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Superconductivity – the Basics
Phenomenology 

– First discovered in Hg by Kamerlingh Onnes (1911) 
– Perfect conductivity (zero resistance) 
– Perfect diamagnetism (Meissner-Ochsenfeld effect, 1933) 

⟶ implies collective behavior of electrons 

Microscopic theory 
– Electrons in time-reversed momentum states from  

spin-singlet boson-like Cooper pairs 
– Cooper pairs condense into macroscopic quantum state
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Pair Formation in Conventional Superconductors

Phonon mechanism 
– Local in space: Cooper pair 

wave-function has s-wave 
symmetry 

– Retarded in time (ion 
dynamics slow compared to 
electrons) 

– Retardation limits Tc (Tc ≪ ω0)
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FIG. 1: Distribution of superconducting transition temperatures. The solid magenta bars represent the

number of materials, N , whose transition temperatures are tabulated in Fig. VI.2 from Ref. [5], which

includes over 500 superconducting materials known prior to 1979. Note that the numbers are shown on

a log scale. We have added to the figure (the blue hatched bars) superconductors discovered since 1979

with transition temperatures in excess of 20K. Since all the cuprate superconductors contain nearly square

Cu-O planes, which are thought to be the central structure responsible for HTC, one might think of them

all as one superconducting material. However, there are also notable differences between different cuprates,

including the fact that some are n-type and some p-type, they have different numbers of proximate Cu-O

planes, they can have different elements making up the charge reservoir layer, etc. There were 26 distinct

crystal structures for cuprate superconductors tabulated in the 1994 monograph by Shaked et al.6, so we

have taken this as our definition of “distinct” materials. In each case, we have reported the highest transition

temperature among different materials with the same crystal structure, restricting ourselves, however, to

data at atmospheric pressure in bulk materials. C60 can be doped with different metal ions or mixtures of

metal ions, but they all have more or less the same crystal structure and charge density, so we have counted

this as one material (with a maximum Tc = 31K in Rb2CsC60). One point is for BaKBiO (Tc = 31K). We

have also added one point for MgB2 (Tc = 39K). All of the organic superconductors and Na0.3CoO2yH2O

have Tc less than our arbitrary cuttoff, and so have not been included.

lurk in every third new material. At the crudest level, the dominant interaction between electrons

is the strongly repulsive Coulomb interaction – for electrons to pair at all must involve subtle

many-body effects which will therefore tend to be rather delicate. In BCS theory, it is the fact

that the Coulomb interaction, µ, is well screened (short-ranged), and that the phonon-induced

attraction, λ, is highly retarded, that combine to make a net effective attraction, λeff = λ − µ⋆,

between electrons at low energy. (This important point is stressed, for instance, in the classic

Kivelson & Fradkin ‘05

Credit: http://www.wikiwand.com/en/High-temperature_superconductivity

Conventional (BCS) superconductors

Unconventional superconductors

“Superconductivity is everywhere but sparse” Z. Fisk et al., Phil. Mag. ’09
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Cuprates
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be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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“If one looks hard enough, one can find in the 
curates something that is reminiscent of almost 
any interesting phenomenon in solid state 
physics.” Kivelson & Yao, Nat. Mat. ‘08

Barišić et al., Nat. Phys. ‘13
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Cuprates: Electronic Structure & Hubbard Model
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Figure 1 | High-Tc cuprate superconductors. a, Schematic phase diagram. The inset shows the crystal structure of the CuO2 planes, which are of central
relevance to superconductivity and the pseudogap. b, Schematic band dispersion in reciprocal space for cuprates along the high-symmetry cuts, as shown
in blue in c. c, Fermi surface, where the nodal and antinodal momenta and the Fermi angle ✓ are defined.

high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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high Tc and should provide clues of how even higher Tc values can
be achieved.

In this article, we show how ARPES has contributed to
the understanding of the cuprates. We first introduce the
superconducting gap and the pseudogap in the ARPES spectra,
and move on to show the systematic doping and temperature
dependence of the gap functions in momentum space, and present
its interpretation. Finally, in discussing phase competition between
the pseudogap and superconductivity, we pay special attention to
recent results12–14 in understanding the pseudogap due to some
order (the pseudogap order) distinct from superconductivity,
which may be consistent with various symmetry breakings in the
pseudogap state observed by di�erent experimental techniques.
We show evidence for a phase transition into a pseudogap phase
at T ⇤ having broken electronic symmetry that is distinct from
superconductivity. Well below Tc, we discuss how the pseudogap
order is intertwined and entangled with superconductivity, which
suggests multiple phenomenologically distinct ground states with
non-trivial phase boundaries within the superconducting dome.
These results provide us with deeper insights into the cuprate phase
diagram, renewing the foundation for further study towards the
complete understanding of the high-Tc mechanism.

Angle-resolved photoemission spectroscopy (ARPES)
ARPES has been a leading tool to study gap anisotropies discussed
in this article because it directly measures the occupied part
of the single-particle spectral function15 with ever increasing
energy and momentum resolution. The cuprates are well-suited
for the ARPES technique because of their quasi-2D electronic
structure. The Bi2Sr2CaCu2O8+� (Bi2212) and Bi2Sr2�xLaxCuO6+�

(Bi2201) families in particular feature pristine cleaved surfaces
that protect the low-energy bulk electronic structure, owing
to the weak van der Waals forces between the two Bi–O
planes. Over the past two decades, experiments have improved
tremendously (Fig. 2a,c,d), allowingmore precise information about
electronic structure, including the gap functions, to be obtained
(Fig. 2e). One recent development is the use of narrow-bandwidth
ultraviolet lasers as light sources for photoemission14,16–23. The
superior resolution of laser ARPES provides unprecedented access
to the lowest energy excitations near the node, as shown in
Fig. 2d,e. Furthermore, traditional synchrotron-based ARPES

continues to be improved with brighter synchrotrons and more
powerful spectrometers. Synchrotron-based experiments have the
advantage of covering a larger region of momentum space
with photon energy flexibility. When one combines modern
synchrotron and laser-based ARPES experiments, one can gain
deep insights into the nature of energy gaps, as reviewed in
this article.

Superconducting gap
In conventional BCS superconductors, an energy gap �SC opens
below Tc with s-wave symmetry and minimal momentum
dependence. 2�SC is the energy required to break each of the
Cooper pairs of electrons, which form the superconducting
condensate. In contrast, the superconducting gap in the cuprates is
characterized by a strong momentum dependence. Early debates
came to the conclusion that the superconducting gap function
is consistent with an order parameter having dx2�y2 symmetry,
with support from ARPES (ref. 6), penetration depth24, Raman25

and phase-sensitive measurements26. The d-wave symmetry of
the superconducting gap has become an accepted fact when one
constructs theories and interprets experimental results.

