Determining orbital wavefunctions using core level non-resonant inelastic x-ray scattering

Martin Sundermann1,2, Andrea Severing1,2, Andrea Amorese1,2, Hasan Yavas3, Hlynur Gretarsson3, Maurits Haverkort4, Hao Tjeng1

1Max-Planck-Institute for Chemical Physics of Solids, Dresden
2Physics Institute II, University of Cologne
3DESY – PETRA III – Hamburg
4Inst. for Theoretical Physics, Heidelberg University
Theory - calculations

DMFT

DFT

Experiment

Spectroscopy

k-dependence: e.g. ARPES, neutron

local: e.g. core-level PES/XAS/IXS

on-site correlations, orbitals, atomic multiplet structure
Inelastic x-ray scattering

Max Planck – PETRA III non-resonant inelastic x-ray scattering

- vector-q dependence gives symmetry
- large transferred q: beyond dipole
 - determination of orbital state
 - spectroscopy and direct imaging
- bulk sensitive, extreme conditions

\[S(q, \omega) = \sum_f |\langle f | e^{iqr} | i \rangle|^2 \delta(\hbar \omega_i - \hbar \omega_f - \hbar \omega). \]
Non-resonant inelastic x-ray scattering (NIXS) @ N-edge

Inelastic scattering from core electrons: A multiple scattering approach

J. A. Soininen, A. L. Ankudinov, and J. J. Rehr
Division of X-ray Physics, Department of Physical Sciences, University of Helsinki, FIN-00014 Finland
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 17 March 2005; published 21 July 2005)

Nonresonant Inelastic X-Ray Scattering Involving Excitonic Excitations: The Examples of NiO and CoO
M. W. Haverkort, A. Tanaka, L. H. Tjeng, and G. A. Sawatzky
II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany
Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
(Received 18 May 2007; published 21 December 2007)

High multipole transitions in NIXS: Valence and hybridization in 4f systems
Non-resonant inelastic x-ray scattering (NIXS) @ N-edge

NIXS is based on: q dependent multipole selection rules!!

$$S(q, \omega) = \sum_f \left| \langle f | e^{iqr} | i \rangle \right|^2 \delta(\hbar \omega_i - \hbar \omega_f - \hbar \omega).$$

$$S(q, \omega) = \sum_f \left| \sum_k \frac{i^k(2k+1)}{k!} \langle R_f | j_k(qr) | R_i \rangle \right| \sum_{m=-k}^{k} \frac{\langle \phi_f | C^{\phi}_{km} | \phi_i \rangle}{R} \delta(\hbar \omega_i - \hbar \omega_f - \hbar \omega).$$

$d \rightarrow d$: monopole, octupole, hexadecapole

$d \rightarrow f$: dipole, octupole, triakontadipole

Code by M.W. Haverkort, MPI CPfS Dresden
Non-resonant inelastic x-ray scattering (NIXS) @ N-edge

Application to a crystal-field problem at Ce N-edge (4d to 4f)

- The large $|q|$ gives rise to the higher multipole transitions at lower energies!

R.A. Gordon et al., EPL 81, 26004 (2008)
Orientation-dependent x-ray Raman scattering from cubic crystals: natural linear dichroism in MnO and CeO$_2$

R A Gordon1, M W Haverkort2, Subhra Sen Gupta3 and G A Sawatzky3

1 Dept. of Physics, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
2 Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70566 Stuttgart, Germany
3 Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 Canada
Non-resonant inelastic x-ray scattering (NIXS) @ N-edge

Application to a crystal-field problem at Ce N-edge (4d to 4f)

- The large $|q|$ gives rise to the higher multipole transitions.
- Vector q dependence on a single crystal should give sensitivity to orbital anisotropies (J_z admixture) in analogy to polarization dependence in XAS.
- Simulate NIXS for pure J_z states for vector q "in-plane" and "out-of-plane" at large $|q|$ at the Ce N-edge (4d -> 4f) [code by M.W. Haverkort]
Determining the In-Plane Orientation of the Ground-State Orbital of CeCu$_2$Si$_2$

T. Willers,¹ F. Strigari,¹ N. Hiraoka,² Y. Q. Cai,³ M. W. Haverkort,⁴ K.-D. Tsuei,² Y. F. Liao,² S. Seiro,⁵ C. Geibel,⁵ F. Steglich,⁵ L. H. Tjeng,⁵ and A. Severing¹

