stationary points must be minima

χ2(fLS + δ) = χ2(fLS) + 2δTw(fLS) + ||Kδ||2 ≥ χ2(fLS) . (79)

The least-squares fit can be found from the singular value decomposition (SVD)K† = V DU †

fLS = V D−1U †g , (80)

where the diagonal matrix D has dimension K = rank(K) while the matrix U is M×K and
V is N×K-dimensional. In terms of the SVD the gradient (78) is given by

w(f) = ReV D(DV Tf −U †g) . (81)

This way of calculating the gradient is numerically more stable than calculating it directly in
terms ofK. It also immediately shows that the gradient vanishes for fLS.
Finding the best fit, min||Kf − g||2, under the constraint f ≥ 0 (non-negative least-squares,
NNLS) is more complicated. When all components of the unconstrained solution are non-
negative, (fLS)n ≥ 0, it is obviously also the solution of the constrained problem. When there
are components (fLS)n < 0 we might expect that the constrained fit assumes its minimum on
the boundary, (fNNLS)n = 0, where the gradient is positive wn > 0. These are the Karush-
Kuhn-Tucker conditions [14]:

fn > 0 and wn = 0 or fn = 0 and wn ≥ 0 . (82)

We distinguish the two cases by defining the two sets P = {n| fn > 0} and Z = {n| fn = 0}
which partition the set of indices, P ∪ Z = {1, . . . , N}.
When fKT fulfills the Karush-Kuhn-Tucker conditions, it minimizes χ2(f) on f ≥ 0. To see
this we consider a vector fKT + δ with δz ≥ 0 so that fKT + δ ≥ 0. Then

χ2(fKT + δ) = χ2(fKT) + 2δTw(fKT) + ||Kδ||2 ≥ χ2(fKT) (83)

since δTw =
∑

n δnwn =
∑

n∈P δnwn+
∑

n∈Z δnwn ≥ 0, where the first sum vanishes because
of the gradient, while in the second sum both factors in each term are non-negative. Conversely,
when fNNLS solves the non-negative least-squares problem it must fulfill the Karush-Kuhn-
Tucker condition, otherwise an infinitesimal change (respecting non-negativity) of a component
violating it could lower χ2. Thus, to solve the NNLS problem we just have to find a vector that
fulfills the Karush-Kuhn-Tucker conditions. For this we can simply go through all possible
partitionings of the indices {1, . . . , N} = P ∪ Z . For a given partitioning we determine the
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least-squares solution on the indices in P , i.e., we minimize ||KPPf − g||2, where PP is the
projector to the space spanned by the components in P . This makes sure that the gradients for
these components vanish, wp = 0, while fz = 0. If also fp ≥ 0 for all p ∈ P and wz ≥ 0 for
all z ∈ Z , we have found the NNLS solution, otherwise we try the next partitioning. The only
problem is that there are 2N partitionings of the N indices (each index can be either in P or Z).

A practical algorithm [14] considers possible partitionings in a much more efficient way. We
start from some partition for which fP > 0 and wP = 0, e.g., an empty positive set, P = {}
and f{} = 0. Given a set P and the corresponding fP for which the Karush-Kuhn-Tucker
condition is not yet fulfilled, we add the component i with the most negative gradient. Least-
squares fitting on the expanded set P ′=P ∪ {i} will produce an improved fit χ2(fP ′)<χ

2(fP):
because of the negative gradient, the new component will not stay at zero but rather take a
positive value. In case fP ′ ≥ 0, we calculate the new gradient. If it is non-negative, we have
found the Karush-Kuhn-Tucker solution, otherwise we repeat the procedure. Each iteration will
produce a non-negative solution with improved fit, so that we will converge to the minimum of
χ2(f) under the constraint f ≥ 0.

In general, however, the least squares solution fP ′ will have negative components. In this case,
we can find a mixing with the previous fit fα = (1−α)fP+αfP ′ with α ∈ (0, 1), that brings the
most negative component of fP ′ to zero. Since χ2(fα) ≤ (1−α)χ2(fP ′) + αχ2(fP) < χ2(fP)

the fit will still be improved. We remove the components where fα vanishes from P ′ and
perform a least-squares fit on the new set, repeating the procedure until we get a non-negative
least squares solution. This must happen after a finite number of iterations, since in each step at
least one element is removed from the positive set while the resulting fα ≥ 0 keeps improving
the fit χ2(fα) < χ2(fP). Thus we can continue the outer loop with fα, calculating the new
gradient and adding the component where it is most negative to the positive set.

Since each step produces a f ≥ 0 with improved fit, the algorithm does not visit any partitioning
twice and will thus always converge. At worst it may take 2N steps, but in practice the down-hill
search produces a solution after trying less than hundred partitionings. Numerically, the most
delicate part is the calculation of the gradient, which should be stabilized using a factorization
of the kernel. Obviously, checking the Karush-Kuhn-Tucker condition for the gradient must
take the numerical accuracy into account. Moreover, the implementation may not converge,
when, after adding the component with the most negative gradient, the least-squares fit gives
that component a negative value. This can only happen as a consequence of numerical errors.
In this case we rather include the component with the second most negative gradient in P .

Note that the non-negative least squares solution fNNLS is unique, unlike the least-squares so-
lution (80), to which we can add any multiple of a vector with zero singular value without
changing the fit. While the least-squares problem is thus ill-posed when there are vectors that
do not contribute to the fit, these vectors play a crucial role in non-negative least squares fitting:
They take values such that the modes that are important for the fit can approach their optimal
value as closely as possible without violating the constraint. Thus NNLS is well posed.
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1: function NNLS(K, g)
2: f ← 0
3: Z ← {1, . . . , N} . below we use the abbreviation P = {1, . . . , N} \ Z
4: loop
5: w ←K†(Kf − g) . for robust calculation use, e.g., SVD
6: if w[Z] ≥ 0 then return f
7: end if
8: i← argmin(w[Z]) . find component with most negative gradient
9: Z ← Z \ {i}

10: loop
11: f ′ ← LS(KPf , g) . LS solution on components P
12: . fi > 0, if not: numerical error in gradient! Do not pick i again this round
13: if f ′[P ] > 0 then
14: f ← f ′

15: break
16: end if
17: α← min

{
fi

fi−f ′i

∣∣∣ i ∈ P ∧ f ′i ≥ 0
}

18: f ← (1− α)f + αf ′ . now f ≥ 0 and fi = 0 for i = argmin
19: P ← P \ {i|fi = 0}
20: end loop
21: end loop
22: end function

Fig. 10: Function that returns the non-negative least-squares solution f ≥ 0 of g = Kf .

A.3 Shannon entropy

When developing The Mathematical Theory of Communication, Claude Shannon introduced the
bit as the amount of information needed to decide between two equally probable events [15].
Receiving an unlikely (surprising) message should convey more information than receiving a
likely one, and the information contained in two independent messages should be the sum of
the information carried by each individually. These axioms lead to − log2 pi as the information
contained in receiving a message of probability pi. Summing over a set ofM possible messages
of probabilities pi and weighting the information contained in them by their probability defines
the average information or entropy of an information source

H({pi}) = −
∑

pi log2 pi . (84)

It gives a lower limit to the number of bits needed for encoding the N messages. The maximum
number of bits, log2N , is needed when we know least about which message to expect, i.e.,
when all probabilities are the same. In the opposite limit, when one of the messages is certain,
we need not encode it at all. Thus the entropy of an information source measures our ignorance
before receiving one of the possible messages.
Changing the base of the logarithm, logb(x) = log2(x)/ log2(b), for b > 1 simply multiplies
the entropy by a positive constant, i.e., changes the units in which we measure information. For
convenience, we use the natural logarithm, ln, working in natural units, 1 nat ≈ 1.44 bits.
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An alternative derivation [2] of (84) starts by considering microstates representing the probabil-
ities as pi = ni/M by placing N (distinguishable) objects into M bins. Since we can place any
of theN objects into any of theM bins, there areMN such states. The number of different ways
of placing the objects into bins and obtaining the same set of {ni}, i.e., the same macrostate,
is also easily determined: We can pick any n1 of the N objects and put them into the first bin.
Then we can pick any n2 of the remaining N − n1 objects and put them into the second bin.
The probability of realizing a macrostate {n1, . . . , nM} is thus

1

MN

(
N

n1

)(
N − n1

n2

)(
N − n1 − n2

n3

)
· · ·
(
nM
nM

)
=

1

MN

N !

n1!n2! · · ·nM !
.

Taking the logarithm and using the Stirling approximation lnn! ≈ n lnn− n we find

−N lnM +N lnN −N −
M∑
i=1

(ni lnni − ni) = N

(
ln

1

M
−
∑
i

pi ln pi

)
,

which is proportional to the H({pi}) minus the entropy of a flat distribution {1/M}.
Subtracting the entropy of the flat distribution becomes crucial when taking the limit of a con-
tinuous probability distribution: encoding an infinite number of messages will, in general, take
an infinite number of bits. Subtracting − log 1/M keeps the limit M → ∞ finite. To see this,
we discretize a continuous distribution p(x) on an equidistant grid of M points, pi = p(xi)∆x

with ∆x = (xmax − xmin)/M = (
∫
dx)/M , and take the limit of the Riemann sum

−
M∑
i=1

pi ln

(
pi

1/M

)
= −

M∑
i=1

∆xp(xi) ln

(
p(xi)∆x

1/M

)
→ −

∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
.

This defines the entropy of a distribution p(x)

H[p] = −
∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
. (85)

We can find the p(x) that maximizes this functional from the variational principle. Remember-
ing that the functional derivatives are defined by the expansion

H[p+ δp] = H[p] +

∫
dx

δH[p]

δp(x)
δp(x) +

1

2

∫
dx dx′

δ2H[p]

δp(x′)δp(x)
δp(x′) δp(x) +O3(δp)

we read off the first variation from

H[p+ δp] = −
∫
dx (p+ δp)

(
ln(p+ δp)︸ ︷︷ ︸

=ln p+ln(1+ δp
p

)=ln p+ δp
p

+O2

+ ln
∫
dx
)

= H[p]−
∫
dx

(
1 + ln

p(x)

1/
∫
dx

)
︸ ︷︷ ︸

=− δH[p]
δp(x)

δp+O2,

where we have used ln(1+x) = x−x2/2+· · · ). In second order we find δ2H[p]/δp(x′) δp(x) =

−2δ(x− x′)/p(x) ≤ 0 so that the stationary points are maxima. Imposing normalization of the
0-th moment via a Lagrange parameter, the variational equation becomes

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
= −1− ln p(x)− ln

∫
dx− λ0
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which is solved by the constant distribution, where λ0 = −1 is fixed by normalization

p(x) =
1∫
dx

e−(1+λ0) =
1∫
dx

. (86)

Inserting into (85) we find H[1/
∫
dx] = 0, as is must by construction.

Likewise, we can ask which distribution maximizes the entropy, when we know in addition its
first moment µ =

∫
dx x p(x). The variational equation then contains two Lagrange parameters

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
+ λ1

(
µ−

∫
dx x p(x)

)
= −1− ln

p(x)

1
∫
dx
− λ0 − λ1 x

and we obtain a Boltzmann distribution

pµ(x) =
1∫
dx

e−(1+λ0+λ1x), (87)

where λ0 and λ1 are fixed by solving the system
∫
dx pµ(x) = 1 and

∫
dx x pµ(x) = µ. Likewise,

when we also know the variance of p(x), maximizing the entropy results in a Gaussian.
Given the entropy functional, it is natural to ask what happens under a change of variable.
Remembering that density functions transform as p(x) dx = p(z) dz, we find

H[p] = −
∫
dx

dz
dz p(z)

dz

dx
ln

(
p(z) dz

dx

1/
∫
dx

)
= −

∫
dz p(z) ln

(
p(z)

ρ(z)

)
,

where we introduced ρ(z) dz = dx/
∫
dx. It reflects how the intervals on x change under the

under transformation to z. When we define ρ(x) = 1/
∫
dx, we see that the form of the entropy

functional is invariant under coordinate transformations

H[p | ρ] = −
∫
dx p(x) ln

p(x)

ρ(x)
. (88)

This is the relative entropy or Kullback-Leibler divergence. From lnx ≤ x − 1 it follows that
H[p] ≤ 0. By construction, the maximum is attained for p(x) = ρ(x). The relative entropy
describes the average information contained in the distribution p(x) when what we expected was
the distribution ρ(x). The prior ρ(x) plays the role of a density of states: from the functional
derivative of the relative entropy δH[p]/δp(x) = −1− ln(p(x)/ρ(x)) we see that the solutions
of the variational equations for p(x) derived above become proportional to ρ(x).
For convenience we might want to allow non-normalized densities of states ρ̃(x) and corre-
spondingly drop the normalization constraint for p̃(x). If we write [16]

H̃[p̃ | ρ̃] =

∫
dx

(
p̃(x)− ρ̃(x)− p̃(x) ln

p̃(x)

ρ̃(x)

)
(89)

we obtain from the variational equation δH̃/δp̃ = 0 (without normalization constraint) the
solution p̃(x) = ρ̃(x) with H̃[ρ̃ | ρ̃] = 0 as for (88).
We note that a flat prior ρ(x) = const. is bound to the choice of variable: Given any ρ(z) we
can always transform to x(z) ∝

∫ z
ρ(z′) dz′ to obtain ρ(x) = ρ(z) dz/dx = const., where x

must be restricted to a finite interval to be normalizable.
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A.4 Sampling from a truncated normal distribution

It is straightforward to generate a random variable x with a normal probability distribution

pn(x) =
1√
2π

e−x
2/2 (90)

using, e.g., the Box-Muller method [17]. When taking a constraint into account, we need,
however, variables with a normal distribution restricted to some interval, x ∈ [a, b].
x ≥ a: When x is restricted to be larger than some value a, a straightforward approach is to
sample normally distributed values x until we find an x > a. The probability for finding such
an x is, on average, just the integral over the Gaussian

P̄n(a) =

∫ ∞
a

dx pu(x) = I(a) . (91)

This is easily written in terms of the complementary error function erfc(z) = 2/
√
π
∫∞
z
dt e−t

2 .
For a > 0

I(a ≥ 0) =
1

2
erfc(a/

√
2) , (92)

while for a < 0

I(a ≤ 0) = 1− I(−a) . (93)

The average acceptance probability (91) is shown in figure 11. For a to the left of the peak of
the normal distribution it is very likely that a proposed random variable x is larger than a and
thus is accepted. For a > 0 this probability is, however, rapidly decreasing to zero, meaning
that we would have to propose very many normally distributed variables x until we find one that
is larger than a. This is very inefficient, so for a > 0 we need a better approach. Following [18],
we generate random variables x ≥ a with an exponential probability distribution

pexp(x) = α e−α(x−a) . (94)

These are easily obtained as x = a − ln(u/α)/α from uniformly distributed random numbers
u ∈ [0, 1). To transform these exponentially distributed random numbers x ≥ a into the de-
sired normally distributed random numbers we use the rejection method [17], accepting x with
probability proportional to the ratio pn(x)/pexp(x) of the desired and the proposed probability
distribution functions. To obtain a probability, we introduce a prefactor to make sure that for no
x ≥ a the ratio exceed one. Completing the square in the exponential we find

pacc(x;A) =
1

A

e−x
2/2

e−α(x−a)
=

1

A
e−(x−α)2/2︸ ︷︷ ︸

≤1

eα
2/2−αa !

≤ 1 . (95)

For x ≥ a the choice A = eα
2/2−αa maximizes the acceptance probability, which becomes

pacc(x) = e−(x−α)2/2 . (96)
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Fig. 11: Efficiency of the methods for sampling from a normally distributed variable x restricted
to the interval [a,∞): For a < 0 the average acceptance probability for an unrestricted nor-
mally distributed random variable (P̄n(a), full line) is larger than 1/2, while for a > 0 it
rapidly approaches zero. For positive a we therefore propose exponentially distributed random
numbers (P̄exp(a ≥ 0), dotted line), for which the average acceptance probability is at least√
π/2e ≈ 0.76.

The corresponding average acceptance probability is then the integral of the product of the
probability for proposing a value x times the probability for accepting it

P̄exp(a ≥ 0) =

∫ ∞
a

dx pexp(x) pacc(x) =
√

2π α e−α
2/2+αa I(a) (97)

In this expression α is still a free parameter, which we choose to maximize the average accep-
tance. Solving the variational equation we obtain

α =
a+
√
a2 + 4

2
. (98)

We note that for a ≥ 0, P̄exp(a) has the same form as (91), differing, however, by a prefactor
γexp =

√
2π α e−α

2/2+αa which grows faster than the complementary error function decays.
Therefore, as can be seen from Fig. 11, for a > 0 this method is dramatically more efficient
than sampling from an unbounded uniform distribution. Thus for a < 0 we choose the method
with γn = 1, while for a ≥ 0 we choose γexp, obtaining an average acceptance probability
P̄γ(a) = γ(a) I(a).
x ≥ b: When we need to sample a normal variable constrained from above we can use the
same methods as above, sampling −x ≥ −b, with average acceptance probability P̄γ(−b).
a ≤ x ≤ b: When the random variable is constrained to a finite interval, an obvious approach
is to first sample an x ∈ [a,∞) and to accept it if x ≤ b. The average acceptance probability is
then P̄γ(a) for proposing an x ∈ [a,∞), times

∫ b
a
dx pn(x)/

∫∞
a
dx pn(x) for accepting it, i.e.,

P̄γ(a, b) = γ
(
I(a)− I(b)

)
. (99)
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For large intervals this will be an efficient approach, while for narrow intervals the acceptance
will go to zero. In this case it becomes more efficient to propose x uniformly distributed on
[a, b] and accept them with probability

pacc = e−(x2−m2)/2 , (100)

wherem is the coordinate at which the normal distribution assumes its maximum value on [a, b],
ensuring that pacc ≤ 1. When 0 ∈ [a, b] then m = 0, otherwise m = min(|a|, |b|). The average
acceptance probability for this approach is

P̄u(a, b) =

∫ b

a

dx
1

b− a
e−(x2−m2)/2 =

em
2/2

b− a
√

2π
(
I(a)− I(b)

)
. (101)

Again, (101) differs from (99) only by its prefactor γu, which increases as the width of the
interval b− a becomes smaller.
For a given interval [a, b] we then choose the most efficient method:

• a < 0 < b: Since a < 0 we have to choose between normal sampling with γn = 1 and
uniform sampling with γu =

√
2π/(b − a). For γn = γu both methods have the same

average acceptance probability. Solving this gives us the critical width w0 =
√

2π. For
intervals b−a < w0 we thus use uniform sampling with γu, otherwise γn. The worst case
is P̄γ=1(0, w0) = I(0)− I(w0) = erf(

√
π)/2 ≈ 0.49.

• 0 < a < b: Since a > 0 we choose between exponential sampling with γexp =√
2π α e−α

2/2+αa and γu =
√

2π ea
2/2/(b − a). Solving γexp = γu gives the critical

width w>(a) = e(α−a)2/2/α. For intervals b − a < w>(a) we use uniform sampling
with γu, otherwise γexp. The worst case is P̄γ(0, w>(0)) = γexp

(
I(0) − I(

√
e)
)

=√
π/2e erf(

√
e/2) ≈ 0.68.

• a < b < 0: We sample −x in the interval from −b to −a as described above.

Overall, we can thus sample from a truncated normal distribution with an average acceptance
larger than erf(

√
π)/2 ≈ 0.49.

The generalization to sampling from a Gaussian distribution exp(−(x−µ)2/2σ2)/
√

2πσ of
variance σ centered at µ restricted to x ∈ [a, b] is then straightforward: use x=σx̃+µ, where x̃ is
sampled, as described above, from a normal distribution (90) on the interval [(a−µ)/σ, (b−µ)/σ].
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[4] A. Erdélyi (ed.): Higher Transcendental Functions (McGraw-Hill, New York, 1953)

[5] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet,
Phys. Rev. B 84, 075145 (2011)

[6] E. Koch: The Lanczos Method in E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (eds.):
The LDA+DMFT approach to strongly correlated materials
Modeling and Simulation Vol. 1 (Forschungszentrum Jülich, 2011)
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1 Introduction

Correlated materials are at the heart of modern solid state physics. These strongly interacting
many-body quantum systems can display such diverse phenomena as the Mott transition [1],
non-Fermi-liquid and heavy-Fermion behavior [2], and high-temperature superconductivity [3].

At the same time they pose one of most difficult theoretical challenges. The reason is that they
are in the middle of two extremes. In solids with broad energy bands electrons can largely
avoid each other while moving through the crystal. The properties of such materials are suc-
cessfully described in a picture of nearly-independent electrons moving freely in an effective
potential generated by all other electrons as described by Bloch waves. In such a momentum-
space description the interaction is a perturbation. The framework of density-functional theory
(DFT) provides a very successful and often even quantitative description of the microscopic
properties of such materials, including simple metals like aluminum, or semiconductors and
band-insulating materials. It may even be used to design materials with desired properties.

When electrons cannot avoid each other, the process where an electron hops to a neighboring
occupied orbital may be energetically so unfavorable that electrons will remain localized. Mott
showed that this scenario can be understood in a real-space picture. These Mott insulators are
erroneously predicted to be metallic by band theories, with a classic example being NiO.

Strongly correlated materials are in the middle of these two regimes and exhibit a delicate bal-
ance between the kinetic and potential energy. Their name emphasizes the fact that the motion
of electrons in these materials is correlated in the true sense of the word: they do not move
independently. Neither a real-space nor a momentum-space description appears appropriate – a
situation which may be as hard to grasp as particle-wave duality.

Materials that fall under this category often have open d- or f -electron shells. Examples are the
transition metals V, Fe, Co, Ni, Cu, and their oxides. For example, CuO2 planes determine the
properties of the high-temperature superconductors. Small microscopic changes can have dras-
tic macroscopic effects. These materials are typically very sensitive to externally controllable
parameters, such as pressure and doping, and are therefore promising candidates for applica-
tions. The development of reliable theoretical tools to calculate their material specific properties
therefore remains one of the primary concerns of modern theoretical condensed matter physics.

An exact solution of the many-particle problem is clearly out of reach and we have to resort to
approximate methods. Naturally, certain limiting cases are the most accessible. In the opposite
regimes of weak and strong interaction, diagrammatic perturbation theory allows us to make
quantitative predictions. Importantly, it also provides us with the intuition for the underlying
microscopic processes. We will discuss the foundations of diagrammatic perturbation theory
below. In correlated materials, however, where the kinetic- is of the order of the potential energy,
such a perturbative description necessarily breaks down. In this regime dynamical mean-field
theory (DMFT) has provided important insights [4]. It becomes exact in both the localized
and noninteracting itinerant regimes and in the limit of infinite dimensions or coordination
number [5].
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Correlated materials typically are not close to any of these limits. While DMFT describes the
important strong local temporal correlations, as a mean-field theory it completely neglects spa-
tial correlations. This shortcoming is well illustrated by the fact that DMFT correctly predicts
the temperature dependence of the local moment in the transition metals iron and nickel, but
overestimates their Curie temperatures. Phenomena in which the electrons are qualitatively
affected by the presence of extended collective excitations cannot be described within DMFT.
Because of the complexity of the problem, there is not a single method which gives ’the best’ an-
swer. Instead, we are aiming to study the problem using different approximate methods. These
will have inherent limitations and exhibit limited parameter ranges of applicability. We may
be even unaware of the precise nature of these limitations. It may therefore not be possible to
distinguish true physics from artifacts of the method, so that we risk drawing the wrong conclu-
sions. The approach of the theoretical physicist will therefore be to apply different methods to
obtain complementary viewpoints and, step by step, draw a complete picture of the underlying
physics.
In this lecture, we will concentrate on the so-called diagrammatic extensions of DMFT [6].
These form a relatively recent class of methods which come in different flavors. They never-
theless all build on the common idea to formulate a diagrammatic perturbation theory around
DMFT as the starting point, with the main goal to describe the effect of spatial correlations.
In the following we first describe the Hubbard model, which is believed to capture essential
properties of correlated materials, and briefly introduce the Green function as a probe for its
properties. We then formulate the basic equations of dynamical mean-field theory and sketch
the mathematical foundations of diagrammatic perturbation theory. After a brief introduction
to diagrammatic extensions of DMFT we develop a diagrammatic perturbation theory for cor-
related systems by the example of dual fermions. We conclude this chapter with the discussion
of some illustrative results and an outlook on further developments.

1.1 Hubbard model

The Hubbard model describes electrons hopping from site to site on a lattice as depicted in
Fig. 1, with a probability that is determined by the hopping-integrals t. Whenever two electrons
occupy the same site, their mutual repulsion incurs an energy penalty U . Because of its simplic-
ity it is probably the most widely studied model in this context. For concreteness we consider
the two-dimensional single-band model whose Hamiltonian is given by

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓. (1)

Here the indices label the sites on the lattice and the first sum in the kinetic term is over all pairs
of sites or bonds.
In the absence of interaction, we can simply diagonalize the kinetic energy term in reciprocal
space:

∑
kσ εk c

†
kσckσ. The second, potential energy term is apparently diagonal in the real-

space occupation number basis. In the opposite regimes of large and small interaction, we
can either view the kinetic or potential energy as a perturbation and formulate a diagrammatic
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Fig. 1: Left: Illustration of the Hubbard model showing lattice sites on which electrons interact
with Hubbard interaction U (red) connected by bonds through the hopping integrals t. Right:
DMFT picture of model showing a collection of decoupled sites exerted to an electronic bath,
as indicated by the blue spheres.

perturbation theory. We will however primarily be interested in the case where the interaction
becomes comparable to the bandwidth U ∼ W = 8t, where such a perturbative description
necessarily breaks down.
A complete solution would provide us with the entire spectrum of the Hamiltonian, which would
completely specify the equilibrium thermodynamics of the model and include information even
on many-particle correlations. A much simpler object is the single-particle Green function. The
Matsubara Green function

Gα1α2(τ1 − τ2) = − 1

Z
Tr
(
e−β(Ĥ−µN̂) Tτ cα1

(τ1)c†α2
(τ2)
)
, (2)

where β denotes inverse temperature, completely specifies the thermal single-particle prop-
erties. It can be viewed as a probe of the system: A particle inserted into the system in a
certain state α2 ≡ {iσ} at time τ2 evolves until we remove it in state α1 at a later time τ1.
The Green function is the thermal average of this process and tells us how electrons propagate
in the system. For this reason, it is sometimes called a propagator. The bosonic (fermionic)
Matsubara Green function is a 2β-(anti-)periodic function of imaginary time. As a result, its
Fourier representation is a function of odd νn = (2n+ 1)π/β (fermionic) or even νn = 2mπ/β

(bosonic) discrete Matsubara frequencies. This simplifies calculations significantly. The re-
tarded Green function is obtained from the Matsubara Green function through analytical con-
tinuation ωn → ω + i0+, which allows to compute the density of states. The latter contains a
wealth of information and, for example, tells us whether a system is metallic or insulating.

1.2 Dynamical mean-field theory

DMFT has been an important step towards the understanding of correlated electrons in solids.
One of the challenges is to reconcile two vastly different energy scales to describe the redistribu-
tion of spectral weight through the interaction. DMFT for the first time allowed a simultaneous
description of both the long-lived coherent quasiparticles and the short-lived incoherent high-
energy excitations. The former give rise to the ’quasiparticle peak’ and the latter lead to broad
Hubbard bands in the electronic spectrum.
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DMFT fully accounts for the local, time-dependent quantum fluctuations. We can understand
this by viewing it as the quantum analog of classical mean-field theories, which provides an
intuitive understanding of the approach. The construction of an approximation, in analogy to
the classical case, results in a nontrivial mean-field theory. The mean-field can no longer be
represented by a single number, but rather by a time or frequency-dependent field, hence the
name ’dynamical’.
The electronic self-energy may be expressed as a functional of the Green function. The central
approximation of DMFT is to assume that this functional is purely local and a functional of
the local Green function only: Σ = Σ[Gloc]. Under this assumption, we may write the DMFT
lattice Green function in the form

GDMFT
kν =

1

ıν + µ− εk −Σ[Gloc]
. (3)

The right-hand side is a functional of the local Green function Gloc = 1
N

∑
kG

DMFT
kν . This

is a complicated self-consistent problem. The unknown local Green function determines the
self-energy, which in turn fixes the local Green function.
Even if we knew Gloc, we still had to sum all diagrams for the local self-energy. As shown by
Georges and Kotliar [7], we can introduce a local effective quantum impurity model as a tool to
accomplish this. Often an Anderson impurity model is used whose action reads

Simp[c
∗, c] = −

∑
νσ

c∗νσ
(
ıν + µ−∆ν

)
cνσ+ U

∑
ω

nω↑n−ω↓ ,

where ν are fermionic and ω are bosonic Matsubara frequencies. Here we have introduced
the hybridization function ∆ν , which plays the role of a frequency-dependent Weiss field. In
this description the lattice no longer enters explicitly. Instead we can picture the situation as a
given lattice site immersed in a structureless ’bath’ of conduction electrons. We can imagine
that such a description becomes more and more accurate when the coordination number grows
large. Electrons can hop from the bath onto the impurity and back. Because of the mutual
repulsion when two electrons occupy the same site, the dynamics will strongly depend on the
time spent on the impurity. The Weiss field and Green function will therefore still have a non-
trivial energy dependence. As we can see in the illustration in Fig. 1, however, different lattice
sites are completely decoupled in the DMFT description. The motion of electrons in different
parts of the lattice is no longer correlated. We say that DMFT neglects spatial correlations.
By solving the impurity model for a given hybridization we obtain the impurity self-energy and
Green function, which are related by a form of Dyson’s equation,

gν =
1

ıν + µ−∆ν −Σ[g]
. (4)

We could attempt to do this perturbatively. As for the lattice, this will, however, not work in
the strongly correlated regime we are interested in. Since the problem is local, it is nevertheless
simpler than that of the lattice. Fortunately, sophisticated and accurate methods exist to solve
it efficiently and in particular to compute the impurity Green function gν := −〈cνσc∗νσ〉imp.
Notable examples are continuous-time quantum Monte Carlo methods [8].
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The hybridization function encodes the dynamics generated by all electrons on average and is
a priori unknown. Instead of finding the local lattice Green function, the problem has been
reduced to determining the hybridization self-consistently.
If we identify the impurity self-energy with that of the lattice, the hybridization will determine
the right-hand side of (3). If we additionally identify the local lattice Green function with
the impurity Green function, we obtain the following equation that implicitly determines the
hybridization function

gν =
1

N

∑
k

1

g−1
ν +∆ν − εk

. (5)

This equation is the only place where the structure of the lattice enters in DMFT, namely in the
form of the dispersion εk.
In practice, we obtain the self-consistent solution by repeatedly solving the impurity model.
Starting from an initial guess for the hybridization, we can iteratively update it based on the
solution of the impurity model according to

∆ν ← ∆ν + ξ
(
g−1
ν − (Gloc

ν )−1
)
, (6)

where Gloc is calculated from (3) using the impurity self-energy. A solution is found once the
impurity Green function equals the local lattice Green function: gν = Gloc

ν . ξ ∈ ]0, 1[ is a
parameter to control the convergence speed. The loop typically converges in a few iterations.

2 Diagrammatic perturbation theory

Perturbation theory can be applied when the problem at hand is close, in some sense, to a
solvable reference problem. This implies that it can be described in terms of a small perturbation
of this reference. Often the reference problem is the non-interacting one and the perturbation
series is a series expansion in powers of the interaction. Wick’s theorem allows to express the
result in terms of the interaction and products of the known non-interacting Green function.
If the coupling, U in case of the Hubbard model, is small, the series will converge to the exact
result within any desired accuracy after a finite number of terms. If this is not the case, one may
attempt to obtain an approximation by summing an infinite partial series of dominant terms.
The expressions in the expansion become, however, increasingly difficult to handle with in-
creasing order as we will see in a few examples below. In addition the number of terms grows
factorially. It helps to visualize the expressions in terms of Feynman diagrams, where one as-
signs a symbol to the interaction and depicts non-interacting Green functions as lines. This
yields a diagrammatic perturbation theory. The usefulness of diagrammatic perturbation theory
hinges on the following simplifications.
The linked cluster theorem significantly simplifies the problem, because it allows one to con-
centrate on connected diagrams. Another simplification is obtained by gathering diagrams with
the same structure which yield the same contribution. Finally, one can formulate a set of rules
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which allows one to obtain the analytical expression corresponding to any diagram just from its
structure, without the need to consider the term in the expansion where it came from.
The diagrammatic perturbation theory is often developed in terms of expectation values of time-
ordered second-quantized operators. The theory can equally well be formulated in terms of path
integrals. In case of fermions these are coherent state path integrals. Instead of operators we
integrate over Grassmann variables to capture the fermion statistics. The expressions are for-
mally very similar and it is often straightforward to translate from one description to the other.
The dual fermion approach and the associated perturbation theory are formulated in terms of
coherent state path integrals. We therefore briefly introduce them and formulate the perturba-
tion theory in terms of them. An excellent introduction to coherent states and the coherent state
path integral can be found in [9].

2.1 Coherent state path integrals

For concreteness, we consider systems of fermions. Starting point for the description of the
thermodynamic properties of quantum many-particle systems is the grand canonical partition
function Z = Tr e−β(Ĥ−µN̂), where Ĥ is the Hamiltonian in second quantized form, N̂ is
the operator of the total particle number and the chemical potential µ controls the number of
particles of the grand canonical ensemble.
Let us first recall the properties of coherent states. Coherent states |φ〉 are eigenstates of the
annihilation operator cα with eigenvalue φα: cα |φ〉 = φα |φ〉. For fermions, the eigenvalues
are Grassmann numbers. The most important property of the Grassmann algebra is that its
generators anticommute: φαφβ + φβφα = 0. This implies in particular that φ2

α = 0. It is
straightforward to show that the state

|φ〉 = e−
∑
α φαc

†
α |0〉 =

∏
α

(1− φαc†α) |0〉 (7)

has the desired property. The adjoint of the coherent state is 〈0|∏α(1 + φ∗αcα). The overlap of
two coherent states follows straightforwardly:

〈φ|φ′〉 = 〈0|
∏
α

(1 + φ∗αcα)
∏
α′

(1− φα′c†α′) |0〉 =
∏
α

(1 + φ∗αφα) = e
∑
α φ
∗
αφα . (8)

The matrix element of a normal-ordered operator A[c†α, cα] therefore is given by

〈φ|A[c†α, cα] |φ〉 = 〈φ|φ〉A[φ∗α, φα] = e
∑
α φ
∗
αφαA[φ∗α, φα]. (9)

The following closure relation is essential for the formulation of the fermionic coherent state
path integral: ∫ ∏

α

dφ∗αdφα e
−

∑
α φ
∗
αφα |φ〉 〈φ| = 1. (10)

The coherent states form an over-complete set of states in a generalized Fock space, that is, the
set of linear combinations of states in the Fermion Fock space with coefficients in the Grass-
mann algebra. Any physical Fermion state can be expanded in terms of them.
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Given two states |ψ〉 and |φ〉 in the Fock space, it follows from the anticommutation relations
of Grassmann numbers that 〈ψi|φ〉 〈φ|ψj〉 = 〈−φ|ψj〉 〈ψi|φ〉. For a complete set of states {|n〉}
in the Fock space, the trace of a second quantized operator A can be written

TrA =
∑
n

〈n|A |n〉 =

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα
∑
n

〈n|φ〉 〈φ|A |n〉

=

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ|A

∑
n

|n〉 〈n|φ〉

=

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ|A |φ〉 . (11)

With these prerequisites, the grand canonical partition function can be expressed in the form

Z = Tr e−β(Ĥ−µN̂) =

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ| e−β(Ĥ−µN̂) |φ〉 , (12)

where for fermions, the trace imposes antiperiodic boundary conditions.
We can obtain a coherent state path integral representation of the partition function by viewing
the exponential as an imaginary-time evolution operator describing the evolution of the state
from time zero to β. While its matrix elements cannot be evaluated directly, we can exploit the
fact that the infinitesimal evolution operator can be obtained in normal-ordered form. To this
end, we break the time interval [0, β] intoM time steps of size ε = β/M , such that e−β(Ĥ−µN̂) =

(e−ε(Ĥ−µN̂))M .
The second quantized operator e−ε(Ĥ−µN̂) is in approximate normal-ordered form, up to a cor-
rection of order ε2, e−ε(Ĥ−µN̂) = : e−ε(Ĥ−µN̂) : +O(ε2). Using (9), to evaluate the matrix
elements, we can write the partition function in the limit ε→ 0 in the form

Z =

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−

∑M
k=1

∑
α φ
∗
α,kφα,k

M∏
k=1

〈−φα,k| : e−ε(Ĥ−µN̂) : +O(ε2) |φα,k−1〉

=

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−

∑M
k=1

∑
α(φ∗α,kφα,k−φ

∗
α,kφα,k−1)−ε

∑M
k=1

∑
α(H[φ∗α,k,φα,k−1]−µφ∗α,kφα,k−1)

=

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−S[φ∗α,k,φα,k−1] , (13)

where φα,0=−φα,M because of antiperiodic boundary conditions and we have defined the action

S[φ∗α, φα] = ε

(
M∑
k=1

∑
α

φ∗α,k
φα,k − φα,k−1

ε
− µφ∗α,kφα,k−1 +H[φ∗α,k, φα,k−1]

)
. (14)

In the limit ε→ 0, it is convenient to introduce the notation

φ∗α,k
φα,k − φα,k−1

ε
≡ φ∗α(τ)

∂

∂τ
φα(τ), H[φ∗α,k, φα,k−1] ≡ H[φ∗α(τ), φα(τ)]. (15)
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Splitting the Hamiltonian into a one-body operator and an interaction, H =
∑

α εαφ
∗
αφα +

V [φ∗α(τ), φα(τ)], the path integral can symbolically be written in trajectory notation as

Z =

∫
φα(β)=−φα(0)

D[φ∗α(τ), φα(τ)] e−
∫ β
0 dτ(

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)+V [φ∗α(τ),φα(τ)]) . (16)

Formally, the problem has been reduced to quadrature. We have to integrate over all possible
realizations of paths φα(τ), φ∗α(τ), weighted by the exponential of the action S[φ∗α(τ), φα(τ)].
In general, it amounts to computing high-dimensional integrals, so that Monte Carlo methods
are particularly suitable for this task [9,8]. It must be kept in mind that even though the notation
suggests it, it neither implies continuity nor differentiability of the paths and all quantities are
defined in terms of the discrete expressions (13) and (14).

