

Max-Planck-Institut für Chemische Physik fester Stoffe

Max-Planck-Institute for Chemical Physics of Solids

Determining orbital wavefunctions using core level non-resonant inelastic x-ray scattering

Martin Sundermann^{1,2}, Andrea Severing^{1,2}, Andrea Amorese^{1,2}, Hasan Yavas³, Hlynur Gretarsson³, Maurits Haverkort⁴, <u>Hao Tjeng¹</u>

¹ Max-Planck-Institute for Chemical Physics of Solids, Dresden ² Physics Institute II, University of Cologne ³ DESY – PETRA III – Hamburg ⁴ Inst. for Theoretical Physics, Heidelberg University

Inelastic x-ray scattering

Max Planck – PETRA III non-resonant inelastic x-ray scattering

$$S(\mathbf{q}, \omega) = \sum_{f} |\langle f|e^{i\mathbf{q}\mathbf{r}}|i\rangle|^2 \delta(\hbar\omega_i - \hbar\omega_f - \hbar\omega).$$

- vector-q dependence gives symmetry
- large transferred q : beyond dipoledetermination of orbital state
 - spectroscopy and direct imaging
- bulk sensitive, extreme conditions

PHYSICAL REVIEW B 72, 045136 (2005)

one electron theory

Inelastic scattering from core electrons: A multiple scattering approach

J. A. Soininen,^{1,2} A. L. Ankudinov,² and J. J. Rehr² ¹Division of X-ray Physics, Department of Physical Sciences, University of Helsinki, FIN-00014 Finland ²Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 17 March 2005; published 21 July 2005)

PRL 99, 257401 (2007)

PHYSICAL REVIEW LETTERS

week ending 21 DECEMBER 2007

Nonresonant Inelastic X-Ray Scattering Involving Excitonic Excitations: The Examples of NiO and CoO many bod

many body theory

M. W. Haverkort,¹ A. Tanaka,² L. H. Tjeng,¹ and G. A. Sawatzky³ ¹II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany

²Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan ³Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 (Received 18 May 2007; published 21 December 2007)

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

January 20

EPL, **81** (2008) 26004 doi: 10.1209/0295-5075/81/26004 www.epljournal

High multipole transitions in NIXS: Valence and hybridization in 4f systems

R. A. GORDON^{1(a)}, G. T. SEIDLER², T. T. FISTER², M. W. HAVERKORT³, G. A. SAWATZKY⁴, A. TANAKA⁵ and T. K. SHAM⁶

NIXS is based on: q dependent multipole selection rules!!

Code by M.W. Haverkort, MPI CPfS Dresden

Application to a crystal-field problem at Ce N-edge (4*d* to 4*f*)

R.A. Gordon et al., EPL 81, 26004 (2008)

14th International Conference on X-Ray Absorption Fine Structure (XAFS14)IOP PublishingJournal of Physics: Conference Series 190 (2009) 012047doi:10.1088/1742-6596/190/1/012047

Orientation-dependent x-ray Raman scattering from cubic crystals: natural linear dichroism in MnO and CeO₂

R A Gordon¹, M W Haverkort², Subhra Sen Gupta³ and G A Sawatzky³

¹ Dept. of Physics, Simon Fraser University, Burnaby, BC V5A 1S6 Canada

² Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70506 Stuttgart, Germany

³ Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 Canada

Application to a crystal-field problem at Ce N-edge (4d to 4f)

- The *large* <u>|</u><u>a</u><u>|</u> gives rise to the higher multipole transitions.
- <u>Vector q</u> dependence on a <u>single crystal</u> should give sensitivity to orbital anisotropies (J_z admixture) in analogy to polarization dependence in XAS.
- Simulate NIXS for pure J_z states for vector <u>q</u> "in-plane" and "out-of-plane" at large |<u>q</u>| at the Ce N-edge (4d -> 4f) [code by M.W. Haverkort]

PRL 109, 046401 (2012)

