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Preface

Emergent many-body phenomena are at the core of the exciting properties of strongly-correlated
materials. Understanding them requires confronting the many-body problem. While, at first,
this appears to be an impossible task, substantial progress has been made by combining physi-
cal insights with modern numerical approaches. A successful strategy is to devise methods that
use the understanding gained from simple models for the construction of physically motivated
wave-functions. Results for the ground state of real materials can then be obtained by opti-
mizing them via deterministic or stochastic algorithms. The methods of choice for determining
spectra are instead based on Green functions. The key idea is to map the complex realistic
many-body Hamiltonian to a simpler auxiliary model that can be solved numerically.

This year’s school will provide an overview of the state-of-the art of these techniques, their
successes and their limitations. After introducing fundamental models and key concepts, lec-
tures will focus on quantum Monte Carlo for optimizing correlated wave-functions, stochas-
tically sampling series expansions for obtaining Green functions, and renormalization group
techniques. Advanced lectures will address approaches to Mott physics, transport phenom-
ena, and out-of-equilibrium dynamics. Applications will cover correlated systems ranging from
transition-metal compounds and frustrated spin systems to correlated molecules.

The goal of the school is to introduce advanced graduate students and up to these modern
approaches for the realistic modeling of strongly-correlated materials.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jiilich and the Jiilich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school and the production of
this book. The Institute for Complex Adaptive Matter (ICAM) supported selected international
speakers and participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jiilich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Julian MuBhoff, Neda Samani, Qian
Zhang, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hélzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, and Shiwei Zhang

August 2019
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1.2 Xavier Blase

1 Overview

We present in this Chapter a brief overview of Density Functional Theory (DFT), an exact
mean-field formalism for calculating ground-state total energies and charge densities. Several
excellent books are devoted to DFT and two are listed in the bibliography [1,2]. At the heart
of DFT lies the idea that there is no need to know the details of the many-body wavefunction
to calculate ground-state properties: the knowledge of the electronic density p(r), a simple 3D
scalar function, is enough to obtain the total energy of the system and all quantities that result
(atomic structures, binding or atomization energies, elastic constants, phonon energies, activa-
tion barriers, the forces needed for molecular dynamics simulations, etc.) As an exact theorem,
DFT applies to simple Fermi-liquid-like systems but also to strongly correlated materials.

Unfortunately, the DFT does not say how exactly the ground-state total energy depends on the
ground-state electronic density. In practice, approximations are needed to express the kinetic
energy and the many-body electron-electron interaction as a “functional” of p(r). One thus
leaves exact DFT and enters the difficult world of approximations with their specific range of
validity. Here comes a second remarkable feature of DFT, namely that very simple approxima-
tions for such functionals, including the local density approximation (LDA), deliver excellent
results, such as interatomic bond lengths within 1% of experimental data for a very large num-
ber of systems. Such an accuracy, combined with the simplicity of DFT that allows to study
systems comprising several hundred atoms, can explain the formidable success of DFT in terms
of the number of users and systems studied, with the development of very efficient and easy-to-
use codes. This success can certainly contribute to explain that the 1998 Chemistry Nobel prize
was awarded to Walter Kohn (and John Pople) for the development of DFT.

It remains, however, that DFT in its original formulation is limited to ground-state properties.
As such, the field of electronic excitations, and in particular charged excitations as measured
in a photoemission experiment for establishing “band-structures” does not formally lie within
the reach of DFT. Fortunately, and unfortunately, a specific implementation of DFT, the Kohn-
Sham formalism, introduces auxiliary one-body eigenstates and eigenvalues that are very widely
used to calculate electronic energy levels. The rationale for doing so is not firmly established,
but very valuable information about band dispersions, orbital shapes, etc. are usually obtained
for “not-strongly-correlated” systems. Specific limitations are well established (too small band
gaps, underbinding of localized states, etc.) that may find a partial cure by considering “gener-
alized DFT” namely a mean-field approach combining DFT and Hartree-Fock: this is the field
of hybrid functionals.

Clearly, there is the need for more solid foundations allowing, to build a formal link between
DFT and excited states. This is where we stand nowadays, with a healthy competition between
the world of DFT, attempting to bridge the gap with excited states properties, and other ap-
proaches that abandon mean-field techniques to tackle the explicit many-body problem, but at a
cost that needs to be improved to compete in the study of large systems. This will be the subject
of most of the other chapters in this book.
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2 The many-body problem (selected considerations)

We start this chapter with a short reminder of quantum mechanics for many-particle (elec-
trons) systems. The quantum states of an N-electron system are described by a wavefunction:
(11071, r909, ...,ryoy) With r; and o; space and spin variables. The probability to find NV elec-
trons with spins (o4, ..., o) in the infinitesimal volume dr;drs;...dry centered at ry,rs, ..., Ty
is given by d*NP = |(ry01, 1909, ..., yoy)|2dridry...dr . By definition, the electron density
can be found by integrating over /N —1 spacial-variables and summing over all spins

p(r) = N/dade...de |Y(ro, 2o, ..., zn)|*  where x; = (r;,0)

with p(r)dr the number of electrons in the infinitesimal volume dr centered at r. From the nor-
malization of ¢ one obtains | dr p(r) = N. The charge density can be obtained by multiplying
by the elementary charge (—e). Note that it is customary to use the wording charge density for
electron density.

The electronic Hamiltonian is actually known (atomic units):

_ __sz n Zvlon r;) + Z = TJ‘ with v (r Z \RI T (1)

where we did not include the kinetic energy of the ions. v is the ionic potential acting on
electrons with {R;, Z;} the nuclear positions and charges. The energy of the system is given
by the “expectation value” of the Hamiltonian (let’s forget spin)

(| H|w) = / | ./drldrg...dr]v G ({r)) H({ry, (Ve}) ¢({r)).

As such, it may seem that quantum mechanics is easy, with first-principles equations and for-
malisms developed in the first half of the 20th century. Let’s consider, however, the energy of
a very small system, the water molecule with its 10 electrons. Let’s assume that we want to
calculate its total energy for some wavefunction v (let’s not even ask how we obtained it ...)
Applying naively some quadrature (e.g. trapezoidal rule) to calculate such an integral by paving
the space around the molecule with a coarse 10x10x 10 grid, one obtains for N=10 electrons
a sum of 103¥=10% terms to calculate and add. Modern computers are “petaflopic”: they per-
form 10 floating point operations per second. We would therefore need of the order of 10°
seconds, namely 31710 millennia for this simple evaluation! Clearly, the way we calculated
this integral was very dumb, and clever sampling of phase space can be done much more effi-
ciently using, e.g., Metropolis sampling. It remains that the exact many-body problem becomes
dramatically expensive as soon as the number of electrons increases. Computers are handy, but
the brains of the physicists and chemists to come up with nice approximations are luckily still
required.

We now start by introducing simple considerations demonstrating that one does not always
need all the details of the complex many-body wavefunction to calculate a physical observable.
Unless stated otherwise, we will not display spin variables in the following for sake of brevity
of the equations.
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2.1 One and two-body operators act on the charge and pair density

Let us consider one-body operators, namely operators of the form O = Zfil O(r;), where the
{r;} are the electronic positions. In particular, the electron-ion interaction energy is given by

B = 5 (o (r,) 1) with
<¢‘vi°"(ri)|1/z> = /drldrg...drN vi"“(ri) ‘@b(rl,rg,...,ri,...,rN)‘2

= /dr drs ... dry v (r) [¢(r, T, . .. ,I‘N)‘Q
where we have renamed all variables, in particular r; = r, and reshuffled all space positions
thanks to the symmetry properties of |1)|?. As a result, all N terms are identical, yielding

EW:N/MMWﬂ/m%dmwmmnﬁﬂﬁ:/ﬁw%Ww-

As such, v'°" acts only on the electronic (or charge) density: there is no need for the full many-
body wavefunction and its related 3 N-integrals to get the E'°" energy!

To conclude this paragraph, one can introduce another one-body operator, the electron den-
sity operator, j(r) = Y., §(r — r;), that “counts” the number of electrons at r. The same
demonstration as above (exercise!) allows to recover the expression for the electronic density:
plr) = (BIp()[) = N [dry.dry [$(r,rs,... )]

Let’s now consider the crucial case of two-body operators. The electron-electron interaction
energy £ = (y|Ve|y) with Voo = S ; ﬁ can also be simplified by renaming and
reshuffling the integration variables:

2

1 !
<¢|—’1/1) = /drdr’dr3 ...dry Y, x5, )|
v — ;] Ir—r|

independent of the specific (i, j) indices, yielding N(N—1)/2 identical terms so that F¢ =
[drdr’ ps(r,x')/|r — r'| with

N(N-1

% /dr3 coodey (e, T, TP

which is the density of pairs satisfying [drdr/ps(r,r') = N(N—1)/2.

,02(1‘, I‘/) =

For calculating the complex electron-electron energy responsible for electronic corre-
lations, there is no need, in principle, for all the details of the many-body wavefunc-
tions and the related 3 /N -integrals: we only need averaged (mean-field) quantities such
as the 2-body pair-density! BUT we do not know at this stage how to build po(r, ')
without the knowledge of ).

2.2 Exchange-correlation hole and its sum-rule

Rewriting the pair density as 2ps(r,r’) = p(r)p(r’) [1 + h(r,r’ )], with R called the pair-
correlation function, one can express £°° in terms of the (charge-charge) Hartree energy J

1 , p(r)p(r’)
J = 3 /drdr —_—

v — |
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and the exchange-correlation (XC) hole density pxc(r,r’) := p(r')h(r,1’) as

Eee — J‘i_l/drdr/ p(r)ch(r7r/)
2 r—1r/|

It is easy to demonstrate (exercise!) that

/dr'pg(r,r’) = %p(r) and /dr’ pxc(r, ') =—1
yielding the XC-hole sum rule. The XC energy is the Coulomb energy between electrons and
their respective XC-hole, namely the depletion of the charge density by one electron (through
exchange and Coulomb repulsion) dynamically created around each electron. The 1/2 in the
XC energy is an adiabatic factor: the XC hole grows with the electron density and would not
exist without it.

The XC energy beyond the classical Hartree term can be written in a classical form as
the Coulomb interaction between an electron and its XC hole, namely the dynamical
depletion of exactly one charge created “locally” by Fermi and Coulomb repulsion.
Due to the XC sum rule, the composite object (a quasiparticle) made out of the elec-
tron dressed by its XC hole is a neutral object weakly interacting with its surrounding.
Independent-like particle theories, and related 1-body eigenvalue equations, are there-
fore more likely to be successful when applied to such quasiparticles.

