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introduction : basic concept of (charge) self-consistent calculations

fundamental for high-rank function f (e.g. a potential) and low-rank function ψ (e.g. a wave function)

general problem : D f(ψ) + D
′
ψ = 0 , D,D

′
: generic operators

problem results from explicit variational considerations

problem results from other theory implications (e.g. crystal vacancy problem in thermodynamics)

→ solve problem by iterative means from initial guess {f(0), ψ(0)} , until given relation is established

charge self-consistency in electronic structure problems

.



self-consistency : Hartree-Fock method, setting

describing an interacting electron system via the many-body wave function Ψ({riσi}) =: Ψ({xi})

ansatz Slater determinant

ΨHF({x}) =: Ŝ−

N∏

i

ϕi(r)χi(σ) = Ŝ−

N∏

i

φi(x) , with ϕi(r) =
M∑

ν

Aiν Bν(r)

Hamiltonian Ĥ =
N∑

i

[
p̂2i

2m
+ V̂i

]

+
1

2

∑

ij

v̂ij =:
N∑

i

ĥi +
1

2

∑

ij

v̂ij

Ritz’ variational principle

δ

(
〈ΨHF|Ĥ|ΨHF〉

〈ΨHF|ΨHF〉

)

!
= 0 ⇒ F[ΨHF] = 〈ΨHF|Ĥ|ΨHF〉 −

∑

i

εi〈φi|φi〉 , with δF
!
= 0

Hartree-Fock equations



−
1

2m
∆ + V (r) + e

2
∑

j 6=i

∫

dr
′ |ϕj(r)|

2

|r − r′|



φi(r) − e
2
∑

j 6=i

δσiσj

∫

dr
′ ϕ

∗
j (r)ϕ

∗
i (r

′)

|r − r′|
φj(x) = εiφi(x)

⇒

[

−
1

2m
∆ + V (r) + vH(r)

]

ϕi(r) +

∫

dr
′
vX(r, r

′
)ϕi(r) = εiϕi(r)

comments

⊙
local Hartree potential vH and nonlocal exchange potential vX depend on the wave functions ϕi

⊙
Hartree-Fock cannot describe electronic correlations

⊙
no screening effects, ill-defined for metallic systems

⊙
accidentally : spectrum of Mott insulators may be described not too badly (i.e. careful not to be tricked...)!

.



self-consistency : Hartree-Fock method, solution

understanding the Hartree-Fock equations as self-consistent (SCF) field equations

iterative scheme

1. Start with an educated guess for the single-particle functions ϕi(r) = ϕ
(1)
i (r)

by invoking suitable linear combinations of the basis functions.

For instance, an adequate kind of spn hybridization function might be meaningful for a carbon-based molecule.

2. Construct a first associated Hartree potential v
(1)
H (r) = v

{ϕ
(1)
i

}

H (r)

and exchange potential v
(1)
X (r) = v

{ϕ
(1)
i

}

X (r, r′),

solve the Hartree-Fock equations for a new set of eigenfunctions ϕ
(2)
i (r).

3. Go back to step 2 and repeat p times until you reach convergence in the potentials,

i.e. |v
(p)
H − v

(p−1)
H | < η and |v

(p)
X − v

(p−1)
X | < η holds for small η.

comments
⊙

charge self-consistent, if all electrons treated equally

.



self-consistency : density functional theory, motivation

many-body wave functions are hard to compute and store

example : methane molecule CH4 withN=10 electrons, M basis functions

→

(

2B

N

)

=
(2B)!

N ! (2B −N)!
possible many-body configurations

minimal basis B = 9 :

(

18

10

)

= 43758
symmetry

→ ∼ 16000 relevant Slater determinants

good basis M = 35 :

(

70

10

)

= 4 · 1011
symmetry

→ ∼ 2 · 1010 relevant Slater determinants

alternative : effective single-particle theory with individual electron in the mean field of the other electrons

electronic charge density ρ(r) as observable 3 coordinates instead of 3N

why promising?

ρ(r) sets . . .

. . . number N of electrons

. . . sites Ri of nuclei

. . . charges Qi of nuclei

⇒ complete system information!

