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1 Introduction

The last twenty years have witnessed extraordinary progress in the theoretical description and
modeling of so-called strongly correlated materials. In these realistic condensed matter systems,
the screening of the Coulomb interaction between electrons is too weak to rely on effective
single-particle approaches. The electron-electron interaction becomes a natural competitor of
the basic hopping processes, thus intriguing electronic many-body instabilities characterized by
different degrees of itinerancy and localization occur.
The combination of density-functional theory (DFT) with dynamical mean-field theory (DMFT)
emerged as a major approach to tackle the challenges of strongly correlated systems on a realis-
tic level. Metal-insulator transitions, local-moment formation, spin and charge fluctuations,
finite-temperature effects on correlated electron states, or the interplay of correlations with
spin-orbit coupling are only a few hallmark topics that have been studied successfully with
the so-called DFT+DMFT scheme. As a hybrid method, interfacing band theory and quantum
chemistry for demanding condensed-matter problems, the basic formalism is delicate. In this
chapter, the goal is to shed light on the specific aspect of “self-consistency” in numerical ac-
counts of the correlated electronic structure of materials. Though there are various techniques
where this issue applies, in order to keep the discussion straight and within reasonable length,
the main body of this treatise will focus on the matter within DFT+DMFT, which is nowadays
the key method for strongly correlated materials.
Briefly, in basic mathematical terms, self-consistency is figured as the both-way matching of
an implicit defining function, e.g., a potential v(r), with a depending function, e.g., a wave
function ψ(r), that are related by a set of (partial) differential equations derived from a varia-
tional treatment of the (free) energy of the system. Since such a set of equations is usually not
solvable by analytical means, a numerical solution may be reached iteratively. Starting from
some reasonable initial guess, consecutive constructions of ψv and vψ will eventually result in
a self-consistent solution for {v(r), ψ(r)} subject to the governing set of equations. Note that
there are also still other kinds of (self-)consistencies in iterative mathematical equations, such
as, e.g., for the Verhulst equation. In the DFT+DMFT context, and depending on how this ap-
proach is put into practice, we will encounter different situations of self-consistency of the given
kind. Among those, charge self-consistency plays a singular role, as it closes the calculational
iteration loop (in the sense sketched above) of the complete scheme on the outermost level.
In the present scope, charge self-consistency is attributed to a necessary incoherent theoretical
description of an electronic system. In the simplest manner, one imagines the whole system
being divided into two subsystems which are treated by a different degree of sophistication.
Then, charge self-consistency holds if three features are installed:

1. Exchange of charge between the two subsystems is possible.

2. Even without explicit charge flow inbetween, the electronic structure within one subsys-
tem (i.e., its field) affects the electronic structure in the other subsystem (and vice versa).

3. The combined theoretical scheme as a whole is self-consistent in the sense that the com-
plete electronic structure is at a stationary point of the thermodynamics.
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Although investigations without charge self-consistency may often provide already valuable
insight into the physics of correlated materials, it turns out that in several important cases this
form of self-consistency does not only matter by quantitative means. Qualitative differences,
e.g., wether a given compound is Mott insulating or not, do occur.
The text is organized as follows. In section 2 the basic forms of self-consistency in the original
Hartree-Fock method as well as in pure DFT and pure DMFT will be reviewed to set the stage.
Section 3 then deals with a description of the DFT+DMFT approach, both on a formal and on a
practical level. Emphasis will be put on the latter, especially on the relevance of the charge self-
consistent aspect. To illustrate the presented theoretical concepts at work, a concrete materials
examples is discussed in the final section 4.

2 Self-consistency in numerical approaches to
many-electron systems

In order to get acquainted with the basic ideas and mechanisms of self-consistency problems
in advanced quantum mechanics, let us first start with a condensed reminder of the canonical
schemes of computational many-body theory for electronic systems. As for the complete rest
of the paper, we will remain within the Born-Oppenheimer approximation of separating elec-
tronic and ionic degrees of freedom, focussing on the former one. Furthermore, we remain in
the nonrelativistic regime, hence exclude, e.g., spin-orbit effects to keep the discussion elemen-
tary. Three different key observables will be discussed, namely the many-body wave function
Ψ({rσ}) in the context of Hartree-Fock, the electronic charge density ρ(r) in the context of
DFT and the one-particle Green function G(k, ω) in the context of DMFT.

2.1 Hartree-Fock method

The Hartree-Fock (HF) method (see e.g. Ref. [1] for a review) is routed in quantum chemistry,
providing basic access to the electronic system of atoms and molecules with N electrons. It
serves as the starting point for more involved approaches such as, e.g., Møller-Plesset theory or
the configuration-interaction scheme.
Key idea is the ansatz for the many-body wave function Ψ({riσi}) =: Ψ({xi}) as a single Slater
determinant , i.e.

ΨHF({xi}) =: Ŝ−

N∏
i

ϕi(r)χi(σ) = Ŝ−

N∏
i

φi(x) , with ϕi(r) =
M∑
ν

Aiν Bν(r) . (1)

Here, Ŝ− is the antisymmetrization operator, ϕ the real-space function, χ the spin function and
i = 1, N . The functions ϕi are expanded into M basis functions Bν , usually of atomic kind,
with expansion coefficients Aiν . In the end, the Aiν are the parameters that will be optimized
for the solution. It is very important to realize that the ansatz (1) marks the simplest possible
wave function for an electronic system, describing independent electrons only subject to the
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Pauli exclusion principle. The Hamiltonian of the electronic system with momenta pi and the
potential Vi of the nuclei is straightforwardly written as

Ĥ =
N∑
i

(
p̂2
i

2m
+ V̂i

)
+

1

2

∑
ij

v̂ij =:
N∑
i

ĥi +
1

2

∑
ij

v̂ij . (2)

The two-particle operator v̂ij represents the Coulomb interaction between the electrons. To
obtain a working scheme for the optimization of our trial wave function with regard to the given
problem, we make use of the Ritz variational principle

δ

(
〈ΨHF|Ĥ|ΨHF〉
〈ΨHF|ΨHF〉

)
!
= 0 , (3)

with the relevant expectation value reading

〈ΨHF|Ĥ|ΨHF〉 =
∑
i

〈φi|ĥ|φi〉+
1

2

∑
ij

(
〈φjφi|v̂|φjφi〉︸ ︷︷ ︸

Coulomb (Hartree) term

− 〈φjφi|v̂|φiφj〉︸ ︷︷ ︸
exchange (Fock) term

)
, (4)

and the corresponding real-space matrix elements

〈φi|ĥ|φi〉 =
∫
drϕ∗i (r)h(r)ϕi(r) , (5)

〈φiφj|v̂|φkφl〉 = δσiσkδσjσl

∫
drdr′ ϕ∗i (r)ϕ

∗
j(r
′) v(r, r′)ϕk(r)ϕl(r

′) . (6)

Note that the general Coulomb matrix element is spin dependent, though the interaction surely is
not. The reason is the enforcement of the Pauli principle in electron-electron scattering process.
The Ritz principle is most effectively put into practice via minimizing the functional form

F [ΨHF] = 〈ΨHF|Ĥ|ΨHF〉 −
∑
i

εi〈φi|φi〉 , with δF !
= 0 , (7)

whereby the εi serve as lagrange multipliers. The variation implies here a functional differenti-
ation with φi → φi + δφi. This leads to the single-particle or Hartree-Fock equations governed
by the so-called Fock operator F̂ , i.e.

