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1 Introduction

The computationally most difficult task in Dynamical Mean Field Theory (DMFT) [1–4] is the
calculation of the self energy Σ(ω) or, equivalently, the spectral function A(ω). For typical
physically relevant systems with three or five orbital impurities, this becomes demanding, and
the energy resolution of standard techniques has been limited. In this chapter, a new method
is described, dubbed Fork Tensor Product States (FTPS) [5, 6], which is as efficient as the
best established methods for multiple orbitals, but has much better energy resolution at large
energies, by way of using real-time evolution of an excited state. It is based on so-called Matrix
Product State (MPS) techniques [7], which are related to the Density Matrix Renormalization
Group (DMRG) [8].
The new method and the results described in this chapter are largely the work of my former
student Daniel Bauernfeind, described in detail in his Ph.D. thesis [9]. I would like to thank
him very much for a great collaboration.

1.1 Impurity solvers in DMFT

For the description of a material in DMFT, one first calculates the band structure by some variant
of Density-Functional Theory (DFT) and projects the spectrum onto a few low lying effective
orbitals, from which an effective Hamiltonian is constructed. Some aspects of this procedure
will be discussed later in the results section. DMFT then treats the effective Hamiltonian locally,
for example on a single site, which will be discussed here. The effect of all other sites is
subsumed by the interaction with an effective bath, resulting in an effective Anderson Impurity
Model (AIM) like

HAIM = Hloc +
∑
k

Vk

(
c†kc0 + h.c.

)
+
∑
k

εknk . (1)

Here, Hloc is the local interacting Hamiltonian, k is, e.g., a momentum space index numbering
the noninteracting bath sites with local energy εk and occupation number nk = c†kck, and Vk is
the hopping strength from the impurity (indicated by index zero) to the bath site.
For this model, the impurity spectral function A(ω) has to be calculated. It is then used together
with the lattice structure of the material examined to determine new bath parameters Vk, εk in
an iteration of the DMFT loop, until self-consistency is reached.
The bath represents a continuous spectrum of energies of the material around the impurity.
Therefore the number NB of sites in the bath and the corresponding spacing of the energies εk
(as well as the choice of their values) limits the energy resolution which can be achieved. Often,
the AIM is transformed into an equivalent representation as a Wilson chain [10, 11], i.e., a tight
binding chain of length NB with the impurity site coupled at one end.

Let us very briefly touch on some of the current impurity solvers and their strengths and weak-
nesses.
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Fig. 1: Anderson impurity model in two different representations. The circle marked by U
represents the interacting site. Left: star geometry, a direct representation of Eq. (1). Right:
Wilson chain, obtained after a unitary transformation.

Continuous time quantum Monte Carlo

The state of the art work horse for DMFT calculations is probably Continuous Time Quantum
Monte Carlo (CTQMC) [12, 13], usually in its CT-HYB variant. Here, the impurity problem
is expressed in a Lagrangian formulation in continuous imaginary time, with a chain of length
β = 1/T , the inverse of the temperature. The Green function G(τ) is measured, with statis-
tical errors, in imaginary time, and needs to be transformed by a so-called analytic continu-
ation to real time / real frequency, usually done with some variant of the Maximum Entropy
method. This transformation is badly conditioned, especially for non-exact data. One of the
consequences is that the energy resolution of the resulting spectrum becomes rather bad at large
energies. We will see some examples in the section on results. The computational effort for
CTQMC usually grows exponentially with the number of orbitals. An additional difficulty of
CTQMC is a potential Monte-Carlo sign problem which then drastically limits the attainable
inverse temperatures and numbers of orbitals.

Exact diagonalization / Configuration interaction

When there are not too many bath sites, the impurity spectral function A(ω) can be calculated
with Exact Diagonalization (ED) [14–16], but will then consist of a limited number of delta-
peaks. This can be improved, for example by using different bath discretizations within the
same calculation or by optimizing the discretization in Configuration Interaction (CI) schemes
[17, 18]. For a single orbital, spectra with good resolution have been achieved. However, for
more orbitals, the energy resolution has been very limited by, for example, only 3 bath sites for
3 orbitals in Ref. [17].

Numerical Renormalization Group

The Numerical Renormalization Group (NRG) [10,11] provides one of the standard approaches
to impurity solvers. It works on the real frequency axis, successively integrating out degrees of
freedom on high energy scales in a logarithmic fashion in a Wilson chain. It can provide very
good energy resolution at low energies, even for several orbitals [19–21], but by construction is
rather coarse at large energies. The number of orbitals enters exponentially into the computa-
tional effort. NRG amounts to a calculation with matrix product states (see below).
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Dynamical DMRG

The so-called Dynamical DMRG (DDMRG) [22–25] and Correction Vector (CV) [26] ap-
proaches are variants of DMRG in which A(ω) can be calculated very precisely, although with
some broadening, directly at a chosen frequency. However, a separate calculation is necessary
for every frequency, so that multiple orbitals become infeasible.

Time evolution with matrix product states

Matrix product state methods also provide precise techniques to calculate the time evolution
of pure states after a local excitation at the impurity site. Most methods have been developed
in a closely related variant using Chebyshev polynomials [27–30] for up to 2 orbitals [30].
Direct real time evolution has been employed for one and two orbitals by Ganahl et al. [31],
with very good energy resolution. However, the computational effort may grow exponentially
with the number of orbitals and has in the past been far too large for more than two orbitals.
More orbitals have only been reached in imaginary time [32], with associated energy resolution
difficulties. In the present chapter we will see how to overcome these problems.

1.2 Calculation of impurity Green function in time evolution approaches

Impurity solvers using time evolution techniques employ the following general steps (leaving
out spin and orbital indices for simplicity):

• Given the bath parameters, calculate the ground state |ψ0〉 of the corresponding Anderson
impurity model, with energy E0.

• Apply an annihilation operator to obtain the excited state |ψ1〉 = c0|ψ0〉.
• Time evolve, i.e., calculate eiHt |ψ1〉.
• Calculate the overlap with |ψ1〉, namely G<(t) = 〈ψ1| eiHt |ψ1〉 e−iE0t, which provides

one part of the Green function.

• The resulting function G(t) can, if desired, be post-processed with so-called linear pre-
diction [27, 7, 31] (essentially a fit with O(100) Lorentzians) in order to further improve
the energy resolution.

• Fourier transform to obtain A(ω).

More details can be found in Refs. [31,5,6,9]. The Fork Tensor Product State (FTPS) approach
to be described in the present chapter is based on the Matrix Product State (MPS) formalism,
which we will therefore first discuss in some detail. For FTPS we will then introduce a special
efficient tensor geometry. Both MPS (and DMRG) as well as FTPS require an essentially
linear bath geometry. Yet we shall see that, quite surprisingly, it will be much more efficient to
directly enumerate the sites k of the bath degrees of freedom (the so-called star geometry) along
an artificial chain, instead of employing Wilson chains for the bath. At the end of the chapter
we will discuss results and performance of the new method.
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2 Matrix product state techniques

2.1 Matrix product states (MPS)

Matrix product states constitute the formalism behind DMRG. In order to understand the FTPS
method, we need to go into some detail on the MPS approach. For a much more complete
exposition, including all the references to the original literature, I refer to the great review by
U. Schollwöck [7]. For a quick reading of this section, the graphical representation Fig. 2 and
its explanation contain some of the most important aspects.

The state space of many-particle models grows exponentially with the number of particles in-
volved. Such models can therefore be treated exactly only for very small systems. The MPS
approach permits very precise and efficient approximations even for very large systems. It has
allowed for, e.g., DMRG calculations of the ground state energy of Heisenberg models on sev-
eral hundred sites to 10-digit precision, and can also be used to time-evolve a state. Note that a
convenient library of tensor routines is available for such calculations [33].

2.1.1 Example: Heisenberg spin chain

In order to keep notation reasonably simple for the discussion of MPS, in this section we shall
treat the one-dimensional spin-1/2 Heisenberg model with open boundary conditions

Ĥ =
L−1∑
i=1

Ĥi with Ĥi =
Jxy
2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ JzS

z
i S

z
i+1 , (2)

where S±j = Sxj ± iS
y
j , thus S+

j | ↓ 〉j = | ↑ 〉j and S−j | ↑ 〉i = | ↓ 〉j . The representation of Sαj in
the z-basis at site j is σα/2 (we leave out ~).