[courtesy of K. Held]
.



self-consistency : density functional theory, foundation and practise

describing an interacting electron system via the electronic charge density

Hohenberg-Kohn theorems

1. in principle, there is a unique one-to-one mapping between the charge density ρ(r) and the many-body wave function

ψ({xi}), i.e. formally ρ(r) ⇔ ψ({xi})

2. there is an energy functional E[n], which is minimal for the ground state energy E0. i.e. it holds E0 = MinE[n] = E[n0]

energy functional

E[ρ] = T [ρ]
︸ ︷︷ ︸

kin.Energie

+ Vee[ρ]
︸ ︷︷ ︸

ee interaction
︸ ︷︷ ︸

=:F
HK

[ρ]

+ Eext[ρ]
︸ ︷︷ ︸

e−nuclei energy

= FHK[ρ] +

∫

d
3
r ρ(r) vext(r)

Hohenberg-Kohn functional FHK[ρ] is unknown (extraordinarily complicated!)

Use and variation of E[ρ] remains open

Kohn-Sham idea mapping onto virtual, non-interacting electron system with one-body potential veff(r)

Slater determinant Φ({ri}) and charge density ρ(r)

⇒ E[ρ] = T [ρ] + Vee[ρ] +

∫

d
3
r ρ(r) vext(r)

!
= TS[ρ] +

∫

d
3
r ρ(r) veff (r)

= TS[ρ] +
e2

2

∫

d
3
r
ρ(r) ρ(r′)

|r − r′|
+ Exc[ρ] +

∫

d
3
r ρ(r) vext(r)

.



self-consistency : density functional theory, solution

variation now possible, since functionals become representable and nρ(r) =
∑

i,occupied

|ϕi(r)|
2

→
δ

δϕ∗
i

{

E −
∑

i

εi

∫

d
3
r |ϕi(r)|

2

}

!
= 0

⇒ Kohn-Sham equations

[

−
1

2m
∆i + veff (r)

]

ϕi(r) = εi ϕi(r)

exchange-correlation functional

effective potential veff(r) = vext(r) + vH(r) + vxc(r) , vxc(r) :=
δExc[ρ]

δρ
remains unknown!

approximation for Exc[n]

use exchange-correlation density of the homogeneous electron gas ǫhom
xc (n) with ρ = N/V and construct

Exc[ρ] =

∫

d3r ρ(r) ǫhom
xc (ρ(r)) local density approximation (LDA)

ǫhom
xc (ρ) can be computed numerically exact by quantum Monte-Carlo techniques

parametrize f = f(ρ) , potential through differentiation

comments
⊙

the workhorse of materials science, all reliable over the periodic table
⊙

new functionals: meta-GGA (e.g. SCAN), hybrids, etc.
⊙

limitation : insufficient for physics of strong electronic correlations .



self-consistency : density functional theory, challenging application

NaxCoO2 : a correlated materials system

triangular CoO2 lattice
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[Yang et al., PRL 95, 146401 (2005)]

[Geck et al., PRL 99, 046403 (2007)]

.



self-consistency : dynamical mean-field theory, motivation

Hubbard model: H = −t

∑

〈ij〉σ

c
†
iσcjσ + U

∑

i

ni↑ni↓ , for half filling n = 1

nonint. limit (U = 0)

− H =
∑

kσ

εk c
†
kσ
ckσ

− ideal metal, Fermi gas

ρ

ω

intermediate (U ∼ t)

− correlated metal

− dominance of
single occupations

ρ

ω
”Three-Peak Structure”

atomic limit (t = 0)

− decoupled lattice sites

− only single occupations
in ground state

ρ

0 0
 + Uωω ω

self-energy Σ(k, ω) carries the effects of electron-electron interaction

Kohn-Sham self energy ΣKS(k, ω) =
∑

q

(vH + vxc)kqkq

(

e
β(εq−µ)

+ 1
)−1

.



self-consistency : dynamical mean-field theory, impurity construction

[Metzner, Vollhardt, PRL (1989)] [Georges, Kotliar, PRB (1992)]

describing an interacting electron system with a given noninteracting Hamiltonian via a local self-energy