F̂ |φi〉 = εi |φi〉 ∀ i (8)

and are written in real-space representation as (~ = 1)(
− 1

2m
∆+ V (r) + e2

∑
j 6=i

∫
dr′
|ϕj(r)|2
|r− r′|

)
φi(r)− e2

∑
j 6=i

δσiσj

∫
dr′

ϕ∗j(r)ϕ
∗
i (r
′)

|r− r′| φj(x) = εiφi(x)

(9)

⇒
(
− 1

2m
∆+ V (r) + vH(r)

)
ϕi(r) +

∫
dr′ vX(r, r

′)ϕi(r) = εiϕi(r) . (10)

The local Hartree potential vH(r) describes the Coulomb repulsion between electrons, as famil-
iar from classical electrostatics. The nonlocal exchange potential vX(r, r

′) adds unique quantum
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physics due to the Pauli principle: electrons with equal spin effectively feel a repelling potential
to avoid each other not to join a common quantum state. Note already here that, in a quantum-
chemistry definition, there is still a third mechanism, also of pure quantum kind, that influences
the concerted arrangement among the electrons. It is called correlation, not directly related
to spin, and goes beyond the Hartree-Fock picture, since it is encrypted in more complicated
many-electron wave functions than the most simple one of single Slater-determinant kind. It is
thus very important for the understanding of the Hartree-Fock equations to appreciate the ansatz
(1) that lead to eq. (10).
For us here, the principle solution of the Schrödinger-like eq. (10) is the main concern. It
becomes clear from (9) that contrary to the standard nuclear potential V (r), the Hartree and
exchange potential are not given from the beginning. They explicitly dependent on the wave
functions ϕi we are actually looking for. Therefore, the implicit character of the Hartree-Fock
equations forms a natural self-consistency problem. In the literature, these equations are thus
also often termed self-consistent field (SCF) equations. Literally, the solution is defined by an
iterative cycle as follows:

1. Start with an educated guess for the single-particle functions ϕi(r) = ϕ
(1)
i (r) by invoking

suitable linear combinations of the basis functions. For instance, an adequate kind of spn

hybridization function might be meaningful for a carbon-based molecule.

2. Construct a first associated Hartree potential v(1)
H (r) = v

{ϕ(1)
i }

H (r) and exchange potential

v
(1)
X (r) = v

{ϕ(1)
i }

X (r, r′) and solve the Hartree-Fock equations for a new set of eigenfunc-
tions ϕ(2)

i (r).

3. Go back to step 2 and repeat p times until you reach convergence in the potentials, i.e.,
|v(p)

H − v
(p−1)
H | < η and |v(p)

X − v
(p−1)
X | < η holds for small η.

We will remark in section 2.4 on further relevant technical aspects of performing this self-
consistency cycle. If this cycle converges, it is obvious for us physicists that the resulting
functions ϕ(p)

i along with their eigenvalues ε(p)
i represent a faithful solution to the problem. A

principle convergence is ensured by the variational character of how we casted the problem. But
note that in general, such self-consistency problems can underlie the issues of local vs. global
minimum, existence of saddle-points, etc.. In this text however, we will not delve into these
mathematical aspects of the solution space.
We have now encountered a first concrete self-consistency problem for many-electron systems.
This Hartree-Fock method obviously may also be termed a charge self-consistent method, as
the electronic charge density ρ(r) is implicitly also iterated in the cycle given above and can be
expressed via a sum over the occupied orbitals

ρ(r) =
occ∑
i

|ϕi(r)|2 . (11)

Thus the charge distribution always matches the associated electron states and also the total
charge is conserved. By this statement, we have assumed that all electrons of the system enter
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in eq. (10). If instead, one decides to, e.g., “freeze” some core electrons in their atomic state and
to only Hartree-Fock converge chosen valence electrons, then complete charge self-consistency
would in principle not be achieved. Neither valence nor core charge density would be in accor-
dance with the distribution at the global stability point of the system. Further relaxation of the
core states could still modify the charge density of the whole system.
We leave the further analysis of the Hartree-Fock solution as well as the description of the
plethora of different method flavors to the numerous textbooks on this matter, and continue by
an theory advancement that builds up directly on the electronic charge density ρ(r).

2.2 Density-functional theory (DFT) in Kohn-Sham representation

Besides the obvious flaw of Hartree-Fock in missing the effect of correlation, there are further
serious drawbacks. The scheme is ill-defined for crystalline systems and the nonlocal exchange
potential is computationally delicate and expensive. Instead of working directly with a many-
body wave function Ψ({xi}), it appears also more attractive to deal with a physically more
tangible object.
Density-functional theory (DFT) puts the electronic charge density ρ(r) in the focus and has
become the workhorse of quantum-mechanical calculations for materials since more than thirty
years (see e.g. Refs. [2, 3] for reviews). It builds upon the theorems by Hohenberg and Kohn,
stating, in short, first that ρ(r) bears in principle the same physically-relevant information as the
much more complex Ψ({xi}). Second, the functional E[ρ] of the system’s total energy has a
minimum for the correct ground state charge density ρ0(r), thus ensuring a variational principle.
Equipped with the already gathered knowledge, we may cast such a functional straightforwardly
(by adjusting to the community-established nomenclature) in the form

E[ρ] = T [ρ] +

∫
dr ρ(r)vext(r) + EH[ρ] + EQMB[ρ] . (12)

The kinetic-energy contribution is denoted T [ρ], vext(r) is nothing but the former nuclear po-
tential V (r) and EH[ρ] describes the Hartree energy. All the remaining (and notorious) explicit
quantum many-body terms, namely the effect of Pauli principle and correlation, enter the func-
tional EQMB[ρ]. The expression (12) is also important because of its hierarchical structure: in
direct comparison, all but the term EQMB are reasonably large.
To proceed towards a practical formalism, one invokes in the so-called Kohn-Sham (KS) repre-
sentation of DFT a virtual non-interacting electron system [4]. Such a system is surely exactly
represented by a single Slater determinant. As a key step, we demand that the electronic charge
density, and then obviously also the total energy, of the real system and the virtual system co-
incide. This means that in our virtual system, there must be a rather tricky effective potential
vKS(r) at work that enforces this demand. It is hence natural to continue as follows

E[ρ]
!
= Evirt. sys.[ρ] := TS[ρ] +

∫
dr ρ(r)vKS(r) (13)

