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Strada Costiera 11, I-34151 Trieste, Italy

Contents
1 Introduction 2

2 The variational principle 4

3 The variational Monte Carlo method 5
3.1 General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 The Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Variational wave functions 9
4.1 The Hartree-Fock wave function . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The Gutzwiller wave function . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 The fully-projected Gutzwiller wave function . . . . . . . . . . . . . . . . . . 11
4.4 The Jastrow wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 The backflow wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Practical implementations 14
5.1 The Jastrow factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Slater determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Fast computation of the determinants . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Backflow correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Optimization techniques 22
6.1 Calculation of derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 The stochastic reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Selected results 26

8 Conclusions 30

E. Pavarini, E. Koch, and S. Zhang (eds.)
Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9
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1 Introduction

Ordinary metals are characterized by wide electronic bands and large screening effects, thus im-
plying that electron-electron interactions may be considered perturbatively or even neglected.
The situation changes completely in transition-metal oxides, where the bands close to the Fermi
energy are relatively narrow and the electronic interactions play a predominant role in determin-
ing low-energy properties. Indeed, while the kinetic energy favors electron delocalization, the
Coulomb repulsion drives the system towards localization, whose ultimate effect is the stabiliza-
tion of an insulator. This state, which is established by the strong electron-electron correlation,
goes under the name of Mott insulator [1]. In addition, materials characterized by strong cor-
relations possess unusual properties in the metallic phase, as well as the possibility to show
unconventional superconductivity [2, 3]. The lack of a consistent microscopic description of
these phenomena clearly implies that a better understanding of correlation effects is needed.
Since the early pioneering works on transition-metal oxides, the theoretical approach to Mott
insulators has focused on the Hubbard model, which has been independently conceived by
Hubbard [4], Gutzwiller [5], and Kanamori [6]. Here, electrons on a lattice interact among each
others through a simplified “Coulomb” potential that includes only the on-site term

H =
∑
i,j,σ

ti,jc
†
i,σcj,σ + h.c.+ U

∑
i

ni,↑ni,↓ , (1)

where ti,j is the hopping amplitude in a d-dimensional lattice with L sites (in the simplest case,
ti,j is non-zero only for nearest-neighbor sites and is denoted by t) and U is the local electron-
electron repulsion; c†j,σ (cj,σ) creates (destroys) one electron with spin σ on a Wannier orbital
residing on the site j

Ξj(r) =
1√
L

∑
k

e−ik·Rj Ψk(r) , (2)

where Ψk(r) are Bloch states constructed with the orbitals φ(r−Ri) centered around each site i.
The operators at different sites create orthogonal states, thus satisfying the anti-commutation
relations {

ci,σ, c
†
j,τ

}
= δi,j δσ,τ , (3){

c†i,σ, c
†
j,τ

}
= 0. (4)

The Hubbard model is defined in the Hilbert space where each site can be empty, singly occu-
pied (with either spin up or down), or doubly occupied. Moreover, the Hamiltonian (1) com-
mutes with the total number of particles with up or down spin (i.e., N↑ and N↓, Ne = N↑ +N↓
being the total number of electrons), thus allowing us to consider sectors with different number
of particles separately. Although very simple in its formulation, the Hubbard model is generally
not solvable with the available analytical techniques, apart from the one-dimensional case [7].
Therefore, several approximate schemes have been introduced, with the support of numerical
calculations.
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Within the standard approaches, based upon the independent-electron approximation, it is not
possible to obtain a metal-insulator transition when the band is half-filled (with one electron
per site on average, i.e., Ne = L), unless some kind of magnetic order is imposed. As a conse-
quence, these techniques turn the Mott insulator into a conventional band insulator, thus missing
the essence of the Mott phenomenon, where a charge gap appears independently of spin order.
Dynamical mean-field theory [8] offered an alternative route to this problem, giving a descrip-
tion of the Mott transition without the need for a symmetry breaking. However, this scheme
fully neglects spatial correlations and becomes exact only in the limit of infinite dimensionality.
Since charge fluctuations are very strong in low-dimensional systems and are expected to deter-
mine their physical properties, an alternative method, which allows one to take into account the
role of charge fluctuations, would be very useful.

Here, we consider variational wave functions, which can be treated within Monte Carlo tech-
niques, as a possible route to capture the low-energy properties of strongly-correlated systems.
In particular, our approach is based on an approximate form for the ground-state wave func-
tion that contains the physically relevant terms for the correct description of the Mott insulating
state, and, at the same time, is simple enough to allow a straightforward calculation of the phys-
ical quantities. In this way, we obtain a transparent and physically intuitive way to understand
the correlation-induced localization of electrons.

In the limit of U/t → ∞ (i.e., for Heisenberg or t-J models), the general form for correlated
wave functions corresponds to fully-projected Slater determinants [9, 10], where the configu-
rations having a finite number of double occupancies are completely removed. At half-filling,
these wave functions are obviously insulating, since no charge fluctuations can occur. Within
the Hubbard model, early calculations showed that the variational description of a Mott insu-
lator is a non-trivial problem, whenever charge fluctuations are present. Indeed, the Gutzwiller
on-site correlation factor [5], which is the natural extension of the full projector in the case of
finite (on-site) interaction, gives an insulating state only in the limit of infinite repulsion (apart
from infinite dimension), while for finite Coulomb interaction it always corresponds to a cor-
related metallic state. The reason for its failure has been widely discussed in the past, and an
intuitive argument has been found in the lack of correlation among the charge carriers, which
correspond to the empty sites (holons) and doubly occupied sites (doublons), created by charge
fluctuations at finite interactions [11]. In fact, holons possess an effective positive charge, since
one electron is missing, and doublons are negatively charged objects, having one more electron
with respect to the average occupation number; if the system is perturbed with the insertion of
an electric field, holons and doublons can move freely in opposite directions, thus leading to a
metallic behavior. Variational attempts done by adding a short-range correlation term up to a
distance ξ among holons and doublons, turned out to be likewise unsuccessful [11,12]. Naively,
this happens because the configurations where holons and doublons are at distances larger than
ξ are not subject to any correlation term, hence they can move freely on the lattice and con-
duct. Following this insight, it turns out that, in order to describe a correlated insulator without
breaking any symmetry, it is necessary to correlate particles over all length scales. Let us con-
sider a more general argument in view of the above considerations. For realistic Hamiltonians,
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the dynamical properties of a system reflect the long-distance behavior of the static correlation
functions of its ground state. Within a variational approach, this implies that a good Ansatz for
an insulating state requires the correct description of the density-density correlations at large
distances or, equivalently, the correct behavior of the charge structure factor at small momenta.
For fermionic systems, the standard form for a correlated wave function is constituted by a cor-
relation term acting on a Slater determinant, the latter corresponding to an uncorrelated metallic
state. As a consequence, a variational wave function built with a short-range correlation fac-
tor cannot change the metallic character of the determinant, unless one fully suppresses charge
fluctuations, since the large distance physics remains untouched.
The above arguments suggest that a long-range correlation factor is needed in order to correctly
describe the insulating state. In particular, since we are interested in the density-density corre-
lations, a natural choice of the correlation factor contains two-body terms, which corresponds
to the so-called Jastrow factor [13]. It has been widely used in the context of liquid Helium on
the continuum, where it gives the correct behavior of the density structure factor [14,15]. Here,
the analytic form of the Jastrow parameters can be deduced from weak-coupling calculations.
Unfortunately, for the purpose of describing an insulating state, a proper analytic form of the
Jastrow parameters cannot be obtained by weak-coupling techniques. The lack of a functional
form for the Jastrow term, together with the large number of variational parameters required for
a long-range correlation factor, represented the main obstacle to the use of this wave function
in presence of strong correlation. Nowadays, this difficulty has been overcome with the help
of advanced stochastic optimization techniques, which allow one to optimize many variational
parameters independently, without assuming any functional form [16, 17].