On the Fermi surface (Fig. 1c), the gap is the largest at the
antinode—Fermi momentum (kF) on the Brillouin zone boundary
near (⇡, 0), where the Fermi angle ✓ = 0�. The gap size gradually
decreases towards the node along the Fermi surface and becomes
zero at the node—kF in the CuO bond diagonal direction (✓ =45�).
The superconducting gap changes sign across the node (Fig. 2b).
We note that the terminology ‘node’ and ‘antinode’ is still used
above Tc to refer to those particular regions of the Fermi surface.
An ARPES study on Bi2212 by Shen and colleagues6 was one of the
key experiments that clarified the superconducting order parameter
in the cuprates. This study compared energy distribution curves
(EDCs) at two characteristic momenta, the node and the antinode,
above and below Tc to show the anisotropy of the gap. At the
antinode, the opening of a gap below Tc was detected as a leading
edge shift of the EDC to higher binding energy and the emergence of
a sharp quasi-particle peak at�sc ⇠30meV (upper EDCs in Fig. 2a).
In contrast, the spectrum at the node does not show a shift in the
leading edge gap across Tc and the sharpening of the spectrum at
low temperature is predominantly of thermal origin (lower EDCs
in Fig. 2a).
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Thermodynamic Green’s function 

Non-interacting (U=0) Green’s function 

Interacting Green’s function

Gij,σ = − ⟨Tτciσ(τ)c†
jσ⟩

Gij,σ(iωn) = ∫
β

0
dτ eiωnτGij,σ(τ) , ωn = (2n + 1)πT

Gσ(k, iωn) ≡ ⟨⟨ck,σ; c†
k,σ⟩⟩iωn

=
1
N ∑

ij

eik(ri−rj)Gij,σ(iωn)

G0(k, iωn) =
1

iωn + μ − εk
; εk = − 2t(cos kx + cos ky)

G(k, iωn) =
1

G−1
0 (k, iωn) − Σ(k, iωn)
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Dynamic Cluster Approximation (DCA) & DMFT
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5.6 Thomas A. Maier
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Fig. 3: Coarse-graining of momentum space: At the heart of the DCA (and DMFT) methods

is a partitioning of the first Brillouin zone into Nc patches over which the Green’s function is

coarse-grained (averaged) to represent the system by a reduced number of Nc ”cluster” degrees

of freedom. The bulk degrees of freedom not included on the cluster are taken into account as

a mean-field. For Nc = 1, the dynamical mean-field approximation is revovered, while for

Nc ! 1, one obtains the exact result. For a given cluster size Nc, one can have different

locations and shapes of the coarse-graining patches, as illustrated for Nc =16A and 16B.

approximation is that the self-energy is only weakly momentum dependent (or purely local in
DMFT), so that its momentum dependence is well represented by the coarse-grid of cluster K

momenta, i.e.

⌃(k, i!n) ' ⌃c(K, i!n) (in DCA) or ⌃(k, i!n) ' ⌃ii(i!n) (in DMFT) . (8)

Here, ⌃c(K, i!n) is the self-energy of a cluster of size Nc, and ⌃ii(i!n) that of a single site
impurity in DMFT. One then sets up an effective cluster problem to calculate ⌃c(K, i!n) or
⌃ii(i!n). To this end, the Green’s function is coarse-grainined over the DCA patches (or the
full Brillouin zone in DMFT)

Ḡ(K, i!n) =
Nc

N

X

k2PK

G(k, i!n) =
Nc

N

X

k2PK

1

i!n � "k + µ � ⌃c(K, i!n)
, (9)

where PK is the patch centered at K containing N/Nc momenta k. Note that in the DMFT,
the sum runs over the full Brillouin zone and the coarse-grained Green’s function reduces to
the local Green’s function. Given Ḡ and ⌃c, one can then set up an algorithm, such as, for
example, the quantum Monte Carlo (QMC) algorithms discussed in Refs. [10, 11], to calculate
the cluster Green’s function. The non-interacting part of the cluster problem is defined by the
cluster-excluded Green’s function

G(K, i!n) = [Ḡ�1(K, i!n) + ⌃c(K, i!n)]
�1 (10)

where the cluster self-energy has been added to avoid double counting. While G(K, i!n) is
the Green’s function of a cluster of size Nc, note that the remaining lattice degrees of freedom
are encoded in G through the use of the coarse-grained Green’s function Ḡ. Together with the
interacting part of the Hamiltonian, one then sets up the action for the effective cluster problem,
which reads after Fourier-transform to real space,

S[�⇤
, �] = �

Z �

0

d⌧

Z �

0

d⌧
0
X

ij,�

�
⇤
i�(⌧)G0,ij,�(⌧�⌧

0)�j�(⌧)+

Z �

0

d⌧

X

i

U�
⇤
i"(⌧)�i"�

⇤
i#(⌧)�i#(⌧) .

(11)

General idea 
– Represent bulk system by a 

reduced number of cluster 
degrees of freedom, and use 
coarse-graining to retain 
information about remaining 
degrees of freedom 

Self-energy approximation

Σ(k, iωn) ≃ Σc(K, iωn) (in DCA)

Σ(k, iωn) ≃ Σii(iωn)  (in DMFT)

Hettler et al., PRB ’98 
Maier et al., RMP ‘05
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DCA (DMFT) Self-Consistency

!11

Ḡ(K, iωn) =
Nc

N ∑
k∈𝒫K

G(k, iωn) =
Nc

N ∑
k∈𝒫K

1
iωn − εk + μ − Σc(K, iωn)

𝒢0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1Σc(K, iωn) = 𝒢−1
0 (K, iωn) − G−1

c (K, iωn)

S[ϕ*, ϕ] = − ∫
β

0
dτ∫

β

0
dτ′ �∑

ij,σ

ϕ*iσ(τ)𝒢0,ij,σ(τ − τ′ �)ϕjσ(τ) + ∫
β

0
dτ∑

i

Uϕ*i↑(τ)ϕi↑ϕ*i↓(τ)ϕi↓(τ)

Gc,ij,σ(τ − τ′ �) =
1
Z ∫ 𝒟[ϕ*ϕ]ϕiσ(τ)ϕ*jσ(τ′�)e−S[ϕ*,ϕ] Z = ∫ 𝒟[ϕ*ϕ]e−S[ϕ*,ϕ];

(1) Coarse-graining

(2) Cluster exclusion

(3) Cluster problem solution

(4) New self-energy
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Nambu-Gorkov Formalism for Superconducting State
Superconducting order parameter 

Anomalous Green’s function 

Nambu spinors 

Green’s function matrix

!12

Δk = ⟨ck↑c−k↓⟩ ≠ 0 for some k
Symmetry ∆k

s-wave const.

Extended s–wave cos kx + cos ky

dx2-y2 – wave cos kx - cos ky

dxy – wave sin kx sin ky

p – wave a sin kx + b sin ky

…

F(k, iωn) = ⟨⟨ck↑; c−k↓⟩⟩iωn

Ψ†
k = (c†

k↑, c−k↓) ; Ψk = (
ck↑

c†
−k↓)

G(k, iωn) = ⟨⟨Ψk; Ψ†
k⟩⟩iωn

= ( G(k, iωn) F(k, iωn)
F*(k, − iωn) −G*(k, iωn))
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Nambu-Gorkov DCA for Superconducting State

Non-interacting part of Hamiltonian 

Pauli spin matrices 

Green’s function in SC state 

Cluster self-energy

!13

H0 = ∑
k

Ψ†
k[ϵkσ3 − η′ �(k)σ1 + η′ �′�(k)σ2]Ψk

σ0 = (1 0
0 1), σ1 = (0 1

1 0), σ2 = (0 −i
i 0 ), σ3 = (1 0

0 −1)

G(k, iωn) = [iωnσ0 − (εk − μ)σ3 − η′ �(k)σ1 − η′ �′�(k)σ2 − Σc(K, iωn)]−1

Σc(K, iωn) = ( Σc(K, iωn) ϕc(K, iωn)
ϕ*c (K, − iωn) −Σ*c (K, iωn))
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Nambu-Gorkov DCA for Superconducting State …

!14

Ḡ(K, iωn) =
Nc

N ∑
k∈𝒫K

G(k, iωn) = ( Ḡ(K, iωn) F̄(K, iωn)
F̄*(K, − iωn) −Ḡ(K, iωn))

