LDA+DMFT: Multiorbital Hubbard Models
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what is special in multi-orbital models?



what is the final goal?



the interacting quantum N-body problem

Born-Oppenheimer approximation, non-relativistic

Kinetic energy potential energy constant

electron-electron interaction

why is it a problem??
simple interactions among many particles

lead to unexpected emergent co-operative behavior

more IS different
Philip Warren Anderson SCIENCE



the classical case

1-body, no interaction
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2-bodies, no interaction
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N-bodies, no interaction




Interacting classical 2-body problem

two bodies: analytically solvable problem
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classical 3-body problem

Oscar 1I’s Prize Competition
and the Error in Poincare’s Memoir

on the Three Body Problem

JUNE BARROW-(GREEN

‘Communicated by JESPER LUTZEN

Introduction

In the autumn of 1890 HENRI POINCARE’s memoir on the three body problem
[1] was published in the journal Acta Mathematica as the winning entry in
the international prize competition sponsored by Oscar II, King of Sweden and
Norway, to mark his 60" birthday on January 21, 1889. Today POINCARE’S
published memoir 1s renowned both for providing the foundations for his
celebrated three-volume Meéthodes Nouvelles de la Mécanique Céleste [2] and for
containing the first mathematical description of chaotic behavior in a dynamical
system.



Interacting classical 3-body problem

chaotic behavior is possible

butterfly effect: behavior highly sensitive to initial conditions

the present determines the future,
but the approximate present does not approximately determine the future
(Edward Lorenz)


https://en.wikipedia.org/wiki/Initial_conditions

Sundmann series solution (1907-1912)

For the 3-body problem there is
series solution in powers of t/3 which

converges for any t*

(*) with exception of some initial conditions

Karl Frithiof Sundman

The Solution of the n-body Problem*

Florin Diacu




what about N > 3 ?

The Solution of the n-body Problem*

Florin Diacu

[..] It took about 7 decades until the gen-
eral case was solved. In 1991, a Chinese student,
Quidong (Don) Wang, published a beautiful paper
[Wal, [D1], in which he provided a convergent power
series solution of the n-body problem.

Did this mean the end of the n-body problem? Was
this old question—unsuccessfully attacked by the great-
est mathematicians of the last 3 centuries—merely
solved by a student in a moment of rare inspiration?

[-] Paradoxically [..1 not; in fact we know
nothing more than before having this solution.



exact solution does not help

The Solution of the n-body Problem*

Florin Diacu

The Foundations of Mathematics

What Sundman and Wang did is in accord with the way
solutions of initial value problems are defined; every-
thing is apparently all right; but there is a problem, a
big one: these series solutions, though convergent on the
whole real axis, have very slow convergence. One
would have to sum up millions of terms to determine
the motion of the particles for insignificantly short in-
tervals of time. The round-off errors make these series
unusable in numerical work. From the theoretical point
of view, these solutions add nothing to what was pre-
v10usly known about the n-body problem




emergent behavior

(from NASA website)

Kolmogorov-Arnold—Moser theorem
If masses, eccentricities, and inclinations of planets are small enough,
many initial conditions lead to quasiperiodic planetary trajectories



the quantum case

If one had a great calculating machine, one might
apply it to the problem of solving the Schrodinger
equation for each metal [...] It is not clear, however,
that a great deal would be gained by this. Presumably
the results would agree with the experimentally
determined quantities and nothing vastly new would be

E. Wigner and F. Seitz _
° learned from the calculation. [. . . ].

On the other hand, the exact solution of a many-body
problem is really irrelevant since it includes a large
mass of information about the system which although
measurable in principle is never measured in practice.

H . Lioki [..] An incomplete description of the system s
- LIPKIN considered to be sufficient if these measurable

quantities and their behavior are described correctly.

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction



... and the exact solution would be useless

S (1972)

Philip Warren 4 August 1972, Volume 177, Number 4047 SCIE NCE

Anderson
Nobel Prize in Physics 1977

There is a school which essentially accepts the idea that nothing
further is to be learned in terms of genuine fundamentals and all that
is left for us to do is calculate. . . . [..] This is then the idea that | call
“The Great Solid State Physics Dream Machine”...

.. . In other words the better the machinery, the more likely it is to
conceal the workings of nature, in the sense that it simply gives you
the experimental answer without telling you why the experimental
answer is true (1980)

(RO Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



a Practical Great Dream Machine ?