2 The variational principle

In this section, we discuss the basic aspects of the variational principle, which represents one im-
portant pillar when searching for reliable approximations of strongly-correlated systems. Given
any approximate state |Ψ〉 for the exact ground state |Υ0〉 of a given Hamiltonian, we can define
its variational energy as

E =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (5)

Since any state in the Hilbert space can be expanded in terms of the eigenfunctions |Υi〉 of the
Hamiltonian (with energies Ei), the variational state can be written as

|Ψ〉 =
∑
i

ai|Υi〉, (6)

with ai = 〈Υi|Ψ〉. The normalization condition reads as

〈Ψ |Ψ〉 =
∑
i

|ai|2 = 1. (7)

By using the expansion of Eq. (6), we easily obtain that

ε ≡ E − E0 =
∑
i 6=0

|ai|2(Ei − E0) ≥ 0, (8)
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which implies that any trial state |Ψ〉 provides an upper bound of the exact energy, thus giving a
controlled way to approximate the original problem. Then, all computational efforts are devoted
to minimizing the variational energy E.
Let us now analyze in what sense an approximate wave function, with given “distance” in
energy ε from the exact ground state, can be considered as a good approximation of the many-
body ground state |Υ0〉. A crucial role is played by the gap to the first excited state, which
is always finite in a system with Ne particles (apart from accidental degeneracies), namely
∆ = E1 − E0 > 0. From Eq. (8) and the fact that, for i 6= 0, Ei − E0 ≥ ∆, it follows that

ε ≥ ∆
∑
i 6=0

|ai|2 ; (9)

then, by using the normalization condition (7), we obtain

η = 1− |a0|2 ≤
ε

∆
. (10)

This relation tells us that, in order to have an accurate approximation of the exact ground state
(i.e., η � 1), a sufficient condition is that the error ε in the variational energy has to be much
smaller than the gap ∆ to the first excited state.
The accuracy of generic correlation functions (i.e., expectation values of Hermitian operators,
which do not commute with the Hamiltonian, over |Ψ〉) is usually worse than the one on the
ground-state energy. In fact, let us consider a generic operator O and express the variational
wave function as

|Ψ〉 = a0|Υ0〉+
√
η|Υ ′〉, (11)

where |Υ ′〉 is orthogonal to the ground state |Υ0〉. Then, the difference between the expectation
value calculated with the variational state and the exact one is given by∣∣〈Ψ |O|Ψ〉 − 〈Υ0|O|Υ0〉∣∣ = ∣∣2a0√η〈Υ0|O|Υ ′〉+ η〈Υ ′|O|Υ ′〉 − η〈Υ0|O|Υ0〉

∣∣, (12)

where, for simplicity, we have assumed real wave functions. Then, whenever the variational
state is close to the exact ground state, η � √

η and we can neglect all the terms that are
proportional to η ∣∣〈Ψ |O|Ψ〉 − 〈Υ0|O|Υ0〉∣∣ ≈ 2

√
η
∣∣〈Υ0|O|Υ ′〉∣∣, (13)

which shows that the accuracy in correlation functions is more problematic than the one on the
ground-state energy, with a term proportional to

√
η.

3 The variational Monte Carlo method

3.1 General principles

Let us start by describing the general framework in which variational Monte Carlo methods
are defined. First of all, we fix a complete basis set {|x〉} in the Hilbert space, in which (for
simplicity) the states are taken to be orthogonal and normalized such that∑

x

|x〉〈x| = I. (14)
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Then, any quantum state |Ψ〉 can be written as

|Ψ〉 =
∑
x

|x〉〈x|Ψ〉 =
∑
x

Ψ(x)|x〉. (15)

In turn, the expectation value of an operator O over a given variational wave function |Ψ〉 takes
the following form

〈O〉 = 〈Ψ |O|Ψ〉
〈Ψ |Ψ〉

=

∑
x〈Ψ |x〉〈x|O|Ψ〉∑
x〈Ψ |x〉〈x|Ψ〉

. (16)

The main problem in evaluating the expectation value is that the number of configurations in
the sum is exponentially large with the number of particles. Therefore, for large systems, it
is impossible to perform an exact enumeration of the configurations to compute 〈O〉 exactly.
Nevertheless, Eq. (16) can be recast into a form that can be easily treated by standard Monte
Carlo methods. Indeed, we have that

〈O〉 =
∑

x |Ψ(x)|2OL(x)∑
x |Ψ(x)|2

, (17)

where we have defined the local estimator of the operator O

OL(x) =
〈x|O|Ψ〉
〈x|Ψ〉

. (18)

The important point is that

P(x) = |Ψ(x)|2∑
x |Ψ(x)|2

(19)

can be interpreted as a probability, since it is a non-negative quantity for all configurations |x〉
and is normalized, i.e.,

∑
xP(x) = 1. Therefore, the problem of computing a quantum average

of the operator O can be rephrased into the calculation of the average of the random variable
OL(x) over the distribution probability P(x)

〈O〉 =
∑
x

P(x)OL(x). (20)

In particular, if we consider the expectation value of the Hamiltonian, the local estimator corre-
sponds to the so-called local energy, which is defined by

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

. (21)

An important feature of the variational Monte Carlo approach is the zero-variance property. Let
us suppose that the variational state |Ψ〉 coincides with an exact eigenstate ofH (not necessarily
the ground state), namelyH|Ψ〉 = E|Ψ〉. Then, it follows that the local energy eL(x) is constant

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

= E
〈x|Ψ〉
〈x|Ψ〉

= E. (22)
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Therefore, the random variable eL(x) does not depend on |x〉, which immediately implies that
its variance is zero, while its mean value E coincides with the exact eigenvalue (in other words,
eL(x) is not a random variable). Clearly, this is an extreme case that is very rare for generic
correlated models. However, in general, the variance of eL(x) will decrease its value when-
ever the variational state |Ψ〉 will approach an exact eigenstate. This fact is very important to
reduce the statistical fluctuations and improve the numerical efficiency. The zero-variance prop-
erty is a feature that exists only for quantum expectation values, while it is absent in classical
calculations, where observables have thermal fluctuations.

3.2 Markov chains

Instead of an exact enumeration of all configurations {|x〉} in the Hilbert space, the quantum
average of the operator O is evaluated by sampling a set of configurations {|xn〉} that are dis-
tributed according to the probability P(x), such that

〈O〉 ≈ 1

N

N∑
n=1

OL(xn). (23)

From now on, we denote configurations by using only x, dropping the ket notation. The idea to
sample a generic probability distribution is to construct a non-deterministic, i.e., random, pro-
cess for which a configuration xn evolves as a function of a discrete iteration time n according
to a stochastic dynamics. A particularly simple case is given by the so-called Markov chains,
where the configuration at time n+1 just depends upon the one at time n

xn+1 = F (xn, ξn), (24)

where the function F is taken to be time independent. The stochastic nature of the dynamics (24)
is due to the fact that F depends upon a random variable ξn that is distributed according to a
probability density χ(ξn). Here, the main point is to define a suitable function F such that the
configurations xn will be distributed (for large enough time n) according to the probability that
we want to sample. Notice that, although ξn and ξn+1 are independent random variables, xn ≡ x

and xn+1 ≡ x′ are not independent. The joint probability distribution of these variables can be
decomposed into the product of the marginal and the conditional probability

Pjoint,n(x
′, x) = ω(x′|x)Pn(x), (25)

where the conditional probability is such that ω(x′|x) ≥ 0 for all x and x′ and satisfies the
following normalization ∑

x′

ω(x′|x) = 1. (26)

It represents the probability that, having the configuration x at the iteration n, x′ appears at
n+1; its actual form depends upon the function F (x, ξ) and the probability distribution χ(ξ).
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We are now in the position of deriving the so-called Master equation, associated to the Markov
chain. Indeed, the marginal probability of the variable x′ is given by

Pn+1(x
′) =

∑
x

Pjoint,n(x
′, x), (27)

so that, by using Eq. (25), we get

Pn+1(x
′) =

∑
x

ω(x′|x)Pn(x). (28)

This equation allows us to calculate the evolution of the marginal probabilityPn(x) as a function
of n, since the conditional probability ω(x′|x) is determined by the stochastic dynamics in
Eq. (24) and does not depend upon n.
The important question about the Markov process is to understand under which conditions the
sequence of distributions Pn(x) converges to some limiting (i.e., equilibrium) distribution P(x)
or not. In particular

1. Does a stationary distribution P(x) exist?

2. Is the convergence to P(x) guaranteed when starting from a given arbitrary P0(x)?

The first question requires that

P(x′) =
∑
x

ω(x′|x)P(x). (29)

In order to satisfy this condition, it is sufficient (but not necessary) to satisfy the so-called
detailed balance condition

ω(x′|x)P(x) = ω(x|x′)P(x′). (30)

The second question requires the ergodicity condition, i.e., the possibility to reach any state x
from any other one x′ by performing a finite number of steps.