3 Density functional theory

We have established that we do not need to know all the details of the many-body wavefunction
to obtain in particular the electron-electron interaction energy. The pair density is sufficient.
It can be shown further that the kinetic energy can be obtained from the knowledge of the
Ist-order density matrix: v, (r,r') = N [--- [dry---dry ¢(r,re, -+ ,rN)* (¥ 12, -+ ,TN)
which is also a 2-body function averaging out most of the many-body wavefunction degrees
of freedom. Density Functional Theory (DFT) goes one step beyond, demonstrating that the
ground-state (GS) total energy only requires the knowledge of the electronic density, very much
as for the action of the one-body ionic potential.

3.1 Hohenberg and Kohn theorems

Preliminaries: Room temperature is of the order of 25 meV, much smaller than typical elec-
tronic energy gaps or band dispersions, so most unperturbed (no strong light, etc.) solids or
molecules are close to their lowest energy state with wavefunction ¢)¢s and energy Egg.

The variational principle provides a way to find ©)¢s and energy Fggs:

Egs =min B[y] with E[y] = (p[H[y) and (y[y) =1
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This is the standard approach, where the energy is a functional of the many-body wavefunc-
tion . The dramatic result from Hohenberg and Kohn [3] is that the ground-state energy can
be written as a functional of the charge density:

Egs = mwin E] 2 Fis = min Elp] with /drp(r) =N.
o

This is an exact result, namely there is an exact mean-field theory for the problem of the ground-
state energy in /V-electron systems!

Demonstration for non-degenerate ground-states: The ionic potential acts on the charge
density and the electronic Hamiltonian (without ion-ion interaction) reads

H=T+V*+ /dr v (r)p(r)

with 7" the kinetic energy and v**!=¢'" (the ions are “external” to the N-electron system).
Theorem: given a charge density p(r), then there exist only one external potential v°**(r)
(within a constant) such that the corresponding ground-state electronic density is equal to p(r).

Reductio ad absurdum: Assume there exist 2 external potentials v{**(r) and v5**(r) that lead to
the same ground-state charge density:

vt (r) = H = 7% = p(r)
vst(r) = Hy = 5% = p(r)

Using the variational principle
EfS = <1/11|I:11|1/11> < <1/12|I:I1|1/12> = <¢2|ﬁ2|¢2> + <¢2’]:[1 — ﬁ2’¢2>
= E§S +/dr(vf’”t—v§“>(r)p(r)

Starting now from (15| H|1);) (switching indices 1 and 2) one obtains

B < B+ (o5 - o) m)oto)
and by adding the two inequalities
EY® + ESS < EJS + EFY®  IMPOSSIBLE!

The demonstration hinges here on strict inequalities, namely assuming non-degenerate ground-
states. This is the celebrated 1964 theorem by Hohenberg and Kohn [3].

Ground-state energy as a functional of the charge density: It follows that the charge density
completely determines the external potential and thus the Hamiltonian (just add the universal
kinetic 7" and V¢ operators) and thus the ground-state wavefunction ¥¢g:

vt — H  — Yas —  p(r)

t |
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Since p(r) determines g, it determines unequivocally the total energy of the ground-state,
Ecg = <1/105|H |thas). It can be shown further as a corollary (Exercise) that the variational
principle can be now used for Fgg as a functional of the charge density:

Egs = mwin E[) P Bog = mpin E[p] under the constraint that /dr p(r) = N.
Since the electron-ion interaction energy can be written explicitly as a functional of the charge
density, one concludes that the sum of the kinetic and electron-electron interaction energy is
also a functional of p(r) that is labeled the universal Hohenberg and Kohn functional F'y ]
with Fyk[p] = Egslp] — [ dr v (r)p(r). It is called universal since, contrary to the ionic
potential that depends on the system of interest via the ionic charges and positions, the kinetic
energy and electron-electron operators do not.

The basic ideas discussed in this section can be generalized without imposing the non-degeneracy
of the ground state, bypassing further the problem of the v-representability of a given density

p(r): can we always find some v°**

potential that leads to a given p(r)? This can be done within
the framework of Levy constrained-search formulation [4] that leads to the following definition

for the universal Hohenberg and Kohn functional
Firxelp] = min ([T + V*°[))
PY—p

This is formally the standard search over many-body wavefunctions, but with the constraint that
for a given density p, the search is restricted to many-body wavefunctions with (¢|p(r)|v)=p(r).
This further allows to define a kinetic energy and electron-electron interaction energy as inde-
pendent functionals of the charge density: 7T'[p] = {bn_lg (1h|T1b) and E°¢[p] = IJl_l}Ipl (ih|Vee|ap).

3.2 The Euler-Lagrange equation: a density-only formulation

The existence of E[p] with an associated variational principle allows performing energy mini-
mization with respect to the density under the constraint that the densities we consider integrate
to the total number of electrons N. We thus introduce the Lagrangian

2ol = ]+ (N = [ar i)

where 1 is a Lagrange parameter ensuring the conservation of the correct electron number. This
leads by differentiation to the stationary equation

082p, ] OFpk(p] | on
o) T o)
which is a simple 3D differential equation. Its solution is the ground-state charge density from
which the ground-state energy of the system can be calculated. This is dramatically simpler
than the original many-body wave-function formulation. Unfortunately, we just do not know
the universal functional F'y [p| expressing the kinetic energy and electron-electron interaction
as a function of the density. While functionals of the density for the electron-electron interaction
will be discussed and have met much success, one complicated issue remains, the kinetic energy

for which we provide now two limiting expressions.
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3.3 Kinetic-energy functionals: from hydrogen to the HEG

The first case is the well-known non-interacting homogeneous electron gas (the free-electron
gas) that obeys the following relations (see e.g. Kittel)
R’k N

d k}=3r"—
. an i 7TV,

3
T:gN€F with ep =

where V is the volume occupied by the N electrons, £/r the Fermi energy and 7’ the total kinetic
energy. In a homogeneous system, N/V is just the electronic density. It is traditional to rewrite

T

1.105 4
= (au) with —7r; = — =~ the Wigner-Seitz radius.
r2 3 N p

s

One may then “cook-up” some kinetic energy per electron

T 3 B L \2/3
o) = = 5 < g% (37%)

yielding the historical Thomas-Fermi (TF) kinetic energy functional approximation for inho-
mogeneous systems with position dependent densities p(r)

Trp = /dr p(r) t7F (p(r)) ~ 2.871 /dr p(r)®3 (au),

which is the first example of a local functional: the local kinetic energy density only depends
on the density at the same space point. Numerical tests have shown that such an approximation
is rather poor for real systems.

Another exact relation can be obtained for the hydrogen atom. In that case, the only occupied
orbital is the 1s orbital: ¢(r) = Ae™" (r in a.u.) with A some normalizing constant taken to be
positive. Since there is only one electron, the density reads p(r) = |4(r)[*. As such

7= =5 [ar 6wt = 5 [ de (Vo) - (Vo).

where we used integration by part with the wavefunction cancelling at infinity. Using now
¢(r) = /p(r), with p(r) positive, we obtain

B e N Y A 7O I W O\ /263
r= 5 Jar Vi =5 fa <2\r)<r>> ot

This expression, called the von Weizsicker functional, is yet another exact formula valid for a

given specific system, but clearly very different from the one given above for the homogeneous
gas. Anticipating the “gradient corrected functionals” we see that here the energy depends on
the density and its gradient.

The search for a universal functional for the kinetic energy turns to be much more challenging
than finding a decent functional for the electron-electron interaction. As such, “orbital-free”
DFT, namely a DFT based exclusively on the density, has not yet met much success despite its
remarkable simplicity.



DFT 1.9

3.4 Kohn-Sham formulation: introducing auxiliary 1-body orbitals

To bypass this problem of the expressing the kinetic energy as a functional of the density, Kohn
and Sham introduced in 1965 their famous approach [5]. The idea goes as follows: in the case
of a non-interacting electron system, electronic states can be described by one-body orbitals
{¢n(r)} arranged and populated by increasing energies {c,}. For such systems, the kinetic
energy and electronic density are easily calculated

Ty= 33" [dr i@V, and o) = 16 (x)

Can one imagine now a fictitious non-interacting electron gas submitted to an effective external
potential v*(r) such that its charge density is the same as that of the real interacting system?
Since the ground-state electronic density fulfills the Euler-Lagrange equation, the real and ficti-
tious systems should have the same Euler-Lagrange equation in each point, namely

8FHK[p] + Uion<r) _ a,I'O + Ueff(r> 7

Ip(r) Op(r)

yielding the definition of such an effective potential

I Furlp) — Ty)
dp(r) '

Introducing the classical (Hartree) charge-charge interaction potential

Hipy = 0710 _ [ ol
0= G = ]

Ueff(r) — Uion(r) +

with

Jp] = 1/drdr’ plx)p(r’)

v — |

[\)

one can write

eff (1) — pion(p) 1 o (r OExc|p]

with E'x¢ the DFT exchange-correlation energy
Exc =T[p] = Tolp] + E“[p] = Jp].

We observe that T'[p] and E°°[p| are still to be determined, but the standard argument is that
To[p] captures a significant fraction of 7'[p] so that an approximation performed on Ex is likely
to have less detrimental effects as compared to directly approximating 7'[p]. We observe that
within DFT, the exchange-correlation energy contains some correction to the kinetic energy, not
solely the deviation (£°¢|[p]—.J[p]) from the electron-electron interaction to the classical Hartree
term. Yet, what is the functional Ex¢[p]?
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4 Exchange-correlation functionals

The search for exchange-correlation functionals is the central on-going challenge within DFT
with decades of failures and difficult successes. Below, we very briefly review some key con-
siderations and terminology.

4.1 The local density approximation: Ceperley and Alder QMC data

Proposed in the seminal 1964 Hohenberg and Kohn paper, the local density approximation
(LDA), reminiscent of the Thomas-Fermi kinetic energy functional described above, relies on
the following approximation

Exclo] ~ / dr p(r)exc (p(r))

where it is assumed that the exchange-correlation energy per electron, exq(r), for an electron
located in r only depends on the local value of the electronic density p(r). Such an approx-
imation is strictly valid only in the limit of a homogeneous electron gas. The next step was
then taken by Ceperley and Alder [6] in 1986, who performed nearly exact (within numerical
accuracy) quantum Monte Carlo (QMC) calculations for the interacting homogeneous electron
gas (HEG) at various densities p"°™. For an homogeneous electron gas with homogeneous ionic
positive background, the Hartree and electron-ion energies cancel exactly. The calculated QMC

hom]

total energy E9MC|p contains thus the kinetic energy 7" and the (£°° — J) electron-electron

fom] for the non-

interaction beyond the Hartree term. Subtracting now the kinetic energy 7°|[p
interacting electron gas of same density, as given exactly by the Thomas-Fermi expression, one

obtains straightforwardly

B EQMC[phom} o TO[phom]

exc(p(r)) = N with  p"™" = p(r)
with /V the number of electrons for which the total energy is calculated in the QMC simulation
and p"™ = V//N. One may further subtract the exact exchange energy, namely the total energy

of the HEG in the Hartree-Fock approximation where the many-body wavefunction is described
by a single Slater determinant. This is a famous calculation performed by Dirac in 1930 [7],
yielding for the HEG exchange-energy

3kp _ —0.458 . Vo 4

E
WX_ P a.u. with Nng’g’,

with 7, the Wigner-Seitz radius, namely the radius of the sphere with volume V/N. Such an
expression can alternatively be expressed as a function of the electronic density, yielding the
Dirac exchange expression

. 33\’
EYme = —Cx /dr p(r)*3  with Cy = 1 (—) .
T
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By subtraction, one obtains the correlation-only energy per electron ¢ (p). The QMC data
points have been fitted by clever functional forms (Vosko-Wilk-Nusair [8], Perdew-Zunger [9],
etc.) that are used nowadays in standard DFT codes. We leave this section by noting that for the
HEG with cancelling Hartree and electron-ion interactions, the kinetic and exchange energies

add up to
HF 1.105 0.458
Eype = T -

(a.u.)