. It would indeed be remarkable if Nature
fortified herself against further advances in

knowledge behind the analytical difficulties of
the many-body problem.

Max Born (1960)

why do atom exist”? how can we explain the periodic table?

what is the mechanism of high-Tc superconductivity?
why are some systems metals and other insulators?

what is the mechanism of orbital ordering?

no two samples are identical: generic features only



what is the final goal?

minimal model for a given class of phenomena

as system-specific as possible

& find approximate methods that work



how good should we fit experiments?

Copernican vs Ptolemaic model

figures from wikipedia



how do we do this?



0. electronic Hamiltonian in 2nd quantization

complete one-electron basis set!



1. build minimal models

H Ztabc cp + — Z U.qar /CTCZLZC /C g1
cdc’d’

*
— Z fabcz Cp
ab

DFT Kohn-Sham ab-initio Hamiltonian

very good approach for weakly correlated systems
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density-functional theory

1 1 Z Lo Loy
+§Z!I‘z’—rz"\_Z!I’i—Ra|_Z—VQ Z , |Ra — Ry

17£1/ 1, o

Kohn-Sham auxiliary Hamiltonian

ﬂezz [——V2+UR 'rZ] Zh ;)

(

= Ven () +v5(1) + Vpe(T)

(in practice: LDA,GGA,...)

LAEIET LGl understand and predict properties

Nobel Prize in Chemistry (1998) of solids, molecules, biological

systems, geological systems...
Kohn-Sham equations



density functional theory

Eyeln] = / drePA (n(r))n (r)

homogeneous electron gas

understand and predict properties of solids,
Walter Kohn molecules, biological systems, geological systems...

Nobel Prize in Chemistry (1998)

The practical DF T-based Great Dream Machine

weakly correlated systems



what do the parameters contain”

tab = —/dr%(r) —%Vz + vr(7) | Yp(r),

Hartree
|
|_ Za r’ r) | 0Bx[n] = Ven (1) + V(1) + Vge(T
) 3= 2 ) [ ) ) )
| |
potential exchange-correlation

Walter Kohn i .
understand and predict properties

Nobel Prize in Chemistry (1998) of solids, molecules, biological
systems, geological systems...

Kohn-Sham equations



The Great Solid State Physics Dream Machine

“the labours and controversies . . . in understanding
the chemical binding in materials had finally come to
a resolution in favour of ‘LDA and the modern
computer” (1998)

but “very deep problems” remain (1998)

origin of failures: one-electron picture

(RO Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



when does this approach fail?
KCuFs3

experimentally: above 40 K paramagnetic insulator
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electron counting argument

one electron per site
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how could | open a gap?

mU=0

mU=2t
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KCU F3 shown eg bands only

He — E tabclcb
ab

LDA+U: insulator BUT only with orbital AND spin order

non-magnetic (Pauli paramagnet) AF-magnetic order

LDA: metal
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strongly correlated systems

paramagnetic Mott insulators are either metals or
magnetically ordered insulators
in the Kohn-Sham picture

Li

Na

Rb

Cs

Fr

La [Ce | Pr [Nd [Pm|Sm | Eu [Gd | Tb | Dy [ Ho | Er | Tm | Yb

Ac |Th |Pa| U [Np|Pu]|Am [Cm | Bk | Cf [ Es [ Fm | Md | No

0010

Coulomb-induced metal-insulator transition
heavy-Fermions
unconventional superconductivity
spin-charge separation



1. minimal models that capture the phenomenon

H Ztabc cp + — Z U.qq’ /CTCZC /C g1
cdc’d’

9

minimal model for metal-insulator transition

_tLLsza_l_ZUnzTn@i
(14" )

Hubbard model at half filling
local Coulomb produce strong correlation effects




Hubbard model at half-filling

atomic hoppings atomic

(zz’) o

1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal




high-Tc superconducting cuprates

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7', ,ax

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,’ O. Jepsen, and O. K. Andersen

Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2p,, and farther orbitals. Materials with higher T, nax have larger hopping ranges and
axial orbitals more localized in the CuO, layers.