Non-resonant inelastic x-ray scattering (NIXS) @ N-edge
Direct bulk-sensitive probe of 5f symmetry in URu$_2$Si$_2$

Martin Sundermanna, Maurits W. Haverkortb,1, Stefano Agrestinib, Ali Al-Zeinc,2, Marco Moretti Salac, Yingkai Huangd, Mark Goldend, Anne de Visserd, Peter Thalmeierb, Liu Hao Tjengb, and Andrea Severinga,3

aInstitute of Physics II, University of Cologne, 50937 Cologne, Germany; bMax-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany; cEuropean Synchrotron Radiation Facility, 38043 Grenoble Cédex, France; and dVan der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
URu$_2$Si$_2$ and the hidden order state

Phase diagram

- $T_{\text{HO}} = 17.5$ K
- $T_{\text{sc}} = 1.5$ K
- $T < T_{\text{HO}}$ small $\mu_{\text{ord}} \leftrightarrow$ parasitic minority phase
- $p \geq 0.7$ GPa at $T_N \approx T_{\text{HO}}$ (LMAF-phase)

HO phase

- 2nd order phase transition \leftrightarrow into electronically ordered state
- large loss of entropy ($\approx 1/5 \ln 2$)
- Fermi surface reconstruction
- change of quasiparticle scattering rate
- Fermi surfaces of $HO \approx$ Fermi surface LMAF phase
- Loss of fourfold symmetry

Energy scales

- $\Delta_{\text{hyb}} \approx 13$ meV (150K) opening at $T_{\text{hyb}} \approx 27$K > T_{HO}
- $\Delta_{\text{HO}} \approx 4$ meV (45K) in charge and spin channel
- $\Delta_{\text{res}} \approx 1.6$ meV (18K) in charge and spin channel
Non-resonant inelastic scattering $U\;5d \rightarrow 5f$ of URu$_2$Si$_2$

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+}\;f^2$ always yield $J = 4$.
- Atomic values Cowan code
- Adjust here reduction factors ($5f-5f$ and $5d-5f \approx 50\%$)
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of $L=3,4,5$ (here 1\%, 14\% and 85 \%).
- FWHM = 0.8 eV Gaussian for resolution FWHM = 1.3 eV Lorentzian for lifetime
- Simulation by Quanty – Haverkort
Non-resonant inelastic x-ray scattering (NIXS) @ N-edge

Application to a crystal-field problem at Ce N-edge (4d to 4f)

- The large $|q|$ gives rise to the higher multipole transitions at lower energies!

Further away from continuum states \rightarrow more excitonic!

R.A. Gordon et al., EPL 81, 26004 (2008)
Non-resonant inelastic scattering $U \, 5d \rightarrow 5f$ of URu_2Si_2

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+} \, f^2$ always yield $J = 4$.
- Atomic values Cowan code
- Adjust here reduction factors ($5f-5f$ and $5d-5f \approx 50\%$)
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of $L = 3, 4, 5$ (here 1%, 14% and 85%).
- FWHM = $0.8eV$ Gaussian for resolution
 FWHM = $1.3 \, eV$ Lorenzian for lifetime
- Simulation by $\text{Quanty} – \text{Haverkort}$
\[
I(\text{FS}_2) = \left| \langle \text{FS}_2 | f^+c | \text{GS} \rangle \right|^2 \\
= |\beta'' \langle \text{cf}^3 | - \alpha'' \langle \text{cf}^4 L | f^+c | \alpha | f^2 \rangle + \beta \langle f^3 L | \rangle |^2 = |\beta'' \alpha - \alpha'' \beta|^2
\]

XAS

\[
\text{ground state problem}
\]

\[
\Delta'' = \Delta : \alpha'' = \alpha, \beta'' = \beta \rightarrow
\]

\[
I(\text{FS}_1) = 1 \quad I(\text{FS}_2) = 0
\]