= TS[ρ] +

∫
dr ρ(r)vext(r) +

e2

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′| + Exc[ρ] . (14)
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Equation (14) again establishes an educated guess based on what we learned from embarking
on Hartree-Fock theory. The total energy has to consist of four terms: a kinetic energy TS now
of non-interacting electrons, an electron-nuclear interaction, a classical Hartree term, and last
but not least a term that includes the quantum many-body terms, here named Exc. Note that
the latter exchange-correlation functional does not only include the effect of Pauli exchange
and correlation, but also the difference T−TS from implicit quantum many-body effects in the
kinetic energy.
Why should the form (14) be preferred over the expression (12)? Because (14) is amenable
to straightforward numerical treatment. Since deep down there may be only single-particle
wave functions that build up the expression (14), we can immediately formulate the according
variational principle

δ

(
E[n]−

∑
i

εi〈ϕi|ϕi〉
)

!
= 0 , (15)

leading to the so-called Kohn-Sham equations(
− 1

2m
∆+ vKS(r)

)
ϕi(r) = εi ϕ(r) (16)

of effective-single-particle kind. Accordingly, the effective, or KS, potential reads

vKS(r) = vext(r) + vH(r) + vxc(r), with vxc(r) =
δExc

δρ
. (17)

In practice, the total energy is usually computed via expressing the kinetic-energy term through
the eigenvalue sum, resulting in

EDFT =
∑
i

εi −
e2

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′| −
∫
dr ρ(r)vxc(r) + Exc[ρ] . (18)

It is clear that the exchange-correlation part asks for approximations. Originally, reference to
a numerically-exact quantum Monte-Carlo treatment of the homogeneous electron gas is made
and the exchange-correlation energy (in fact, the correlation part, since the exchange part is
analytically known) extracted via an analytical fit εxc(ρ). The resulting ansatz

Exc[ρ] =

∫
dr ρ(r)εxc(ρ(r)) (19)

defines the so-called local-density approximation (LDA) . Further approximations for Exc[ρ],
such as the generalized gradient approximation (GGA) which includes gradient terms of the
charge density, exist. Finally, the electronic charge density is again expressed by the sum over
the occupied effective single-particle states, i.e., of form (11). The careful reader may have
noted that we did not include the spin degree of freedom by explicit means in our argumentation.
This is due to the fact that in exact DFT, this degree of freedom is not of evident relevance,
as an exact exchange-correlation functional incorporates the effect of spin. In practical and
eventually approximate Kohn-Sham representation, eq. (16) gains a spin index describing spin-
up and spin-down charge densities and the canonical xc-approximation is the local spin-density
approximation (LSDA).
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It is obvious from eqns. (16) and (17) that the practical Kohn-Sham scheme is again based
on a self-consistency cycle similar to that described for the Hartree-Fock method. Here, the
local Kohn-Sham potential vKS(r) has to be iterated until convergence. Charge self-consistency
is naturally ensured in KS calculations, although in principle, also here a possibly different
treatment of, e.g., core and valence electrons would abandon an exact charge self-consistent
state. Such differences indeed occur in various KS-based electronic structure codes of, e.g.,
selected augmented-wave or pseudopotential kind. However, the differences in the total charge
density (especially in the relevant spatial regions) are very small and the resulting physics of
interest is not affected. Thus for the rest of these notes, KS-based DFT is understood as a charge
self-consistent framework.
Especially for solid-state system, Kohn-Sham calculations greatly improve on Hartree-Fock
studies, since the reasonable treatment of the exchange and correlation within LDA enables the
important description of screening of the Coulomb potential. For further aspects of density-
functional theory and the Kohn-Sham representation we refer to the various excellent reviews.
In the following, to simplify the writing, it is understood that “DFT” refers to the KS-represen-
tation of density-functional theory.

2.3 Dynamical mean-field theory (DMFT)

In terms of electronic correlations, we advanced from no consideration at all in Hartree-Fock to
a reasonably-well treatment for many materials within DFT. Still, for some materials classes,
e.g., transition-metal oxides, the DFT description of the correlated behavior of electrons remains
insufficient. Most notably, in these systems the delicate competition among electrons between
itinerancy and the tendency to localize in real space asks for a better modeling. The dynamical
mean-field theory (DMFT) [5,6] is a hallmark condensed-matter framework that faces this task
best for such strongly correlated materials. It utilizes the one-particle Green function as key to
provide seminal access to the spectral properties and the total energy of an interacting electron
system on a lattice, and was originally constructed in a model-Hamiltonian context.
Contrary to Hartree-Fock and original DFT, the DMFT approach is designed to work at finite
temperature T . Hence we introduce fermionic Matsubara frequencies ωn := (2n+1)πT to write
the correct Green function for the Hamiltonian H(k) at wave vector k in reciprocal space as

G(k, iωn) =
(
iωn + µ−H(k)−Σ(k, iωn)

)−1
, (20)

whereby µ is the chemical potential and Σ(k, iωn) the so-called self-energy of the system.
Expression (20) looks quite different from the electronic-state descriptions we encountered so
far. But the Green function formalism is just a different representation of the physics, especially
tailored to systems with sizable correlations in the solid state. For instance, we could also easily
express the Hartree-Fock or DFT pictures therein, namely via the according self-energies

ΣHF(k, iωn) =
∑
q

(vkqkq − vqkkq)
(
eβ(εq−µ) + 1

)−1
, (21)

ΣDFT(k, iωn) =
∑
q

(vH + vxc)kqkq
(
eβ(εq−µ) + 1

)−1
, (22)
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DMFT loop

impurity solver

Gimp
mm′(τ − τ ′) = −〈T̂ ĉmσ(τ)ĉ

†
m′σ′(τ ′)〉

self-consistency condition: construct Ĝloc

Ĝ−1
0 = Ĝ−1

loc + Σ̂imp

Ĝloc
!= Ĝimp

Σ̂imp = Ĝ−1
0 − Ĝ−1

imp

Fig. 1: Self-consistency loop of DMFT. The heavy task is performed by the impurity solver,
computing the impurity Green function, e.g., in imaginary time τ using quantum Monte Carlo.

with β = 1/T and where the matrix elements are reminiscent to their real-space analog (6).
Note that both approaches display no true frequency dependence, the second factor in each
expression, respectively, merely represents the simplest form of temperature dependence via
the effect of the Fermi function. But importantly, frequency (or energy) dependence is a very
relevant issue for describing interacting electrons: it regulates the impact of correlations on
different energy scales due to the electrons’ Janus-faced character hesitating between itinerancy
and localization.
Eventually, DMFT is a theory that is designed to take care of that. Originally, it assumes a
strong, i.e., only weakly-screened, local Coulomb interaction U effective on each lattice site.
Then, in order to keep the full frequency dependence, but in the same time keeping the formal-
ism operable, one drops the k dependence in the self-energy, i.e.

GDMFT(k, iωn) :=
(
iωn + µ−H(k)−Σimp(iωn)

)−1
. (23)

The self-energy Σimp(iωn) is then linked to a quantum-impurity problem of the general form

Σimp(iωn) = G0(iωn)
−1 −Gimp(iωn)

−1, (24)

where the so-called Weiss field G0(iωn) is a unique function of the local Hamiltonian (expressed
within a localized basis). To close the equations, the DMFT self-consistency condition reads

GDMFT
loc (iωn) =

∑
k

[iωn + µ−H(k)−Σimp(iωn)]
−1 !