H = −t
∑

〈ij〉σ

c
†
iσcjσ + U

∑

i

ni↑ ni↓

❯ ❯ ❯ ❯ ❯ ❯

❯
❯

❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

Gloc(iωn) =
∑

k

[iωn + µ− εk − Σ(k, iωn)]
−1

⇒

G0(iωn)

U

Gimp(iωn) =
[

G
−1
0 (iωn) − Σimp(iωn)

]−1

DMFT approximation: Gloc(iωn)
!
= Gimp(iωn)

G
DMFT
loc (iωn) =

∑

k

[
iωn + µ− εk − Σimp(iωn)

]−1

→ local correlations are fully taken into account non-pertubatively, explicit non-local correlations are neglected .



self-consistency : dynamical mean-field theory, solution

iterative loop
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comments
⊙

in principle, same self-consistency issues apply as in Hartree-Fock and DFT
⊙

but, explicit mean-field construction (and the resulting self-consistency loop) define here the approximation

.



self-consistency : mixing

[Broyden, Math. Comput. 19, 577 (1965)] [Vanderbilt and Louie, PRB 30, 6118 (1984)]. . .

usually, self-consistent loops do not converge that straightforwardly, but a ’mixing’ of current and previous desired functions is

necessary

v
(p+1)

= v
(p+1)

(v
(p)
, v

(p−1)
, . . .)

linear mixing

v
(p+1)
inp = (1 − α) v

(p)
inp + αv

(p)
out , 0 < α < 1

rigorous approach : e.g. quasi-Newton methods

F(vinp) = vout(vinp) − vinp
!
= 0

inspired by Newton-Raphson scheme : f(x)
!
= 0 ⇒ xn+1 = xn −

f(xn)

f ′(xn)

→ F(x) = F(x
(p)

) + J
(m)

(x − x
(p)

) + . . . with Jacobian matrix J
(m)

=
∂F

∂x

∣
∣
∣
∣
x=x(p)

hence in linear order : x
(p+1)

= x
(p)

−
(

J
(m)

)−1
F(x

(p)
)

but mixing is ’hard’ and in many cases, derivatives of F are not simple.

Therefore, various approximate step-by-step update formulas for the Jacobian matrix are available:

methods : Broyden, modified Broyden, inverse Broyden, BFGS, etc.

.



realistic many-body : marrying DFT and DMFT

density functional theory (DFT)

Hohenberg-Kohn theorems, Kohn-Sham construction, exchange-correlation functional, local-density approximation, . . .

mapping interacting electrons onto the problem of non-interacting electrons in an complicated effective potential

very good description of the realistic, single-particle based chemical bonding (→ band structure for solids)

interface

define

correlated subspace C

by Wannier(-like) orbitals

from correlated sites

|ψkν〉

Gbloch

Σbloch

|χR
km〉

Gloc

Σloc

dynamical mean-field theory (DMFT)

❯ ❯ ❯ ❯ ❯ ❯

❯
❯

❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

❯ ❯ ❯ ❯ ❯ ❯

many-body Green’s functions, Hubbard model,

quasiparticles vs. Hubbard bands, quantum-impurity

solver, finite temperature, . . .

mapping interacting electrons onto the problem of

an interacting impurity in a self-consistent bath

very good description of interacting electrons on

a lattice in the model context
.



realistic many-body : DFT+DMFT, functionals

[Savrasov, Kotliar, PRB 69, 245101(2004)] [Georges, AIP Conference Proceedings 715 (2004)]

DMFT as well as the hybrid method DFT+DMFT may be derived from a functional form/variational principle

free energy of a many-body system

Ω[G] = tr lnG − tr
[

(G
−1
0 − G

−1
)G
]

+ Φ[G]

G : interacting Green’s function

G0 : noninteracting Green’s function

Φ : Luttinger-Ward functional

(

compare with DFT energy EDFT =
∑

i

εi −
e2

2

∫

drdr
′ ρ(r)ρ(r

′)

|r − r′|
−

∫

dr ρ(r)vxc(r) + Exc[ρ]

)

DFT+DMFT free energy

ΩDFT+DMFT[ρ, GC ; vKS,ΣC ] = −tr ln

[

iωn + µ +
1

2m
∆ − vKS(r) − P

†
ΣC(iωn)P

]