Ts

Without the exchange term, the HEG is unstable with no finite equilibrium 7 value.

Once the exchange-correlation energy is defined, one can proceed with solving the Kohn-Sham
equations associated with the fictitious non-interacting electron gas

(-% + veff(r)> Pn(r) = €ndn(r) with Ueff(r) = 0" (r) + VH(p<r)) + ch(p(r)) )

where we use the LDA exchange-correlation potential V55, (p(r)) = AELX2A(p(r))/0p(r).
Solving the Kohn-Sham equations yields the Kohn-Sham electronic energy levels {¢, } and the
Kohn-Sham eigenstates {¢,} from which the ground-state density and associated LDA total
energy can be obtained

N

plr) = Y |a(@)? and TO= (¢n] = V*/2/¢n)

n=1

o L / dr v""(r)p(r) + E"[p] + Epfalp)

where the sum extends over the /N lowest energy levels (ground-state at zero temperature).
An important aspect of such equations is that they are self-consistent: to obtain the {¢, } one
needs to solve the Kohn-Sham equations with a potential that depends via the density on ... the
{én}! In practice, one takes some guess input density pg, such as a simple superposition of
tabulated atomic densities, to build an input XC potential V;X¢, (po(r)) that allows obtaining a
first guess of Kohn-Sham orbitals. These orbitals allow to build an updated electronic density
and a related updated XC potential and Kohn-Sham Hamiltonian, leading to a updated set of
orbitals and density. When the input and output electronic densities and/or XC potentials are
the same, the self-consistent cycle is stopped, leading to the ground-state self-consistent density
and total energy. The technicalities of converging to the correct energy minimum (are there
local minima?) and of the convergence rate are difficult issues not dealt with here.

4.2 Structural properties within LDA: average impressive results

We now know how to calculate in practice the ground-state energy within the LDA approxi-
mation for a given system characterized by ionic positions and nuclear charges (defining the
v'°" potential) and the number N of electrons. We thus can, in particular, answer the important
question: how good is the LDA approximation? We must remember here that what we are tar-
geting with DFT are the ground-state total energy and charge density. Other observables, such
as electronic energy levels, are not in principle within the scope of what DFT is designed for.
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Fig. 1: (Left) Energy versus unit-cell volume for silver. =~ DFT energy data points
are fitted by some clever functional form (Birch-Murnagham fit). The energy minimum
gives the equilibrium volume and related lattice parameter as well as interatomic dis-
tances that can be compared to experiment (courtesy http://exciting-code.org/
beryllium-volume-optimization—for—-cubic—-systems). (Right) Calculated LDA
versus experimental phonon dispersion for silicon (from Ref. [13]).

We will come back to that point in the following Sections. In their original papers, Hohenberg,
Kohn, and Sham were actually critical about the potential success of the LDA, concluding that
for actual systems variations of the charge density were so strong that a model exact in the limit
of homogeneous distribution of charges appeared to have little chance of being successful.

We now present in Fig. 1 (left) the results of a standard numerical exercise consisting in finding
the equilibrium cell volume (or lattice parameter) for a solid using DFT (here silver in its FCC
structure). With the space group known, one can calculate the DFT total energy for various unit
cell volumes. The resulting calculated data points can be fitted by some polynomial law (or
a more adapted functional form such as the Birch-Murnagham law), yielding the equilibrium
volume at zero temperature for a given approximation to the XC potential. The associated error
for several functionals and several crystal families (metals, non-metals) are given in Table 1.
Considering non-metallic structures, that include typical covalent systems such as silicon and
diamond with very inhomogeneous density distributions, one finds that LDA predicts the lattice

Metals(14) Nonmetals (10)
LDA PBEsol PBE TPSS LDA PBEsol PBE TPSS
ME (A) -0.136  -0.039 0.046 0.039 —0.042] 0.026 [0.085| 0.066

MAE (A) 0.136  0.042 0.060 0.060 0.042 0.026  0.085 0.066

MRE (%)  -271 -076 095 0.74 0.56 1.35

MARE (%) 2.71 0.83 1.24  1.15 0.86 0.56 1.76 1.35

Table 1: Statistical data: mean error, mean absolute error, mean relative error MRE % and
mean absolute relative error MARE %, for lattice constants A of a selection of 14 metals and 10
nonmetals. Errors with respected to experimental data corrected for ZPAE (zero point anhar-
monic expansion) contribution. The PBEsol functional is a modification of PBE for solids [10]
while TPSS is a “metaGGA” functional [11] with a dependence on the density but also the
Laplacian V?p(r) proportional to the kinetic energy (adapted from Table IV from Ref. [12]).


http://exciting-code.org/beryllium-volume-optimization-for-cubic-systems
http://exciting-code.org/beryllium-volume-optimization-for-cubic-systems
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Fig. 2: (Left) Charge density for solid argon along an interatomic bond comparing LDA with the
so-called quasiparticle self-consistent QPscGW approximation (from Ref. [14]). (Center and
Right) LDA versus variational Monte Carlo (VMC) one-body density matrix and spherically
averaged XC hole pxc(r; R) for Silicon (from Ref. [15]).

parameters of solids with an average accuracy well within 1% (see boxed numbers). This is a
remarkable results for an approach that is very simple and relies on a approximation assumed
to be valid only for systems with homogeneous charge densities (e.g. alkali metals). The error
is further systematic, with a tendency to overbind (too small lattice parameters). Such perfor-
mance can certainly explain the success of DFT combined with the Kohn-Sham formalism and
the local density approximation.

Beyond lattice parameters, we further plot in Fig. 1 (right) the LDA phonon band-structure for
silicon as compared to experiment [13], with phonon energies standing as 2nd-order deriva-
tives of total energies with respect to ionic positions via the force-constant matrix. Again, the
agreement is very remarkable for a system far from displaying a homogeneous charge density.

Since the DFT is designed to provide ground-state electronic densities, we now reproduce
in Fig. 2 (left) the density of solid argon along a bond direction, comparing the LDA elec-
tronic density with results of a self-consistent many-body Green’s function approach labeled the
QPscGW formalism [14]. Clearly, the agreement is excellent, even in the present case of a very
inhomogeneous density profile. Similar results are obtained for the one-body density matrix
in Fig. 2 (center) in the case of silicon, comparing now the LDA density matrix built from the
Kohn-Sham eigenstates: 7, (r, ') = S~ ¢, (1), (r') with a variational Monte Carlo (VMC)
reference: v (r,r’) = N [dry---dry ¢*(r,ra---ry)(r/,r2- - -ry). The deviation between
the two calculations is well within 1% again.

4.3 LDA satisfies the exchange-correlation sum-rule

This somehow unexpected success of the LDA for systems displaying strongly inhomogeneous
charge density distributions relies in particular on the facts that (a) the exchange-correlation
(XC) energy depends on a Coulomb-weighted spherical average over the XC-hole and (b) the
LDA XC hole satisfies the exchange-correlation sum-rule. Taking the relation between the
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electron-electron XC energy and the XC hole, one obtains indeed

1 +oo 1 !
Exc = 3 /dr p(r)/0 4nRAR p54(r, R) and p¥a(r,R) = yp / dr’ pxo(r.r')

with p34.(r, R) the spherically averaged XC-hole around the r-point using the Coulomb norm.
We plot in Fig. 2 (right) such a spherically-averaged XC-hole, comparing again LDA and VMC
in the case of Silicon. While for a given (r,r’) pair of positions the LDA and VMC XC hole
differ significantly, their spherically averaged values are remarkably close. Further, it can be
shown [16] that the LDA XC hole satisfies an exact sum rule, namely

47?/R2dR pYe(r,R) = —1

indicating that if the LDA XC-hole is too small for a given R value, then it is too large in
compensation for another R distance. Such properties are very strong desirable constraints
that may explain the success of the LDA and ... the failure of subsequent approximations. The
inclusion of some kinetic energy (1'—7j) in the definition of the DFT XC energy leads to caution
when defining the DFT XC hole within what is called the “adiabatic connection formalism”
that builds a connection between the non-interacting and interacting systems sharing the same
density.

4.4 Jacob’s ladder of functionals: towards accuracy heaven?

Improving on the LDA approximation for a better description of observables related to the
total energy (binding energy, atomization energy, structural phase diagrams, activation barriers,
elastic constants, phonon spectra, etc.) remains the central issue in the field of DFT. Roughly
speaking, two strategies can be followed: the first is to develop functionals that satisfy exact
mathematical relations, such as satisfying the XC hole sum rule. The second strategy is more
pragmatic and consists in fitting some general functional form with parameters on experimental
data. An interesting article recently published by Perdew and coworkers in the journal Science
and entitled “Density functional theory is straying from the path toward the exact functional”
[17] provides a nice discussion on the two philosophies, illustrating further the “jungle” of
functionals that exist nowadays. Clearly, functionals fitted to experimental data can be very
accurate, but go away from the ab initio or first-principles character of DFT.

Concerning the strategy that consists in satisfying exact relations, an interesting illustration can
be found in the early days of the so-called gradient corrected functionals that attempt to go
away from the local density approximation by devising functionals that depend not only on the
local density but also on its gradient to capture some information about charge inhomogeneities.
Early functionals with low-order gradient corrections (LGC), such as the following one for the
exchange (X) energy (o the spin degree of freedom)

Vo, . .
E)L(GC _ E)L(DA -8B Z / dr ,Oﬁ/?’l’?, with z, = % a-dimensional
o pa
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really failed in improving over the LDA. In fact, EX“C does not satisfy the exchange-hole sum
rule, leading to a divergency in the vacuum where p(r) decays exponentially, etc. Further, the
potential felt by an electron far away from an atom, molecule, surface, etc. should scale as
—1/r. This term comes from the exchange potential, yielding for the exchange energy density
at long distance in the vacuum

p(r)

lim ex(r) ~ with  p(r) = 2p4(r) = 2p;(r) (unpolarized systems).

r—00 or

To cure such problems, Becke proposed in 1988 an exchange functional (B88) [18] that scales

smoothly between the small and large x, = |Vp,|/ pal?