= Gimp(iωn) . (25)

The resulting iterative loop that is thereby implied to converge the DMFT self-energy is de-
picted in Fig. 1. Drawing a conceptual parallel between DFT and DMFT, while the former
theory maps the interacting-electron problem onto the problem of non-interacting electrons in
a highly-complicated potential, DMFT maps it to the problem of an interacting site within a
self-consistent bath.
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The challenging part is given by solving the quantum-impurity problem, to be done, e.g., with
quantum Monte Carlo, Exact Diagonalization, etc.. Note that many-body wise, local-interaction
diagrams are included to all orders in this non-perturbative theory. The vital energy dependence
of the Weiss field ensures the qualitatively correct description of low-energy quasiparticle (QP)
features as well as high-energy incoherent (Hubbard) excitations. Extensions to overcome the
restriction to a k-independent self-energy, e.g., via cluster schemes, are available. But those
will not be further pursued in the present text.
As for the previous approaches, charge self-consistency holds also for the DMFT method. But
the issue of “self-consistency” has a more intriguing character than in Hartree-Fock and DFT.
First, identical to these approaches, it serves to actually render the framework computationally
feasible via the loop in Fig 1. But second, we deal with the structure of an explicit mean-field
theory. This means that we replace the true surrounding of an interacting site by a field. This
replacement itself is not an approximation, since “someone” could endow us with the exact field,
just as “someone” could provide us the exact exchange-correlation functional in DFT. However
here, we define this field by our self-consistent mean-field construction, hence marking the
approximation.

2.4 Mixing

Before we move on to discuss the combined approach of DFT and DMFT in the next section, a
few technical comments in view of solving the encountered self-consistency cycles are in order.
In practice, the sketched flowcharts of iterating potentials (or self-energies) by directly replacing
input- and output functions in a p-step process are in most cases extremely unstable. One needs
to damp the whole iteration, usually via “mixing in” the potentials from previous steps, i.e.,

v(p+1) = v(p+1)(v(p), v(p−1), . . .) . (26)

Linear mixing is the simplest form of this and reads

v
(p+1)
inp = (1− α) v(p)

inp + α v
(p)
out , 0 < α < 1 , (27)

with v(p)
inp(out) as the input(output) of step p. This means, not the straightforward output potential

v
(p)
out is used for the input potential in step p+1, but a weighted mixture of the old input potential
v

(p)
inp and v(p)

out. With a small enough mixing parameter α, convergence is nearly always ensured,
yet then at the price of a slow and inefficient performance. More sophisticated variations of this
kind of mixing, such as, e.g., Anderson mixing, may accelerate the convergence.
The mixing problem can also be approached more rigorously by formulating the search for a
self-consistent solution as a root-finding problem of a tailored functional:

F [vinp] = vout[vinp]− vinp
!
= 0 . (28)

As it is known from schooldays for ordinary functions f(x), the Newton-Raphson method
which involves the first derivative f ′(x) deals with such a task. Similarly, for our problem
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the first derivative of F is needed which corresponds in physical terms to the dielectric function
ε(r, r′) or in mathematical terms to the Jacobian matrix J. However, computing this first deriva-
tive may be cumbersome and often also the resulting mixing based on that generalized Newton-
Raphson scheme turns out too hard. It proves more successful to invoke another scheme for an
iterative approximation of the Jacobian matrix (or variations thereof). Those so-called quasi-
Newton schemes with the Broyden method as its most familiar representative improve in every
iteration step the approximation to J and are rather powerful in solving the mixing problem (28)
especially for high-dimensional energy landscapes.
A good mixing scheme is very important to converge (or accelerate the convergence of) non-
trivial self-consistency loops. In some cases, as, e.g., for many DMFT self-energies with sta-
tistical errors due to quantum Monte-Carlo, linear mixing may be sufficient. But especially for
variational (saddle-point) problems, the mixing method often eventually decides if the whole
framework converges and yields exploitable results. So even if “mixing” is not a highlighted
physics theory like DFT or DMFT, it is very worthy and pays off to invest some time in dealing
with it.

3 Realistic many-body account of correlated materials

Correlated materials are insufficiently described by DFT with conventional exchange-correla-
tion functionals. There are static improvements, e.g., via methods like self-interaction correc-
tion, DFT+U, or hybrid functionals. While such schemes may mimic some physics of Mott-
insulating systems, they usually show substantial deficiencies for the most-challenging problem
of strongly correlated metals with a large deal of quantum fluctuations. The DMFT approach
on the other hand is too heavy to be implemented in a complete realistic setting, since only a
number of M < 10 local orbitals can so far be handled in accurate quantum-impurity solvers.
Therefore, the hybrid approach of DFT and DMFT early on appeared as a natural combination
to tackle electronic correlations on a realistic level beyond model-Hamiltonian descriptions.
And indeed, nowadays the DFT+DMFT framework belongs to the hallmark electronic struc-
ture approaches, and is unrivaled within the field of strongly correlated materials.

3.1 Combining DFT and DMFT: functionals

Our introduction to DFT+DMFT starts on a formal level, to convince the reader that though this
approach has a hybrid character, it is by no means a wild heuristic patchwork method leading to
all kind of unphysical results. On the contrary, it is a physical and mathematically well-defined
formalism built upon on a rock-solid functional description (for details see e.g. Refs. [7, 8]).
The idea is to identify a so-called correlated subspace C in a complete DFT-pictured electronic
system, e.g., a 3d orbital manifold on a selected lattice site, where a DMFT treatment is neces-
sary. First, we try to collect all relevant functions that govern such a combined scheme. From
the DFT side, the electronic charge density ρ and the Kohn-Sham potential vKS come to our
mind. From the DMFT side in the correlated subspace, it is expected that the Green function
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GC as well as the self-energy ΣC matter. The potential vKS and the self-energy ΣC serve as
sources from a field-theoretical perspective. Note that ρ and GC are independent, since there
is no way to reconstruct the full real-space charge density from a given Green function in C.
By hand, we need to account for a double-counting (DC) correction, since electron-electron
interaction in C is treated in both, DMFT and DFT, and enters the definition of ΣC .
The free energy of the whole system may than represented by the general Baym-Kadanoff
functional form

Ω[G] = Tr lnG− tr
(
(G−1

0 −G−1)G
)
+ Φ[G] , (29)

with G as the full system Green function, G0 as the non-interacting Green function. The expres-
sion Φ[G] marks the Luttinger-Ward functional, which describes the universal part of interact-
ing electron systems. The Baym-Kadanoff representation of a DFT+DMFT system accordingly
reads, avoiding explicit matrix notation,

ΩDFT+DMFT[ρ,GC; vKS, ΣC] =− Tr ln

(
iωn + µ+

1

2m
∆− vKS(r)− P †ΣC(iωn)P

)
−
∫
dr
(
vKS(r)− vext(r)

)
ρ(r)− Tr

(
GC(iωn)ΣC(iωn)

)
+ EH[ρ(r)] + Exc[ρ(r)] + ΦC[GC(iωn)] . (30)