CuO>

TI2Ba2CuO6

OCU



2. find approximate methods that work
DMFT

local self energy approximation

H = _tZZCZaCi’J -+ ZUTLiTTLu

o (i)

Bethe lattice W: band width

exact for t=0, U=0 & infinite dimension limit

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)



3. make it more realistic: LDA+DMFT
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basis " models

method extensions




scheme of the lecture

minimal many-body models & DMFT
Hubbard dimer

one-band Hubbard model

multi-band Hubbard model

building material-specific many-body models

what is special in multi-orbital models?



minimal models & DMFT

DMFT for the Hubbard dimer

this is a toy model: coordination number is one

DMFT is exact for t=0, U=0 and in the infinite dimension limit



the Hubbard dimer



the Hubbard dimer

H = £d Z Nig — L Z {CJ{GC% + cgaclg} + U Z T Tl -

o 1=1,2

U U

https://www.cond-mat.de/events/correl17/manuscripts/pavarini.pdf



19— 2) finite t. exact diagonalization  N=1
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1)— 2) finite t: exact diagonalization

half filling (N=2)

2,9,5.)a E.(2,9) da(2,9)
2,0,0)4 = a1|2,0,0)0 — 2% [[2,0,0)1 +2,0,0)s] 2¢eq+ 2 [U+ AR U)] 1
2,0,0), = % 12,0,0); —12,0,0)5] 2eq + U 1

2,1,m) = |2,1,m) 2e, 3




19— 2) finite t. exact diagonalization N=3

3,9,5.)a E.(3) d(3,5)
3,1/2,0)+ = 5[|1,1/2,0)1 +|1,1/2,0)2] 3ea + U+t 2
3,1/2,0)- = 2]|1,1/2,0)1 — |1,1/2,0)2] 3eq+U—t 2
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(GG U(iyn) = — Z 6_5(En(N)—,uN)

— 2) the local Green function

Lehmann representation

(n'N — e,y [nN)|”

_iVn — [En(N) - En’(N _ 1) — :u]

nn’ N

. (W' N + 1]cl, [nN)

vy — [En (N +1) — E,(N) — ,u]_

change basis

% (c11 F cat)

Cko

local Green function: k-point average

o _
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iy, — (eq + X7 (ivy) + Fo(iv,) — 1)

hybridization function

0 t2
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13— 2 the local self-energy

o1 U U-? 1
R A I a7

27 (i) = (ZU(W,@'%) + 20(0,’@%)> local
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L
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modified hybridization function
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Fe (ivy,) =



)— 2)

the spectral function




— 20  spectral function U=4

only local self-energy exact




— 20  local Dyson equation

1 1
X7 (tv,) =

&7, (ivp) G¢ . (iv,)’




map to a quantum impurity model ?
the Anderson molecule
U U U
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same occupations of Hubbard dimer
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solution: Hubbard vs Anderson

Hubbard dimer
1

7 inn, — : )
i (ivn) iy, — (eqa — p+ X7 (ivy) + F9(ivy,))
Anderson molecule
1
G (ivy) =

W — (€a — p+ X7 (ivn) + FO>ivn))




iy— 2 Green function U=4t

vs Hubbard
only local self-energy exact




1= 2 DMFT for the dimer

IA{ — &d Z Nic — tz [CJ{JCQJ + Cgacla}

i=1,2

map to quantum impurity model (QIM) in local self-energy approximation
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self-consistency loop
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QIM solver
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scheme of the lecture

minimal many-body models & DMFT

one-band Hubbard model

multi-band Hubbard model

building material-specific models

what is special in multi-orbital models?



DMFT for the one-band Hubbard model

—5dS‘S‘Cm w—tS‘S‘cw ZJ—I—UZTLZan—Hd—I—HT—I—HU

(i) ©




dynamical mean-field theory

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)



self-consistency loop

_8d> >4 CivCio t> >4 Cio ZJ_I_UZnZTn@i_Hd—I_HT_l_HU

(i) © '

> quantum impurity model (QIM)

L\ngnkg + fonfg —+ UTLfTTL]%
o k o

YD | Vkehep, + e
c k .