2
EB8 — pLbA _ /dr 4/3 Yo arameter).
X X B za: pcr 1 + GBSinhil(I’g) (ﬂ p )

The GGA correction vanishes for small gradients (r, — 0). With p(r) ~ e~*" for large r,
T, — /3, and sinh’l(xg) — ar/3, the correct (vacuum) asymptotic behavior is recovered.
This is the exchange functional used in the celebrated BLYP functional (B=Becke88). Here
exact relations (asymptotic behavior, low or high density limit, sum rules, etc.) lead to a func-
tional form that still contains one parameter fitted to experimental data, combining de facto the
two above-mentioned strategies. Such generalized gradient approximations (GGA) constitute
the “second rung” of the so-called Jacob’s ladder of functionals that provides a classification
of functionals with increasing average accuracy [19]. Well known functionals of that family
include the PW91 (Perdew-Wang 1991) [20], the PBE (Perdew-Becke-Ernzherof) [21], or the
BLYP (Becke-Lee-Yang-Parr) functionals [22]. As can be seen in Table 1, the PBE functional
leads to better results for metals as compared to the LDA, with a tendency to underbind (too
large lattice parameters), but no improvements for non-metallic systems (e.g. semiconductors).
We witness here the fact that functionals developed for finite size systems, with, e.g., the proper
treatment of long-range behavior in the vacuum, may not be relevant for solids where there is ...
no vacuum. The PBEsol functional (see Table 1) is a modification of PBE for solids, yielding
better results indeed for periodic extended systems.

We now introduce a key generalization of DFT, namely the merging of DFT and Hartree-Fock
yielding “hybrid functionals” where density-dependent expressions are complemented by one-
body-orbital dependent exact exchange. For the Kohn-Sham system, we indeed know how to
calculate the “exact” exchange energy “associated with” the Kohn-Sham eigenstates {¢,, }

occp

Ex = _% Z//drdrf ¢; (r);(r) @5 (x')gi(r') Oo,0; »

v — 1’|

where we have re-introduced the spin variables. This is more expensive than pure density
functionals (Hartree-Fock (HF) scales as N* with system size) but helps in several directions:

o it offers clearly the correct asymptotic behavior for the electronic potential in the vacuum
and satisfies the exchange-hole sum rule
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e it helps curing the self-interaction (SI) problem: within DFT, since the charge density

“ff{p] on an occupied orbital amounts

depends on the occupied orbitals, the action of v
to having an electron interacting with itself (consider the H atom system!). This is a
dramatic problem for localized orbitals. It does not exist within HF since the SI in the

Hartree and exchange energies cancel out.

However, mixing 100% of exact exchange with a density dependent correlation functional leads
(in general) to a failure. Density-dependent XC functionals are usually built together for re-
producing the total XC potential properties. Namely, they benefit from large error cancella-
tions. Considerations built on the “adiabatic connection” between the non-interacting and in-
teracting electronic systems generated the historical Becke half-and-half functional: EX¢ =
0.5EX(HF) + 0.5E% (Slater) + E(LYP=Lee-Yang-Parr). With a fitting strategy on 56 small
molecules atomization energies, 8 proton affinities, and 10 first-row total atomic energies, the
“Becke 3 parameters” (the B3 of B3LYP) exchange functional [23] mixes Slater LDA and B88
GGA exchange with 20% of exact exchange. Using perturbation theory, Perdew, Burke and
Ernzerhof advocated 25% of exact exchange, leading to the 1996 PBEO functional [24]. The
B3LYP and PBEO formula are probably the most popular functionals in quantum chemistry for
finite size systems.

To combine the need for having 100% of exact exchange in the long-range in the case of finite
size systems, while a much smaller amount of exchange in the short-range, range-separated
hybrids were introduced [25]. The idea is to define a short-range (SR) and long-range (LR)
Coulomb interaction thanks, e.g., to the error function erf, allowing the introduction of a long-
range-only exchange potential

occp

f{Rrr W) Z@ ( erf(w|r—r|)'

v —r'|

The use of the complementary error function allows to introduce a short-range-only exact ex-
change. As such, one can introduce different amounts of local (Dirac) and exact exchange in
the short and long ranges. The w parameter controls the (inverse) effective length that partition
the interaction between short or long range. The very popular CAM-B3LYP functional [26]
includes 65% of LR exact exchange with w = 0.33 while the LC-wPBE includes 100% of LR
exact exchange with w = 0.4.

We abandon here the hope to provide a thorough description of functionals. Let’s conclude on
the fact that contrary to finite size molecules, long-range Coulomb interactions in solids are
renormalized by the macroscopic dielectric constant €); that diverges in the case of metallic
systems. As such, the long-range amount of exact exchange in solids should be qualitatively
proportional to (1/¢,,), and even exponentially decaying in metals (Yukawa-type behavior).
This is, e.g., the rational behind the HSE functional, a range-separated hybrid for extended
systems relying on the solid-state physics language of screened Coulomb potentials [27].
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Fig. 3: (Left) Symbolic representation of direct and inverse photoemission experiments inter-
preted from the standard “one-electron energy levels” diagram. (Center) Compilation of LDA
band gaps (red dots) in semiconductors and insulators as compared to experiments (first di-
agonal), Hartree-Fock data (cyan dots), and to a higher-level many-body Green’s function
approach, the so-called GoyWy@LDA formalism (courtesy Valerio Olevano). (Right) LDA
(dashed) versus GW (full lines) band-structure of Silicon. The zero of energy has been set
to the valence bands top (from Ref. [28]).

5 On the meaning of Kohn-Sham auxiliary 1-body eigenstates

We tackle now a delicate problem within DFT, namely that of electronic properties. As dis-
cussed above, DFT is a ground state formalism designed to reproduce ground-state total en-
ergies and electronic density. As such, it is not designed to provide electronic energy lev-
els. However, there is a very large literature exploiting Kohn-Sham eigenvalues for plotting
the band-structure of realistic materials, with much success in many situations, but also well-
documented limitations and failures. These are such aspects that we briefly explore now.

The meaning of what we call “electronic energy levels” when we plot a band-structure (or dis-
crete energy levels in the case of a molecule) must be found in the experiment used to measure
them, e.g., a photoemission experiment. In direct photoemission (see Fig. 3 (left)), a photon
with energy hv arrives on a piece of matter in its ground-state (with energy Fy[N]) and ejects an
electron with some residual kinetic energy E;,, leaving the system with (N —1) electrons and
an energy E,[N—1]. The index n labels an eigenstate of the (N —1) electron system. We define
the energy of the electron in the system as ¢,, = Ey[N] — E,,[N—1], the energy of the level from
which the electron was ejected. Using conservation of energy, Fo[N| — E,[N—1| = Ey;, — hv
measured experimentally. Similar considerations can be used to assimilate in inverse photoe-
mission the differences of energy (F,[N+1] — Ey[N]) between an excited state of the (N+1)-
electron system and the ground-state of the /N-electron system as the unoccupied level energies.

Electronic energy levels as measured experimentally using photo-emission experi-
ments are really differences of total energies between excited states of the (/N+1)
or (N—1) electron systems and the /N-electron system in its ground state, namely
en = E,[N+1] — Ey[N] for unoccupied levels and ¢,, = Ey[N| — E,[N—1] for occu-
pied levels. What is the relation between the {X°} Kohn-Sham eigenvalues and such

total energy differences between charged and neutral systems?
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5.1 The band gap problem with DFT Kohn-Sham eigenvalues

Before trying to find a rationale for the Kohn-Sham energy levels, namely the energy of the
fictitious independent electrons in the effective potential v° defined above, let’s consider actual
calculations, starting with the band gap of standard semiconductors and insulators. Data are
compiled in Fig. 3 (center). The results of actual DFT calculations using the LDA XC potential
(red dots) drive us to the conclusion that the band structure obtained with Kohn-Sham eigen-
values yields too small gaps. In the DFT Kohn-Sham world, the band gap of silicon turns to be
about 0.5-0.6 eV, a factor two smaller than the 1.2 eV experimental value. Very similar results
are obtained using “pure” DFT functionals, namely functionals not including some amount of
exact exchange such as PBE. This is the band gap problem within DFT. A close inspection of
Fig. 3 (center) for small gap systems further reveals that some systems, that are gaped semicon-
ductors experimentally, turn out to be metallic (negative gap, namely an overlap of the occupied
and empty bands) within LDA. This is the case, e.g., of the simple germanium system. It is
fair to say that turning an insulator into a metal is a somehow dramatic failure. This tendency
to underestimate band gaps can also be witnessed in the case of organic molecules for which
the Kohn-Sham LDA HOMO-LUMO (highest occupied/lowest unoccupied molecular orbitals)
energy gap can be underestimated by several eVs as compared to experiment or higher level
techniques (see Fig. 4 (left)).

To better understand why DFT is still very widely used to study the electronic properties of
a large variety of systems, we provide now in Fig. 3 (right) the LDA band structure for sil-
icon (dashed line) that we compare to a much more accurate many-body perturbation theory
approach, the GW formalism. We align the two band structures at the top of the valence band
(zero of energy). The remarkable feature evidenced by this plot is that besides the band gap
problem, the dispersion of bands in the valence and conduction manifolds are extremely close.
Namely, the two band-structures could agree very well if a “scissor” operation, consisting in
rigidly shifting the conduction bands by 0.5-0.6 eV higher in energy, is applied.

Contrary to Kohn-Sham DFT, Hartree-Fock (HF) yields too large gaps (see cyan dots in Fig. 3
(center) and HF data in Fig. 4 (left)). In the HF world, the band gap of Silicon is of the order
of 6 eV, dramatically too large. This is due to the lack of correlations. Clearly, mixing some
amount of exact exchange with DFT density-dependent XC potentials leads to much better
gaps. This is exemplified in Fig. 4 (left) with the B3LYP data that are in better agreement with
experiment. This is a clear incentive to mix exact exchange and density-dependent functionals,
namely to use hybrid functionals for electronic properties, even though the criteria for selecting
the proper amount of exact exchange for a given system is a difficult challenge if one wishes to
preserve an ab initio (no fitting parameters) approach. The B3LYP functional includes 20% of
exact exchange, an amount that does not seem sufficient to provide an accurate gap.