2.2 Perturbation theory

In the following, we will develop a perturbation theory based on the path integral formulation
of the partition function and the Green function (2),

Gα1α2(τ1 − τ2) = − 1

Z

∫
D[φ∗α(τ), φα(τ)] e−S[φ∗α(τ),φα(τ)]φα1

(τ1)φ∗α2
(τ2). (17)

Given that the fermionic path integral always implies antiperiodic trajectories, we omit the
indication here and in what follows. Furthermore we need not explicitly indicate the time-
ordering, remembering that it is implicit in the construction of the path integral.
We can view Green function as a thermal average over the interacting system, as symbolized by
the following notation: Gα1α2(τ1− τ2) = −

〈
φα1

(τ1)φ∗α1
(τ2)
〉
. We readily obtain a perturbation

expansion of the single-particle Green function in powers of the interaction

Gα1α2(τ1 − τ2) = −Z0

Z

〈
e−

∫ β
0 dτV [φ∗α(τ),φα(τ)]φα1

(τ1)φ∗α2
(τ2)
〉

0
(18)

= −Z0

Z

∞∑
n=0

(−1)n

n!

∫ β

0

dτ ′1 . . . dτ
′
n

〈
V [φ∗α(τ ′1), φα(τ ′1)] . . . V [φ∗α(τ ′n), φα(τ ′n)]φα1

(τα1)φ
∗
α2

(τα1)
〉

0
.

The partition function of the non-interacting system, Z0, is obtained by setting the interacting
V = 0 in (16). It remains to evaluate the non-interacting average over a product of Grassmann
fields arising in above expression. This is accomplished using Wick’s theorem, which allows to
express it in terms of a product of non-interacting Green functions. Wicks’s theorem is usually
formulated in terms of second-quantized operators. In its familiar form it states that the non-
interacting expectation value of a time-ordered product of operators can be written as the sum
over all complete contractions. A contraction of two time-dependent operators is defined as a
symbolic pairing of these operators, which evaluates to their non-interacting expectation value.
In a complete contraction of a set of an even number of fields, each operator is paired with
exactly one other. Having defined thermal expectation values in terms of Grassmann fields, we
can equally well write a contraction in terms of them

φα1
(τ1)φ∗α2

(τ2) :=
〈
φα1

(τ1)φ∗α2
(τ2)
〉

0
= −G0

α1α2
(τ1 − τ2) . (19)
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In terms of Grassmann numbers, Wick’s theorem is based on the following Gaussian integral∫
D[φ∗, φ]φi1φi2 . . . φinφ

∗
jn . . . φ

∗
j2
φ∗j1e

−
∑
ij φ
∗
iMijφj∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

=
∑
σ∈Sn

sgn(σ)M−1
iσ(n),jn

. . .M−1
iσ(1),j1

. (20)

For simplicity we write M−1
ij for the elements of the inverse of M . The left-hand side has the

form of an expectation value over a product of fields. On the right-hand side we have a sum over
the elements of the permutation group Sn, which is the Leibniz formula for the determinant of
the inverse of M .
Before relating this expression to the familiar statement of Wick’s theorem, we prove it by
means of the following generating function

G(J∗, J) :=

∫
D[φ∗, φ] e−

∑
ij φ
∗
iMijφj+

∑
i φ
∗
i Ji+J

∗
i φi∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

= eJ
∗
iM
−1
ij Jj . (21)

The name generating function will become apparent below. Here the sources J∗, J are Grass-
mann numbers and M is a complex matrix with elements Mij . We evaluate the following
derivatives

δ2nG

δJ∗i1 . . . δJ
∗
in
δJjn . . . δJj1

∣∣∣∣
J=J∗=0

= (−1)n
∫
D[φ∗, φ]φi1 . . . φinφ

∗
jn . . . φ

∗
j1
e−

∑
ij φ
∗
iMijφj∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

. (22)

Here we have used that the derivatives anticommute with Grassmann numbers. Applying the
same derivatives to the right-hand side of (21) yields

δ2n

δJ∗i1 . . . δJ
∗
in
δJjn . . . δJj1

(
e
∑
ij J
∗
iMijJj

)∣∣∣∣
J=J∗=0

= (−1)n
δn

δJ∗i1 . . . δJ
∗
in

(∑
kn

J∗knM
−1
kn,jn

)
. . .
(∑

k1

J∗k1M
−1
k1,j1

)(
e
∑
ij J
∗
iMijJj

)∣∣∣∣∣
J=J∗=0

= (−1)n
∑
σ∈Sn

sgn(σ)M−1
iσ(n),jn

. . .M−1
iσ(1),j1

, (23)

which proves the identity (20). It remains to prove the identity for the generating function,
Eq. (21). This is readily accomplished by imposing the linear shift transformation whose Jaco-
bian is unity (summation over repeated indices implied),

φ∗i → φ∗i + J∗jM
−1
ji , φi → φi +M−1

ij Jj , (24)

upon which the exponential on the left-hand side of (21) transforms to

exp
(
− φ∗iMijφj + φ∗iJi + J∗i φi

)
→ exp

(
− φ∗iMijφj + J∗iM

−1
ij Jj

)
. (25)

The term containing the sources J ,J∗ can be taken out of the integral. The numerator is seen to
cancel the denominator, hence proving the identity.
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A first application of Wick’s theorem is the evaluation of the noninteracting Green function. By
inserting the discrete matrix Mij = −(∂τ + εα − µ)−1

ij defined through (14) into Eq. (20) and
replacing φj by φα,k in the matrix elements of the path integral, we obtain

G0
α1α2

(τ1 − τ2) = −
∫
D[φ∗α(τ), φα(τ)] e−

∫ β
0 dτ

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)φα1

(τ1), φ∗α2
(τ2)∫

D[φ∗α(τ), φα(τ)] e−
∫ β
0 dτ

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)

= −(∂τ + εα − µ)−1
α1τ1;α2τ2

= G0
α1

(τ1 − τ2) δα1α2 . (26)

This shows that the non-interacting Green function equals the inverse of the matrix−( ∂
∂τ

+εα−µ)

and allows us to recast the action in the following form

S[φ∗α(τ), φα(τ)] =

β∫
0

dτ

(
−
∑
α

φ∗α(τ)G0
α
−1

(τα1 − τα2)φα(τ) + V [φ∗α(τ), φα(τ)]

)
. (27)

Similarly, withMij = −(∂τ+εα−µ)−1
ij , the left-hand side of Eq. (20) equals the non-interacting

average of fields. The right-hand side evaluates to a sum over products of non-interacting Green
functions, or, by means of Eq. (19), to the sum over all complete contractions. To see this, we
note that the sign of the permutation apparently equals the sign of the permutation that brings
the fields in each contraction next to each other in the desired order.
With Wick’s theorem at hand, we can evaluate the non-interacting expectation values in each
term of the perturbation expansion for the Green function. This allows us to obtain successively
more accurate approximations. The result is expressed in terms of the coupling and the known
non-interacting Green function. As will be shown below, we can depict these elements with
symbols and draw a diagram for each of the resulting expressions to obtain a diagrammatic
perturbation theory.
The right-hand side of Eq. (20) contains a sum over all permutations of indices, so that the
number of terms grows factorially with order. The construction of perturbation expansions in
practice would be hopeless without two major simplifications.
The first simplification is based on the observation that different contractions at a given order
can lead to structurally identical diagrams, which give the same contribution to the overall
result. Instead of enumerating all of them, their multiplicity can be accounted for in terms of
combinatorial factors. Another major simplification is given by the linked-cluster theorem: Any
diagram generated by the perturbation expansion (18) can be decomposed into two parts: one
is a connected part with an incoming and an outgoing line which stems from the contractions
involving φα1(τ1) and φα2(τ2). The second part is a (not necessarily connected) part consisting
of diagrams without external lines contributing to the vacuum amplitude. It is straightforward
to verify that the perturbation expansion of the partition function,

Z

Z0

=
〈
e−

∫ β
0 dτ V [φ∗α(τ),φα(τ)]

〉
0
, (28)

generates all the disconnected vacuum fluctuation graphs that appear in the expansion of the
Green function. The linked-cluster theorem states that the logarithm of the above expectation
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value, or lnZ/Z0, yields the sum over all connected graphs. An important consequence is
that this contribution exactly cancels the factor (Z/Z0)−1 in the expansion of Green function,
Eq. (18). As a consequence, when evaluating the perturbation expansion of G, we only have to
take into account the fully connected diagrams with external lines.

3 Diagrammatic extensions of dynamical mean-field theory

We have seen that diagrammatic perturbation theory is a powerful tool to construct approxi-
mations starting from a solvable reference system. The problem we are facing when dealing
with strongly correlated systems is that neither the non-interacting, nor the localized limit are
appropriate starting points. DMFT, on the other hand, already includes the presumably domi-
nant strong local temporal correlations. It would hence be desirable to include the effects of the
presumably weaker spatial correlations beyond DMFT perturbatively.

It turns out that there are different ways to systematically construct a perturbation expansion
around DMFT. It is crucial, however, that the DMFT reference system is solvable. Here and in
contrast to DMFT solvable means that not only the single-particle Green function, but at least
the two-particle and in principle all many-particle Green functions are assumed to be known.
Fortunately, reasonable approximations can be constructed from the knowledge of the single-
and two-particle Green function only. The need to compute higher-order correlation functions of
an impurity model explains why the first works of this kind appeared only around ten years ago.
To a large extent these developments were driven by the advent of continuous-time quantum
impurity solvers, which allow the efficient and accurate computation of higher-order correlation
functions [8].

The first approaches along these lines were the dynamical vertex approximation (DΓA) [10,11]
and the dual fermion approach [12]. A number of different approaches followed [6]. While
the construction and the justification of necessary approximation differs for the various ap-
proaches, the underlying principle is the same: the propagators and the interaction vertices of
the diagrammatic perturbation theory are obtained from the numerical solution of the impu-
rity model. Non-local processes are described in terms of renormalized propagation between
sites and a local frequency-dependent interaction between particles. Care has to be taken in the
choice of propagators and vertex functions to avoid double counting of contributions that are
already contained in DMFT.

The advantage of such methods is that the diagrammatic expressions are relatively inexpensive
to evaluate numerically, so that it becomes possible to treat truly long-ranged correlations. The
results, however, will be approximate on any scale. On the other hand, the diagrammatic ap-
proach provides intuition about the underlying microscopic origin of the observed effects. We
will discuss some examples in the result section below.
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Fig. 2: Illustration of the dual fermion approach. Spatial correlations neglected in the DMFT
description of Fig. 1 are mediated through dual fermions (green). The dual fermions interact
locally via n-particle interactions.

3.1 Dual fermions

In the following we show how to construct a diagrammatic perturbation theory around DMFT,
based on the idea of dual fermions. We then study the perturbation expansion in detail and
formulate the rules of the diagrammatic perturbation theory.
As in conventional perturbation theory, we separate the problem into a solvable reference system
and a perturbation. The underlying idea is to treat the strong local correlations on the level of the
single-site impurity model and to embrace the presumably weaker coupling between the sites
perturbatively. A diagrammatic extension of DMFT is obtained by setting the hybridization
function equal to its DMFT value.
In the Grassmann path integral formalism, the Hubbard model is described by the action

S[c∗, c] = −
∑
νσ

c∗νσ
(
ıν + µ− εk

)
cνσ + U

∑
ω

nω↑n−ω↓,

We can formally add and subtract an arbitrary hybridization function at each lattice site. The
lattice action can then be expressed in terms of the impurity action as follows

Slatt[c
∗, c] =

∑
i

Simp[c
∗
i , ci]−

∑
kνσ

c∗kνσ
(
∆ν − εk

)
ckνσ . (29)

In this form, the lattice problem can be viewed as a collection of impurity models at each lattice
site, each with their own electronic bath. The sites are spatially coupled by a hybridization- and
dispersion-dependent term. In principle it is possible to develop a perturbation theory around
the impurity model (and around DMFT for a correspondingly chosen hybridization function)
directly from this starting point: We could change the basis to transform the second term to
a sum over sites instead of momenta and expand the path integral Z =

∫
D[c∗, c] exp(−Slatt)

in that second term. The integration over the fields c∗, c could formally be performed and
would give rise to averages of the form

〈
c∗i1cj1 . . . c

∗
incjn

〉
imp

. There is clearly no Wick theorem
in this case, but we could nevertheless compute at least some of these impurity correlation
functions numerically and evaluate the perturbation series. It turns out that the dual fermion
approximation is a clever resummation of diagrams appearing in this approach [13].
To derive it, we first take a somewhat different route. Here we decouple the impurity models
by introducing new fermionic fields f , f ∗, the dual fermions. This is achieved by means of
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a Hubbard-Stratonovich transformation. Formally this transformation is a Gaussian integral
which we can obtain by generalizing (21) using the substitutions

φ∗i → f ∗i , φj → fj, J∗i → c∗jbji, Jj → bijcj, (30)

which yields ∫
D[f ∗, f ] e−

∑
ij f
∗
i Mijfj+

∑
ij f
∗
i bijcj+c

∗
i bijfj∫

D[f ∗, f ] e−
∑
ij f
∗
i Mijfj

= e
∑
ijkl c

∗
i bijM

−1
jk bklcl . (31)

Letting M−1
ij = ∆ν − εk and setting the coupling between the physical and dual fermions to the

local quantity bij = −g−1
ij , we obtain the partition function in the form

Z = Df

∫
D[f ∗, f ] e−

∑
kνσ f

∗
kνσg

−1
νσ (∆νσ−εk)−1g−1

νσ fkνσ

∫
D[c∗, c] e−

∑
i(Simp[c∗i ,ci]+Scf[c

∗
i ,ci;f

∗
i ,fi]).

(32)
Here Df is a determinant which arises from the numerator in Eq. (31) and which will be irrel-
evant for the calculation of expectation values. The term Scf is the local coupling between dual
and physical fermions

Scf[c
∗, c; f ∗, f ] =

∑
νσ

(
f ∗νσ g

−1
νσ cνσ + c∗νσ g

−1
νσ fνσ

)
.

The goal is to arrive at a representation which depends solely on dual variables. We can formally
perform the second integral by expanding the exponential in powers of Scf. We can do this for
each site i separately. For a translationally invariant system, the result will be site-independent∫
D[c∗i , ci]e

−Simp[c∗i ,ci]e−Scf[c
∗
i ,ci;f

∗
i ,fi] =

∞∑
n=0
n even

(−1)n

n!

〈(∑
νσ

(
f ∗νσ g

−1
νσ cνσ + c∗νσ g

−1
νσ fνσ

))n〉
imp

.

Only even orders contribute since the Gaussian integral over an odd number of c and c∗ must
vanish due to particle conservation. Let us exemplify this step for the first non-vanishing term.
We have

1

2

∑
νσ

∑
ν′σ′

〈
f ∗νσ g

−1
νσ cνσc

∗
ν′σ′ g

−1
ν′σ′ fν′σ′ + c∗νσ g

−1
νσ fνσf

∗
ν′σ′ g

−1
ν′σ′ cν′σ′

〉
imp

=
∑
νσ

∑
ν′σ′

g−1
νσ g

−1
ν′σ′ 〈cνσc∗ν′σ′〉imp f

∗
νσfν′σ′ = −

∑
νσ

f ∗νσ g
−1
νσ fνσ, (33)

where in the first line we have used the anticommutation relations to bring the two terms into
the same form. In the second line we have used the definition of the Green function for the
impurity, 〈cνσc∗ν′σ′〉imp = −gνσ δνν′δσσ′ , which is diagonal in spin and frequency.
We can apply the same procedure to the higher order terms. For example, the fourth-order term
involves averages of the form

gσσσ
′σ′

νν′ω :=
〈
cνσc

∗
ν+ω,σcν′+ω,σ′c

∗
ν′σ′

〉
imp
. (34)
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The result of this expansion can be cast into the following form

ln
〈
e−Scf[c

∗
i ,ci;f

∗
i ,fi]
〉

imp =−
∑
νσ

f ∗νσ g
−1
νσ fνσ − Ṽ [f ∗, f ]. (35)

As one might expect from the linked-cluster theorem, the left hand side generates the connected
correlation functions of the impurity model coupled to dual variables. To leading order, the
resulting dual interaction is given by

Ṽ [f ∗, f ] = −1

4

∑
νν′ω σi

γσ1σ2σ3σ4νν′ω f ∗νσ1fν+ω,σ2
f ∗ν′+ω,σ3fν′σ4 + . . . , (36)

where γ is the reducible two-particle vertex of the impurity model

γσσσ
′σ′

νν′ω :=
gσσσ

′σ′

νν′ω − β gνσ gν′σ′ δω + β gνσ gν+ωσ δνν′ δσσ′

gνσ gν+ω,σ gν′+ωσ′ gν′σ′
. (37)

The higher-order terms contain the three-particle (six-leg) and higher-order vertices describ-
ing the interaction between a successively larger number of particles. In terms of the original
Hubbard interaction, the vertices correspond to the sum of many high-order processes.
Combining Eqs. (32) and (35), we see that the action in dual variables is given by

S̃[f ∗, f ] = −
∑
kνσ

f ∗kνσ G̃
0−1

kνσ fkνσ + Ṽ [f ∗, f ] (38)

and the dual Green function is identified from the bilinear terms in the same two equations as

G̃0
kνσ =

(
g−1
νσ + (∆νσ − εk)

)−1 − gνσ. (39)

We have reformulated the problem in terms of a Green function and an interaction which can
be computed given the solution of the impurity model. The interaction, however, is rather
complicated and frequency-dependent. So what have we gained? To see this, we first establish
a connection to DMFT by noting that by means of (3), the bare dual Green function can be
written in the form GDMFT

kνσ − gνσ. While the hybridization function is arbitrary by construction,
see Eq. (29), we can fix it through the self-consistency condition

∑
k G̃

0
kνσ = 0. It apparently

corresponds to the DMFT self-consistency condition discussed in Sec. 1.2.
At this point we have used the bare dual Green function and have not taken the dual interaction
into account. DMFT corresponds to the case of non-interacting dual fermions. This is not
surprising, since in the DMFT description sites are decoupled. It means that even the lowest-
order corrections based on the action (38) will already introduce corrections beyond DMFT.
Once diagrams are taken into account, the hybridization function can be fixed using a similar
condition on the interacting dual Green function,

∑
k G̃kνσ = 0. This corresponds to the sum-

mation of an infinite partial series: all diagrams with a local propagator are eliminated from the
expansion. This property is unique to the dual fermion approach and highlights the fact that
the dual Green function is not a physical, but rather an auxiliary quantity. Since we have used
an exact transformation to introduce the associated field, we can nevertheless establish exact
relations between dual and physical quantities. In particular, the physical self-energy is given
in terms of the dual self-energy Σ̃ by

Σkνσ = Σ imp
νσ +

Σ̃kνσ

1 + Σ̃kνσgνσ
. (40)
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3.2 Perturbation theory for the dual propagator

We are now in the position to construct the diagrammatic perturbation theory for the dual prop-
agator and the dual self-energy. To this end, we explicitly expand the path integral in powers
of the dual interaction and apply Wick’s theorem to evaluate the resulting expressions. We will
show a couple of example diagrams to illustrate the procedure. We then describe the particulari-
ties of the dual perturbation theory, namely the determination of combinatorial prefactors of the
diagrams and how to determine the sign of resulting expressions. Finally we arrive at the gen-
eral Feynman rules for evaluating the expression of any diagram appearing in the diagrammatic
perturbation theory.
To have a more condensed notation, we gather frequency-, spin and other possible indices into
a single Greek index. To emphasize that the diagrams describe non-local corrections, we write
the positions explicitly and use Latin indices for them. To further clearly mark external lines
of a diagram, we use the combined index 1 ≡ {i1, α1}. Even though the three-particle vertex
γ(6) is often neglected in actual calculations, we consider it here to illustrate how the theory
generalizes to higher-order vertices.
We start from the definition of the dual propagator

G̃12 := −〈f1f
∗
2 〉 = − 1

Z̃

∫
D[f ∗, f ] f1f

∗
2 e
−S̃[f∗,f ] , (41)

where the dual action is given by

S̃[f ∗, f ] = −
∑
k, αβ

f ∗α G̃
0−1
αβ fβ +

∑
i

Vi[f
∗
i , fi] . (42)

Formally these equations have the same form as those discussed in the introduction of the
diagrammatic perturbation theory. This means in particular that we can make use of Wick’s
theorem and the linked cluster theorem. We can therefore concentrate on connected diagrams.
Before considering the diagrams, let us first derive some explicit expressions. The perturba-
tion series is generated by expanding the exponential appearing under the path integral in the
interaction

e−
∑
iVi[f

∗
i ,fi] = 1−

∑
i

Vi[f
∗
i , fi]+

1

2!

∑
i,j

Vi[f
∗
i , fi]Vj[f

∗
j, fj]−

1

3!

∑
i,j,k

Vi[f
∗
i , fi]Vj[f

∗
j, fj]Vk[f

∗
k, fk]+

(43)
The zero-order term yields the bare dual Green function

G̃0
12 = − 1

Z̃

∫
D[f ∗, f ] f1f

∗
2 e
−S̃0[f∗,f ], (44)

with S̃0[f ∗, f ] = −∑αβ f
∗
α G̃

0−1
αβ fβ . The next order gives two local contributions for the Green

function G̃12, one from each of the vertices(
−1

4

)∑
i

γ
(4)
iαβγδ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδ e

−S̃0[f∗,f ] , (45)(
1

36

)∑
i

γ
(6)
iαβγδεζ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
iεfiζ e

−S̃0[f∗,f ] . (46)
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The second-order terms (only those involving γ(4) and γ(6)) are

− 1

2!

(
−1

4

)2∑
i,j

γ
(4)
iαβγδ γ

(4)
jκλµν

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjν e

−S̃0[f∗,f ] (47)

− 1

2!

(
−1

4

1

36

)∑
i,j

γ
(4)
iαβγδ γ

(6)
jκλµνεζ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjνf

∗
jεfjζ e

−S̃0[f∗,f ] (48)

− 1

2!

(
−1

4

1

36

)∑
i,j

γ
(6)
iκλµνεζ γ

(4)
jαβγδ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iκfiλf

∗
iµfiνf

∗
iεfiζf

∗
jαfjβf

∗
jγfjδ e

−S̃0[f∗,f ] (49)

− 1

2!

(
1

36

)2∑
i,j

γ
(6)
iαβγδεζ γ

(6)
jκλµνρη

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
iεfiζf

∗
jκfjλf

∗
jµfjνf

∗
jρfjη e

−S̃0[f∗,f ]

(50)

Likewise, the third-order term involving only the two-particle vertex γ(4) is the following:

+
1

3!

(
−1

4

)3∑
i,j,k

γ
(4)
iαβγδγ

(4)
jκλµνγ

(4)
kεζρη

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjνf

∗
kεfkζf

∗
kρfkη e

−S̃0[f∗,f ]

(51)
The terms quickly grow very complicated and it is hard to see the structure in these expressions.
In the following we show how we can represent the relevant contributions in terms of diagrams.

3.3 Self-energy diagrams

In general we can use the Dyson equation to sum infinite partial series of diagrams. We therefore
concentrate on one-particle irreducible self-energy diagrams in the following. We obtain these
simply from diagrams for the Green function by omitting the contractions corresponding to the
external lines (those connecting f1 and f ∗2 ). With the exception of diagram a), which we include
for illustration, we omit any diagram with a local closed loop on at least one of its vertices. Their
contribution vanishes because the local part of the dual Green function is taken to be zero via
the self-consistency condition. A contraction in the following is defined as f iαf

∗
jβ = −G̃ij αβ .

We simply write G̃ instead of G̃0 because the expressions are also valid when written in terms
of the interacting Green functions.

•Diagram (a)

α β

δ γ

This diagram is derived from (45). The corresponding pairing or contraction is

+f 1f
∗
2f
∗
iαf iβf

∗
iγfiδ =−f 1f

∗
iαf iδf

∗
iγf iβf

∗
2 = (−1)4 G̃1 iαG̃iβ 2G̃iiδγ . (52)

The combinatorial prefactor of a diagram is the prefactor of the contribution times the number
of pairings that lead to the same (topologically equivalent) diagram. Apparently we obtain
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the same diagram if we exchange the ’incoming’ points of the vertex (marked by open circles
in the figure) or the outgoing ones. This yields 4 pairings which result in the same diagram,
which cancels the prefactor 1/4 of the vertex. The corresponding correction to the self-energy
is thus Σ(a)

ii αβ = −γ(4)
iαβγδ G̃iiδγ .

•Diagram (b)

α β

δ γ

µ ν

λ κ

This diagram yields the first non-local correction. The relevant term in the perturbation ex-
pansion is (47). The particular pairing corresponding to this diagram is:

+f 1f
∗
2f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµfjν = −f 1f

∗
iαf iβf

∗
jµf jλf

∗
iγf iδf

∗
jκf jνf

∗
2

= (−1)6 G̃1 iα G̃ijβµ G̃jiλγ G̃ijδκ G̃iν 2 . (53)

There are 16 different pairings that correspond to the same diagram. We can count them as
follows: Draw two squares corresponding to the two vertices. There are four possibilities
to connect an incoming line (two on each vertex). After attaching the incoming line to say,
α, there are two possibilities to attach the outgoing line, since it must be connected to the
other vertex to yield the desired diagram. Connect this line to ν. Now there are two more
possibilities to draw a directed line connecting the two vertices: A line going from the left to
the right vertex can only be connected to one point on the left vertex, but to two on the right
one. After this line is connected, say from γ to λ, there is only one possibility to connect the
remaining two lines. The number of equivalent pairings is thus 4 · 2 · 2 = 16. The correction
to the self-energy is hence given by

Σ
(b)
ij αν = −1

2
γ

(4)
iαβγδ γ

(4)
jκλµν G̃ijβµ G̃jiλγ G̃ijδκ . (54)

•Diagram (c)

α

ζ
ε

β

γ
δ

ν µ

κ λ

This diagram appears in the two terms (48) and (49), which differ in the order of vertices. The
corresponding pairing is

f 1f
∗
2f
∗
iαf iβf

∗
iγf iδf

∗
iεf iζf

∗
jκf jλf

∗
jµfjν = +f 1f

∗
iαf jλf

∗
iγf iδf

∗
jκf jνf

∗
iεf iζf

∗
jµf iβf

∗
2

= (−1)6G̃1 iαG̃jiλγG̃ijδκG̃jiνεG̃ijζµG̃iβ 2 . (55)
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Counting the number of equivalent pairings as before yields 36. The self-energy correction
therefore reads

Σ
(c)
ii αβ =

(
1

4

)∑
j

γ
(6)
iαβγδεζ γ

(4)
jκλµν G̃jiλγ G̃ijδκ G̃jiνε G̃ijζµ . (56)

•Diagram (d)

α δ µ η

ζ ε λ κ

β γ ν ρ

This diagram stems from (50). It corresponds to the pairing

f1f
∗
iαf iβf

∗
iγf iδf

∗
iεf iζf

∗
jκf jλf

∗
jµf jνf

∗
jρf jηf

∗
2 =f1f

∗
iαf iβf

∗
jρf jνf

∗
iγf iδf

∗
jµf jλf

∗
iεf iζf

∗
jκf jηf

∗
2

=(−1)7G̃1 iαG̃ijβρG̃jiνγG̃ijδµG̃jiλεG̃ijζκG̃jη 2.

(57)

Here the number of equivalent pairings already becomes quite large: 216. The prefactor is
hence given by (1/2)(1/36)2 × 216 = 1/12. The self-energy correction reads

Σ
(d)
ij αη =

(
1

12

)
γ

(6)
iαβγδεζ γ

(6)
jκλµνρη G̃ijβρ G̃jiνγ G̃ijδµ G̃jiλε G̃ijζκ . (58)

•Diagram (e)

α β

δ γ

κ λ

ν µ

ρ η

ζ ε

The diagram stems from (51). The corresponding pairing is

f1f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµf jνf

∗
kεfkζf

∗
kρfkηf

∗
2 =−f1f

∗
iαf iβf

∗
jκf jνf

∗
iγf iδf

∗
kεf jλf

∗
kρfkζf

∗
jµfkηf

∗
2

=(−1)8G̃1α G̃ijβκ G̃jiνγ G̃ikδε G̃jkλρ G̃kjζµ G̃η2

(59)

and the number of equivalent pairings is: 384. This gives the self-energy correction

Σ
(e)
ik αη = (−1)

∑
j

γ
(4)
iαβγδ γ

(4)
jκλµν γ

(4)
kεζρη G̃ijβκ G̃jiνγ G̃ikδε G̃jkλρ G̃kjζµ . (60)
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•Diagram (f)

α β

δ γ

κ λ

ν µ

ρ η

ζ ε

The diagram stems from the same term as diagram (e). The following pairing:

f1f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµf jνf

∗
kεfkζf

∗
kρfkηf

∗
2 =−f1f

∗
iαf iβf

∗
jκfkζf

∗
iγf iδf

∗
jµf jλf

∗
kρf jνf

∗
kεfkηf

∗
2

=(−1)8G̃1 iαG̃ijβκG̃kiζγG̃ijδµG̃jkλρG̃jkνεG̃kη 2 ,

(61)

however, leads to a topologically inequivalent diagram, as seen in the figure. The number of
equivalent pairings is also different from diagram (e) and equal to 96. The resulting self-energy
correction reads

Σ
(f)
ik αη =

(
−1

4

)∑
j

γ
(4)
iαβγδ γ

(4)
jκλµν γ

(4)
kεζρη G̃ijβκ G̃kiζγ G̃ijδµ G̃jkλρ G̃jkνε . (62)

We can deform this diagram as shown below by drawing the vertex in a different way. We see
that we have two parallel arrows connecting neighboring vertices. This diagram therefore de-
scribes renormalization of the self-energy by scattering of particle-particle pairs. Diagram (e)
by contrast describes renormalization through particle-hole scattering.

α β

γ δ

κ λ

µ ν

ρ η

ε ζ

3.3.1 Determination of combinatorial prefactors

As we have seen, the determination of the combinatorial prefactors by counting the number
of equivalent pairings becomes cumbersome already for diagrams at moderate orders of the
perturbation theory. It is therefore desirable to have general rules to obtain these prefactors
simply by looking at the structure of a diagram. Fortunately we can derive such rules by the
following analysis:
First consider diagrams which contain no equivalent lines. Equivalent lines are equally directed
lines connecting to the same or same two vertices. This is the case for diagrams (a) and (e).
The prefactor of such a diagram is unity at any order of the perturbation theory. In order to
see this, recall that the prefactor of each vertex is 1/[(n/2)!]2, where n is the number of edges.
This applies to higher-order vertices as well. It is exactly the number of possibilities to permute
equivalent endpoints of each vertex among themselves. For example, the three-particle vertex
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has 3 incoming endpoints, and there are 3! permutations of them. We have the same number
for the outgoing ones, which yields (3!)2 permutations.
An additional factor 1/m! arises from the expansion of the exponential, wherem is the perturba-
tion order. Attaching a label to each vertex of one sort (e.g. two-particle vertices) to make them
distinguishable, one sees that all m! permutations appear in a complete contraction. If vertices
of different sorts are present in a diagram, the factor corresponding to the permutation of these
vertices among themselves explicitly appears in the expansion, for example the 2! terms (48)
and (49) contributing to diagram (c). Hence a diagram corresponds to the sum of 1/[(n/2)!]2m!

contributions with the same value, so that the prefactor exactly cancels.
This only holds if all ways of attaching the lines or permuting the vertices yield a different,
distinguishable diagram. If for example two vertices are connected by k equivalent lines, this
reduces the number of distinguishable diagrams (pairings) by the number of permutations of
these lines, since a permutation yields the identical, distinguishable diagram. Hence the prefac-
tor is cancelled only up to a factor 1/k! for each set of k equivalent lines connecting the same
two vertices. For example, there are two equivalent lines going from left to right and three
parallel lines from right to left in diagram (d). Hence the prefactor is 1/2! · 1/3! = 1/12. Dia-
gram (f) has two sets of two equivalent lines, while diagram (e) does not. This yields a prefactor
of (1/2!)2 = 1/4 for diagram (f) instead of unity for diagram (e).
For vacuum fluctuation diagrams, that is, those with no external lines and no unpaired endpoints,
additional symmetry factors arise. An example is the generic n-th order ring diagram shown
below. In this diagram, 2n cyclic permutations of the sequences (1, 2, . . . n) and (n, . . . , 2, 1)

correspond to the same distinguishable diagram. Hence the symmetry factor of this diagram is
1/(2n). The symmetry factor is obviously unity for self-energy diagrams. The diagrammatic
rules for the dual propagator are similar to those for Hugenholtz diagrams [14].

3.3.2 Determination of the sign

Finally we need rules to determine the sign of a given diagram. For the case where the dual
potential is truncated after the two-particle interaction term, they can be obtained as follows:
A priori, i.e., regardless of the particular pairing, the contribution to a diagram for Green func-
tion or the self-energy has positive sign. A sign of (−1)n, where n is the order or the number of
vertices, arises from the expansion of the exponential. This sign cancels at any order due to the
negative prefactor of−1/4 of each vertex. In each contribution, the Grassmann numbers appear
as −ff ∗f ∗f . . . f ∗f , where the sign is due to the definition of Green function, G̃ = −〈ff ∗〉.
Reversing the order of pairs to form a complete contraction and recalling that a contraction of
two Grassmann numbers is defined as ff ∗ = −G̃, one sees that a diagram has positive sign. An
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overall sign of (−1)nL of a diagram arises due to nL closed fermion loops, as in standard per-
turbation theory. It is, however, not obvious how to count the loops for a given diagram in the
present antisymmetrized technique, where the interaction is fully antisymmetric with respect
to permutation of its endpoints. This can be resolved by comparing with the unsymmetrized
technique, where the interaction has the form Uαβγδ f

∗
αfβf

∗
γfδ = U δαβ δγδ f

∗
αfβf

∗
γfδ, which can

be represented by a wiggly line as in

(63)

Since the order of Grassmann variables is the same for the interaction γαβγδf ∗αfβf
∗
γfδ, the sign

of a diagram is obtained by replacing the square by a wiggly line as in

α β

δ γ

(64)

and counting the number of closed loops (a single loop in this example). The relative orientation
of the line and the square must be kept fixed, e.g., both the line and the square in (64) have been
rotated counterclockwise by π/2 with respect to (63).

3.4 Dual perturbation theory in momentum space

With the above prerequisites, we are now in the position to formulate the dual perturbation
theory in momentum space. The rules to evaluate the expression for a given diagram are:

• draw all topologically distinct connected diagrams involving any n-body interaction γ(2n)

depicted by regular polygons with 2n edges or endpoints, whereof n are outgoing (in-
coming) endpoints, where a directed line originates (terminates)

• connect the vertices with directed lines, compliant with ingoing and outgoing endpoints

• with each line associate a dual Green function G̃kν

• assign a frequency, momentum, orbital and spin label to each endpoint

• sum / integrate over all internal variables taking into account energy-, momentum-, and
spin-conservation at each vertex

• for each tuple of n equivalent lines, associate a factor 1/n!

• multiply the expression by (T/N)mS−1 × s, where m counts independent frequency /
momentum summations and S and s are the symmetry factor and sign described above.
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4 Numerical results

In the following, we describe two important diagrammatic approximations to the dual self-
energy and show results to illustrate their physical content.