3.3 The Metropolis-Hastings algorithm

Finally, we present a practical way of constructing a conditional probability ω(x′|x) that sat-
isfies the detailed balance condition (30), such that, for large values of n, the configurations
xn are distributed according to a given probability distribution P(x). Metropolis and collab-
orators [18] introduced a very simple scheme, which is also very general and can be applied
to many different cases. Later, the so-called Metropolis algorithm has been extended to more
general cases by Hastings [19] (very often, the name of “Metropolis-Hastings algorithm” is also
used). As a first step, we split the transition probability ω(x′|x) into two pieces

ω(x′|x) = T (x′|x)A(x′|x), (31)

where T (x′|x) defines a trial probability that proposes the new configuration x′ from the present
one x and A(x′|x) is the acceptance probability. In the original work by Metropolis and co-
workers, the trial probability has been taken symmetric, i.e., T (x′|x) = T (x|x′). However,
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in the generalized version of the algorithm T (x′|x) can be chosen with large freedom, as long
as ergodicity is ensured. Then, in order to define a Markov process that satisfies the detailed
balance condition, the proposed configuration x′ is accepted with a probability

A(x′|x) = min

{
1,
P(x′)T (x|x′)
P(x)T (x′|x)

}
. (32)

Without loss of generality, we can always choose T (x|x) = 0, namely we never propose to
remain with the same configuration. Nevertheless, ω(x|x) can be finite, since the proposed
move can be rejected. The actual value of ω(x|x) is fixed by the normalization condition∑

x′ ω(x
′|x) = 1.

The proof that detailed balance is satisfied by considering the acceptance probability of Eq. (32)
is very simple. Indeed, let us consider the case in which x and x′ 6= x are such that

P(x′)T (x|x′)
P(x)T (x′|x)

> 1, (33)

in this case, we have that

A(x′|x) = 1, (34)

A(x|x′) = P(x)T (x
′|x)

P(x′)T (x|x′)
; (35)

then, we can directly verify that the detailed balance is satisfied. A similar proof can be obtained
in the opposite case where P(x′)T (x|x′)/[P(x)T (x′|x)] < 1.

4 Variational wave functions

4.1 The Hartree-Fock wave function

For fermionic models, the simplest example for a variational wave function is given by the
Hartree-Fock approximation, where the many-body state is taken to be a product state of suit-
ably optimized single-particle orbitals

|ΨHF〉 =
Ne∏
α=1

Φ†α|0〉; (36)

here, Φ†α can be expressed in terms of the original fermionic operators as

Φ†α =
∑
i

W ∗
↑,α,ic

†
i,↑ +

∑
i

W ∗
↓,α,ic

†
i,↓ , (37)

where {Wσ,α,i} are complex coefficients that can be optimized to get the best variational state.
The condition that orbitals are normalized and orthogonal to each other implies that∑

i

(
W↑,α,iW

∗
↑,β,i +W↓,α,iW

∗
↓,β,i
)
= δα,β . (38)
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The expectation value of any Hamiltonian can be easily evaluated analytically. On the lattice, it
is relatively simple to obtain a solution for the Hartree-Fock equations by using iterative meth-
ods. However, while the Hartree-Fock approximation may give reasonable results in the weak-
coupling regime, its accuracy becomes questionable for moderate and strong interactions. For
example, a Mott insulator, with no symmetry breaking, cannot be described within this approxi-
mation; moreover, it is also not possible to stabilize superconducting phases in purely repulsive
Hamiltonians. Therefore, a step forward is needed, in order to reach a better description of
strongly-correlated systems.

4.2 The Gutzwiller wave function

The simplest example of a correlated state, which goes beyond the Hartree-Fock approximation,
has been proposed by Gutzwiller to describe the effect of the Hubbard-U interaction in reducing
the weight of configurations with doubly-occupied sites [5]. The Gutzwiller wave function is
constructed by starting from the ground state |Φ0〉 of the U = 0 model and then applying an
operator PG that suppresses the weight of configurations with doubly-occupied sites

|ΨG〉 = PG|Φ0〉; (39)

here, PG is the so-called Gutzwiller factor that depends upon a single variational parameter g
(e.g., g > 0 for the repulsive Hubbard model)

PG = exp

[
−g
2

∑
i

(ni − n)2
]
, (40)

where n is the average density.
The effect of the Gutzwiller factor becomes clear once the variational state is expanded in a
basis set whose elements {|x〉} represent configurations with particles sitting on the lattice sites.
Indeed, since the Gutzwiller factor is diagonal in this basis (it contains the density operator on
each site ni), we have that

〈x|ΨG〉 = PG(x)〈x|Φ0〉, (41)

where PG(x) ≤ 1 is a number that depends on how many doubly-occupied sites are present in
the configuration |x〉. Therefore, the amplitude of the non-interacting state 〈x|Φ0〉 is renormal-
ized by PG(x).
For the Hubbard model with a generic hopping amplitude ti,j , when the particle density is
n = 1, a metal-insulator transition is expected at finite values of U/t. However, a simple argu-
ment suggests that the Gutzwiller wave function can describe such a transition only when the
variational parameter g tends to infinity. Indeed, for n = 1, on average, there is one particle per
site and density excitations are represented by doublons and holons. In the non-interacting state
|Φ0〉, these objects are free to move and then responsible for the conductivity (a doublon is neg-
atively charged with respect to the average background, while the holon is positively charged).
The effect of the Gutzwiller factor is to penalize the formation of such objects; however, once
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created, doublons and holons are no longer correlated, thus being free to move independently.
Only when the energetic penalty is infinite, an insulator is obtained; here, all the density degrees
of freedom are frozen and no transport is possible, implying an oversimplified description of
a true insulator, where instead density fluctuations are always present. Extensive calculations
have shown that g remains finite for all values of U/t and diverges only for U/t =∞ [20, 21].

4.3 The fully-projected Gutzwiller wave function

Here, we briefly discuss the limit of g =∞, which corresponds to the fully-projected Gutzwiller
state. For n = 1, the Gutzwiller factor becomes a projector in the sub-space with only singly-
occupied sites

P∞ =
∏
i

(ni,↑ − ni,↓)2 , (42)

which implies that all configurations with empty or doubly occupied sites are annihilated. In
fermionic models, there is still an exponentially large number of states with one electron per
site, which differ by their spin configurations. Therefore, non-trivial spin fluctuations are still
allowed. These kinds of fully-projected wave functions |Ψ∞〉 = P∞|Φ0〉 have been considered
within the so-called resonating-valence bond (RVB) approach, which has been proposed by
Anderson to capture the physics of exotic magnetic systems (spin liquids) [22] in frustrated
Heisenberg models [23].
The case to include empty sites, which is relevant when n < 1, has been widely used to describe
high-temperature superconductors in the t-J model [9,10]. In this case the Gutzwiller projection
is written as

P∞ =
∏
i

(1− ni,↑ni,↓) , (43)

which annihilates all configurations containing doubly-occupied sites, but leaving untouched
configurations with only empty and singly-occupied sites.

4.4 The Jastrow wave function

As we have discussed above, the variational description of an insulator with density fluctuations
is not captured by the simple Gutzwiller wave function (39) and requires a modification of
the correlation term that is applied to the non-interacting wave function. A straightforward
generalization of the Gutzwiller wave function is given by the inclusion of long-range terms in
the correlator

|ΨJ〉 = J |Φ0〉, (44)

where J is the Jastrow factor [13] that has been introduced in continuum models much before
the Gutzwiller wave function. On the lattice, J takes a simple form

J = exp

[
−1

2

∑
i,j

vi,j(ni − n)(nj − n)

]
, (45)
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where vi,j is a pseudo-potential for density-density correlations in the variational state. For
translationally invariant models, vi,j only depends upon the relative distance of the two sites i
and j, i.e., |Ri−Rj|; moreover, the on-site term vi,i corresponds to the Gutzwiller parameter g.
The Jastrow pseudo-potential can be either parametrized in some way, in order to reduce the
number of variational parameters, or optimized for all possible distances, which are O(L) in
translationally invariant systems. The role of the long-range tail of the Jastrow factor is to
create a bound state between holons and doublons, possibly impeding conduction, but still
allowing local density fluctuations. Indeed, we have shown that such Jastrow terms may turn
a non-interacting metallic state |Φ0〉 into an insulator [24, 25]. In particular, by denoting the
Fourier transform of the (translationally invariant) pseudo-potential vi,j by vq, the gapless (i.e.,
metallic) phase is described by having vq≈1/|q| for |q| → 0, in any spatial dimension d; by
contrast, a fully gapped (i.e., insulating) phase is obtained in one-dimension with vq≈1/|q|2 for
|q| → 0 [24]. This singular behavior of the pseudo-potential induces an exponential decay of the
density-density correlations. In two and three spatial dimensions, a holon-doublon bound-state
is generated by vq ≈ β/|q|d for a sufficiently large value of β [25]. However, these behaviors of
the pseudo-potential, which are obtained by an energy minimization, are not sufficient to have
a fully gapped phase, since a residual power-law behavior in the density-density correlations is
still present.
The Jastrow wave function of Eq. (44) has been introduced to study models on the contin-
uum [13] and has been employed to perform the first quantum Monte Carlo calculation in a
many-body system [14]. More precisely, a system of interacting bosons has been considered
to model the ground-state properties of 4He in three spatial dimensions with Lennard-Jones
interactions. Here, in a first-quantization notation, the wave function with Nb bosons reads