\rightarrow \text{looks like ionic!}

\[
\text{GS} = \alpha | f^2 \rangle + \beta | f^3 L \rangle
\]
XAS (d → f) final state: e.g. Uranium M-edges

\[E(\text{cf}^{n+2L}) = (n+2)E_f + \frac{1}{2}(n+2)(n+1)U_{ff} - E_L + E_c - (n+2)U_{cf} \]

\[E(\text{cf}^{n+1L}) = (n+1)E_f + \frac{1}{2}(n+1)nU_{ff} + E_c - (n+1)U_{cf} \]

\[\Delta^{\prime\prime} = E(\text{cf}^{n+1L}) - (\text{cf}^n) = \Delta + U_{ff} - U_{cf} \]

\[U_{ff} \sim U_{cf} \rightarrow \Delta^{\prime\prime} \sim \Delta \rightarrow \text{XAS} \sim \text{ionic} \]

ground state problem

\[E(\text{fn}^{+1L}) = (n+1)E_f + \frac{1}{2}(n+1)nU_{ff} - E_L \]

\[E(\text{fn}) = nE_f + \frac{1}{2}n(n-1)U_{ff} \]

\[\Delta = E(\text{fn}^{+1L}) - (\text{fn}) = E_f - E_L + nU_{ff} \]
XPS final state

\[
\begin{align*}
\text{E}(c^{n+1}_f) &= (n+1)E_f + \frac{1}{2}(n+1)nU_{ff} - E_L + E_c - (n+1)U_{cf} \\
\text{E}(c^n) &= nE_f + \frac{1}{2}n(n-1)U_{ff} + E_c - nU_{cf}
\end{align*}
\]

\[\Delta' = \text{E}(c^{n+1}_f) - (c^n) = \Delta - U_{cf}\]

\[\Delta' \text{ is very different from } \Delta \rightarrow \text{XPS : satellites!}\]

ground state problem

\[
\begin{align*}
\text{E}(f^{n+1}_f) &= (n+1)E_f + \frac{1}{2}(n+1)nU_{ff} - E_L \\
\text{E}(f^n) &= nE_f + \frac{1}{2}n(n-1)U_{ff}
\end{align*}
\]

\[\Delta = \text{E}(f^{n+1}_f) - (f^n) = E_f - E_L + nU_{ff}\]
XAS ($p \rightarrow d$) final state: e.g. Uranium L-edges

\[
\begin{align*}
\text{E}(\text{cd}^{1}f^{n+1}_{\L}) &= (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} - E_{L} + E_{c} + E_{d} - (n+1)U_{cf} - U_{cd} + (n+1)U_{df} \\
\Delta'''' &= \text{E}(\text{cd}^{1}f^{n+1}_{\L}) - \text{E}(\text{cd}^{1}f^{n}) = \Delta - U_{cf} + U_{df} \\
\end{align*}
\]

\(U_{df} \sim 0 \Rightarrow \Delta'''' \sim \Delta' \Rightarrow \text{L-XAS} \sim \text{XPS}\)

ground state problem

\[
\begin{align*}
\text{E}(f^{n+1}_{\L}) &= (n+1)E_{f} + \frac{1}{2}(n+1)nU_{ff} - E_{L} \\
\text{E}(f^{n}) &= nE_{f} + \frac{1}{2}n(n-1)U_{ff} \\
\Delta &= \text{E}(f^{n+1}_{\L}) - \text{E}(f^{n}) = E_{f} - E_{L} + nU_{ff} \\
\end{align*}
\]
Non-resonant inelastic scattering $U\,5d \rightarrow 5f$ of URu_2Si_2

Isotropic spectrum sum of all CF states

- Spin orbit and Coulomb interaction for localized $U^{4+}\,f^2$ always yield $J = 4$.
- Atomic values Cowan code
- Adjust here reduction factors ($5f-5f$ and $5d-5f \approx 50\%$)
- Relative contributions of spin-orbit and Coulomb interaction determine ratio of $L=3,4,5$ (here 1%, 14% and 85%).
- FWHM = 0.8 eV Gaussian for resolution
- FWHM = 1.3 eV Lorenzian for lifetime
- Simulation by Quanty – Haverkort
NIXS: groundstate $T > T_{HO}$

Energy transfer (eV)

$|q| = 9.6\text{Å}^{-1}$

J_z
Simulation of spectra with full multiplet routine
Quanty by M.W. Haverkort

\[J = 4, \ J_z = \{-4, -3, \ldots, 2, 3, 4\} \]
tetragonal CEF splits \(J = 4 \)
into five singlets and 2 doublets

\[
\Gamma_1^{(1)}(\theta) = \cos(\theta) |0\rangle + \sin(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\
\Gamma_1^{(2)}(\theta) = \sin(\theta) |0\rangle - \cos(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\
\Gamma_2 = \sqrt{\frac{1}{2}} (|4\rangle - |-4\rangle) \\
\Gamma_3 = \sqrt{\frac{1}{2}} (|2\rangle + |-2\rangle) \\
\Gamma_4 = \sqrt{\frac{1}{2}} (|2\rangle - |-2\rangle) \\
\Gamma_5^{(1)}(\phi) = \cos(\phi) |\mp 1\rangle + \sin(\phi) |\pm 3\rangle \\
\Gamma_5^{(2)}(\phi) = \sin(\phi) |\mp 1\rangle - \cos(\phi) |\pm 3\rangle
\]
\[J = 4, \quad J_z = \{-4, -3, \ldots, 2, 3, 4\} \]