4.1 Second-order approximation

We start with the second-order approximation given by diagram (b). We refer to it as DF(2).
Applying the above rules of the perturbation theory, we obtain the following expression

Σ̃kνσ =− 1

2

T 2

N2

∑
k′q

∑
ν′ω

∑
σ′

γσσσ
′σ′

νν′ω G̃k+qν+ωσ G̃k′+qν′+ωσ′ G̃k′ν′σ′ γ
σ′σ′σσ
ν′νω

− 1

2

T 2

N2

∑
k′q

∑
ν′ω

γσσ̄σ̄ σνν′ω G̃k+qν+ωσ̄ G̃k′+qν′+ωσ̄ G̃k′ν′σ γ
σσ̄σ̄σ
ν′νω . (65)

Here we have left out the first-order contribution. Similarly to DMFT, we repeatedly solve the
impurity model. Contrary to DMFT the hybridization is updated to make the local part of the
interacting (instead of non-interacting) dual Green function and the first-order diagram zero.
The hybridization is therefore different from DMFT. In addition, we evaluate the self-energy in
each iteration and renormalize the Green function self-consistently using Dyson’s equation.
Fig. 3 shows results for the spectral function obtained in DF(2) and DMFT just above the critical
interaction at which the model becomes insulating, which is Uc = 9.35t in DMFT, while it is
significantly reduced by spatial correlations to 6.64t in DF(2). The DF(2) value agrees much
better with the cellular DMFT value of Uc = 6.05t, which takes nearest-neighbor correlations
into account [15]. For better comparability the energy axis has been scaled by Uc. We ob-
serve a significantly richer structure in the DF(2) spectral function. While most spectral weight
follows the non-interacting dispersion (red line), we observe relatively broad ’shadow bands’
marked by arrows roughly following the dispersion shifted by the antiferromagnetic nesting vec-
tor q = (π, π) (blue line). These bands originate from short-range dynamical antiferromagnetic
correlations included through the self-energy correction. While the solution is paramagnetic,
spins on neighboring sites favor to align antiferromagnetically on short time scales.

-1 -0.5  0  0.5  1 -1 -0.5  0  0.5  1

PSfrag replacements

ω/Ucω/Uc

A(k, ω)A(k, ω)

Γ

Γ

Γ

Γ

XX

MM

DF(2) DMFT

Fig. 3: Momentum resolved spectral function in DF(2) and DMFT along high-symmetry lines in
the Brillouin zone in the paramagnetic insulator. The DF(2) spectral function exhibits shadow
bands due to short-range antiferromagnetic correlations.
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4.2 Ladder approximation

A more sophisticated approximation is the so-called ladder dual fermion approximation (LDFA)

ΣLDFA = − − 1

2
− −· · · (66)

The diagrams are given with with corresponding signs and prefactors. All higher-order terms
in the expansion have a prefactor of unity. The diagrams look like ladders, with an additional
Green function connecting the left and rightmost vertices to close the diagram. Here the rules
of the diagrammatic perturbation theory are crucial, because they allow us to derive expressions
for every diagram in this infinite partial series without actually carrying out the expansion. To
sum the infinite series in a practical way, we take a detour and first sum all the ladder diagrams
without the closing Green function (see Fig. 4). Applying the rules of perturbation theory and
taking into account all possible spin configurations, we can obtain the following Bethe-Salpeter
equation

Γ̃ σσσ′σ′

qνν′ω = γσσσ
′σ′

νν′ω − T

N

∑
k′′ν′′σ′′

γσσσ
′′σ′′

νν′′ω G̃k′′+qν′′+ωG̃k′′ν′′Γ̃
σ′′σ′′σ′σ′

qν′′ν′ω , (67)

Γ̃ σσ̄σ̄σ
qνν′ω = γσσ̄σ̄σνν′ω −

T

N

∑
k′′ν′′

γσσ̄σ̄σνν′′ω G̃k′′+qν′′+ωG̃k′′ν′′Γ̃
σσ̄σ̄σ
qν′′ν′ω. (68)

Here we have omitted spin labels on the Green functions to emphasize that we consider the
paramagnetic state. The negative sign arises because we have a closed loop in the diagram.
It is easy to see that by repeatedly inserting the left-hand side into the right, we successively
generate the sum over all ladder diagrams. This is illustrated in the left of Fig. 4.
Spin seems to play a particular role here. We have two equations which differ only in the spin
labels. The first equation (67) actually corresponds to two coupled equations, one for each of
the signs of σ = ±1/2. Apparently it mixes different spin components of the vertex (there is a
sum over spins), while the second does not. To understand this, we observe that each vertex γ
has an incoming and outgoing line on the left, as well as on the right. If we interpret an arrow
pointing to the right as a propagating particle, the arrow to the left is a propagating hole. When
we read the diagram from left to right, γ hence describes scattering of particle-hole pairs (the
same is true for processes from top to bottom). γσσσ′σ′νν′ω hence describes a particle with spin σ

ehΓ ehΓ − ...

− ...

γβ

α δ

= γ

δα

β γ

+ γ

α

β κ

λ

γ

δµ

ν

γγ

ε ζ

ηθ

− γ

α

β γ

δ

κ

λ µ

ν

γ−= γ γ

α

β γ

δδα

β γ κ

λ µ

ν

+− ehΓ

ehΓ

+= γ γ + +

γ

γ

+ +

+ ...

+ ...

= γ γ γ

γ

Fig. 4: Left: Bethe-Salpeter equation in the horizontal electron-hole channel and the first terms
in the infinite series it generates. Right: Vertical channel. Diagrams obtained when the vertex
γ is replaced by the Hubbard interaction U (depicted by a wiggly line) are also indicated.
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and a hole with spin σ̄ = −σ entering from the left which scatter into a particle with spin σ′ and
a hole with spin −σ′. The energy of the pair is ω and is conserved in the scattering process. So
is the z-component of the spin: σ−σ = σ′−σ′ = 0. However the total spin is not. By forming

the linear combinations γd(m)
νν′ω = γ↑↑↑↑νν′ω

+

(−) γ↑↑↓↓νν′ω, the two equations decouple. We may say the
scattering processes occur in different ’channels’ which each correspond to a definite value of
the total spin S of the particle hole pair. The plus sign corresponds to the density channel, which
can be made plausible by forming the expectation value 〈nσn↑〉 + 〈nσn↓〉 = 〈nσn〉, while the
minus signs relates to the spin channel, as can be seen from 〈nσn↑〉 − 〈nσn↓〉 = 〈nσSz〉. The
latter therefore corresponds to a total spin of S = 1, while the former has S = 0. With the same
reasoning as above we see that the second equation (68) describes scattering of particle hole
pairs with projections Sz = σ + σ = ±1, so that S = 1. We have found all spin states of the
particle hole pair: S = 0, Sz = 0 and S = 1, Sz = 0,±1. In the paramagnetic case, the results
cannot depend on the spin projection and we have found the useful identity γ↑↑↑↑νν′ω−γ↑↑↓↓νν′ω = γ↑↓↓↑νν′ω.
We have just performed a spin-diagonalization, after which the equations can be written in the
form

Γ̃α
qνν′ω = γανν′ω −

T

N

∑
k′′ν′′

γανν′′ωG̃k′′+qν′′+ωG̃k′′ν′′Γ̃
α
qν′′ν′ω, (69)

where α = d(m) denotes the density (S = 0) or spin (S = 1) channel. The physical content of
this equation is the repeated scattering of particle-hole pairs which describes collective charge or
spin excitations. The self-energy in the ladder approximation describes effects due to scattering
of electrons and these bosonic excitations.
We can solve this equation simply by matrix inversion when viewing the convolution of Green
functions as a matrix in ν and ν ′

[Γ̃α
qω]−1

νν′ = [γαω ]−1
νν′ + (T/N)

∑
k

G̃k+qν+ωG̃kνδνν′ . (70)

We can do this independently for fixed q, ω and S, which are precisely the quantum numbers of
the particle-hole pair and which are conserved in scattering processes.
From the left part of Fig. 4 it would seem that we can obtain the self-energy by simply adding
a closing line on the vertex Γ̃ eh. However we observe a problem here: the second-order contri-
bution would miss the factor 1/2 expected from the diagrammatic rules.
A more systematic way to obtain the ladder self-energy is the Schwinger-Dyson equation (SDE)

ΣLDFA = − − 1

2
γ Γ (71)

It connects the self-energy to the exact two-particle vertex. Here we construct an approximation
to the vertex via the Bethe-Salpeter equations. However, approximating it as Γ̃ ≈ Γ̃ eh with the
horizontal series shown in the left of Fig. 4, we would miss the entire series of vertical diagrams
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shown on the right. If the interaction were of Hubbard type, it would be obvious from the
figure that the corresponding diagrams are all valid contributions to the vertex which should be
taken into account. Both series are in fact the diagrams generated by the well-known fluctuation
exchange approximation (FLEX) [16].
On the other hand, if we replace the fully antisymmetric box by wiggly interaction lines,

γ1234 → −U(δ12δ34 − δ14δ32) ,

2 3

1 4

γ = − ,

we see that already the series in the left of Fig. 4 generates all FLEX diagrams. It is hence
plausible that Γ̃ eh and Γ̃ v give the same contribution to the self-energy. We approximate the
vertex as Γ̃ ≈ Γ̃ eh + Γ̃ v− γ, where we subtract γ once because it appears in both series for Γ̃ eh

and Γ̃ v. Inserting Γ̃ into the SDE yields the LDFA self-energy

Σ̃kν =− T 2

N2

∑
k′q

∑
ν′ω

Aα γ
α
νν′ω G̃k+qν+ω G̃k′+qν′+ω G̃k′ν′

(
Γ̃ h,α
ν′νω −

1

2
γαν′νω

)
. (72)

Here Ad = 1, and Am = 3 accounts for the degeneracy (Sz = 0,±1) of the magnetic S = 1

channel. The two equal contributions from Γ̃ eh and Γ̃ v have canceled the prefactor 1/2 of the
second diagram in the SDE, Eq. (71). The double counting correction γ in Γ̃ attains a factor 1/2

and provides the correct prefactor of the second-order contribution in Eq. (66).
Fig. 5 shows results obtained within the ladder approximation for the two-dimensional Hubbard
model. Fig. 5 (a) shows the static (ω = 0), homogeneous (q = 0) spin susceptibility computed
from the vertex. In DMFT the response to a homogeneous field increases as moments form with
decreasing temperature. After a similar increase in LDFA, neighboring spins start to couple
antiferromagnetically. Hence the temperature of the downturn marks the effective exchange
energy scale. We can see that the ladder approximation agrees well with Quantum Monte Carlo
(QMC) results within error bars. We can therefore be confident that we have included the
dominant contributions. Conversely, the entire series of diagrams made up by terms of the form
of diagram (f) describing particle-particle scattering that we have neglected apparently plays
only a minor role in this regime. We can further see a significant size dependence, indicating
that the self-energy corrections are truly long-ranged.
In DMFT the susceptibility diverges at the antiferromagnetic wave vector q = (π, π) (not
shown). We can view the Bethe-Salpeter equation as a generalization of a geometric series∑∞

n=0 q
n = 1/(1− q), where the matrix (T/N)

∑
kν γ

α
νν′ω G̃k+qν+ω G̃kν δνν′ plays the role of q.

The divergence hence appears when the leading eigenvalue of this matrix approaches 1. Here it
has physical significance and indicates a second-order transition to the antiferromagnetic Néel
state as indicated by the vertical line. It is clearly an artifact of the mean-field approxima-
tion, because the Mermin-Wagner theorem forbids breaking of a continuous symmetry in two
dimensions [17].
In LDFA, we account for the long-range fluctuations that are essential to the proof of the the-
orem and which destroy the spurious long-range order. To obtain a finite result in LDFA even
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Fig. 5: (a) Temperature dependence of the static homogeneous susceptibility for U/t = 4 and
different temperatures. (b) Local density of states in DMFT, DF(2) and different orders of the
ladder approximation. All orders contribute to the formation of a pseudogap.

though the series diverges in DMFT is possible by computing the self-energy from Green func-
tions which are self-consistently renormalized by the self-energy itself. Below the DMFT Néel
temperature, this requires a regularization procedure [18].

Fig. 5 (b) shows the local density of states. In DMFT we see the quasi-particle peak and broad
Hubbard bands. In the second-order approximation, the spectral weight at the Fermi level is
reduced. By iterating the Bethe-Salpeter equation, we can compute the results to successively
higher orders. Apparently all orders of the perturbation series contribute to the result. Instead
of a quasi-particle peak, the LDFA spectral function exhibits a pseudogap.
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5 Summary and outlook

In just two examples we have seen that diagrammatic extensions of DMFT can introduce highly
non-trivial effects beyond DMFT and remedy artifacts of the mean-field approximation in par-
ticular in low dimensions. They can give qualitatively different and even quantitative results.
At the same time, the diagrammatic approach allows us to isolate the dominant contributions
and provides us with intuition on the underlying microscopic processes.
In the last ten years of their development, diagrammatic extensions of DMFT have been ap-
plied to a variety of systems and scenarios. They have been used to describe unconventional
superconductivity in the Kondo lattice model, magnetism in frustrated systems, disordered, in-
homogeneous and non-equilibrium systems and even quantum critical behavior in the Hubbard
and Falicov-Kimball models. First simple applications to materials have emerged. New meth-
ods based on different functionals and the fermion-boson vertices and extensions to cluster- and
extended DMFT have been developed. The diagram series has been sampled using diagram-
matic Monte Carlo techniques [19, 20] and even more advanced diagrammatic approximations
like the parquet equations have been considered. All these developments are summarized in
Ref. [6]. For many of the applications the unique ability of the methods to simultaneously
describe the strong local dynamical correlations and extended critical fluctuations is crucial.
Diagrammatic extensions of DMFT provide a complementary viewpoint to results obtained
within other approaches. Most notably within cluster DMFT approaches, in which all diagrams
to the self-energy are summed within the range of the comparatively small clusters [21].
The approaches continue to be developed. Recently more fundamental questions are being in-
vestigated. For example how to construct conserving approximations when the approximations
are made two-particle self-consistent [22], the role of the self-consistency condition in dual
fermion [23, 24], or the role of three-particle vertices [25] in dual fermion and DΓA.
Hopefully this introduction will inspire work in two important research directions: i) the com-
bination of diagrammatic extensions with the functional renormalization group and ii) a merger
with density-functional theory to arrive at a quantitative theory of correlated materials.
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1 Introduction

The collective behavior of electrons in solids gives rise to a range of different emergent phe-
nomena, including magnetism, the fractional quantum Hall effect, and superconductivity. Of
these, superconductivity is perhaps the most fascinating state that has captivated generations of
physicists over more than a century. When cooled below a critical temperature Tc, supercon-
ductors exhibit conductance without resistance, the property that underlies most applications of
superconductors, including power transmission and generation as well as medical applications.
A second and equally important effect observed in superconductors is the complete expulsion
of an external magnetic field during its transition to the superconducting state (the Meissner-
Ochsenfeld effect). This repulsion of magnetic fields can be stronger than gravity which leads
to levitation, the most fascinating manifestation of superconductivity. Fundamentally, it implies
that the electrons in superconductors behave collectively.
Conceptually, two main ingredients, illustrated in Fig. 1, are necessary to understand the su-
perconducting state [1]: (1) Electrons form boson-like Cooper pairs driven by a net attractive
interaction; (2) These Cooper pairs condense into a coherent macroscopic quantum state anal-
ogous to a Bose-Einstein condensate. The energy required to break up the pairs (also called
energy gap) suppresses the scattering processes from defects and impurities that would other-
wise give rise to electrical resistance in normal conductors.
But why would two negatively charged electrons, which repel each other because of the Coulomb
repulsion, would be attracted to form pairs? For conventional superconductors, which include
many elemental metals such as Hg, Al, and Nb, the attractive force that binds the electrons
arises from the interaction between the negatively charged electrons and the positively charged
ions. The distortion of the ion lattice left behind by the motion of an electron attracts a second
electron and thus results in an effective attractive interaction between the electrons. This at-
traction is local in space, resulting in an s-wave structure of the Cooper pair wave-function and
thus an isotropic s-wave gap in momentum space. But since the ion dynamics is slow compared

Fig. 1: Main conceptual ingredients of the BCS theory of superconductivity: (1) Through
a net attractive interaction, electrons form Cooper pairs and (2) the Cooper pairs become
phase coherent and condense into a single macroscopic quantum state. The binding energy∆E
required to break up a pair suppresses the scattering processes that lead to resistance.
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Fig. 2: Schematic temperature-doping phase diagram of the cuprate high-temperature
superconductors: The d-wave superconducting state below the critical temperature Tc emerges
upon hole doping of the antiferromagnetic parent compound. Upon cooling, it arises from
a normal state that hosts a pseudogap at low doping, where an energy gap is present in the
electronic excitations, or a strange metal non-Fermi liquid phase at higher doping. BCS theory
is not adequate to describe this situation and non-perturbative approaches are necessary to
accurately treat the electron-electron correlations that give rise to these phases.

to the electrons, it is strongly retarded in time, i.e., active at long time scales, where the effec-
tively instantaneous Coulomb repulsion can be overcome. These concepts are well described
and understood within a rigorous theoretical foundation, the BCS (Bardeen-Cooper-Schrieffer)
theory [2, 1], and its extension, the Migdal-Eliashberg theory [3, 4].

Superconductivity in heavy fermion materials, copper-oxygen, and iron-based materials and
other related compounds, however, is thought to arise from a different mechanism than the
electron-phonon mechanism [5]. While the two main conceptual ingredients of BCS theory,
i.e., the formation of Cooper pairs and their condensation into a macroscopic quantum state,
still hold, the pairing mechanism that leads to the attraction of electrons is believed to be dif-
ferent from the electron-phonon mechanism. Because of the strong local Coulomb repulsion
in these systems, local s-wave pairing is energetically unfavorable and the Cooper pair wave
function is found to have a different symmetry; in the cuprates, for example, the pairs are bound
in a dx2−y2-wave state, in which the pair wave function changes sign in momentum space and
which corresponds to pair formation on nearest-neighbor atom positions in the crystal lattice.
Similarly, in the iron-based superconductors, the pairs are believed to form an extended, sign
changing s-wave state, in which the local amplitude is strongly reduced. As we will see, such
a pair structure with a sign change indicates that the pairing interaction is actually repulsive
in momentum space, in marked contrast to the conventional electron-phonon case. It is there-
fore generally accepted that pairing in these “unconventional” superconductors has a different



13.4 Thomas A. Maier

origin, and most likely arises from the strong magnetic interactions or fluctuations between
the electron spins that result in an antiferromagnetic phase in the undoped parent compounds.
Moreover, BCS theory assumes that the superconducting state is created from a normal metal-
lic Fermi liquid state with well defined quasiparticles. In contrast, the normal state in many
unconventional superconductors is everything but normal (see Fig. 2). Strong electron-electron
correlations in these systems often lead to non-Fermi liquid behavior and BCS theory is not ad-
equate. One instead needs a non-perturbative approach that can handle the strong correlations
and which does not assume a Fermi liquid normal state as a starting point. Dynamical mean-
field theory (DMFT) [6] and the dynamical cluster approximation (DCA) [7] provide such a
tool, which allows us to study how superconductivity emerges in systems where the normal
state behavior is governed by strong electron correlations.
These lecture notes are concerned with such unconventional systems, in which superconductiv-
ity arises from the strong local Coulomb repulsion between the electrons. Given that supercon-
ductivity requires electrons to form pairs, this seems like a paradox. The goal of this lecture is
to demonstrate how DMFT and DCA calculations have helped us resolve this paradox. Follow-
ing a pedagogical discussion of the DMFT and DCA frameworks to study superconductivity, we
highlight a set of applications that showcase the ability of these approaches to provide important
insight. In this lecture we assume a basic familiarity with BCS, DMFT, and DCA theory.

2 Dynamical mean-field theory and dynamical cluster
approximation

2.1 Preliminary remarks

To keep things simple, we will focus most of these lecture notes on one of the simplest models
of correlated electron systems, the single-band Hubbard model [8]. Its Hamiltonian

H =
∑
ij,σ

tij c
†
iσcjσ + U

∑
i

ni↑ni↓ (1)

is divided into a non-interacting part H0 given by the first term and an interacting part Hint

given by the second term. Here c(†)iσ destroys (creates) an electron on site i with spin σ and
niσ = c†iσciσ is the corresponding number operator. The first (H0) term describes the hopping of
electrons between sites i and j with amplitude tij , and the second (Hint) term raises the energy
by the Coulomb repulsion U when two electrons with opposite spin reside on the same site. If
not otherwise noted, we consider the sites in this model to form a two-dimensional (2D) square
lattice with a hopping tij = −t if i and j are nearest-neighbor sites. Despite its simplicity, this
model is commonly believed to provide a description of the generic physics of the cuprate high-
temperature superconductors [9], in which photoemission experiments find a single electronic
band crossing the Fermi level.
The single-particle dynamics of the Hubbard Hamiltonian at finite temperatures is described
by the thermodynamic Green function and its Fourier-transform to Matsubara frequencies and
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momentum space

Gij,σ = −
〈
Tτciσ(τ)c†jσ

〉
(2)

Gij,σ(iωn) =

∫ β

0

dτ eiωnτ Gij,σ(τ) , ωn = (2n+ 1)πT (3)

Gσ(k, iωn) ≡ 〈〈ckσ; c†kσ〉〉iωn =
1

N

∑
ij

eik(ri−rj)Gij,σ(iωn) . (4)

Here τ is the imaginary time, Tτ the time ordering operator, β = 1/T the inverse temperature
and ωn = (2n + 1)πT are the fermionic Matsubara frequencies. For problems with trans-
lational symmetry in space and time, the Green function becomes diagonal in momentum k

and frequency iωn as stated in Eqs. (3) and (4). The Green function G0 of the non-interacting
system, i.e. H = H0, is given by

G0(k, iωn) =
1

iωn + µ− εk
, (5)

where µ is the chemical potential and εk the dispersion, obtained from a Fourier-transform of
the hopping tij . For our 2D model with only nearest neighbor hopping t, we have

εk = −2t(cos kx + cos ky) (6)

with k = (kx, ky). Finally, the Dyson equation

G(k, iωn) =
1

G−10 (k, iωn)−Σ(k, iωn)
. (7)

defines the self-energy Σ(k, iωn) as the difference between the (inverse) non-interacting Green
function G0 and the fully renormalized Green function G and thus describes the effects of the
interaction term Hint on the single-particle dynamics.

2.2 General framework for the normal state

Calculating the Green functionG and self-energyΣ in the thermodynamic limit is prohibitively
expensive as the problem size grows exponentially in the number of degrees of freedom (sites in
the Hubbard model). The DMFT and DCA approaches reduce this complexity by representing
the infinite-size system by a reduced-size cluster, and use coarse-graining in momentum space
to retain information about the degrees of freedom (sites) not contained on the cluster [7]. In
DMFT the cluster consists only of a single site, called the impurity site, while in DCA the
cluster has several sites. The size of the cluster is controlled by the way the momentum space
is coarse-grained. Fig. 3 shows several examples starting from the single-site (Nc = 1) DMFT
impurity. The DCA is obtained for Nc > 1. It reduces to the DMFT for Nc = 1 and approaches
the exact result for Nc → ∞. Because the DCA includes the DMFT as a limiting case, we
restrict the following discussion to the DCA.
The first Brillouin zone is split into Nc patches of equal size. As illustrated in Fig. 3, each
patch is represented by a cluster momentum K at its center. The basic assumption of the
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DMFT: Nc=1 Nc=4 Nc=16A Exact:Nc=∞

K

k

Nc=16BNc=8

Fig. 3: Coarse-graining of momentum space: At the heart of the DCA (and DMFT) methods
is a partitioning of the first Brillouin zone into Nc patches over which the Green function is
coarse-grained (averaged) to represent the system by a reduced number ofNc “cluster” degrees
of freedom. The bulk degrees of freedom not included on the cluster are taken into account as
a mean-field. For Nc = 1, the dynamical mean-field approximation is recovered, while for
Nc → ∞, one obtains the exact result. For a given cluster size Nc, one can have different
locations and shapes of the coarse-graining patches, as illustrated for Nc =16A and 16B.

approximation is that the self-energy is only weakly momentum dependent (or purely local in
DMFT), so that its momentum dependence is well represented by the coarse-grid of cluster
momentaK, i.e.,

Σ(k, iωn) ' Σc(K, iωn) (in DCA) or Σ(k, iωn) ' Σii(iωn) (in DMFT) . (8)

Here, Σc(K, iωn) is the self-energy of a cluster of size Nc, and Σii(iωn) that of a single-site
impurity in DMFT. One then sets up an effective cluster problem to calculate Σc(K, iωn) or
Σii(iωn). To this end, the Green function is coarse-grained over the DCA patches (or the full
Brillouin zone in DMFT)

Ḡ(K, iωn) =
Nc

N

∑
k∈PK

G(k, iωn) =
Nc

N

∑
k∈PK

1

iωn − εk + µ−Σc(K, iωn)
, (9)

where PK is the patch centered at K containing N/Nc momenta k. Note that in DMFT, the
sum runs over the full Brillouin zone and the coarse-grained Green function reduces to the
local Green function. Given Ḡ and Σc, one can then set up an algorithm, such as, for ex-
ample, the quantum Monte Carlo (QMC) algorithms discussed in Refs. [10, 11], to calculate
the cluster Green function. The non-interacting part of the cluster problem is defined by the
cluster-excluded Green function

G(K, iωn) =
(
Ḡ−1(K, iωn) +Σc(K, iωn)

)−1
, (10)

where the cluster self-energy has been added to avoid double counting. While G(K, iωn) is
the Green function of a cluster of size Nc, note that the remaining lattice degrees of freedom
are encoded in G through the use of the coarse-grained Green function Ḡ. Together with the
interacting part of the Hamiltonian, one then sets up the action for the effective cluster problem,
which reads after Fourier-transform to real space

S[φ∗, φ] = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
ij,σ

φ∗iσ(τ)G0,ij,σ(τ−τ ′)φjσ(τ)+

∫ β

0

dτ
∑
i

Uφ∗i↑(τ)φi↑φ
∗
i↓(τ)φi↓(τ) .

(11)
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Here φ and φ∗ are the Grassmann variables corresponding to the operators c and c†, respectively.
From this the cluster Green function

Gc,ij,σ(τ − τ ′) =
1

Z

∫
D[φ∗φ]φiσ(τ)φ∗jσ(τ ′) e−S[φ

∗,φ] , (12)

with
Z =

∫
D[φ∗φ] e−S[φ

∗,φ] (13)

the partition function, is evaluated and used to determine the cluster self-energy

Σc(K, iωn) = G−10 (K, iωn)−G−1c (K, iωn) . (14)

Then, using this new result for Σc(K, iωn) in Eq. (9), these steps are iterated to convergence.
We note that this DCA algorithm was recently extended into the DCA+ method [12] through the
inclusion of a self-energyΣ(k, iωn) with continuous momentum k dependence that replaces the
piecewise constant self-energyΣc(K, iωn) in the coarse-graining step, while leaving the cluster
problem unchanged. This has the benefit that results depend less on the shape of the cluster that
is being used.

2.3 Nambu-Gorkov formalism

In this section we generalize the DCA (and DMFT) formalism to perform calculations in the
symmetry broken superconducting state. This phase is signaled by an order parameter that
describes the finite expectation value for the creation of a pair of electrons in time-reversed
momentum states

∆k = 〈ck↑c−k↓〉 6= 0 for some k . (15)

Here we restrict the discussion to spin singlet pairs and note that ∆k can only be finite for a
grand canonical ensemble in which the particle number is not fixed. This is not a problem
for DMFT or DCA, since these approaches are formulated for the grand canonical ensemble.
The momentum structure of ∆k determines the symmetry of the superconducting state. Exam-
ples are ∆k ∝ 1 (s-wave), cos kx + cos ky (extended s-wave), cos kx − cos ky (dx2−y2-wave),
sin kx sin ky (dxy-wave) or a sin kx + b sin ky (p-wave). Because ∆k is finite in the supercon-
ducting phase, one has, in addition to the normal Green function

G(k, iωn) = 〈〈ck↑; c†k↑〉〉iωn (16)

a finite anomalous Green function

F (k, iωn) = 〈〈ck↑; c−k↓〉〉iωn . (17)

Using the concept of Nambu spinors [1]

Ψ †k =
(
c†k↑, c−k↓

)
, Ψk =

(
ck↑
c†−k↓

)
(18)
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one then defines the Green function matrix in Nambu space [1]

G(k, iωn) = 〈〈Ψk;Ψ †k〉〉iωn =

(
G (k, iωn) F (k, iωn)

F ∗(k,−iωn) −G∗(k, iωn)

)
, (19)

which contains information about both the normal and the anomalous Green function. Note
that the G matrix contains only two independent matrix elements G and F . The elements in
the second row are related to those in the first row by general symmetry relations for Green
functions. In the presence of an external pairing field η(k) = η′(k) + iη′′(k), which couples to
c−k↓ck↑, the non-interacting part of the Hubbard Hamiltonian becomes

H0 =
∑
k

Ψ †k

(
εkσ3 − η′(k)σ1 + η′′(k)σ2

)
Ψk , (20)

where the σi are the Pauli spin matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (21)

With this, the lattice Green function in the superconducting state becomes

G(k, iωn) =
(
iωnσ0 − (εk − µ)σ3 − η′(k)σ1 − η′′(k)σ2 −Σc(K, iωn)

)−1
(22)

with the cluster self-energy matrix

Σc(K, iωn) =

(
Σc (K, iωn) φc (K, iωn)

φ∗c(K,−iωn) −Σ∗c (K, iωn)

)
. (23)

Here, the diagonal parts Σc(K, iωn) describe the usual quasiparticle renormalization, while the
off-diagonal parts φc(K, iωn) contain information about the momentum and frequency depen-
dence of the pairing state. As in the normal state, the coarse-grained Green function

Ḡ(K, iωn) =
Nc

N

∑
k∈PK

G(k, iωn) =

(
Ḡ (K, iωn) F̄ (K, iωn)

F̄ ∗(K,−iωn) −Ḡ∗(K, iωn)

)
(24)

is then used to calculate the corresponding non-interacting (cluster-excluded) Green function
matrix

G0(K, iωn) =
(
Ḡ−1(K, iωn) + Σc(K, iωn)

)−1
. (25)

To calculate Σc(K, iωn), an effective cluster model is set up using G0 together with the inter-
action U

S[Ψ ∗,Ψ ] =−
∫ β

0

dτ

∫ β

0

dτ ′
∑
ij

Ψ †i (τ)G0,ij(τ − τ ′)Ψj(τ ′) (26)

+
U

2

∫ β

0

dτ
∑
i

[Ψ †i (τ)σ3Ψi(τ)][Ψ †i (τ)σ3Ψi(τ)] ,
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where the Ψ †i and Ψi are spinors Ψ †i = (φ∗i↑, φi↓) of Grassmann variables φ†iσ and φiσ which
generate coherent states corresponding to the fermionic operators c†iσ and ciσ, respectively. From
this, the cluster Green function

Gc,ij(τ − τ ′) =
1

Z

∫
D[Ψ ∗Ψ ]Ψi(τ)Ψj(τ

′) e−S[Ψ
∗,Ψ ] (27)

where
Z =

∫
D[Ψ ∗Ψ ] e−S[Ψ

∗,Ψ ] (28)

is the partition function, is calculated using a cluster solver algorithm, such as e.g., a QMC
algorithm [13] or a non-crossing approximation (NCA) [14], and used to determine the cluster
self-energy

Σc(K, iωn) = G−10 (K, iωn)−G−1c (K, iωn) . (29)

Then, just as in the normal state, using this new result for Σc(K, iωn) in Eq. (22), steps (22) to
(29) are iterated to self-consistency. After convergence, the superconducting order parameter

∆̄(K) =
Nc

N

∑
k∈PK

〈ck↑c−k↓〉 = F̄ (K, τ = 0) (30)

is calculated from the coarse-grained anomalous Green function F̄ .
Two notes are in order:

• Usually one is interested in an instability to a superconducting phase in the absence of an
external pair-field, i.e., spontaneous U(1) gauge symmetry breaking. In this case, the cal-
culation is initialized with a finite pair-field η(k) with a given momentum structure. After
the first few iterations, the pair-field is switched off, and the system relaxes. If the calcu-
lation converges to a finite order parameter ∆̄(K), the system is in the superconducting
phase, otherwise it is in the normal state.

• The symmetry of the superconducting order is given by the momentum structure of the
coarse-grained ∆̄(K) and therefore restricted by the cluster size and geometry. In the case
of the DMFT, when Nc = 1, ∆̄(K) = ∆̄ is local, and therefore only superconducting
states with a local contribution such as s-wave or extended s-wave can be described.
Larger clusters are necessary to describe order parameters with a symmetry less than the
lattice symmetry. For example, a 2×2 cluster is the smallest cluster to describe phases
with a dx2−y2-wave symmetry which transforms according to cos kx − cos ky.

As a typical example of such a calculation, Fig. 4 shows DCA results from Ref. [14] for the
superconducting state of a 2D Hubbard model with U = 12t and electron filling 〈n〉 = 0.81

for a temperature T = 0.05t. These results were obtained with a non-crossing approximation
to solve the DCA effective cluster problem on an Nc = 4 site 2×2 cluster [15]. One sees
that the anomalous Green function F̄ (K, ω) ≡ Ḡ12(K, iωn) is finite, switches sign between
K = (π, 0) and (0, π), and vanishes forK = 0 and (π, π). This is exactly what one expects for
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pseudogap in both cases is generated by a large scatter-
ing rate !Im !"k ,0#! at the chemical potential. A unified
picture of the spectral properties of the electron- and
hole-doped cuprates thus emerges from these results if
the interaction strength U is allowed to be doping de-
pendent. To reproduce the experimental observations in
optimally doped cuprates, large values of U seem neces-
sary in hole-doped "U$8t# systems, while smaller values
of U describe the electron-doped systems "U" 6t#
"Sénéchal and Tremblay, 2004#.

4. Superconductivity

It is well known from weak-coupling finite-size FLEX
results "Bickers et al., 1989# and phenomenological theo-
ries "Monthoux et al., 1991; Scalapino, 1999# that antifer-
romagnetic spin fluctuations mediate pairing with
d -wave symmetry and cause a pseudogap in underdoped
systems. Recent numerical renormalization-group stud-
ies "Halboth and Metzner, 2000; Zanchi and Schulz,
2000# in fact show strong evidence that the ground state
of the weak-coupling 2D Hubbard model is supercon-
ducting with a d -wave order parameter at finite doping
when t!=0, and when t! is finite even at half-filling.
Finite-size QMC simulations for the doped 2D Hubbard
model in the intermediate coupling regime U%W sup-
port the idea of a spin-fluctuation driven interaction me-
diating d -wave superconductivity "for a review, see
Scalapino, 1999#. The fermion sign problem, however,
limits these calculations to temperatures too high to
study a possible transition. These calculations are also
restricted to relatively small system sizes, making state-
ments for the thermodynamic limit problematic, and in-
hibiting studies of the low-energy physics. These short-
comings do not apply to embedded-cluster theories
which are built for the thermodynamic limit. Cluster
sizes larger than 1 are necessary, however, to describe a

possible transition to a state with a nonlocal "d -wave#
order parameter as discussed in Sec. II.F.

In optimally doped cuprates, the spin fluctuations are
known to be short ranged, extending over a few lattice
spacings. Hence quantum cluster approaches should
provide an adequate methodology to study supercon-
ductivity in these systems. Pairing in the 2D Hubbard
model was studied using the DCA/NCA by Maier et al.
"2000a#, and with the DCA/QMC approach by Jarrell,
Maier, Hettler, and Tahvildarzadeh "2001#, Jarrell,
Maier, Huscroft, and Moukouri "2001#, and Maier, Jar-
rell, Macridin, and Slezak "2004#. The possible coexist-

FIG. 35. Comparison of different DCA cells:
"a# density of states near the chemical poten-
tial; "b#, "c#, and "d# coarse-grained anomalous
Green’s function Ḡ12"K ,##& F̄"K ,## in the
superconducting state of the 2D Hubbard
model at 19% doping, T=0.047t, U=12t for
different cluster K points calculated with
DCA/NCA for a four-site cluster, Nc=4.
From Maier et al., 2000a.

FIG. 36. Pair-field susceptibilities vs temperature in the even-
frequency s-wave, extended s-wave "xs#, d -wave, and odd-
frequency s-wave channels in the 2D Hubbard model at 5%
doping, U=8t calculated with the DCA/QMC method for a
four-site cluster, Nc=4. Inset: Inverse d -wave pair-field suscep-
tibility vs temperature for different dopings and cluster sizes.
The solid line is a fit to b"T−Tc#$ with Tc=0.084t and $=0.72.
Temperatures are in units of 4t. From Jarrell, Maier, Hettler,
and Tahvildarzadeh, 2001.