QIM solver: QMC, ED, NRG, DMRG,...

self-consistency loop G#=Gii I




a real-system case: VOMoOz

VOMoO,

P ES——
Js S
Q
>
O
| -
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J1 LICJ

Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016)



a real-system: VOMoQOg4




metal-insulator transition

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)

iInsulating phase

Im3(w+i0")=—mp,8(w) for we|[—A,2,A,/2]
(235)

and that Re2, has the following low-frequency behavior:

ReE(w+iO+)—U/2:%+O(w). (236)

A. Georges et al., RMP 63, 13 (1996)



why this cannot be obtained
with static mean-field methods?



comparison to Hartree-Fock (LDA+U)

Hartree-Fock Hamiltonian and bands
UTALZ'TTALu — U”L'i + TALZ'— )

ferromagnetic case

. ) 1
HMF:Z Ek U(§—0m> ’flkg

self-energy

m: magnetization



ferromagnetic Hartree-Fock

CuOo

2d-tight binding model

e = —2t|cos k,; + cos k]

1
2
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antiferromagnetic case

cuo: -

mU=0 mU=0.5t




Mott transition: HF vs DMFT

LDA+U LDA+DMFT

Hartree-Fock DMFT

see my lecture notes in correl17




scheme of the lecture

minimal many-body models & DMFT

multi-band Hubbard model

building material-specific models

what is special in multi-orbital models?



multi-band Hubbard model



DMFT for multi-band models

H E tabc cb—l— E Ucadqr o' C cdc /C g
cdcd



In theory, more Iindices




in practice, QMC-based solvers

computational time

[imited number of orbitals/site
finite temperature

sign problem
some /nteractions are worse than others

some bases are worse than others

we need minimal material-specific models



scheme of the lecture

building material-specific models

what is special in multi-orbital models?



0. chose the one-electron basis

LDA Wannier(-like) functions

LLLt zna 'n’o’

iji'j T
L L Z U”P”P/C’LnUCJPU/CJ’P o' Ciln'o

12/ 99" oo’ nn'pp’



why LDA Wannier functions?

span exactly the one-electron Hamiltonian
can be constructed site-centered & orthogonal & localized

natural basis for local Coulomb terms

very good for weakly correlated systems
information on lattice and chemistry



why LDA Wannier functions?

AU
ﬁe:ﬁg—l—ﬁ(] HISILDA—I—FIU—ﬁdC

N

iIf long range Hartree and mean-field exchange-correlation
already are well described by LDA (GGA,..), AU is local



1. heavy electrons, light electrons

QO light electrons DFT (LDA, GGA,...)

‘ heavy electrons —} AU correction, DMFT




self-consistency loop




rest

energy (eV)

2. downfolding

KCu
8 —
6-7\/\:}\
4-\/
5 .
0_\4 —~— I eg
2-&@—'4 tZQ
4 - I
5 - —
8
Z r X P N

integrate out light electrons




effects of downfolding

no downfolding

more parameters & Hpc
WF more localized

massive downfolding

less parameters & no Hpc
WEF less localized



no DC correction

around mean-field approximation
Hy =UY fuhyy
)

Hpc =U Z (fm?’m + NipT | — nm”u)
i
Nig = TL/Q
n

[:]DC = gU; ('I/’\LiT + T — 5) — 6,uN — const



effects of downfolding

no downfolding

more parameters & Hpc
WF more localized

massive downfolding

less parameters & no Hpc
WEF less localized



how important is localization?

ﬁe:ﬁ0+ﬁUﬁﬁLDA+ﬁU—ﬁdc

A\

L

local or almost local
strong correlations arise from strong local Coulomb

1
7::;&71 "o’ —/dfl/dTQ ¢zna rl)wij (r2)| r— 2|¢j p’ o’ (I.Q)wz mn/’ a(rl)

%ma(r)%'m’a' (7“) ~ 5i,i’5(r — Ti)

Uz’jz"j’ - 5i,i’5j,j’
! A/
mpmp \Tz — Tj| ’




extreme localization

Vimo (T)WVirms o (r) ~ &5 90(r —T})

methods based on space tiling
functions inside the sphere?

Pabal



effects of downfolding

no downfolding

more parameters & Hpc
WF more localized

massive downfolding

less parameters & no Hpc
WEF less localized



3. Screening

- TLDA 1l 1l
H, = H"PA + H., — AL

TLDA __ 2 > E : LDA T
H ma’m& Ckmaackmgéa’

T Me MM

I
LL Z Z Umamﬁm m5 Zma sz50 szB ’C’L’mﬁxa'

oo’ mqom/, m[gm

[y 1
n]p"rjzp’ _/drlfdPQ wzna rl)wjpa (I'Z)‘ ry— 2|¢] p’ o’ (1'2)% 'm/’ a(r1>

screening: approximate schemes such as cRPA, cLDA



what can we do?

orbital order Fermi surface spin-orbit
2 1
R 1 2
conductivity response functions spin waves
10 1 T=150 K '




our codes

H= - Yyytmm CimoCitm/ o
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1
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im#m/ oo’
A [0
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m#=m/

DMFT and cDMFT

quantum impurity solvers:
general HF QMC
general CT-INT QMC
general CT-HYB QMC

a.u.)