tetragonal CEF splits \(J = 4 \)

into five singlets and 2 doublets

\[
\begin{align*}
\Gamma_1^{(1)}(\theta) &= \cos(\theta) |0\rangle + \sin(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\
\Gamma_1^{(2)}(\theta) &= \sin(\theta) |0\rangle - \cos(\theta) \sqrt{\frac{1}{2}} (|4\rangle + |-4\rangle) \\
\Gamma_2 &= \sqrt{\frac{1}{2}} (|4\rangle - |-4\rangle) \\
\Gamma_3 &= \sqrt{\frac{1}{2}} (|2\rangle + |-2\rangle) \\
\Gamma_4 &= \sqrt{\frac{1}{2}} (|2\rangle - |-2\rangle) \\
\Gamma_5^{(1)}(\phi) &= \cos(\phi) |\mp 1\rangle + \sin(\phi) |\pm 3\rangle \\
\Gamma_5^{(2)}(\phi) &= \sin(\phi) |\mp 1\rangle - \cos(\phi) |\pm 3\rangle
\end{align*}
\]

Some ground state suggestions

- Haule & Kotliar (2009)
- Santini & Amoretti (1994), Nagao & Igarashi (2005)
- Nagao & Igarashi (2005), Kuwahara et al. (1997)
- Ohkawa & Shimizu (1999), Sugiyama et al. (1999), Chandra et al. (2013),
NIXS: groundstate \(T > T_{\text{HO}} \)

GS: mainly singlet \(\Gamma_1^{(1)}(\approx 90^\circ) \) and/or \(\Gamma_2 \) and some other state, e.g. the doublet \(\Gamma_5^{(1)}(\approx 90^\circ) \) mixed in.
How to set up the energy level diagram of URu$_2$Si$_2$??

Kramers doublet f^3

- $\Gamma_1^{(1)}$ $f^2\varepsilon^1$
- Γ_2 $f^2\varepsilon^1$
- $\Gamma_5^{(1)}$ $f^2\varepsilon^1$

GS: mainly singlet $\Gamma_1^{(1)}(\approx 90^\circ)$ and/or Γ_2 and some other state e.g. the doublet $\Gamma_5^{(1)}(\approx 90^\circ)$ mixed in.

- Below $T \approx 27$ K
- $\Delta_{hyb} \approx 150$ K ≈ 13 meV

STM Park *et al.*

- ≈ 13 meV
- $\approx \text{meV}$
Topological Kondo Insulators

Maxim Dzero,¹ Kai Sun,¹ Victor Galitski,¹ and Piers Coleman²

¹Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
²Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA
(Received 22 December 2009; published 12 March 2010)

A New Exotic State in an Old Material: a Tale of SmB₆¹

M. Dzeroᵃ and V. Galitskiᵇ

ᵃ Department of Physics, Kent State University, Kent, OH 44242 USA
ᵇ Condensed Matter Theory Center and Department of Physics, University of Maryland, College Park, MD 20742 USA
e-mail: galitski@physics.umd.edu
Received April 26, 2013

Topological insulator in higher orbital systems. The special attention is given to the already existing f-orbital materials [30], such as CeNiSn, Ce₃Bi₄Pt₃, YbB₁₂, and SmB₆. These materials, which are called Kondo insulators, have all the necessary features needed for realizing topological behavior: strong spin–orbit coupling, strong electron–electron interactions, and orbitals with opposite parity (see table).
Topological Kondo Insulators

Maxim Dzero,1,2 Jing Xia,3 Victor Galitski,4,5 and Piers Coleman6,7

Figure 3

Showing (a) topologically trivial band insulator with $Z_2 = +1$ (b) band-crossing of even and odd parity states at an odd number of high symmetry points leads to a topological insulator with $Z_2 = -1$. Each band crossing generates a Dirac cone of spin-momentum locked surface states.
Figure 4
(a) If we ignore the effects of topology in a conventional Kondo insulator, the interaction can be turned on adiabatically. When the interactions are turned on, the lower band is pushed into the upper band. Two bands of the same parity will always repel one-another and will not cross when the interactions are turned on. (b) When interactions are turned on in a topological insulator, they can lead to band-crossing and a topological phase transition. Here, interactions cause an f-band to push up into a d-band. Since the two bands have opposite parity, they do not hybridize at the high symmetry point so band-crossing occurs, leading to a topological phase transition.
always finite resistivity, even in purest samples

metallic surface states, topologically protected ?!