−

∫

dr (vKS(r) − vext(r)) ρ(r) − tr [GC(iωn)ΣC(iωn)]

+EH[ρ(r)] + Exc[ρ(r)] + ΦC [GC(iωn)]

ρ : charge density

vKS : Kohn-Sham potential

GC : interacting Green’s function in correlated subspace C

ΣC : self-energy in correlated subspace C

P, P † : projection operators mediating between correlated subspace and complete space .



realistic many-body : DFT+DMFT, functionals

minimization of functional
δΩ

δvKS

= 0 ⇒ ρ(r) =
1

β

∑

n

〈r|Ĝ|r〉

δΩ

δΣC

= 0 ⇒ GC(iωn) = P G(iωn)P
†

redefinition : Ω̃DFT+DMFT [ρ,GC ; vKS,ΣC ] = ΩDFT+DMFT [ρ,GC ; vKS[ρ, GC ],ΣC [ρ,GC ]]

δΩ̃

δρ
= 0 ⇒ vKS(r) = vext(r) + vH(r) + vxc(r)

δΩ̃

δGC

= 0 ⇒ ΣC(iωn) =
δΦC

δGC

:= Σimp(iωn) − ΣDC

total energy

EDFT+DMFT = EDFT −
∑

kν

ε
KS
kν + tr [GHKS] + tr [GCΣimp] − EDC

comments

⊙
correlations effect quasiparticle energies as well as local electronic energies

.



realistic many-body : practical DFT+DMFT, projections

constructing the correlated subspace C

Wannier function

|χ
R
km〉 :=

∑

T

e
ik·(T+R)

|χ
R
m〉 =

∑

ν

|ψkν〉〈ψkν |χ
R
km〉 =

∑

ν

〈ψkν |χ
R
km〉 |ψkν〉

→ efficient Wannier-like function |w
R
km〉 =

∑

ν∈W

P
R∗
νm(k) |ψkν〉

with P
R
mν(k) :=

∑

R′m′

{O(k)
−1/2

}
RR′

mm′ 〈χ
R
km|ψkν〉

O
RR′

mm′ (k) := 〈χ̃
R
km|χ̃

R′

km′ 〉

key DFT+DMFT equations

G
R
mm′ (iωn) =

∑

k,(νν′)∈W

P
R
mν(k)G

Bloch
νν′ (k, iωn)P

R∗
ν′m′ (k)

Σ
Bloch
νν′ (k, iωn) =

∑

R,mm′

P
R∗
νm(k) Σ

R
mm′ (iωn)P

R
m′ν′ (k)

local self-energy : Σ
R
(iωn) = Σ

R
imp(iωn) − Σ

R
DC.



realistic many-body : practical DFT+DMFT, charge self-consistency

feedback of the self-energy onto the full charge density

correlated charge density representation

ρ(r) = ρKS(r) + ∆ρ(r) =
1

β

∑

n

[

〈r|ĜKS|r〉 + 〈r|Ĝ− ĜKS|r〉
]

with GKS(k, iωn) := [iωn + µKS − ε
KS
k ]

−1

generic density matrix

using 〈r|Ĝ− ĜKS|r〉 = 〈r|ĜKS(Ĝ
−1
KS − Ĝ

−1
)Ĝ|r〉 = 〈r|ĜKS (Σ̂

Bloch
− (µ− µKS)1̂) Ĝ|r〉

∆Nνν′ (k) :=
1

β

∑

n,ν′′ν′′′∈W

G
KS
νν′′ (k, iωn) (Σ

Bloch
ν′′ν′′′ (k, iωn) − (µ− µKS)δν′′ν′′′ )Gν′′′ν′ (k, iωn)

hence ∆ρ(r) =
∑

k,νν′∈W

〈r|ψkν〉∆Nνν′ (k) 〈ψkν |r〉

⇒ complete correlated charge density ρ(r) =
∑

k,νν′

〈r|ψkν〉
(

f(ε̃
KS
kν )δνν′ + ∆Nνν′ (k)

)