𝒢0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1Σc(K, iωn) = 𝒢−1
0 (K, iωn) − G−1

c (K, iωn)

S[Ψ*, Ψ] = − ∫
β

0
dτ∫

β

0
dτ′ �∑

ij,σ

Ψ*iσ(τ)𝒢0,ij,σ(τ − τ′ �)Ψjσ(τ) +
U
2 ∫

β

0
dτ∑

i
[Ψ*i (τ)σ3Ψi(τ)] [Ψ*i (τ)σ3Ψi(τ)]

Gc,ij,σ(τ − τ′ �) =
1
Z ∫ 𝒟[Ψ*Ψ]Ψi (τ)Ψ*j (τ′�)e−S[Ψ*,Ψ] Z = ∫ 𝒟[Ψ*Ψ]e−S[Ψ*,Ψ];

(1) Coarse-graining

(2) Cluster exclusion

(3) Cluster problem solution

(4) New self-energy

!14

G(k, iωn) = [iωnσ0 − (εk − μ)σ3 − η′ �(k)σ1 − η′ �′�(k)σ2 − Σc(K, iωn)]−1
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Comments
Superconducting order parameter 

Study spontaneous symmetry breaking 
– Initialize calculation with finite pair-field η(k) 
– Switch off η(k) after first (few) iterations 
– Let system relax 
– Calculate order parameter after 

convergence 

Symmetry of superconducting state 
– Given by K-dependence of  
– Possible symmetries constrained by cluster 

size and geometry

!15

Δ̄(K) =
Nc

N ∑
k∈𝒫K

⟨ck↑c−k↓⟩ = F̄(K, τ = 0)

Δ̄(K)

Symmetry ∆k
Nc=1 

(DMFT)
Nc=4 
(DCA)

s-wave const. ✔ ✔

Extended 
s-wave cos kx + cos ky ✔ ✔

dx2-y2 – 

wave cos kx - cos ky ✘ ✔

dxy - wave sin kx sin ky ✘ ✘

p-wave a sin kx + b sin ky ✘ ✘

…
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DCA Results for Superconducting State
DCA (non-crossing approximation) 
results for SC state 

– Hubbard model; Nc=4, 2 x 2 cluster 

– Anomalous Green’s function is finite, 
vanishes for K=(0,0) and (π,π) and 
switches sign between K=(π,0) and 
(0,π)  
⟶ dx2-y2 – wave 

– Superconducting gap is seen in 
density of states (DOS)

!16
pseudogap in both cases is generated by a large scatter-
ing rate !Im !" k ,0#! at the chemical potential. A unified
picture of the spectral properties of the electron- and
hole-doped cuprates thus emerges from these results if
the interaction strength U is allowed to be doping de-
pendent. To reproduce the experimental observations in
optimally doped cuprates, large values of U seem neces-
sary in hole-doped " U$8t# systems, while smaller values
of U describe the electron-doped systems " U" 6t#
"Sénéchal and Tremblay, 2004#.

4. Superconductivity

It is well known from weak-coupling finite-size FLEX
results "Bickers et al., 1989# and phenomenological theo-
ries "Monthoux et al., 1991; Scalapino, 1999# that antifer-
romagnetic spin fluctuations mediate pairing with
d -wave symmetry and cause a pseudogap in underdoped
systems. Recent numerical renormalization-group stud-
ies "Halboth and Metzner, 2000; Zanchi and Schulz,
2000# in fact show strong evidence that the ground state
of the weak-coupling 2D Hubbard model is supercon-
ducting with a d -wave order parameter at finite doping
when t!=0, and when t! is finite even at half-filling.
Finite-size QMC simulations for the doped 2D Hubbard
model in the intermediate coupling regime U%W sup-
port the idea of a spin-fluctuation driven interaction me-
diating d -wave superconductivity " for a review, see
Scalapino, 1999#. The fermion sign problem, however,
limits these calculations to temperatures too high to
study a possible transition. These calculations are also
restricted to relatively small system sizes, making state-
ments for the thermodynamic limit problematic, and in-
hibiting studies of the low-energy physics. These short-
comings do not apply to embedded-cluster theories
which are built for the thermodynamic limit. Cluster
sizes larger than 1 are necessary, however, to describe a

possible transition to a state with a nonlocal "d -wave#
order parameter as discussed in Sec. II.F.

In optimally doped cuprates, the spin fluctuations are
known to be short ranged, extending over a few lattice
spacings. Hence quantum cluster approaches should
provide an adequate methodology to study supercon-
ductivity in these systems. Pairing in the 2D Hubbard
model was studied using the DCA/NCA by Maier et al.
"2000a#, and with the DCA/QMC approach by Jarrell,
Maier, Hettler, and Tahvildarzadeh "2001#, Jarrell,
Maier, Huscroft, and Moukouri "2001#, and Maier, Jar-
rell, Macridin, and Slezak "2004#. The possible coexist-

FIG. 35. Comparison of different DCA cells:
"a# density of states near the chemical poten-
tial; "b#, "c#, and "d# coarse-grained anomalous
Green’s function Ḡ12" K ,##& F̄" K ,## in the
superconducting state of the 2D Hubbard
model at 19% doping, T=0.047t, U=12t for
different cluster K points calculated with
DCA/NCA for a four-site cluster, Nc=4.
From Maier et al., 2000a.

FIG. 36. Pair-field susceptibilities vs temperature in the even-
frequency s-wave, extended s-wave " xs#, d -wave, and odd-
frequency s-wave channels in the 2D Hubbard model at 5%
doping, U=8t calculated with the DCA/QMC method for a
four-site cluster, Nc=4. Inset: Inverse d -wave pair-field suscep-
tibility vs temperature for different dopings and cluster sizes.
The solid line is a fit to b" T−Tc#$ with Tc=0.084t and $=0.72.
Temperatures are in units of 4t. From Jarrell, Maier, Hettler,
and Tahvildarzadeh, 2001.

1072 Maier et al.: Quantum cluster theories

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

U = 12t, ⟨n⟩ = 0.81,T = 0.05t

Maier et al., PRL 2000
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The Pair-Field Susceptibility
Definition 

Pairing operator 

Form-factor (d-wave) 

From Nambu-Gorkov DCA (DMFT)

!17

Tunnel junction between S and S’ 
with Tc(S) < T < Tc(S′�)

Scalapino, PRL 24, 1052 (1970) 
R. A. Ferrell, Low Temp. Phys. 1, 423 (1969) 

Pα(T ) = ∫
β

0
dτ⟨Δα(τ)Δ†

α(0)⟩

Δ†
α =

1

N ∑
k

gα(k)c†
k↑c†

−k↓

gdx2−y2
(k) = cos kx − cos ky

Pα =
dΔα(ηα)

dηα ηα→0
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Direct Calculation of Response Function

From 4-point 2-particle Green’s function

!18

Pα(T ) =
T2

N2 ∑
k,k′ �

gα(k)G2,↑↓↓↑(k, − k, − k′ �, k′�)gα(k′�)

G2,σ1…σ4
(x1, x2; x3, x4) = − ⟨Tτcσ1

(x1)cσ2
(x2)c†

σ3
(x3)c†

σ4
(x4)⟩ xi = (Xi, τi)

G2,↑↓↓↑(k, − k, − k′ �, k′�) = G↑(k)G↓(−k)δk,k′ � +
T
N ∑

k′ �′�

G↑(k)G↓(−k)Γpp(k, − k, − k′ �′�, k′�′�)G2,↑↓↓↑(k′�′�, − k′ �′�, − k′ �, k′�)