The objects P, P † are projection operators that here “upfold” the self-energy ΣC from the corre-
lated subspace to the full Hilbert space of the system. The given functional can readily be varied
with respect to our source terms, resulting in the known expressions for the charge density and
the Green function GC

δΩ

δvKS

= 0 ⇒ ρ(r) =
1

β

∑
n

〈r|Ĝ|r〉 , (31)

δΩ

δΣC
= 0 ⇒ GC(iωn) = P G(iωn)P

† , (32)

with
Ĝ =

(
iωn + µ− ĤKS − P̂ † Σ̂C P̂

)−1

. (33)

Equations (31) and (32) are very important for several reasons: They make clear, that although
ρ and GC are independent, there is surely a coupling via the full Green function. Charge self-
consistency is implied when converging the general charge density, carrying the effects from
DFT as well as DMFT. Furthermore, the “downfolding” from the full Hilbert space to the cor-
related subspace again via the projection operators P, P † is described. It becomes also obvious
that our original set of governing functions is overcomplete, as at a stationary point the potential
vKS and the self-energy ΣC are direct functions of ρ and GC . To explore this, one may formally
write Ω̃DFT+DMFT[ρ,GC; vKS, ΣC] = ΩDFT+DMFT[ρ,GC; vKS[ρ,GC], ΣC[ρ,GC]] and perform

δΩ̃

δρ
= 0 ⇒ vKS(r) = vext(r) + vH(r) + vxc(r) , (34)

δΩ̃

δGC
= 0 ⇒ ΣC(iωn) =

δΦC
δGC

:= Σimp(iωn)−ΣDC , (35)
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whereby we introduced the DC correction ΣDC. Thus formally, the original relations for the
Kohn-Sham potential and the DMFT self-energy are retained. The set of equations (31-35)
define the working scheme of the DFT+DMFT approach.
Let us finally find an expression for the total energy. By defining the Kohn-Sham Green function

GKS(k, iωn) :=
(
iωn + µ− εKS

k

)−1 (36)

one can rewrite the free-energy functional as

ΩDFT+DMFT = ΩDFT + Tr lnG−1
KS − Tr lnG−1 − Tr(GCΣC) + ΦC , (37)

where ΩDFT is the free-energy analog to expression (14). For T → 0, this leads to

EDFT+DMFT = EDFT −
∑
kν

εKS
kν + Tr(GHKS) + Tr(GCΣimp)− EDC . (38)

In this total-energy formula, the term EDFT corresponds to (18) and εKS
kν are the Kohn-Sham

eigenvalues with band index ν and EDC is the double-counting correction to the energy. Note
that the band sum

∑
kν ε

KS
kν = Tr(GKSHKS) is already included in EDFT and has to be sub-

tracted, as it is replaced by the interaction-dressed Tr(GHKS). Importantly, in the latter term
the trace is performed with respect to the full interacting Green function G.
This concludes the formal discussion of the DFT+DMFT scheme and we will turn in the next
section to the more practical aspects of an implementation of it.

3.2 Combining DFT and DMFT: in practice

First concrete implementations of the DFT+DMFT approach appeared at the end of the 1990s [9,
10]. Those original schemes performed in a so-called “one-shot” or “post-processing” manner.
After a converged DFT calculation, the density of states (and later the full Kohn-Sham Hamilto-
nianHKS) of the correlated subspace C entered an otherwise disjunct DMFT calculation. Hence
within the one-shot approach, there was no feedback of the DMFT self-energy on the general
electronic structure and charge self-consistency is not reached.
State-of-the-art implementations of the full scheme are charge self-consistent (e.g. [11–14]).
A pictorial sketch of the framework, in line with the demonstrations in the last subsection,
is given in Fig. 2. Both original self-consistency cycles of DFT and DMFT are interweaved
to establish a novel self-consistent solution for the realistic correlated electronic structure. It
becomes obvious, that especially the link between both traditional schemes, i.e., the down- and
upfolding to/from the correlated subspace, is key to the method. As C is by definition a local
region in real space, a (partly) local-orbital representation is thus an essential building block of
the DFT+DMFT framework [15]. Linear-muffin-tin-orbitals [16], Wannier(like) functions, e.g.,
of maximally-localized kind [17], or projected-local orbitals [18, 19] may provide a convenient
representation thereof.
In the following, the implementation based on projected-local orbitals will be discussed (see Ref.
[18] for more details). Let us start by defining m = 1, . . . ,M orthonormal orbitals {χR

m} on the
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upfold

charge update

DFT step

DMFT step

self−energy update

CT−QMC impurity solution

downfold

Kohn−Sham equations

Fig. 2: State-of-the-art charge self-consistent DFT+DMFT loop. The calculation usually starts
from a self-consistent Kohn-Sham solution. The correlated subspace is defined and the initial
Weiss field G0 constructed. Afterwards, a single (or more) DMFT step(s) is(are) performed.
The impurity solution may, e.g., be achieved with the continuous-time quantum Monte-Carlo
(CT-QMC) method. The obtained self-energies are upfolded and an updated charge density
ρ(r) is computed. A new charge density implies a new Kohn-Sham potential, and a single new
Kohn-Sham step is performed, from which a new Weiss field is generated, etc..

lattice site R in C. By the use of the complete set of KS states {ψkν} at point k in reciprocal
space, the Bloch transform of these local orbitals may be expressed via

|χR
km〉 :=

∑
T

eik·(T+R)|χR
m〉 =

∑
ν

|ψkν〉〈ψkν |χR
km〉 =

∑
ν

〈ψkν |χR
km〉 |ψkν〉 , (39)

whereby T denotes a Bravais lattice vector and the sum over ν covers the whole set of bands.
Thus the Bloch transform represents a Wannier function. To render the approach more flexible,
it proves useful to extend the concept of the correlated subspace also to energy space and to
permit a restriction in the noted band sum to an energy windowW , i.e.

|χ̃R
km〉 =

∑
ν∈W

〈ψkν |χR
km〉 |ψkν〉 . (40)

The resulting Bloch transform is then not anymore a true Wannier function. Yet one may pro-
mote it to one by proper orthonormalization

|wR
km〉 =

∑
R′m′

(
O(k)−1/2

)RR′

mm′ |χ̃R′

km′〉 , (41)

using the overlap matrix ORR′

mm′(k) := 〈χ̃R
km|χ̃R′

km′〉. To enable flexible transformations between
the system’s complete Bloch space (spanned by {ψkν}) and the correlated subspace (spanned
by {wR

km}) it proves useful to define the projection functions

PR
mν(k) :=

∑
R′m′

(
O(k)−1/2

)RR′

mm′ 〈χR
km|ψkν〉 . (42)
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For instance, the transformation from Bloch to Wannier space readily reads

|wR
km〉 =

∑
ν∈W

PR∗
νm (k) |ψkν〉 . (43)

Assuming the full Green function operator of the system in the form (33), the Bloch Green
function is given by

GBloch
νν′ (k, iωn) = 〈ψkν |Ĝ|ψkν′〉 . (44)

The downfolding equation from Bloch space to correlated subspace for the Green function and
the upfolding equation from C to Bloch space for the self-energy are then straightforwardly
written as

