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elements







One step to the right adds one positively charged proton (and a neutron) to the 

nucleus and this attracts one more negatively charged electron to the atomic shell.
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From atoms to solids
Elemental metals



Close-packed elemental solids
Matching-method of Wigner and Seitz (1934)

Approximating the WS-cells with WS spheres and neglecting 

l,l’ hybridization leads to the WS rules for elemental, cp solids:
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dependent MTO

Tail cancellation
has much better l-convergence than matching at WS-cell boundary



ASA:



For elemental, closely-packed crystals, the l=l’ diagonal 

blocks of the Bloch-summed structure constants may 

be diagonalized to form canonical bands.

The structure matrix is independent of the energy, 

the potential, and the scale of the lattice. 



This localization enables treatment of disorder, Wannier orbitals,…

Superposition of 

Neumann fcts to form 

screened Neumann fcts

a: hard-sphere radius

α: hard-sphere phase shift

screened Bessel fct

screened structure matrix

η: phase shift

ηα: phase shift in 

hard-sphere medium

Tail-cancellation condition



Linear muffin-tin orbital (LMTO) 



Screened canonical bands

Hybridization between s, p, and d 

screened canonical bands 



Positions of band edges of the elemental metals
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Itinerant magnetism
in transition metals
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Compression

∆d  ∝ s-5

For N(m) on canonical (structure-constant) scale:

N(m) ≡ m / (∆ / ∆d ) = ∆d /I ∝ s-5 /I

Canonical bands:
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Current material-specific 

many-body theory

Pick low-energy LDA bands 

(by projection onto WOs or using NMTOs)

for specific many-body treatment

such as representation by a Hubbard Hamiltonian

and solution in the 

dynamical mean-field approximation (DMFT)

or beyond. 





Transition-metal oxides

Metal-insulator transition in V2O3

… and very many other earlier and later papers by other authors.



Hubbard model at 1/2 filling 

and T=2000K LDA+DMFT

U = 3.0 eVU =2.1 eV

T. Saha-Dasgupta and OKA 2002

Wannier orbital    Conduction band 

(LDA)



But most correlated materials, such as V2O3, 

have more than one band at the Fermi level
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LDA band structure 

of V2O3 projected 

onto various orbital 

characters:
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Hamiltonian we just 

need the t2g set
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Minimal Coulomb 
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Undo hybridization
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Comparison with PES 

(Mo et al. PRL 2004):



PM

eg electrons are "localized" and only coherent below ~250K

a1g electrons are "itinerant" and coherent below ~400K

More important for the temperature dependence of the 

conductivity is, however, that internal structural parameters 

of V2O3 change with temperature, as we shall see later.
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U=4.2 eV,   3.8% Cr,  T=580 KU=4.2 eV,   0 % Cr,  T=390 K

PM PI



t = -0.72 eVt = -0.49 eV





V2O3 3d (t2g)
2

Hund's-rule coupling



Comparison with polarization dependent X-ray absorption, S=1 (Park et al 2000)

n(eg
πWO)☓n(eg

π)n(a1gWO)☓n(a1g)

0.18 0.32
n(a1gWO)☓n(a1g)n(eg

πWO) ☓n(eg
π)



This metal-insulator transition in V2O3 is not,

like in the case of a single band, e.g.:

Hubbard model, LDA+DMFT

Band 1/2 full

U = 3.0 eV

T=2000K

Wannier orbital and LDA 

conduction band

U =2.1 eV

T. Saha-Dasgupta and OKA 2002

caused by disappearance of the quasi-particle peak and 

driven by U, but by removing a band overlap through  

changing a lattice distortion and thereby “completing” the 

lowest Hund’s-rule state with energy U-3J.



Conclusion

The (t2g)
2 system V2O3 is described by a Hubbard model 

derived from LDA t2g-WOs with U=4.25 and J=0.7 eV. 

DMFT shows that the paramagnetic insulating state is 

basically the Hund’s rule (e1,g
π)↑ (e2,g

π)↑ state with 

Coulomb repulsion U-3J. In the metal, the trigonal 

(umbrella) distortion is slightly larger then in the insulator 

and causes the bottom of the a1g band to overlap the top of 

the eg
π band. The a1g electrons stay coherent to higher 

temperatures (~450K)  than the eg
π electrons (~250K). 
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Robinson, Acta Cryst. 1975:       

(V0.99Cr0.01)2 O3V2O3 at 300K ~ ~ V2O3 at 900K



Scanning PES

Nature Commun 2010





Conclusion

The phase diagram of Cr-doped V2O3 has been explored 

from macro- to microscopic scales by combining InfraRed 

spectroscopy, Scanning PhotoEmission Microscopy and X-

Ray Diffraction with LDA+DMFT calculations. With 

decreasing temperature, microscopic domains become 

metallic and coexist with an insulating background. This 

explains why the associated PM phase is a bad metal. Both 

domains are stabilized by Cr-induced strain fields. The 

tendency towards phase separation is associated with a 

thermodynamical instability, which is reduced by pressure.