Pα(T ) = ∫
β

0
dτ⟨Δα(τ)Δ†

α(0)⟩
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DCA (DMFT) Approximation

Lattice 4-point correlation function 

Cluster 4-point correlation function 
G2c,↑↓↓↑(K, − K, − K′ �, K′�) = Gc,↑(K )Gc,↓(−K )δK,K′ � +

T
Nc ∑

K′ �′ �

Gc,↑(K )Gc,↓(−K )Γc,pp(K, − K, − K′ �′�, K′�′�)G2c,↑↓↓↑(K′�′�, − K′ �′�, − K′ �, K′�)

G2,↑↓↓↑(k, − k, − k′ �, k′�) = G↑(k)G↓(−k)δk,k′ � +
T
N ∑

k′ �′�

G↑(k)G↓(−k)Γpp(k, − k, − k′ �′�, k′�′�)G2,↑↓↓↑(k′�′�, − k′ �′�, − k′ �, k′�)

Γpp(k, − k, − k′ �, k′�) ≈ Γpp
c (K, − K, − K′ �, K′�)

Pα(T ) =
T2

N2
c ∑

K,K′ �

ḡα(K)Ḡ2,↑↓↓↑(K, − K, − K′ �, K′�)ḡα(K′�)⟶
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Bethe-Salpeter Eigenvalues And Eigenfunctions

Bethe-Salpeter equation (in matrix notation) 

“Pairing matrix” eigenvalues and eigenvectors 

Fully renormalized version of linearized BCS gap 
equation

!20

Ḡ2 = [1 − Ḡ0
2,↑↓Γpp

c ]−1Ḡ0
2,↑↓ = Ḡ0

2,↑↓[1 − Γpp
c Ḡ0

2,↑↓]−1

−
T
Nc ∑

K′ �

Γc,pp(K, K′�)Ḡ0
2,↑↓(K′�)ϕR

α (K′�) = λαϕR
α (K )

Ḡ2,↑↓↓↑(K, K′�) = Ḡ0
2,↑↓(K )∑

α

ϕR
α (K )ϕL

α (K′�)
1 − λα

⟶

−
1
N ∑

k′�

V(k, k′�)tanh ( β
2 Ek′�) Δ(k′�)

2Ek′�
= Δ(k′�)

• Superconducting 
instability when leading 
eigenvalue λα = 1 

• K dependence of 
leading eigenvector 
Φα(K) determines 
symmetry of 
superconducting state



Superconductivity in the 2D 
attractive Hubbard model

ℋ = ∑
ij,σ

tijc†
iσcjσ + U∑

i

ni↑ni↓ ; U < 0
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DCA for Attractive Hubbard Model: General Considerations

Attractive Hubbard model 
– U < 0 → local s-wave pairing 

interaction 
– Toy model to study superconductivity 
– No fermion sign problem in QMC! 

General properties 
– Finite T superconducting phase for  

⟨n⟩ < 1 with s-wave symmetry 

– For  ⟨n⟩ = 1, degeneracy with charge 
density wave phase suppresses SC 
phase to T=0. 
 

Mermin-Wagner theorem 
– No finite-T long-range order in 2D due 

to breaking of continuous symmetry 
(U(1) gauge). 

Kosterlitz-Thouless (KT) phase transition 
– Superconducting correlations decay 

algebraically 

DMFT & DCA 
– Cut-off long-range correlations 
– Do not obey Mermin-Wagner 
– Mean-field behavior close to Tc 

– KT behavior at higher  T

!22
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Superconductivity in Attractive Hubbard Model: DMFT & DCA

!23

⟨n⟩ = 0.85

Weak coupling (|U|< W) 
– Tc rises with U due to pair-binding 

energy ~ U 
– Expected BCS behavior 

Strong coupling (|U|> W) 
– Tc levels off in DMFT, falls in DCA 
– BEC behavior: Tightly coupled 

pairs are not phase coherent  
– DMFT only knows about temporal 

phase fluctuations 
– DCA also describes spatial phase 

fluctuations
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Superconductivity in Attractive Hubbard Model: DCA+

!24

DCA finite size scaling 

– From  
 
and  

– DCA results agree well with finite 
lattice QMC results  
(Paiva et al., PRB ’04)

PETER STAAR, THOMAS MAIER, AND THOMAS C. SCHULTHESS PHYSICAL REVIEW B 89 , 195133 (2014)

accurately through a finite size scaling procedure. The aim in
this section is to validate the DCA+ framework by reproducing
the temperature versus doping phase diagram of the attractive
Hubbard model with an interaction of U = −4. This model
has been studied in detail by Paiva et al. [17], using finite size
determinantal QMC calculations [24,25] of large clusters for
which accurate results for Tc were obtained.

We will use two complementary procedures to determine
the exact (infinite cluster size) KT transition temperature TKT
as follows. (1) We will use the same finite size scaling analysis
of the cluster s-wave pair-field susceptibility that was used
in Ref. [17]. This procedure avoids the determination of the
lattice vertex function through interpolation and deconvolution
of the cluster vertex function. (2) We will determine the
superconducting transition temperature Tc(Nc) for a given
cluster size Nc by calculating the leading eigenvalue of the
lattice Bethe-Salpeter equation in Eq. (11) as outlined in
Sec. II C and then obtain an estimate for TKT by fitting Tc(Nc)
with the expected KT form. We will show that both procedures
result in the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =
∫ β

0
d τ ⟨#†(τ )#(0)⟩, (23)

with

#† = 1√
Nc

∑

K⃗

c
†
K⃗↑c

†
−K⃗↓. (24)

Note that Ps can be obtained directly from the Q = 0 cluster
two-particle Green’s function in the particle-particle channel,
GII

c↑↓↓↑(K,K ′) [see Eq. (7)], as

Ps = T 2

N2
c

∑

K,K ′

GII
c ↑↓↓↑(K,K ′), (25)

where the sum over K (and K ′) implicitly contains a sum over
momenta K⃗ and Matsubara frequencies ϖ .

If one assumes that the transition to the superconducting
phase takes place when the correlation length reaches the linear
cluster size Lc =

√
Nc, one expects from finite size scaling for

a Kosterlitz-Thouless transition that [17]

PsL
−7/4
c = Lc exp

[ −α√
T − Tc

]
. (26)

In Fig. 2, we have plotted the best data collapse for this equation
at 50% doping. The critical temperature TKT = 0.13 obtained
by the data collapse is equal to the value obtained by Paiva et al.
We believe that the discrepancy on the parameter α (0.3 versus
0.1) can most likely be attributed to the mean-field character
of the DCA+ algorithm.