A chain of L sites has 2L basis states, which are |s1, s2, . . . , sL〉 with sj ∈ { ↑, ↓ } in the z-basis.
In case of isotropic couplings Jxy = Jz =: J we get Ĥ = J

∑
j
~Sj · ~Sj+1. This model is also a

good approximation of the strongly repulsive Hubbard model (U � t) at half filling.

Note that on a one-dimensional chain, the Heisenberg model is equivalent to a model of tight-
binding spinless fermions

Ĥ =
L−1∑
j=1

t
(
c†jcj+1 + h.c.

)
+ V n̂jn̂j+1 −

V

2

(
n̂j + n̂j+1

)
+

1

4

by the Jordan-Wigner transformation. With fermions, the only new aspect for MPS is the minus
sign that appears upon interchanging two fermions. It can be dealt with by a suitable operator
which we will discuss in the chapter on FTPS.
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Fig. 2: Graphical representation of an MPS. Black circles represent matrices A. Lines con-
nected to the circles represent indices, which are summed over when the lines of two circles are
connected. The horizontal set of circles and lines therefore represents the product of matrices
in Eq. (4). The vertical lines denote the remaining physical indices si.

2.1.2 Matrix product state ansatz

A general state of the Heisenberg chain is

|ψ〉 =
∑

s1,s2,...,sL

cs1,s2,...,sL |s1, s2, . . . , sL〉 (3)

with 2L complex numbers as coefficients. We will now write the coefficients in a different way,
as a product of matrices, with one matrix for every lattice-site. This can always be done exactly
(see later) when the matrices are chosen big enough, namely up to 2L/2 × 2L/2. We will later
see that much smaller matrices (O(100) × O(100)) can already provide an extremely good
approximation to physically relevant states. The ansatz is

|ψ〉 =
∑

s1,s2,...,sL

∑
α1,α2,...,αL−1

A[1]s1
α1

A[2]s2
α1,α2

A[3]s3
α2,α3

. . . A[L−1]sL−1
αL−2,αL−1

A[L]sL
αL−1

|s1, s2, . . . , sL〉. (4)

The A can be taken to be square matrices (except for the first and last A, which are vectors),
and αj = 1 . . . χ are the matrix indices. The upper index [j] numbers the lattice sites. The
matrices A usually differ from site to site. At each site j, there are two matrices, A[j]↑, and
A[j]↓, corresponding to the values sj =↑ and sj =↓ in the basis vector |s1, s2, . . . , sL〉. For a
given state, the matrices A are not unique: one can replace any pair of matrices A[j]A[j+1] by
(A[j]X) (X−1A[j+1]), with any invertible matrix X . It is very helpful to denote this ansatz for
the coefficients in a graphical way, as shown in Fig. 2. Let us look at some simple examples.
• Single basis state (product state) A state like | ↓ ↓ ↑ ↓ ↑ ↓ 〉 is called “product state” since it
can be written as a product | ↓ 〉1 | ↓ 〉2 | ↑ 〉3 | ↓ 〉4 | ↑ 〉5 | ↓ 〉6 and it does not contain any linear
combination.

|ψ〉 = | ↓ ↓ ↑ ↓ ↑ ↓ 〉

j = 1 2 3 4 5 6

A↑j = 0 0 1 0 1 0

A↓j = 1 1 0 1 0 1

The “matrices” A are just single numbers here.
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• Singlet, L=2 sites

|ψ〉 =
1√
2

( ∣∣ ↑↑ ↓↓
〉

−
∣∣ ↓↓ ↑↑

〉 )
A↑j = (1, 0), −

(
0

1

)
/
√

2

A↓j = (0, 1),

(
1

0

)
/
√

2

• Nonlocal singlet

|ψ〉 = 1√
2

( ∣∣ ↓ ↓ ↑↑ ↓ ↓ ↓↓ ↓ ↓
〉

−
∣∣ ↓ ↓ ↓↓ ↓ ↓ ↑↑ ↓ ↓

〉 )
A↑j = 0, 0, (1, 0),

(
0 0

0 0

)
,

(
0 0

0 0

)
, −

(
0

1

)
/
√

2, 0, 0

A↓j = 1, 1, (0, 1),

(
1 0

0 1

)
,

(
1 0

0 1

)
,

(
1

0

)
/
√

2, 1, 1

2.1.3 Singular value decomposition (SVD)

The SVD is an extremely important and versatile tool from linear algebra and the central tech-
nical ingredient of MPS techniques. It is different from the familiar eigenvalue decomposition
(see below), and it exists for every real or complex matrix. It is widely used for, e.g., image
processing, signal processing, optimizations, etc. Every real or complex n ×m matrix M can
be decomposed like

M = U D V † (5)

with a diagonal matrix D that contains only positive real numbers (or zero), which are called
the singular values of M . It is of dimension N = min(n,m). Furthermore,

U †U = 1, V †V = 1, D =



λ1
. . .

λr
0

. . .
0


. (6)

We will always order λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = 0 = · · · = λN = 0.. The number r
of non-zero entries λ is called the rank of the matrix M, which need not be square. When, e.g.,
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m ≤ n, the SVD looks like M = U D V † and V † cannot be unitary.
This version of the SVD, with (in general) non-square matrices U and V †, is called a “thin
SVD”. The values λi are uniquely determined. The matrices U and V † are not unique: within
each subspace (dimension ≥ 1) of equal singular values, one can multiply U with a unitary
matrix and V † with the inverse, without changingM . WhenM is real, thenU and V † can also be
chosen real. WhenM is real and quadratic, then U and V † are rotations (basis transformations),
andD scales the directions in the intermediate basis. The eigenvalue decomposition of matrices
M †M and MM † both have eigenvalues λ2

j . When M is quadratic and all eigenvalues are ≥ 0,
then the eigenvalue decomposition M = UDU † is the same as the SVD.
The computational cost of a SVD is min(mn2,m2n). Many applications of the SVD involve
truncation: one replaces small singular values by zero. This provides an approximation to
M , which is usually very good and often of far smaller dimension, providing for much lower
computational cost.

Representation of the SVD with square matrices

When M is not quadratic, then either U or V † is not quadratic in the SVD M = UDV †.
Alternatively, one can write the SVD with unitary quadratic matrices Ũ and Ṽ :

M = UDV † = ŨD̃Ṽ † (7)

This can be interpreted as a basis transformation by Ṽ †, a weighting of directions by D̃, and
another basis transformation by Ũ . When M is m × n dimensional, then Ũ is m × m, D̃ is
m× n, and Ṽ † is n× n.

• Case m ≤ n: M = U D — 0 0 0

V †

(rest)

In this case, Ũ = U . The lower rows of Ṽ † contain extra eigenvectors, beyond those in
V †. They do not contribute to M because of the zeroes in D̃. Since the eigenvectors in
Ṽ † are orthogonal, the application of M to such a vector gives zero, i.e., they belong to
the null space of M . (The directions j beyond the rank r, with vanishing singular value
λj>r = 0 also belong to the null space). When considering the action of M on the full
vector space, this null space can be ignored (see below).

• Case m ≥ n: M = U (rest)

D

0 V †

Now Ṽ = V .
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Pseudoinverse

We first discuss the case of a square matrix M . Formally, the inverse is

M−1 =
(
Ũ D̃ Ṽ †

)−1

= Ṽ D̃−1 Ũ †, (8)

since Ũ and Ṽ are unitary. But the matrix M can contain singular values λj>r = 0. In these
directions j, M does not act, and the inverse D̃−1 would contain infinity.
It is much better to exclude this null space completely also from the inverse, i.e., to set D̃−1 to
zero there. This is called the pseudoinverse

λj 7→
1

λj
, but 0 7→ 0. (9)

In practice, one maps singular values to zero when they are below some threshold (e.g. 10−10).
Using the pseudoinverse, M−1M becomes

M−1M = Ṽ D̃−1 Ũ † Ũ D̃ Ṽ † =


1

. . .
1

0
. . .

0

 = . . . = MM−1 (10)

in which only (up to) the first r components correspond to the unity matrix, while the rest
vanishes. The same considerations apply when M is not square, n > m or m > n. Then
M−1M is an n× n matrix. and MM−1 is m×m. They are both of the form Eq. (10).