〈ψkν′ |r〉

comments
⊙

increased numerical effort, i.e. larger number of self-consistency steps
⊙

charge self-concistency affects whole electronic structure, not only correlated subspace
⊙

impact depends on crystal symmetry, i.e. number of inequivalent orbitals, sites
⊙

general trend : reduced orbital polarization, less dependent on details of double counting

.



self-consistency : DFT+DMFT codes

[Anisimov, Poteryaev, Korotin et al., JPCM 9, 7359 (1997)] [Lichtenstein and Katsnelson, PRB 57, 6884 (1998)]

[Held, Keller, Eyert et al., PRL 86, 5345 (2001)] [Pavarini, Biermann, Poteryaev et al., PRL 92, 176403 (2004)]

[Minár, Chioncel, Perlov, at al., PRB 72, 045125 (2005)] [Kotliar, S. Y. Savrasov, K. Haule et al, RMP 78, 865 (2006)]

[FL, Georges, Poteryaev et al., PRB 74, 125120 (2006)] [Grieger, Piefke, Peil and FL, PRB 86, 155121 (2012)] . . . , . . . , . . .

upfold

charge update

DFT step

DMFT step

self−energy update

CT−QMC impurity solution

downfold

Kohn−Sham equations

DFT part : LMTO, KKR, pseudopotential, FLAPW, VASP

DMFT impurity solver : Quantum Monte Carlo, ED,. . .

1-7 local correlated orbitals

up to 200-atom cells (pseudopotential)

.



self-consistency : density functional theory, challenging application

NaxCoO2 : a correlated materials system

triangular CoO2 lattice

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

0 0.50.1 0.2 0.3 0.4

T

0.6 0.7 0.8 0.9 1

50K

AFM corr. FM corr.

SC

FM

order
charge

?

ge

t
2g

a
1g

eg
’

3d

Co Co

S= S=0
1

2

_

3+4+

"x=0" "x=1"

DFT picture → band theory

✲�
✲✁

✲✂
✲✄

✵
✄

✂
✲☎✆✝

✲☎✆✵
✲✵✆✝

✵

❡
❡
❋

✷ ✹ ✻

❉✞✟ ✠✡☛☞✌✍

❛✶✎
✏✎✬✑✒✓

✏✎✬✑✔✓

● ▼ ❑ ●

①✕✖✗✘

✲�
✲✁

✲✂
✲✄

✵
✄

✂
✲☎✆✝

✲☎✆✵
✲✵✆✝

✵

✷ ✹ ✻

❉✞✟ ✠✡☛☞✌✍

● ▼ ❑ ●
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photoemission

[Yang et al., PRL 95, 146401 (2005)]

[Geck et al., PRL 99, 046403 (2007)]

.



self-consistency : DFT+DMFT, resolving NaxCoO2 puzzle

[Boehnke and FL, phys. stat. sol. (a) 211, 1267 (2014)]
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U = 5eV, JH = 0.7 eV

x = 0.3

x = 0.7

suppressed e′g hole pockets X

significant band renormalizations X
.



V2O3 system : basics

V2O3 in corundum structure

V-V pairs along c, honeycomb lattice in ab

V ions with 3d2 configuration (V3+)

t2g at low energy: a1g and degenerate eπg
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experimental phase diagram [McWhan et al., PRL 27, 941 (1971)]

phases : paramagetic metal (PM), paramagnetic insulator (PI)

and antiferromagnetic insulator (AFI)

structural transition to monoclinic symmetry with magnetic order

upon lowering of temperature
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V2O3 system : DFT+DMFT at stoichiometry, corundum

0.02 0.04 0.06

100

200

300

400

0.0200.04

T
em

p
er

at
u

re
 (

K
)

Cr doping Ti doping

positive pressurenegative pressure

CO

paramagnetic
insulator (PI)

paramagnetic
metal (PM)

antiferromagnetic
insulator (AFI)