ΨJ(r1, . . . , rNb
) =

∏
i<j

f(ri,j) = exp

[
−
∑
i<j

u(ri,j)

]
, (46)

where {ri} are the coordinates of the bosons and f(ri,j) = exp[−u(ri,j)] is a function that
depends upon the relative distance between two bosons ri,j = |ri − rj|. Notice that the wave
function of Eq. (46) is totally symmetric when exchanging two particles, thus having the correct
symmetry for a bosonic wave function.
A suitable correlated wave function for Ne fermions can be obtained by applying the sym-
metric Jastrow factor

∏
i<j f(ri,j) to a (anti-symmetric) Slater determinant, which, by using

first-quantization notations, reads as

ΨHF(r1, . . . , rNe) = det{φα(rj)}, (47)

where {φα(rj)} is a set of one-particle orbitals. Then the Jastrow-Slater wave function is given
by

ΨJS(r1, . . . , rNe) =
∏
i<j

f(ri,j)× ΨHF(r1, . . . , rNe). (48)

In total, this wave function is anti-symmetric when exchanging two particles and, therefore, has
the correct symmetry for a fermionic state.



Variational Wave Functions 5.13

4.5 The backflow wave function

An alternative way to include some correlation inside the original variational state is to introduce
a parametrization that allows the orbitals to depend upon the positions of the other particles,
leading to the concept of backflow correlations. In quantum systems, a particle that moves is
surrounded by a counter-flow generated by all the other particles; the existence of this flow
pattern pushes away the particles, thus preventing a significant overlap among them. This idea
has been originally introduced by Wigner [26] and then developed by Feynman [27, 28] in
the context of excitations in 4He and the effective mass of a 3He impurity in liquid 4He. In
the fermionic case, the Slater determinant is not constructed with the actual positions of the
electrons (r1, . . . , rNe), see Eq. (47), but with new “coordinates” given by

rbi = ri +
∑
j 6=i

η(|ri − rj|)(rj − ri), (49)

where η(|ri − rj|) is a suitable function that describes the effective displacement of the i-th
particle due to the j-th one. The simplest wave function is built by taking plane-waves with
positions given by {rbi}. The effect of backflow correlations introduces many-body effects
inside the Slater determinant, since, when the i-th electron is moved, all the new “coordinates”
are modified, such that all particles respond to the movement of the single electron, adapting
their positions accordingly.
Wave functions including both Jastrow factors and backflow correlations have been used to
study Helium systems within the so-called hyper-netted chain approximation [29, 30]. They
also have been used in Monte Carlo calculations to compute the properties of the homogeneous
electron gas in two and three spatial dimensions [31, 32]. The advantage of the backflow wave
function is that a single Slater determinant is used, allowing us to perform calculations with a
large number of particles.
More recently, the same idea of modifying the single-electron orbitals to improve variational
wave functions has been extended for lattice models [33, 34]. Here, the transformation (49)
cannot be applied, since electrons live on the lattice sites. Nevertheless, we can imagine that the
amplitudes of the Hartree-Fock orbitals (37) are changed according to the many-body configu-
ration

W b
σ,i,α = η0Wσ,i,α +

∑
j 6=i

ηjOi,jWσ,j,α, (50)

where {ηj} is a set of variational parameters and Oi,j is a generic many-body operator that acts
on the sites i and j. For example, within the repulsive Hubbard model, the formation of holon-
doublon pairs is energetically expensive for large values of U/t; therefore, these objects tend to
recombine into singly-occupied sites. In this case, we can consider a many-body operatorOi,j =
DiHj , where Di (Hi) is the operator that gives 1 if the site i is doubly occupied (empty) and 0

otherwise. Then, the many-body state, which is constructed by taking the Slater determinant of
these new “orbitals”, will contain terms with single occupation, thus releasing the energy. More
complicated expressions of the new “orbital” can be considered, as described in Refs. [33, 34].
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5 Practical implementations

In the Monte Carlo evaluation of quantum averages, see Eq. (20), we must compute

• The ratio of probabilities with different configurations, which implies the ratio of overlaps
between the given variational state and two configurations of the basis set

P(x′)
P(x)

=

∣∣∣∣〈x′|Ψ〉〈x|Ψ〉

∣∣∣∣2 , (51)

as required in the Metropolis algorithm.

• The local estimatorOL(x), which, in turn, implies ratios of overlaps and matrix elements
of the observable between states of the basis set. For example, when considering the
energy, we have

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

=
∑
x′

〈x|H|x′〉〈x
′|Ψ〉
〈x|Ψ〉

. (52)

Naively, the computation of the local estimator looks a tremendously hard task, since it requires
a summation over all the states of the many-body Hilbert space; however, thanks to the locality
of the Hamiltonian (or, similarly, any other local operator or correlation function), only few
terms actually contribute to the sum. Indeed, given the configuration |x〉, the matrix element
〈x|H|x′〉 is non-zero only for O(L) configurations |x′〉. As an example, let us consider the
fermionic Hubbard model: by using the local basis, |x〉 is connected only to few other configu-
rations that differ for the hopping of one electron from a given site to one of its neighbors; then,
the maximum number of such processes is equal to the number of sites L times the number of
bonds times 2 (due to the spin). Therefore, the computation of the local estimator only requires
a small number of operations, usually proportional to the number of sites/particles.
Therefore, the building block of the variational Monte Carlo approach is the computation of
〈x|Ψ〉, which is the amplitude of the variational state over a generic element of the basis set.
More precisely, along all the Markov process, only ratios of these overlaps must be computed.
This calculation must be done for each configuration that is visited along the Markov process
and, therefore, it must be done as fast as possible. This fact imposes some constraint on the
form of the variational wave function. Usually, fermionic states require the calculation of deter-
minants. Fortunately, there are fast (i.e., polynomial) algorithms to evaluate determinants, thus
allowing us to consider these states as variational Ansätze for electron systems.

5.1 The Jastrow factor

Let us focus on the Jastrow factor of Eq. (45). For a translational invariant model, vi,j only
depends upon the distance between i and j, thus the number of parameters can be reduced to
O(L). We would like to remark that, within the Monte Carlo approach, it is possible to treat
exactly (but still having statistical errors) the limit of singular Jastrow factors with vi,i = ∞,
e.g., the Gutzwiller projector that eliminates all doubly-occupied sites (this case being relevant
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for an infinite Hubbard-U interaction). Indeed, this case can be easily incorporated by building
a Markov chain where only configurations |x〉 that satisfy this constraint are visited.
The advantage of considering the Jastrow-Slater wave function in the variational Monte Carlo
technique is that the calculations can be extremely efficient and fast. Indeed, whenever the
Jastrow factor is diagonal in the chosen basis, we have that

〈x|ΨJ〉 = J (x)〈x|Φ0〉, (53)

where J (x) is the value of the Jastrow operator computed for the configuration |x〉, i.e., J |x〉 =
J (x)|x〉. Therefore, given the electronic configuration, J (x) is a number that can be eval-
uated in O(L2) operations, thus leading to the same complexity when computing the ratio
J (x′)/J (x) that appears in the Metropolis ratio (51). However, whenever the two configu-
rations differ only by few electron hoppings, it is possible to apply a fast computation of the
ratio, which involves O(L) operations.
Finally, we emphasize that, in order to have a polynomial algorithm, the Jastrow factor must
only contain operators that are diagonal in the basis |x〉, otherwise J |x〉 would generate an
exponentially large number of states, ruling out any calculation on large systems.