Figure S1. Temperature regimes of the SmB$_6$ transport and valence. The three main transport regimes of SmB$_6$ illustrated by comparison of resistivity/conductivity1, Hall coefficient2,3 and bulk valence4 and magnetic susceptibility5: (I) low temperature low carrier “in-gap state” regime below 4K, (II) intermediate metallic-to-insulating transition regime with negative Hall coefficient, and (III) high temperature poor-metal regime with positive Hall coefficient above 60K. Multiple low temperature resistivity profiles are plotted to illustrate the variation of the low temperature residual conduction found in the literature. A further subdivision of each regime into two sub-regimes is readily apparent from the various profiles.
4f-5d inversion: intermediate 4f valence

Note:
SmB$_6$ mixed-valent: homogenous in space but inhomogenous in k-space
Fe$_3$O$_4$ mixed-valent: inhomogenous in space but homogenous in k-space
Temperature dependence of the samarium oxidation state in SmB$_6$ and Sm$_{1-x}$La$_x$B$_6$

J. M. Tarascon, Y. Isikawa (*), B. Chevalier, J. Etourneau, P. Hagenmuller and M. Kasaya

Fig. 1. — Lattice parameter temperature dependence of the cubic unit cell of SmB$_6$ (experimental) and of the hypothetical hexaborides Sm$^{2+}$B$_6$ and Sm$^{3+}$B$_6$ (calculated).

Fig. 3. — Average samarium valence temperature dependence in SmB$_6$ between 300 K and 4.2 K.
SmB$_6$: an intermediate valence system

SmB$_6$: an intermediate valence system

Bulk and surface electronic properties of SmB$_6$: A hard x-ray photoelectron spectroscopy study
Y. Utsumi,$^{1, \dagger}$ D. Kasinathan,1 K.-T. Ko,1 S. Agrestini,1 M. W. Haverkort,$^{1, \dagger}$ S. Wirth,1 Y.-H. Wu,2 K.-D. Tsuei,2 D.-J. Kim,3 Z. Fisk,3 A. Tanaka,4 P. Thalmeier,1 and L. H. Tjeng1

Graphical Abstract

- **5 K**
 - f6 J=0
 - Intensity (arb. units)
 - Sm 3d$_{3/2}$
 - Sm 3d$_{5/2}$

- **300 K**
 - f6 J=0
 - f6 J=1
 - Intensity (arb. units)
 - Binding energy (eV)
What entropy drives the valence change in SmB$_6$?

• Lattice ??
 -- lattice shrinks in going from 5 to 140 K
 -- lattice expands from 140 K to 300 K, but valence still keeps increasing although there is more room for the bigger Sm$^{2+}$

• Spin !!
 -- Sm$^{2+}$ 7F$_0$ (J=0, singlet) to Sm$^{3+}$ 6H$_{5/2}$ (J=5/2, sextet)

• Similarities with Yb Kondo/heavy-fermion systems
 -- Yb valence increases from low T to high T, e.g. Yb$^{2.8+}$ to Yb$^{2.9+}$
 -- YbInCu$_4$: sudden expansion of lattice upon cooling !

Sm$^{2+}$ f6 J=0: even number of electrons \rightarrow hybridization gap model
How to set up the energy level diagram of SmB$_6$?

energy separation much smaller than hopping integral (to get valence close to 2.5+)

Problems:
• from low T to high T: valence move always towards 2.5+
• lattice expansion with T tends to lower the f6 energy
How to set up the energy level diagram of SmB$_6$??

- f^6 (7F_1)
- f^6 (7F_0) with Δ, ε_f connected, 40 meV
- $f^5 L^1 (^6H_{7/2})$ with 150 meV
- $f^5 L^1 (^6H_{5/2})$
Energy level diagram in intermediate valent SmB$_6$

\[\begin{align*}
&\text{Sm}^{2+} f^6 \\
&\text{Sm}^{3+} f^5
\end{align*} \]
quartet GS

hybridization gap *may* open

doublet GS

hybridization gap *will* open
Ground state of the Sm $4f^5$ configuration of SmB$_6$: Γ_7 or Γ_8?