2.1.4 Schmidt decomposition, reduced density matrix, and entanglement

Consider any quantum-mechanical system and two arbitrarily chosen subsystems A and B, for
instance the left and right side of a one dimensional chain with some arbitrary split. Let |j〉A
be the orthonormal basis states of subsystem A, and |k〉B those of subsystem B. Then a general
pure state of the total system is

|Ψ〉 =
∑
j,k

cjk |j〉A |k〉B, (11)

where cjk are coefficients. We now regard cjk as a matrix and look at its singular value decom-
position

cjk = Ũ D̃ Ṽ †, with Ũ and Ṽ unitary. (12)

Written in matrix components, this becomes cjk =
∑χ

α=1 λα Ũjα (Ṽ †)αk, where χ is the rank of
the matrix cjk, the so called Schmidt-rank. Since Ũ and Ṽ are unitary, it is possible to perform
two basis transformations: |A〉α :=

∑
j Ũjα|j〉A and |B〉α :=

∑
k(Ṽ

†)αk|k〉B and express the
state |Ψ〉 in the new basis

|Ψ〉 =

χ∑
α=1

λα |A〉α |B〉α, with χ ≤ min(dim(A), dim(B)). (13)
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This Schmidt-decomposition of a general state |Ψ〉 always exists. The normalization 〈Ψ |Ψ〉 = 1

implies ∑
α

λ2
α = 1 . (14)

Reduced density matrix of a pure state

The density matrix of a pure state is ρ̂ = |Ψ〉〈Ψ |, which can be written

ρ̂ =

χ∑
α=1

χ∑
β=1

λαλβ|A〉α|B〉α β〈A| β〈B| .

The reduced density matrix for the subsystem A is

ρ̂A = trB ρ̂ =
∑
γ

γ〈B|ρ̂|B〉γ =

χ∑
γ=1

λ2
γ |A〉γ γ〈A| , (15)

since the bases |A〉 and |B〉 are orthonormal. This is a sum over eigenvalues λ2
γ times a corre-

sponding projection operator |A〉γ γ〈A|. When the Schmidt rank χ is larger than one, the state
is entangled and the reduced density matrix represents a mixed state, as we will see next.

Von Neumann entanglement entropy

Similar in definition to the entropy of a statistical system S = − tr(ρ̂ ln ρ̂), the von Neumann
entanglement entropy between two subsystemsA andB is defined as the entropy of the reduced
density matrix:

SA := − trA(ρ̂A ln ρ̂A) (16)

When the Schmidt decomposition of |ψ〉 and thus the reduced density matrix Eq. (15) is known,
the von Neumann entropy is simply

SA = −
χ∑
γ=1

λ2
γ lnλ2

γ = SB . (17)

SA takes its maximum possible value of lnχ when all λγ are of equal value. Note that the
entanglement entropy between two subsystems is invariant under unitary transformations within
a subsystem, but usually not under a transformation which mixes both subsystems, like e.g., a
spatial Fourier transform.

Examples for a two site system

For a product state, |Ψ〉 = | ↑A↑B〉 = | ↑ 〉A| ↑ 〉B is already the Schmidt decomposition. The
reduced density matrix is ρ̂A = | ↑ 〉A A〈 ↑ |, which is a pure state, and the entanglement entropy
between the two sites is SA = SB = −12 ln 12 = 0.
For a singlet, |Ψ〉 = 1√

2

(
| ↑ 〉A| ↓ |, 〉B − | ↑ 〉B| ↓ 〉A

)
is also already the Schmidt decomposition,

the reduced density matrix is ρ̂A =
∑2

α=1 λ
2
α|A〉α α〈A| =

1
2

(
| ↑ 〉A A〈 ↑ |+ | ↓ 〉A A〈 ↓ |

)
, which in

matrix notation is one half the unit matrix, and the entanglement entropy is SA=−2 1
2

ln 1
2
= ln 2.
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2.2 Different MPS representations of a state
2.2.1 Exact representation

The coefficients of any pure state |Ψ〉 =
∑

s1...sL
cs1...sL |s1 . . . sL〉 can be written as a “matrix

product state” by going through the system site by site and performing Schmidt decompositions,
i.e., basis transformations, at each site.
First site. We treat the coefficients cs1,(s2...sL) as a matrix with row index s1 and column index
(s2 . . . sL) and apply an SVD

cs1,(s2...sL) =
2∑

α1=1

U [1]
s1α1︸ ︷︷ ︸

2x2 matrix

λ[1]
α1
V †α1(s2...sL)

The upper index [1] denotes the first lattice site. Since the index s1 has only two values, s1 = ↑
and s1 = ↓ , the matrix U [1] is (2 × 2) dimensional. We split it into two (1 × 2)-matrices A[1]↑

and A[1]↓ for the two spin components ↑ and ↓.

U
[1]
s1α1

α1 = 1, 2

=

s↑1

s↓1

α1 = 1, 2

=:

A↑α1

A↓α1

α1 = 1, 2

U is a unitary matrix. It contains a basis transformation from the basis s1 = ↑, s1 = ↓ to a
new basis with indices α1 = 1, 2. Similarly, V † defines a basis transformation on the vectors
|s2, s3, . . . , sL〉, i.e., we get the Schmidt decomposition

|Ψ〉 =
2∑

α1=1

λ[1]
α1

∣∣ΦLα1

〉∣∣ΦRα1

〉
, (18)

where L(R) denote the left(right) subsystem.
Second site. We now regard λα1

V †α1(s2...sL) (including the diagonal matrix λ) as a matrix ele-
ment with row index (α1s2) and column index (s3 . . . sL) and decompose it with an SVD

λα1
V †α1(s2...sL) =

4∑
α2=1

U
[2]
(α1s2)α2︸ ︷︷ ︸

4x4 matrix

λ[2]
α2
V †α2(s3...sL).

The summation index α2 now goes up to 4, because of the possible combinations of α1 = {1, 2}
and s2 = {↑, ↓}.1 The 4×4 matrix U [2] is again unitary and a basis transformation from {α1s2}
to {α2} which we split up into two 2× 4 matrices A[2]↑ and A[2]↓ for the two spin indices s2

U
[2]
α1s2α2

α2 = 1 . . . 4

=:

A↑α2

A↓α2

α2 = 1 . . . 4

1The actual range of α can be smaller, when the coefficients of |Ψ〉 are such that the SVD has a lower rank,
e.g., for a product state (rank 1).
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After iteration up to site j. we get the following representation of the state |Ψ〉

|Ψ〉 =
∑
s1...sL

2∑
α1

4∑
α2

8∑
α3

. . . U [1]
s1α1

U
[2]
(α1s2)α2

. . . U
[j]
(αj−1sj)αj

λ[j]
αj
V †αj(sj+1...sL) |s1 . . . sL〉. (19)

This is also a Schmidt decomposition of |Ψ〉, between sites j and j + 1. By splitting up each
U -matrix into two distinct matrices for ↑ and ↓ spin indices, we can also write

U [1]
s1α1

U
[2]
(α1s2)α2

U
[3]
(α2s3)α3

· · · = A[1]s1
α1

A[2]s2
α1α2

A[3]s3
α2α3

. . .

Exact MPS representation of |Ψ〉. Continuing until the last lattice site, we find that indeed an
arbitrary state |Ψ〉 can be represented exactly by a matrix product state

|Ψ〉 =
∑
s1...sL

∑
{αi}

A[1]s1
α1

A[2]s2
α1α2

A[3]s3
α2α3

. . . A[L−1]sL−1
αL−2αL−1

A[L]sL
αL−1

|s1 . . . sL〉 (20)

represented graphically in Fig. 2. The range of the intermediate indices αi is equal to the rank of
the corresponding SVD. Note that between sites L−1 and L, this rank is a most 2, and between
sites L− 2 and L− 1, it is at most 4. Thus, an exponentially large maximum rank of up to 2L/2

is reached in the middle of the chain for a general state.

2.2.2 Left-Normalization

Each of the matrices U [i] comes from an SVD and therefore satisfies U [j]†U [j] = 1, which also
provides for normalized basis transformations. In terms of the matrices A[j] this becomes∑

sj

A[j]sj†A[j]sj = 1 (21)

Written in matrix components, this equation reads

∑
sj ,aj−1

A
∗[j]sj
αj−1α′ A

[j]sj
aj−1α

= δαα′ or graphically sjα j−1

A
[j] *

A
[j]

δαα ’

α j
’

α j

= (22)

In the graphical representation, closed lines imply a summation. The normalization of the
whole MPS, 〈Ψ |Ψ〉 = 1, can now be deduced in a simple way, by applying the graphical form
of Eq. (22) site by site. The state Eq. (4) and Fig. 2, written with A-matrices, is called left-
normalized.