PHYSICAL REVIEW LETTERS

week ending 27 JULY 2012

Determining the In-Plane Orientation of the Ground-State Orbital of CeCu₂Si₂

T. Willers,¹ F. Strigari,¹ N. Hiraoka,² Y. Q. Cai,³ M. W. Haverkort,⁴ K.-D. Tsuei,² Y. F. Liao,² S. Seiro,⁵ C. Geibel,⁵ F. Steglich,⁵ L. H. Tjeng,⁵ and A. Severing¹

Direct bulk-sensitive probe of 5f symmetry in URu₂Si₂

Martin Sundermann^a, Maurits W. Haverkort^{b,1}, Stefano Agrestini^b, Ali Al-Zein^{c,2}, Marco Moretti Sala^c, Yingkai Huang^d, Mark Golden^d, Anne de Visser^d, Peter Thalmeier^b, Liu Hao Tjeng^b, and Andrea Severing^{a,3}

^aInstitute of Physics II, University of Cologne, 50937 Cologne, Germany; ^bMax-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany; ^cEuropean Synchrotron Radiation Facility, 38043 Grenoble Cédex, France; and ^dVan der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

ID20 NIXS

URu₂Si₂ and the hidden order state

T.T.M. Palstra et al. 1985, W. Schlabitz et al. 1986, M.B. Maple et al. 1986

Amitsuka et al. 2007, Niklowitz et al. 2010

Meng. *et al.* 2013, Bareille *et al.* 2014, Chatterjee *et al.* 2013, Okazaki *et al.* 2011, Tonegawa *et al.* 2014

Hassinger *et al.* 2010, Park *et al.* 2012, Meng *et al.* 2013, Barleiile *et al.* 2014, Aynajian *et al.* 2010), Schmidt *et al.* 2010, Broholm *et al.* 1991, Wiebe *et al.* 2007, Buhot *et al.* 2014, Kung *et al.* 2015, Bourdarot *et al.* 2010

Phase diagram

- $T_{HO} = 17.5 \text{ K}$
- $T_{sc} = 1.5 \text{ K}$
- $T < T_{HO}$ small $\mu_{ord} \Leftrightarrow$ parasitic minority phase
- $p \ge 0.7$ GPa af $T_N \approx T_{HO} (LMAF-phase)$

HO phase

- 2nd order phase transition ⇔ into electronically ordered state
- large loss of entropy ($\approx 1/5 \ln 2$)
- Fermi surface reconstruction
- change of quasiparticle scattering rate
- Fermi surfaces of $HO \approx$ Fermi surface *LMAF* phase
- Loss of fourfold symmetry

Energy scales

- $\Delta_{hyb} \approx 13 \text{ meV}$ (150K) opening at $T_{hyb} \approx 27 \text{K} > T_{HO}$
 - $\Delta_{\rm HO} \approx 4 \text{ meV}$ (45K) in charge and spin channel
 - $\Delta_{\rm res} \approx 1.6 \, {\rm meV}$ (18K) in charge and spin channel

Non-resonant inelastic scattering U 5d \rightarrow 5f of URu₂Si₂

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+} f^2$ always yield J = 4.
- Atomic values Cowan code
- Adjust here reduction factors $(5f-5f \text{ and } 5d-5f \approx 50\%)$
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of L=3,4,5 (here 1%, 14% and 85 %).
- FWHM = 0.8eV Gaussian for resolution FWHM = 1.3 eV Lorenzian for lifetime
- Simulation by *Quanty* Haverkort

Application to a crystal-field problem at Ce N-edge (4d to 4f)

Further away from continuum states → more excitonic !