The band gap problem in DFT has been analyzed in depth and is related to the lack of a dis-
continuity of density-based XC potentials upon addition or removal of an electron [33, 34].
In a typical bulk system composed of the order of 10?3 electrons per cm?®, adding or remov-
ing an electron delocalized in some Bloch state hardly changes the charge density. As such, an
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Fig. 4: (Left) HOMO-LUMO gap of gas phase (isolated) Cgy fullerene and pentacene
molecules. Various DFT and generalized DFT formalisms, including Kohn-Sham LDA,
Hartree-Fock, B3LYP hybrid functionals, optimally-tuned range-separated hybrid (OT-BNL;
Ref. [29]) or Koopmans’ compliant (KNC; Ref. [30]) functionals are compared to many-body
perturbation theories (GoWy and evGW approaches) and to experiment (horizontal black line).
(adapted from Ref. [31]) (Right) Top-most occupied levels for isolated cytosine DNA nucleoba-

sis as calculated using Kohn-Sham LDA approach and higher level many-body perturbation
theories (evGW, CASPT2, EOM-IP-CCSD). Notice the reordering of levels from LDA to higher
level approaches (adapted from Ref. [32]).

exchange-correlation potential built as a functional of the charge density will show no variations
upon, e.g., adding an electron that will populate the bottom of the conduction bands across the
gap. A simple analysis of the exact exchange operator clearly reveals that the XC potential
should be discontinuous upon adding a charge to the neutral system.

We conclude this section with a warning: as discussed above, the DFT Kohn-Sham approach
may turn a very standard band semiconductor, such as germanium, into a metal. This does
not mean that the “band structure picture” fails and that strong correlations beyond mean-field
(Mott transition) should be invoked to describe germanium. It just means that the DFT Kohn-
Sham formalism with local functionals of the electronic density is not an accurate, not even a
well-defined, formalism to capture band gaps.

5.2 Level ordering and self-interaction problems

This simple analysis in terms of band gap errors that can be cured by a rigid shift of, e.g., empty
states needs however to be taken with care. While silicon and other simple sp-bonded semicon-
ductors or insulators are characterized by Bloch states displaying equivalent spatial localization
properties, systems mixing localized and extended states may suffer from a wrong ordering of
levels at the Kohn-Sham DFT level with density-dependent functionals. Such systems include,
e.g., transition metals displaying localized 3d levels together with itinerant (delocalized) sp
bands, surfaces with extended bulk states versus localized surface states, or modern molecular
electronic devices with extended states in the metallic electrodes but very localized molecular
states in the junction. In the case of occupied levels, the self-interaction problem discussed
above in Section 4.4 affects the localized states much more than the delocalized ones. As such,
the ordering of levels within the occupied manifold can be wrong as well within DFT Kohn-
Sham. This is exemplified in Fig. 4 (right) in the case of the gas phase (isolated) cytosine DNA



1.20 Xavier Blase

nucleobasis: while the highest occupied molecular orbital should be a delocalized 7 orbital, the
Kohn-Sham LDA approach predicts erroneously at the top of the occupied manifold a very lo-
calized o molecular orbital, localized on the oxygen. The self-interaction error is erroneously
repelling high in energy this localized oo orbital. Hybrid functionals, with a portion of exact
exchange, help in curing this problem since Hartree-Fock is self-interaction free.

5.3 What is the meaning of Kohn-Sham eigenvalues?

We now turn to a more formal analysis of the meaning of Kohn-Sham eigenvalues. We start by
recovering the Kohn-Sham eigenvalue equation using the variational principle for the ground-
state energy considered as a functional of the one-body Kohn-Sham auxiliary eigenstates {¢,, }.
We thus define a Lagrangian
QHei D] = BHoN + D (85 — (6l6,) ).
i<j

where the {)\;;} are the Lagrange parameters insuring that the {¢,} are kept orthonormalized
in the minimization process. The minimization of {2[{¢;, \;; }] with respect to some ¢ (r) leads
to

(‘% + veff<r>> 6i(r) = 3" Njes() with  (x) = vx) + VI (p(x) + VI (plr),

using, e.g., the following chain rule for density-dependent potentials
- )]
9¢;(r)  Ip(r)  0¢;(r)  Op(r)

A unitary rotation that diagonalizes the \;; matrix allows to recover the standard Kohn-Sham

eigenvalue equation postulated in Section 3.4. However, we understand here that the Kohn-
Sham eigenvalues are just Lagrange multipliers and their relation with addition/removal ener-
gies, as defined in a photoemission experiment, is far from clear! As another indication of the
difficulty in identifying Kohn-Sham eigenvalues with total-energy differences between the neu-
tral and charged systems, let’s consider now the sum of Kohn-Sham eigenvalues over occupied
states, namely

Sew= 3ot - V24 w6 = Tot e (6(x) + V) + VA (0)) ol

i=1

to be compared to the ground-state total energy
. . 1
E[N| =T, +/dr V(1) p(r) + J[p] + EXC[p] with J[p] = 5 /dr VH(r) p(r).
As a result, the ground-state total energy for, e.g., the N-electron system reads also

OEXC|p]
dp(r)

where the sum of occupied level energies are completed by electron interaction terms. As such,

E[N] = Z en — J]p] + EXC[p] — / dr VXC(r) p(r) with V¥(r) =

differences of total energies such as E[N+1] — E[N] cannot be identified simply to individual
Kohn-Sham eigenstates and the meaning of Kohn-Sham eigenstates remains elusive.
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5.4 Janak theorem and fractional occupations in ensemble DFT

Janak theorem [35] is an important relation that may pave the way to progress in the use of DFT
to tackle not only ground-state total energies but also electronic excitations. The seminal idea is
a generalization of the Kohn-Sham formalism to fractional occupation numbers of the electronic
energy levels {¢, }. In the standard Kohn-Sham approach, occupation numbers were set to unity
below the Fermi level and zero above (zero temperature). In the generalized fractional approach,
the kinetic energy and electronic density read

Tslp) = Zni<¢z‘|—v2/2|¢i> and p(r) = Z”z|¢z(r)

2

b

where the index J stands for Janak. As such, the total energy is not only a functional of the
one-body orbitals {¢, }, but also of the fractional occupations {n;} as additional variational
parameters, namely

Egs = min E[{n;, ¢;}] with E = T;[{n;, ¢;}] + / dr v (r) p(r) + J[p] + EX[p],

i

2 e . .
gbi(r)’ . The minimization with respect to the occupation factors leads to

where p(r) = >, n;
the Janak formula

€ = (Janak formula)

on;

telling us that one-body eigenvalues are related to the variation of the total energy with respect
to an infinitesimal variation of the population. Since the Kohn-Sham formalism is a reduction of
the Janak approach to n; = 1 or n; = 0 for occupied/empty levels, the Kohn-Sham eigenvalues
can be interpreted as derivatives of the total energy at occupation numbers taken to be O or 1

KS aE
€i —
(877’1 ) n;=0orl.

This differs from the experimental definition that electronic energy levels are variations of the

namely

total energy with respect to a unity (not infinitesimal) change of level population.

Apart from the technicalities of the derivation, a central question is related to the meaning of
fractional occupations and, more generally, fractional number of electrons. The two concepts
are not equivalent. One may consider a situation where fractional occupations are introduced
while keeping the number of electrons fixed to IV, namely » . n; = N. This is a very natural
situation at finite temperature with the Fermi-Dirac distribution. Even at zero temperature, this
is just reminiscent of Fermi liquid theory revealing that particle interactions lead to non-integer
occupation number close to the Fermi level. On simpler grounds, it is also a useful exercise to
consider the 1st-order density matrix

71(1'71‘/) :N/"'/er'"der<r7r27'“ 7I'N)w*(r/7r27“‘ 7rN)

for which it can be demonstrated that the expression of 7" and p as a function of fractional occu-
pation is exact with the {n;} and {¢;} the eigenvalues and eigenstates of ;. These eigenstates
are called “natural orbitals” and the eigenvalues fulfill > . n; = N.
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Fig. 5: (Left) Symbolic representation of the exact total energy (dotted lines) and DFT total
energy (full line) as a function of the (continuous) electron number. The arrows indicate the
right/left energy derivatives at integer values of the number of electrons in relation to the elec-

tronic affinity of the N —1 electron system (A%SY,) and the ionization potential (L3P ) of the N -

electron system. In the DFT Kohn-Sham approach, A%stl and TXPP are taken as the opposite

of the LUMO energy of the N —1-electron system and HOMO energy of the N-electron system
(from Ref. [30]). (Right) Difference energy of the carbon atom E = E(Ny+06N) — E(Np)
(Ny = 6) with several different functionals using OEP (optimized effective potentials) and GKS
(generalized Kohn-Sham). Dotted line follows the initial slope for the non-straight functionals.
The inset shows the range 6 < N < T in more detail (from Ref. [39]).

Janak’s theorem considers, however, the second situation where the total number of electrons is
fractional, namely N becomes a continuous variable. As such, while photoemission measures
how much the total energy changes upon the removal/addition of a full electron, Janak’s theorem
provides a relation for the removal/addition of an infinitesimal charge. Such a fractional number
of electrons can be rationalized on the basis of the grand-canonical ensemble, namely when the
system of interest can exchange electrons with a “bath.” The fractional charge can then be
associated with a fractional probability of finding the charge in the (sub)system of interest. In
quantum mechanics, this can be described by mixed states, that is a statistical ensemble of pure
states. This is the basis for “ensemble DFT” [36,37] that considers ensemble densities

p(r) = (1= w)(th|p(r)[v1) + w(Wa|p(r)|ih2),

where |1)1) and 1)) are distinct many-body eigenstates, e.g., the ground-state and first-excited
state of the /V-electron system, or the ground-states of the N- and N+1-electrons systems. In
the first case, ensemble DFT strives to build a DFT approach to neutral excitations (e.g. optical
excitations); in the second one, charged excitations (photoemission) are targeted.

We now summarize the main results associated with the variation of the total ground-state en-
ergy with respect to a continuous number of electrons. A first important result is that the total
energy should be concave and piecewise linear between two integer values of NV [38]. This is
represented on the left of Fig. 5 as the dotted lines. We observe in particular that the derivative
of the total energy with respect to the number of electrons is discontinuous across an integer
value: the left and right derivatives are not identical. The piece-wise linearity on each side
of an integer value means in particular that the fractional derivatives and the corresponding
differences of total energy between integer N-values are identical.
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Let’s now turn to pure DFT with XC functionals of the density. It can be shown and confirmed
by actual calculations that within DFT, the total energy is a concave and smooth function of
the number of electrons (see Fig. 5 (left) full line and Fig. 5 (right) green line). In particular
the left and right derivatives at integer values of N are identical and not equal to differences
of total energy for integer variations of /NV. One recovers, in particular, the problem of the lack
of discontinuity of the XC potential. As such, following the Janak theorem, the Kohn-Sham
eigenvalues cannot be identified with electronic energy levels as measured by photoemission.
On the contrary, it is found that the Hartree-Fock energy is a convex function of N with dis-
continuous derivatives at integer values (blue line Fig. 5 (right)). As such, mixing some DFT
local functionals with some amount of exact exchange may result in a close-to-straight-line de-
pendence of the total energy between integer values of /V, which is just the condition we need
for matching infinitesimal derivatives with total energy differences upon adding/removing an
electron. This is yet another rationale for using hybrid functionals. However, which amount of
mixing should be used for a given system, is again a difficult question to answer if we do not
accept fitting strategies to known experimental data. See, e.g., Ref. [29,30] for a mathematically
based strategy avoiding empirically adjusted parameters.