1072 Maier et al.: Quantum cluster theories
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Fig. 4: d-wave superconducting state in a 2D Hubbard model: DCA/NCA calculation for an
Nc = 4 site 2×2 cluster. Density of states near the chemical potential (a), and coarse-grained
anomalous Green function Ḡ12(K, iωn → ω+iδ) ≡ F̄ (K, ω+iδ) (b), (c), and (d) for a system
with electron filling 〈n〉 = 0.81, temperature T = 0.05t and Coulomb repulsion U = 12t for
the different cluster momentaK . Figure from [14].

a dx2−y2-wave order parameter that transforms according to ∆(k) ∝ cos kx − cos ky. Since the
DCA patches aboutK = 0 and (π, π) contain equal parts of positive and negative contributions
of ∆(k), the coarse-grained result averaged over these patches vanishes, while ∆(k) has the
same sign over each of the patches centered at (π, 0) and (0, π) and switches sign between
them. The superconducting gap that arises from the finite pair amplitude is reflected in the
density of states (DOS) shown in the upper left panel, where the lower Hubbard subband of the
full spectrum is shown.

2.4 Pair-field susceptibility

An alternative way to identify an instability towards a superconducting phase (or any symmetry
broken phase for that matter) is to calculate the response of the system to an applied field (pair-
field in the case of superconductivity), i.e., the susceptibility, and then extrapolate that response
to the limit of a vanishing field. Spontaneous symmetry breaking occurs when the susceptibility
diverges in that limit.
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General formalism

In linear response theory, the superconducting response to an external pair-field ηα, where α
specifies the symmetry (s-wave, d-wave, etc.), is given by the pair-field susceptibility

Pα(T ) =

∫ β

0

dτ 〈∆α(τ)∆†α(0)〉 (31)

since the pair-field ηα couples to the pairing operator

∆†α =
1√
N

∑
k

gα(k) c†k↑c
†
−k↓ , (32)

and we are interested in the response ∆α of the system to the pair-field. Here gα(k) is the form-
factor corresponding to the symmetry of interest, i.e., gd(k) = cos kx−cos ky for a dx2−y2 state,
for example. Instead of calculating the correlation function in Eq. (31) directly, the pair-field
susceptibility may be calculated within the formalism described in then previous section 2.3.
This is done by keeping the external pair-field ηα finite throughout the calculation and measuring
the order parameter ∆α at convergence. If this is done for a number of different magnitudes of
the external field ηα, one has information on the ηα dependence of the order parameter ∆α(ηα).
The pair-field susceptibility Pα may then be extracted from the limit of vanishing pair-field as
Pα = d∆α(ηα)

dηα

∣∣∣
ηα→0

.

Alternatively, one may calculate the correlation function in Eq. (31) directly in the normal state
of the system. This does not require the Nambu-Gorkov formalism discussed in Sec. 2.3, i.e., the
calculation may be carried out in the normal state. What is required, however, is a calculation
of the 4-point two-particle Green function [10]

G2,σ1...σ4(x1, x2;x3, x4) = −〈Tτcσ1(x1)cσ2(x2)c†σ3(x3)c†σ4(x4)〉 , (33)

where the combined index xi = (Xi, τi) has both spatialXi and imaginary time τi coordinates.
Fourier-transforming on both the space and time variables gives G2σ1...σ4(k4, k3; k2, k1) with
k = (k, iωn). From this, one may then calculate the pair-field susceptibility as

Pα(T ) =
T 2

N2

∑
k,k′

gα(k)G2,↑↓↓↑(k,−k,−k′, k′) gα(k′). (34)

The way G2 is calculated in the DCA algorithm is similar to the way G is calculated at the
single-particle level. Just as the Dyson equation (7) relates the Green function to the self-
energy, the Bethe-Salpeter equation (BSE) relates G2 to the irreducible particle-particle vertex
function Γ pp(k,−k;−k′, k′). It reads

G2,↑↓↓↑(k,−k,−k′, k′) = G↑(k)G↓(−k)δk,k′ +
T

N

∑
k′′

G↑(k)G↓(−k) (35)

× Γ pp(k,−k,−k′′, k′′)G2,↑↓↓↑(k
′′,−k′′,−k′, k′)
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Fig. 5: Feynman diagrams for the Bethe-Salpeter equation: The two-particle Green function
G2 in the particle-particle channel on the left hand side has a bare contribution (first diagram
on the right-hand side) that describes the propagation of a pair of electrons in time-reversed
momentum and spin states, and a vertex contribution (second diagram) that describes the (re-
peated) scattering of the pair due to the interactions in the Hamiltonian.

and is schematically shown in Fig. 5. This equation describes the propagation of a pair of
electrons in time-reversed momentum and spin states and the repeated scattering of this pair
due to the Coulomb term in the Hamiltonian.
Just as the self-energy Σ(k, iωn) is approximated by the cluster self-energy Σc(K, iωn), the
irreducible vertex function Γ pp is approximated by the corresponding cluster irreducible vertex
function [10]

Γ pp(k,−k,−k′, k′) ≈ Γ pp
c (K,−K,−K ′, K ′), (36)

whereK = (K, iωn) andK ′ = (K ′, iωn′). Just as the self-energy, the cluster irreducible vertex
Γ pp
c is determined from the solution of the cluster problem, i.e., by calculating the cluster two-

particle correlation function

G2c,↑↓↓↑(K,−K,−K ′, K ′) = Gc,↑(K)Gc,↓(−K)δK,K′ +
T

Nc

∑
K′′

Gc,↑(K)Gc,↓(−K) (37)

× Γc,pp(K,−K,−K ′′, K ′′)G2c,↑↓↓↑(K
′′,−K ′′,−K ′, K ′) .

Defining [G2c]K,K′ ≡ G2c,↑↓↓↑(K,−K,−K ′, K ′), [G0
2c]K,K′ = Gc,↑(K)Gc,↓(−K) δK,K′ and

[Γpp
c ]K,K′ = T

Nc
Γ pp
c (K,−K,−K ′, K ′) , and writing Eq. (37) in matrix notation in K,K ′, one

then has
Γc,pp = [G0

2c]
−1 − [G2c]

−1 . (38)

Using the cluster vertex Γ pp
c (K,−K,−K ′, K ′) in the BSE for the lattice G2, one can then

calculate the coarse-grained two-particle Green function for the lattice

Ḡ2,↑↓↓↑(K,−K,−K ′, K ′) =
N2
c

N2

∑
k∈PK

∑
k′∈PK′

G2,↑↓↓↑(k,−k,−k′, k′) (39)

= Ḡ0
2,↑↓(K)δK,K′ +

T

Nc

∑
K′′

Ḡ0
2,↑↓(K)

× Γ pp
c (K,−K,−K ′′, K ′′) Ḡ2,↑↓↓↑(K

′′,−K ′′,−K ′, K ′) .

with the coarse-grained bare propagator

Ḡ0
2,↑↓(K) =

Nc

N

∑
k∈PK

G↑(k)G↓(−k) . (40)
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Here we used the fact the cluster vertex Γ pp
c (K,−K,−K ′, K ′) only depends on the cluster

momenta K and K ′ so that the sum over k′′ in Eq. (35) can be partially carried out over the
patches. The coarse-grained G2 may then be inserted into Eq. (34) to obtain

Pα(T ) =
T 2

N2
c

∑
K,K′

ḡα(K) Ḡ2,↑↓↓↑(K,−K,−K ′, K ′) ḡα(K ′) , (41)

where we have separately coarse-grained the form factor ḡα(K) = Nc/N
∑
k∈PK

gα(k). Note
that one can also take into account the full k dependence of gα(k) by using the modified algo-
rithm discussed in Ref. [10].

Bethe-Salpeter eigenvalues and eigenfunctions

Writing Eq. (39) in matrix form

Ḡ2 = [1− Ḡ0
2,↑↓Γ

pp
c ]−1Ḡ0

2,↑↓ = Ḡ0
2,↑↓[1− Γpp

c Ḡ0
2,↑↓]

−1 (42)

we see that a divergence in Ḡ2 occurs when the term in brackets vanishes. Eq. (42) can be recast
in terms of the left (ΦLα) and right eigenvectors (ΦRα ) of the “pairing matrix” Γpp

c Ḡ0
2,↑↓, where,

for example, ΦRα is determined from [16]

− T

Nc

∑
K′

Γc,pp(K,K
′) Ḡ0

2,↑↓(K
′)φRα (K ′) = λαφ

R
α (K). (43)

By transforming the term in brackets in Eq. (42) onto this eigenbasis of the pairing matrix, one
can write Eq. (42) as

G2,↑↓↓↑(K,K
′) = Ḡ0

2,↑↓(K)
∑
α

φRα (K)φLα(K ′)

1− λα
. (44)

Since the pair-field susceptibility is given by Eq. (41), we see that a superconducting instability
occurs when the leading eigenvalue λα becomes equal to one, and the symmetry of the corre-
sponding state is determined by the momentum and frequency structure of φRα (K) and φLα(K).
This approach is in many ways more powerful than calculating the response function directly,
because here, one does not have to assume a given form factor gα(k) and therefore cannot
“miss” the structure of the dominant correlations.
We note the similarity of Eq. (43) to the familiar BCS gap equation

− 1

N

∑
k′

V (k,k′) tanh
(
β
2
Ek′
)
∆(k′)

2Ek′
= ∆(k′), (45)

where V (k,k′) is the pairing interaction, which is essentially given by the low frequency limit
of Γ pp(k, k′), Ek the Bogoliubov quasiparticle energy that is encoded in the Green function
G(k), and ∆(k) the superconducting energy gap. In fact, Eq. (45) is derived from a Bethe-
Salpeter equation in the superconducting state analogous to the normal state equation (43) under
a number of simplifying assumptions. Hence, we see that the leading eigenvector φlead(K) ≡
φRlead(K) is the normal state analog to the superconducting gap ∆(k). Close to the transition at
T = Tc, they are equivalent.
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3 Superconductivity in the 2D Hubbard model

We now demonstrate how the DMFT and DCA approaches have been used to investigate un-
conventional superconductivity in the simplest model of correlated electron systems, the 2D
Hubbard model given by the Hamiltonian in Eq. (1) on a square lattice. We start by discussing
the attractive model, which has U < 0, and then turn to the repulsive model with U > 0.
While the former should be viewed as a toy model to study pairing, the latter has been studied
extensively in the context of the high-Tc cuprates.

3.1 Attractive Hubbard model

The Hamiltonian of the attractive Hubbard model is given by the Hamiltonian in Eq. (1) with an
attractive local Coulomb interaction U < 0. Since the Coulomb interaction between electrons is
repulsive, i.e. positive, the negative U interaction should be considered an effective interaction
that may result from integrating out other degrees of freedom, such as phonons in the case of the
BCS model. In contrast to this case, however, the interaction U is an instantaneous static inter-
action without frequency dependence. Since the interaction between the electrons is explicitly
attractive, this model provides an interesting toy model and testbed to study the superconducting
phase transition as a function of the electron filling 〈n〉 and interaction strength |U |/t.
In fact, this problem has been studied extensively in the literature (see, e.g., Ref. [17] and refer-
ences therein). As this model does not suffer from the usual fermionic negative sign problem,
large scale quantum Monte Carlo simulations have been used to study the temperature versus
|U | phase diagram. One generally finds a finite temperature phase transition to a superconduct-
ing phase at finite doping 〈n〉 < 1, while at half-filling 〈n〉 = 1, this phase is suppressed to
zero temperature by its degeneracy (due to particle-hole symmetry) with a charge-density wave
(CDW) phase. As one moves away from half-filling, CDW correlations are suppressed and the
superconducting Tc rises sharply. Since the pairing interaction U between electrons is local,
one finds that the superconducting phase has s-wave symmetry, i.e., the Cooper pairs forming
this state are local.
Because we are in 2D, for which the Mermin-Wagner theorem [18] forbids a finite temperature
transition to a phase in which a continuous symmetry is broken, such as the U(1) gauge symme-
try that is broken in the superconducting phase, the instability instead is a Kosterlitz-Thouless
(KT) transition [19,20] to a superconducting state in which the correlations decay algebraically.
DMFT and DCA calculations, however, do not obey the Mermin-Wagner theorem. They ne-
glect the long range, beyond mean-field fluctuations that lead to the destruction of long-range
order at finite temperature, the fundamental reason for this theorem. Due to their mean-field
character, DMFT and DCA instead display mean-field type transitions. In DCA calculations,
however, non-local fluctuations are taken into account up to the size of the cluster, and one may
see KT behavior in a finite region above Tc, where the correlations are limited in range to within
the cluster. Close to Tc, when the correlation length exceeds the cluster size, however, the KT
behavior changes over to mean-field behavior.
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Fig. 6: Superconductivity in the attractive Hubbard model: Transition temperature Tc in
the negative U Hubbard model versus |U | at a filling of 〈n〉 = 0.85 calculated with DCA/QMC.
Tc keeps rising with |U | in the DMFT (Nc = 1) limit, while non-local fluctuations on the 4×4-
cluster DCA calculation start suppressing Tc at larger |U |.

Fig. 6 shows the results of single-site DMFT (Nc = 1) and 4×4-site DCA (Nc = 16) calcula-
tions of Tc in an attractive Hubbard model with nearest-neighbor hopping t and electron filling
〈n〉 = 0.85. Here Tc for the s-wave superconducting state was determined from the temperature
T at which leading eigenvalue λs(T ) of the Bethe-Salpeter equation (43) crosses one. We see
that in both cases, Tc initially rises with increasing |U |. This is expected, since the increasing
pair binding energy ∼ |U | leads to an increasing energy reduction associated with forming a
superconducting phase, so that it occurs at higher temperatures.
At larger |U |, however, one observes different behavior: While Tc keeps rising for Nc = 1, it
already starts to level off a bit. For Nc = 16, one even sees non-monotonic behavior, where Tc
falls again after reaching a maximum for |U | ∼ 6t. How can we understand this behavior, given
the fact that with increasing |U |, the pair-binding energy keeps increasing? This behavior is
known as the BCS-BEC crossover [21], where BEC stands for Bose-Einstein condensation. For
small attractive interactions U , the physics is well described by BCS theory. The Cooper pairs
are weakly bound and their size, determined by the superconducting coherence length∼ 1/|U |,
is large. Therefore, the pairs have large spatial overlap, and as soon as they form, they become
phase coherent. In contrast, in the large |U | regime, the pairs are tightly bound and much more
local objects. Hence, they have a harder time to become phase coherent, since the phase of
individual pairs can fluctuate more easily. In this case, even though the pair-binding energy
is large, Tc is suppressed, since phase coherence does not set in until lower temperatures are
reached. DMFT only describes the spatially local aspect of this physics, i.e., phase fluctuations
in time. Instead, the finite size clusters in the DCA also know about the spatial aspect of this
physics, i.e., phase fluctuations of local pairs on different sites. This explains why Tc is reduced
in the 16-site cluster relative to the single-site results.
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accurately through a finite size scaling procedure. The aim in
this section is to validate the DCA+ framework by reproducing
the temperature versus doping phase diagram of the attractive
Hubbard model with an interaction of U = −4. This model
has been studied in detail by Paiva et al. [17], using finite size
determinantal QMC calculations [24,25] of large clusters for
which accurate results for Tc were obtained.

We will use two complementary procedures to determine
the exact (infinite cluster size) KT transition temperature TKT
as follows. (1) We will use the same finite size scaling analysis
of the cluster s-wave pair-field susceptibility that was used
in Ref. [17]. This procedure avoids the determination of the
lattice vertex function through interpolation and deconvolution
of the cluster vertex function. (2) We will determine the
superconducting transition temperature Tc(Nc) for a given
cluster size Nc by calculating the leading eigenvalue of the
lattice Bethe-Salpeter equation in Eq. (11) as outlined in
Sec. II C and then obtain an estimate for TKT by fitting Tc(Nc)
with the expected KT form. We will show that both procedures
result in the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =
∫ β

0
dτ ⟨#†(τ )#(0)⟩, (23)

with

#† = 1√
Nc

∑

K⃗

c
†
K⃗↑c

†
−K⃗↓. (24)

Note that Ps can be obtained directly from the Q = 0 cluster
two-particle Green’s function in the particle-particle channel,
GII

c↑↓↓↑(K,K ′) [see Eq. (7)], as

Ps = T 2

N2
c

∑

K,K ′

GII
c ↑↓↓↑(K,K ′), (25)

where the sum over K (and K ′) implicitly contains a sum over
momenta K⃗ and Matsubara frequencies ϖ .

If one assumes that the transition to the superconducting
phase takes place when the correlation length reaches the linear
cluster size Lc =

√
Nc, one expects from finite size scaling for

a Kosterlitz-Thouless transition that [17]

PsL
−7/4
c = Lc exp

[ −α√
T − Tc

]
. (26)

In Fig. 2, we have plotted the best data collapse for this equation
at 50% doping. The critical temperature TKT = 0.13 obtained
by the data collapse is equal to the value obtained by Paiva et al.
We believe that the discrepancy on the parameter α (0.3 versus
0.1) can most likely be attributed to the mean-field character
of the DCA+ algorithm.

Next, we use the new DCA+ two-particle formalism de-
scribed in Sec. II C to calculate the lattice irreducible vertex in
the particle-particle channel, &pp(k,k′), with continuous mo-
mentum dependence. We then compute the leading eigenvalue
λs(T ) (the corresponding eigenvector has s-wave symmetry) of
the pairing matrix &ppχ0 that enters the lattice Bethe-Salpeter
equation [see Eq. (11)]. This allows us to determine the
transition temperature Tc(Nc) for a given cluster size Nc
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FIG. 2. (Color online) Data collapse of the cluster susceptibility
Ps using the Kosterlitz-Thouless scaling form in Eq. (26) for a filling
of ⟨n⟩ = 0.5. We can observe a clear data collapse for clusters larger
than 84 sites.

from λs(Tc(Nc)) = 1. The exact infinite size cluster result
Tc(Nc → ∞) ≡TKT is then obtained from fitting the Tc(Nc)
data with the expected KT behavior [7,26]

Tc(Nc) = T KT
c + A

[B + log(
√

Nc)]2
. (27)

As one sees from the inset of Fig. 3, the fits of the data
for electron densities ⟨n⟩ = 0.1, 0.5, and 0.8 with the form
in Eq. (27) are excellent. The resulting estimates for TKT(⟨n⟩)
are shown as symbols in the main figure. The error bars are
obtained by omitting each data point (jack-knife procedure)
once in the corresponding Tc(Nc) curves, which results in
six different estimates for TKT for each density and thus the
standard deviation represented by the error bars. One sees that
the obtained transition temperatures lie within the error bars
of Paiva et al. (red dashed lines in Fig. 2).

FIG. 3. (Color online) Phase diagram of the attractive Hubbard
model with U = −4. The DCA+ results lie within the error bars
(red-dotted lines) of previously reported values by Paiva et al.

195133-6

Fig. 7: Kosterlitz-Thouless transition temperature in the attractive Hubbard model: TKT
c

for different electron densities d = 〈n〉 for U = −4t calculated with DCA+/QMC. The results
were obtained by calculating Tc(Nc) from the leading (s-wave) eigenvalue of the Bethe-Salpeter
equation for different cluster sizes Nc and extrapolating the results to the exact Nc →∞ limit,
where they compare well with finite size lattice DQMC calculations by Paiva et al. Figure
from [22].

In fact, for even larger clusters one would expect Tc to drop even more. An example of this is
shown in Fig. 7, which displays the results of a DCA+ calculation of Tc versus electron filling
d ≡ 〈n〉 for U = −4. The inset shows the linear cluster size (

√
Nc) dependence of Tc for

different 〈n〉, and one sees that Tc keeps dropping with increasing cluster size. For a filling of
〈n〉 = 0.8, close to the filling used in Fig. 6, we see that Tc ∼ 0.25 for U = −4 drops to ∼ 0.15

in the infinite cluster size limit. Here, Tc(Nc) was again determined from λs(Tc(Nc)) = 1 and
the (exact) infinite cluster size limit Tc(Nc → ∞) ≡ TKT is obtained from fitting the Tc(Nc)

curves with the expected KT behavior [19, 20]

Tc(Nc) = TKT +
A

[B + log(
√
Nc)]2

. (46)

Here, we have assumed that the transition at finiteNc occurs at the temperature Tc(Nc), at which
the superconducting correlation length reaches the linear cluster size. The log arises from the
fact that this correlation length has an exponential temperature dependence in the KT case.

The main panel in Fig. 7 shows Tc for different 〈n〉 determined this way. Also shown are results
from finite size lattice determinant QMC calculations by Paiva et al. (solid black curve) [17].
We see that the DCA+ results agree very well with those of Paiva et al., showing that the DCA
approximation and the procedures used to determine Tc provide reliable results.
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3.2 Repulsive Hubbard model

We now turn to the 2D repulsive Hubbard model. Its Hamiltonian is given by Eq. (1) with
U > 0. Unlike the attractive model, there is no explicitly attractive interaction in this model
that could lead to superconductivity. Rather, the only interaction that is present is repulsive.
Nevertheless, this model has been investigated extensively in the context of superconductivity,
because it is commonly believed to provide a generic and the simplest description of the physics
of cuprate high-temperature superconductors [9].
So how can a model with only a repulsive interaction have a superconducting instability? Vari-
ous cluster DMFT and DCA studies have been concerned with addressing this question. Since
the local Coulomb repulsion U in this model is large (a realistic description of the cuprates re-
quires U/t & 6), an s-wave superconducting state, in which the electrons are paired on the same
site, is energetically unfavorable. Rather, one expects a state in which the electrons are paired
on different sites. Since DMFT can only describe local order parameters, it is not adequate to
study superconductivity in this model. Rather, one needs to use cluster extensions of DMFT,
and here we focus on DCA studies of this problem.

Superconducting instability

If the Hubbard model is supposed to describe the cuprate high-temperature superconductors,
then it should have a superconducting instability to a dx2−y2-wave state with a cos kx − cos ky
momentum structure. By Fourier-transforming to real space, we see that in this state, the elec-
trons are paired on nearest-neighbor sites with a dx2−y2 phase (+1 along ±x and -1 along ±y).
Thus, one needs at least a 4-site 2×2 cluster to describe this state. The earliest DCA calcula-
tions of this problem were therefore done for a 2×2 cluster. The left panel in Fig. 8 shows the
temperature versus doping δ = 1− 〈n〉 phase diagram of the 2D Hubbard model with U/t = 8

that resulted from this DCA Nc = 4 study [23]. And indeed, it has an extended dx2−y2-wave
superconducting phase at finite doping δ below the critical temperature Tc. Here Tc is the tem-
perature T where the pair-field susceptibility in Eq. (41), Pd(T ), with a dx2−y2-wave form factor
gd(K) = cosKx − cosKy diverges.
In addition, the phase diagram has an antiferromagnetic phase below the Néel temperature TN.
This phase transition was determined in an analogous manner to that for the superconducting
phase, by calculating the spin susceptibility χs(Q, T ) =

∑
ij e

iQ(xi−xj)
∫ β
0
dτ 〈TτSzi (τ)Szj (0)〉

for Q = (π, π), where Szi = (c†i↑ci↑ − c†i↓ci↓)/2 is the usual z-component of the spin operator.
This is done in the same manner as for the pair-field susceptibility, i.e., within the framework
described in Sec. 2.4, by calculating the irreducible vertex (in the spin S = 1 particle-hole
channel) from the corresponding cluster susceptibility, and then using this vertex in the Bethe-
Salpeter equation for the lattice susceptibility χs(Q, T ) [10]. Even though the Mermin-Wagner
theorem (see discussion in Sec. 3.1) does not allow for an antiferromagnetic phase at finite T
in the purely 2D model, the mean-field character of the DCA leads to this phase transition at
finite T . In the real cuprate materials, it is the coupling between the copper-oxygen planes that
stabilizes this transition at finite T .
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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Fig. 8: D-wave superconductivity in the 2D repulsive Hubbard model: Left panel: The
temperature T versus doping δ = 1 − 〈n〉 phase diagram calculated with DCA/QMC for a
2×2 cluster with U = 8t has an antiferromagnetic phase near half-filling below TN, a d-
wave superconducting phase at finite doping below Tc, and pseudogap behavior in the normal
state below T ∗. Right panel: Temperature dependence of the inverse pair-field susceptibility
1/Pd(T ) calculated with DCA/QMC for different cluster sizes for U = 4t and 〈n〉 = 0.9. Tc
is only weakly dependent on cluster size Nc when Nc & 12. Figures from [23] (left) and [24]
(right).

The phase diagram also displays a line labeled T ∗. This line does not indicate a phase transition.
Rather, it indicates the temperature below which the bulk spin susceptibility χs(Q = 0, T )

starts to drop when the system is further cooled. This exotic behavior is very different from the
Pauli susceptibility of a normal metal, which is basically independent of temperature at low T .
The downturn in χs(Q = 0, T ) signals the opening of a pseudogap in the low energy spin
excitations, which is also observed in various measurements in the cuprates [25]. In addition, at
the same temperature T ∗, the single-particle spectral function A(k, ω) = −ImG(k, ω + iδ)/π

starts to show a pseudogap, i.e., a partial suppression of spectral weight at the Fermi level ω = 0.
This is also observed in photoemission experiments in the cuprates, and provides evidence that
not only the spin degree of freedom, but electronic excitations in general are suppressed at low
energies. Thus, just like in the real materials, superconductivity in the Hubbard model emerges
from an exotic state, which is very different from a normal metal.

Coming back to superconductivity, the question arises of what happens to the phase transition
in more accurate calculations employing larger clusters when longer-ranged fluctuations are
taken into account. Just like for the attractive Hubbard model, where the critical temperature
is found to drop in larger clusters because of the inclusion of spatial phase fluctuations (see
previous Sec. 3.1), we would expect Tc to fall when larger clusters are used. Does Tc go to
zero or will it remain finite in the exact infinite size cluster limit? This question was first
addressed with the larger cluster DCA calculations [24] of the pair-field susceptibility in a
Hubbard model with U = 4t and 〈n〉 = 0.9 shown in the right panel of Fig. 8. Here, the
temperature dependence of the inverse pair-field susceptibility 1/Pd(T ) is plotted for a number
of different cluster sizes and shapes (indicated by the letters ’A’ and ’B’ following the cluster
size, see Ref. [24]), and the lines are fits to the exponential KT behavior one expects in two
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter
equation in various channels for U=t ¼ 4 and a site occupation
hni ¼ 0:85. The Q ¼ ð";"Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue
is seen to saturate at low temperatures. The leading eigenvalue in the
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metry and increases toward 1 at low temperatures. The largest charge
density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and
saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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2m "T (dashed curve). The Matsubara frequency dependence of
#d
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similar. Inset: The momentum dependence of the eigenfunction
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ðK;"TÞ normalized to #d

x2$y2
ðð0;"Þ;"TÞ shows its dx2$y2

symmetry. Here !n ¼ "T and the momentum values correspond to
values of K which lie along the dashed line shown in the inset of
Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.

FIG. 23 (color online). This figure provides evidence linking the
frequency dependence of the imaginary part of the gap function
#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
(b) The imaginary part $00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify
peaks. The positions of the peaks of !00

an in (a) are shown as the
shaded dots in (b) at the same height as the corresponding $00 to
illustrate their correspondence. One can see that the upward fre-
quency shift of the !00

an peaks relative to the $
00 peaks decreases with

the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
Lorentzian broadening of 0:125t was used for an embedded 2( 2
plaquette. From Kyung, Senechal, and Tremblay, 2009.
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter
equation in various channels for U=t ¼ 4 and a site occupation
hni ¼ 0:85. The Q ¼ ð";"Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue
is seen to saturate at low temperatures. The leading eigenvalue in the
singletQ ¼ ð0; 0Þ,!m ¼ 0 particle-particle channel has dx2$y2 sym-

metry and increases toward 1 at low temperatures. The largest charge
density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and
saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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2m "T (dashed curve). The Matsubara frequency dependence of
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and the normalized spin Q ¼ ð";"Þ susceptibility are

similar. Inset: The momentum dependence of the eigenfunction
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ðK;"TÞ normalized to #d

x2$y2
ðð0;"Þ;"TÞ shows its dx2$y2

symmetry. Here !n ¼ "T and the momentum values correspond to
values of K which lie along the dashed line shown in the inset of
Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.
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#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
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for the same set of dopings. The black dots in (a) and (b) identify
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shaded dots in (b) at the same height as the corresponding $00 to
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the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
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Fig. 9: Dominant correlations in the 2D repulsive Hubbard model: DCA/QMC results for
a 24-site cluster with U = 4t and 〈n〉 = 0.85. Left panel: Leading eigenvalues of the Bethe-
Salpeter equation (43) in different channels. The Q = 0 pairing eigenvalue has dx2−y2-wave
symmetry and increases towards one at low temperatures. TheQ = (π, π) magnetic eigenvalue
dominates but saturates at low temperatures, and the Q = 0 charge eigenvalue remains small.
The inset shows the position of the cluster momenta K in the 24-site cluster. Right panel:
The frequency ωn = (2n + 1)πT dependence of the (normalized) leading dx2−y2-wave pairing
eigenvector φd(K, ωn) for T = 0.125t reflects the ωm = 2mπT dependence of the (normalized)
antiferromagnetic spin susceptibility χs(Q = (π, π), ωm). The inset shows the dx2−y2-wave
cosKx − cosKy momentum dependence of φd(K, ωn = πT ) along the dashed line shown in
the left inset. Figure from [26].

dimensions, i.e., Pd(T ) ∼ exp[2B/
√
T − Tc]. We see that 1/Pd(T ) goes to zero, i.e., Pd(T )

diverges, at a temperature Tc(Nc) for most clusters, with the 4-site cluster clearly showing the
largest Tc ≈ 0.05t. As expected, for larger clusters Tc falls but is stabilized when Nc & 12,
for which Tc ≈ 0.02t. More recent calculations [22] using the DCA+ extension were able to
go to even larger clusters, and found similar results with similar Tc in the large cluster limit.
These calculations were also done for larger U = 7t, for which a larger Tc ≈ 0.05t was found.
These calculations have thus provided evidence that the doped 2D Hubbard model has a d-wave
superconducting instability at finite temperatures.

Pairing mechanism

So far, the calculations we have discussed are “numerical experiments”, i.e., they show that a
model, despite the presence of only repulsive interactions, can have a superconducting ground
state, but do not give an answer to the question of what causes it. Unlike real experiments,
however, we can directly analyze the effective interaction that gives rise to superconductivity in
this model, i.e., the irreducible particle-particle vertex Γ pp(K,K ′) that enters the Bethe-Salpeter
equation (43) for the pair-field susceptibility. This vertex describes the scattering of a pair of
electrons with momenta and spins (k ↑,−k ↓) to a pair of electrons with (k′ ↑,−k′ ↓) (see
Fig. 5). As discussed in Sec. 2.4, we can also study the leading eigenvalue and -vector of the
Bethe-Salpeter equation and thus obtain new insight into this question.
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The left panel of Fig. 9 shows the temperature dependence of the leading eigenvalue λd(T ) of
the particle-particle Bethe-Salpeter equation (43) for U = 4t, 〈n〉 = 0.85, calculated with DCA
in the 24-site cluster shown in the inset [26]. As one sees from the blue curve, it rises sharply
at low temperatures and approaches one, consistent with the divergence in the pair-field suscep-
tibility. One can also construct similar Bethe-Salpeter equations for the charge and magnetic
particle-hole channels. The leading eigenvalues for these channels are shown in red (Q = (π, π)

magnetic) and green (Q = 0 charge). We see that the magnetic eigenvalue is initially domi-
nant, approaches one, but then saturates at values smaller than one at low temperatures. The
leading eigenvalue in the charge channel, in contrast, remains small over the entire temperature
range. From this, we can conclude that antiferromagnetic and superconducting correlations are
the dominant correlations in the system.
The momentum dependence of the eigenvector φd(K, ωn) corresponding to the leading pairing
eigenvalue along the dashed line in the inset of the left panel is shown in the inset of the right
panel. We see that it has a dx2−y2-wave cosKx − cosKy dependence. We note that in contrast
to the calculation of the pair-field susceptibility, where a d-wave form factor is assumed, here
this comes out naturally. The Matsubara frequency dependence of the pairing eigenfunction
φd(K, ωn) is shown in the main right panel and compared with the frequency dependence of the
Q = (π, π) magnetic susceptibility χs(Q, ωm). From this we see that (1) the pairing is retarded,
i.e., frequency dependent, and (2) the pairing dynamics reflects that of the antiferromagnetic
spin fluctuations.
We can also study the momentum and frequency dependence of Γ pp(K, ωn,K

′, ωn′) directly.
Its momentum dependence is shown for three different temperatures in Fig. 10. We see that
Γ pp(K,K ′) is peaked at large momentum transfer K −K ′ = (π, π), and this peak increases
in size as the temperature is lowered. This mirrors the growth of the antiferromagnetic spin
fluctuations with decreasing temperature, as seen in the plot of χs(Q = (π, π), ωm = 0) in the
same figure.
Interestingly, we see that the pairing interaction Γ pp in momentum space is positive, that is,
repulsive! One may then ask: How does a repulsive interaction give rise to pairing? The
answer lies in its momentum structure. If we look at the Bethe-Salpeter equation (43), or its
simpler version, the BCS gap equation (45), we see that for an interaction V (k,k′) ≡ V that
does not depend on momentum, a non-trivial solution ∆(k) 6= 0 only exists if V < 0. This
follows from the minus sign on the left hand side and the fact that the other terms under the
sum are all positive. This is the case for the conventional BCS superconductors or the attractive
Hubbard model discussed in Sec. 3.1, for which V < 0 and the gap equation gives an s-wave
gap ∆(k) ≡ ∆ without momentum dependence.
In contrast, the pairing interaction we find for the Hubbard model is positive and has momentum
dependence. In particular, it increases with increasing momentum transfer k − k′. The Fermi
surface of the doped Hubbard model is schematically shown in the right panel of Fig. 11. It is
similar to that of the hole-doped cuprates. The pairing interaction V (k,k′) scatters a pair with
momenta (k,−k) to a pair with momenta (k′,−k′) for k and k′ near the Fermi surface and this
scattering is strongest for a momentum transfer of k − k′ = (π, π). If the pairing gap ∆(k′)
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Fig. 10: Momentum structure of the pairing interaction in the 2D Hubbard model: Top
panel: K −K ′ dependence of Γ pp(K,K ′) for ωn = ωn′ = πT calculated with DCA/QMC
for a Hubbard model with U = 4t and 〈n〉 = 0.85 on a 4×4 cluster for different temperatures.
Lower panel: Q-dependence of the spin susceptibility χs(Q, ωm = 0) for the same parameters.
Both quantities display a similar increase near (π, π) as the temperature is lowered. Figure
from [5].

is positive for k′ = (π, 0), and V (k − k′) predominantly scatters pairs from k′ = (π, 0) to
k = (0, π), the gap equation has a non-trivial (∆(k) 6= 0) solution if ∆(k) < 0 for k = (0, π).
This is the case for a dx2−y2-wave gap ∆(k) ∼ coskx − cos ky, which changes sign between
k = (π, 0) and (0, π). Hence, the dx2−y2-wave momentum structure of the gap arises naturally
from a pairing interaction that is repulsive in momentum space and peaked at large momentum
transfer. In fact a superconducting gap that changes sign on the Fermi surface generally signals
a non-BCS like repulsive pairing interaction and therefore is taken as evidence for the presence
of unconventional superconductivity [5].
How a repulsive pairing interaction that is peaked at (π, π) can lead to pairing can also be seen
by Fourier-transforming the interaction Γ pp(K,K ′) to real space, according to

Γ pp(`x, `y) =
∑
K,K′

eiK` Γ pp(K,K ′) eiK
′`, (47)

for ωn = ωn′ = πT . Here, Γ pp(`x, `y) is the strength of the ωn = ωn′ = πT pairing interaction
between a singlet pair formed with one electron at the origin and the other at site (`x, `y). It is
shown in the right panel of Fig. 11. We see that this interaction is strongly repulsive for on-site
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.

We acknowledge useful discussions with M. Novotny,
R. Scalettar, S. Sorella, and S. R. White. This research was
enabled by computational resources of the Center for
Computational Sciences and was sponsored by the offices
of Basic Energy Sciences and Advanced Scientific Com-
puting Research, U.S. Department of Energy. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC
under Contract No. DE-AC0500OR22725. The develop-
ment of the DCA formalism and algorithm was supported
by the NSF under Grant No. DMR-0312680 as well as
through resources provided by San Diego Supercomputer
Center under NSF cooperative agreement SCI-9619020.

[1] P. W. Anderson, Science 235, 1196 (1987).
[2] F. Zhang and T. Rice, Phys. Rev. B 37, R3759 (1988).
[3] N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[4] G. Su and M. Suzuki, Phys. Rev. B 58, 117 (1998).
[5] J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).
[6] C. Halboth and W. Metzner, Phys. Rev. B 61, 7364

(2000).
[7] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[8] S. Sorella, G. Martins, F. Becca, C. Gazza, L. Capriotti,

A. Parola, and E. Dagotto, Phys. Rev. Lett. 88, 117002
(2002).

[9] D. Scalapino, J. Low Temp. Phys. 117, 179 (1999).
[10] T. Paiva, R. R. Santos, R. Scalettar, and P. Denteneer,

Phys. Rev. B 69, 184501 (2004).
[11] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell,

T. Pruschke, and H. R. Krishnamurthy, Phys. Rev. B 58,
R7475 (1998).

[12] T. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Rev.
Mod. Phys. 77, 1027 (2005).