R.A. Gordon et al., EPL 81, 26004 (2008)

Non-resonant inelastic scattering U 5d \rightarrow 5f of URu₂Si₂

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+} f^2$ always yield J = 4.
- Atomic values Cowan code
- Adjust here reduction factors $(5f-5f \text{ and } 5d-5f \approx 50\%)$
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of L=3,4,5 (here 1%, 14% and 85 %).
- FWHM = 0.8eV Gaussian for resolution FWHM = 1.3 eV Lorenzian for lifetime
- Simulation by *Quanty* Haverkort

$$I(FS_2) = |\langle FS_2|f^+c|GS\rangle|^2$$

= $|\beta''\langle \underline{c}f^3| -\alpha''\langle \underline{c}f^4\underline{L}|f^+c|\alpha|f^2\rangle +\beta|f^3\underline{L}\rangle|^2 = |\beta''\alpha - \alpha''\beta|^2$

XAS (d \rightarrow f) final state: e.g. Uranium M-edges

$$t \underbrace{\left(\underbrace{\Delta''}_{\Delta''} \underbrace{cf^{n+2}\underline{L}}_{cf^{n+2}\underline{L}} \right) = (n+2)E_{f} + \frac{1}{2}(n+2)(n+1)U_{ff} - E_{L} + E_{c} - (n+2)U_{cf}}{\Delta'' = (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} + E_{c} - (n+1)U_{cf}}{\Delta'' = E(\underline{c}f^{n+1}\underline{L}) - (\underline{c}f^{n}) = \Delta + U_{ff} - U_{cf}}$$

$$U_{ff} \sim U_{cf} \rightarrow \Delta'' \sim \Delta \rightarrow XAS \sim \text{ionic}}$$

$$ground \text{ state problem}$$

$$t \underbrace{\left(\underbrace{\Delta}_{fn} f^{n+1}\underline{L} \right) = (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} - E_{L}}{E(f^{n+1}\underline{L}) = (n+1)E_{f} + \frac{1}{2}(n+1)U_{ff}}$$

$$\Delta = E(f^{n+1}\underline{L}) - (f^{n}) = E_{f} - E_{L} + nU_{ff}}$$

XPS final state

XAS ($p \rightarrow d$) final state: e.g. Uranium L-edges

$$t\left(\underbrace{\bigwedge_{\Delta'''}}_{\Delta'''} \underbrace{cd^{1}f^{n+1}\underline{L}}_{cd^{1}f^{n+1}\underline{L}} = (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} - E_{L} + E_{c} + E_{d} - (n+1)U_{cf} - U_{cd} + (n+1)U_{df} \right)$$

$$\frac{cd^{1}f^{n}}{\Delta'''} = E(\underline{c}d^{1}f^{n}) = nE_{f} + \frac{1}{2}n(n-1)U_{ff} + E_{c} + E_{d} - nU_{cf} - U_{cd} + nU_{df} \right)$$

$$\frac{\Delta''''}{\Delta'''} = E(\underline{c}d^{1}f^{n+1}\underline{L}) - (\underline{c}d^{1}f^{n}) = \Delta - U_{cf} + U_{df}$$

$$\underbrace{U_{df} \sim 0 \rightarrow \Delta''' \sim \Delta' \rightarrow L - XAS \sim XPS}$$

$$ground state problem$$

$$t\left(\underbrace{\bigwedge_{\ldots\ldots\ldots\ldots}}_{f^{n}} \frac{f^{n+1}\underline{L}}{E(f^{n+1}\underline{L})} = (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} - E_{L} \right)$$

$$\frac{E(f^{n}) = nE_{f} + \frac{1}{2}n(n-1)U_{ff}}{\Delta = E(f^{n+1}\underline{L}) - (f^{n}) = E_{f} - E_{L} + nU_{ff}}$$

Non-resonant inelastic scattering U 5d \rightarrow 5f of URu₂Si₂

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+} f^2$ always yield J = 4.
- Atomic values Cowan code
- Adjust here reduction factors $(5f-5f \text{ and } 5d-5f \approx 50\%)$
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of L=3,4,5 (here 1%, 14% and 85 %).
- FWHM = 0.8eV Gaussian for resolution FWHM = 1.3 eV Lorenzian for lifetime
- Simulation by *Quanty* Haverkort