5.2 Slater determinants

A generic Slater determinant can be obtained as the ground state of a suitable quadratic Hamil-
tonian H0. First of all, we contract the spin index σ and the lattice site i into a single index I
running from 1 to 2L

ci,↑ ≡ di , (54)

ci,↓ ≡ di+L. (55)

Then, we start from the simple case in which the non-interacting Hamiltonian is written as

H0 =
∑
I,J

tI,Jd
†
IdJ , (56)

which contains hopping terms only, also including processes in which the spin along z is not
conserved, i.e., the terms with I ≤ L and J > L and vice-versa. In a compact form, the
non-interacting Hamiltonian of Eq. (56) can be written as

H0 = d†Td , (57)

where
d† =

(
d†1 . . . d†2L

)
(58)

and

T =

 t1,1 . . . t1,2L
... . . . ...

t2L,1 . . . t2L,2L

 . (59)
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Since H0 commutes with the total number of electrons Ne =
∑

I d
†
IdI , the eigenstates are

single-particle orbitals. In practice, the 2L × 2L matrix T can be easily diagonalized by using
standard libraries (e.g., LAPACK routines)

H0 = d†U U†TU U†d = Φ†EΦ =
∑
α

εαφ
†
αφα, (60)

where U is a unitary matrix (that preserves anti-commutation relations of fermionic operators),
E = diag(ε1, . . . , ε2L) is the diagonal matrix containing the 2L eigenvalues εα of T, and Φ† =

(φ†1, . . . , φ
†
2L) is defined in terms of the eigenvectors of T

φ†α =
∑
I

UI,αd
†
I . (61)

Now, the many-body state |Φ0〉 can be constructed by occupying the Ne lowest-energy orbitals

|Φ0〉 =
Ne∏
α=1

φ†α|0〉 =

(∑
I

UI,1d
†
I

)
. . .

(∑
I

UI,Ned
†
I

)
|0〉. (62)

The generic configuration, with Ne electrons, which is visited along the Markov process, reads

|x〉 = d†R1
. . . d†RNe

|0〉, (63)

where j = 1, . . . , Ne includes both up and down spins and Rj assumes values from 1 to 2L: the
positions of spin-up electrons coincide with the site number, while the positions of spin-down
electrons must be shifted by L. The overlap 〈x|Φ0〉 is then given by

〈x|Φ0〉 = 〈0|dRNe
. . . dR1

(∑
I

UI,1d
†
I

)
. . .

(∑
I

UI,Ned
†
I

)
|0〉

= 〈0|dRNe
. . . dR1

[∑
p

(−1)p
Ne∏
α=1

Up{Rj},α

]
d†R1

. . . d†RNe
|0〉, (64)

where the sum inside the square bracket is over all the possible permutations of the {Rj} in |x〉;
the sign appears because of the anti-commutation relations of fermionic operators. Then, we
get

〈x|Φ0〉 = det{URj ,α}. (65)

When constructing the many-body state (62), we must pay attention to construct a unique many-
body state, i.e., occupy the correct lowest-energy orbitals. When the highest-occupied orbital
and the lowest-unoccupied one have different energies (closed shell configuration), the choice is
unique. Instead, it can also happen that there is a degeneracy that does not allow a unique choice
(open shell configuration). Whenever the non-interacting Hamiltonian H0 is diagonalized nu-
merically, the eigenstates provided by standard libraries do not carry definite quantum numbers
(like momentum), but are given by generic linear combinations of degenerate orbitals (which
erratically depend on the numerical precision used for the computation). This is not a problem
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whenever all the degenerate eigenstates are included in the many-body state (62), since taking
any linear combination of columns in the matrix U will not change the value of the determinant
in Eq. (65). By contrast, not including all degenerate eigenstates will cause a problem, since the
determinant will depend on the particular combination of states that is considered. Therefore,
whenever a numerical diagonalization is done, we must verify that a closed-shell configuration
occurs. Otherwise, the problem of having a vanishing gap can be overcome by constructing
suitable orbitals with definite quantum numbers, to obtain a reproducible simulation of the
many-body state.
In practice, the diagonalization of the non-interacting Hamiltonian H0 must be performed at
the beginning of the Monte Carlo calculation; then, we need to store the reduced part of the
U, obtained by keeping only the Ne columns that correspond to occupied orbitals. This is a
2L×Ne matrix

U =

 U1,1 . . . U1,Ne

... . . . ...
U2L,1 . . . U2L,Ne

 . (66)

Then, the overlap with a generic electronic configuration is given by the determinant of the
matrix obtained by considering only the rows of (66) corresponding to the electron positions
{Rj}, thus giving a Ne ×Ne matrix.
Remarkably, the same kind of formalism can be used also if the non-interacting Hamiltonian
contains an electron pairing that couples up and down spins. Indeed, let us consider a Bardeen-
Cooper-Schrieffer (BCS) Hamiltonian described by

H0 =
∑
i,j,σ

ti,jc
†
i,σcj,σ − µ0

∑
i,σ

c†i,σci,σ +
∑
i,j

∆i,jc
†
i,↑c
†
j,↓ + h.c., (67)

where we have included a chemical potential µ0, which fixes, on average, the number of elec-
trons. In this case, the total number of particles is not conserved and the concept of single-
particle orbitals is not defined. Indeed, the ground state of the BCS Hamiltonian is naturally
written in terms of a pairing function. Nevertheless, we can perform a particle-hole transforma-
tion on the spin-down electrons

ci,↑ → fi,↑ ≡ di (68)

ci,↓ → f †i,↓ ≡ d†i+L. (69)

Then, apart from constant terms, the transformed BCS Hamiltonian has the form of Eq. (57).
Since, after the particle-hole transformation, the number of particles (but not the z component of
the spin) is conserved, the eigenstates of the BCS Hamiltonian can be expressed into “orbitals”,
similarly to the ones of Eq. (61), but without having a definite spin component along z.

5.3 Fast computation of the determinants

Let us now show how to compute efficiently the ratio of determinants when the two configu-
rations |x〉 and |x′〉 differ by one or few electron hoppings. According to Eq. (65) the overlap
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〈x|Φ0〉 is given by the determinant of Ũj,α ≡ URj ,α

Ũ =


UR1,1 . . . UR1,Ne

... . . . ...
URl,1 . . . URl,Ne

... . . . ...
URNe ,1

. . . URNe ,Ne

 , (70)

which is obtained taking only the rows corresponding to the occupied sites of the matrix U of
Eq. (66).
Let us start and consider the electronic configurations in which |x′〉 is obtained from |x〉 just by
hopping the one electron from Rl to R′l, i.e., |x′〉 = d†R′

l
dRl
|x〉. The new matrix Ũ′ will be equal

to Ũ, except that the elements of the l-th row will be changed from URl,α to UR′
l,α

Ũ′ =


UR1,1 . . . UR1,Ne

... . . . ...
UR′

l,1
. . . UR′

l,Ne

... . . . ...
URNe ,1

. . . URNe ,Ne

 . (71)

Then, the ratio between two configurations that differ only by a single fermion hopping is

〈x′|Φ0〉
〈x|Φ0〉

=
〈x|d†Rl

dR′
l
|Φ0〉

〈x|Φ0〉
=

det Ũ′

det Ũ
. (72)

By denoting withK the new site of the l-th electron (i.e., K ≡ R′l), the updated matrix elements
are given by a compact form

Ũ ′j,α = Ũj,α + δj,l(UK,α − Ũl,α) = Ũj,α + δj,lv
K,l
α , (73)

where we have defined vK,lα ≡ UK,α− Ũl,α; here the indicesK and l are fixed, since they specify
the site where the electron is hopping and the electron index, respectively. This equation can be
rewritten in the following way

Ũ ′j,α =
∑
β

Ũj,β

(
δβ,α + Ũ−1β,l v

K,l
α

)
=
∑
β

Ũj,βQβ,α , (74)

where
Qβ,α = δβ,α + Ũ−1β,l v

K,l
α . (75)

Therefore, Ũ′ = ŨQ, which implies that the calculation of the ratio of the determinants of Ũ′

and Ũ is equivalent to the calculation of the determinant of Q

det Ũ′

det Ũ
= detQ. (76)
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The great simplification comes from the fact that the determinant of Q can be easily computed.
Indeed, Q has a particularly simple form that can be written as

Qβ,α = δβ,α + BβAα, (77)

where Bβ = Ũ−1β,l and Aα = vK,lα . Although the matrix is not Hermitian, the eigenvalues of the
matrix Q can be obtained from the secular equation∑