Next, we use the new DCA+ two-particle formalism de-
scribed in Sec. II C to calculate the lattice irreducible vertex in
the particle-particle channel, &pp(k,k′), with continuous mo-
mentum dependence. We then compute the leading eigenvalue
λs(T ) (the corresponding eigenvector has s-wave symmetry) of
the pairing matrix &ppχ0 that enters the lattice Bethe-Salpeter
equation [see Eq. (11)]. This allows us to determine the
transition temperature Tc(Nc) for a given cluster size Nc

0 1 2 3 4 5 6 7 8
√

Nc e
−α√

T−TKT
c

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
c−

7 8
P

s

d =0.5, α =0.3, TKT
c =0.13 Nc = 16

Nc = 24
Nc = 52
Nc = 84
Nc = 100
Nc = 144
Nc = 196
Nc = 256

FIG. 2. (Color online) Data collapse of the cluster susceptibility
Ps using the Kosterlitz-Thouless scaling form in Eq. (26) for a filling
of ⟨n⟩ = 0.5. We can observe a clear data collapse for clusters larger
than 84 sites.

from λs(Tc(Nc)) = 1. The exact infinite size cluster result
Tc(Nc → ∞) ≡TKT is then obtained from fitting the Tc(Nc)
data with the expected KT behavior [7,26]

Tc(Nc) = T KT
c + A

[B + log(
√

Nc)]2
. (27)

As one sees from the inset of Fig. 3, the fits of the data
for electron densities ⟨n⟩ = 0.1, 0.5, and 0.8 with the form
in Eq. (27) are excellent. The resulting estimates for TKT(⟨n⟩)
are shown as symbols in the main figure. The error bars are
obtained by omitting each data point (jack-knife procedure)
once in the corresponding Tc(Nc) curves, which results in
six different estimates for TKT for each density and thus the
standard deviation represented by the error bars. One sees that
the obtained transition temperatures lie within the error bars
of Paiva et al. (red dashed lines in Fig. 2).

FIG. 3. (Color online) Phase diagram of the attractive Hubbard
model with U = −4. The DCA+ results lie within the error bars
(red-dotted lines) of previously reported values by Paiva et al.

195133-6

U = -4t
Tc(Nc) = TKT +

A
[B + log( Nc)]2

ξ(T ) ∼ e
C

T − TKT

ξ(Tc(Nc)) = Nc

Staar et al., PRB ‘14



Superconductivity in the 2D 
repulsive Hubbard model

ℋ = ∑
ij,σ

tijc†
iσcjσ + U∑

i

ni↑ni↓ ; U > 0
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Superconductivity in 2D Repulsive Hubbard Model? 
… An Open Question

Relevant to cuprates 
– P. Anderson, Science ’87 

Weak coupling theory 
– Kohn & Luttinger, PRL ’65  
– Scalapino et al., PRB ’86 
– Zanchi & Schulz, PRB ’96 
– Salmhofer, Comm. Math. Phys. ’98 
– Halboth & Metzner, PRB ’00 
– Honerkamp et al., PRB ‘01 
– Binz et al., Ann. Phys. ’03 
– Reiss et al., PRB ’07 
– Zhai et al., PRB ’09 

– Raghu et al., PRB ’10 
– … 

Intermediate/realistic coupling 
– Quantum Monte Carlo ?? 
– Density matrix renormalization 

group ?? 
– DCA: Yes ! 

Pairing symmetry 
– s-wave energetically unfavorable 

due to on-site Hubbard U 
– dx2-y2 – wave possible 

!26
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DCA Temperature Doping Phase Diagram: 2×2 Cluster

!27

568 EUROPHYSICS LETTERS

Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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Fig. 2 – The single-particle density of states N(ω) for U = 2, T = 0.023 and Nc = 4. The inset
shows the bulk susceptibility as a function of temperature. For δ < 0.2 a peak develops at T = T ∗

accompanied by the evolution of a pseudogap in the DOS for T < T ∗.

by interpolating the cluster result on to the full lattice Brillouin zone. Thus the lattice self-
energy at any k is dominated by the cluster self-energy at the nearest cluster momentum. For
a Fermi liquid, the self-energy Σ(k,ω) ∼ (1 − 1/Z)ω − ibω2, where b > 0 and 1/Z > 1. Our
results show that, near half-filling, the self-energy displays non-Fermi-liquid behavior. This is
illustrated in fig. 3, where we plot the low-frequency self-energy at the DCA cluster momenta
for δ = 0.05 and T = 0.023. For momentum points near k = (π, 0), the imaginary part of
the self-energy crosses the Fermi energy almost linearly. Concomitant with this behavior is
a pseudogap of width ≈ |J | ≈ 4t2/U in the single-particle spectra A(k,ω) for momenta near
k = (π, 0) (not shown).

The pseudogap and the anomalies in the self-energy vanish when T ∗ falls to zero. Here,

Fig. 3 – The imaginary part of the single-particle self-energies at the DCA cluster momenta, plotted
vs. frequency ω for U = 2, T = 0.023, Nc = 4 and δ = 0.05 (left) and δ = 0.25 (right). The self-energy
at (π, 0) changes from non-Fermi-liquid–like at doping δ = 0.05 to Fermi-liquid–like at δ = 0.25. The
dashed lines indicate the zero axes.
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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FIG. 3 (color). Inverse d-wave pair-field susceptibility as a
function of temperature for different cluster sizes at 10% doping.
The continuous lines represent fits to the function Pd !
A exp"2B=#T $ Tc%0:5& for data with different values of zd.
Inset: magnified view of the low-temperature region.
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From these results we can draw two important conclusions.
First, the transition temperature we obtain from the data
collapse of the cluster susceptibility is in excellent agreement
with the transition temperature obtained from the lattice
Bethe-Salpeter equation. The first procedure is based entirely
on the two-particle cluster Green’s function and thus does
not involve the new procedure for determining the lattice
irreducible vertex, while the second method uses the new
DCA+ two-particle framework [inversion of Eq. (16)] for the
lattice vertex. This provides evidence that the algorithm we use
to invert the coarse graining of the lattice vertex in Eq. (16)
provides accurate estimates of transition temperatures for a
given cluster size Nc, which lead to the same infinite cluster
size limit as the results obtained from finite size scaling
of the cluster susceptibility. Second, the DCA+ calculations
reproduce the temperature versus doping phase diagram of the
attractive Hubbard model with an interaction of U/t = −4
previously determined by Paiva et al. From this we conclude
that the DCA+ algorithm provides a reliable way to accurately
determine phase transition temperatures.

B. 2D repulsive Hubbard model

We will start the DCA+ study of the 2D repulsive Hubbard
model by reinvestigating d -wave superconductivity in the
weak-coupling U = 4t regime for which previous DCA
calculations are available [7]. We will then move on to
the intermediate-coupling U = 7t regime, which has been
difficult to access with standard DCA. In particular, we will
show results for antiferromagnetism at half-filling and d -wave
superconductivity in the doped model.

1. Superconductivity at weak coupling

As for the attractive model, we calculate the temperature
dependence of the leading eigenvalues and eigenvectors of
the pairing matrix !ppχ0 that enters the lattice Bethe-Salpeter
equation for different cluster sizes. At low temperatures, the
leading eigenvector has d -wave symmetry. In Fig. 4 we show
DCA+ results for the leading d -wave eigenvalue λd (T ) versus
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FIG. 4. (Color online) Leading (d -wave) eigenvalue of the
Bethe-Salpeter equation in the particle-particle channel calculated
with DCA+ in the 2D Hubbard model with U/t = 4 and ⟨n⟩ = 0.9.
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FIG. 5. (Color online) Superconducting transition temperature
Tc versus cluster size computed with DCA (red squares) and
DCA+ (black circles) in the 2D Hubbard model with U/t = 4
and ⟨n⟩ = 0.9. The DCA+ algorithm can access larger clusters and
produces more systematic convergence.

temperature for cluster sizes ranging from 16 to 52 sites for
U = 4t and ⟨n⟩ = 0.9. One sees that λd (T ) monotonically
increases with decreasing temperature and eventually crosses
one, which defines the transition temperature for a given cluster
size. For the smallest cluster sizes Nc < 36, one also sees
that at a fixed temperature, λd increases monotonically with
cluster size, as does Tc. We believe that in this regime of
large Nc dependence, the superconducting coherence length
is larger than the cluster so that spatial phase fluctuations are
neglected. Since pairs are correlated over longer distances than
those within the cluster size, increasing the cluster size takes
into account longer-ranged pair-field correlations and therefore
λd (T ) and also Tc increase with Nc. This is similar to what
one sees in finite size calculations for the cluster pair-field
correlations, which increase monotonically with cluster size
(see, e.g., Fig. 1 in Ref. [17]).