(

—h
o
o

QMC time/iteration

speed up

—
o

16384

5M —&—
10M —e—
20M —m— |
8192 T
[P
4096 l = [ (me(R)—rc(u))”] h
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2048 F eine
1024 ' ' :
1024 2048 4096 8192 16384
# CPU
0002 23 5 HF

30 40 50 60 70

#) J0LICH

FORSCHUNGSZENTRUM



scheme of the lecture

- what is special in multi-orbital models?



perovskites with very large A I

what is special in multi-orbital models?

representative oy systems

€9

tZQ

Y TiOa: orbitally-ordered insulator tag’eg?

0.1

0

Energy (Ry)

-0.2 1

-0.3

-0.1 1

\V
NG
- | \.
XZ,yx Xy | |
? = Sr2RuOas: correlated metal tag%eg?

P N



multi-orbital models for t2g bands

H Zzgmm CimoaCim'c — LLLt ’szazma

10 mm/’ o 1#£t mm/’
1
+ U Z ﬁimTﬁim¢ + 5 Z (U —2J — J(Sa,a’) ﬁz’maﬁim’a’
T m 100’
m=z=Em’

T I
—J Z ( zmT zm¢ zm’T zm’J, T szT zmiczm% zm’T)

r m#£m/’



1. Hund’s rule coupling J & atomic multiplets
2. Orbital degeneracy, orbital order & crystal field
3. Spin-orbit coupling & non-spherical U



1. Hund’s rule coupling J &
multiplets



one band model, atomic limit d

H=—-tY > C,,Cirp T Z Unitng,
o (i) 1
1| 1 1
Ge(1v,) = _ - -
ii (@) 2(ivy, —( eq—p ) wn—( eq+U—p )
- \/—/ H—/ ~
E(N)~E(N—1)—u E(N+1)~B(N)—p

do dz— d

+U/2




atomic limit and multiplets

U D fimtiimy + 5 Y, (U =2 = Jbo.07) ftima ftim’ o

100’
m7=m/’

T T
—J Z ( zmT sz, zm’T zm’¢ T szT zm¢czm’¢ zm’T)

r m#~m/



tog atomic levels & Hund’s rule

N;Sam5> E(N,S)
do 1 state
;3. %) 4. <fmm  d1 6 states
L[ f f
2;0, O>a’ V3 CwZT Tzl ™ Cyzt€ y2¢ T Cayt€ wyi} ‘O> U+2J
1| t
2,0,0), do leh el + el =26l el |10} U—J
. (I D N f
2,0,0). I lehrel., = el | 10) U—J
2;1,0,m") cinacjnalm —_— U—3J
- : _17 2 —
2:1,0,m”) NG :c;[,,LTcIn,¢ + chefn,t 0) ? d U—37 O]
2;0,0,m") Llel et =l el o) Uu—J
Y Y Y \/5 m/]\ m/\L m\l/ m//[\
- - 15 states
Clzaclzaclya’0> U —9J
Tg C:];zac;gza Icy o + Cjcza ;Dz o :cya + C:Uz O'C’LZO' azya} ‘O> U —9J




d’

no crystal -field, tog Green function

1 1 : M=XYy,XZ,yZ
Gm(/l’yn) :6 iVn T (thQ - :LL) " Z‘V’n o (€t2g +U —3J — :u)
| 5/3 N 1/3
ity — (et U —J — )  ivn — (et,, + U +2J — )
U-3J n=1,2,4,5

d U+2J n=:

d? multiplets



tetragonal crystal field splitting

Axy sz/yz

XZ,yZ

d2— d
Xy

Eg(l) ~ U — 3J—|—5CF-



spectral functions

week ending
VOLUME 92, NUMBER 17 PHYSICAL REVIEW LETTERS 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d' Perovskites

E. Pavarini,1 S. Bierrnann,2 A. Poteryaev,3 A. L Lichtenstein,3 A. Georges,2 and O. K. Andersen”



a real d? case: /' TiOs3

DMFT spectral-function matrix

:sz,xz Ayz,yz Axy,xy :A1,1 A2,2 A3,3
' ' U-3J
<< >
: U
A o-» | G
'AXZ,,YZ,A,X,Z,,XY .AY.Z,.X.YI A1a2 . .A1:3. . AZ 3