GR
mm′(iωn) =

∑
k,(νν′)∈W

PR
mν(k)G

Bloch
νν′ (k, iωn)P

R∗
ν′m′(k) , (45)

ΣBloch
νν′ (k, iωn) =

∑
R,mm′

PR∗
νm (k)ΣR

mm′(iωn)P
R
m′ν′(k) . (46)

The local self-energy is given by the DMFT impurity solution corrected by the double-counting
term through

ΣR(iωn) = ΣR
imp(iωn)−ΣR

DC . (47)

Once the upfolding of the self-energy to the whole space is achieved, the complete charge
density ρ(r) may be updated. At this point, a practical comment on the charge treatment in the
different stages of the self-consistency cycle is in order. In principle, the sum rule for the total
charge holds for the full DFT+DMFT charge density and the associated chemical potential µ.
However, it is surely advisable to have the correct total charge of the system already within the
DFT part of the calculation. Otherwise the numerics may be cumbersome due to an ill-defined
Coulomb balance between electrons and nuclei. Therefore we redefine the Kohn-Sham Green
function (36) as

GKS(k, iωn) :=
(
iωn + µKS − εKS

k

)−1
, (48)

with the chemical potential µKS chosen such as to enforce the correct total electronic charge
N =

∫
dr ρ(r) in the DFT part. The full charge density is then split into two parts, namely

ρ(r) = ρKS(r) +∆ρ(r) =
1

β

∑
n

(
〈r|ĜKS|r〉+ 〈r|Ĝ− ĜKS|r〉

)
, (49)

with ĜKS in analogy to (36). Since due to our choice of ρKS already carrying the total charge, the
correction term ∆ρ amounts to a redistribution of the charge density such that

∫
dr∆ρ(r) = 0

holds. The correction kernel beyond DFT can also be rewritten as

〈r|Ĝ− ĜKS|r〉 = 〈r|ĜKS(Ĝ
−1
KS − Ĝ−1)Ĝ|r〉 = 〈r|ĜKS (Σ̂

Bloch − (µ− µKS)1̂) Ĝ|r〉 . (50)

If we then define

∆Nνν′(k) :=
1

β

∑
n,ν′′ν′′′∈W

GKS
νν′′(k, iωn)

(
ΣBloch
ν′′ν′′′ (k, iωn)− (µ− µKS) δν′′ν′′′

)
Gν′′′ν′(k, iωn),

(51)
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the charge-correction term ∆ρ reads

∆ρ(r) =
∑

k,νν′∈W

〈r|ψkν〉∆Nνν′(k) 〈ψkν′ |r〉 . (52)

As the DFT contribution ρKS is by definition diagonal in the band indices, the complete corre-
lated charge density after a DFT+DMFT step reads

ρ(r) =
∑
k,νν′

〈r|ψkν〉
(
f(ε̃KS

kν ) δνν′ +∆Nνν′(k)
)
〈ψkν′|r〉 , (53)

where f is the Fermi-Dirac function and ε̃KS
kν = εKS

kν − µKS. Thus, because of the inadequacy
of a pure band picture of strongly correlated materials additional off-diagonal terms in the
band index contribute in the many-body system with additional real-space excitations. This
updated charge density then defines a new Kohn-Sham effective potential vKS and the charge
self-consistency loop is closed.
Let us at the end of this section briefly comment on additional aspects of the DFT+DMFT
formalism. So far, we did not say anything at all about the interacting Hamiltonian that governs
the correlated subspace and which explicitly enters the DMFT iterations. Basically, one utilizes
an m-orbital generalized Hubbard Hamiltonian, e.g., of Slater-Kanamori type

ĤCint =
∑

〈RR′〉mm′σ

tmm
′

RR′ ĉ
†
Rmσ ĉR′m′σ + U

∑
iRm

n̂Rm↑n̂Rm↓

+
1

2

∑
R,m6=m′,σ

(
(U − 2JH) n̂Rmσn̂Rm′σ̄ + (U − 3JH) n̂Rmσn̂Rm′σ

)
+

1

2

∑
Rm6=m′,σ

JH

(
ĉ†Rmσ ĉ

†
Rm′σ̄ ĉRmσ̄ ĉRm′σ + ĉ†Rmσ ĉ

†
Rmσ̄ ĉRm′σ̄ ĉRm′σ

)
. (54)

Here, t refers to the Kohn-Sham hopping matrix, U marks the Hubbard interaction, JH the
Hund’s exchange and n̂ = ĉ†ĉ. For a discussion of this and related Hamiltonians we refer
to [20]. The DMFT impurity solution subject to such Hamiltonian forms may nowadays, e.g., be
obtained from the continuous-time quantum Monte-Carlo (CT-QMC) method (see e.g. Ref. [21]
for a review). The interaction parameters are either chosen from a reasonable guess (often by
connecting also to experimental data) or are computed from first-principles schemes such as the
constrained random-phase approximation (cRPA).
The issue of double-counting is a well-known feature of DFT+DMFT and various forms are
available for the correction term ΣDC. Since conventional DFT exchange-correlation func-
tionals are not representable within standard many-body diagrams, a straightforward analytical
solution of the DC problem is not available. Usually, the double counting is assumed orbital in-
dependent (i.e. spherical) and a commonly used formula is based on the so-called fully-localized
or atomic limit [22]

ΣDC
Rmσ = U

(
(〈n̂R〉 −

1

2

)
− JH

(
〈n̂Rσ〉 −

1

2

)
. (55)
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Albeit the general topic is heavily debated, nonetheless, many results on the qualitative and even
(semi)-quantitative physics of strongly correlated materials are not that sensitive to the details
of double counting. Otherwise the DFT+DMFT approach would not be that successful. A so-
lution to the DC problem may be achieved by abandoning the concrete KS-DFT environment
and replace it by a true (weakly-correlated) many-body setting. The numerically very heavy
GW+DMFT scheme [23] provides such a description.
Finally, note that in various multi-atom unit cells, the correlated subspace is often not only as-
sociated with a single lattice site, as already anticipated in our sums over the sites R (e.g. in
eq. (46)). For symmetry-equivalent sites, it suffices to compute the self-energy for a represen-
tative site and transfer it to the remaining sites via proper symmetry relations. In the case of
various sites which are inequivalent by symmetry, e.g., the Fe sites with octahedral or tetrahedral
environment in magnetite Fe3O4, a different impurity problem is defined for each symmetry-
inequivalent site R through [24]

GR0 (iωn)
−1 = GR(iωn)

−1 +ΣR
imp(iωn), (56)

and the coupling is realized via the DFT+DMFT self-consistency condition invoking the com-
putation of the complete lattice Green function.