In order to show the Nc dependence of Tc more clearly,
we plot in Fig. 5 Tc versus Nc as determined from λd (Tc) = 1
(black circles) together with the previous DCA results (red
squares). Here one clearly observes the monotonic rise of
Tc(Nc) of the DCA+ results for Nc < 36. The previous DCA
calculations were also able to cover most of this range in Nc,
although the results for Tc were much more erratic as can be
seen from the red squares. With the new DCA+ data, it now
becomes clear that the cluster sizes that could be accessed
with the DCA are in a regime where the coherence length is
larger than the largest length scale covered by the clusters.
The DCA+ algorithm, however, due to the larger average
QMC sign, can go to significantly larger cluster sizes. Most
importantly, it can access a regime in which Tc(Nc) appears to
remain roughly constant with Nc or just weakly decreases. We
believe that in this regime, the linear cluster sizes are larger
than the coherence length. In this case, just as we have found
for the attractive model in Sec. III A, Tc should display a weak
logarithmic decrease with cluster size according to the KT
scaling behavior in Eq. (27) since spatial phase fluctuations
are increasingly taken into account.

195133-7

U=4t, ⟨n⟩=0.9

TWO-PARTICLE CORRELATIONS IN A DYNAMIC . . . PHYSICAL REVIEW B 89, 195133 (2014)

−20 −15 −10 −5 0 5 10 15 20

m

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Φ
s(

k
,

m
)

k0= {0, π}

k1= {1π/8, 7π/8}

k2= {2π/8, 6π/8}

k3= {3π/8, 5π/8}

k4= {4π/8, 4π/8}

k5= {5π/8, 3π/8}

k6= {6π/8, 2π/8}

k7= {7π/8, 1π/8}

k8= {π, 0}

k k k k k
0.0

0.5

1.0
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U/t = 7, Nc = 144 at half-filling for a temperature close to TN(Nc).
The inset shows the momentum dependence of !(k,πT ) along the
diagonal from k⃗ = (0,π ) to (π,0).

also has a retarded component for this strength of the Coulomb
interaction.

We now turn to the doped model at U = 7t and study
the superconducting transition for a filling of ⟨n⟩ = 0.9. For
these parameters, the standard DCA algorithm can only access
clusters as large as 12 sites because of the fermion sign
problem. The DCA+ algorithm, however, significantly delays
the sign problem and allows us to access clusters as large as
28 sites.

Figure 9 shows the DCA+ results for the superconducting
transition temperature Tc versus cluster size (black circles)
in addition to the DCA results (red squares). The DCA data
for Tc have significant cluster size dependence and irregular
behavior and it is impossible to determine an estimate of
Tc based on these results. In contrast, the DCA+ results
are much more systematic: similar to the weak coupling
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FIG. 9. (Color online) DCA (red squares) and DCA+ (black cir-
cles) results for the superconducting transition temperature Tc versus
cluster size for U/t = 7 and 10% doping.
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FIG. 10. (Color online) k dependence of the leading eigenvector
at the first Matsubara frequency in the particle-particle channel
for U/t = 7, β = 20, Nc = 24, and 10% doping. One can clearly
observe the dx 2− y 2 cos kx − cos ky structure (red line). Inset: the ϖ

dependence of !(k = {π,0},ϖ ).

U/t = 4 case, one observes a small cluster regime in which Tc

increases with Nc, followed by a regime where Tc(Nc) appears
approximately constant. Interestingly, the second regime of
constant Tc is reached already for a significantly smaller
cluster size than for the weak coupling case. From this we
estimate the coherence length ξ ≈

√
12 ≈ 3.5 lattice spacings

for U = 7t and ⟨n⟩ = 0.9. This is about half of the estimate we
obtained for U = 4t and indicates that the coherence length
decreases with increasing interaction strength U in the regime
of moderate values of U .

The k⃗ dependence of the leading d -wave eigenvector
!(k⃗,ϖ0 = πT ) obtained for the Nc = 28 site cluster is plotted
in Fig. 10. Its d -wave cos kx − cos ky structure is obvious
from this plot. A detailed analysis of the contribution of
higher d -wave harmonics will be published elsewhere. The
ϖ dependence of !(k⃗,ϖ ) reflects the frequency dependence
of the pairing interaction [9] and is shown for k⃗ = (π,0) in the
inset. From this one sees that !(k⃗,ϖ ) falls off with ϖ on a
scale set by J = 4t2/U ≈ 0.57. This reflects a retarded pairing
interaction with similar dynamics as the spin fluctuations [9].

IV. CONCLUSION

In this paper, we have presented an extension of the recently
introduced DCA+ algorithm to the calculation of two-particle
correlation functions. The DCA+ extends the dynamic cluster
approximation with a continuous self-energy and thereby
reduces its cluster shape dependencies and the fermion sign
problem of the underlying QMC solver. The DCA+ two-
particle framework is derived from the requirement of thermo-
dynamic consistency, which assures that quantities calculated
from the two-particle Green’s functions are identical to those
calculated from the single-particle Green’s function. We have
shown that this requirement is satisfied if the coarse-grained
vertex function &̄α(K,K ′) =

∫
d k⃗ d k⃗′φK⃗ (k⃗)&α(k,k′)φK⃗ ′(k⃗′) is

equal to the corresponding vertex function calculated on the

195133-9

U=7t, ⟨n⟩=0.9

DCA(+) predicts dx2-y2 – wave superconductivity 
with Tc ~ 0.05t for realistic parameters (U=7t) Staar et al., PRB ‘14

Staar et al., PRB ‘14
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter
equation in various channels for U=t ¼ 4 and a site occupation
hni ¼ 0:85. The Q ¼ ð";"Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue
is seen to saturate at low temperatures. The leading eigenvalue in the
singletQ ¼ ð0; 0Þ,!m ¼ 0 particle-particle channel has dx2$y2 sym-

metry and increases toward 1 at low temperatures. The largest charge
density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and
saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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the eigenfunction #d

x2$y2
ðK;!nÞ of the leading particle-particle

eigenvalue of Fig. 21 for K ¼ ð"; 0Þ normalized to #ðK;"TÞ (solid
curve). Here !n ¼ ð2nþ 1Þ"T with T ¼ 0:125t. The Matsubara
frequency dependence of the normalized magnetic spin susceptibil-
ity 2$ðQ;!m Þ=½$ðQ; 0Þ þ $ðQ; 2"TÞ'for Q ¼ ð";"Þ vs !m ¼
2m "T (dashed curve). The Matsubara frequency dependence of
#d

x2$y2
and the normalized spin Q ¼ ð";"Þ susceptibility are

similar. Inset: The momentum dependence of the eigenfunction
#d

x2$y2
ðK;"TÞ normalized to #d

x2$y2
ðð0;"Þ;"TÞ shows its dx2$y2

symmetry. Here !n ¼ "T and the momentum values correspond to
values of K which lie along the dashed line shown in the inset of
Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.