[13] T. R. Thurston et al., Phys. Rev. B 40 , 4585 (1989).
[14] M. Jarrell, T. Maier, C. Huscroft, and S. Moukouri, Phys.

Rev. B 64, 195130 (2001).
[15] T. Maier, M. Jarrell, T. Pruschke, and J. Keller, Phys. Rev.

Lett. 85, 1524 (2000).
[16] G. Su, Phys. Rev. Lett. 86, 3690 (2001).
[17] D. Senechal, P.-L. Lavertu, M.-A. Marois, and A.-M.

Tremblay, Phys. Rev. Lett. 94, 156404 (2005).
[18] D. Betts, H. Lin, and J. Flynn, Can. J. Phys. 77, 353

(1999).
[19] K. Kuroki, T. Kimura, and H. Aoki, Phys. Rev. B 54,

R15641 (1996).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  0.1  0.2  0.3  0.4  0.5

1/
P

d

T/t

4A
8A

12A
16B
16A
20A
24A
26A

0.0

0.2

0.4

0.6

0.8

 0  0.02  0.04  0.06

FIG. 3 (color). Inverse d-wave pair-field susceptibility as a
function of temperature for different cluster sizes at 10% doping.
The continuous lines represent fits to the function Pd !
A exp"2B=#T $ Tc%0:5& for data with different values of zd.
Inset: magnified view of the low-temperature region.
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fully irreducible vertex !irr, the S ¼ 0 charge fluctuations
1
2"d, and the S ¼ 1 spin fluctuations 3

2"m . As noted, it is the
increase of # with momentum transfer that gives rise to the
attractive near-neighbor pairing and it is clear from Fig. 20

that this comes from the S ¼ 1 part of the interaction.
The fully irreducible vertex is essentially independent of
momentum transfer and so it contributes only to the on-site
repulsion, while the S ¼ 0 charge part decreases at large
momentum giving rise to a small repulsive near-neighbor
interaction.

In these numerical calculations, one also obtains the
dressed single-particle Green’s function Gðk; i!nÞ. Given G
and #pp, one can determine the Bethe-Salpeter eigenvalues
and eigenfunction in the particle-particle channel by solving

$T

N

X

k0
#PPðk;k0ÞG"ðk0ÞG#ð$k0Þ!"ðk0Þ¼#"!"ðkÞ: (13)

This is basically the fully dressed BCS gap equation and
when the leading eigenvalue goes to 1 the system becomes
superconducting. One can also construct similar Bethe-
Salpeter equations for the charge and magnetic particle-hole
channels. Figure 21 shows a plot of the leading eigenvalues
associated with the particle-particle pairing channel and the
particle-hole charge S ¼ 0 and spin S ¼ 1 channels for
U=t ¼ 4 and a filling hni ¼ 0:85. As the temperature is
lowered, the particle-hole S ¼ 1 antiferromagnetic channel
with center-of-mass momentum Q ¼ ð$;$Þ is initially domi-
nant. However, at low temperatures the Q ¼ 0 pairing chan-
nel rises rapidly and the divergence of the antiferromagnetic
channel saturates. The charge channel eigenvalue remains

FIG. 19 (color online). The real space structure of the pairing
interaction obtained from the Fourier transform Eq. (11) of
#ppðk; k0Þ at a temperature T ¼ 0:125t for U ¼ 4t and hni ¼
0:85. Here there is an attractive pairing interaction for a singlet
formed between an electron at the origin and a near-neighbor site.
The peak in #pp shown in Fig. 18 leads to a pairing interaction
which oscillates in space.

FIG. 20 (color online). The momentum dependence of the various contributions that make up the irreducible particle-particle pairing vertex
#pp. (a) The irreducible particle-particle vertex #pp vs q ¼ K $ K0 for various temperatures with !n ¼ !n0 ¼ $T. Here K ¼ ð$; 0Þ and K0

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 21. Note that the interaction
increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q dependence of the fully irreducible two-fermion
vertex !irr. (c) The q dependence of the charge density (S ¼ 0) channel 1

2"d for the same set of temperatures. (d) The q dependence of

the magnetic (S ¼ 1) channel 3
2"m . Here one sees that the increase in #pp with momentum transfer arises from the S ¼ 1 particle-hole

channel. From Maier, Jarrell, and Scalapino, 2006b.
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Fig. 11: D-wave pairing from repulsive interactions: Left panel: Sketch of how repulsive
scattering at large momentum transfer gives rise to dx2−y2-wave pairing for the Fermi surface
of a hole-doped Hubbard model. For this case, a gap that changes sign between the regions
near (π, 0) and (0, π) satisfies the BCS gap equation (45). Right panel: Real space Fourier-
transform Γ pp(`x, `y), Eq. (47), of the pairing interaction Γ pp(K,K ′) for ωn = ωn′ = πT
shown in Fig. 10 for T = 0.125t. Here red (blue) bars indicate positive (negative) values of
Γ pp(`x, `y) and the length of the bars corresponds to its magnitude. The pairing interaction
is strongly repulsive for on-site pairs, but attractive when the electrons forming the pair sit on
nearest-neighbor sites. Figure from [5].

pairs, but attractive (negative) if the electrons are on nearest-neighbor sites. At longer distances,
the interaction keeps oscillating but falls of rapidly with distance.

We have seen that the momentum and frequency structure of the pairing interaction given by
the irreducible particle-particle vertex Γ pp(k, ωn,k

′, ωn′) reflects that of the spin fluctuations
described by the spin susceptibility χs(q, ωm). In fact, from weak coupling theory, one expects
that

Γ pp(k, ωn,k
′, ωn′) ≈

3

2
Ū2χs(k − k′, ωn − ωn′), (48)

where Ū is a coupling constant. This form of the pairing interaction is only approximate, i.e.,
it only accounts for a subset of the Feynman diagrams that enter Γ pp. However, DCA studies
have found that other contributions, such as the charge fluctuations, are negligible [16]. Hence,
this approximate form has been shown to give a very good approximation of the “exact” DCA
vertex Γ pp and thus the resulting eigenvalues and -vectors of the Bethe-Salpeter equation, and
therefore Tc [27]. One then speaks of a spin-fluctuation pairing interaction, in which the pairing
is mediated by the exchange of (antiferromagnetic) spin fluctuations [5]. In contrast to the
electron-phonon interaction, however, in this case the electrons that are being paired provide
their own pairing glue, i.e., there are no separate degrees of freedom such as the phonons in
conventional superconductors that mediate the pairing. Thus, it is not possible to separately
tune the degrees of freedom that are being paired and the degrees of freedom that mediate
the pairing. This makes it difficult to optimize Tc. One may see this by using a separable
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with quantum Monte Carlo approaches, and so we will in-
stead study a simpler two-orbital model with only intraor-
bital Coulomb interactions. This model will be realized by a
bilayer Hubbard model. Its Hamiltonian is given by

H = −t
∑

⟨ij⟩mσ

(
c

†
imσ cjmσ + h.c.

)
− t⊥

∑

iσ

(
c

†
i1σ ci2σ + h.c.

)

+ U
∑

im

nim↑nim↓. (2)

Here, the layers are indexed by m, each layer is described
by the Hamiltonian in Eq. (1) and t⊥ is an additional hop-
ping parameter between neighboring sites in the bilayer
model. This model provides a simplified two-orbital system
in which one can study the type of pairing that can occur
in systems with multiple Fermi surfaces such as the iron-
pnictides.

In order to analyze these models, we will use a dynamic
cluster quantum Monte Carlo approximation (DCA/QMC)
[6, 8, 13]. The DCA maps the bulk lattice problem onto an
effective periodic cluster embedded in a dynamic mean-field
that is designed to represent the rest of the system. The effec-
tive cluster problem is then solved using a quantum Monte
Carlo algorithm. The results discussed in this paper were
obtained with a Hirsch–Fye method [8]. DCA/QMC calcu-
lations of the 2D Hubbard model have found many phenom-
ena that are also observed in the cuprates, including an anti-
ferromagnetic Mott state, d-wave superconductivity as well
as pseudogap behavior [13]. It therefore provides an inter-
esting framework to study many of the open questions in the
field.

Formally, the quantity of interest to study the nature of
pairing in these models is given by the two-particle irre-
ducible vertex in the particle-particle channel, Γ

pp
irr (k, k′)

[14]. Here, k = (k, iωn) with ωn a fermion Matsubara fre-
quency and we are interested in the singlet pairing channel.
This quantity describes the scattering of two electrons with
momenta k and −k and antiparallel spins to a state with
momenta k′ and −k′ and, therefore, describes the pairing
interaction. Together with the single-particle Green’s func-
tion G(k), it enters the Bethe–Salpeter equation

− T

N

∑

k

Γ
pp

irr

(
k, k′)G

(
k′)G

(
−k′)Φα

(
k′) = λαΦα(k) (3)

which provides information on the strength (λα) and mo-
mentum and frequency structure (Φα(k)) of the leading pair-
ing correlations in the system [14]. At Tc, λα = 1 and Φα(k)

becomes identical to the superconducting gap. In the 2D
Hubbard model, at low temperature, one finds that the eigen-
vector corresponding to the leading eigenvalue has a d-wave
coskx − cosky momentum dependence.

Previous DCA/QMC simulations of the 2D Hubbard
model [14, 15] have found that the momentum and fre-
quency dependence of the pairing interaction Γ

pp
irr (k, k′) is

Fig. 1 (a) Superconducting transition temperature Tc versus doping x
for the 2D Hubbard model with U = 8 calculated with DCA/QMC on
an 8-site cluster. (b) Normalized interaction strength Vd and “intrinsic”
pair-field susceptibility Pd,0 versus doping x calculated at a tempera-
ture T = 0.125

similar to that of the spin susceptibility χ(k − k′), providing
evidence that that pairing interaction in this model is carried
by spin fluctuations.

In a spin fluctuation picture, one can naturally under-
stand the drop of Tc with doping on the overdoped side of
the cuprate phase diagram, since the spin-fluctuations are
weakened by doping away from the antiferromagnetic par-
ent state. On the other hand, the drop of Tc with underdop-
ing is difficult to understand in a picture where pairing is
mediated by spin fluctuations, since one would expect them
to get stronger when the system is doped towards the Mott
state. To investigate this issue, we show in Fig. 1a the tem-
perature versus doping superconducting phase diagram of
the 2D Hubbard model, calculated with DCA/QMC on an 8-
site cluster with U = 8. One sees that these calculations cor-
rectly predict the experimentally observed dome-like struc-
ture of the superconducting phase diagram, with Tc dropping
with both over and underdoping.

In order to analyze how this behavior arises from the
Bethe–Salpeter equation (3), we have calculated the “in-
trinsic” pair-field susceptibility projected onto the leading
eigenvector, Pd,0 = T/N

∑
k Φd(k)2G(k)G(−k) and the

strength of the pairing interaction Vd from VdPd,0 = λd . The
doping dependence of these quantities calculated at a low
temperature above Tc are shown in Fig. 1b. As one would
expect from a spin-fluctuation based pairing interaction, Vd

rises monotonically with decreasing doping toward the Mott
insulator. In contrast, Pd,0 decreases with decreasing dop-

Fig. 12: Dome-shaped structure of the superconducting phase: Top panel: Superconducting
Tc versus doping x in the 2D Hubbard model with U = 8t calculated with DCA/QMC for
an 8-site cluster. Bottom panel: Normalized interaction strength Vd and intrinsic pair-field
susceptibility Pd,0 versus doping x for T = 0.125t. The dome-like shape arises from competing
trends in these two quantities as the doping varies. Figure from [28].

approximation for Γ pp [26],

Γ pp(K,K ′) ≈ −Vd φd(K)φd(K
′), (49)

which becomes valid close to Tc when the d-wave eigenvalue λd is well separated from other
eigenvalues. With this, the Bethe-Salpeter equation (43) for the d-wave eigenvalue becomes

Vd(T )Pd,0(T ) ≈ λd (50)

with the “intrinsic” d-wave pair-field susceptibility Pd,0(T ) = T/Nc

∑
K φ

2
d(K) Ḡ0

2,↑↓(K).
The doping x = 1 − 〈n〉 dependence of Pd,0(T ) and Vd(T ) extracted from Vd = λd/Pd,0 via
Eq. (50) is shown in the bottom panel of Fig. 12 together with the x-dependence of Tc. From
this we see that the doping x, as a tuning parameter, has opposite effects on the strength of the
pairing interaction Vd and the intrinsic pair-field susceptibility Pd,0, and thus Tc as seen in the
top panel: With decreasing x, Vd rises, but Pd,0 falls, and the opposite behavior is observed
with increasing x. The increase in Vd as half-filling (x = 0) is approached can be understood
from the increase in the strength of the spin-fluctuations. The reason that this increase does not
lead to an increase in Tc is that, at the same time, Pd,0 is suppressed. This can be understood
from a reduction in the quasiparticle weight as the Mott state is approached. The interplay of
the pairing strength Vd and the intrinsic pair-field susceptibility Pd,0 and their opposite doping
dependence lead to the dome-shaped Tc seen in the top panel of Fig. 12.
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3.3 Extended Hubbard model

In the conventional electron-phonon mechanism of superconductivity, retardation is a neces-
sary ingredient in order to overcome the repulsive effect of the Coulomb interaction. In the
Hubbard model, as well as in the cuprates, however, the d-wave structure of the Cooper pair
wave function completely avoids the strongly repulsive effect of the local Coulomb U , because
the electrons making up the pair sit on nearest-neighbor sites. Retardation is therefore not a
necessary ingredient in this case. From the strong frequency dependence of the d-wave eigen-
vector shown in Fig. 9, however, we see that the pairing is nevertheless retarded on a scale set
by the dynamics of the spin fluctuations.
The situation changes when an additional nearest-neighbor Coulomb repulsion

V
∑
〈ij〉,σσ′

niσnjσ′ (51)

is considered and added to the Hubbard Hamiltonian in Eq. (1). The idea is that in realistic
systems, the Coulomb repulsion is hardly screened to a purely local interaction, but has an
additional short-ranged contribution. The resulting extended Hubbard model has recently been
studied with DCA to examine the effect of V on d-wave superconductivity [29]. For d-wave
pairs, where the electrons sit on neighboring sites, V is expected to have detrimental effects on
superconductivity.
This is seen in the plot of Tc versus the strength of V shown in Fig. 13. These results were
obtained from 2×2-cluster DCA calculations of the leading d-wave eigenvalue for the extended
Hubbard model for U = 7t and 〈n〉 = 0.9. Although, as expected, Tc is reduced with increas-
ing V, this decrease is rather modest, even up to relatively large values of V close to U/2. Why
is d-wave superconductivity so robust with respect to a nearest-neighbor Coulomb repulsion V,
which, in a static picture, will strongly reduce the binding energy of a d-wave pair and thus
should rapidly suppress Tc? A clue lies in the frequency dependence of the pairing interaction.

d-WAVE SUPERCONDUCTIVITY IN THE PRESENCE OF … PHYSICAL REVIEW B 97, 184507 (2018)

FIG. 1. (a) Temperature dependence of the leading (dx2−y2 -wave)
eigenvalue λd (T ) of the Bethe-Salpeter equation in the particle-
particle channel, Eq. (2) for the extended Hubbard model in Eq. (1)
with U = 7 and ⟨n⟩ = 0.9 for different magnitudes of the nearest-
neighbor Coulomb repulsion V . (b) d-wave eigenvalue λd at a fixed
temperature of T = 0.1 as a function of V for different fillings
⟨n⟩. (c) d-wave superconducting transition temperature Tc extracted
from λd (Tc) = 1 as a function of V. d-wave pairing is only weakly
suppressed by the interaction V as long as V ! U/2.

One also sees that "d (ωm) becomes less attractive at low
frequencies with increasing V . This reduction even exceeds the
frequency-independent 4V repulsive contribution, indicating
that there is another repulsive and dynamic contribution that
further weakens the d-wave pairing interaction. We come back

FIG. 2. The d-wave-projected irreducible particle-particle vertex
"d (ωm) for different values of V for ⟨n⟩ = 0.9. For finite V, "d

is attractive at low frequencies but then turns repulsive at higher
frequencies where it approaches 4V .

to this point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected in the
frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and ⟨n⟩ = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in "d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and ⟨n⟩ = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .

184507-3

Fig. 13: Resilience of d-wave pairing to a nearest-neighbor Coulomb repulsion: DCA/QMC
2×2-cluster results for Tc versus the nearest-neighbor Coulomb repulsion V in an extended 2D
Hubbard model with U = 7t and 〈n〉 = 0.9. Figure from [29].
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FIG. 2. The d-wave-projected irreducible particle-particle vertex
"d (ωm) for different values of V for ⟨n⟩ = 0.9. For finite V, "d

is attractive at low frequencies but then turns repulsive at higher
frequencies where it approaches 4V .

to this point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected in the
frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and ⟨n⟩ = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in "d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and ⟨n⟩ = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .

184507-3

Fig. 14: The role of retardation in the pairing mechanism: Left panel: DCA/QMC 2×2-
cluster results for the d-wave projected pairing interaction Γd(iωm = iωn−iωn′) with ωn′ = πT
versus ωm for different values of V for 〈n〉 = 0.9 and T = 0.1t. Γd is attractive at low
frequencies and for finite V turns repulsive at higher frequencies. Right panel: Frequency
dependence of the leading d-wave eigenvector φd(K, ωn) for K = (π, 0) for different values
of V . The sign change in φd(K, ωn) reduces the repulsive effect of V and thus stabilizes d-wave
superconductivity. Figure from [29].

Fig. 14 shows a plot of the d-wave projected pairing interaction

Γd(ωm = ωn − ωn′) =

∑
K,K′ gd(K)Γ pp(K, ωn,K

′, ωn′)gd(K
′)∑

K g2d(K)
. (52)

Here gd(K) = cosKx − cosKy and ωn′ = πT . For V = 0, we see that Γd(ωm) is negative
over the whole frequency range. In other words, the pair scattering is attractive in the d-wave
channel, as we know from the previous results for the standard model without V . When V is
turned on, we see that Γd(ωm) remains attractive at low frequencies, but then turns repulsive at
higher frequencies. This reflects the fact that V is repulsive in the d-wave channel.

The dynamics of Γd(ωm) is similar to that of the conventional electron-phonon superconductors,
which is attractive at low frequencies due to the electron-phonon interaction, and repulsive at
high frequencies due to the Coulomb repulsion. The effect of this sign change on the d-wave
pairing eigenvector is shown in the right panel of Fig. 14, where the frequency dependence of
φd(K, ωn) is plotted for different values of V. As seen before in Fig. 9, for V = 0, it rapidly falls
to zero. For finite V , however, we see that φd(K, ωn) changes sign and turns negative at high
frequencies, reflecting the sign change in the d-wave pairing interaction Γd(iωm). Thus, just as
φd(K, ωn) changes sign inK to adapt to the repulsive nature of the pairing interaction at large
momentum transfer, φd(K, ωn) also changes sign in frequency to adapt to the repulsive tail of
the pairing interaction due to the Coulomb V . Therefore, just as in the electron-phonon case,
retardation is important and necessary to protect the d-wave pairs from the repulsive effects of
the (nearest-neighbor) Coulomb interaction.
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4 Summary and concluding remarks

In these lecture notes, we have described how one can study superconductivity within the DMFT
and DCA frameworks and how these approaches have been used to provide new insight into the
nature of the pairing mechanism that leads to superconductivity in Hubbard models. As with
other ordered states, there are always two alternative methods to determine a possible phase
transition to a symmetry broken state within a mean-field approach like DMFT and DCA. The
first option is to extend the algorithm to account for a finite order parameter that describes
the symmetry broken state (anomalous propagator 〈ck↑c−k↓〉 in the case of superconductivity),
and start the calculation with a finite field that couples to the order parameter. This field is
then switched off after a few iterations and the calculation relaxes to either a state with order or
without. One may also keep the field turned on during the full calculation, carry out calculations
for different field strengths, and then calculate the response (susceptibility) to the field from the
derivative of the order parameter with respect to the field. The transition temperature Tc is then
obtained from the temperature where the susceptibility diverges. The second option is to carry
out the usual normal state calculation in the absence of order or an external field, but instead
calculate the susceptibility directly from the 4-point correlation function constructed from the
order parameter. Since both DMFT and DCA approaches are thermodynamically consistent [7],
both calculations will give identical results for the susceptibility and therefore Tc.

We have also seen that DMFT and DCA are powerful approaches to study superconductivity
in Hubbard models. DMFT, due to its local nature, can only describe superconducting phases
with order parameters that have a local contribution, such as s-wave. Applied to the attractive
Hubbard model, it allows to study s-wave superconductivity, which is expected in the doped
model due to its on-site attractive pairing potential U < 0. While it captures the rise of Tc with
increasing |U |, DCA calculations employing larger clusters are needed to describe the downturn
of Tc at large |U | due to phase fluctuations.

For the repulsive Hubbard model, s-wave pairing is energetically unfavorable and therefore
DMFT is not an adequate approach. DCA calculations employing a 2×2 cluster are the sim-
plest possible calculations to study the dx2−y2-wave pairing state that is expected for this model,
which offers the most basic description of the cuprate high-temperature superconductors. And
indeed, such 2×2-cluster DCA calculations have found properties reminiscent of the real ma-
terials, including antiferromagnetic, d-wave superconducting, and pseudogap behavior. DCA
calculations also find that superconductivity remains stable in larger cluster calculations, pro-
viding evidence that the doped 2D Hubbard model does have a finite temperature d-wave su-
perconducting transition.

Finally, we have seen that one can go beyond these numerical experiments and use these ap-
proaches to get insight into the mechanism that leads to pairing in these systems. Unlike real
experiments, these calculations can be used to directly analyze the momentum and frequency
structure of the pairing interaction. For the simple Hubbard model, one finds that it reflects the
momentum structure of the spin fluctuations, and one speaks of a spin-fluctuation pairing inter-
action. Just as in the conventional electron-phonon case, this interaction is retarded on a scale
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set by the dynamics of the antiferromagnetic spin fluctuations. While this retardation is not
needed to overcome the local Coulomb repulsion in the simple Hubbard model, we have seen
that it is essential in making the d-wave pairing state resilient to an additional nearest-neighbor
Coulomb repulsion.
Because of the difficulty associated with solving the DMFT impurity or DCA cluster problem,
most applications of these approaches in the field of superconductivity have been concerned
with single-band Hubbard models. Additional orbital degrees of freedom must, however, be
included in more complex models if one wants to study most materials other than the cuprates,
such as, for example, the iron-based superconductors. While this remains a challenging but
desirable task for the long term, more immediate progress may be made with simple toy models,
such as the bilayer Hubbard model studied in Ref. [30], that have some overlap with the physics
of the real materials.
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1 Introduction

Dynamical mean field theory (DMFT) [1, 2] has been a breakthrough for describing electronic
correlations in models [3] and – in combination with density functional theory – even in actual
materials [4–6]. This breakthrough has been brought about since DMFT includes a major part
of the electronic correlations, namely the local ones. On the other hand, the arguably most fas-
cinating physical phenomena such as (quantum) criticality, high-temperature superconductivity
and vertex corrections to the conductivity rely on non-local correlations.
Hence, in recent years these non-local correlations have been at the focus of the methodological
development. There are two routes that include the local DMFT correlations but also incor-
porate non-local correlations beyond. On the one hand there are cluster extensions of DMFT,
which take instead of the single site of DMFT a cluster of lattice sites that is embedded in a
dynamical mean field. This way correlations within the cluster are taken into account. For a
review see [7] and for a pedagogical introduction see the lecture by Th. Maier in this School.
Because of numerical limitations the size of the cluster is, however, limited to about 10×10
lattice sites and even less in the case of realistic multi-orbital calculations. This is sufficient
to describe short range correlations; and indeed cluster extensions of DMFT have been highly
successful for describing pseudogaps and d-wave superconductivity in the two-dimensional (2d)
Hubbard model. However long-range correlations as they occur for example in the vicinity of a
phase transition cannot be described in this way.
For including short- and long-range correlations on an equal footing, in recent years, diagram-
matic extensions of DMFT have been developed. This development started with the dynamical
vertex approximation (DΓA) [8] and the dual fermion (DF) approach [9], continuing with a
plethora of further approaches [10–13]. All of these approaches take a local two-particle vertex
as a starting point and from this construct the local DMFT correlations as well as non-local
correlations beyond. The difference lies in the details: which vertex is taken, by which Green
functions these are connected, and which Feynman diagrams are considered. For a review,
see [14]. Successes of these diagrammatic extensions of DMFT include the calculation of criti-
cal exponents in the Hubbard [15,16] and Falicov-Kimball model [17], quantum criticality in the
3d Hubbard [18] and 2d periodic Anderson model [19], the suppression of antiferromagnetism
by spin fluctuations in the 3d and 2d Hubbard model [20, 15, 21], the fate of the Mott-Hubbard
metal-insulator transition for the 2d Hubbard model [22], pseudogaps [23,20,11,24,25,12] and
superconductivity [21, 26] in the 2d Hubbard model.
In the following we first give a brief synopsis of the DΓA approach in Section 2, for further
reading see the Lecture Notes [27] and the review [14]. For an introduction to the DF approach
we refer the reader to the Chapter by H. Hafermann in these Lecture Notes, as well as to [14].
The main focus of the present Lectures Notes is on physical results, starting with the critical
and quantum critical properties of the 3d Hubbard model in Section 3 and 4, respectively. The
quantum critical properties of the 2d periodic Anderson model are discussed in Section 5, before
we turn to superconductivity in the 2d Hubbard model in Section 6. Finally, Section 7 provides
a brief summary and outlook.
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Σ

Σ Σ Σ+= +

Σ ΣΣ+ +  ...

+=

Fig. 1: Dyson equation connecting Green function and self energy. The pair of scissors in-
dicates that these diagrams are one-particle reducible (i.e., cutting one G0 line separates the
Feynman diagram into two parts). From [27].

2 Synopsis: Dynamical vertex approximation

The basic idea of the dynamical vertex approximation (DΓA) is a resummation of Feynman
diagrams, not in order-by-order of the Coulomb interaction as in conventional perturbation
theory, but in terms of their locality. That is, we assume the fully irreducible n-particle vertex to
be local and from this building block we construct further diagrams and non-local correlations.
The first level (n = 1) is then just the DMFT which corresponds to all local Feynman diagrams
for the self-energy Σ. Note that Σ is nothing but the fully irreducible n = 1-particle vertex.
One particle-irreducibility here means that cutting one Green function line does not separate
the Feynman diagram into two pieces. Indeed, such reducible diagrams must not be included
in the self-energy since it is exactly these diagrams that are generated from the Dyson equation
which resolved for G reads

Gνk =
(
1/G0,νk −Σνk

)−1 (1)

for momentum k, Matsubara frequency ν and non-interacting Green function G0,νk. For an
illustration, see Fig. 1, which also explicitly shows how one-particle reducible diagrams are
generated through the Dyson equation; and hence must not be contained in the Σ-diagrams
On the next level, for n=2, we assume the locality of the two-particle fully irreducible vertex Λ.
That is cutting two Green function lines does not separate the diagram into two pieces. There is
a set of exact equations, coined parquet equations [28–30, 14], that allows us to calculate from
a given Λ the full vertex, self-energy, and Green function as well as the irreducible vertices Γ`
in three different channels `.
For understanding how these irreducible vertices Γ` and Λ come about, we consider in Fig. 2
the parquet decomposition of the full vertex F into the fully irreducible vertex Λ and those parts
that are two-particle reducible. There are three distinct such reducible parts Φ`, since say leg
1 may stay connected with leg 2, 3, or 4 when cutting two Green function lines as indicated
in Fig. 2. The irreducible vertex is just the complement: Γ` = F − Φ`. The three possible
channels ` are denoted as particle-hole (ph), transversal particle-hole (ph) and particle-particle
(pp) channel. It is important to note that each reducible diagram is contained in one and only
one of these channels.1

1One can easily show that otherwise cutting lines would result in a diagram with one incoming and two outgoing
lines, which is not possible because of the conservation of (fermionic) particles.



14.4 Karsten Held

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

2

1

3

4

Φph

2

1

3

4
F

2

1

3

4
Λ

Λ

2

ph
Φ

2

Φpp

+= +
1 4

3

4

3

1
+

Fig. 2: Parquet decomposition of the full (reducible) vertex F into the fully irreducible vertex Λ
and two-particle reducible diagrams Φr in the three channels. The two pairs of scissors indicate
the reducibility of the three Φ`’s. From [27].

There is a set of 6 “parquet” equations: (1) the actual parquet equation (Fig. 2); (2-4) the Bethe-
Salpeter equation in the three channels (in the following we only reproduce the ph channel2

with r ∈ {d, s} for a symmetric/antisymmetric spin combination)3

F νν′ω
r,kk′q = Γ νν′ω

r,ph,kk′q +
∑
k1ν1

Γ νν1ω
ph,r,kk1q

Gk1ν1 G(k1+q)(ν1+ω) F
ν1ν′ω
r,k1k′q

; (2)

the (5) Dyson Eq. (1); and (6) the Schwinger-Dyson equation which in a four vector notation
k = (ν,k) reads

Σk = −U
∑
k′,q

(
F k,k′q
c − F k,k′q

s

)
Gk+q Gk′ Gk′+q (3)

and connects Σ and F (here for a single-orbital and local interaction U ).4 This set of 6 parquet
equations allows us to determine the six quantities F, Φr, Σ, and G if we know Λ — or if we
approximate it by a local Λ in DΓA. This local Λ can be calculated by solving an Anderson
impurity model, similar as in DMFT but on the two-particle level.
In principle, one can then further turn to the n = 3-particle level etc.; and for n → ∞ DΓA
recovers the exact solution. As a matter of course determining the n=3-particle vertex becomes
already cumbersome. But it may serve at least for estimating the error if one is truncating the
scheme at the two-particle vertex level. Such an error estimate has been done already for the
DF approach [31]. A similar calculation for DΓA is more difficult because one first needs to
determine the n=3-particle fully irreducible vertex, whereas the DF approach is based on the
full vertex F, which is readily obtained from continuous-time quantum Monte-Carlo simulations
[32–34], but a diagrammatically less compact object.
Let us finally mention a simplified ladder DΓA scheme. Here, instead of a local Λ, one starts
with a local Γph and Γph and uses the Bethe-Salpeter ladder Eq. (2) in these channel to obtain

2The frequency-momentum convention is such that the four legs in Fig. 2 have frequency-momentum k1 = k,
k4 = k′, k2 = k + q, and, because of energy-momentum conservation, k3 = k′ + q.

3We assume a proper normalization of the momentum and frequency sums with respect to the number of k-
points and β, i.e.,

∑
k 1 = 1 and

∑
ν =̂ 1

β

∑
ν .

4There is an additional Hartree(-Fock) term not shown.
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F. This way, fluctuations in the particle-particle (Cooperon) channels are neglected. But if
we are close to half-filling, or, more specifically, if no superconducting fluctuations nor weak
localization is to be expected, the dominant non-local correlations are included in this simplified
ladder DΓA. The advantage is that if we do not couple the ladders through the parquet equations,
the ladder only depends on a single frequency-momentum q instead of three (q,k,k′). Hence
numerically much lower temperatures (finer frequency grids) and much larger momentum grids
are feasible. Going further into details would require a chapter on its own, and we refer the
reader to [14] and for a pedagogical introduction of DΓA to [27]; for properties of the local
two-particle vertex cf. [35].

3 Criticality in the 3d Hubbard model

Let us start with the Hamiltonian of the Hubbard model

H = −t
∑
ij,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (4)

consisting of two terms: a nearest-neighbor hopping amplitude t and a local Coulomb repulsion
U . Here c†iσ (ciσ) creates (annihilates) an electron on site i with spin σ, and niσ = c†iσciσ.
For the study of critical properties in the paramagnetic phase, in particular the behavior of the
susceptibility5 χ and the correlation length ξ is relevant. In the vicinity of the critical tempera-
ture Tc, the diverging behavior of χ and ξ is described by critical exponents γ and ν, respectively

χω=0
Q ∼ (T − Tc)−γ; (6)

ξ ∼ (T − Tc)−ν . (7)

Here, the static (ω = 0) susceptibility is taken for that momentum q = Q at which the first
divergence occurs at Tc, signaling the emergence of, e.g., ferromagnetic, Q = (0, 0, . . .), or
antiferromagnetic, Q = (π, π, . . .), order.
In practice the DΓA (or DF) susceptibility is calculated from the full two-particle vertex which
describes the connected part of the two-particle Green function. The latter term (often referred
to as vertex corrections) in turn together with the disconnected “bubble” diagram yields the
susceptibility.6 This full two-particle vertex includes non-local correlation effects, while the
irreducible vertex acting as a building block is local in DΓA.

5For the sake of completeness, let us define χ as the Fourier-transform of the spin-spin correlation function
from imaginary time τ and lattice sites R to frequency ω and momentum q (β = 1/T : inverse temperature)

χωq =

∫ β

0

dτ
∑
R

〈SzR(τ)Sz0(0)〉 e−iqR eiωτ . (5)

6Note that the DMFT calculation of the susceptibility takes the local irreducible vertex in the particle-hole chan-
nel and from this constructs the particle-hole ladder [3]. The difference to the ladder DΓA or DF is that the con-
necting Green functions are recalculated self-consistently or, to mimic this self-consistency effect, a Moriyaesque
λ-correction is employed, see [14, 20, 27, 36]. Further, the transversal particle-hole channel is taken into account
on an equal footing. In parquet DΓA, additionally, particle-particle vertex corrections couple into the particle-hole
and transversal particle hole channel.
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Fig. 3: Left: Inverse antiferromagnetic susceptibility χ−1
Q=(π,π,π) (top) and correlation length ξ−1

(bottom) as a function of temperature T for the 3d Hubbard model at half-filling and U ≈ 12.2t
in DΓA. Right: Extracted critical exponents obtained in DΓA (from the fits in the left panel)
and DF (also for the Falicov-Kimball model) compared to mean-field, 3d Heisenberg and 3d
Ising critical exponents. From Refs. [14–16].

That is, if we plot the susceptibility χω=0
q as a function of momentum q, it has a maximum at a

certain q = Q of value χω=0
Q . The width around this maximum on the other hand is given by

the inverse correlation length ξ−1 according to the Ornstein-Zernike [37] relation

χω=0
q ∼ 1

(q−Q)2 + ξ−2
. (8)

This relation was found to hold even in a quite large q-region around the maximum Q so that,
in practice, ξ is actually obtained from a fit according to Eq. (8).
Fig. 3 (left panels) plots the thus obtained DΓA susceptibility and correlation length as a func-
tion of temperature. There is a clear deviation from a mean-field behavior [γ = 1, ν = 0.5,
see Fig. 4 (a)]. For the temperatures of Fig. 3 (left), γ ≈ 1.4, ν ≈ 0.7 is obtained from the
indicated numerical fit [15], with the error bar in Fig. 3 (right) corresponding to the deviation to
a second fit omitting one temperature point. Within the error bars, this agrees with the critical
exponents obtained for the Heisenberg model [γ ≈ 1.39, ν ≈ 0.705, see Fig. 4 (b)] for large
scale simulations [38]. Indeed universality tells us that the two models should have the same
critical exponents since the dimension is the same (3d), as is the symmetry of the order param-
eter: O(3) since we have rotational symmetry as regards the possible orientation of the ordered
magnetic moment.
Let us also note that the two exponents are connected through the Fisher relation [39] as

γ/ν = 2− η (9)
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Fig. 4: Inverse susceptibility χ−1 and correlation length ξ−1 as a function of temperature T .
Left: Classical critical point with a finite critical temperature TN , comparing a) Gaussian
fluctuations and b) the 3d Heisenberg model. Right: Quantum critical point with a phase
transition at T = 0, comparing c) conventional Hertz-Millis-Moriya theory and d) the Kohn-
line universality class. From Ref. [18].

with the critical exponent η describing the decay of spatial correlations at T = Tc. The exponent
η vanishes above the upper critical dimension, and is typically very small η ≈ 0 in 3D and even
in 2D. Hence, we will further consider η = 0 in these Lecture Notes.
While the deviation from mean-field exponents is obvious, one should always keep in mind that
the fitting procedure to extract critical exponents from numerical as well as from experimental
data has a large degree of uncertainty [40, 41]. Further there is, necessarily, some distance of
the numerical data to the critical temperature.7 Hence “last minute” changes of the curvature
in the immediate vicinity of the critical temperature might be missed in a numerical fit. For
the attractive Hubbard model, whose superconducting phase transition out of half-filling should
have the universality class of the XY model, it was found [42] that the critical exponents might
also be consistent with γ = 2, ν = 1 close to Tc. At the same time, other groups obtained the
same critical 3d Heisenberg exponents using the DF approach [16], and different ones for the
Falicov-Kimball model [17]. which has an Ising universality class, see Fig. 3 (right panel).