α

Qβ,αυα = λυβ; (78)

by using the explicit form of Eq. (77), we obtain

υβ + Bβ
∑
α

Aαυα = λυβ, (79)

which implies that all vectors υα that are orthogonal to Aα are eigenvectors with eigenvalue
λ = 1 (there are Ne − 1 of such vectors); in addition, υα = Bα is also eigenvector with
λ = 1 +

∑
αAαBα =

∑
α UK,αŨ

−1
α,l . Therefore, we have that

det Ũ′

det Ũ
= detQ =

∑
α

UK,αŨ
−1
α,l . (80)

Having stored (at the beginning of the simulation) the matrix Ũ−1 for the configuration |x〉, this
calculation requires O(Ne) operations, instead of the O(N3

e ) needed to evaluate a determinant.
Then, once the new configuration |x′〉 is accepted along the Markov process, the matrix Ũ−1

must be updated. This can be done in O(N2
e ) operations. In fact, we have that (Ũ′)−1 =

Q−1Ũ−1, the inverse of the matrix Q being given by (as easily verified)

Q−1α,β = δα,β −
1

detQ
BαAβ. (81)

Then, the updated matrix elements of (Ũ′)−1 are given by

Ũ−1′α,j = Ũ−1α,j −
Ũ−1α,l
detQ

(∑
β

UK,βŨ
−1
β,j − δl,j

)
. (82)

This is a closed equation for updating the matrix Ũ−1.
We would like to emphasize that the previous results for the calculation of the ratio of determi-
nants and the updating can be further simplified. Indeed, at the beginning of the calculation, we
can compute and store a 2L×Ne matrix W, whose elements are given by

WI,j =
∑
α

UI,αŨ
−1
α,j ; (83)

then the ratio of determinants (80) costs O(1) operations, since it consists in taking the element
corresponding to the new site (row) and the electron performing the hopping process (column)

det Ũ′

det Ũ
= WK,l. (84)
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The evaluation of W requires the knowledge of the full matrix U, which has been computed and
stored once for all at the beginning of the simulation (it does not depend upon the electronic
configuration), and Ũ−1, which instead depends upon the configuration |x〉. Then, a simple
updating scheme for W is possible. In fact, by multiplying both sides of Eq. (82) by UI,α and
summing over α, we obtain

W ′
I,j = WI,j −

WI,l

WK,l

(WK,j − δl,j) , (85)

where, we have used that detQ = WK,l, according to Eq. (84) and the definition of Eq. (83).
Since each matrix element must be updated with O(1) operations, the total cost is O(2LNe).
Let us finish this part by generalizing the previous formalism to the case where more than one
electron hop, i.e., |x′〉 = d†R′

l1

dRl1
. . . d†R′

lm

dRlm
|x〉, thus leading to a modification of m rows of

the Ũ matrix; for example, this could be the case for pair-hopping or spin-flip processes. Then,
Eq. (73) generalizes into

Ũ ′j,α = Ũj,α +
m∑
r=1

δj,lr(UKr,α − Ũlr,α) = Ũj,α +
m∑
r=1

δj,lrv
Kr,lr
α ; (86)

as before, the indices Kr and lr (for r = 1, . . . ,m) are fixed, because they specify the sites
where the electrons are hopping and the electron indices, respectively. By performing the same
algebra as before, we get

Ũ ′j,α =
∑
β

Ũj,β

(
δβ,α +

m∑
r=1

Ũ−1β,lrv
Kr,lr
α

)
=
∑
β

Ũj,βQβ,α, (87)

where now the matrix Q has the following form

Qβ,α = δβ,α +
m∑
r=1

BrβArα, (88)

where Brβ = Ũ−1β,lr andArα = vKr,lr
α . As before, the determinant of Q can be easily computed by

solving the corresponding eigenvalue problem

∑
α

Qβ,αυα = υβ +
m∑
r=1

Brβ
∑
α

Arαυα = λυβ, (89)

which implies that all vectors that are orthogonal to the subspace defined by theArα’s are eigen-
vectors with λ = 1; moreover, υα =

∑m
r=1 xrBrα is an eigenvector provided that the coefficients

xr satisfy
m∑
s=1

(
δr,s +

∑
α

ArαBsα

)
xs = λxr. (90)

Therefore, the m non-trivial eigenvalues of Q are those of the m×m matrix

Cr,s = δr,s +
∑
α

ArαBsα = WKr,ls . (91)
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The final expression of the ratio of the two determinants is given by

det Ũ′

det Ũ
= det(WKr,ls). (92)

Also in this case, once the move is accepted, we have to update the matrix (Ũ′)−1 = Q−1Ũ−1.
As before, the inverse of the Q matrix can be obtained

Q−1α,β = δα,β −
m∑

r,s=1

BrαC−1r,sAsβ . (93)

Therefore, we get

Ũ−1′α,j = Ũ−1α,j −
m∑

r,s=1

Ũ−1α,lrC
−1
r,s

(∑
β

UKs,βŨ
−1
β,j − δls,j

)
. (94)

Then, the updated W′ is obtained by multiplying both sides of the previous equation by Ui,α
and summing over α

W ′
I,j = WI,j +

m∑
r=1

WI,lrb
(r)
j , (95)

where

b
(r)
j = −

m∑
s=1

C−1r,s
(
WKs,j − δls,j

)
. (96)

5.4 Backflow correlations

Here, we would like to discuss how to implement the updating of the determinant part in the
presence of backflow correlations that have been introduced on lattice problem. In practice, we
consider a quadratic Hamiltonian to construct the non-interacting orbitals {UI,α}, see Eq. (61).
In the simplest approach, in which the backflow correlations act on holon-doublon (nearest-
neighbor) pairs [33], the overlap between the generic configuration |x〉 and the backflow wave
function |Φb0〉 is constructed from the “correlated” orbital with backflow correction

U b
I,α = η0UI,α + η1

∑
〈j〉i

DiHjUJ,α, (97)

where I = i (I = i + L) for electrons with spin up (down), and equivalently for J and j; 〈j〉i
indicates the sites j that are nearest neighbors of i; Di (Hi) is the operator that gives 1 if the
site i if doubly occupied (empty) and 0 otherwise; finally η0 and η1 are variational parameters.
Then, the wave function for the given configuration |x〉 is obtained by taking the determinant of
the matrix

Ũb =

 U b
R1,1

. . . U b
R1,Ne

... . . . ...
U b
RNe ,1

. . . U b
RNe ,Ne

 , (98)

in which the rows correspond to the sites occupied by the electrons.



5.22 Federico Becca

In practice, we can consider more general forms for the “correlated” orbitals, by considering
further terms [34], but still remaining with the spirit of considering a linear combination of non-
interacting orbitals depending on the many-body configuration |x〉 (in the previous case, the
linear combination is taken for configurations having holons and doublons at nearest-neighbor
sites).

6 Optimization techniques

6.1 Calculation of derivatives

In this section, we consider wave functions that depend upon a set of p variational parameters,
which are arranged into a vector α = (α1, . . . , αp) and explicitly specified in the definition of
the quantum state

Ψα(x) = 〈x|Ψα〉, (99)

In the following, we discuss the basics ingredients that are necessary to compute the derivatives
of the variational energy with respect to a given variational parameter αk

fk = −
∂Eα
∂αk

= − ∂

∂αk

〈Ψα|H|Ψα〉
〈Ψα|Ψα〉

. (100)

The dependence of Eα on the variational parameters is just a consequence of the fact that the
wave function |Ψα〉 depends upon α. Thus, in order to differentiate Eα, it is convenient to
expand |Ψα〉 for small changes αk → αk + δαk. For a given configuration |x〉, where Ψα(x) is
a complex number (in case of complex parameters, we can assume that all the αk are real, once
we consider their real and imaginary parts separately), we have that

Ψα+δαk
(x) = Ψα(x) + δαk

∂Ψα(x)

∂αk
+O(δα2

k), (101)

where the notation Ψα+δαk
(x) means that only the component αk of the vector α has been in-

cremented by δαk. In the following, for simplicity, we assume that Ψα(x) 6= 0 for all the config-
urations. For fermionic systems in the continuous space, the nodal region Ψα(x) = 0 represents
a negligible (i.e., with zero measure) integration domain. On the lattice, accidental configu-
rations with Ψα(x) = 0 can be removed by considering a tiny perturbation of the variational
Ansatz (e.g., by adding a small noisy part) and considering the limit of vanishing perturbation.
Then, Eq. (101) can be formally written in terms of a local operator Ok, corresponding to the
parameter αk and defined by diagonal matrix elements Ok(x)