FIG. 23 (color online). This figure provides evidence linking the
frequency dependence of the imaginary part of the gap function
#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
(b) The imaginary part $00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify
peaks. The positions of the peaks of !00

an in (a) are shown as the
shaded dots in (b) at the same height as the corresponding $00 to
illustrate their correspondence. One can see that the upward fre-
quency shift of the !00

an peaks relative to the $
00 peaks decreases with

the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
Lorentzian broadening of 0:125t was used for an embedded 2( 2
plaquette. From Kyung, Senechal, and Tremblay, 2009.
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter
equation in various channels for U=t ¼ 4 and a site occupation
hni ¼ 0:85. The Q ¼ ð";"Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue
is seen to saturate at low temperatures. The leading eigenvalue in the
singletQ ¼ ð0; 0Þ,!m ¼ 0 particle-particle channel has dx2$y2 sym-

metry and increases toward 1 at low temperatures. The largest charge
density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and
saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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the eigenfunction #d

x2$y2
ðK;!nÞ of the leading particle-particle

eigenvalue of Fig. 21 for K ¼ ð"; 0Þ normalized to #ðK;"TÞ (solid
curve). Here !n ¼ ð2nþ 1Þ"T with T ¼ 0:125t. The Matsubara
frequency dependence of the normalized magnetic spin susceptibil-
ity 2$ðQ;!m Þ=½$ðQ; 0Þ þ $ðQ; 2"TÞ'for Q ¼ ð";"Þ vs !m ¼
2m "T (dashed curve). The Matsubara frequency dependence of
#d

x2$y2
and the normalized spin Q ¼ ð";"Þ susceptibility are

similar. Inset: The momentum dependence of the eigenfunction
#d

x2$y2
ðK;"TÞ normalized to #d

x2$y2
ðð0;"Þ;"TÞ shows its dx2$y2

symmetry. Here !n ¼ "T and the momentum values correspond to
values of K which lie along the dashed line shown in the inset of
Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.

FIG. 23 (color online). This figure provides evidence linking the
frequency dependence of the imaginary part of the gap function
#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
(b) The imaginary part $00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify
peaks. The positions of the peaks of !00

an in (a) are shown as the
shaded dots in (b) at the same height as the corresponding $00 to
illustrate their correspondence. One can see that the upward fre-
quency shift of the !00

an peaks relative to the $
00 peaks decreases with

the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
Lorentzian broadening of 0:125t was used for an embedded 2( 2
plaquette. From Kyung, Senechal, and Tremblay, 2009.
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Leading correlations in particle-hole, spin S=1, antiferromagnetic 
(Q=(π,π)) and particle-particle Q=0 pairing channels. Leading pairing 

eigenvector has dx2-y2 – wave momentum structure and reflects spin 
fluctuation frequency dependence.

U=4t, ⟨n⟩=0.9 U=4t, ⟨n⟩=0.9

Maier et al., PRB ’06
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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fully irreducible vertex !irr, the S ¼ 0 charge fluctuations
1
2"d, and the S ¼ 1 spin fluctuations 3

2"m . As noted, it is the
increase of # with momentum transfer that gives rise to the
attractive near-neighbor pairing and it is clear from Fig. 20

that this comes from the S ¼ 1 part of the interaction.
The fully irreducible vertex is essentially independent of
momentum transfer and so it contributes only to the on-site
repulsion, while the S ¼ 0 charge part decreases at large
momentum giving rise to a small repulsive near-neighbor
interaction.

In these numerical calculations, one also obtains the
dressed single-particle Green’s function Gðk; i!nÞ. Given G
and #pp, one can determine the Bethe-Salpeter eigenvalues
and eigenfunction in the particle-particle channel by solving

$T

N

X

k0
#PPðk;k0ÞG"ðk0ÞG#ð$k0Þ!"ðk0Þ¼#"!"ðkÞ: (13)

This is basically the fully dressed BCS gap equation and
when the leading eigenvalue goes to 1 the system becomes
superconducting. One can also construct similar Bethe-
Salpeter equations for the charge and magnetic particle-hole
channels. Figure 21 shows a plot of the leading eigenvalues
associated with the particle-particle pairing channel and the
particle-hole charge S ¼ 0 and spin S ¼ 1 channels for
U=t ¼ 4 and a filling hni ¼ 0:85. As the temperature is
lowered, the particle-hole S ¼ 1 antiferromagnetic channel
with center-of-mass momentum Q ¼ ð$;$Þ is initially domi-
nant. However, at low temperatures the Q ¼ 0 pairing chan-
nel rises rapidly and the divergence of the antiferromagnetic
channel saturates. The charge channel eigenvalue remains

FIG. 19 (color online). The real space structure of the pairing
interaction obtained from the Fourier transform Eq. (11) of
#ppðk; k0Þ at a temperature T ¼ 0:125t for U ¼ 4t and hni ¼
0:85. Here there is an attractive pairing interaction for a singlet
formed between an electron at the origin and a near-neighbor site.
The peak in #pp shown in Fig. 18 leads to a pairing interaction
which oscillates in space.

FIG. 20 (color online). The momentum dependence of the various contributions that make up the irreducible particle-particle pairing vertex
#pp. (a) The irreducible particle-particle vertex #pp vs q ¼ K $ K0 for various temperatures with !n ¼ !n0 ¼ $T. Here K ¼ ð$; 0Þ and K0

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 21. Note that the interaction
increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q dependence of the fully irreducible two-fermion
vertex !irr. (c) The q dependence of the charge density (S ¼ 0) channel 1

2"d for the same set of temperatures. (d) The q dependence of

the magnetic (S ¼ 1) channel 3
2"m . Here one sees that the increase in #pp with momentum transfer arises from the S ¼ 1 particle-hole

channel. From Maier, Jarrell, and Scalapino, 2006b.

1400 D. J. Scalapino: A common thread: The pairing interaction for . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

−
T
Nc ∑

K′ �

Γc,pp(K, K′�)Ḡ0
2,↑↓(K′�)ϕR

α (K′�) = λαϕR
α (K ) Γpp(ℓx, ℓy) = ∑

K,K′ �

eiKℓΓpp(K, K′�)eiK′ �ℓ

Momentum structure of pairing interaction 
gives rise to attractive interaction for 
nearest-neighbor dx2-y2 – wave pairs 

Momentum space Real space
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Spin-Fluctuation Pairing Interaction
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Γpp(k, ωn, k′�, ωn′ �) ≈
3
2

Ū2χs(k − k′ �, ωn − ωn′ �)
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Origin of Dome-Shaped Tc vs. Doping
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with quantum Monte Carlo approaches, and so we will in-
stead study a simpler two-orbital model with only intraor-
bital Coulomb interactions. This model will be realized by a
bilayer Hubbard model. Its Hamiltonian is given by

H = −t
∑

⟨ij⟩mσ

(
c

†
imσ cjmσ + h.c.

)
− t⊥

∑

iσ

(
c

†
i1σ ci2σ + h.c.

)

+ U
∑

im

nim↑nim↓. (2)

Here, the layers are indexed by m, each layer is described
by the Hamiltonian in Eq. (1) and t⊥ is an additional hop-
ping parameter between neighboring sites in the bilayer
model. This model provides a simplified two-orbital system
in which one can study the type of pairing that can occur
in systems with multiple Fermi surfaces such as the iron-
pnictides.

In order to analyze these models, we will use a dynamic
cluster quantum Monte Carlo approximation (DCA/QMC)
[6, 8, 13]. The DCA maps the bulk lattice problem onto an
effective periodic cluster embedded in a dynamic mean-field
that is designed to represent the rest of the system. The effec-
tive cluster problem is then solved using a quantum Monte
Carlo algorithm. The results discussed in this paper were
obtained with a Hirsch–Fye method [8]. DCA/QMC calcu-
lations of the 2D Hubbard model have found many phenom-
ena that are also observed in the cuprates, including an anti-
ferromagnetic Mott state, d-wave superconductivity as well
as pseudogap behavior [13]. It therefore provides an inter-
esting framework to study many of the open questions in the
field.