-4 0 4 -4 0 4



2. orbital degeneracy d can reduce the gap
In the large U limit



d degenerate orbitals

example: tzg,cubic symmetry

H Zzgmm CimaCim’o LLLt ’sza i'm’o

10 mm/’ o 1£t mm/’

+U Z nzanzmi ‘|‘ Z —2J — JéU,U’) Nimo Nim!/ o’

oo’
m7=m/’

T T
—J Z ( zmT zm¢ zm’T zm’i T szT zm¢czm’¢ zm’T)

r m#~m/



one-band case




the spectral function of the Hubbard dimer

W=2t




the gap in the large U limit (J=0)

E,(N)=E(N +1)+ E(N —1) — 2E(N)

E(N +1) ~
E(N —1) ~

EQ(N) ~ U

Ea(N+1)

nU + E(N) — \/ky W/2

(n — 1)U + E(N)

EA(N-1)

| -

2

— Vk_W/2

\/E_ + \/E+ W

Erik Koch, Olle Gunnarsson, and Richard M. Martin, Phys. Rev. B 60, 15714 (1999)



Hubbard dimer, large U

/\
— IN)
\V4
site 1 site 2
/ Ho\
k.=1 IN-1>2
\V4
_—
/\
K+ =1 — \ IN+1)2
\V4 \V4




orbital degenerate case

site 1

site 2

IN

IN-1>2

IN+1)



a crystal field helps Mott transition

week ending
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t2g1

A=200-300 meV

LDA+DMFT 770 K

a small crystal field plays a key role



3. spin-orbit interaction



multi-orbital models for t2y (or eq) bands

H Zzgmm CimoCim/o LLZtmm CimoCi'm/ o

10 mm/’ o 1#£t mm/’

03 i, ; > (U =2 = Jb0) fimointa
o

I I
—J Z ( zmT sz, 1M T rm’ | T szT zm¢czm ¢ rm/’ T)

r m#£m/



atomic spin-orbit interaction

HSO_Z)\ ZZ mama’cma m’ o’

1 d
2 — —
)\,LL p— )\ >\ gILLB <7° drvR(r)> )

couples e4 and 12!

e = (moll,s,|m'o’)

mo,m’oc’

A small compared to Hund’s rule couplings J; and

A small compared to cubic crystal-field splitting



example: SroRuQq

0.1
\/
0
: L/ N\
= -0.14 XZ,V¥ XY ;
Y 02 Q\
-0.3/\\ %
Z T M X r P N

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



what is the problem?
larger (6x6) Green function matrices, QMC sign problem

basis that diagonalizes on-site Hamiltonian/Green function
reduces sign problem

A. Flesch et al., Phys. Rev. B 87, 195141 (2013)



In the fog basis, use symmetries!

cubic & tetragonal symmetry

/ Gy (T) 0 Gy () =G (7)
0 G!IT(r)  GO(r) | —GiT 0 0
0 —iGUT(T) G ( iGUTY 0 0
0 —Gi(r) —iGH G 0 0
G (T) 0 Gy (m)  —iGH(T)
\iGift(r) o Gy G

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)

E. Sarvestani, G. Zhang, E. Gorelov, and E. Pavarini, Phys. Rev. B 97, 085141 (2018)



the Fermi surface

LDA LDA+SO
(a) (b)

LDA+SO+DMFT
LDA+DMFT S0

(c) (d)

ECF * eck +Aeck A * A +AN



something still missing!

Is the Coulomb interaction spherical?

the bare Coulomb interaction is spherical
but the screened interaction has the symmetry of the site

X
a !

/
ecF +A ecF b T M

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



LDA+DMFT: conclusions

DMFT model building

dimer

O“ @" @" basis, downfolding, localization

one band

multiband

double counting & screening



LDA+DMFT: conclusions

multiplets

im,im’

[ )

effects & interactions

spin-orbit interaction

0

0

0

GifH(r) =G (T)

Y
0 Gilt(r)  iGIT(r) | =G (7) 0 0
0 —iGIT(7) G (r) | G (1) 0 0
0 —Gi (1) —iGY () GLH(T) 0 0
G (7) 0 0 0 GiH(r) —iGH ()
\iGE(r) 0 0 0 iGIM(r)  Gil(r) /

a

v

non-spherical U

X



thank you!