3.3 Relevance of charge self-consistency

There is surely an intuitive believe that charge self-consistency is a good thing to have in an
electronic structure calculation. But let us try to identify concrete features from a DFT+DMFT
perspective that renders it superior to the simpler one-shot framework. Before doing so, one
should mention that charge self-consistent DFT+DMFT calculations are numerically heavier
than the latter. Not only because of the additional solution of a DFT problem at each iteration
step, though especially for large supercell computations this further effort is still not negligible.
What matters more is the usually slower convergence when demanding charge self-consistency,
since the correlation-induced charge redistributions need additional numerical steps to settle.
Concerning the advantageous features, several points are noteworthy. First, the orbital occu-
pations within the correlated subspace are due to change because of the relaxing surrounding
electron structure. Second, importantly, the remaining electronic structure outside the corre-
lated subspace C (i.e. ligand states, etc.) may also “react” to the local-Coulomb effect within C.
The interweaving of both of these effects is very important for, e.g., orbital polarizations, local
magnetic moments, magnetic exchange, and, not to forget, the total energy EDFT+DMFT. Thus,
for instance, even if the local orbital occupations within C do not change much with charge
self-consistency, the effect on a possible magnetic ordering may still be crucial.
It is obvious that the degree of correlation-induced charge redistributions also depends on the
symmetry of the system. In highly-symmetric compounds, such as the cubic perovskite and
“DMFT pet” SrVO3, the impact of charge self-consistency is expected to be minor. But for
lower-symmetry problems, often associated with various symmetry-inequivalent sites (such as
oxide heterostructures), the effects can be crucial. Furthermore, for materials close to a Mott
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transition, the systems are very susceptible to perturbations in the electronic structure, and
charge self-consistency can have obvious qualitative effects, even if the crystal symmetry is
seemingly high. We will discuss in section 4 the metal-insulator transition in V2O3 as a promi-
nent example.
Two general features are often observed in charge self-consistent DFT+DMFT. In cases where
one-shot calculations lead to strong orbital polarization, e.g., within a crystal-field split 3d(t2g)
manifold, charge self-consistency weakens this tendency. This is understandable from the fact
that a strong orbital polarization affects the ligand neighborhood in order to relax the elec-
tronic structure. This relevant “reaction” of the neighboring electrons has usually the effect of
screening the original strong orbital polarization, i.e., reducing it from its one-shot magnitude.
Second, it is furthermore observed that charge self-consistency tends to wash out differences
between varying double-counting schemes [25].

4 An illustrative materials example:
Metal-insulator transition in V2O3

After all the formal theory, the last section shall be used to discuss a concrete application of
charge self-consistent DFT+DMFT to a challenging materials problem. We will realize that
the theoretical description of the famous V2O3 problem, benefits strongly from charge self-
consistency.

4.1 Phase diagram and basic materials characteristics

Since about fifty years, vanadium sesquioxide V2O3 poses a demanding problem in the under-
standing of correlated materials [26–28]. In the field of realistic interacting solid-state systems,
the compound has without doubt the second most prominent phase diagram [26, 27], after the
one of high-Tc cuprates. Its canonical finite-temperature form (see Fig. 3a) includes three key
phases, namely a paramagnetic-metallic (PM) one, a paramagnetic-insulating (PI) one, and an
antiferromagnetic-insulating (AFI) phase at finite T . At ambient T and pressure, the stoichio-
metric compound is stable in the PM phase with a corundum crystal structure, i.e., the system
is metallic at room temperature. The corundum structure (cf. Fig. 3b) has trigonal symmetry
with V dimers along the c-axis and a V-based honeycomb lattice in the ab-plane. Upon lower-
ing the temperature, a metal-insulator transition (MIT) towards the AFI phase, with notably a
monoclinic crystal structure, occurs at TN ∼ 155 K.
Formally, in V2O3, vanadium is in the oxidation state 3+, i.e., a valence configuration 3d2.
Within the VO6 octahedra, the V(3d) manifold is first split into higher-energy eg and lower-
energy t2g states due to the octahedral crystal field. Because of the tilted orientation of those
octahedra, the additional trigonal crystal field splits threefold V-t2g into a1g and two degenerate
eπg states. There are numerous DFT investigations of this compound [29–33]. On the corre-
sponding level, a low-energy V-t2g bandwidth of W ∼ 2.6 eV (see Fig. 4), harboring the two
electrons in the occupied part, results around the Fermi level εF. The a1g orbital points along the
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Fig. 3: Basic information on V2O3. (a) Temperature vs. pressure/doping phase diagram with
the following phases: paramagnetic metal (PM), paramagnetic insulator (PI) and antiferro-
magnetic insulator (AFI). The ’CO’ area marks the PI-PM crossover region. (b) Corundum
structure with V (blue) and O (red), left: view with c-axis vertical; and right: view along c-axis.

c-axis and along the V-V dimers, which therefore display a pronounced bonding/anti-bonding
splitting. The eπg orbitals point inbetween the oxygens and are expected to describe more local-
ized behavior than a1g. An orbital polarization n(eπg )/n(a1g) = 1.44/0.56 = 2.57 in favor of
eπg is obtained in DFT. Note that in the low-T monoclinic AFI phase, the V-V dimer distance
grows and does not shrink as in the akin VO2 compound. Thus a straightforward Peierls-like
mechanism due to dimerization is not at the origin of the metal-insulator transition. But the in-
plane degeneracy in the V-V distances within the honeycomb lattice is broken in the monoclinic
phase. Thus after cubic and trigonal components in the crystal field, there is yet a further mono-
clinic one appearing, eventually splitting the eπg degeneracy. As seen in Fig. 3a, doping with Cr
(or application of negative pressure) at ambient temperature results in another metal-insulator
transition from the PM to the PI phase for about 1.5% of Cr dopants. This MIT is particu-
larly interesting, since apparently no global symmetry is broken, i.e., the corundum symmetry
and paramagnetism remain vital. Hence, seemingly, the V2O3 phase diagram displays all char-
acteristics of a “model phase diagram” for a strongly correlated system on a lattice: strong
electronic correlations create local magnetic moments that order at low temperature via a MIT
in an antiferromagnetic phase; upon application of negative pressure the lattice expands and a
different MIT occurs due to a reduction of the hopping, while application of positive pressure
or Ti doping stabilizes the metal due to a strengthening of the hopping. So far, so nice. But
this simplistic model picture of V2O3 has attained serious cracks over the many years of inves-
tigation, suggesting that especially the doping with Cr or Ti results in much more intriguing
physics than originally envisioned. This lecture is not the place to go into full detail of this, but
let us remark on only one relevant aspect (for more on this matter see, e.g., Ref. [34]). Though
Cr(Ti) doping has the same phenomenological effect as negative(positive) pressure, i.e., driving
localization(itinerancy), they do not coincide in terms of the microscopic mechanism. Namely,
while Cr doping indeed expands the lattice [35], Ti doping does not contract the lattice, but
actually also expands it (albeit not as strongly as Cr doping) [36].
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Fig. 4: Local V-t2g density of states (DOS) for V2O3.