7As the correlation length keeps increasing to thousands and ten thousands of lattice sites, we need a larger
and larger numerical resolution in Fourier, i.e. k, space. Doing reliable calculations significantly closer to Tc than
shown is hardly possible.
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4 Quantum criticality in the 3d Hubbard model

A quantum critical point (QCP) is a critical point at zero temperature, T = 0. In this case,
besides the classical fluctuations with long-range correlations in space, an additional dimension,
time, becomes relevant. At any finite temperature, these correlations in time are not relevant
since they are cut-off at a scale β = 1/T . Maybe one can best understand this in imaginary
time τ as it is restricted to the interval τ ∈ [0, β].
For a classical critical point at finite T , the correlation length in time will hence eventually
exceed β = 1/T if we are close enough to the phase transition. At this point, correlations in time
are cut off, and not relevant any longer close enough to the phase transition. Consequently, the
critical exponents are only determined by the number d of spatial dimensions and the symmetry
of the order parameter.
This changes for a quantum phase transition at T = 0. Here, also a divergent correlation length
in time becomes relevant. The effective dimension is hence deff = d + z. With the above
argument, one might assume one extra dimension, i.e., z = 1. However, fluctuations in time
can also lead to other values of the dynamical critical exponent z. This is because the spatial
correlation length diverges as ξ ∼ T ν at a QCP whereas the correlation length in time behaves
as ξτ ∼ T zν . Depending on the kind of ordering and the dimension, z may vary. For example,
we have z = 1 for an insulating and z = 2 for a metallic antiferromagnetic QCP. For a review
see [43].
The standard theory for quantum critical points and exponents is the Hertz-Millis-Moriya the-
ory [44–46], based on weak coupling ladder diagrams in a perturbative renormalization group.
Experimentally, on the other hand, quantum criticality is best studied in heavy fermion systems.
That is, in strongly correlated electron systems with f -electrons for which a weak coupling
theory is certainly not sufficient. This has led to different proposals and further theories. One
theory that takes strong electronic correlations into account and the breakdown of the f -electron
Fermi surface is the so-called local quantum criticality, see e.g. [47]. This theory is based on
the extended DMFT [48, 49] which considers the local correlations and self-energy emerging
from non-local interactions, here considered to arise from non-local spin fluctuations.
Diagrammatic extensions of DMFT such as the DΓA take both kinds of physics into account:
similar diagrams as in Hertz-Millis-Moriya theory but with the local vertex instead of a bare
interaction as a starting point so that DMFT effects of strong correlations are automatically
included; and they inherently allow us to describe breakdowns of Fermi surfaces as well.
Let us now turn to quantum criticality in the 3d Hubbard model. Because of perfect nesting we
have an antiferromagnetic ground state for all interactions U at half-filling. Thus, we need to
find another way to realize a quantum critical point. One possibility is to dope the system as
shown in Fig. 5. With doping the antiferromagnetic order is suppressed so that we eventually
arrive at a quantum critical point (QCP) at n ≈ 0.8. A further complication arises however: The
second order phase transition is only towards a commensurate Néel antiferromagnetic ordering
with wave vector Q = (π, π, π) close to half filling (open triangles in Fig. 5). With further
doping and at the QCP it is towards an incommensurate antiferromagnetic ordering with Q =
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Fig. 5: Phase diagram of the 3d Hubbard model at U = 4
√

6t ≈ 9.8 t, showing the antiferro-
magnetic critical temperature as a function of electron filling n in DMFT (green dashed line)
and DΓA (red triangles). Inset: The antiferromagnetic ordering wave vector Q is commensu-
rate with Qz = π (open triangles in the main panel) around half-filling and incommensurate
with Qz < π ordering at larger doping (full triangles in the main panel). The dashed line of the
main panel indicates the possible crossover between commensurate and incommensurate Qz in
the ordered phase. From Ref. [18].

(π, π, π− δ) (filled triangles in Fig. 5). Besides this interesting aspect of the changing Q vector
(cf. inset of Fig. 5), we also see that the spin fluctuations taken into account in the DΓA suppress
the critical temperature compared to the DMFT solution.

In Fig. 6 we study the critical exponents again for both, the susceptibility χ and correlation
length ξ. For n = 1 and n = 0.87 we are far away from the QCP in Fig. 5, and within the
numerical error bars our fit suggests the classical critical exponents of the Heisenberg model
(ν ≈ 0.7, γ ≈ 1.4). The dopings n = 0.805 and n = 0.79 are just below and above the QCP in
Fig. 5. Here, the critical exponent for the correlation length ξ clearly shows a different exponent;
within the error bars we obtain ν ≈ 1. Only at the lowest temperature there is a deviation to
a smaller ξ−1 for n = 0.805, signaling the eventual finite-temperature antiferromagnetic phase
transition as we are still to the left of the QCP in Fig. 6. At n = 0.79, on the other hand, we are
to the right of the QCP. That is, eventually the correlation length must saturate because of the
paramagnetic ground state. Indeed, here the value at the lowest T in Fig. 6 indicates a deviation
to a larger ξ−1.
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Fig. 6: Inverse correlation length (ξ−1, upper panels) and susceptibility (χ−1, lower panels)
vs. T in DΓA for different n. Solid lines: fits for extracting the critical exponents γ and ν from
the green points. Insets: zoom in to the lowest temperature points. From Ref. [18].

The result ν ≈ 1 was quite a surprise at first. Since our effective dimensions is deff = d + z =

3 + 2 > 4 we are above the upper critical dimension four8 and one should expect the behavior
of a bosonic mean-field theory with ν = (d + z − 2)/(2z) = 3/4 according to Hertz-Millis-
Moriya theory, see Fig. 4c). By analytical calculations in the random phase approximation
(RPA) it was shown [18] that one obtains the exponents of a different universality class instead.
This is caused by peculiarities of the Fermi surface. More specifically, there are Kohn-lines on
the Fermi surface of the doped Hubbard model which are separated by an incommensurate wave
vector and have opposite Fermi velocities, see Fig. 7. These lines give rise to the so-called Kohn
anomalies in the phonon spectrum [50] if we take phonons and the electron-phonon coupling
into account.

In the case of a QCP they give rise to particularly strong transversal spin fluctuations which
eventually lead to the exponents ν = 1 and γ = 0.5, see Fig. 4d) [18]. Note, that their ratio
(ν = 2γ) is just the opposite, as to be expected from the Fisher relation Eq. (9) which for η ≈ 0

yields ν = γ/2. While the numerical error bar for determining γ in Fig. 6 is considerably larger
than for ν,9 it is save to say that also numerically ν > γ in DΓA instead of the expected behavior
ν = γ/2 < γ without Kohn lines.

In case of a finite temperature classical critical point, the Kohn anomalies are not relevant be-
cause the Fermi surface effect is broadened out by a finite self-energy at the Fermi energy. If we
add a finite next-nearest neighbor hopping t′ on the other hand, there are no full Kohn lines any
longer. But individual Kohn points with opposite Fermi velocities still occur quite generically.
We expect such points to lead to a further, different, universality class for the critical exponents
(γ = ν = 1).

8The marginal case of deff = 4 requires special considerations.
9as can be seen from the somewhat different fitted values for n = 0.805 and n = 0.79
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Fig. 7: Left: Visualization of the parallel Kohn lines (black lines) on the Fermi surface of the
3d Hubbard model with nearest neighbor hopping. Right: Two-dimensional cut as indicated in
the left panel, showing the connecting wave vector Q0 (black arrow) and the opposite Fermi
velocities vF (red arrows). From Ref. [18].

5 Quantum criticality in the 2d periodic Anderson model

With the additional dimensions z brought about by the temporal correlations, it is not that
simple to remain below the upper critical dimension d = 4. Hence, we next study the 2d case
and another model, the periodic Anderson model (PAM)

H =
∑
k,σ

εk d
†
kσdkσ + εf

∑
iσ

f †iσfiσ + U
∑
i

nf,i↑nf,i↓ + V
∑
i,σ

(
d†iσfiσ + f †iσdiσ

)
. (10)

This Hamiltonian can be considered as the simplest model for an f -electron system where
we have two different kinds of electrons: Localized f -electrons with creation (annihilation)
operators f †iσ (fiσ), and nf,iσ = f †iσfiσ. These interact by a local Coulomb repulsion U and feel
a local one-particle potential εf . Further, there are itinerant d-electrons [d†iσ (diσ)] with hopping
t from site to site, or alternatively with an energy-momentum dispersion relation εk. Finally,
there is a hybridization V between both kinds of electrons. The difference to the single impurity
Anderson model is that there is not only a single site of interaction but a periodic array of sites.
If we consider the strong coupling limit U � V of the periodic Anderson model in the particle-
hole symmetric case of half-filling (µ = 0, εf = −U/2), we have an average filling of one
f - and d-electron per site. Because of the strong interaction, the f -sites are single-occupied,
i.e., they can be considered as a spin. In second order perturbation theory there is a coupling
J = 4 V 2/U between this localized spin and the spin-operator for the conduction electrons.
That is, we can map the periodic Anderson model onto a Kondo lattice model in the strong
coupling limit.
This Kondo lattice model and hence the periodic Anderson model has two competing phases:
On the one hand there is the Kondo effect that we also know from the (single-site) Kondo model.
At high temperatures, we have free spins and a Curie susceptibility χ ∼ T−1. Below the Kondo
temperature, TK an additional Abrikosov-Suhl resonance develops at the Fermi energy, and the
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spin is screened. In the particle-hole symmetric case of half-filling, this Kondo resonance is
however somewhat special: We have a renormalization of the following (non-interacting) situ-
ation: There is a flat f -band at the Fermi energy EF in the middle of the dispersive conduction
band. If we now switch on the hybridization a gap opens at the band crossings at EF . This
hybridization gap at EF leads to an insulator not only for the non-interacting model, but also if
we have a renormalized picture thereof due to the Kondo effect. This phase is hence called a
Kondo insulator.
For the (single-site) Kondo model

TK ∼ e−1/(2ρ(0)J) (11)

with non-interacting density of states ρ(0) [51], and also for the PAM we get a Kondo tem-
perature of similar magnitude, in particular an exponential scaling; see e.g. [52] for DMFT
calculations revealing an actually somewhat enhanced TK in the PAM.
Competing with the Kondo effect is a magnetic phase. For understanding this magnetic or-
dering, we can envisage the magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in
perturbation theory: An f -electron spin is coupling with amplitude J to the conduction elec-
trons. These are however not immobile and carry the spin information to neighboring sites
with an amplitude given by the (non-interacting) susceptibility χ0. On another site, the conduc-
tion electron couples again with the localized f -spin on that site, so that we altogether get the
following coupling strength or critical temperature for the magnetic ordering:

TRKKY ∼ J2χω=0
0,Q . (12)

In our case, the maximal coupling is for the antiferromagnetic wave vector Q = (π, π) and this
magnetic ordering opens a gap at εF so that we have an insulating antiferromagnetic phase.
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Fig. 9: Schematics of the quantum critical region with a scaling χ ∼ T−2 above the quantum
critical point of Fig. 8. From [19].

Since TK is exponentially small for small J , cf. Eq. (11), TRKKY > TK and we get an antifer-
romagnetic insulator at small J . But with increasing J , at some point the Kondo effect wins,
and there is a phase transition to a Kondo insulator without long-range order at TK ≈ TRKKY .
Plotting TRKKY and TK vs. V , one obtains the famous Doniach [53] phase diagram.

In Fig. 8, we show the corresponding phase diagram as obtained using DMFT10 and DΓA. Note
that in DMFT, TRKKY ∼ J2 ∼ V 4 only holds for small V ; for larger values of V this second
order result is no further applicable. If the DMFT Kondo temperature11 TK becomes of the
order of the DMFT antiferromagnetic ordering temperature, antiferromagnetism breaks down,
and we have a Kondo insulator instead at a finite critical Vc. That is, we have a quantum critical
point between a Kondo insulator at large V and an antiferromagnetic insulator at small V .

The DΓA phase diagram in Fig. 8 is distinctively different. Non-local correlations, i.e., specif-
ically antiferromagnetic spin fluctuations, suppress the antiferromagnetic ordering. Since we
are in 2d, this suppression is particularly strong and DΓA respects the Mermin-Wagner theo-
rem [55]: long-range antiferromagnetic order only survives at T = 0.12 Nonetheless, we have a
QCP which we further analyze in the following.

Above the QCP, there is a quantum critical region where exponents of the susceptibility and
correlation length are governed by the QCP, i.e., temporal fluctuations are relevant, see Fig. 9.
For the QCP of a 2d antiferromagnetic insulator we expect the same exponents as for the 2d

Heisenberg model, i.e., χ ∼ T−2, γ = 2 (and with Eq. (9) ν = γ/2 = 1 for η ≈ 0) [56]. In
contrast, for high temperatures we expect the Curie behavior χ ∼ T−1 for free spins.

10For the DMFT phase diagram of the Kondo lattice model see [54].
11determined from the maximum of the local susceptibility as a function of T
12Cf. [20] for the fulfillment of the Mermin-Wagner theorem for the 2d Hubbard model in DΓA.
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Fig. 10: Magnetic susceptibilities vs. temperature on a double logarithmic plot in DMFT (top
panels, green) and DΓA (bottom panels, red) for different hybridization strengths tdf = V .
The black solid and blue dotted lines indicate a χ ∝ T−1 and χ ∝ T−2 behavior, respectively.
From [19].

The behavior of the susceptibility χ ∼ T−γ ∼ T−2 and related correlation length ξ ∼ T−ν ∼
T−1 in the quantum critical region can be rationalized as follows: First, the conjectured mapping
onto a non-linear σ model [57] and quantum Monte Carlo data for the Heisenberg model [58]
suggest a dynamical critical exponent z = 1. Further, in the quantum critical region, tempera-
ture sets a cut-off 1/T to the correlation length in time: ξτ . 1/T . Finally with ξ ∼ T−ν and
ξτ ∼ T−zν , we have ξ ∼ ξ

1/z
τ ∼ T−1 for z = 1.

Fig. 10 shows that DΓA is indeed able to resolve such a complex behavior and the quantum
critical exponent γ = 2 with a crossover towards γ = 1 at high temperatures. DMFT does not
include spatial correlations and hence shows a χ ∼ T−1 (i.e., γ = 1) behavior in the whole
temperature range.

For low T and V < VC eventually antiferromagnetic order sets in. While true long range
antiferromagnetic order only sets in at T = 0, we have already an exponentially large correlation
length and susceptibilities at finite T . These will eventually dominate, setting an end to the
quantum critical region. Indeed for such parameters the DΓA results of Fig. 10 show a deviation
to even larger susceptibilities at the lowest temperature.

For low T and V > VC , on the other hand, eventually a Kondo insulating phase develops
(quantum disordered phase in Fig. 9). Because this is a gapped (renormalized) band insulator
with a hybridization gap, we expect that here the susceptibility eventually vanishes. Indeed for
such parameters the DΓA results of Fig. 10 show a deviation to smaller susceptibilities at lower
temperatures. A full suppression of the susceptibility because of the Kondo gap was only found
at larger V (not shown); but it is also expected at tdf = V = 1.09 but only for even lower
temperatures.
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6 Superconductivity in the 2d Hubbard model

In this section we would like to leave the question of critical exponents behind and discuss
instead the prospects of superconductivity in the 2d Hubbard model. There are different ways
how superconductivity might arise. But non-local correlations are the key; DMFT cannot de-
scribe d-wave superconductivity. One possibility is through antiferromagnetic spin fluctuations.
These do not only lead to a pseudogap in diagrammatic extensions of DMFT [23, 20, 25] but
may also act as a pairing glue for superconductivity [59].
Since antiferromagnetic spin fluctuations emerge from the particle-hole channel and supercon-
ductivity is an instability of the particle-particle channel,13 one needs in principle the parquet
equations for describing this interplay. The drawback is that solving these equations requires
a much larger effort than solving the ladder equation in a specific channel. This restricts the
available temperature range, and even if it is called “high-temperature” superconductivity the
typical Tc is still quite low compared to room temperature. We will later present such parquet
DΓA calculations, but here the lowest possible temperatures are actually not low enough to
unambiguously identify a phase transition into a superconducting phase. Such parquet DΓA
can yield, however, the leading superconducting instability and the trend that superconductivity
prevails over antiferromagnetism for large enough dopings.
Before turning to these parquet results, let us instead first discuss a poor man’s variant of such a
parquet equation [60]. Here, from a local vertex Γ ν,ν′,ω

σσ′ , irreducible in the particle-hole channel,
first the non-local vertex F k,k′,q

σσ′ is calculated via the Bethe-Salpeter ladder in the particle-hole
and transversal particle-hole channel. This F includes spin-fluctuation; and is in turn also used
to calculate Σk. Up to this point it is a conventional ladder DΓA calculation.
But in the next step we use this F to calculate a non-local vertex irreducible in the particle-
particle channel: Γ k,k′,q=0

pp ≡ F k′,−k,k−k′ − Φν,ν′,ω=0
pp , where all particle-particle reducible dia-

grams Φpp of F are subtracted and again a four-vector notation is used. With this Γpp we solve
the particle-particle ladder or the simplified linearized gap (Eliashberg) equation

λvk = −
∑
k′

Γ k,k′,q=0
pp Gk′ G−k′ vk′ , (13)

where λ and vk are the eigenvalue and eigenvector in the particle-particle channel, respectively.
This is like a single parquet step, where we insert one channel (the particle-hole and transversal
particle-hole) into another (the particle-particle). In a full parquet we would also turn back from
the particle-particle to the particle-hole channel.
Physically Eq. (13) is akin to the standard random phase approximation (RPA) ladder which
yields

χ = χ0/(1 + Uχ0) (14)

but with the momentum and frequency dependent Γ k,k′,q=0
pp instead of U . If the leading eigen-

value λ of −Uχ0 [or here of −Γppχ0] approaches one [λ → 1], Eq. (14) diverges and super-
conductivity sets in.

13also coined Cooperon channel
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Green function |Gπ/β,k|, and (d) the pairing interaction vertex Γpp,Q=(π,π) for n = 0.775 (over-
doped), 0.825 (optimally doped), and 0.85 (underdoped), at T/t = 0.02 and further parameters
as in (a). From [60].

Fig. 11 shows the leading superconducting eigenvalue which is of d-wave symmetry and ap-
proaching λ = 1 at Tc . 0.01t for nearest-neighbor hopping (t) only [Fig. 11(a)]. At this Tc

the superconducting susceptibility diverges. If next- (t′) and next-next-nearest neighbor hop-
pings (t′′) are included with parameters adjusted to the bandstructure of Hg-based cuprates we
get a somewhat larger Tc ≈ 0.015t [Fig. 11(b)]. If we translate this into Kelvin, by taking a
typical hopping parameter t ≈ 0.45 eV, this corresponds to Tc ≈ 50 − 80 K for a filling of
n = 0.80 − 0.95. These are very reasonable Tc values for cuprates, in particular if one takes
into account that no further optimization with respect to t′ and t′′ has been done.

Fig. 11 also reveals a superconducting dome. This is the consequence of two opposing effects:
On the one hand, stronger antiferromagnetic spin fluctuations towards half-filling increase the
superconducting pairing glue Γ k,k′,q=0

pp in Fig. 11(d) so that Tc would increase towards half-
filling. But at the same time the spin-fluctuations suppress the Green function which also enters
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Fig. 12: (a) Eigenvalue λ against the frequency range nvertex over which the local vertex struc-
ture of in the magnetic channel Γm(νn, νn′ , ω = 0) (shown in panel b) is considered. (c) Full
vertex Fm,Q=(π,π)(νn, νn′ , ω = 0) and (d) pairing interaction Γpp,Q=(π,π)(νn, νn′ , ω = 0). The
parameters are: U = 6t, t′ = t′′ = 0, n = 0.825 and T/t = 0.040, 0.067. From [60].

in the Eliashberg Eq. (13). Eventually this leads even to the development of a pseudogap, but
for the parameters of Fig. 11(c) only a suppression of |Gk| towards half-filling is visible. This
Green function effect suppresses Tc. The balance of both effects yields the dome-like structure.
A superconducting dome has also been reported in e.g. [61, 62, 26, 63], but not in the dual-
fermion approach [64, 21] or in Ref. [65].
Kitatani et al. [60] were further able to point out that the dynamics of the vertex, i.e., its fre-
quency structure plays a pivotal role for Tc. That is, the vertex dynamics suppresses Tc by one
order of magnitude. Without this suppression room temperature superconductivity would be
possible.
Fig. 12(b) shows the local vertex Γm that serves as starting point for the DΓA calculation.
Clearly, it is suppressed at the lowest frequencies. This low frequency suppression is also seen
in the non-local full vertex Fm,Q that is calculated from Γm and shown in Fig. 12(c). That is,
antiferromagnetic spin fluctuations are suppressed for small frequencies. Not surprisingly also
the superconducting pairing glue, i.e., the non-local vertex irreducible in the particle-particle
channel in Fig. 12(d) is suppressed.
Fig. 12(a) shows the values of the superconducting eigenvalue λ that we had without this sup-
pression of the vertex. More precisely, the λ that we would have if we replaced the local vertex
of Fig. 12(b) by its static limiting value Γ νn,νn′ ,ω=0

m = −U for Matsubara frequencies |νn|, |νn′ |,
|ω| > nvertex. For nvertex = 0, we have Γ νn,νn′ ,ω=0

m = −U at all frequencies and an order of
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U  χ0  U δΓm

ν ν’

ν’’

ν+ω ν’+ω
ν+ν’+ω-ν’’

ν1

ν1+ω

Fig. 13: Left part of the diagram: a typical RPA ladder diagram in the particle-hole channel
with building block U (red wavy line) and χ0 (two blue Green functions with fermionic frequen-
cies ν1 and ν1 + ω). Right part of the diagram: Local (second-order) vertex correction δΓm

with a particle-particle bubble. From [60].

magnitude larger λ in Fig. 12(a); for nvertex →∞ we recover the proper DΓA result. Not only
λ is enhanced but along with it also Tc from about 0.01t to 0.13t.
In this situation it is imperative to identify the physical processes that are responsible for the
suppression of Γm in Fig. 12(b). Analyzing diagrams order by order, Kitatani et al. [60] found
that already the second order particle-particle diagram as displayed in Fig. 13 (right part) is the
main driving force for the suppression of Γm in Fig. 12(b). From Fig. 13 we also see that the
particle-particle bubble becomes maximal for ν + ν ′ + ω ≈ 0. Note that ω = 0 in Fig. 12(b),
so that the suppression is maximal at ν = −ν ′ in Fig. 12(b). These particle-particle screening
processes explain the substantial suppression of the local Γm and hence of antiferromagnetic
spin fluctuations and the superconducting pairing glue Γpp for lowest frequencies.
Having identified this oppressor of high temperature superconductivity, a screening of antifer-
romagnetic spin fluctuations by local particle-particle bubbles, gives us some hope to find new
ways of enhancing Tc, possibly to room temperature and beyond. However, this is only the
first step, getting rid of (a large) particle-particle screening is not at all trivial, and remains a
challenge for the future.

Superconductivity in parquet DΓA

Finally, we would like to turn to the more complete parquet DΓA. As already mentioned, this
means that we have to do calculations at higher temperatures, considerably above Tc. Fig. 14
shows the parquet DΓA result for a filling n = 0.85 where we have d-wave superconductivity
in Fig. 12. Indeed, in this parameter range Kauch et al. find that d-wave superconductivity is
the leading instability in the (superconducting) particle-particle channel, seemingly surpassing
the magnetic instability at lower temperatures. For this doping, the magnetic susceptibility is
still peaked at Q = (π, π) in Fig. 14 (left). This antiferromagnetic wave vector Q = (π, π)

naturally connects the positive [at k = (±π, 0)] and negative [at k = (0,±π)] regions of the
superconducting d-wave eigenvector in Fig. 14 (middle panels), as is needed for the Eliashberg
Eq. (13) to realize an eigenstate for a repulsive interaction. Fig. 14 (right) displays the same
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Fig. 14: Left: Magnetic susceptibility χm(q, ω = 0) vs. qx and qy at U = 4t, β = 20/t,
n = 0.85 as obtained from parquet DΓA with an 8 × 8 cluster. Left-middle: Eigenvector
vdx2−y2

(k, ν = π/β) corresponding to the dominant eigenvalue in the particle-particle channel.
Right-middle: Projection of vdx2−y2

(k, ν = π/β) onto the Fermi surface as obtained by multi-
plying with |G|2 at the lowest Matsubara frequency. Right: Eigenvector vdx2−y2

(r, ν = π/β)
Fourier-transformed to lattice space (in units of lattice vector a = 1). From [66].

superconducting eigenvector in real space, showing that the eigenvector describes a nearest-
neighbor plus-minus structure, i.e., dx2−y2 , alternation.
Fig. 15 shows the same kind of analysis but now deeply in the overdoped regime, i.e., for
n = 0.72. Here, the magnetic susceptibility is peaked at an incommensurate wave vector
Q1 = (π+ δ, π) [and symmetrically related Q2 = (π, π+ δ) etc.] similar as in Fig. 5 for the 3d

Hubbard model. For the finite momentum clusters of parquet DΓA, δ can, as a matter of course,
only take values congruent with the momentum grid. In this incommensurate case, the leading
superconducting eigenvalue is not d-wave anymore but a higher-order s̄-wave.
Fig. 15 (left-middle) shows the momentum dependence of this s̄-wave, which becomes more
obvious if we project onto the Fermi surface (right-middle). Because of the incommensurability,
Q1 does not link the antinodal points (0,±π) and (±π, 0) any longer as for n = 0.85 in Fig. 14.
Instead Q1 and Q2 connect the points of the Fermi surface which are close to the antinodal
points (0,±π) and (±π, 0) and have a large negative component of the eigenvector vs̄ to points
that are in-between the nodal and antinodal point on the Fermi surface and have a large positive
component of the eigenvector vs̄, see the Q1 and Q2 arrows in Fig. 15. In other words, the
incommensurate antiferromagnetic ordering is not compatible with d-wave superconductivity
any longer, but requires an even more complex k-dependence of the order parameter (eigen-
vector for λ = 1). This complex k-dependence is dominated by terms cos(nkx) cos(nky) with
n = 3, 4.
Fig. 15 (right) shows the eigenvector contributions in real space. This Figure makes clear why
we call it an s-wave: all neighbors of the same shell of neighbors contribute with the same sign.
In contrast, in Fig. 14 we have an alternating (d-wave) sign. Further, in Fig. 15 (right) it is
not a next-nearest or local s-wave component that dominates. Instead the leading contribution
stems from a relative lattice vector further away along the diagonal [R = (n, n) with n = 3, 4

in Fig. 15 (right)]. Kauch et al. hence coin it higher-order s̄-wave: If we expand the angular
dependence of vs̄ in terms of s, d-wave etc. it is an angular s-wave14; but it is of higher order

14More precise (but less common) would be to call it a a1g-wave because the eigenvector belongs to this irre-
ducible representation of the square lattice symmetry; there is no continuous rotational symmetry as s-wave might
suggest.
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Fig. 15: Parquet DΓA for a 6× 6 (top) or 8× 8 (middle) cluster, and simplified calculation on
a larger cluster with DMFT susceptibility as a starting point (bottom). Left column: Magnetic
susceptibility χm(q, ω = 0) vs. qx and qy at U = 5t, β = 15/t, n = 0.72. Left-middle
column: Eigenvector vs̄(k, ν = π/β) corresponding to the dominant eigenvalue in the particle-
particle channel. Right-middle column: Projection of vs̄(k, ν = π/β) onto the Fermi surface
as obtained by multiplying with |G|2 at the lowest Matsubara frequency. Right: Eigenvector
vs̄(r, ν = π/β) in real (lattice) space. From [66].

in the radial expansion (couples further away neighbors). How far apart the coupled sites are
depends on the specific incommensurable wave vector and is also influenced by the finite cluster
size. But the auxiliary calculations, starting from the DMFT susceptibility on a large cluster
[Fig. 15 (bottom)] further confirm that such a higher-order s̄-wave phase naturally develops if
the magnetic spin fluctuations are incommensurable.

7 Conclusion and outlook

To sum up, we have briefly recapitulated the DΓA method before reviewing recent highlights
obtained with it: the calculation of critical exponents, quantum criticality, and superconductiv-
ity. In the following we will focus only on the latter two aspects. Quite generally, the advantage
of diagrammatic extensions of DΓA is that they are able to describe short- and long-range cor-
relations as well as temporal correlations, which become relevant at a quantum critical point.
In Section 4, we have seen that particular lines on the Fermi surface of the 3d Hubbard model
with nearest-neighbor hopping, so-called Kohn-lines, lead to a new universality class of critical
exponents.
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For studying a situation with d+ z < 4, in Section 5 we turned to the periodic Anderson model
in d = 2 at half-filling. This model describes a phase transition from an antiferromagnetic in-
sulator to a Kondo insulator (z = 1). Here a quantum critical region could be identified, where
the susceptibility shows a χ ∼ T−2 behavior, whereas at higher temperatures χ ∼ T−1. For
a hybridization strength smaller than the QCP and for temperatures below the quantum critical
region we eventually find an even stronger increase of χ. This is to be expected since even
though there is no long-range antiferromagnetic order for T > 0 there is still an exponentially
strong increase of the susceptibility and correlation length at low temperatures. For a hybridiza-
tion strength larger than the QCP and for temperatures below the quantum critical region we
are in the Kondo insulating regime so that eventually χ → 0 because of the (renormalized)
single-particle excitation gap.
In Section 6 we turned to superconductivity in the 2d Hubbard model. We find d-wave super-
conductivity with a dome-like Tc-structure as a function of doping and a reasonable Tc ≈ 50 K.
Most interestingly, an order of magnitude larger Tc’s, i.e., room temperature superconductivity,
would be possible if the vertex would not be screened at low frequencies by particle-particle di-
agrams. Understanding this suppression of Tc gives us hope for identifying new routes towards
higher Tc’s. At large doping levels, we find a high-order s̄-wave superconductivity to be the
dominant superconducting channel, which is a natural consequence of having incommensurate
antiferromagnetic spin fluctuations.
Up to now, the focus of diagrammatic extensions of DMFT has been on method development
and applications to simple models such as the Hubbard, the periodic Anderson, and Falicov
Kimball model. As a first step such model calculations are crucial for better understanding
physics. In the future we will see many more applications to non-equilibrium and real materi-
als. First realistic materials calculations [67] have already been performed for SrVO3 using ab
initio DΓA [67]. This AbinitoDΓA (ADGA) code for solving multi-orbital ladder DΓA equa-
tions including non-local interactions is made available via Gnu Public license [68]. For the
model Hamiltonians studied in these lecture notes, instead, the one-orbital ladder DΓA code
(ladderDGA [69]) with Moriyaesque λ correction and the victory code [70] for solving
the parquet equations have been used.
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1 Introduction

The conventional way to manipulate materials properties involves changes of external parame-
ters such as pressure or magnetic fields on time scales which are slow compared to the intrinsic
relaxation times in the solid. The theoretical understanding of condensed matter phases can
therefore largely be build on the assumption that solids are locally in thermal equilibrium at all
times. This has changed with the availability of femtosecond laser pulses, which can be used to
excite a system and probe its dynamics before the return to equilibrium [1]. Such experiments
have opened a new field of research in condensed matter physics with many facets:

• Time-resolved spectroscopy: Femtosecond pulses are available in a wide frequency
range, including the THz, infra-red, visible, or X-ray domain. One can therefore make
both excitation and probe selective to certain degrees of freedom, and thus observe in
real time how energy is passed on after an excitation. For example, electronic relaxation
processes can be revealed by measuring the population dynamics in the conduction band
using time-resolved photoemission spectroscopy, or one can distinguish charge-density
waves of lattice or electronic origin by how fast they can be quenched [2].

• Materials design out of equilibrium: Other than thermal excitation, which typically
results in a suppression of all ordered states, a sufficiently strong ultra-short excitation
can enhance electronic orders or reveal collective phases which are not represented in the
equilibrium phase diagram. This is, in particular, relevant if the equilibrium phase dia-
gram results from competing effects. For example, signatures of light-induced supercon-
ductivity have been observed in various materials [3,4], electronic excitation can enhance
the order parameter in an exciton condensate [5], and changes of the electron population
can close the gap in VO2 [6]. In a number of cases femtosecond excitation eventually
results in hidden states, i.e., long-lived metastable states with new types of magnetic and
orbital order, which are entirely inaccessible along thermodynamic pathways [7, 8].

• Dynamical stabilization: Dynamical stabilization implies the modification of proper-
ties while a system is driven by an external perturbation. Experimentally established
is the technique of nonlinear phononics [9], by which the lattice structure is deformed
transiently along the coordinates of phonons which couple anharmonically to selectively
excited modes. More generally, when a system with some nonlinearity, which may be
the interaction or the dependence of the dispersion ε(k) on k, is periodically driven, its
period-averaged dynamics and can be understood in terms of a so-called Floquet Hamil-
tonian, which can qualitatively differ from the un-driven Hamiltonian [10]. Examples
include band-structure control (e.g., the generation of topologically nontrivial bands by
circularly polarized light [11]), or a manipulation of low energy Hamiltonians (supercon-
ducting pairing [12, 13], spin-exchange [14]). While the latter has been demonstrated in
cold atoms [15], a potential application of this so-called Floquet engineering to real solids
hinges on the question of heating.
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• Strong-field physics: On the femtosecond timescale, a solid can endure external fields
of the order volts per lattice constant, which would lead to an immediate breakdown of
the material in the steady state. Such fields can be used to drive coherent non-equilibrium
dynamics, in which electrons explore a sizeable fractions of the Brillouin zone, leading
to phenomena like high-harmonic generation in solids [16].

A challenge for the investigation of non-equilibrium states in solids is that many fundamental
concepts of condensed mater physics rely on thermal equilibrium. An important example is the
electronic structure itself. Quasi-particles in correlated systems may become ill-defined by a
non-equilibrium excitation which involves a substantial population of states far from the Fermi
surface. In this limit, even a theoretical approach based on kinetic equations, which provides
an intuitive rate-equation for the time-dependent population of electrons in a given (“rigid”)
band structure, becomes questionable. Below we will describe how real-time Green functions
give an interpretation of the electronic structure in non-equilibrium states. Another fundamental
question is how fast and whether an interacting system thermalizes after a perturbation [17]. In
many cases, the energy deposited by a laser in the electronic system would imply electronic
temperatures large enough to melt, rather than enhance, various orders. However, beyond a
description based on a Boltzmann equation the understanding of thermalization is not obvious.
In general, thermalization can be delayed by the presence of a gap. In the strongly interacting
Hubbard model, thermalization after an sudden turn-on of the interaction can happen on the
ultra-fast time-scale of the inverse hopping, but only in a narrow regime of interactions [18].
Ideal integrable model systems never thermalize, and even though such models hardly find
an exact representation in condensed matter, the vicinity to an integrable point can result in a
two-stage relaxation where the earlier stage (pre-thermalization) is governed by the integrable
dynamics [19] and can feature long-range order even when the final thermal state does not.
In these notes we attempt an understanding of the many-body dynamics in solids from a model
perspective. For a general discussion, let us take the Hubbard model as a paradigmatic example

H(t) = −
∑
ij,σ

vij(t) c
†
iσcjσ + U

∑
i

c†i↑ci↑c
†
i↓ci↓. (1)

Here, c†iσ (ciσ) create (annihilate) an electron with spin σ at site i of a crystal lattice, vij is
the hopping matrix element, and electrons interact via a local Coulomb interaction U . Taking
this model (or its multi-orbital variants) as a faithful representation of the electronic properties,
we can ask how the state of the system evolves from a given initial state, which is usually
the thermal ensemble for the Hamiltonian H(0). Time-dependent electromagnetic fields (the
laser excitation) are most easily included by a Peierls substitution, which introduces the vector
potentialA(r, t) as a phase factor in the hopping matrix elements,

vij(t) = vij exp

(
−ie

~

∫ Rj

Ri

drA(r, t)

)
, (2)

and adds a scalar potential term e
∑

iσ Φ(Ri, t) c
†
iσciσ to the Hamiltonian (e is the charge of

an electron). When we are interested in the action of optical or THz fields, the wavelength is
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much longer than the lattice spacing, and the field can be approximated as space-independent,
with E(t) = −∂tA(t) and Φ = 0. Including electric fields in multi-band models is more
subtle, because the Peierls substitution does not describe inter-band dipole couplings or Stark
shifts of the Wannier orbitals. We also note that the Hamiltonian (1) describes only electronic
motion, while in a solid also the lattice dynamics does play a role at longer times. Unless
we are interested in a specific response such as a deformation of the lattice, we may account
for this by including the phonons as a dissipative environment (heat bath), which is relatively
straightforward in the Keldysh formalism used below. In many cases of interest, however, only
short times are of interest, on which electrons may safely be considered as an isolated system.