Simulation of spectra with full multiplet routine *Quanty* by M.W. Haverkort

 $J = 4, J_z = \{-4, -3, \dots, 2, 3, 4\}$ tetragonal CEF splits J = 4into five singlets and 2 doublets

$$\begin{split} \Gamma_1^{(1)}(\theta) &= \cos(\theta) |0\rangle + \sin(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\ \Gamma_1^{(2)}(\theta) &= \sin(\theta) |0\rangle - \cos(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\ \Gamma_2 &= \sqrt{\frac{1}{2}} (|4\rangle - |-4\rangle) \\ \Gamma_3 &= \sqrt{\frac{1}{2}} (|2\rangle + |-2\rangle) \\ \Gamma_4 &= \sqrt{\frac{1}{2}} (|2\rangle - |-2\rangle) \\ \Gamma_5^{(1)}(\phi) &= \cos(\phi) |\mp 1\rangle + \sin(\phi) |\pm 3\rangle \\ \Gamma_5^{(2)}(\phi) &= \sin(\phi) |\mp 1\rangle - \cos(\phi) |\pm 3\rangle \end{split}$$

 $U^{4+} f^2$

 $J = 4, J_z = \{-4, -3, \dots, 2, 3, 4\}$ tetragonal CEF splits J = 4into five singlets and 2 doublets

$$\Gamma_{1}^{(1)}(\theta) = \cos(\theta) |0\rangle + \sin(\theta) \sqrt{\frac{1}{2}}(|4\rangle + |-4\rangle)$$

$$\Gamma_{1}^{(2)}(\theta) = \sin(\theta) |0\rangle - \cos(\theta) \sqrt{\frac{1}{2}}(|4\rangle + |-4\rangle)$$

$$\Gamma_{2} = \sqrt{\frac{1}{2}}(|4\rangle - |-4\rangle)$$

$$\Gamma_{3} = \sqrt{\frac{1}{2}}(|2\rangle + |-2\rangle)$$

$$\Gamma_{4} = \sqrt{\frac{1}{2}}(|2\rangle - |-2\rangle)$$

$$\Gamma_{5}^{(1)}(\phi) = \cos(\phi) |\mp 1\rangle + \sin(\phi) |\pm 3\rangle$$

$$\Gamma_{5}^{(2)}(\phi) = \sin(\phi) |\mp 1\rangle - \cos(\phi) |\pm 3\rangle$$

Some ground state suggestions

(1999), Chandra et al. (2013),

How to set up the energy level diagram of URu_2Si_2 ??

GS: mainly singlet $\Gamma_1^{(1)}(\approx 90^\circ)$ and/or Γ_2 and some other state e.g. the doublet $\Gamma_5^{(1)}(\approx 90^\circ)$ mixed in.

Maxim Dzero,¹ Kai Sun,¹ Victor Galitski,¹ and Piers Coleman²

¹Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742, USA ²Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA (Received 22 December 2009; published 12 March 2010)

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2013, Vol. 117, No. 3, pp. 499–507. © Pleiades Publishing, Inc., 2013.

A New Exotic State in an Old Material: a Tale of SmB₆¹

M. Dzero^a and V. Galitski^b

^a Department of Physics, Kent State University, Kent, OH 44242 USA ^b Condensed Matter Theory Center and Department of Physics, University of Maryland, College Park, MD 20742 USA e-mail: galitski@physics.umd.edu Received April 26, 2013

topological insulator in higher orbital systems. The special attention is given to the already existing f-orbital materials [30], such as CeNiSn, Ce₃Bi₄Pt₃, YbB₁₂, and SmB₆. These materials, which are called Kondo insulators, have all the necessary features needed for realizing topological behavior: strong spin—orbit coupling, strong electron—electron inter-actions, and orbitals with opposite parity (see table).