〈x|Ok|x′〉 = δx,x′Ok(x), (102)

Ok(x) =
∂ lnΨα(x)

∂αk
=

1

Ψα(x)

∂Ψα(x)

∂αk
; (103)

here, in principle, Ok(x) may depend upon the variational parameters α, however, to keep the
notation simple, we prefer not to put the label α in the local operators. The important point is
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that Ok(x) can be usually computed for the given Ansatz of the variational state. In this way,
we can write a formal expansion of the many-body state as

|Ψα+δαk
〉 = (1 + δαkOk)|Ψα〉, (104)

which can be readily verified by taking the overlap of both sides of the above equation with
|x〉 and using Eqs. (102) and (103). Notice that the diagonal operator Ok is not necessarily
Hermitian, as its diagonal elements are not necessarily real, for a generic complex case.
Let us now show how to obtain the explicit form of the energy derivative with respect to a
given variational parameter. It is clear that the variational energy Eα (as well as any other
correlation function) does not depend on the overall normalization (and global phase) of the
wave function. In other words, by scaling the wave function by an arbitrary complex constant
c, i.e., |Ψα〉 → c|Ψα〉, Eα remains unchanged. In order to exploit this property, it is better to
consider explicitly normalized wave functions. First of all we define

|v0,α〉 ≡
|Ψα〉
||Ψα||

, (105)

where ||Ψα|| indicates the norm of the state |Ψα〉. Then, we define a set of states (one for each
value of k = 1, . . . , p)

|vk,α〉 ≡ (Ok −Ok)|v0,α〉, (106)

where

Ok = 〈v0,α|Ok|v0,α〉 =
〈Ψα|Ok|Ψα〉
〈Ψα|Ψα〉

. (107)

The states |vk,α〉 are orthogonal to |v0,α〉, as easily verified when using Eq. (107); however,
they are neither normalized nor orthogonal to each other, i.e., in general 〈vk,α|vk′,α〉 6= δk,k′ for
k, k′ 6= 0. Therefore, the set of states |v0,α〉 and {|vk,α〉} defines a semi-orthogonal basis.
In order to compute the normalized wave function when the parameter αk is changed, we first
compute the norm of |Ψα+δαk

〉

||Ψα+δαk
||2 = 〈Ψα|(1 + δαkOk)∗(1 + δαkOk)|Ψα〉

= ||Ψα||2
[
1 + 2<(δαkOk) +O(δα2

k)
]
. (108)

Then, we have that

|v0,α+δαk
〉 = |Ψα+δαk

〉
||Ψα+δαk

||
= |v0,α〉+

[
δαkOk −<(δαkOk)

]
|v0,α〉+O(δα2

k)

= [1 + i=(δαkOk)]|v0,α〉+ δαk|vk,α〉+O(δα2
k), (109)

which can be finally recast as

|v0,α+δαk
〉 = exp(iδφ) [|v0,α〉+ δαk|vk,α〉] +O(δα2

k), (110)

where δφ = =(δαkOk).
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By using the above expression, it is immediate to work out the derivative of the variational
energy Eα with respect to a given variational parameter αk

∂Eα
∂αk

= lim
δαk→0

〈v0,α+δαk
|H|v0,lpha+δαk

〉 − 〈v0,α|H|v0,α〉
δαk

= 〈vk,α|H|v0,α〉+ 〈v0,α|H|vk,α〉

= 2<
[
〈Ψα|H(Ok −Ok)|Ψα〉

〈Ψα|Ψα〉

]
.

(111)

Notice also that, as expected, the phase factor δφ does not enter in the above expression.
In order to evaluate the force fk by a standard Monte Carlo sampling, we introduce a complete-
ness relation to have

fk = −2<
[∑

x〈Ψα|H|x〉〈x|(Ok −Ok)|Ψα〉∑
x〈Ψα|x〉〈x|Ψα〉

]
=

= −2<

[∑
x

e∗L(x)(Ok(x)−Ok)|Ψα(x)|2∑
x |Ψα(x)|2

]
, (112)

where e∗L(x) is the complex conjugate of the local energy (here, we omitted the index α, in
harmony with the notation adopted for the local operators Ok), as it is generally a complex-
valued function. Then, fk can be evaluated by considering

fk ≈ −2<

[
1

N

N∑
i=1

e∗L(xi)
(
Ok(xi)−Ok

)]
, (113)

Ok ≈
1

N

N∑
i=1

Ok(xi). (114)

6.2 The stochastic reconfiguration

The knowledge of energy derivatives of Eq. (100) allows us to employ the steepest-descent
method [35] to change the variational parameters α = (α1, . . . , αp), even when p is very large

α′k = αk + δαk, (115)

δαk = ∆fk, (116)

where ∆ is an arbitrary (small) constant. In principle, its value can be optimized to reach the
lowest possible energy at each iteration; however, in most applications, it is common practice
to keep ∆ constant along the minimization procedure. Then, the variational parameters are
iteratively improved along a Markov chain procedure. In absence of noise, the steepest-descent
method always converges to a minimum, where the Euler conditions fk = 0 are satisfied.
Indeed, let us suppose that fk 6= 0, then the energy for α′ is given by a Taylor expansion to
linear order in ∆

Eα′ = Eα +
∑
k

∂Eα
∂αk

δαk +O(∆2) = Eα −∆
∑
k

f 2
k +O(∆2), (117)
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where we used that ∂Eα/∂αk = −fk and δαk = ∆fk. Therefore, for small ∆, when the linear
truncation is accurate enough in the Taylor expansion, we obtain that

∆E ≡ Eα′ − Eα = −∆
∑
k

f 2
k ≤ 0; (118)

here, the equality sign holds only when fk = 0. Thus, the method converges to a minimum for a
large number of iterations just because the energy monotonically decreases with the number of
iterations. Within the steepest-descent method only the first derivative of the energy is computed
and it is certain that a small change of the parameters δα = (δα1, . . . , δαp) parallel to the force
f = (f1, . . . , fp) will decrease the energy; the only issue concerns the size of ∆, which must be
taken sufficiently small to make the quadratic term in Eq. (117) negligible.
Although the steepest-descent approach eventually converges to a local minimum, its effec-
tiveness may suffer from cases where the dependence on the variational parameters is highly
non-linear (e.g., in the Jastrow factors). In this case, a small change of a given variational
parameter can produce very different wave functions and physical quantities, whereas another
parameter may weakly affect the wave function. In order to overcome these difficulties, it is
important to introduce an appropriate metric δs2 that is used to estimate the “proximity” of two
normalized (complex) wave functions |v0,α〉 and |v0,α+δα〉

δs2 = minδθ|| exp(−iδθ)v0,α+δα − v0,α||2. (119)

Here, the minimization on the phase factor δθ is necessary because we do not want to distinguish
between two wave functions that differ only by an overall phase factor, as they produce the same
correlation functions. In other words, we want to define a distance δs2 that vanishes when we
have physically equivalent wave functions. Then, we replace in Eq. (119) the expression for
|v0,α+δα〉 that is obtained by generalizing Eq. (110) to the case where several parameters are
changed

|v0,α+δα〉 = exp(iδφ)

[
|v0,α〉+

∑
k

δαk|vk,α〉

]
+O(|δα|2), (120)

where δφ =
∑

k =(δαkOk). Now, the minimization over δθ gives δθ = δφ, thus leading to

δs2 =
∑
k,k′

〈vk,α|vk′,α〉δαkδαk′ +O(|δα|2). (121)

Since all increments δαk are assumed real (as discussed previously, here we assume that all
parameters are real), we can symmetrize the previous expression with respect to the indices k
and k′ and neglect the terms that are O(|δα|2), obtaining

δs2 =
1

2

∑
k,k′

(〈vk,α|vk′,α〉+ 〈vk′,α|vk,α〉) δαkδαk′ . (122)

In this way, we can finally identify a matrix S that fully determines the metric in the space of
normalized wave functions

Sk,k′ = < (〈vk,α|vk′,α〉) , (123)
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which implies that the distance between two wave functions reads

δs2 =
∑
k,k′

Sk,k′ δαkδαk′ . (124)

At this point, it is natural to improve the steepest-descent method by using the metric given by S.
The minimization of∆E+µδs2 with the metric δs2 given in Eq. (124) improves the convergence
to the minimum of the variational energy with respect to the simple steepest-descend approach,
as non-equivalent parameters can be appropriately changed with a different scale. This approach
is called stochastic reconfiguration [16]. The minimization of ∆E + µδs2 gives∑

k′

Sk,k′ δαk′ =
fk
2µ
, (125)

which is a set of linear equations for the unknown vector δα. After having solved this lin-
ear system, we can update the variational parameters until convergence is reached; as in the
steepest-descent method, we can set ∆ = 1/(2µ) small enough, which may be kept fixed dur-
ing the optimization. We would like to stress the fact that, since the matrix S is strictly positive
definite, the energy is monotonically decreasing along the optimization as

∆E = −∆
∑
k,k′

S−1k,k′fkfk′ < 0. (126)

Within a Monte Carlo procedure, the matrix S is evaluated by a finite sampling of N configura-
tions {xi} as

Sk,k′ ≈ <

[
1

N

N∑
i=1

(Ok(xi)−Ok)(Ok′(xi)−Ok′)

]
; (127)

note that the forces are computed in a similar way, see Eq. (113).