2.2.3 Canonical form of an MPS

Each Schmidt decomposition in the derivation of the MPS also gave us the singular values λα,
i.e., information about the reduced density matrix at that step. We now write this information
explicitly in the MPS. We take the singular values λα out of the A-matrices; this defines new
matrices Γ

A[j]sj
αj−1 αj

=: λ[j−1]
αj−1

Γ [j]sj
αj−1 αj

(23)
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Γ
[L−1] s

α     αL−2 L−1

L−1

αL−1
λ

[L−1]

s
L−1

s
L

L−1α   
Γ

[2] s

α   α1 2

2

α1
λ

[1]

2
λ

[2]

α

s
1

s
2

α1
Γ

[L] s L

αL
λ

[L]

Lα   α0
λ

[0]
[1] s 1

Γ
α0

Fig. 3: Graphical representation for the canonical form of MPS matrices.

When the A-matrices are given, one can obtain the Γ matrices by multiplying A with the pseu-
doinverse of λ. Graphically, the “MPS state” (actually the coefficient cs1s2...sL) is shown in
Fig. 3, where we the diagonal denote λ-matrices by crosses, and Γ -matrices by squares. The
λ[j] are located between sites j and j + 1. They are the singular values of the Schmidt decom-
position at that bond, cs1s2...sL = UλV †. In a product state, all Γ [i] are numbers 0 or 1, and all
λ[i]

= 1. Since the first “matrix”A[1]s1
α1 is just a vector, the first index α0 on Γ [1]s1

α0α1 is superfluous.
We still write Γ [1]s1

α0α1 as a matrix, for easier notation later on, by letting the index α0 only have
one value α0 = 1 and λ[0]

α0 ≡ 1. Similarly, αL has only the one value αL ≡ 1 and Γ [1]s1
αL−1αL is

actually a vector. At the right hand side we have introduced a final λ[L]
αL ≡ 1. The normalization

Eq. (22) now becomes an equation for Γ and λ, shown below on the left hand side

∑
sj

(
Γ [j]sj

)† (
λ[j−1]

)2
Γ [j]sj = 1

sjα j−1

[j−1]
λ

*[j−1]
λ Γ

[j] *

Γ
[j]

β

α

=

α

β

= δ
αβ

∑
sj

Γ [j]sj
(
λ[j]
)2 (

Γ [j]sj
)†

= 1

α

β

sj

Γ
[j] [j]

λ

*[j]
λΓ

[j] *

α

β

α j δ
αβ

= =

(24)

A similar normalization can also be shown to hold when summing over the second matrix index
of Γ [j] by an iterative construction of the MPS from the right. This normalization is displayed
on the right side of the equation above.

2.2.4 B-matrices, right-normalization, and mixed normalization

Instead of combiningA[j] = λ[j−1]
Γ [j] as in Eq. (23), one can group the matrices of the canon-

ical representation via B[j] = Γ [j] λ[j], so that instead of Eq. (4) we get an equivalent product
of B-matrices for the coefficients of |ψ〉. The B-matrices are right-normalized, as spelled out
on the right side of Eq. (24).

In DMRG, the coefficients of states are usually expressed in the so-called mixed-canonical form
AA . . . AλB . . . BB which follows directly from the canonical form in Fig. 3. The diagonal
matrix λ contains the singular values of a Schmidt decomposition at the corresponding bond.

An unnormalized state can be brought into one of the canonical forms essentially by repeating
an analogue of the steps outlined in section 2.2.1: successive SVDs from one end to the other.
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Truncation

In order to achieve an efficient representation of a state, with relatively small matrices, we can
approximate the state by discarding small singular values λα. This needs to be done in the
canonical or mixed canonical representation, in which the λα do contain the Schmidt singular
values. When all λ[j]

α>α0
are discarded, the matrices Γ [j] and Γ [j+1] can be truncated corre-

spondingly beyond matrix index α0. One can either discard values below a certain threshold
ε (e.g. 10−10), which results in a varying matrix dimension, or one can set a maximum matrix
dimension χmax beyond which all singular values are discarded.
The quality of the approximation is related to how much of the reduced density matrix ρ =

diag(λ2
1,λ

2
2, . . . ) is discarded. This can be quantified by the so-called truncated weight

tw = 1−
∑χmax

α=1 λ
2
α, (25)

which should stay below some small threshold like� 10−8 for precise calculations. In order to
keep the state normalized, we have to re-normalize the remaining λα

λα → λα/
√

1− tw , so that
∑

α λ
2
α = 1 . (26)

The normalizations of the A-matrices and the Γ -matrices are unaffected by the truncation, ex-
cept that the matrix 1 in Eq. (21) is also truncated.

How large do the matrices need to be?

The discarded weight tw is small when the singular values λα decay quickly. This is the case
when the entanglement entropy Eq. (17), SA = −

∑χ
γ=1 λ

2
γ lnλ2

γ is small. We saw earlier that
the maximum entanglement entropy of a reduced density matrix of size χ is lnχ. Thus one
can estimate that one may need matrices of up to order χmax ∼ eSA for a good representation
of a state. In 1D, the border of two subsystem A and B is just a point. All entanglement
between A and B must go through this point. One can show that for the ground state of gapped
Hamiltonians with local couplings one needs only about χmax ∼ ξ where ξ is the maximum of
the spatial correlation length and the size of the system. This is the reason why matrix product
states work so well in one-dimensional physical systems. However, in general dimension D,
Smax ∼ LD−1, the so-called area-law, which implies that the matrix dimension will need to
grow exponentially in more than 1D.

Expectation values of one-site operators

A big advantage of the MPS representation is that only a few local matrices are needed to
calculate the effect of a local operator on the state (see below), or its expectation value. We will
here look at the expectation value of a one-site operator Ô[j] that acts only on the spin at site j,
for example Ŝ[j]

z , whose matrix representation is the third Pauli matrix. Its expectation value is

〈Ψ |Ô[j]|Ψ〉 =
∑
{s},{s′}

〈s′1 . . . s′L| . . .λ
∗[j]
Γ ∗[j]s

′
jλ∗[j−1]

. . . O
[j]

sjs′j
. . .λ[j−1]

Γ [j]sjλ[j]
. . . |s1 . . . sL〉

(27)



DMRG Multiband Solver 9.15

In graphical representation, this becomes

λ
α0

λ
α

**[0] *
Γ

α   α0 1

1[1] s’

λ
α

*

1
λ

α

[1] * *
Γ

1 2

2

α   α

[2] s’

1

1       1s  = s’α0

*
Γ

α    αL−1   L

[L] s’L
λ

α

[L] *

L

λ
α0

λ
α

[0]

Γ
α   α0 1

[1] s

λ
α1

λ
α

[1]

Γ
1 2

2

α   α

[2] s

2       2s  = s’

Γ
α    αL−1   L

[L] s L

λ
α

[L]

L

L       Ls  = s’ αLO

Γ
α     α j−1

 j

s’

 js

*
Γ

[ j ] s’

α      α j−1      j

 j

[ j ] s

λ
α

*[j−1]

 j
λ

α

*[ j ]

 j
λ

α

[ j ]

 j−1
λ

α

[ j−1]

 j−1

    j

 j

At the interior vertical lines, the spins si′ from the bra vector 〈ψ| and si from the ket vector |ψ〉
meet. Since 〈s′i|si〉 = δsis′i , they have to be equal, except at the location j of the operator Ô[j].
Note that all lambda values are actually real, since they are singular values.
This expression can now be simplified by using the normalization Eqs. (24), which iteratively
cause all matrices from both ends of the chain up to site j to just contribute Kronecker deltas.
The remaining contribution is, in graphical representation

s j

α j−1
α j

 * *

s j
’

O

Γ
[ j ] [ j ]

λ
[ j−1]

λ

λ
[ j−1]  * [ j ]

λΓ
[ j ]

With M sj
αj−1αj := λ[j−1]

α Γ
[j] sj
αj−1αj λ

[j]
αj

this becomes

〈ψ|Ô[j]|ψ〉 =
∑
s,s′

〈s′| Ô |s〉 tr
(
M s′

)†
M s. (28)

2.3 Time evolution

The time evolution of a state in the Schrödinger picture for a time-independent Hamiltonian is
given by |Ψ(t)〉 = e−iĤt|Ψ(0)〉. We will discuss the case of Hamiltonians with local or nearest
neighbor interactions, like in (2).