Maxim Dzero,^{1,2} Jing Xia,³ Victor Galitski,^{4,5} and Piers Coleman^{6,7}

Annu. Rev. Condens. Matter Phys. 2016. 7:249-80

Figure 3

Showing (a) topologically trivial band insulator with $Z_2 = +1$ (b) band-crossing of even and odd parity states at an odd number of high symmetry points leads to a topological insulator with $Z_2 = -1$. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

Maxim Dzero,^{1,2} Jing Xia,³ Victor Galitski,^{4,5} and Piers Coleman^{6,7}

Annu. Rev. Condens. Matter Phys. 2016. 7:249-80

Figure 4

(a) If we ignore the effects of topology in a conventional Kondo insulator, the interaction can be turned on adiabatically. When the interactions are turned on, the lower band is pushed into the upper band. Two bands of the same parity will always repel one-another and will not cross when the interactions are turned on. (b) When interactions are turned on in a topological insulator, they can lead to band-crossing and a topological phase transition. Here, interactions cause an f-band to push up into a d-band. Since the two bands have opposite parity, they do not hybridize at the high symmetry point so band-crossing occurs, leading to a topological phase transition.

always finite resistivity, even in purest samples

J. Denlinger et al., arXiv:1312.6637

Figure S1. **Temperature regimes of the SmB**₆ **transport and valence**. The three main transport regimes of SmB₆ illustrated by comparison of resistivity/conductivity¹, Hall coefficient^{2,3} and bulk valence⁴ and magnetic susceptibility⁵: (I) low temperature low carrier "ingap state" regime below 4K, (II) intermediate metallic-to-insulating transition regime with negative Hall coefficient, and (III) high temperature poor-metal regime with positive Hall coefficient above 60K. Multiple low temperature resistivity profiles are plotted to illustrate the variation of the low temperature residual conduction found in the literature. A further subdivision of each regime into two sub-regimes is readily apparent from the various profiles.

Maxim Dzero,^{1,2} Jing Xia,³ Victor Galitski,^{4,5} and Piers Coleman^{6,7}

Annu. Rev. Condens. Matter Phys. 2016. 7:249-80

 SmB_6 mixed-valent: homogenous in space but inhomogenous in k-space Fe_3O_4 mixed-valent: inhomogenous in space but homogenous in k-space

Temperature dependence of the samarium oxidation state in SmB_6 and $Sm_{1-x}La_xB_6$

J. M. Tarascon, Y. Isikawa (*), B. Chevalier, J. Etourneau, P. Hagenmuller and M. Kasaya

Fig. 1. — Lattice parameter temperature dependence of the cubic unit cell of SmB_6 (experimental) and of the hypothetical hexaborides $\text{Sm}^{2+}B_6$ and $\text{Sm}^{3+}B_6$ (calculated).

Fig. 3. — Average samarium valence temperature dependence in SmB_6 between 300 K and 4.2 K.

SmB₆ : an intermediate valence system

SmB₆ : an intermediate valence system

PHYSICAL REVIEW B 96, 155130 (2017)

Bulk and surface electronic properties of SmB₆: A hard x-ray photoelectron spectroscopy study

Y. Utsumi,^{1,*} D. Kasinathan,¹ K.-T. Ko,¹ S. Agrestini,¹ M. W. Haverkort,^{1,†} S. Wirth,¹ Y-H. Wu,² K-D. Tsuei,² D-J. Kim,³ Z. Fisk,³ A. Tanaka,⁴ P. Thalmeier,¹ and L. H. Tjeng¹

What entropy drives the valence change in SmB_6 ?

- Lattice ??
 - -- lattice shrinks in going from 5 to 140 K
 - -- lattice expands from 140 K t o 300 K, but valence still keeps increasing although there is more room for the bigger Sm²⁺

• Spin !!

-- $\text{Sm}^{2+7}\text{F}_0$ (J=0, singlet) to $\text{Sm}^{3+6}\text{H}_{5/2}$ (J=5/2, sextet)

- Similarities with Yb Kondo/heavy-fermion systems
 Yb valence increases from low T to high T, e.g. Yb^{2.8+} to Yb^{2.9+}
 - -- YbInCu₄: sudden expansion of lattice upon cooling !!