The Keldysh formalism provides the framework to discuss many-body physics for transient and
steady-state non-equilibrium situations (diagrammatic perturbation theory, path integrals). All
diagrammatic approximations, such as perturbation theory, GW, etc., can be reformulated in
the time-domain, by replacing imaginary-time arguments and frequencies by times on a more
general real-time contour, only the numerical evaluation of the resulting equations in real-time
is far more costly, as discussed below. Regarding correlated materials, dynamical mean-field
theory (DMFT) [20] and its extensions present a very versatile approach to obtain the electronic
structure even from first principles, as discussed in previous lectures of this series [21]. Like
any other many-body formalism based on imaginary time, DMFT can be reformulated for the
real-time dynamics, as noted first in [22,23]. Although the evaluation of the DMFT equations is
more challenging (in particular the solution of the auxiliary impurity problem), non-equilibrium
DMFT has since then been applied to a wide range of topics [24], including the dynamics after
quenches and dynamical phase transitions in various ideal model systems, the study of photo-
induced dynamics in Mott insulators, the understanding of light-induced phases (manipulation
of magnetic interactions, light-induced superconductivity, hidden states with spin and orbital
order), the investigation of strong-field phenomena in correlated systems such as the dielec-
tric breakdown and high-harmonic generation, and the properties of periodically driven states
(Floquet engineering).

In these notes we explain the foundations of non-equilibrium DMFT in the Keldysh formalism,
and then discuss the photo-induced dynamics in Mott insulators to illustrate the approach.

2 The Keldysh formalism

This section presents a brief summary on the Keldysh formalism. For an in-depth introduction
we refer to standard textbooks, e.g., [25, 26].

2.1 Two-time Green functions and electronic structure

The Keldysh formalism is based on Green functions G(i, t, j, t′), that describe the propagation
of particles and holes between orbitals i, j and times t, t′. It is convenient to start from the
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following electron and hole propagators, as introduced by Kadanoff and Baym,

G<
k (t, t′) = +i〈c†k(t′)ck(t)〉 (3)

G>
k (t, t′) = −i〈ck(t)c†k(t′)〉. (4)

Here c†k and ck denote creation and annihilation operators for an electron in a single-particle
orbital k . (Only momentum k is shown for simplicity of notation, but spin or orbital indices
may easily be added.) The time-dependence of the operators is understood in the Heisenberg
picture, and 〈· · · 〉 = Tr(ρ0 · · · )/Z is an average using the density matrix of the initial state.
These Green functions describe the propagation of an additional electron or hole on top of the
many-body state, and therefore contain the full information on all single-particle observables.
In the following we discuss their properties in equilibrium states, so-called non-equilibrium
steady states, and a general time-evolving state:

• Equilibrium: In equilibrium, translational invariance in time implies that the propaga-
tors (3) and (4) depend only on the time-difference, and one can introduce the Fourier
transform G(ω) =

∫
dt eiωtG(t, 0). A straightforward expansion of the Green functions

in (many-body) energy eigenstates leads to the relations

G<
k (ω) = 2πiAk(ω) f(ω) ≡ 2πiN<

k (ω), (5)

G>
k (ω) = −2πiAk(ω)[1− f(ω)] ≡ −2πiN>

k (ω). (6)

Here we have introduced the (many-body) spectral function Ak(ω), which is defined in
terms of the retarded Green function as

Ak(ω) = − 1

π
Im

∫
dt ei(ω+i0)tGR

k (t), (7)

GR
k (t− t′) = θ(t− t′)

(
G>

k (t− t′)−G<
k (t− t′)

)
. (8)

The equations show that equilibrium states are characterized by the spectral function only,
which contains information about the band structure, including the position of the bands,
and the lifetime of quasiparticles. The occupation (which is, e.g., measured in photo-
emission) is linked to the spectrum by a universal occupation function f(ω) which only
depends on temperature.

• Non-equilibrium steady states: An important application of the Keldysh formalism is
to study non-equilibrium steady states. When the system is simultaneously subject to
a time-independent perturbation and coupled to external reservoirs (e.g., metallic leads
with a voltage bias), we can assume that any transients after the initial switch-on of the
perturbation decay with time, until energy (particle) absorption from the perturbation
is balanced by dissipation into the bath. The system then resides in a steady state in
which all correlation functions are translationally invariant in time, but yet the system is
not in a thermal equilibrium state: We have G<

k (ω) = 2πiAk(ω)Fk(ω) and G>
k (ω) =

−2πiAk(ω)(1− Fk(ω)) like in Eqs. (5) and (6) with a positive definite spectral function
Ak(ω) and occupation function Fk(ω), but Fk is not given by the Fermi function.
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• Transient time-evolution: In a time-evolving state, time-translational invariance is lost,
so that both spectral and occupation functions depend on two time-arguments separately.
It is still often convenient to introduce a partial frequency dependence: A symmetric
choice is the Wigner transform for a function X(t, t′), with an average time tav=(t+t′)/2

and a relative time trel = t− t′, and a Fourier transform with respect to trel,

X(tav, ω) =

∫
dtrel e

iωtrel F
(
tav + trel/2, tav − trel/2

)
. (9)

One may introduce Wigner transforms G<,>(t, ω), or equivalently time-dependent oc-
cupation functions and spectral functions. In fact, a quantum Boltzmann equation [26]
is an equation of motion for a time-dependent occupation function, often supplemented
with the approximation that the spectrum takes a given form. However, in a situation
where both the spectrum and the occupation change at the same pace, as can easily be
the case for the ultra-fast dynamics in strongly correlated condensed matter systems, the
separation of spectrum and occupation becomes somewhat arbitrary. An exception is the
dynamics governed by non-interacting or mean-field Hamiltonians, where in the absence
of external fields the spectrum is given by the eigenvalues of a single-particle Hamil-
tonian, and the occupation by the corresponding expectation values of the one-particle
density matrix.

Probabilistic interpretation of real-time Green functions

We can illustrate the meaning of the propagators G>< by their relation to a time-resolved elec-
tron removal and addition experiment, such as photoemission spectroscopy. In a time- and
angle-resolved photoemission experiment, one measures the probability that an electron is
emitted under the action of a short probe pulse, as a function of the photo-electron energy
E and the photo-electron momentum ke. An idealized description is obtained by adding a term
S(t−tp) eiΩ(t−tp)f †ck +h.c. to the Hamiltonian which allows a transition to an outgoing state f .
The signal is the change of 〈f †f〉 during a pulse. Here Ω is the photon energy, and S(t − tp)
is the time profile of the probe pulse, which is centered around a given time tp. With respect
to real photo-emission, this formulation makes three approximations: (i) the sudden approxi-
mation, which assumes that there is no interaction between the electrons in the solid and in the
outgoing state f , (ii) a classical approximation of the light pulse, and (iii) a simplistic treatment
of the transition matrix elements. These approximations are, however, the same as those usu-
ally made to get a rough interpretation of photo-emission results in equilibrium in terms of the
occupied spectrum Ak(ω)f(ω). The signal can be obtained using time-dependent perturbation
theory in the light-matter coupling [27], leading to (to leading order in S)

Ik(E, tp) =

∫
dt dt′ eiE(t−t′)(−i)G<

k (tp+t, tp+t
′) S(t)S(t′)∗. (10)
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To further illustrate Eq. (10), one can consider a Gaussian probe profile S(t) = exp(−t2/2∆t2)

with duration ∆t, and transform Eq. (10) to a mixed time-frequency representation

Ik(E, tp) ∝
∫
dω dtN<(tp + t, E + ω) e−

t2

∆t2 e−ω
2∆t2 . (11)

HereN<
k (t, ω) = G<

k (t, ω)/(2πi) is related to the Wigner transform (9) of the Green function, in
analogy to Eq. (5). In equilibrium we have N<

k (ω) = Ak(ω)f(ω), so that long pulses imply the
usual interpretation of the photoemission spectrum in terms of the occupied density of states,
while Eq. (11) shows that in a transient state N<

k (t, ω) gives the probability distribution to
remove a particle with energy ~ω and momentum k from the system at time t after averaging

over a filter e−
t2

∆t2 e−ω
2∆t2 which satisfies the energy-time uncertainty ∆t∆ω = 1 [28, 29].

Fluctuation-dissipation theorem

Equations (5) and (6) provide a fermionic variant of the fluctuation-dissipation theorem, which
holds more generally for any observable. The response of an observableX to an external force is
given by the Kubo formula χ(t−t′)=−iθ(t−t′)〈[X(t), X(t′)]〉, whileC>(t−t′)=−i〈X(t)X(t′)〉
correspond to the fluctuations. Again, in equilibrium all correlation functions depend on time-
difference only, and an eigenstate representation yields

C<(ω) = 2ib(ω) Imχ(ω + i0), (12)

where b(ω) = 1/(eβω − 1) is the Bose function. This is the fluctuation-dissipation theorem,
which states that the imaginary part of the response function, which describes energy dissipa-
tion, is related to the power spectrum of the fluctuations. If X is a collective excitation, such
as the displacement field of phonons, Imχ(ω) and C<(ω) correspond to the spectrum and the
occupation of the collective mode, respectively.
The fluctuation-dissipation theorem provides a measurement to decide whether a system is in
thermal equilibrium, and to determine the effective temperature of a given subset of degrees
of freedom. For example, optical spectroscopy measures the polarization response to long-
wavelength electric fields. A full characterization of the non-equilibrium state would require
also a measurement of the noise power spectral density of the polarization (or the current).
Measuring noise is generally harder than measuring the response, but recent experiments in
this direction have extracted current fluctuations from the shot-to-shot variance in the measured
intensity of the reflected probe-pulse in a pump-probe experiment [30].

2.2 The Keldysh contour

For an isolated system with HamiltonianH(t), the solution of the Schrödinger equation i∂t|ψ(t)〉
= H(t) |ψ(t)〉 with initial condition |ψ(t0)〉 = |ψ0〉 can be written in terms of the unitary time-
evolution operator U(t, t0)

|ψ(t)〉 = U(t, t0) |ψ0〉, (13)
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which is defined by the differential equation i∂t U(t, t0) = H(t)U(t, t0) with initial condition
U(t0, t0) = 1. Formally, the evolution operator can be written as the time-ordered product,

U(t, t′) = Tt e
−i

∫ t
t′dt̄H(t̄) (for t > t′) , (14)

where the time-ordering operator Tt brings operators at later time to the left. The adjoint of (15)
is the inverse (backward) time-evolution U(t, t′)† = Tt̄ e

+i
∫ t
t′dt̄H(t̄), where Tt̄ is the anti time-

ordering operator. The time-ordered exponential can be read as the step-wise time-evolution

U(t, t′) ≈ e−iδtH(t−δt) · · · e−iδtH(t′+2δt)e−iδtH(t′+δt)e−iδtH(t′) (for t > t′) , (15)

taking the Hamiltonian constant along each infinitesimal interval, U(t+δt, t)=e−iδtH(t)+O(δt2).
In order to describe the time-evolution of a quantum system, we aim to compute observables or
correlation functions of the general form

〈Ô(t)〉 = Tr
(
ρ0 U(t, t0)†Ô U(t, t0)

)
. (16)

Here ρ0 is the density matrix which defines the state of the system at initial time t0. The density
matrix ρ0 provides only the statistical weights of the initial states, while Eq. (16) describes the
evolution of an isolated quantum system: If ρ0 =

∑
nwn|ψn〉〈ψn| is the statistical mixture of

states |ψn〉, Eq. (16) can be written as

〈Ô(t)〉 =
∑
n

wn〈ψn(t)|Ô|ψn(t)〉, (17)

where |ψn(t)〉 = U(t, t0)|ψn〉 is obtained by solving the unitary Schrödinger equation with
initial condition |ψn(t0)〉 = |ψn〉. In the following, we take ρ0 to be the Gibbs ensemble with
respect to some initial Hamiltonian H(0).
The time-ordering in U(t, t0) and the anti-time-ordering in U(t, t0)† in Eq. (16) can be com-
bined into a single time-ordering along a time contour. The latter extends from t0 in forward
direction and then in backward direction (from now on, we will take t0 = 0 without loss of
generality). Moreover, the thermal density matrix can be written as a time-evolution operator
along an imaginary time axis [0,−iβ], so that the three branches can be combined into a single
L-shaped contour C, as depicted in Fig. 1. The order of times is indicated by the arrows in the
figure (from earlier to later). We will use the notation t >C t′ (t <C t′) to denote that t is later
(earlier) on C than t′. Throughout these notes, we will denote a time argument on the upper
(lower) branch by t± with t ∈ R, respectively, and a time-argument on the vertical branch by
−iτ with τ ∈ [0, β]. Together with the time-contour we introduce the contour-ordering operator

TCA(t)B(t′) =

{
A(t)B(t′) t >C t

′

ξB(t′)A(t) t′ >C t
. (18)

The sign ξ is −1 if the permutation of A and B involves an odd number of permutations of
fermion creation of annihilation operators, and +1 otherwise. With this the expectation value
(16) is written as

〈Ô(t)〉 =
1

Z
Tr
(
TC e

−i
∫
C dt̄H(t̄)Ô(t+)

)
, Z = Tr

(
TC e

−i
∫
C dt̄H(t̄)

)
, (19)
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Fig. 1: The Keldysh contour C, ranging from time 0 to a maximum time tmax, back to time 0, and
finally to −iβ on the imaginary-time branch. Times on the upper and lower real-time branch
are denoted by t+ and t−, respectively. Both t+ and t− are real, and the index ± serves only to
distinguish backward and forward time-evolution. The arrows denote the time-ordering along
C from “earlier” to “later” contour times.

where we have introduced integrals along the time-integrals∫
C
dtf(t) =

∫ tmax

0

dt f(t+)−
∫ tmax

0

dt f(t−)− i
∫ β

0

dτ f(−iτ). (20)

The electron and hole propagators (3) and (4) appear now naturally as different components of
a contour-ordered Green function

Gjj′(t, t
′) = −i〈TC cj(t)c

†
j′(t
′)〉. (21)

By choosing the time-arguments on the upper and lower branch of the contour, respectively, we
recover the lesser and greater Green functions (3) and (4) for t, t′ > 0

G<(t, t′) = G(t+, t
′
−) and G>(t, t′) = G(t−, t

′
+). (22)

In turn, one can see that G< and G> suffice to restore the full Green function G(t, t′) on the
real-time branches, so that G(t, t′) is equivalent to specifying the single-particle properties at
all times. Without proof, we note that the mixed components G(τ, t) are one-to-one related to
the correlations G(t, t′) with one or two arguments before t = 0, assuming the system is then
in equilibrium.

Functional integrals and many-body theory

The introduction of the contour allows to repeat one-to-one all steps which lead to the defini-
tion of path integrals and perturbation theory in the Matsubara formalism. We can obtain the
path integral for the partition function (or rather, any generating function for contour-ordered
expectation values) as

Z = Tr
(
TC e

−i
∫
CdtH(t)

)
=

∫
D[c̄, c] eiS (23)

S =

∫
C
dt
(∑

j

c̄j(t)i∂tcj(t)−H[c̄, c]
)
. (24)
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This expression is understood in the usual way as a continuum limit of a discretized time contour
with timesteps ta, a = 0, ...,M along the contour (t0 = 0+ and tM = −iβ). Anti-periodic or
periodic boundary conditions c(t0) = −c(tM) are implied for bosons and fermions, respectively,
and j labels all orbital degrees of freedom. Note that ∂t is the usual time-derivative, not a
derivative along the contour direction.
With the general expectation value

〈· · · 〉S = Z−1

∫
D[c̄, c] eiS · · · , (25)

we naturally arrive at the Green function

Gjj′(t, t
′) = −i〈cj(t)c̄j′(t′)〉S. (26)

For the action (24), the latter equals the contour-ordered Greens function (21). The (anti)-
periodic boundary condition of c and c̄ imply an (anti)-periodic boundary condition for G,

G(0+, t) = ±G(−iβ, t), G(t, 0+) = ±G(t,−iβ), (27)

where the upper (lower) sign refers to the case where c and c† are Bose (Fermi) operators.

Equations of motion

The action of the noninteracting problem H(t)=ε(t) c†c, S=
∫
dtdt′ c̄(t) δC(t, t

′)(i∂t− ε)c(t′) is
a quadratic form, where δC(t, t′) is the delta-function consistent with the contour integral (20).
The integrals

∫
C are to be understood as the continuum limit of a discrete form S=

∑
a,a′ c̄aAaa′ca′

where a, a′ label all orbital and discrete time indices. Gaussian integration for the discrete action
yields

∑
bAabGba′=δaa′ , i.e., Gaa′=− i〈cac̄a′〉S and A are inverse matrices in time. Reinstating

the continuum limit, the equation AG = 1 yields the equation of motion for G,∫
C
dt̄ δC(t, t̄)(i∂t̄ − ε)G(t̄, t′) =

(
i∂t − ε(t)

)
G(t, t′) = δC(t, t

′). (28)

The “derivation” of this equation has seemingly been a bit too careless, as in contrast to the
inverse of the discrete matrix A, the differential equation (28) does not have a unique solution
unless either an initial or boundary condition is specified. However, with the boundary con-
dition (27) the solution is unique. For the equilibrium Green function and the single orbital
Hamiltonian H = ε c†c , it is instructive to check that the solution is given by

G(t, t′) = e−iε(t−t
′)
(
if(ε) θC(t

′, t)− if(−ε) θC(t, t′)
)
, (29)

where θC(t, t′) = 1 for t >C t′ and 0 otherwise. The same result is obtained from Eq. (21) and
the Heisenberg equation of motion for c(t) and c†(t).
From now on we use a continuum notation assuming that all operations take place within the
space of (anti)-periodic functions. Multiplication of two contour functions corresponds to con-
volution along C

[A ∗B](t, t′) =

∫
C
dt̄ A(t, t̄)B(t̄, t′), (30)
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Fig. 2: Diagrammatic representation of the local self-energy in the Hubbard model: The nonin-
teracting Green function G0,jj′(t, t

′) is represented by a directed line, and the interaction U(t)

is denoted by a dashed line. The first two diagrams are Σ(2)
σ (t, t′) and Σ

(1)
σ (t, t′), the third

diagram is a non-skeleton diagram, with a self-energy insertion in one of the G0-lines.

and the inverse A−1(t, t′) of a function A(t, t′) is understood as the differential or integral equa-
tion

∫
C dt̄ A

−1(t, t̄)A(t̄, t′) =
∫
C dt̄ A(t, t̄)A−1(t̄, t′) = δC(t, t

′) with the boundary condition (27)
(additional matrix multiplication in orbital indices implied).

Diagrammatic perturbation theory

The construction of diagrammatic perturbation theory does not depend on the time contour,
and is formally identical for Matsubara Green functions and contour-ordered Green functions.
In particular, perturbation theory is based on the Wick theorem, which states that n-particle
contour-ordered expectation values for a quadratic action can be factorized into a determinant
of two-point correlation functions (for fermions), 〈c1 · · · cnc

†
n′ · · · c

†
1′〉S0 = det(M), Mij′ =

〈cic
†
j′〉S0 , (for bosons one would obtain a permanent). Wick’s theorem in fact follows as a

simple property of Gaussian path integrals.
We can introduce the self-energy Σ(t, t′), which is a function of two times on the contour. It
can be expanded in a power series of the Green function, where each term is represented as a
Feynman diagram. The topology of the diagrams is the same as in the equilibrium Matsubara
formalism, only internal time-integrals in the interpretation of diagrams must be taken over the
contour C instead of over imaginary time. The relation of non-interacting Green function and
the self-energy is therefore given by the Dyson equation

G = G0 +G0 ∗Σ ∗G = G0 +G ∗Σ ∗G0 (31)

⇔ G−1(t, t′) = G−1
0 (t, t′)−Σ(t, t′). (32)

For illustration and later reference, we state the explicit expression of the first and second-order
diagram for the self-energy of the Hubbard model, as shown in Fig. 2,

Σ(1)
σ (t, t′) = U(t)nσ̄(t) δC(t, t

′), (33)

Σ(2)
σ (t, t′) = U(t)U(t′)G0σ(t, t′)G0σ̄(t′, t)G0σ̄(t, t′). (34)
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Self-consistent expansions

The sum of all Feynman diagrams generates Σ[G0] as a functional of G0. One can re-sum this
expansion by removing all terms in which the G0-lines itself have self-energy insertions (such
as the third diagram in Fig. 2), and in turn replace all Green function lines by the full interacting
self-energy G. This results in the so-called skeleton functional Σ[G]. In combination with
the Dyson equation Eq. (32), an approximation to the skeleton functional, e.g., the truncation
to given order, yields a closed-form non-linear integral-differential equation for G. Although
the skeleton expansion to given order generates an infinite subset of the diagrams of the bare
expansion Σ[G0], this does not always lead to quantitatively better results. An example is the
second order perturbation theory for the impurity problem in DMFT [20], where only the bare
expansion can qualitatively recover the Mott transition. However, any truncation of the self-
consistent skeleton expansion Σ[G] satisfies conservation laws for energy and particle number,
while an approximation toΣ[G0] does not [31], which is of great importance for the description
of non-equilibrium dynamics. If energy is not conserved, the concept of thermalization becomes
meaningless, as only the conservation laws fix the statistical properties of a system in thermal
equilibrium.

2.3 Kadanoff-Baym equations

In this subsection we discuss the numerical solution of the Dyson equation in real time. We
consider the standard form, obtained from (32) and the inverse G−1

0 = δC(t, t
′)
(
i∂t − h(t)

)
(orbital indices can be added easily)

(
i∂t − h(t)

)
G(t, t′)−

∫
C
dt̄ Σ(t, t̄)G(t̄, t′) = δC(t, t

′) . (35)

This equation is a non-Markovian equation of motion for the Green function, where the self-
energy takes the role of a memory kernel. To solve the equation one can take an equidistant
time grid, with M time slices along C. The operator (i∂t − h(t)) δC(t, t

′) − Σ(t, t′) can then
be written as a M -dimensional matrix, and the solution for G becomes a matrix inversion.
This scheme, however, does not exploit the possibility to transform Eq. (35) into a step-wise
time propagation scheme: Because of the causal nature of the time-evolution, if the solution of
Eq. (35) is known for real times t, t′ ≤ n∆t, it can be extended to the domain t, t′ ≤ (n+ 1)∆t

without modification of the previous times, even when Σ depends on G in a non-linear way,
e.g., in the form of a perturbative expression Σ[G]. (In general, any functional expression Σ[G]

should be causal, such that Σ(t, t′) in the domain t, t′ ≤ n∆t can be determined from G in the
same domain t, t′ ≤ n∆t.)

On can introduce a parametrization of contour functions which allows to make use of this
causality. The values of the contour-ordered function G(t, t′) with t and t′ on different branches
of C are not all independent, because the largest real-time argument can be shifted between the
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upper to the lower contour branch. For example, for t′ < t

G(t+, t
′
+) =

1

Z
Tr
(
e−βH(0) U(0, t)U(t, tmax)︸ ︷︷ ︸

C−

U(tmax, t)c U(t, t′)c† U(t′, 0)︸ ︷︷ ︸
C+

)
= G(t−, t

′
+).

(36)

The brackets indicate the part of the contour-ordered operator TCe−i
∫
C dtH(t) along the upper and

lower branch, respectively. Because the time-evolution between t and tmax along the upper and
lower branch cancel, c can be shifted between the two branches. The redundancy which follows
from Eq. (36) can be resolved in an elegant way, using the so-called Keldysh rotation. Let us
first focus only on the real-time branches of C: With the two branches, one can start from a
parametrization of G in terms of a 2× 2 matrix

Ĝ(t, t′) ≡

(
G(t+, t

′
+) G(t+, t

′
−)

G(t−, t
′
+) G(t−, t

′
−)

)
, t, t′ ∈ R. (37)

The over-completeness of this representation can be removed by an invertible map (with τ̂3 =

diag(1,−1))

G(t, t′) ≡ L̂ τ̂3 Ĝ(t, t′) L̂†, where L̂ =
1√
2

(
+1 −1

+1 +1

)
. (38)

From the rotation we get (Gab = G(ta, t
′
b) for a, b = ±)

G(t, t′) =
1

2

(
(G++ −G+− +G−+ −G−−) (G++ +G+− +G−+ +G−−)

(G++ −G+− −G−+ +G−−) (G++ +G+− −G−+ −G−−)

)

=

(
GR(t, t′) GK(t, t′)

0 GA(t, t′)

)
. (39)

The second equality follows from the causality (36). For example, in the (1, 0)-component we
can shift the first time argument between the upper and lower contour for t > t′, which gives
1
2
(G−+ − G−− − G−+ + G−−) = 0, while for t < t′ we can shift the second argument, which

gives 1
2
(G++−G++−G−−+G−−) = 0. In combination, 1

2
(G++−G+−−G−+ +G−−) = 0.

The other components follow analogously, using the conventional definition of the retarded,
advanced, and Keldysh Green functions

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
, (40)

GA(t, t′) = θ(t′ − t)
(
G<(t, t′)−G>(t, t′)

)
, (41)

GK(t, t′) = G>(t, t′) +G<(t, t′). (42)

Using the Keldysh matrices, convolutions greatly simplify: restricted to the real-time branches
of C, the convolution of two contour functions A(t, t′) and B(t, t′) is given by C(tα, t

′
α′) =∫

dt̄
(
A(tα, t̄+)B(t̄+, t

′
α′)− A(tα, t̄−)B(t̄−, t

′
α′)
)
, which can be written in the form

Ĉ(t, t′) =

∫
dt̄ Â(t, t̄) τ̂3 B̂(t̄, t′). (43)
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After the Keldysh rotation this becomes

C(t, t′) ≡ L̂ τ̂3 Ĉ(t, t′) L̂† =

∫
dt̄ L̂ τ̂3 Â(t, t̄) L̂†L̂ τ̂3 B̂(t̄, t′) L̂† =

∫
dt̄ A(t, t̄)B(t̄, t′), (44)

i.e., a simple convolution in real-time with an additional 2× 2 matrix structure.

Noting that in the 2 × 2 matrix the derivative and delta function are i∂t1̂ and δ(t − t′) τ̂3, the
Dyson equation becomes, after Keldysh rotation

(
i∂t − h(t)

)
G(t, t′)−

∫
dt̄ Σ(t, t̄)G(t̄, t′) = δ(t, t′). (45)

Comparing matrix elements on both sides we have equations for the individual components
of G. For illustration, let us take the (0, 0)-component

(
i∂t − h(t)

)
GR(t, t′)−

∫ t

t′
dt̄ ΣR(t, t̄)GR(t̄, t′) = δ(t− t′), (46)

which must be solved with the initial condition GR(t, t′) = 0 for t < t′. In these equations we
have already taken into account that retarded components vanish for t < t′, and have restricted
the time-arguments accordingly. This has an important consequence: In order to determine
GR(t, t′) in the domain t, t′ ≤ tmax, also G and Σ have to be known only for t, t′ ≤ tmax.
Thus one can solve this equation in a time-stepping manner: With the parametrization y(s) =

GR(t′ + s, t′), Eq. (46) can be written as a Volterra integral-differential equation of the second
kind,

d

ds
y(s) = q(s) + p(s)y(s) +

∫ s

0

ds̄ k(s, s̄)y(s̄), (47)

taking q(s) = 0, p(s) = −ih(s), k(s, s̄) = −iΣR(t′ + s, t′ + s̄). On an equidistant grid
s ∈ {m∆t}, using a notation ym = y(m∆t) etc., with a trapezoidal rule for the integral and a
finite difference formula for the differential term, we obtain

yn+1 − yn
∆t

= qn+1 + pn+1yn+1 +∆t
(

1
2
yn+1 +

n∑
m=1

kn,m ym + 1
2
y0

)
. (48)

Starting from an initial value y0 (here, y(0) = GR(t′, t′) = −i), this equation provides an
equation of yn+1 in terms of ym form ≤ n, which can be successively applied for n = 1, 2, 3, ...

to determine the full function y (see Fig. 3). In practice, accurate higher order approximations
should be used for derivative and integral [32], but the basic strategy of solving the Volterra
equation remains the same.

The arguments above can be extended to a causal time-propagation scheme for G on the full
L-shaped contour. For completeness, we state the parametrization used in the following [33]



Nonequilibrium DMFT 15.15

Fig. 3: Illustration of the integral equation (46): The hatched region indicates a time-slice
{GR(n∆t,m∆t)|m≤n }. The blue region indicates the values ofGR entering the evaluation of
the derivative ∂tGR(t, t′) which is needed to propagateGR from a time-slicem∆t to (m+1)∆t.

(for other implementations, see, e.g., [34]):

(
− ∂τ − h(0−)

)
GM(τ)−

∫ β

0

dτ̄ ΣM(τ − τ̄)GM(τ̄) = δ(τ), (49)

(
i∂t − h(t)

)
GR(t, t′)−

∫ t

t′
dt̄ ΣR(t, t̄)GR(t̄, t′) = δ(t− t′), (50)

(
i∂t− h(t)

)
Gtv(t, τ ′)−

∫ t

0

dt̄ ΣR(t, t̄)Gtv(t̄, τ ′) =Qtv(t, t′), (51)

(
i∂t − h(t)

)
G<(t, t′)−

∫ t

0

dt̄ ΣR(t, t̄)G<(t̄, t′) = Q<(t, t′), (52)

with

Qtv(t, τ ′) =

∫ β

0

dτ̄ Σtv(t, τ̄)GM(τ̄ , τ ′), (53)

Q<(t, t′) =

∫ t′

0

dt̄ Σ<(t, t̄)GA(t̄, t′)− i
∫ β

0

dτ̄ Σtv(t, τ̄)Gvt(τ̄ , t′). (54)

Here, the integral limits take into account that retarded functions vanish for t < t′, Xvt(τ, t) =

X(−iτ, t±). The component with both time arguments on the imaginary branch is the usual
initial state Matsubara Green function, X(−iτ,−iτ ′) ≡ iXM(τ − τ ′). These integral equations
and the equivalent conjugate equation G ∗G−1 = 1 for the real and imaginary time Green func-
tions are known as Kadanoff-Baym equations [34]. Apparently Eq. (49) for GM is decoupled
from the other equations. It can be solved in advance to give the Matsubara Green function
of the initial equilibrium state, which then enters the other equations in the form of an initial
conditions.
If no cutoff to the memory integrals is applied, the required computational resources scale with
the number of time-steps M likeO(M3) (CPU time) andO(M2) (memory), which can provide
a bottleneck for the simulation, in particular in case of many orbitals.
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2.4 Steady-state formalism

In a time-translationally invariant non-equilibrium steady state, the Kadanoff-Baym equations
can be solved by means of Fourier transform. The imaginary time branch, which corresponds to
the initial state correlations, is moved to t0 = −∞ and then omitted. The individual components
of Eq. (45) become

GR(ω + i0) =
(
ω + i0− h−ΣR(ω + i0)

)−1
= GA(ω − i0)†, (55)(

ω + i0− h−ΣR(ω + i0)
)
GK(ω) = ΣK(ω)GA(ω). (56)

The second equation can thus be solved as

GK(ω) = GR(ω)ΣK(ω)GA(ω). (57)

In practice, one can iteratively solve Eqs. (55) and (57) together with a given approximation
Σ[G] for the self-energy, such as Eq. (34): Starting from a given guess for ΣR(ω + i0) and
ΣK(ω), GK(ω), GR(ω + i0), and the spectral function A(ω) are obtained. A Fourier transform
gives GR(t) = −iθ(t)

∫
dω A(ω) e−iωt and GK(t) =

∫
dω
2π
GK(ω) e−iωt, which are then used to

calculate ΣR(t) and ΣK(t), and thus ΣR(ω + i0) and ΣK(ω). The procedure is iterated to
convergence. Since the components A(ω), ΣK(ω), GK(ω) are well localized in frequency, the
frequency grid can be kept finite.
The solution of Eq. (57) is not unique for Σ = 0, i.e., for a noninteracting system in isolation
from the environment: In this case, Eq. (56) is solved by any ansatz of the form

GK
0 (ω) = GR(ω)F (ω)− F (ω)GA(ω), (58)

with an arbitrary (hermitian) distribution function F (ω). This fact just shows that for an isolated
noninteracting system any distribution of the single-particle levels provides a possible steady
state. By extending the real-time part of the contour to (−∞,∞) the memory on the initial
condition has been removed, which thus leaves the steady state undetermined for ΣK = 0.
One can resolve this ambiguity by fixing the distribution function in the solution Eq. (58) of
Eq. (56). Mathematically, this is achieved by a choice ΣK(ω) = −iηF (ω) with η → 0+,
which corresponds to attaching a heat bath to the system with a flat density of states, a given
distribution F (ω), and infinitesimal coupling

√
η. In the steady state the bath determines the

distribution function of the system, irrespective of the coupling strength, while the spectral
properties of the system are not affected.

3 Non-equilibrium dynamical mean-field theory

3.1 The dynamical mean-field formalism

DMFT approximates only the spatial correlations in a mean-field manner, but accurately treats
local temporal fluctuations. The main approximation is the locality of the self-energy, which
becomes exact in the limit of infinite coordination number [35]. The formulation of DMFT
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within the Keldysh and the Matsubara framework differs only by the choice of the time contour,
and all arguments regarding the derivation of DMFT, such as the cavity method [20] and power
counting arguments for the locality of the self-energy, can be transferred one-to-one from imag-
inary time to C. We therefore directly state the final equations, and then proceed to a discussion
of their solution, which is in fact very different in real and imaginary time.
For clarity, the DMFT equations in this section are all stated for the single-band Hubbard model
in the spin-symmetric phase; orbital indices can easily be added. Within DMFT, the self-energy
at a given site j of the lattice can be obtained from a local model with a general quadratic action

Simp,j =

∫
C
dtdt′

(∑
σ

c̄σ(t)G−1
jσ (t, t′) cσ(t)− U(t) c̄↑(t)c↑(t)c̄↓(t)c↓(t) δC(t, t

′)
)
, (59)

G−1
j (t, t′) =

(
i∂t + µ

)
δC(t, t

′)−∆j(t, t
′), (60)

which describes one site of the lattice embedded in an environment with hybridization function
∆j(t, t

′). This is the action of a time-dependent Anderson Impurity Hamiltonian. This action
defines the interacting impurity Green function

Gimp,j(t, t
′) = −i〈c(t)c̄(t′)〉Simp,j

. (61)

The impurity self-energy is set by the impurity Dyson equation

G−1
imp,j(t, t

′) = G−1
j (t, t′)−Σimp,j(t, t

′). (62)

The impurity self-energy then serves as an approximation for the lattice self-energy,

Σjj′(t, t
′) = δjj′ Σimp,j(t, t

′), (63)

and lattice Green functions are obtained by solving the Dyson equation

G−1
jj′(t, t

′) = (i∂t + µ) δC(t, t
′) δjj′ − δjj′ Σjj(t, t

′)− δC(t, t′) vij(t), (64)

where vij(t) are the hopping matrix elements, which contain the external laser fields, Eq. (2).
Finally the equations are closed and the auxiliary quantity ∆j(t, t

′) can be eliminated when the
local lattice Green function Gjj equals the corresponding impurity quantity

Gimp,j(t, t
′)

!
= Gjj(t, t

′). (65)

Equations (59) through (65) provide the closed set of equations for non-equilibrium DMFT.

Self-consistency scheme withoutΣ

In equilibrium, the self-consistent solution of the DMFT equations is usually achieved by an
iterative procedure. One can start from a guess for Σ, solve the lattice Dyson equation to obtain
Gii, invert the impurity Dyson equation (62) to get ∆, and solve the impurity model with action
(59) to get an update for Σ. The same might be done in real time. Although in principle
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straightforward matrix equations in time, some of the steps can, however, become numerically
unstable, in particular when algorithms are used which are accurate to high-order in the time-
step. In particular, given G and ∆ one cannot easily solve Eq. (62) for the self-energy. We
therefore explain how the self-consistency cycle can be reformulated, avoiding the explicit use
of the self-energy. (The following steps are presented for a spatially homogeneous state, where
εk(t) is the Fourier transform of vij(t), and

∑
kGk is the local Green function. We define the

sum to be normalized,
∑

k = 1.)

(1) Given ∆, Gimp is calculated, Eq. (61). This is the main step of the algorithm, which
requires the solution of a many-body problem out of equilibrium (Sec. 3.2).

(2) A function Z with Z−1(t, t′) = (i∂t + µ) δC(t, t
′) − Σ(t, t′) is obtained by solving the

integral equation Z +Gimp ∗∆ ∗ Z = Gimp.

(3) For each k, we determine Gk from the integral equation Z + Z ∗ εk ∗ Gk = Gk. (Here
εk(t, t′) ≡ εk(t) δC(t, t

′) is interpreted as diagonal matrix in time.)

(4) We calculate the sums G =
∑

kGk, G1 =
∑

k εk ∗ Gk, G2 =
∑

k(εk + εk ∗ Gk ∗ εk),
and obtain ∆ from the integral equation ∆+G1 ∗∆ = G2.

These equations are obtained directly by summing the lattice Dyson equation over k and com-
paring to the impurity Dyson equation. Steps (2)–(4) require the solution of linear equations on
C of the form (1 + F ) ∗X = Q, with a kernel F and a source term Q. Such equations reduce
to stable second-order Volterra equations in time [32, 33]. Because all these steps are causal
(the solution in some domain t, t′ ≤ t0 can be determined from the input in the same domain
t, t′ ≤ t0) the real-time DMFT equations can be propagated step by step in time.
We finally note that, while in equilibrium momentum sums can be rewritten in terms of integrals
over the density of state,

∑
k =

∫
dεD(ε) with D(ε) =

∑
k δ(ε − εk), this is not necessarily

possible when εk is time-dependent, because in this case Gk(t, t′) depends on k not only via
a single number such as the unperturbed ε0

k [e.g., with a vector-potential A(t), Eq. (2) implies
εk(t) = εk+eA(t)].