Here again, the hunt for a generalized DFT formalism able to tackle excited properties is an
on-going boiling activity. In the case of weakly to moderately correlated systems, rather sim-
ple many-body perturbation theories such as the GW formalism, with a limited O(N*) scaling
with system size, is getting very popular in condensed matter physics and, more recently, quan-
tum chemistry (see Figs. 3 and 4). We emphasize however that even if adopting alternative
approaches to DFT, Kohn-Sham {5 ¢X5} eigenvectors remain very valuable zeroth-order
one-body eigenstates to build higher-order correlation operators. In particular, GW calcula-
tions start generally with the knowledge of the time-ordered Green’s function

KS r K S, r
G(r,r';w)zz P " (r) G " (1)

KS 1 x sion(ekS
— w—&'” +ixsign(el® — Ep) x 0F

built with KS eigenstates and of the (RPA) screened Coulomb potential W = V' + Vxo W and
independent-electron susceptibility y, relying again on Kohn-Sham eigenstates

, G5 (r) o S (1) oI5 (1) ol (v
XO(I',I‘;W) :Z<fn_fm) ((j)_ (ganrz 57]2*9(;‘—)0—1'0"' (r>

nm

with (f,/m) occupation factors. Even though DFT Kohn-Sham eigenstates do not represent
here the final quantities that will be used to interpret the experimental data, they remain very
valuable, representing affordable starting piece of information on the electronic properties.
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1 Introduction

The random phase approximation (RPA) is a fundamental concept that plays a central role in
many-body physics. The concept was developed by Bohm and Pines [1,2] in the early 1950’s in
an endeavor to describe the cohesive properties of the so-called jellium—interacting electrons
moving in a background of a uniform positive charge. Using a Hamiltonian formulation of in-
teracting many-electron system, Bohm and Pines were able to decouple the collective motion
of electrons—the plasma oscillations—from their individual motions, a procedure named as
RPA. It was soon recognized [3] that the original RPA formulation is equivalent to the infinite
summation of ring diagrams from the viewpoint of diagrammatic many-body perturbation the-
ory [4]. Since then, the RPA concept has gone beyond the realm of condensed matter physics
and significantly influenced all branches of physics.

Although the RPA concept can be applied to any interacting many-particle systems (for its
applications in nuclear physics, see, e.g., Ref. [5]), in this review we shall restrict ourselves
to electronic systems which are governed by Coulomb interactions. The next key step towards
applying RPA to real materials was the incorporation of RPA into the Kohn-Sham (KS) density-
functional theory (DFT) framework in 1970’s [6—8]. This formulation turned RPA into a first-
principles electronic-structure method, suitable for computing the ground-state energy of real
materials. Within the KS-DFT framework, RPA can be viewed as a fifth-rung approximation
to the exchange-correlation (XC) energy functional, according to a well-accepted classification
scheme of the XC functionals, known as Jacob’s ladder of DFT as proposed by Perdew [9].
However, the application of RPA to realistic systems was impeded by its high computational
cost and the lack of efficient algorithms at the time. The first application of RPA to small
molecules only appeared in early 2000’s, carried out by Furche [10] and in [11]. Since then,
RPA has been applied to a variety of systems including atoms [12,13], molecules [10,11,14-18],
solids [19-26], surfaces [27,28], interfaces [29,30], layered materials [31], and defects [32,33].
The consensus arising from these studies is that RPA is capable of describing the delicate energy
differences in complex chemical environments [27,28,24,26], the correct asymptotic behavior
of van der Waals (vdW) complexes [34, 35] and layered materials [31, 36], and the correct
dissociation limit of closed-shell molecules [10, 11]. Evidence shows that RPA can provide
unprecedented accuracy compared to lower-rung density-functional approximations at tractable
computational cost. As such, RPA is expected to play an increasingly more important role in
computational materials science, with the rapid development of more efficient algorithms and
the availability of more powerful computing resources.

In a review paper [37] published in 2012, we discussed the history of the RPA concept, its
formulation as a first-principles method, and its applications in quantum chemistry and com-
putational materials science up to that time. These points were nicely summarized by David
Pines in his recent review paper titled as “Emergent behavior in strongly correlated electron
systems” [38]. In particular, Pines noted that,

Sixty-plus years later, the RPA continues to play a significant role in nuclear physics,
bosonic field-theory, the quarkgluon plasma, many-fermion solvable models, and
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especially in computational chemistry and materials science. A recent review by
Ren et al., to which the interested reader is referred, describes the impact of the
RPA in the theoretical chemistry and materials science community, cites some thirty
articles that indicate the renewed and widespread interest in the RPA during the pe-
riod 2001-2011, discusses how it enables one to derive the 1/r° interaction between
spatially separated closed shell electron systems, and, shows, in some detail, how
the RPA enables one to go beyond density-functional theory in computing ground

state energies.

This highlights the far-reaching impact of the RPA in a variety of fields, in particular in compu-
tational chemistry and materials science. It is worthwhile to mention that several other, comple-
mentary RPA review papers also appeared around that time, where the theoretical foundation
and applications of RPA are discussed from different perspective. More recent account of RPA
of review character can be found in Ref. [39].

In this lecture, we first give an account of the theoretical foundation of RPA, highlighting its
unique role in electronic structure theory. Computational schemes beyond RPA are also briefly
discussed in this section. This is followed by a sketching of the key algorithm of implementing
RPA using the resolution-of-identity technique. We then present some prototypical applica-
tions illustrating the usefulness of RPA in computational materials science. Most recent efforts
devoted to further developing the theoretical and computational aspects of RPA as well as ex-
tending its capabilities are briefly mentioned and commented, before we conclude.

2 Theoretical foundation of RPA and beyond

RPA as a first-principles method can be derived from several theoretical frameworks. One con-
venient framework to derive RPA is the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) which offers a powerful mathematical device to construct the exact XC energy func-
tional via the density response functions of a series of partially interacting systems, connecting
the KS system and the true physical system. In this formulation, an approximation to the density
response function translates into a corresponding approximation to the XC energy functional.
However, this is not the only approach to formulate RPA. In fact, RPA can also be derived from
other theoretical perspectives, including coupled cluster theory [40,41], the Green-function
based many-body perturbation theory [42,37,43], and time-dependent DFT [10]. Below we
focus on the ACFDT perspective.

2.1 Adiabatic connection approach to DFT

An interacting N-electron system is described by the following Hamiltonian

B AN v/ S 1 1
H:T‘i“v;zxt‘l"/:ee:_z Z+ZUeXt(f‘i)+_ZA— (1)

<[t — 1]
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where T, Vext, and Vee are, respectively, the kinetic energy, the external potential, and the
electron-electron Coulomb interaction operators. Hartree atomic units (A = ¢ = m, = 1)
are used throughout this lecture note. Note that the operators T and V,, are universal for any
N-electron systems, and a system is completely specified by the external potential,

ext Z ’R - r| )

with Z, and R, being, respectively, the nuclear charges and positions of the atoms in the
system. The Hamiltonian in (1) cannot be solved for more than a few electrons. To deal with it,
it is customary to separate H into two parts,

H=Hy+ H 3)

where [, is a mean-field (MF) Hamiltonian, describing a collection of noninteracting particles
subjecting to a self-consistently determined effective single-particle potential,

2 Y v22 ext MF
=3 (<554 + ) )

%

Here the mean-field potential v™¥

is an average potential that one electron experiences due
to the presence of other electrons. Different underlying principles to determine v™¥ lead to
different self-consistency schemes. Suppose @, is the ground-state wave function (a Slater
determinant) of Hj, within Hartree-Fock theory, the effective single-particle potential v™F is
chosen such that the expectation value of (®y|H|®,) is minimized. On the other hand, within
KS-DFT, the effective v™F (now the KS potential v%%) is determined so that the electron density
of the KS system n(r) = (Py|n(r)|Py) reproduces the density n(r) of the true physical system.
Within the adiabatic connection (AC) approach to KS-DFT, one considers a continuous set of

fictitious Hamiltonians

N
H(\) = Z Zvanxl Zm_rﬂ (5)

i#£]

which connects Hy at A = 0 (with 03 = v 4+ ¢55) and H at A = 1 (with v3% = v**). The
Hamiltonian H (M) for 0 < A < 1 describes a collection of particles moving under the auxiliary
external potential v{"(r) and interacting with a scaled Coulomb interaction A/|r — r/|. The
auxiliary potential v{"(r) (0 < A < 1) is chosen such that the density of A\-scaled systems is
kept at the physical density, i.e., n)(r) = n(r), along the AC path. Denoting the ground-state
wavefunction of H(\) as [¥),

H\)|¥y) = Ey|¥y), (6)

and adopting the normalization condition (¥, |¥,) = 1, the Hellmann-Feynman theorem implies
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that

aux N
@:<%\ aH*‘%>—<%‘ZaUA (r;) +%Z '1
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d\ N |f‘z—r]]
auX ’ A B , w
= [ty 250 ) 1 L f e S0 A )
r—r'|
Z/dr n(r) 3U§ux //d dr’ (U [n(r)n(r')| W) — n(r)d(r—r’) ®
r—r'|

To derive (7) and (8), we have used the expression for the density operator of the N-electron

systems
N
i(r) =Y d(r—1y), ©

=1
and the condition (¥, |n(r)|¥,) = n(r). The ground-state energy of the interacting system can
then be obtained as

E=Fy+ / W
—Fy+t / dr n(r) (0355 () — 3% (1)) + / i / / drdy A ERE) ) = nlr) o(r—x)
n(r) n(r')

r—r|
:EO—/drn //drdr
hW!