U = 4 eV, JH = 0.7 eV

U = 5 eV, JH = 0.7 eV

✲� ✲✁ ✲✂ ✲✄ ✵ ✄ ✂ ✁ �

✵
✂

�
✻

✽
✄✵

❆
☎✆

✝✞
✟

✠

t✡t☛☞

✲� ✲✁ ✲✂ ✲✄ ✵ ✄ ✂ ✁ �

✵
✵✌✂

✵✌�
✵✌✻

✵✌✽
✄ ❡
❣

♣
☛
✶❣

✡♦✍✎t☛☞✏♦❡✑✡☞✒❡✓

✲� ✲✁ ✲✂ ✲✄ ✵ ✄ ✂ ✁ �

✇ ✥❡✔✕

✵
✂

�
✻

✽
✄✵

❆
☎✆

✝✞
✟

✠

❈✖❈

✲� ✲✁ ✲✂ ✲✄ ✵ ✄ ✂ ✁ �

✇ ✥❡✔✕

✵
✵✌✂

✵✌�
✵✌✻

✵✌✽
✄

.



V2O3 system : DFT+DMFT at stoichiometry,corundum
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experiments on doped V2O3 : ’real-space integrated’

eπg /a1g occupation ratio [Park et al., PRB 61, 11506 (2000)]

lattice parameters

[Kuwamoto and Honig., Phase Trans. 1, 289 (1980)]

photoemission

[Fujiwara, et al., PRB 84, 075117 (2011)]

.



experiments on Cr-doped V2O3 : ’real-space resolved’

metal/insulator coexistence [Lupi et al., Nat. Commun. 1, 105 (2010)]

interatomic distances [Frenkel et al., PRL 97, 195502 (2006)]
local symmetry [Bombardi et al., Physica B 345, 40 (2003)]

“... we believe that the E1 signal in the PI corundum phase must

be related to the presence in the crystal of a second phase,

probably monoclinic.”

.



impurities in V2O3 : DFT+DMFT spectra
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Hubbard U = 5eV, Hund’s exchange JH = 0.7 eV

small unit cells : stoichiometric and

experimentally-averaged structures

80-atom supercells: 31 V atoms, 1 Cr/Ti → 3.1 % doping
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impurities in V2O3 : interpretation
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[FL, Bernstein, Mazin and Valenti, PRL 121, 106401 (2018)]

summary of findings

sole experimental lattice expansion (i.e. no defect) of does not open a gap

explicit Cr-defect treatment opens charge gap with experimental size (∼ 0.1 eV)

local monoclinic distortions for Cr doping are essential

no local monoclinic distortions in case of Ti doping

different valence of the dopants is important, especially titanium enters as Ti4+

strong orbital polariation towards eπg with doping

lower Cr-based Hubbard peak in agreement with experiment

Cr doping Ti doping

ε

V3+(3d2)V3+(3d2)
Cr3+(3d3)

Ti4+(3d0)

e−

.



impurities in V2O3 : monoclinic instability with Cr doping

susceptibility towards structural symmetry breaking

application of small low-symmetry field

multi-site VCA calculation displays extreme sensitivity to charge modifications around the V sites

introduce 8±δO to replace 8O

important : umbrella distortion strongly enhanced in Cr-doped V2O3

-2 0 2
0

5

10

A
 (

1/
eV

)

EA-Cr 
δ=0.0005
δ=0.001

-4 -3 -2 -1
log δ

0.4

0.6

0.8
n

-2 0 2
ω (eV)

stoichiometric
δ=0.08

-4 -3 -2 -1
log δ

0.4

0.6

0.8
n

-2 0 2 4

EA-Ti
δ=0.06
δ=0.08

-4 -3 -2 -1
log δ

0.4

0.6

0.8
n

a1g

eg
π
(2)

eg
π
(1)

eg
π
(1)

eg
π
(2)
a1g

eg
π
(1)

eg
π
(2)
a1g

.



conclusions

charge self-consistent DFT+DMFT methodology

is capable of addressing detailed challenges of many-body

quantum materials on a realistic level

self-consistency problems

tier structure of system modelling(?)

find the key approximation element

be aware of mixing

PM−PI metal-insulator transition of V2O3

impact of charge self-consistency on the degree of

correlation, orbital polarization and temperature

dependence

explicit Cr-and Ti-doping description via supercell

approach

local symmetry breaking for Cr impurities,

charge doping for Ti impurities

upfold

charge update

DFT step

DMFT step

self−energy update

CT−QMC impurity solution

downfold

Kohn−Sham equations
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