Bethe lattice

The solution of an integral equation for each k, i.e., step (3) in the self-consistency above, can
be numerically costly. For predictions of DMFT which should be generic for any lattice, one can
therefore use the so-called Bethe lattice, which leads to a closed-form self-consistency. This is
also common in equilibrium DMFT, but with a slight variation even electric fields can naturally
be included: The Bethe lattice is a graph with coordination number Z, but no loops. As for any
tight-binding model, the electric field is defined on the links (ij) of the graph by means of the
Peierls phase e±iφij(t), so that φij(t) = eaAij(t), where aAij(t) is the projection of the vector
potential along the bond. To have a divergence-less field on this graph, each site should simply
have equally many bonds with a field pointing inwards and pointing outwards.
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In general, a formal closed form self-consistency is obtained from the cavity construction [20]
(integrating out the rest of the lattice), which gives

∆j(t, t
′) =

∑
j1,j2

vj,j1(t)G
[j]
j1,j2

(t, t′) vj2,j(t
′) . (66)

Here G[j]
j1,j2

is the Green function of the lattice where site j is excluded. On a lattice with-
out loops, only terms j1 = j2 remain, and in the limit of infinite coordination we then have
G

[j]
j1,j1

(t, t′) = Gj1,j1(t, t
′). With half of the hoppings having a phase eiφ(t) and e−iφ(t), respec-

tively, and rescaling v ∼ v∗/
√
Z for Z →∞, a closed-form self-consistency

∆(t, t′) =
v2
∗
2

(
eiφ(t) G(t, t′) e−iφ(t′) + e−iφ(t) G(t, t′) eiφ(t′)

)
(67)

is obtained for a translationally invariant state.

3.2 Impurity solvers

The most challenging part of the DMFT equations is the solution of the auxiliary problem, i.e.,
the determination of the Green function (61) from the action (59) with a given hybridization
function ∆(t, t′). It can be shown that the action (59) describes a time-dependent Anderson
impurity Hamiltonian. However, for one reason or the other, it often turns out to be substantially
harder to determine the time-evolving non-equilibrium state of a system than determining the
equilibrium state. An example are matrix-product states (MPS): While a MPS representation
is efficient for ground states which satisfy an area-law entanglement, the time-propagated state
can often not be represented efficiently, leading to an exponential increase of computational
resources with the simulated time. Quantum Monte Carlo techniques face a different problem
with the same devastating effect: Even when a sign-problem can be avoided in equilibrium
(imaginary time), summing up all phases in non-equilibrium leads to an exponentially small
average sign. It appears that the problem of time-evolution in many body systems is a challenge,
although this may seem at odds with the fact that the final state (after thermalization) is again
simple. So far, all impurity solvers are therefore restricted to either short times, or rely on
approximations which work in certain regimes of parameter space only.

Weak-coupling expansions of the self-energy

In equilibrium and for the half-filled single-band Hubbard model, second-order perturbation
theory (iterated perturbation theory, IPT) extrapolates between weak and strong coupling when
it is formulated in terms of the bare Green function (60), and qualitatively reproduces the metal-
insulator transition [20]. In non-equilibrium, IPT has so far remained restricted to the weak-
coupling regime, because the non-conserving nature of the bare expansion can lead to artifacts in
the time-evolution [33]. Apart from that, weak-coupling approximations are easy to implement,
cf. Eq. (34), and numerically relatively cheap.
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Quantum Monte Carlo techniques

In equilibrium, quantum Monte Carlo (QMC) can give numerically exact results at nonzero
temperature [36]. QMC stochastically sums the perturbation expansion in the hybridization
function or the interaction to all orders. In real-time, the contributions to the perturbation
expansion become complex-valued, which results in a dynamical sign problem and limits a
straight-forward real-time generalization of the imaginary-time QMC to short times. There
are interesting and fundamental problems to be studied in the short-time dynamics, such as
dynamical phase transitions [18], but in order to study the photo-induced dynamics in most
materials few hopping times are often not yet sufficient. Recent developments which indicate
ways to overcome the dynamical sign-problem [37] have not been tested in the context of non-
equilibrium DMFT.

Hamiltonian representation of the impurity problem

If one can find a finite system which can accurately reproduce a given hybridization function
∆(t, t′), the Green function can be determined from a numerical solution of the time-dependent
Schrödinger equation, such as using matrix product states and the density matrix renormal-
ization group [38]. It can be shown that a general action with hybridization ∆(t, t′) is indeed
representable by an Anderson impurity model in the most simple geometry, i.e., a star-geometry
where the impurity site is coupled to bath sites but there is no link between the bath sites [39].
In this representation, the number of bath orbitals which are needed increases with the simu-
lated time, leading a exponential increase of the computation time. So far, this approach has
been used only for the special situation in which the initial state consists of a lattice of un-
coupled sites (this is a quench situation which can be realized in cold atoms), but in principle
more general initial states can be included. A different representation has been derived for the
steady state, using an impurity model in which the bath-sites are coupled to dissipative Lind-
blad terms [40]. In general, the numerical effort in the Hamiltonian-based techniques increases
exponentially with the number of orbitals, which limits the frequency resolution in the steady
state and the accessible times in the real-time formalism.

Perturbation theory in the hybridization function

A systematic expansion in ∆(t, t′), with the atomic limit as zeroth order, is expected to work
well in the Mott phase, it can be formulated for an arbitrary local part of the Hamiltonian (multi-
orbital Hubbard models, electron-phonon interactions), and one can re-sum the terms of the
expansion in such a way that the theory becomes conserving. In particular the lowest order (the
so called non-crossing approximation, NCA) has been used extensively to study the dynamics
of Mott insulators within DMFT. In the following we summarize the equations for the NCA.
The technical details of this expansion on the Keldysh contour are explained in Ref. [41] and
Ref. [24], to which we also refer for a list of early references related to the use of the expansion
as an impurity solver for DMFT and cluster DMFT in equilibrium.
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In the hybridization expansion one splits the action S into the local part Sat =
∫
C dtHat(t),

where the atomic Hamiltonian Hat contains the local interaction, and the hybridization S∆. The
latter can have a very general form, such as

S∆ = −
∑
γ

∫
C
dt1dt2 φ̄γ(t)∆γ(t, t

′)ψγ(t
′), (68)

where γ sums over all hybridization channels, and ψ and φ̄ are quite general operators. In
the single impurity Anderson model, e.g., γ ≡ σ, φ̄γ ≡ c̄σ, ψγ ≡ cσ, but the general for-
mulation also allows for inter-orbital hybridizations in multi-band systems with spin-orbital
indices a, a′, such as

∑
a,a′

∫
C dt1dt2 c̄a(t)∆aa′(t, t

′) ca′(t
′), where γ ≡ (a, a′), anomalous hy-

bridizations in superconducting systems,
∫
C dt1dt2

[
c↑(t)∆cc(t, t

′)c↓(t
′) + c̄↓(t)∆c̄c̄(t, t

′)c̄↑(t
′)
]
,

retarded density-density interactions
∑

σσ′

∫
C dt1dt2 nσ(t)Vσ,σ′(t, t

′)nσ(t′) (here φ̄σ,σ′ ≡ c̄σcσ
and ψσ,σ′ ≡ c̄σ′cσ′), or electron-phonon interactions (ψ = cσb, cσ b̄ etc., acting in a local space
of electrons and phonons).
The hybridization expansion is formulated in terms of propagators of the many-body states |α〉
of the isolated impurity. For example, for the single-impurity model, these are the Fock-
states |0〉, c†↑|0〉, c

†
↓|0〉, c

†
↓c
†
↑|0〉. In the hybridization expansion, we introduce bare propagators

gαα′(t, t
′) and renormalized propagators Gα,α′(t, t′), which capture the propagation from state α′

to α along the forward direction on C. The zeroth order propagators are just the time-evolution
operators of the atomic Hamiltonian

gα,α′(t, t
′) = −i〈α|TC e−i

∫ t
C,t′ dt̄Hat(t̄)|α′〉 for t >C t′, (69)

g(t, t′) = ig(t, 0+) ξ g(−iβ, t′) for t <C t′. (70)

The second line specifies how to “glue” together propagators along the open end of the contour
(g is understood as a matrix in α, α′), such that the evolution direction is always in forward
direction along C: For t <C t′, the propagation from t′ to t along C involves a propagation to the
end−iβ of C, and then a propagation form 0+ to t (see Fig. 4a). The matrix ξαα′ = δαα′(−1)n

F
α ,

where nFα is the number of Fermions in |α〉, is introduced for convenience so that g satisfies
the boundary condition (27) for bosons and fermions if there is an even and odd number of
fermions in α, respectively. (Note that g, and later G are at least block-diagonal with respect to
the Fermion number, i.e., ξ commutes with G.
The renormalized propagators G(t, t′) simply include all hybridization events between t′ and t
in forward direction along C. When the time-evolution operator eiSat+iS∆ is expanded in S∆,
these terms can be represented intuitively as diagrams as shown in Fig. 4c. All diagrams can be
re-summed into a Dyson series, which takes the form

G = g + g �Σ � G, (71)

where Σ (also a matrix in α) contains all topologically connected hybridization diagrams, and
the convolution � is understood as a time-ordered convolution along forward direction on C
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Fig. 4: Illustration of the hybridization expansion: (a) gluing together time-evolution operators
along the contour in a cyclic fashion. (b) The integration range of the convolution � along C,
cf. Eqs. (72) and (73) (c) Diagrams contributing to G, where the blue dotted lines represent
∆(t, t′), the open/filled lines are the vertex operators Fψ, Fφ̄, and the red lines represent g (d)
The diagrams for the NCA self-energyΣ|↑〉 in the single-impurity Anderson model. (e) Diagrams
for the correlation function 〈A(t)B(t′)〉S without (e) and with (f) vertex corrections.

(Fig. 4b):

[A�B](t, t′) =

∫
C:t>C t̄>Ct′

dt̄ A(t, t̄)B(t̄, t′) for t >C t′ (72)

[A�B](t, t′) =

∫
C:−iβ>C t̄>Ct′

dt̄ A(t, t̄)B(t̄, t′) +

∫
C:t>C t̄>0+

dt̄ A(t, t̄)B(t̄, t′) for t <C t. (73)

Such time-ordered convolutions naturally appear in the expansion of the time-evolution oper-
ator. In practice, using the differential equation for the evolution operator one can solve the
Dyson equation (71) as an integral-differential equation(

i∂t −Hat

)
G(t, t′)− [Σ � G](t, t′) = 0, (74)

to be solved with the initial condition G(t−, t+) = −i, and the boundary condition (27). By
construction, the trace

Z = Tr
(
ξ iG(t+, t−)

)
(75)

is the partition function. In the following, we assume that Z = 1, which can always be achieved
by adding a suitable constant to Hat). R = ξ iG(t+, t−) is the reduced density matrix on the
impurity, Rαα′ = Trbath[|α′〉〈α|], so that all local observables on the impurity are obtained from

〈Ô〉 = Tr
(
ξ iG(t+, t−) Ô

)
, (76)

once the propagators G are known.
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In the non-crossing approximations, one considers only hybridization diagrams without cross-
ings (also crossings between lines of different flavor ∆γ are excluded). This can be understood
as a leading order expansion in the self-consistent diagrammatic expansion which can be de-
rived from a Luttinger-Ward functional and thus leads to a conserving approximation. The
diagrams have a simple form, where for each channel γ in Eq. (68) one adds two diagrams for
the two directions of ∆,

Σ(t, t′) =
∑
γ

i
(
∆γ(t, t

′)Fφ̄γ (t)G(t, t′)Fψγ (t
′) + Pγ ∆γ(t

′, t)Fψγ (t)G(t, t′)Fφ̄γ (t
′)
)
, (77)

where (FA)αα′ = 〈α|A|α′〉 is the matrix representation of the vertex operators A = ψγ, φ̄γ , and
Pγ = −1 if ψγ and φ̄γ are fermionic operators. These diagrams have an intuitive interpretation,
where the vertex operators corresponds to a simultaneous transition between a many-body state
on the impurity and a transition in the bath. For example, the first diagram in Fig. 4d shows the
emission of an electron with spin ↑ in the bath, causing a transition of the impurity state from
|↑ 〉 to |0〉. The electron then propagates in the bath and is later reabsorbed.
Finally, in addition to observables (76) one needs contour-ordered two-point correlation func-
tions 〈TCA(t)B(t′)〉S . The operators can simply be inserted as additional vertices on the con-
tour. The general diagrammatic series contains the bare term

〈TCA(t)B(t′)〉S = −Tr
(
ξ G(t′, t)FA(t)G(t, t′)FB(t′)

)
. (78)

One may check the consistency of this term with Eq. (76) (using G(t−, t+) = −i)

〈TCA(t−)B(t+)〉S =−Tr
[
ξG(t+, t−)FAG(t−, t+)FB

]
= iTr

[
G(t+, t−)ξFAB

]
(76)
= 〈A(t)B(t)〉

〈TCA(t+)B(t−)〉S =−Tr
[
ξG(t−, t+)FAG(t+, t−)FB

]
= iTr

[
ξFAG(t+, t−)FB

]
=

= iTr
[
G(t+, t−)FBξFA

]
=±iTr

[
G(t+, t−)FBFAξ

]
=±〈B(t)A(t)〉.

Here we have used that the matrix ξ commutes with G, because the evolution conserves the
Fermion parity, and it commutes (anti-commutes) with the matrix FX if X is a Bose (Fermi)
operator. One can also verify Eq. (78) in the atomic limit, using Eqs. (69) and (70). Eq. (78)
is used in the NCA impurity solver to measure the impurity Green function. Equations (74),
(77), and (78) thus provide the complete set of equations for the most general multi-orbital
NCA. The equations have a matrix structure with the Fock-space dimension of the impurity,
but symmetries usually render these equations block-diagonal, at least in the fermion parity, and
for non-superconducting states also in the particle number.
We note that in general the expectation value 〈TCA(t)B(t′)〉S contains diagrams which corre-
spond to vertex corrections of the operators A and B, see Fig. 4e and f. Even within NCA,
some of these diagrams are generated if the correlation function 〈TCA(t)B(t′)〉S is calculated
by explicitly taking a derivative of the NCA solution to 〈B(t′)〉S with respect to a source field
that couples to A(t). Such an explicit measurement, which includes the vertex corrections, can
be useful for the calculation of susceptibilities within NCA. For the measurement of the Green
function within the DMFT cycle, one sticks to Eq. (78), which gives a consistent approximation.
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4 Photo-doping the Mott insulator

The Mott transition, at which electrons get localized due to the Coulomb interaction, is one of
the hallmarks of strong electronic correlations in solids. In contrast to a band-insulator with
filled or empty bands, electrons in the Mott insulator still have active spin and orbital degrees
of freedom, which can result in complex phases with magnetic and orbital order. Short-ranged
magnetic and orbital correlations, on the other hand, may induce interactions between doped
electrons and holes, and thus give rise to yet new states such as superconductivity. The devel-
opment of DMFT has been instrumental in the understanding of the Mott transition [21], and
it is therefore a natural application of the non-equilibrium extension of DMFT to analyze the
dynamics of Mott insulators after various excitation protocols.

4.1 Paramagnetic Mott insulator

The most straightforward way to excite a Mott insulator is a short electric field pulse of fre-
quency Ω ≈ U . This generates charge excitations in the paramagnetic Mott insulator, i.e. dou-
bly occupied and empty sites. The properties of such a photo-excited state and its thermalization
have been analyzed in Ref. [42]. Figure 5a) shows the time-evolution of the double occupancy
d(t) = 〈n↑(t)n↓(t)〉 during and after the excitation. These results have been obtained for the
Bethe lattice and the NCA impurity solver, using a single-cycle electric-field pulse. Setting the
bandwidth W = 4 fixes the energy- and timescale (~ = 1). (The results in [42] have been
obtained for the hyper-cubic lattice using the hybridization expansion up to third order. They
are qualitatively similar to the results shown here.)
The double occupancy increases during the pulse, and subsequently shows an exponential
relaxation to a new final value. Thermalization would imply that the properties of the sys-
tem eventually approach the properties of a system in equilibrium, at a temperature Tf such
that the total energy equals the thermal energy expectation value Eth(Tf ) at temperature Tf ,
〈H(t)〉 ≡ Etot

!
= Eth(Tf ). (Note that the system is treated in isolation from environment, so

that the total energy is conserved after the excitation. We can determine Tf from a compari-
son to independent equilibrium simulations, and then compute the thermal expectation value
dth(Tf ) for the different values of U in Fig. 5. A fit of the form

d(t) = dth(Tf ) + A exp(−t/τ), (79)

(see black dashed lines) shows that the evolution of d(t) is compatible with thermalization of
the electronic system. The timescales, however, strongly depend on U , and range from few
hopping times in the correlated metal (U = 2.5), to τ > 1000 in the Mott phase (U = 6). Em-
pirically, the dependence of the thermalization times on U can be described by the exponential
dependence τ(U) ∼ exp

[
α U
v∗

log
(
U
v∗

)]
, with some numerical constant α (blue dashed line in

Fig. 5b). This result has an interpretation in terms of a bottleneck due to the inefficient transfer
of a large energy quantum of order U into many single-particle excitations [43]. The exponen-
tial dependence was first measured in a system of ultra-cold atoms [43]. In solids, the life-times
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Fig. 5: a) Evolution of the double occupancy in the Hubbard model on the Bethe lattice during
and after a single-cycle pulse of duration 2δt with δt = 2π/Ω and Ω = U , i.e., A(t) =
A0e

−4(t−δt)2/δt2 sin(t−δt)Ω for 0 ≤ t ≤ 2δt in Eq. (67). The initial temperature is T = 0.2,
initial states correspond to values of U in the metal-insulator crossover and in the Mott state, as
schematically shown by the circle symbols in panel c). Square symbols in c) show the state after
thermalization (Tf ≈ 0.5 for all curves). Dashed lines in a) are exponential fits, see Eq. (79).
b) Symbols: Relaxation times τ , obtained from the fits (79).

of photo-excited carriers in Mott insulators can indeed range to thousands of hopping times (pi-
coseconds), but the decay mechanism may involve other degrees of freedom: Spin-fluctuations
have been discussed as a possible mechanism for the doublon decay in cuprates [44, 45], while
in organic materials there are molecular vibrations at relatively high energies ω0, opening the
possibility for a multi-phonon decay at a timescale governed by U/ω0 rather than U/W [46,47].

Thermalization of small-gap Mott insulators

We now focus on the regime of small U , where rapid thermalization is observed in the double
occupancy. We can identify the thermalization also in the relaxation of the spectral function and
the occupation function, see Fig. 6. In the Figure, the spectral function and occupation function
have been obtained by the backward Fourier transform with cutoff smax

A (ω, t) = − 1

π
Im

∫ smax

0

dsGR(t, t− s) eiωs (80)

N<(ω, t) = − 1

π
Im

∫ smax

0

dsG<(t, t− s) eiωs. (81)

(The Wigner transform, or a photoemission spectrum (10) would look similar.) Both spectral
function and occupation function become independent of t within a few hopping times, com-
parable to the relaxation time τ of the double occupancy. At the latest time t = 18, we find



15.26 Martin Eckstein

 0
 0.05
 0.1

 0.15

-4 -2  0  2  4

t=18

ω

 0
 0.05
 0.1

 0.15 t=12
 0

 0.05
 0.1

 0.15 t=6

A
(t

,ω
)

 0
 0.05
 0.1

 0.15 t=0

Fig. 6: a) Spectral function, Eq. (80), for U = 2.5, β = 5 and the same excitation protocol
as in Fig. 5, plotted for different times t. The shaded region shows the occupation function,
Eq. (81), for the same parameters. The blue dotted line for t = 18 shows A(t, ω)f(ω, Tf ),
where Tf = 1/1.967 is determined from the total energy.

the fluctuation theorem satisfied in the form N<(ω) = A(ω) f(ω, Tf ), with the temperature
Tf = 1/1.967 is obtained from the total energy. This confirms that, regarding the single-particle
properties, the system indeed thermalizes on the timescale of few hoppings.
A rapid thermalization of a small-gap Mott insulator is in agreement with early time-resolved
photoemission measurements on the Mott insulator 1T-TaS2 [48]. At the shortest measurable
times, the spectrum of the photo-excited system resembles that of a Mott insulator at electronic
temperatures of the order of the gap, where thermal effects lead to a filling in of states in the
gap. In spite of some naive expectation, rapid thermalization of a strongly correlated system
is far from obvious: Already the analysis above predicts a rather sensitive dependence of the
thermalization time on the gap, and also model studies for an interaction quench in the Hubbard
model [18] show thermalization within timescales of the order of the bandwidth only in a narrow
interaction regime. Most importantly, thermalization in a strongly correlated system cannot
directly be understood from a simple Boltzmann equation. The latter would only describe the
evolution of the occupation function, while thermalization in the correlated system implies that
also the spectral function is modified. In Fig. 6, e.g., the spectral function completely changes
during the evolution: In the initial state (β = 5) there is still a reminiscence of the quasiparticle
peak, while in the final state at high electronic temperature the system resides in a bad-metallic
state, with a pseudo-gap instead of the quasiparticle peak.
In view of this, it is reassuring that recently also a successful comparison between theory and
experiment of time-dependent features of the thermalization could be achieved [49]. A refined
analysis of the photoemission spectroscopy in 1T-TaS2 shows the transient emergence and decay
of the population in the upper Hubbard band. Such a reduction of the occupied weight in the
upper band should happen along with the electronic thermalization if the system is slightly hole-
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Fig. 7: a) Occupation function, Eq. (81), for U = 4 and the same excitation protocol as in
Fig. 5, plotted for different times t. The arrows indicate increase and decrease of weight at
low and high energies, respectively. b) Spectral function, Eq. (80), for the same parameters.
The arrows indicate an energy-conserving redistribution of occupied weight, as approximately
described by a local Boltzmann equation (see text).

doped. Since the laser transfers population both within the Hubbard bands and to higher and
lower bands other than the valence band, the filling in the valence band may change during the
excitation. In spite of the extremely sensitive dependence of thermalization timescales on the
model parameters, the observed experimental bound for this timescale is consistent with DMFT
results [49].

Impact ionization

In Fig. 5 one can see that the double occupancy increases during the thermalization after the
pulse. This implies that the kinetic energy of the photo-excited state is initially too high, and ki-
netic energy from one or more charge excitations is used to generate additional doublons. This
process is similar to an Auger process in atomic physics, or impact ionization in semiconduc-
tors [50]. The process is visible also in the evolution of the occupation function (Fig. 7a). The
occupied density of states (81) in the upper Hubbard band shows an increase of the weight at
small energies, which exceeds the decrease at high energies. This phenomenology is clearly dis-
tinct from intra-band relaxation via spins and phonons, where the total weight remains constant
while it is redistributed from higher to lower energies.
Naively one can argue that a doublon with high kinetic energy (represented by occupied density
of states in the upper part of the upper Hubbard band) undergoes a scattering process with a
“particle in the lower band” leading to one additional hole (unoccupied weight in the lower
Hubbard band) and two doublons with low kinetic energy (occupied density of states in the
lower part of the upper Hubbard band), as indicated by the arrows in Fig. 7b. In the ideal
case, when the relaxation of each doublon from the high-energy window generates precisely
one doublon-hole pair, one would expect the increase of the weight at low energies to be larger
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by a factor three than the decrease at high energies, a quantitative estimate which works rather
well for small gap Mott insulators [50]: In the present case, the increase of weight from t = 18

to t = 60 in the interval 0.5 ≤ ω ≤ 2 is larger by approximately a factor 3.1 than the decrease
in the interval 2 ≤ ω ≤ 4.
The argument presented above seemingly relies on a scattering of quasiparticles (doublons) with
a well-defined energy, as described by a Boltzmann equation. The success of such an argument
may come as a surprise, as the energy of a doublon is not really well-defined, and the width
of the peaks in the momentum-resolved spectral Ak(ω) function is of order one. However,
one can reformulate the scattering argument on the basis of a local time-dependent occupation
function defined by G<(ω, t) = 2πiA(ω, t)F (ω, t), putting it on more rigorous grounds [51]:
Under the assumption that (i), the spectral function A(ω) is more or less time-independent,
which is justified numerically for weakly excited paramagnetic Mott insulators (compare the
spectra at the earliest and later time in Fig. 7b), and (ii), that the distribution function F (ω, t)

evolves slowly compared to the inverse bandwidth, one can argue that the non-equilibrium
DMFT dynamics of F is given by a local Boltzmann equation

∂tF (ω1, t) = α

∫
dω2dω3dω4A(ω2)A(ω2)A(ω4) δ(ω1 + ω2 − ω3 − ω4) ×

×
(
F (ω3)F (ω4)(1− F (ω1))(1− F (ω2))− F (ω1)F (ω2)(1− F (ω4))(1− F (ω3))

)
,

where α is a phenomenological parameter. This equation indeed describes energy-conserving
scattering processes as shown in Fig. 7b, even though the individual doublons do not have well-
defined energies.
Impact ionization processes are interesting in the context of photo-voltaic devices: Usually, a
photon creates a single charge excitation, which then quickly relaxes to the bottom of the band
due to scattering with phonons. The usable energy per photon is therefore not given by ~ω,
but only by the gap ∆. However, if impact ionization is faster than such intra-band relaxation
processes, the final state can have two or more electrons at the energy ∆. DMFT shows that
impact ionization processes in small-gap Mott insulators indeed can occur on a time-scale much
faster than typical electron-phonon relaxation times. However, as seen below, short-range spin
fluctuations in Mott insulators can provide another fast intra-band relaxation mechanism, so
that it remains to be seen to what extent impact ionization plays an important role in real Mott
materials.

4.2 Dynamics of the antiferromagnetic Mott insulator

At half-filling and on a bipartite lattice, the Hubbard model shows an extended antiferromag-
netic phase at low temperature. At weak coupling this phase is well described as a Slater
mean-field antiferromagnet, while for large U the Heisenberg model is the limiting description.
Several works on DMFT have focused on the melting or partial melting of this phase after photo-
excitation or quenches of the interaction. After quenches around large U (Heisenberg regime),
there is a threshold of the quench amplitude ∆U beyond which the order rapidly melts [52].
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Fig. 8: Inset: Antiferromagnetic order parameter m(t) in the Hubbard model on the Bethe
lattice (U = 5, β = 20), after excitation with a single-cycle electric field pulse. The different
curves correspond to different excitation densities (pulse amplitudes A0) up to nex ≈ 0.025.
Main plot: Extrapolated value m∞, obtained by fitting the curves in the inset with m(t) =
m∞ + Ae−γt for t ≥ 15. mth is the order parameter after thermalization.

A critical slowdown 1/τ ∼ |∆U −∆Uc| is observed, where ∆Uc is the critical quench ampli-
tude for melting the antiferromagnetic phase. (A similar non-thermal critical behavior is also
found after quenches at small interaction [53].) While this reminds of a second-order phase tran-
sition, the melting of the anti-ferromagnetism after the quench is a non-thermal process: Like
the paramagnetic Mott insulator, the antiferromagnetic Mott state thermalizes only on times
which are exponentially large in U/W . The ordered state can thus prevail even when the energy
after the quench is higher than the energy of the half-filled system above the Néel temperature.
Instead, the threshold for the melting is set by the number of excited doublons after the quench,
i.e., the occupied weight in the upper Hubbard band.

The non-thermal melting can also be seen after excitation with a short pulse: Like in the para-
magnetic phase at large U, a pulse leads to an increase of the double occupancy which does not
thermalize within the simulated time of ∼ 100 hoppings. Figure 8 shows the time-evolution
of the antiferromagnetic order parameter m(t) = 〈c†j↑cj↑ − c

†
j↓cj↓〉j on A-sublattice in the Hubbard

model on the Bethe lattice after excitation with an electric field pulse: m(t) saturates to a finite
value for excitation densities nex . 0.015, while complete melting of long-range order is ob-
served for nex & 0.015, with a relatively sharp threshold of the final value m∞ as a function of
the excitation density. The corresponding value of the order parameter in the thermalized state,
which would be reached after thermalization, mth(nex), is always lower than the value of m∞
in the photo-excited state. The intermediate state is expected to relax only on the exponentially
long timescale of doublon-hole recombination.

The non-thermal melting of the antiferromagnetic order can be understood in terms of a hole
which is moving in the antiferromagnetic spin background and thus induces a spin-flip in every
hopping process [54]. Because each spin-flip increases the energy in the magnetic sector by
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Fig. 9: Simulated time-resolved photo-emission spectrum in a two-dimensional Mott insulator
(Hubbard model, U = 12) after a transfer of population to the upper Hubbard band. (Dynami-
cal cluster approximation with a 2×2 cluster and an NCA impurity solver.) At high temperature
(right) the relaxation of weight within the upper band becomes slower, because the spins are al-
ready thermally disordered (T & Jex) and cannot take up more energy. Adapted from Ref. [55].

an amount of the order of the exchange energy Jex ∼ v2
∗/U , this implies an ultra-fast transfer

of kinetic energy from photo-doped electrons to the spins, and thus an ultra-fast mechanism
for intra-band relaxation. A rapid energy transfer to spins is even possible in the paramag-
netic phase, where spins have no long-range order, but are short-ranged and short-lived. While
short-range fluctuations cannot be captured in single-site DMFT, they have been studied using
cluster extensions (the dynamical cluster approximation) [55]. Figure 9 shows a simulated time-
resolved photo-emission spectrum in the two-dimensional Hubbard model. One finds a redis-
tribution of the occupied density of states, which happens along with a reduction of short-range
spin correlations. Using parameters comparable to cuprates, the relaxation times τ ∼ 10–20 fs
are compatible with the timescales for the initial saturation of the optical response in cuprates
after a few-fs laser excitation and with exact-diagonalization results for small clusters in the t-J
model [54].

The photo-doped state

In the time window between thermalization (on timescales exponentially large on U/W ) and
the relaxation of the kinetic energy by partial melting of spin fluctuations, the electronic system
is in an almost steady non-equilibrium state. It turns out that in this steady state only the
excitation density nex and the antiferromagnetic order parameter m∞ remain as the main non-
equilibrium control parameters which determine the properties of the system, in analogy to the
thermodynamic variables in equilibrium: Firstly, the spectral function of the photo-excited state
with given nex and m∞ matches the spectral function of a chemically doped system with the
same order parameter and a density of carriers n − 1 = 2nex [52]. This shows that chemically
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Fig. 10: Left: Macro-spin dynamics of the antiferromagnetic order parameter after a photo-
doping excitation. In the presence of an external fieldB, the order parameterM1 on sub-lattice
1 aligns with the effective field JexM2 +B. If Jex is modified, a precessional dynamics follows.
Right: The exchange interaction extracted from the macro-spin dynamics in the photo-excited
system at excitation density 2nex (red symbols), and from the macro-spin state in a chemically
doped system with filling n = 1 + 2nex (green lines). Adapted from Ref. [56].

doping n − 1 doublons or holes in equilibrium has a similar effect as photo-exciting the same
number of doublons and holes, which is why the steady state may be called a photo-doped
state. Furthermore, it was shown that also the magnetic exchange interaction Jex is modified
in the photo-excited state due to the presence of mobile carriers [56], to the same extent as by
chemical doping. The latter can be seen in a time-resolved precession experiment, Fig. 10. One
can analyze the change of Jex from the global macro-spin dynamics of the antiferromagnetic
order parameter after a photo-doping excitation: The dynamics of the sub-lattice magnetization
M1 on one of the two sub-lattices of the anti-ferromagnet is determined by the precession of the
momentM1 in an effective magnetic fieldBeff = JexM2 +B given by the exchange coupling
to the other sub-lattice and the external field,

d

dt
M1 = (JexM2 +B)×M1, and 1↔ 2. (82)

In equilibrium, the static external field implies a canted anti-ferromagnetic state (Fig. 10). If the
photo-doping modifies the effective parameter Jex, spins are no longer aligned with Beff and
start to precess. From the precession dynamics, which can be obtained from the DMFT solution
of the photo-excited Hubbard model, one can thus read off Jex. As shown in Fig. 10, one finds
an exchange interaction which is different from the equilibrium state of the half-filled model,
but roughly equals the value obtained in an equilibrium state with the same density of carriers
n− 1 = 2nex [56].

Multi-orbital systems

The previous analysis shows that photo-doping provides an ultra-fast way to manipulate mate-
rials properties. The photo-doped state in the single-band anti-ferromagnet is controlled (after
some primary electronic relaxation) by a single control parameter nex. This may be expected
from the simplicity of the model, which has only a single band and is particle-hole symmetric,
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such that hole-doping, electron doping, and photo-doping have a similar effect. In more com-
plex models, in particular those involving more than one orbital, there is a large playground
to manipulate the occupations of different types of doubly occupied and multiply occupied
states [57] and use this to modify the effective interactions which govern spin and orbital order.
A recent investigation of photo-doping in the two-orbital Hubbard model at quarter filling has
revealed a possible path to reach hidden states by photo-doping [58]: For one electron in two
degenerate orbitals of eg symmetry, the Hubbard model features both spin and orbital order
in equilibrium, analogous to the order in KCuF3 [59]. Photo-excitation is followed by non-
thermal melting, which results in a transient reduction of the two orders. In contrast to the
effect of heating, however, the magnetic order melts consistently slower than the orbital order.
The photo-doped state therefore has a intrinsically different spin-orbital order from the equi-
librium state, and the coupling between the two order parameters leads to a ferro-orbital state,
which can otherwise not be established in the equilibrium phase diagram.

5 Outlook and further questions

In these notes we have presented the theoretical basis for a description of correlated electron
systems out of equilibrium using non-equilibrium DMFT. These lecture notes do not represent
a review of non-equilibrium DMFT. For example, a large field of research which has been left
out includes the so-called Floquet engineering of Hamiltonians by periodic driving [10], where
DMFT provides a framework to study directly the driven dissipative state [13]. Rather than
listing all this work, we end this lecture with a loose list of questions and topics which remain
open for further research:

• Multi-orbital effects: Many correlated materials have more than one active orbital, so
that their physics is governed by the interplay of orbital order, spin-order, and the strong
coupling to the lattice. In such systems, intertwined order parameters allow to steer a
system along nontrivial pathways into novel transient or hidden phases, or dynamically
stabilize non-equilibrium states, such as already seen in Ref. [58]. Some interesting di-
rections to be explored further, such as photo-induced metal-insulator transitions have
already been demonstrated within the Gutzwiller approximation [60]. The investigation
of multi-orbital effects within DMFT is clearly only at the beginning.

• Long term steady states: Non-equilibrium steady states have so far been used to in-
vestigate driven steady states (e.g., to discuss current-induced phase transitions [61]).
An interesting open question is whether one can design an approximate non-equilibrium
steady state description of pre-thermalized or photo-doped states in correlated systems.

• Impurity solvers: There are currently no non-perturbative impurity solvers which work
at long times. While NCA can be applied very flexibly within the Mott phase, it be-
comes increasingly inaccurate for correlated metallic phases. An interesting perspective
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is given by the application of the non-perturbative methods (QMC [37] and Hamiltonian-
based solvers [39]), which currently seem to be too expensive for the long-term transient
dynamics, to explore the non-equilibrium steady states.

• Role of non-local correlations: DMFT assumes a spatially local self-energy. One might
wonder whether the local approximation, though correct in the limit of taking the coordi-
nation number Z to infinity at a fixed length of the time contour, would miss qualitatively
important effects for finite-dimensional systems. Most likely, the long-time limit and the
Z →∞ limit do not commute, i.e., even in highly coordinated systems at some timescale
there may be effects which have a qualitative influence on the dynamics that is not cap-
tured by DMFT. This includes the influence of short-range fluctuations on the relaxation
dynamics, such as discussed around Fig. 9, or the feedback of collective excitations on
the non-equilibrium dynamics. These effects may be investigated to first approximation
using diagrammatic approximations such as GW or FLEX.

• Non-local interactions, screening, and the path towards an ab-initio description:
An important consequence of non-local interactions is the feedback of the long-range
Coulomb interaction on the parameters of the model Hamiltonians via dynamical screen-
ing. For large excitation densities, or interactions involving many bands, one can expect
a sizeable renormalization of the Hubbard U via screening, which may even close a Mott
gap. A possible way to include these effects is via the extended DMFT formalism [62].
The question of screening is also closely related to the possible ab-initio determination
of model parameters. Other than in equilibrium, an ab-initio formalism comparable to
density functional theory is less developed. The combination of a non-equilibrium Green
function approach such as DMFT with a density-functional approach suffers from the
double counting problem, which is unresolved in equilibrium. An interesting perspec-
tive is therefore the combination of non-equilibrium GW with DMFT [63], which can be
formulated in a consistent functional language. The main challenge in this direction is,
again, the solution of the resulting impurity problem with retarded interactions which can
currently only be solved in the limited parameter regime accessible by NCA.
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