7 Selected results

Here, we would like to show a few selected results that have been obtained by using Jastrow-
Slater wave functions, also including backflow correlations. First of all, we would like to em-
phasize the importance of the long-range tail in the Jastrow factor, in order to correctly repro-
duce the strong-coupling regime of the Hubbard model. In Fig. 1, we report the variational
energies for the one-dimensional Hubbard model at half filling for two different clusters with
L = 18 and 82 sites. The Slater determinant is obtained by filling the lowest-energy states of
a the quadratic Hamiltonian (56) with only nearest-neighbor hopping (dubbed as “Fermi sea”).
The comparison is between the cases with (on-site) Gutzwiller and (long-range) Jastrow factors.
It is well known that, the fully-projected Gutzwiller state gives very accurate energies for the
Heisenberg model [36]. Instead, considering the Hubbard model with finite repulsion U/t, it
turns out that, in the strong-coupling limit, the Gutzwiller state gives a rather poor variational
description, missing completely the super-exchange energy generated by the virtual-hopping
processes. This happens because, by increasing U/t, the Gutzwiller parameter g increases, and
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Fig. 1: Energy per site (in units of 4t2/U ) for the one-dimensional Hubbard model at half
filling. The results for wave functions in which the Gutzwiller and Jastrow factors are applied
to the Fermi sea are reported for two cluster sizes (L = 18 and 82). The arrow indicates the
energy per site for the fully-projected Fermi sea in the Heisenberg model.

the hopping processes, which create double occupancies, become less probable, with a conse-
quent kinetic-energy loss. By contrast, the long-range Jastrow factor enables us to connect the
fully-projected insulator valid in the strong-coupling limit to an insulating state at finite U/t, as
demonstrated by the fact that the variational energy of |ΨJ〉 approaches the one calculated with
the fully-projected Gutzwiller wave function.
In two dimensions (or for frustrated one-dimensional cases, with next-nearest-neighbor hop-
ping t′), the situation is more delicate: the Jastrow factor is no longer sufficient to correctly
reproduce the ground-state properties in the strongly-correlated regime and, in many cases,
backflow correlations are necessary to reach high accuracies. For example, we consider the
Hubbard model with t′ = 0 and t′/t = 0.7, for two different variational wave functions. The
first is constructed by applying a Jastrow factor on top of a BCS state, which is suitable to
describe non-magnetic (i.e., spin-liquid) states. The second is obtained from a quadratic Hamil-
tonian that explicitly includes antiferromagnetic order, to describe a magnetically ordered phase

HAF = −t
∑
〈i,j〉,σ

c†i,σcj,σ + h.c.+∆AF

∑
j

(
ei Q·Rjc†j,↑cj,↓ + e−i Q·Rjc†j,↓cj,↑

)
, (128)

where 〈. . . 〉 indicates neighboring sites and Q = (π, π) is the pitch vector for the Néel order.
In order to have the correct spin-spin correlations at large distance, we can apply a long-range
spin Jastrow factor

Js = exp

[
−1

2

∑
i,j

ui,jS
z
i S

z
j

]
, (129)
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Fig. 2: Energies per site (in units of J = 4t2/U ) for the two-dimensional Hubbard model at
half filling, for both the unfrustrated (t′ = 0) and frustrated (t′/t = 0.7) case. The cases with
and without backflow correlations are reported (for the BCS state). The results for the wave
function with antiferromagnetic order and no BCS pairing are also shown. Arrows indicate the
energies per site for the corresponding fully-projected states in the Heisenberg model.
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Fig. 3: Phase diagram of the t-t′ Hubbard model at half-filling with the metallic phase with
gapped spin excitations (C1S0) and the insulating phase with gapless spin excitations (C0S1).
The insulating phase with gapped spin excitations (C0S0) has regions with commensurate (Q=π
and Q = π/2) and incommensurate (Q incomm) spin-spin correlations.

where Szi=1/2(ni,↑−ni,↓) and ui,j is a pseudo-potential that can be optimized for each indepen-
dent distance. In analogy with the density Jastrow factor of Eq. (45), it governs spin fluctua-
tions orthogonal to the magnetic field ∆AF [37]. It is important to stress that the uncorrelated
state, obtained from Eq. (128), can easily satisfy the single-occupancy constraint by taking
∆AF →∞. In this limit, it also contains the virtual hopping processes, which are generated by
the kinetic term, implying that it is possible to reproduce super-exchange processes.

The results for the energies of these two variational states are reported in Fig. 2. In general, the
results for the Hubbard model (at finite interaction U/t) are not smoothly connected to the ones
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Fig. 4: Schematic phase diagram for the two-dimensional Hubbard model by varying U/t and
the filling factor δ = 1−n (where n is the density of electrons). The red star labels the location
of the hidden Mott transition UMott/t at half filling. The black line with black dots denotes the
boundary of the phase-separation region, that shrinks for U/t & UMott/t. The dashed blue line
with blue dots marks the disappearance of ∆AF in the variational state. The dashed red line
indicates the boundary of the region where sizable pairing correlations are detected. Finally,
in the shaded gray region finite-size effects are strong and precise results cannot be obtained in
the thermodynamic limit.

obtained with the fully-projected states and the Heisenberg model, except for the unfrustrated
case with t′ = 0 and the antiferromagnetic wave function. However, thanks to backflow cor-
relations, it is possible to obtain a correct extrapolation to the infinite-U limit. The importance
of backflow correlations is extremely important in the frustrated case, where they are essential
also for improving the accuracy of the antiferromagnetic wave function.
Therefore, by using Jastrow-Slater states, which include backflow correlations, it is possible to
get quite accurate results in a variety of models. As an example, we report the phase diagram
of the t-t′ Hubbard model in one dimension at half filling, see Fig. 3 [38]. There are three main
phases: one is stabilized for small values of the frustrating ratio t′/t, which is gapless in the spin
sector and gapped in the charge one (denoted by C0S1); another, for small values of U/t and
sufficiently large t′/t, which is gapless in the charge sector and gapped in the spin one (C1S0);
and the last one, for large U/t and t′/t, which is fully gapped and dimerized (C0S0).
As a final example, we show the phase diagram that is obtained for the two-dimensional Hub-
bard model, as a function of U/t and the filling factor δ = 1−n, see Fig. 4 [39]. Here, the anti-
ferromagnetic phase, which is stable at half filling (i.e., δ = 0), gives rise to phase separation at
small values of the interaction strength. Remarkably, these results suggest that a reminiscence
of the Mott transition, hidden by the antiferromagnetic phase at half-filling, emerges after a
careful analysis of the BCS pairing. This hidden Mott transition is intimately related with the
change from Slater to Mott antiferromagnetism, the former being related to a Fermi surface in-
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stability towards antiferromagnetic order, while the latter being connected to a super-exchange
mechanism. For Coulomb interactions that are smaller than this “critical” value, the system is
unstable towards phase separation and there is no strong evidence that superconductivity may
emerge; by contrast, for larger values of U/t, hole doping drives the Mott antiferromagnet into a
homogeneous superconducting phase, with the condensation energy gain shifting from potential
to kinetic by increasing U/t.

8 Conclusions

Variational wave functions, such as Jastrow-Slater states, represents a very powerful and use-
ful tool to investigate strongly-correlated systems on the lattice. In the recent past, there has
been increasing evidence that it is possible to construct many-body states that may compete
with other numerical methods, such as density-matrix renormalization group or its recent de-
velopments based upon tensor networks [40]. Future developments, in which neural networks
may be used to generalize the Jastrow factor and better describe correlation effects [41], may
be beneficial to solve the many-body problem.
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