2.3.1 Trotter Suzuki decomposition

The difficulty now is that the Hamiltonians of adjacent sites do not commute, [Ĥi, Ĥi+1] 6= 0

and as a consequence the exponential e−iĤt cannot be expressed as a product of local oper-
ators e−iĤt 6=

∏
j e
−iĤjt. But the Hamiltonians of next nearest neighbor sites do commute:

[Ĥi, Ĥi+2] = 0. It is thus helpful to decompose Ĥ into a sum of even and odd site Hamiltonians

Ĥ = Ĥeven + Ĥodd =
∑
j,odd

Ĥj +
∑
j,even

Ĥj (29)

such that
e−iĤeven t =

∏
j,even

e−iĤjt and e−iĤodd t =
∏
j,odd

e−iĤjt . (30)
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Within Ĥeven, all terms commute, and also withinHodd, but [Ĥeven, Ĥodd] 6= 0. Next we subdivide
the time t into small “time slices” of length ∆t

e−iĤt =
(
e−iĤ∆t

) t
∆t

=
(
e−i(Ĥeven+Ĥodd)∆t

) t
∆t
.

Now we use the Baker-Hausdorff formula to get

e−iĤt =

(
e−iĤeven∆t e−iĤodd∆t

(
1 +O

(
(∆t)2[Ĥeven, Ĥodd]

))) t
∆t

.

Writing this product of t/∆t terms explicitly yields

e−iĤt =
(
e−iĤeven∆t e−iĤodd∆t e−iĤeven∆t . . . e−iĤeven∆t

)(
1 +O(∆t)

)
. (31)

We lost one order of ∆t because of the (t/∆t) many factors. The Trotter-Suzuki decomposition
leads to a series of operators e−iĤjt which only act on two adjacent sites at once. The time
evolution of the system is traced back to application of these 2-site operators. This strategy was
introduced in the context of quantum Monte Carlo by Suzuki. It is also used for several popular
MPS time evolution methods.
The smaller the time step ∆t, the smaller the error in the method. One can gain another order
of ∆t with almost no effort by the 2nd order Trotter Suzuki approximation

e−iĤ∆t = e−iĤeven∆t/2 e−iĤodd∆t e−iĤeven∆t/2 +O
(
(∆t)3

)
. (32)

For the time evolution of a state |Ψ〉 this requires no more effort than the first order approxima-
tion, because e−iĤeven∆t/2 e−iĤeven∆t/2 = e−iĤeven∆t. The only difference occurs when measure-
ments are performed: for the 2nd order approximation, measurements have to be performed
after half-time-steps e−iĤeven∆t/2.

2.3.2 Application of 2-site operators

In order to calculate the time evolution, we need to apply the 2-site operators Ĥi to |Ψ〉. For a
general 2-site operator, we want to calculate

|Ψ ′〉 = Ô[j,j+1] |Ψ〉. (33)

The structure of MPS as products of matrices located on individual sites is again very helpful.
Since Ô[j,j+1] acts on sites j and j + 1, only the Γ -matrices at these sites and the λ-matrix
in between are affected, but not the outer λ-matrices containing the entanglement with the
environment. Let χ be the dimension of all these matrices. The calculations turn out to be
easier when one also includes the two outer λ-matrices. We therefore look at the part of the
MPS shown in Fig. 4. This object has spin indices sj, sj+1 on which the operator will act, and
free matrix indices α and γ. It is the graphical representation of

ψsj sj+1
αγ :=

∑
β

λ[j−1]
α Γ

[j] sj
αβ λ[j]

β Γ
[j+1] sj+1

βγ λ[j+1]
γ . (34)
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sj+1sj

Γ
[j] s

α β Γβ γλ
[j]

βλ
[j−1]

γλ
[j+1]

α
j [j+1] s j+1

α γ

Fig. 4: The coefficients ψsj sj+1
αγ of an MPS affected by two-site operators.

In the context of DMRG, it is called the wave-function. The application of Ô on ψ yields

ψ̃
s′j s
′
j+1

αγ :=
∑
sj ,sj+1

〈s′j s′j+1| Ô |sj sj+1〉ψsj sj+1
αγ . (35)

We want to express |Ψ ′〉 as a normalized MPS, similar to |Ψ〉. We therefore need to write ψ̃ in
the same form as the original ψ, with new normalized matrices Γ̃

[j]s′j
αβ , λβ , and Γ̃

[j+1]s′j+1

βγ .
In order to get there, we first interpret ψ̃ as a matrix with two indices, a row index (αs′j) and a
column index (γs′j+1)

ψ̄(αs′j),(γs
′
j+1) := ψ̃

s′j s
′
j+1

αγ . (36)

Next we perform an SVD on ψ̄

ψ̄(αs′j),(γs
′
j+1) =

2χ∑
β=1

U(αs′j)β λ̃β V
†
β (γs′j+1). (37)

Note that U is the unchanged λ[j−1] times a new Γ [j] and is equivalent to a new A-matrix, and
V † is a new Γ [j+1] times the unchanged λ[j+1], equivalent to a new B-matrix.
Because of the presence of s′j and s′j+1 in the indices (with 2 values ↑, ↓), this SVD has a Schmidt
rank up to twice the rank of the original matrices Γ, λ. If we kept this increased rank, then the
matrix dimensions would explode exponentially during the time evolution. We therefore need to
truncate the matrix dimensions, for example back to the original χ, by discarding the smallest
singular values in λ̃. We then need to calculate the discarded weight tw and re-normalize λ̃β →
λ̃β /
√

1− tw. The matrices U and V † are also truncated at the new size.
In the so-called tebd algorithm [34, 35], which works in the canonical representation, new Γ -
matrices are then extracted, by splitting the unchanged outer matrices λ[j−1] and λ[j] off U and
V †, by means of applying the pseudoinverse:

Γ̃
[j]s′j
αβ = (λ[j−1]

α )inv U(αs′j)β , Γ̃
[j+1]s′j+1

βγ = V †β (γs′j+1) (λ[j+1]
γ )inv. (38)

As desired, this results in updated χ× χ matrices Γ̃
[j]s′j
αβ , λ̃β , and Γ̃

[j+1]s′j+1

βγ . This method has
the disadvantage of potential instabilities from the divisions. They can also be avoided [7].
A different valid time-evolution with similarly small Trotter error, which is not commonly used
but will be employed in the FTPS method, does not step by two sites in even/odd fashion,

but steps only by one site, using λ̃
[j]
V [j+1]† from Eq. (37) multiplied from the right with

Γ [j+2] λ[j+2] as the next ψsj+1 sj+2 to be updated.
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A mathematical equivalent of tebd is the t-DMRG algorithm [36, 37], which works in the
mixed-canonical representation, i.e., with only A and B matrices, and with the even/odd Trotter
split. When moving from the left to the right, the U matrix from the SVD defines the matrixA[j]

of the updated state. In order to step another site to the right, ψsj+1 sj+2 introduced in the previ-
ous paragraph is subjected to another SVD: ψ = UDV †, which yields A[j+1] from U , while D
should be the unchanged λ[j+1] and V † the unchanged Γ [j+2]λ[j+2]. Multiplying DV † from the
right by the next B-matrix (=Γ [j+3]λ[j+3]) provides the next wave function ψ in t-DMRG, at the
disadvantage of an additional SVD operation.
Another possibility for time evolution is by way of repeated application of the complete Hamil-
tonian to the state, in the simplest case as (1 + H∆t)t/(∆t). The complete Hamiltonian can be
applied as a so-called Matrix-Product Operator (MPO), to be discussed next.

Swap gate

A swap gate switches the physical role of two neighboring sites in an MPS [38, 7]. It amounts
to applying the two-site operator

Sij = δsi,s′j δsj ,s′i (−1)ninj (39)

to a state with physical indices si, sj . The sign factor provides for fermion anticommutation.

2.4 Matrix product operators (MPO) and DMRG

In the same way as the coefficients of a state can be expressed as a product of matrices in
Eq. (4) this can also be done for the coefficients of a many-particle operator Ô in terms of
matrices W [si,s

′
i]

αi−1αi

Ô =
∑
{si},{s′i}

W s1,s′1 W s2,s′2 . . .W sL,s
′
L |s′1, s′2, . . . , s′L〉〈s1, s2, . . . , sL| , (40)

where the internal matrix indices αi have been omitted. The graphical representation of this
MPO is shown in Fig. 5. Methods for obtaining the W-matrices can, e.g., be found in Ref. [7].
For a simple Anderson impurity model, they will be shown explicitly below.