/d)\ //d 0 (W [on(r)on(r")| ¥y) — n(r)d(r— r’)) (10)

r—r|

where we have introduced the fluctuation of the density operator dn(r) = n(r) — n(r) and used
the fact that (¥, |6n(r)|¥,) = 0. Now the ground-state energy of the reference KS state (A = 0)
Ey is given by

=

A VZ
Ey = (Wo| Ho|Wo) = (Po| Ho|Bo) = — Y _ (tbn

n=1

/dr v (r) n(r) +/dr V5 (r) n(r).
(11D

Combining (10) and (11), one arrives at the formal expression of the exact ground-state total
energy of N-electron systems,

i ¢n>+/drve"t //d dr' i r,‘>
/d)\ //d it (W |6n(r) ﬁ(r’)|@,\)—n(r)5(r—r’)‘ (12)

r—r’|

In KS-DFT, the ground-state total energy for an interacting /V-electron systems is an (implicit)
functional of the electron density n(r) and can be conveniently separated into four terms:

En] = Ty[¢n] + Eex[n] + Euln] + Ex[n], (13)
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where

Un) (14)

Z (] 2

is the kinetic energy of the KS independent-partlcle system,

Eexi[n] :/dr v (r) n(r) (15)

is the external potential energy due to the nuclei,

n]:%//drdr’% (16)

is the classic Hartree energy, and E. the exchange-correlation energy. Among the four terms
in Eq. (13), only Eex[n] and Eyx[n| are explicit functionals of n(r). The noninteracting kinetic
energy 7, is treated exactly in KS-DFT in terms of the single-particle KS orbitals v, (r), which
themselves are a functional of n(r). All the many-body complexity is contained in the unknown
XC energy term, whose exact form is not an explicit functional of the electron density n(r), nor
the KS orbitals ¢, (r). Comparing Eq. (13) to (12), one immediately obtains the formally exact
AC expression for the XC energy, in terms of the density-density correlation function,

o= [0 e B2 SCNB) = ner) .

r—r’|

A central task of the DFT community is to develop accurate and tractable approximations to
Ey.[n]. The success of KS-DFT lies in the fact that usefully accurate approximations can be
found, for which DFT calculations can be done at affordable cost. Widely used approximations
to Ey.[n] include local-density approximation (LDA) [44], generalized gradient approximations
(GGAs) [45—47], meta-GGA [48,49], and hybrid functional approximations [50,51]. These ap-
proximations belong to the first four rungs of the Jacob’s ladder [9]. Despite their enormous
success, these existing approximate functionals suffer from many-electron self-interaction er-
rors [52], or delocalization errors [53] due to which the localized electronic states tend to de-
localize over the system, leading to several severe consequences. Furthermore, the non-local
correlation effects between widely separated subsystems are not captured within these approx-
imations by constructions. These intrinsic deficiencies limit the possible accuracy that can be
achieved in practical calculations. Qualitative and sometimes quantitative failures have been
documented in a number of situations, among which the most prominent are van der Waals
(vdW) bonded systems [54], materials with strong correlations [55], certain surface adsorption
problems [56], and chemical reaction barrier heights [57].

2.2 RPA derived from the ACFDT framework

The construction of LDA, GGA, and meta-GGA functionals only incorporate local and semi-
local quantities, such as the electron density, density gradients, and the kinetic energy density.
For the construction of hybrid functionals, a non-local quantity—the reduced density matrix—is



Random Phase Approximation 2.7

required. To go beyond these approximations, it is necessary to include additional information
in the functional construction. For this purpose, it is instrumental to invoke the zero-temperature
fluctuation-dissipation theorem [58], which relates the density-density correlation (fluctuations)
in Eq. (17) to the imaginary part of the density response function (dissipation) of the system

(Uy|on(r) on(r")|@,) = —% /OO dwIm (1, w). (18)

Here the density response function x*(r, r’,w) = dny(r,w)/6v° (r', w) describes the variation
of the density of the partially interacting system at the spatial point r, up to linear order, due to a
change of the local external potential at r’. From Egs. (17) and (18), we arrive at the renowned
ACFDT expression for the XC energy in DFT

E. = / d/\//drdr = r’| ( 271/ dwIm A (r, 1, w) — 5(r—r')n(r)>
/ d)\//drdr P ( / dw xMr, ' iw) — 6(r—1') n(r)) . (19)

The fact that the above frequency integration can be performed along the imaginary axis orig-

inates from the analytical structure of x*(r,r’,w) and the fact that it becomes purely real on
the imaginary axis. Such a property simplifies the ground-state energy calculation within the
ACFDT framework considerably. The ACFDT expression in Eq. (19) transforms the problem
of computing the XC energy to the computation of the response functions of a continuous set
of fictitious systems along the AC path, which in practice has to be approximated as well.

The exact density response function x*(r,1’,4w) is not known either. However, according to
linear-response time-dependent DFT (TDDFT), the interacting response function y* for A > 0
is linked to the noninteracting response function x° via the Dyson-like equation

A
Mr, v iw) = X0 (r, 1, iw) +/dr1 dry X°(r, 11, iw) P— + f)z\c(rl,rg,iw)] xMra, 1, w),
112
(20)
where 5 2E
s, oy ) = o). el 1)

on(ry,w)  dn(ry)on(ry, w)
is the so-called f,. kernel, given by the functional derivative of the XC potential with respect to
the frequency-dependent density variation.

Obviously, the fy. kernel is a very complex quantity to deal with, and there are considerable
ongoing efforts to find better approximations for it [59]. In this context, the random phase ap-
proximation amounts to simply neglecting the f,. kernel, and the resultant interacting response
function is termed the RPA response function,

. : , A
XléPA(rv rlv ZW) = XO (I‘, rla Z(,U) +/dr1 dr? Xo(r7 ry, Zw)m X}QPA(I‘% rly W) : (22)
In physical terms, the RPA here corresponds to the linearized time-dependent Hartree approxi-
mation, by which the variation of the exchange-correlation potential due to an external pertur-
bation is neglected.
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In Egs. (20) and (22), x°(r,ry,iw) is the independent-particle response function of the KS
reference system (A = 0) and is known explicitly in terms of the single-particle KS orbitals
¥, (r), orbital energies ¢,,, and occupation factors f,,

3 (fin = fu) U5 (1) (£) 95 () (1) (23)

Em — Ep — W

(e, iw) =
Based on Egs. (19) and (22), the XC energy in RPA can be further decomposed into an exact
exchange (EX) term and a RPA correlation term,

ERPA EPX | gRPA o
where
px =t [farar 1 L N YR
" _5// = _;/o w (1,1, iw) = o(r—r")n(r)
==l / / dr dy L @)U (@)1, () () (25)
mn |I'—I'/|
and
o0 1
ERPA _ b //dr dr’ 1 / dw / A\ pa (T, T iw) — Xo(r, 1, iw)
c 27 ’I‘—I‘” 0 0
% dw Tr (In (1—x°(iw)v) + x"(iw) v) (26)

with v(r,r’) = 1/|r—r'|. Equation (25) defines the exact-exchange energy in the KS-DFT
context, which has the same expression as the Hartree-Fock exchange energy, but is extended
here to fractional occupation numbers and to be evaluated with KS orbitals. Furthermore, in the
second line of Eq. (26), for brevity the following convention

Trlfg) = [ [ v le.) o' @)

has been adopted.
So far, we have described how the RPA method is defined as an approximate XC energy func-
tional in the KS-DFT context, within the ACFDT framework. As mentioned above, RPA can
also be derived from the perspective of coupled cluster theory and the Green-function based
many-body perturbation theory. For instance, from the perspective of the ring coupled cluster
doubles (rCCD) theory, the RPA correlation energy can be obtained as,

ERPA — ;Tr TrCCD _ Z B, JbTrCCD (28)

jbjia >
z] ab

where T;ESGD is the rCCD amplitude, to be determined by solving the so-called Riccati equa-

tion [41], and B;, j» = (ij|ab) with (ij|ab) being two-electron Coulomb integrals,

o / / R ) 09)

[r—r’|
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Here and below, we adopt the convention that ¢, j, k£ refer to occupied KS orbitals, a, b, c to
virtual (unoccupied) orbitals, and m, n to general ones. Due to limited space, here we will not
elaborate on the alternative formulations of RPA any further, and interested readers are referred
to Ref. [37] and the original references [41,42] for more details.

2.3 Beyond-RPA computational schemes

Despite its appealing features, RPA does not go without shortcomings. The conventional wis-
dom is that RPA describes the long-range correlation very well, whereas it is not adequate for
short-range correlations. This issue has been well known for the homogeneous electron gas. For
real materials, RPA was found to underestimate the cohesive energies of both molecules [10,60]
and solids [21]. This stimulated much research interest and several beyond-RPA schemes have
been developed to fix this deficiency. Among these, two approaches are particularly noteworthy:
1) improving RPA by restoring the contribution of the f,. kernel within the ACFDT formal-
ism; 2) improving RPA from the perspective of diagrammatic many-body perturbation theory.
Successful beyond-RPA schemes of the first type include the truncated adiabatic LDA kernel
correction [61], and the more systematic construction of the XC kernel with respect to a series
expansion of the coupling constant A within the ACFDT framework [62,59].
The diagrammatic many-body expansion approach to correct RPA, on which we shall concen-
trate here, exploits the fact that RPA, in contrast with other density-functional approximations
(DFAs), has a clear diagrammatic representation—an infinite summation of the ring diagrams.
The question arises if there is a simple and systematic way to incorporate the missing diagrams
to arrive at an improved theory. The fermionic nature of electrons requires the many-electron
wavefunction to be antisymmetric, and the diagrammatic representation of the correlation en-
ergy contains graphs describing both direct processes and exchange processes. For example,
in the Mgller-Plesset perturbation theory, both types of processes are included at each order,
which ensures the theory to be one-electron “self-correlation free”—the correlation energy for
one-electron system being zero. The famous second-order Mgller-Plesset perturbation theory
(MP2), a widely used method in quantum chemistry, contains one direct term and one exchange
term, represented respectively by the leading diagram in the first two rows of Fig. 1. These
two terms cancel each other for one-electron systems. RPA is represented by the ring dia-
grams summed up to infinite order, as represented by the first-row diagrams in Fig. 1, where
only “direct” processes are accounted for.! A simple way to include the exchange processes
and eliminate the self-correlation error is to antisymmetrize the two-electron Coulomb integrals
within the rCCD formulation of RPA [cf. Eq. (28)]. By doing so, a second-order screened ex-
change (SOSEX) term [63—65] is added, and the resultant RPA+SOSEX correlation energy is
given by
RPA+SOSEX _ 1 > » rCCD
EF == Z ((ij|ab) — (ij|ba))T; (30)

2 L ia,jb
ij,ab

The RPA discussed here is often referred to as direct RPA in quantum chemistry literature. In some literature,
RPA in fact corresponds to the time-dependent Hartree-Fock theory, where the exchange terms are also included.
Nowadays, RPA with exchange included is usually referred to as RPAX or full RPA.



2.10 Xinguo Ren

Fig. 1: Goldstone diagrams for rPT2. Diagrams in the three rows correspond to RPA, SOSEX,
and rSE, respectively. Dashed lines ending with a cross in the third row denote the matrix
element Av,,, = (1, |07F—0MF|4),,). The rules to evaluate Goldstone diagrams can be found

in Ref. [66].

with the two terms in Eq. (30) corresponding to RPA and SOSEX correlation energies respec-
tively. The SOSEX contribution can be represented by the diagrams shown in the second row
of Fig. 1, where the leading term corresponds to the exchange contribution in MP2. The
RPA+SOSEX scheme has the interesting feature that it is one-electron self-correlation free,
and improves substantially the total energy [64,65]. The underbinding problem of RPA for
chemically bonded molecules and solids is on average alleviated by the SOSEX correction.