Sm²⁺ f⁶ J=0: even number of electrons → hybrization gap model

How to set up the energy level diagram of SmB_6 ??

energy separation much smaller than hopping integral (to get valence close to 2.5+)

Problems:

• from low T to high T: valence move always towards 2.5+

• lattice expansion with T tends to lower the f⁶ energy

GS

Energy level diagram in intermediate valent SmB₆

?? Ground state of the Sm 4f⁵ configuration of SmB₆: Γ_7 or Γ_8 ??

Consequences: spin-texture of topological surface states

PRL 115, 156405 (2015)	PHYSICAL REVIEW LETTERS	week ending 9 OCTOBER 2015
Surface-State Spin Tex	xtures and Mirror Chern Numbers in Topologic	al Kondo Insulators
	Markus Legner, Andreas Rüegg, and Manfred Sigrist	
PRL 115, 156404 (2015)	PHYSICAL REVIEW LETTERS	week ending 9 OCTOBER 2015
Distinct To	Depological Crystalline Phases in Models for the Correlated Topological Insulator SmB₆ Pier Paolo Baruselli and Matthias Vojta	Strongly
	PHYSICAL REVIEW B 93, 195117 (2016)	

Spin textures on general surfaces of the correlated topological insulator SmB₆

Pier Paolo Baruselli and Matthias Vojta

Consequences: spin-texture of topological surface states

FIG. S2. Bandstructure without hybridization (a) and phase diagram (b) for the Γ_7 model defined in Eq. (S10) and (S8) with $t_d^{(1)} = 1$, $t_d^{(2)} = -0.2$, $t_7^{(1)} = -0.03$, $t_7^{(2)} = 0.02$, and $\epsilon_7 = -3$. The two different spin textures (c-d) in phases I and II, respectively, are shown for hybridization parameters $(V_7^{(1)}, V_7^{(2)}) = (0.3, 0)$ and $(V_7^{(1)}, V_7^{(2)}) =$ (0.1, 0.1), respectively. Due to the negative eigenvalue of the restricted spin operator for f electrons (Eq. (14)), the spin direction is reversed around all HSPs when compared to Fig. 1. Note that the

FIG. 3 (color online). Band structure without hybridization (a) and phase diagram (b) for the Γ_8 model defined in Eq. (9) with $t_d^{(1)} = 1$, $t_d^{(2)} = -0.2$, $t_8^{(1)} = -0.03$, $t_8^{(2)} = 0.02$, and $\epsilon_8 = -3$. The two spin textures [(c),(d)] in phases I and II, respectively, are realized for the hybridization parameters $(V_8^{(1)}, V_8^{(2)}) = (0.3, 0.07)$ and $(V_8^{(1)}, V_8^{(2)}) = (-0.1, 0.1)$, respectively.

Can core level NIXS solve the SmB₆ symmetry problem ??

The quartet ground state of CeB₆

The quartet ground state of CeB₆

The quartet ground state in CeB₆: An inelastic x-ray scattering study

M. SUNDERMANN^{1,2}, K. CHEN¹, H. YAVAŞ³, HANOH LEE⁴, Z. FISK⁵, M. W. HAVERKORT^{2,6}, L. H. TJENG² and A. SEVERING^{1,2} EPL, **117** (2017) 17003

The Γ_8 forms the ground state of the Sm 4f⁵ configuration of SmB₆

Fractional Parentage

G.A. Sawatzky and R. Green

Lecture Notes of the Autumn School c ISBN 978-3-95806-159-0 Correlated Electrons 2016

Eva Pavarini, Erik Koch, Jeroen van den Brink, and George Sawatzky (Eds.)

Fractional Parentage

G.A. Sawatzky and R. Green

Lecture Notes of the Autumn School on

Correlated Electrons 2016

Eva Pavarini, Erik Koch, Jeroen van den Brink, and George Sawatzky (Eds.)

4f band formation: $f^{6}(A, J=0) + f^{5}(B, J=5/2) \leftarrow f^{5}(A, J=5/2) + f^{6}(B, J=0)$

huge reduction factors to the one-electron 4f band width !!!