2.4.1 DMRG ground state search

The DMRG method [8,7] optimizes the energy of a state |ψ〉 site by site (or in pairs of sites) in
order to find the state with minimum energy. Here we just provide a brief idea of the method. It
works in the mixed canonical representation. Each optimization of a local MPS matrix A[i] can
be formulated as a linear equation

Heff
i A

[i] = λA[i], (41)

for which the matrix with the lowest eigenvalue λ needs to be found, for example with a Lanczos
method. The effective Hamiltonian Heff is most easily expressed in graphical form, as in Fig. 5.
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s1 s6

s′1 s′6

L RW si,s
′
i

Fig. 5: Left: graphical representation of a matrix product operator. The disconnected lines
symbolize again physical degrees of freedom si. The operator connects to an MPS with the
lower indices, which implies a summation over {si}, producing a new MPS with indices {s′i}.
Right: Effective Hamiltonian for DMRG. It is applied to an MPS matrix A[si]

αi−1αi on the bottom,
producing an effective A-matrix on the top, which has to satisfy Eq. (41).

This local minimization works amazingly well, as mentioned earlier. Sometimes it can, how-
ever, get stuck in local minima. Because of the limited amount of entanglement available in
an MPS, DMRG tends, for example, to converge to an ordered state, like, e.g., a Néel state in
case of an antiferromagnet. Care must be taken to either avoid this or to correctly interpret the
resulting state.

2.4.2 MPO representation of an Anderson impurity model Hamiltonian

Let us now explicitly discuss an MPO which represents an Anderson impurity model Hamilto-
nian. More details can be found in Ref. [9]. To keep indices manageable, we will first discuss
the standard AIM with a single orbital

H =
∑
kσ

εk nkσ +
∑
kσ

Vk
(
c†0σckσ + h.c.

)
+
∑
σ

ε0 n0σ + U n0↑n0↓ . (42)

We number sites like in Fig. 6. We will need MPOs of internal dimension 4 in order to code the
four terms in H . For the leftmost site, the W -tensor of the MPO is a vector in internal MPO
space. (This space is denoted by the horizontal indices in Fig. 5.) The physical indices are not
written explicitly in the equations below; they are implied by the operators.

W1↑ =
(
ε1 n1↑ 1 V1c1↑ V1c

†
1↑
)

(43)

↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓a.)

1 2 3 4 4 3 2 10 0b.)

Fig. 6: Numbering of sites for a single orbital Anderson impurity model. Here the number of
bath sites for each spin is NB = 4.
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Each following site of the left bath gets

Wk↑ =


1 0 0 0

εknk↑ 1 Vkck↑ Vkc
†
k↑

0 0 p 0

0 0 0 p

 (44)

as a W -tensor. The operator p = (−1)n provides for a Jordan-Wigner transformation, i.e., it
ensures fermionic commutation rules. Now

Nb∏
k=1

Wk↑ =

(
Nb∑
k=1

εknk↑ 1

Nb∑
k=1

Vkck↑

Nb∑
k=1

Vkc
†
k↑

)
(45)

(with the p operators omitted in the last equation).
W -tensors for the spin-down chain are equivalent, but with transposed matrices, and a column
instead of a vector for the rightmost MPO. Finally, the W -tensors for the impurity sites are

W0↑ =


0 1 0

1 ε0n0↑ n0↑

0 c†0↑ 0

0 c0↑ 0

 , W0↓ =

1 ε0n0↓ c†0↓ c0↓
0 1 0 0

0 Un0↓ 0 0

 . (46)

Multiplying all these matrices together produces the desired Hamiltonian Eq. (42).

2.5 Previous MPS impurity solvers

As spelled out in the introduction, we need to calculate the ground state of an Anderson Impurity
Model (AIM), apply a creation or annihilation operator, and time evolve. In order to do this
efficiently with MPS, where the computational effort for matrix dimension m grows like m3,
we need small matrices and few physical degrees of freedom per site. For a single spinful
orbital, it turns out that it is best to split spin-up and spin-down into the chain geometry of
Fig. 6 (top). Using real-time evolution, this allows for a very precise impurity solver, with large
baths (easily O(100) and more) and with excellent energy resolution in DMFT [31]. With two
orbitals, a successful strategy has been to split the orbitals into two separate chains, which also
provided a precise impurity solver [31]. An advantage of this geometry is that the spins of each
orbital, which are likely to be entangled, are located together. However, now the local Hilbert
space at each MPS site has doubled, from two states (occupied, unoccupied) to the four states
of a spinful orbital. Unfortunately this squares the computational effort. With a geometry like
in Fig. 6, the computational effort will grow like

computational effort ∼ m3×norbital . (47)

More than two orbitals have turned out to be infeasible with this geometry, and the MPS ap-
proach to impurity solvers was stuck at this stage for a while.
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3 Fork tensor product state (FTPS) method

3.1 Geometry and tensors

The key ingredient of the new FTPS method is the geometry of Fig. 7. This is a special case
of a so-called Tree Tensor Network. For a 2-orbital NRG calculation such a geometry was also
employed in Ref. [39]. Each bath chain has a fixed spin and orbital, i.e., the local Hilbert space
dimension in the bath is only two (occupied/unoccupied). In addition, the interacting impurity
site is also split up into a chain of FTPS sites with dimension two (single orbital of fixed spin).
An apparent disadvantage of the FTPS geometry seems to be that entanglement between bath
sites of different spin or different orbitals has to be transported by the encoding matrices over
a large distance, so that each bond may have to carry a lot of entanglement. This is however
similar to the situation in Fig. 6 and turns out not to be a big problem on the bonds between
the bath sites. The actual bottleneck in this approach is the entanglement on the vertical bonds
in the figure, between the sites representing the impurity, which must contain the entanglement
between the baths as well as additional large entanglement from the interaction between the
impurity degrees of freedom. As we will see, the computational effort for precise calculations
will still remain reasonable.
The FTPS sites for the impurity (like B↑) now each contain a tensor with three instead of two
bond indices, and one physical index, like Isαβγ . Because of the geometric tree structure, a
cut through any bond still bipartitions the system into two subsystems. Therefore one can still
obtain a Schmidt decomposition. In the case of MPS, we needed to combine one bond index α
with a physical index s of an MPS ”matrix”Asαβ in order to obtain an matrixA(αs),β to which an
SVD can be applied. For FTPS, we need to combine the indices of the impurity tensors. To get
an idea of the computational effort, suppose that the impurity bond dimensions are m, the bath
bond dimension at the impurity is n, and the physical Hilbert space dimension is d(=2). Then
the size of the matrix is mnd×m and the computational effort for the SVD will beO(m3 n d).
For all bipartitions, one can also obtain properly normalized states, and therefore apply all the
usual MPS and DMRG algorithms. Note that off-diagonal hybridizations can in principle be
incorporated into the method [5].

V1

V2

B ↓

B ↑

A ↓

A ↑

Impurity site Bath site

Fig. 7: Tensor geometry of the Anderson impurity model for the FTPS method, drawn for two
orbitals A and B. Further orbitals can be incorporated with additional bath chains. From [5].
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3.2 Star representation of the bath orbitals

A second ingredient of FTPS is a special encoding of the bath. Usually, the bath has been
represented in MPS approaches as a tight binding Wilson chain, which can be obtained from
Eq. (1) by a basis transformation. The Wilson chain appears natural for MPS since it is a
one-dimensional physical system with only nearest neighbor hopping and local energies for
occupied sites. It was shown by Wolf et al. [40], that, quite surprisingly, it can be better to
use the original bath sites k of Eq. (1) sequentially as the sites of a bath chain. This so-called
star geometry (see Fig. 1) is also used in FTPS. One can, for example, number the sites by
increasing local energy εk. The advantage is that sites with low εk will be almost completely
occupied, and sites with large εk almost completely unoccupied, so that they do not contribute
much to the entanglement. Only sites with intermediate εk will have sizeable contributions
from both occupied and unoccupied basis states and therefore contribute to the entanglement.
Wolf et al. [40] showed that the maximum matrix dimension necessary in star geometry can be
considerably lower than in the Wilson chain representation.
The disadvantage of the star geometry comes from artificially putting it on a chain of sites in
order to apply the MPS formalism. Each bath site interacts with the impurity, by the hopping
strength Vk, but not with its neighbors. We thus have many non-local couplings, from each
bath site to the impurity, which are usually difficult and expensive for MPS approaches. Wolf
et al. [40] treated the nonlocal hopping with a Krylov based [41] method.
We will instead use successive swap operations which effectively transport the impurity site
(like B↑) along its chain, and later back, so that interactions become local. Details will be
described below. It turns out that this approach, together with a specific Trotter breakup, has a
very small error in time evolution, which is more than an order of magnitude better than with
the Wilson chain representation for similar computational effort.