4.2 Electronic correlations within DFT+DMFT

When going beyond DFT for this strongly correlated material, the transition-metal t2g electrons
are usually chosen to form the correlated subspace of V2O3. An interacting Hamiltonian of
Slater-Kanamori form (54), is conveniently governing this subspace. From a Hubbard U∼5 eV,
the ratio U/W ∼ 2 puts the V2O3 system well into the strongly correlated regime. As the
corundum structure builds up on two formula units in its primitive cell, there are four symmetry-
equivalent V ions to take care of in multi-site DFT+DMFT. Also on the latter level, there exist
already many studies for this hallmark material [37–39, 14, 40–43].
In the following, we want to the restrict the discussion to the paramagnetic regime. We set
the local Coulomb interactions to U = 5 eV and JH = 0.7 eV and perform the calculations
for T = 387 K (β = 30 eV−1) and T = 193 K (β = 60 eV−1). The focus is on two structural
cases, namely the stoichiometric corundum unit-cell and the effective 2.8% Cr-doped corundum
unit-cell, both based on the crystal data of Dernier [35]. Note importantly, that the cell with
effective Cr doping differs only via the lattice parameters and the Wyckoff positions of V and O
compared to the stoichiometric cell. In other words, the effect of 2.8% Cr dopants is taken into
account only on the average by an effective refinement of the vanadium and oxygen positions.
The explicit effects of the different valence of Cr compared to V as well as local structural
relaxations due to Cr impurities are neglected. This approximation of the effect of Cr doping
renders the computations in the doped case simple, but it is also a rough one. Nonetheless,
this approximate treatment of Cr doping has nearly exclusively been used in former theoretical
assessments of Cr-doped V2O3.
Figure 5 displays the k-integrated spectral functions A(ω) at stoichiometry and with effec-
tive Cr doping. From the total spectral functions, three observations are readily made. First,
vanadium sesquioxide is indeed a strongly correlated material, since it shows a substantially
renormalized quasiparticle peak and lower/upper Hubbard bands due to the spectral-weight
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Fig. 5: DFT+DMFT k-integrated spectral functions A(ω) for stoichiometric and effective Cr-
doped (see text) V2O3 at T = 387K (top) and T = 193K (bottom), respectively. (a) total A(ω)
and (b) local V-t2g A(ω).

transfer to incoherent local excitations at higher energy. Second, in line with the experimental
phase diagram, with effective Cr doping the system is indeed more strongly correlated than at
stoichiometry. Third, the spectral-weight transfer from low energy to high energy is stronger
at higher temperatures. This means, that there is a rather small coherence scale of the QPs,
leading to an increasing effective localization of the corresponding electrons for T larger than
that scale. On the local level, the orbital polarization between eπg and a1g is increased with
correlations, actually from the DFT value n(eπg )/n(a1g) = 1.44/0.56 to the DFT+DMFT val-
ues n(eπg )/n(a1g) = 1.58/0.42 at stoichiometry and n(eπg )/n(a1g) = 1.60/0.40 for effective Cr
doping. The increase of orbital polarization is explained by a trigonal-crystal-field enhancement
due to electronic correlations [38, 39].
For completeness, Fig. 6 exhibits the k-resolved spectral function of stoichiometric V2O3 along
high-symmetry lines in the first Brillouin zone. Note that because of the strong correlations,
the dispersion of the QPs is now “squeezed” in an energy window [−0.3, 0.3] eV, whereas on
the DFT level we remember an effective bandwidth of W ∼ 2.6 eV. The spectral weight in
this low-energy region is already substantially broadened, only along kz, i.e., the line Z-Γ ,
displays a rather coherent QP part. The spectrum is in good agreement with recent angle-
resolved photoemission (ARPES) experiments by Vecchio et al. [44], though the electron pocket
at Γ is even deeper in energy within the experimental data.
Let us finally compare the electronic charge density ρ(r) from DFT and from charge self-
consistent DFT+DMFT. Figure 7a shows the bonding charge density ρbond = ρ − ρatomic

within the ab-plane of V2O3. The function ρbond is often more instructive than the pure ρ, since
the latter is a large-valued function that mainly marks the ionic positions on the lattice with
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Fig. 6: DFT+DMFT k-resolved spectral functionA(k, ω) for stoichiometric V2O3 at T = 193K
along high-symmetry lines in the first Brillouin zone.

its maxima. On the other hand, ρbond as a difference function has more contrast and reveals
the charge redistributions due to the crystal environment. Here, one can see the charge trans-
fer from V to O, especially originating from V-eg. This is reasonable since V-eg is strongly
hybridized with O(2p), which mainly responsible for the crystal bonding. The difference plot
of ρdiff = ρDFT+DMFT − ρDFT between DFT+DMFT and DFT in Fig. 7b verifies the already
mentioned observation of enhanced V-eπg filling with correlations.

4.3 Charge self-consistency vs. one-shot

All the shown data corresponds to charge self-consistent DFT+DMFT. The relevance of charge
self-consistency becomes already clear from our last finding of increased V-eπg filling with cor-
relations. This increased filling affects the surrounding electronic structure and therefore has to
be included on a complete self-consistent level.
However in V2O3, there are even much more dramatic consequences of charge self-consistency,
which partly only become clear if one performs the same calculations at the simple one-shot
level. If one does so, two major differences are observed. First, the orbital polarization al-
ready at stoichiometry is much larger [38,39] than with charge self-consistency [14,41–43,34],
nearly close to fully polarized V-eπg . Hence the trend of trigonal-crystal-field enhancement
due to correlations is artificially too strong because of the missing feedback of the rest of
the system. This is verified by the recent ARPES measurements [44] at stoichiometry, which
show a sizable a1g occupation close to the finding with charge self-consistency. Second, and
maybe even more relevant, the effective Cr-doped structure is already insulating in one-shot
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(a)

(b)

Fig. 7: Inclined view on the charge density within the ab-plane of V2O3. (a) DFT+DMFT bond-
ing charge density ρbond = ρ− ρatomic. Black lines are guides to the eye for the V-based honey-
comb structure. Note that this is an effective honeycomb lattice, which is not exactly flat due two
different height positions of V along c. (b) Charge-density difference ρdiff = ρDFT+DMFT−ρDFT

between DFT+DMFT and DFT. Note the enlarged occupation of the signatures of the V-eπg or-
bitals within DFT+DMFT (deep red parts).

DFT+DMFT (e.g. Ref. [39]). Now one could say that is a good thing, because it matches with
the phase diagram for that amount of doping. But one has to remember the strong simplifica-
tions that are used to arrive at that result: neglect of charge self-consistency as well as neglect
of the explicit defect chemistry due to the Cr dopants. Thus, this “positive” result truly emerges
from the (neglect-)error cancellation, and does not explain the true driving force behind the
PM-PI transition.

In fact recent work [34] shows, that an honest treatment of both electronic correlations and
explicit defect chemistry due to doping is relevant to understand the phase diagram of V2O3.
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5 Concluding remarks

In this short lecture, we introduced the self-consistency cycles of different electronic structure
approaches with an emphasis on charge self-consistency in DFT+DMFT. The interplay between
the basic-formal schemes as well as rather technical-numerical aspects is of natural importance
in this field. Furthermore, although the described methodologies and their concrete computer-
code implementations are often very elaborate, one should never use them in a “black-box”
manner. It remains very important as a physicist or materials scientist to interpret and weigh the
obtained data, if possible by thoughtful consideration of experimental knowledge. Hence, true
scientific results only appear after the numerical data is processed by a critical mind.
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