Formally, the quantity of interest to study the nature of
pairing in these models is given by the two-particle irre-
ducible vertex in the particle-particle channel, Γ

pp
irr (k, k′)

[14]. Here, k = (k, iωn) with ωn a fermion Matsubara fre-
quency and we are interested in the singlet pairing channel.
This quantity describes the scattering of two electrons with
momenta k and −k and antiparallel spins to a state with
momenta k′ and −k′ and, therefore, describes the pairing
interaction. Together with the single-particle Green’s func-
tion G(k), it enters the Bethe–Salpeter equation

− T

N

∑

k

Γ
pp

irr

(
k, k′)G

(
k′)G

(
−k′)Φα

(
k′) = λαΦα(k) (3)

which provides information on the strength (λα) and mo-
mentum and frequency structure (Φα(k)) of the leading pair-
ing correlations in the system [14]. At Tc, λα = 1 and Φα(k)

becomes identical to the superconducting gap. In the 2D
Hubbard model, at low temperature, one finds that the eigen-
vector corresponding to the leading eigenvalue has a d-wave
coskx − cosky momentum dependence.

Previous DCA/QMC simulations of the 2D Hubbard
model [14, 15] have found that the momentum and fre-
quency dependence of the pairing interaction Γ

pp
irr (k, k′) is

Fig. 1 (a) Superconducting transition temperature Tc versus doping x
for the 2D Hubbard model with U = 8 calculated with DCA/QMC on
an 8-site cluster. (b) Normalized interaction strength Vd and “intrinsic”
pair-field susceptibility Pd,0 versus doping x calculated at a tempera-
ture T = 0.125

similar to that of the spin susceptibility χ(k − k′), providing
evidence that that pairing interaction in this model is carried
by spin fluctuations.

In a spin fluctuation picture, one can naturally under-
stand the drop of Tc with doping on the overdoped side of
the cuprate phase diagram, since the spin-fluctuations are
weakened by doping away from the antiferromagnetic par-
ent state. On the other hand, the drop of Tc with underdop-
ing is difficult to understand in a picture where pairing is
mediated by spin fluctuations, since one would expect them
to get stronger when the system is doped towards the Mott
state. To investigate this issue, we show in Fig. 1a the tem-
perature versus doping superconducting phase diagram of
the 2D Hubbard model, calculated with DCA/QMC on an 8-
site cluster with U = 8. One sees that these calculations cor-
rectly predict the experimentally observed dome-like struc-
ture of the superconducting phase diagram, with Tc dropping
with both over and underdoping.

In order to analyze how this behavior arises from the
Bethe–Salpeter equation (3), we have calculated the “in-
trinsic” pair-field susceptibility projected onto the leading
eigenvector, Pd,0 = T/N

∑
k Φd(k)2G(k)G(−k) and the

strength of the pairing interaction Vd from VdPd,0 = λd . The
doping dependence of these quantities calculated at a low
temperature above Tc are shown in Fig. 1b. As one would
expect from a spin-fluctuation based pairing interaction, Vd

rises monotonically with decreasing doping toward the Mott
insulator. In contrast, Pd,0 decreases with decreasing dop-

Separable approximation 

     →

Γpp(K, K′�) ≈ − Vdϕd(K )ϕd(K′�)

Vd(T )Pd,0(T ) ≈ λd

Pd,0(T ) = T/Nc ∑
K

ϕ2
d(K )Ḡ0

2,↑↓(K )

Opposite trends in doping 
dependence of Vd and Pd,0 gives 

rise to dome-shaped Tc(x)

Maier et al., J. Supercon. Nov. Mag. ‘12



Extended Hubbard model

ℋ = ∑
ij,σ

tijc†
iσcjσ + U∑

i

ni↑ni↓ + V ∑
⟨ij⟩,σσ′�

niσnjσ′�
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Pairing and Retardation

Conventional electron-phonon superconductors 
– Retardation is essential to overcome local Coulomb repulsion for s-wave pairs 

Unconventional d-wave superconductors 
– Local Coulomb repulsion is overcome by d-wave structure of pair wave function 

Extended Hubbard model 
– Coulomb interaction in real materials not completely screened to local U → 

additional nearest neighbor V Coulomb repulsion 

– V is repulsive for nearest neighbor d-wave pairs 
– Role of retardation?
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ℋ = ∑
ij,σ

tijc†
iσcjσ + U∑

i

ni↑ni↓ + V ∑
⟨ij⟩,σσ′�
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DCA (QMC): Tc versus V 
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d-WAVE SUPERCONDUCTIVITY IN THE PRESENCE OF … PHYSICAL REVIEW B 97, 184507 (2018)

FIG. 1. (a) Temperature dependence of the leading (dx2−y2 -wave)
eigenvalue λd (T ) of the Bethe-Salpeter equation in the particle-
particle channel, Eq. (2) for the extended Hubbard model in Eq. (1)
with U = 7 and ⟨n⟩ = 0.9 for different magnitudes of the nearest-
neighbor Coulomb repulsion V . (b) d-wave eigenvalue λd at a fixed
temperature of T = 0.1 as a function of V for different fillings
⟨n⟩. (c) d-wave superconducting transition temperature Tc extracted
from λd (Tc) = 1 as a function of V. d-wave pairing is only weakly
suppressed by the interaction V as long as V ! U/2.

One also sees that "d (ωm) becomes less attractive at low
frequencies with increasing V . This reduction even exceeds the
frequency-independent 4V repulsive contribution, indicating
that there is another repulsive and dynamic contribution that
further weakens the d-wave pairing interaction. We come back

FIG. 2. The d-wave-projected irreducible particle-particle vertex
"d (ωm) for different values of V for ⟨n⟩ = 0.9. For finite V, "d

is attractive at low frequencies but then turns repulsive at higher
frequencies where it approaches 4V .

to this point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected in the
frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and ⟨n⟩ = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in "d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and ⟨n⟩ = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .

184507-3

U=7t, ⟨n⟩=0.9; 2 x 2 cluster

Tc reduced by V, but 
rather modestly

Jiang et al., PRB ‘18
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Role of Retardation
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D-wave pairing interaction is attractive at low frequencies and 
turns repulsive at high frequencies due to V. Sign change in 

frequency dependence of d-wave eigenvector (gap function) 
reduces repulsive effect of V.
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frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and ⟨n⟩ = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in "d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and ⟨n⟩ = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .
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Γd(ωm = ωn − ωn′ �) =
∑K,K′� gd(K)Γpp(K, ωn, K′�, ωn′ �)gd(K′ �)

∑K g2
d(K) d-wave eigenvector

Jiang et al., PRB ‘18
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Conclusions

• DCA (and DMFT) provide an ideal framework to study superconductivity in 
strongly correlated quantum materials, in the symmetry broken phase and 
from the normal state. 

• DCA finds a d-wave superconducting phase in the doped 2D Hubbard model 
with Tc ~ 0.05t for realistic parameters, in addition to antiferromagnetic and 
pseudogap behavior. 

• DCA calculations show that the pairing interaction increases with increasing 
momentum transfer and decreases when the energy transfer exceeds a scale 
associated with the antiferromagnetic spin fluctuations. 

• This retardation reduces the repulsive effect of a nearest neighbor Coulomb 
repulsion in the extended Hubbard model. 
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