3.3 Kanamori Hamiltonian and FTPOs

In the results section, we will treat the multi-orbital Kanamori Hamiltonian

H = Hloc +Hbath (48)

Hloc = ε0

∑
mσ

nm0σ +HDD +HSF +HPH

HDD = U
∑
m

nm0↑nm0↓ + (U − 2J)
∑

m′>m,σ

nm0σnm′0σ̄ + (U − 3J)
∑

m′>m,σ

nm0σnm′0σ

HSF = J
∑
m′>m

(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)
HPH = −J

∑
m′>m

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

)
Hbath =

∑
mlσ

εlnmlσ + Vl

(
c†m0σcmlσ + h.c.

)
,

where m numbers the orbitals.
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HDD contains density interactions and HSF and HPH incorporate spin-flip and pair-hopping
terms. For our FTPS geometry, the MPOs (”Matrix Product Operators”) now become FTPOs
(”Fork Tensor Product Operators”) with tensors in the same geometry as the FTPS in Fig. 7.
For the bath, the W -tensors are very similar to the single orbital case. For the impurities, one
needs tensors with two or three auxiliary indices for the connections in the fork structure, and
two physical indices. Since the Kanamori Hamiltonian contains more terms than the simple
AIM Hamiltonian in Eq. (42), the W -tensors become much larger, up to 8 × 13 × 4, with 4

corresponding to the MPO dimension of the bath tensors, Eq. (45), for one bath chain. Details
can be found in Ref. [9].

3.4 Ground state and time evolution
Ground state

Given the FTPO representation of the Kanamori Hamiltonian and the tree geometry which
assures a bipartition of the system at every bond, the ground state can now be calculated by the
DMRG method. For FTPS, this takes a considerable amount of computer time, and care needs
to be taken that the true ground state is reached.
The most expensive parts of the calculation are SVDs. For the bath chains this is relatively inex-
pensive, since they have the structure of an MPS and the entanglement in the chains is relatively
small in practice. The most expensive part is in the optimization of the impurity tensors and
the accompanying SVDs. When the bonds between impurity tensors have dimension m and the
bonds from the last bath tensor to the corresponding impurity tensor has dimension n, the cost
for two-site DMRG will scale like O(mnd)3, where d = 2 is the physical dimension.

Time evolution of the FTPS

The time evolution operator for a small time step can be decomposed by repeated application
of the second order Suzuki Trotter approximation into [5]

e−i∆tH≈
∏
m′>m

e−i
∆t
2

(HSFm,m′+HPHm,m′ ) e−i
∆t
2
HDD e−i∆tHfree e−i

∆t
2
HDD

∏
m′>m

e−i
∆t
2

(HSFm,m′+HPHm,m′ ),

(49)
where Hfree = Hbath + ε0

∑
mσ nm0σ. Note that HSF and HPH commute with each other, but

not with HDD. The time evolution operators for HDD, HSF, and HPH can each be written as
an FTPO, i.e., an operator acting on the impurity tensors in the FTPS: HDD does not change
particle numbers. Therefore fermion anticommutation plays no role and the FTPO for e−i∆tHDD

can be constructed by exponentiating the 4Norb × 4Norb matrix of HDD and then bringing it into
FTPO-form (i.e. a product of local tensors) by repeated SVDs.
HSF and HPH do move fermions between orbitals, so that the fermion sign needs to be treated.
Both cases can be simplified in the same way because Â3 = Â for JÂ = HSF and for −JÂ =

HPH. Then
e−i∆tJÂ = 1 + Â2

(
cos(∆tJ)− 1

)
− iÂ sin(∆tJ). (50)
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FTPOs for Â and Â2 with the correct fermion signs can be constructed directly. With respect
to bond indices connecting impurity orbitals, they become sparsely populated matrices of sizes
up to 6× 10 [9]. To perform time evolution with, e.g., e−i∆tHDD , one applies the corresponding
FTPO and subsequently brings the state back into normalized form. This leaves the time evolu-
tion with Hfree to be performed. Since in Eq. (48) there are no terms connecting different baths,
it decomposes directly into separate time evolutions for each bath chain.

Time evolution of a bath chain in star representation

As mentioned above, we choose the star representation for the baths. In Ref. [40], the time
evolution was done by a Krylov technique, which involves multiple applications of the MPO
for Hfree constructed in section 2.4. In the best case, up to two orders of magnitude were saved
in CPU time vs. a Wilson chain calculation. In our FTPO method we use a different technique
based on a Trotter expansion. A comparison between different techniques for the star geometry
has not yet been performed.
Each chain (m,σ) is evolved independently. For ease of notation, we leave out the orbital and
spin indices m and σ and now number the sites from left to right as 0 (impurity), 1, 2, 3, . . . , NB

(cf. Eq. (51)). Defining V0 = 0 we can write Hfree =
∑NB

l=0Hl with Hl = εlnl+Vl

(
c†0cl + h.c.

)
and use the second order Trotter expansion e−i∆tHfree = e−i

∆t
2
H0e−i∆t

∑NB
l=1 Hle−i

∆t
2
H0 +O(∆t3),

which after iteration becomes

e−i∆tHfree =

NB∏
l=0

e−i
∆t
2
H0

0∏
l=NB

e−i
∆t
2
H0 +O(∆t3). (51)

At first glance this looks just like a first order Trotter expansion with two time steps of size
∆t/2, but due to the reversed order in the second part, the expansion is in fact of second order.
Eq. (51) still contains long-range hopping. We solve this problem by use of swap gates: First
apply the nearest neighbor two-site operator e−i

∆t
2
H0 which connects an impurity site and the

first bath site and subsequently swap these two sites. These two operations can be combined
into a single two-site gate, so that no additional SVD is necessary. Now the impurity is located
between bath sites 1 and 2 and we can apply e−i

∆t
2
H1 followed by another swap of the impurity

to the right, and so on. The procedure is graphically depicted in Fig. 8. After reaching the last
bath site on the right, the time evolutions continue to the left, following Eq. (51) until at the end
the impurity site is back at its original location.
We find [42] that this time evolution in star geometry produces results which are more than
an order of magnitude more precise than results with a Wilson chain geometry. Furthermore,
indirectly due to the almost diagonal nature of Eq. (42), the error does almost not grow with
bath size NB, differently from what would have been expected naively from Eq. (51).
This completes the steps listed in section 1.2 for the impurity solver, i.e., for calculating the
spectral function A(ω), which can then be fed into the DMFT iteration to obtain an improved
bath spectral function, until the DMFT loop converges.
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↓ ↓ ↓ ↓

∆t
2

Combine Gates

∆t
2

∆t
2

∆t

∆t
2

∆t
2

Fig. 8: Sequence of time evolution gates for the bath.