Consequences: spin-texture of topological surface states
Consequences: spin-texture of topological surface states

FIG. S2. Bandstructure without hybridization (a) and phase diagram (b) for the Γ_7 model defined in Eq. (S10) and (S8) with $t_d^{(1)} = 1$, $t_d^{(2)} = -0.2$, $t_7^{(1)} = -0.03$, $t_7^{(2)} = 0.02$, and $\epsilon_7 = -3$. The two different spin textures (c–d) in phases I and II, respectively, are shown for hybridization parameters $(V_7^{(1)}, V_7^{(2)}) = (0.3, 0)$ and $(V_7^{(1)}, V_7^{(2)}) = (0.1, 0.1)$, respectively. Due to the negative eigenvalue of the restricted spin operator for f electrons (Eq. (14)), the spin direction is reversed around all HSPs when compared to Fig. 1. Note that the

FIG. 3 (color online). Band structure without hybridization (a) and phase diagram (b) for the Γ_8 model defined in Eq. (9) with $t_d^{(1)} = 1$, $t_d^{(2)} = -0.2$, $t_8^{(1)} = -0.03$, $t_8^{(2)} = 0.02$, and $\epsilon_8 = -3$. The two spin textures [(c),(d)] in phases I and II, respectively, are realized for the hybridization parameters $(V_8^{(1)}, V_8^{(2)}) = (0.3, 0.07)$ and $(V_8^{(1)}, V_8^{(2)}) = (-0.1, 0.1)$, respectively.
Can core level NIXS solve the SmB$_6$ symmetry problem??
The quartet ground state of CeB₆

Sundermann, Lee, Fisk, Tjeng, Severing et al.
EPL, 117 (2017) 17003
Core level NIXS on SmB$_6$

$\text{Sm}^{2+} f^6$ $\text{Sm}^{3+} f^5$

$J=1, n=3$ $\approx 35\text{meV}$

$J=0, n=1$

$J=7/2, n=8$

$\approx 150\text{meV}$

$J=5/2, n=6$

$\Gamma_6, \Gamma_8, \Gamma_7$
Core level NIXS on SmB$_6$

The Γ_8 forms the ground state of the Sm $4f^5$ configuration of SmB$_6$.
Band Symmetries of Mixed-Valence Topological Insulator: SmB$_6$

Chang-Jong Kang1, Junwon Kim1, Kyoo Kim1, Jeongsoo Kang2, Jonathan D. Denlinger3, and Byung Il Min1*

\[\text{[\[\zeta00\][\[1/2\zeta0\][\[\zeta\zeta0\]][\[\zeta\zeta\zeta\]]]} \]

\(E - E_F \) (eV)

\(\Gamma, X, M, \Gamma \)

\(\Delta_7, X_7^- \)

\(\Gamma_7^- \)

\(d_{e_g}, \Gamma_7, \Gamma_8^{(1)}, \Gamma_8^{(2)}, R_7^- \)

\(\Gamma_8^- \)

\(M_6^-, M_7^- \)

\(R_8^- \)
Band Symmetries of Mixed-Valence Topological Insulator: SmB$_6$

Chang-Jong Kang1, Junwon Kim1, Kyoo Kim1, Jeongsoo Kang2, Jonathan D. Denlinger3, and Byung Il Min1*
Band Symmetries of Mixed-Valence Topological Insulator: SmB$_6$

Chang-Jong Kang1, Junwon Kim1, Kyoo Kim1, Jeongsoo Kang2, Jonathan D. Denlinger3, and Byung Il Min1*

![Graph showing DOS vs Energy](image)
Band structure finds a Γ_7 (and a gap) but our experiment finds a Γ_8
Core level NIXS on SmB$_6$

Full Γ_8 polarization for the Sm 4f5 configuration
- Hardly any mixing in of the Γ_7
- Extremely narrow 4f bands
- Low energy properties of SmB$_6$ are built up from Γ_8 states
Fractional Parentage

G.A. Sawatzky and R. Green

4f band formation: $f^6(A, J=0) + f^5(B, J=5/2) \leftrightarrow f^5(A, J=5/2) + f^6(B, J=0)$
Fractional Parentage

G.A. Sawatzky and R. Green

4f band formation: $f^6(A, J=0) + f^5(B, J=5/2) \leftrightarrow f^5(A, J=5/2) + f^6(B, J=0)$

huge reduction factors to the one-electron 4f band width !!!