4 Results

In order to provide an impression of the possibilities and limitations of the real time FTPS
solver, we will consider some examples. Further details can be found in Refs. [5,6]. Before we
go to DMFT spectra, let us first look at the parameters involved in an FTPS calculation, and at
related checks of correctness, robustness, and convergence.
Correctness. The solver and its implementation was checked by comparison to exact solutions
of small interacting and large non-interacting systems, as well as by comparison to results of an
earlier one- and two-orbital MPS solver [31], which itself had been thoroughly verified.
Bath size. FTPS work on a discretized bath representing the hybridization function ∆(ω), with
completely flexible discretization. It becomes more precise when the number NB of sites in the
bath chains is increased, which is quite inexpensive to do because the MPS calculations on the
bath in star geometry are very efficient (in contrast to, e.g., Exact Diagonalization). Baths of
O(100) sites per orbital and spin can be treated and the results shown are converged in NB up
to some small variations [5, 6].
Matrix dimension and truncated weight. The numerical approximation in MPS/FTPS methods
is in the finite bond dimension achievable (O(100) − O(1000)), associated with a truncated
weight tW , usually of the order of 10−8. Convergence of results was verified in Ref. [5].
Time evolution. Time evolution is done in finite steps, e.g., ∆t = 0.01 eV, small enough so
that the associated Trotter errors are not important. However, during time evolution, the en-
tanglement increases, making larger matrices necessary, and eventually limiting the maximum
time which can be reached reliably. Fortunately, the Green function G(t) only involves a local
excitation from the ground state at the impurity, for which entanglement growth is quite slow.
In the examples below, time evolution was done both forward and backward in time [43] and
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typical total times reached were 16 eV−1. The finite maximum time puts some limit on the
energy resolution. This can be improved by so-called ,,linear prediction” [27, 7, 31] of the time
series, which is badly named and actually amounts to a clever way of describing the spectrum
with O(100) or more Lorentzians. The reliability of this procedure for a DMFT solver, includ-
ing very sharp spectral features, was investigated in detail in [31]. In the FTPS calculations for
SrVO3, the extrapolation is, for example, done to 250 eV−1. In order to avoid effects of the
remaining cut-off and potential inaccuracies, the Fourier transform from G(t) to A(ω) in these
calculations was performed with a broadening of η = 0.02 eV. The full five-orbital calcula-
tions for SrMnO3 were more demanding. A maximum bath size of NB = 49 was used, during
the DMFT loop a broadening of η = 0.2 eV, and for the final spectrum a broadening of only
η = 0.01 eV in order to obtain optimal energy resolution.

4.1 SrVO3: 3 orbitals

Fig. 9 shows DMFT spectra obtained with the FTPS solver [5] for the benchmark material
SrVO3 modeled by the Kanamori Hamiltonian with 3 orbitals, in comparison to results ob-
tained by CTQMC at similar computational effort. Both spectra show a compatible central
peak, an excitation below, and an upper Hubbard peak around 3 eV. However, the FTPS spec-
trum resolves much more detailed structure, especially within the upper Hubbard band, and
even peaks around 8 eV. Both are missing in the CTQMC results. In Ref. [5] it is shown that
this is due to the analytic continuation (by a standard Maximum Entropy technique) from the
imaginary times/frequencies of the CTQMC to the real frequencies of the Green function. In-
deed, when one transforms the FTPS Green function to imaginary frequency, it is compatible
with the CTQMC Green function, which however has fairly large statistical errors. When one
adds such noise to the FTPS Green function in imaginary frequency and transforms back to real
frequency, the result is almost identical to the CTQMC spectrum, without structure in the upper
Hubbard band and beyond.
At the central peak, FTPS is less precise than CTQMC, because very small frequencies cor-
respond to very large times, which are less precisely calculated in FTPS. Conversely, high
energies (small times) are easiest to resolve with FTPS. The structure of the spectrum in the
upper Hubbard band contains interesting physics. In Ref. [5] it is shown that the peaks corre-
spond directly to the excitations of the atomic model, i.e., the Kanamori Hamiltonian without
bath, but shifted and broadened by the interaction with the bath. The atomic energies and cor-
responding states are shown in Table 1. From the positions of the peaks, one can thus extract
couplings for an effective atomic model which would have peaks at the same positions (with
some slight variations). The bare U = 4 eV becomes Ueff = 5.97 eV, ε0 = −0.86 eV goes
to ε0,eff = −2.00 eV and the Hund’s coupling becomes Jeff = 0.59(6) eV, 0.66(3) eV, and
0.72(2) eV at bare couplings of 0.5 eV, 0.6 eV, and 0.7 eV, respectively. The amplitude of the
peaks relates to their degeneracy in the atomic description. However, the detailed shape of the
peaks is entirely due to the interaction with the bath and is not covered by this effective atomic
model.
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Fig. 9: DMFT spectra for SrVO3, at U = 4 eV and J = 0.6 eV, for a case without spin-flip and
pair-hopping terms. With full rotational symmetry, i.e., including those terms, similar results
are obtained. From Ref. [5].

particle sector atomic energy degeneracy state
0 ε0 1 |0, 0, 0〉
1 0 6 |↑, 0, 0〉 . . .

U − 3J + ε0 6 |↑, ↑, 0〉 . . .
2 U − 2J + ε0 6 |↑, ↓, 0〉 . . .

U + ε0 3 |↑↓,0,0〉 . . .
3U − 9J + 2ε0 2 |↑, ↑, ↑〉 . . .

3 3U − 5J + 2ε0 6 |↑, ↑, ↓〉 . . .
3U − 7J + 2ε0 12 |↑↓,↑,0〉 . . .

Table 1: States of the Kanamori Hamiltonian without spin-flip and pair-hopping terms.

Amazingly, even the next set of excitations, around 8 eV, is resolved very well by the FTPS
calculation, even though the amplitudes are very small. Again the individual peaks correspond
to atomic excitations, however with somewhat different effective couplings. This set of peaks is
entirely missing in the CTQMC results, likely because analytic continuation becomes extremely
difficult at high energies.

4.2 SrMnO3: 5 orbitals

Finally, we will briefly discuss results for a full five-orbital calculation with FTPS, for the ma-
terial SrMnO3. In Ref. [6], such calculations were used to examine the influence of different
strategies for getting from a DFT spectrum to an effective Hamiltonian, specifically which or-
bitals and which range of energies of the DFT spectrum to include. It was shown that for
SrMnO3, it is important to use a wide energy range and to include the eg orbitals. In the DFT
spectrum (not shown), the eg orbitals have are almost completely located above the Fermi en-
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Fig. 10: DMFT spectra for SrMnO3 in a five orbital description, from FTPS calculations and
from CTQMC. From [6].

ergy. Fig. 10 shows DMFT spectra for five-orbital calculations with a wide energy window. The
FTPS spectra are compatible with the CTQMC but show considerably more detail. CTQMC
is especially difficult for the eg orbitals here because they are almost unoccupied, which makes
the number of events for measuring the Green function in the Monte Carlo small.

From the combined spectrum in Fig. 10 (bottom) one sees that the size of the gap is in fact
determined by the eg contribution to the spectrum. Here one can also identify the eg vs. t2g
nature of the successive peaks in the spectrum.

Fig. 11 compares the total FTPS DMFT spectrum to experimental results for the Mn-3d or-
bitals in SrMnO3 obtained by Kim et al. [44] with two different experimental techniques: photo
emission spectroscopy (PES) below the Fermi energy and xray absorption spectroscopy (XAS)
above. The normalization of the experimental results is arbitrary; they were therefore nor-
malized to the same area as the corresponding parts of the FTPS spectrum in the figure. The
absolute position of the XAS spectrum is not well known; for the figure it was shifted by 0.8 eV
to lower energies.

The theoretical prediction from FTPS and the experimental result in Fig. 11 then agree rather
well, both in the peak structure and in their bandwidths below and above the Fermi energy.
Notably, the assignment of orbitals to peaks from the experimental conclusions agrees with
those of the theoretical peaks and their atomic nature (similar to table 1 [6]).
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Fig. 11: Spectrum for SrMnO3 obtained by FTPS compared to experimental results [44],
from [6]. The assignment of orbitals to peaks above the Fermi energy is from the experimental
paper. Spin up refers to an excitation with majority spin, and spin down with minority spin.

Encouragingly for the new method, the new FTPS calculations took about the same computa-
tional time (about 700 CPU hours on 8 cores) per DMFT iteration as the CTQMC calculations
for this full five-orbital calculation, while providing considerably better energy resolution.

5 Conclusions

The new FTPS impurity solver for DMFT is based on the Matrix Product State (MPS) formalism
that is also the basis for DMRG, and on tensor extensions thereof. It works by calculating the
ground state for an impurity model with a given hybridization function, generating an excitation,
and then time evolving it directly in real time. It reaches very good energy resolution even and
especially at high energies, impossible to achieve for example with CTQMC. The latter can
have an advantage at very small frequencies.
The key new ingredient with respect to numerous earlier MPS based methods is the fork-like
structure of Fig. 7, which separates the baths for different impurities and spin directions as much
as possible and makes the method very efficient – as fast as CTQMC for three- and five-orbitals
in calculations done so far. The FTPS method is very new. Its possibilities and limitations
remain to be explored. Further improvements and generalizations are likely possible. The
method will hopefully enable new investigations and physical insight in DMFT calculations.
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