As illustrated in Fig. 1, both RPA and SOSEX correlations can be interpreted as infinite-
order summations of selected types of diagrams, with the MP2 terms as the leading order.
This perspective is helpful for identifying important contributions that are still missing in the
RPA+SOSEX scheme. In fact, at the second-order, in addition to the direct and exchange terms,
there is yet another type of contribution, arising from the singles excitations (SE),

OCC unocc

ESE Z Z | @O|Hl|¢a |2 Z | 77Z)1|AHF_ AMF|¢a Z | wz|f|¢a ’ 31)

i — €a

where o' is the self-consistent Hartree-Fock potential oMF is the mean-field potential, based
on which the reference state is generated, and f = —V?/2 + o™ + oHF is the single-particle
Hartree-Fock Hamiltonian (also known as the Fock matrix in the quantum chemistry literature).
Py and P¢ are the KS Slater determinant and the singly-excited configuration generated by
exciting one electron from an occupied state ¢ to a virtual state a. A detailed derivation of
Eq. (31) can be found in the supplementary material of Ref. [17]. Obviously for a Hartree-Fock
reference where "M = ¢1F, Eq. (31) becomes zero, a fact known as Brillouin theorem [66].
Therefore, this term is not present in standard MP2 theory based on the Hartree-Fock reference.
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In Ref [17], it was shown that adding the SE term of Eq. (31) to RPA significantly improves the
accuracy of vdW-bonded molecules, which the standard RPA scheme generally underbinds, and
the SOSEX correction does not improve much. Similar to the RPA and SOSEX case, one can
identify a sequence of single-excitation processes up to infinite order, as illustrated in the third
row in Fig. 1. Summing these single-excitation diagrams up to infinite order represents a renor-
malization of the 2nd-order SE, and is termed as renormalized singles excitations (rSE) [37,35].
Remarkably, this infinite summation ends up with a closed expression similar to Eq. (31) ,

rSE __ ‘fm|2
ESF =3 (32)

g — &,

where £; and £, are the eigenvalues obtained by diagonalizing separately the occupied-occupied
and virtual-virtual subblocks of the Fock matrix,

Z fit O = € Oy
- (33)
Z facucb - éVCLZ/{ab y

with frn = (U] f |¢,). Note that the matrix f,,, is not diagonal since the v, are the reference
KS orbitals and hence not the eigenfunctions of f , which is the single-particle Hartree-Fock
Hamiltonian. Now fm in the numerator of Eq. (32) are to the “transformed” off-diagonal block
of the Fock matrix

fia = 0% fjt Usa, (34)
jb

where the eigenvectors obtained in (33) are used here as the transformation coefficients. The
physical origin of the SE corrections is that the commonly used KS references for RPA and
beyond-RPA calculations are not the optimal starting point. The SE corrections accounts for
the “orbital relaxation” effect, which leads to a lowering of the ground-state total energy.
Diagrammatically, RPA, SOSEX and rSE are three distinct infinite series of many-body terms,
in which the three leading terms correspond to the three terms in second-order many-body
perturbation theory. Summing them up, the resultant RPA+SOSEX+rSE scheme can be viewed
a renormalization of the normal second-order many-body perturbation theory. Therefore the
RPA+SOSEX+rSE scheme is also termed as “renormalized second-order perturbation theory”
or rPT2 in the literature.

Independent of the rPT2 scheme described above, Bates, and Furche developed a beyond-RPA
formalism termed as RPA renormalized many-body perturbation theory [67]. The essence of
this formalism is to express the correlation energy in terms of an integration over the polarization
propagator (closely related to the density response function) along the AC path. The correlation
energy can be improved by improving the polarization propagator based on a series expansion
in terms of the RPA polarization propagator multiplied with a four-point kernel. Benchmark
calculations [68] show that the approximate exchange kernel (AXK) scheme within this for-
malism performs better than RPA+SOSEX discussed above. However, the rSE contribution is
not included in the AXK scheme.
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3 Implementation of the RPA method

In most practical RPA calculations, the evaluation of the RPA XC energy ERPA as given in
Egs. (24-26) is done employing the KS orbitals and orbital energies generated by a preceding
KS-DFT calculation under certain lower-rung approximations. The GGA of Perdew, Burke,
and Ernzerhof (PBE) is often used in the preceding KS-DFT calculation, and the RPA cal-
culation based on a PBE reference is often denoted as “RPA@PBE.” In standard RPA@PBE
calculations, the ground-state total energy is given by

ERPA@PBE _ EPBE o EPBE =+ ERPA@PBE

PBE PBE PBE EXQPBE PAQPBE
= TFBE  pPBE | ppBE | pEXCePBE | phPAQ

ext

= @PBE\H@PBE> + EEPA@PBE (35)

TPBE EPBE EPBE

PBE
ext Exc

where and are, respectively, the noninteracting kinetic energy, the ex-
ternal potential energy, the Hartree energy, and the XC energy obtained from the self-consistent
PBE calculation. The RPA@PBE total energy defined in (35) is obtained by subtracting the
PBE XC energy from the PBE total energy, and then adding on top the RPA XC energy, evalu-
ated using PBE orbitals and orbital energies. Equation (35) indicates that the RPA total energy
can be seen as the sum of the Hartree-Fock energy evaluated with respect to the PBE reference
and the RPA @PBE correlation energy.

Now it is clear that the key in RPA calculations is to evaluate the exact-exchange energy plus
the RPA correlation energy. The algorithm for evaluating the exact-exchange energy in the
present context is exactly the same as the Hartree-Fock exchange energy evaluation, which is
routinely done in quantum chemistry calculations [69,70]. The Hartree-Fock exchange is also a
key component of hybrid density-functionals, which are available in increasingly more software
that can deal with periodic systems [71,72]. Here we shall not discuss the implementation of the
Hartree-Fock exchange, but rather focus on the implementation of the RPA correlation energy
part. To develop efficient algorithms to evaluate Eq. (26), the key is to realize that both x° and v
are non-local operators in space. Their real-space forms x°(r, r’,iw) and v(r, r’) can be seen as
basis representations of the corresponding operator x" and v in terms of real-space grid points.
Under such a discretization, x° and v become matrices of dimension as large as the number of
real space grid points. This is not an efficient representation since the number of grid points is
rather large, especially in all-electron calculations. To deal with this problem, one can introduce

an auxiliary basis set { P, (r)} to represent x” and v, namely,

dux

(r, 1, iw) ZP r) x4, (iw) B, (r), (36)

and

Viw ://dr dr’ Lur) B (r') (37)

r—r’|

where N, is the number of auxiliary basis functions. To find the matrix form Xzy,j(z’w), one
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needs to expand the products of KS orbitals in terms of P,(r),

ZC“ P,( (38)

where C*  is the expansion coefficients. Inserting the expansion (38) into (23), and comparing
to (36), one arrives at

Kpull) = 3 2 (39)

Thus, within the auxiliary basis representation, x° and v become N, X N,y matrices. Since
N,ux 1s typically much smaller than the number of real-space grid points, or the number of
pair products of KS orbitals, the x° matrix in (39) and the V matrix in (38) can be seen as
compressed representation of their operators, with the trace of their product unchanged,

Tr X (iw) v ://Xo(r,r/,iw) v(r',r) drdr’ = ngy(iw) Vi - (40)
uv

Based on this observation, one may conclude that the computed RPA correlation energy is
independent of the basis representation of the x° and v operators. Thus one may equivalently
interpret Eq. (26) as matrix algebra with x° and v represented within the auxiliary basis as given
by (39) and (37). Using Tr In A = In det A (with det A being the determinant of the matrix A),
one obtains the final working expression for evaluating the RPA correlation energy,

1 oo
ERPA — 2—/ dw In (det(1—x"(iw) v) + x°(iw) v)
T™Jo

o0

% d In (det(1—IT(iw)) + I (iw)) - 1)

In Eq. (41), we have introduced an intermediate quantity I7(iw) = V'/2 x%(iw) V'/? and used
the property Tr(V1/2x?V1/2) = Tr(x° V). The frequency integration in Eq. (41) can be done
relatively easily, since the integrand is rather smooth and peaked at low frequency values. A
modified Gauss-Legendre grid, which transforms a standard Gauss-Legendre grid in the range
[—1,1] to [0, o],
~ 1+ - 2x0
xi:xol—xl’ wi:wim

works rather well for most systems. In (42), (x;, w;) are the abscissas and weights of the grid

(42)

points generated from the Gauss-Legendre quadrature formula in an integration range [—1, 1],
whereas (;, w;) are abscissas and weights of the transformed grid. Usually a few tens of fre-
quency grid points are sufficient to get highly accurate results, except for systems with vanishing
gaps, where considerably more grid points have to be used. Alternative frequency grids have
been developed for evaluating the RPA correlation energies [73,33], which have been shown to
work well for small gap systems.



2.14 Xinguo Ren

The implementation scheme described above is known as the resolution-of-identity (RI) ap-
proach to RPA [73,74]. From the above discussion, one may see that once the matrix forms
of x° and v within the auxiliary basis are determined, the rest of the RPA calculation is rather
straightforward. The key steps in RPA calculations are thus: 1) Generate the auxiliary basis
functions {P,(r)}; 2) Determine the triple coefficients C*

mn’

and 3) Construct the x) , matrix
using (39). The choice of auxiliary basis functions {P,(r)} depends on the underlying one-
electron basis functions used in the KS-DFT calculations. Our own RPA implementation was
done in the FHI-aims code [75, 74] which employs atom-centered numeric orbitals (NAOs) as
basis functions

¢i(r) = ur(r)Yim (0, 9) , (43)

where u(r) is a numerically tabulated radial function and Y;,,(6, ¢) is a spherical harmonic.
Our auxiliary basis functions are also constructed as a numerical radial function multiplied by
spherical harmonics

Bu(r) = &(r)Yim(0, ¢) (44)

but the radial function &,(r) has a different shape from w(r). In fact, they are generated in order
to best represent the product of the one-electron orbitals ¢;¢;. Details on how the auxiliary basis
functions are constructed can be found in Refs. [74,76].

Once the auxiliary basis functions { P,(r)} are constructed, we can start to determine the triple
expansion coefficients C}, . For any finite auxiliary basis set, the expansion in (38) is an
approximation, incurring an error p,,,(r) = >, Ch P,.(r) — 5, (r)1,(r). The accuracy of
this approximation will not only depend on the quality and size of the auxiliary basis, but also
on the expansion coefficients C}, . In the RI approach with Coulomb metric [77], instead of
minimizing the norm of the error (00|60 Pmn ), one minimizes the self Coulomb repulsion of

this error (6 pmn |v]0pmn ), leading to the following expression for C¥.

Cl= Y (mnfolv) V!, (45)

14

where

(mn|v|v) //drdr’ Vm(r |r (1) P (r /), (46)

r'|

and V! is the inverted Coulomb matrix. This conventional (global) RI approach works ex-
tremely well for small molecules. For big molecules and periodic systems, one may switch to
a localized variant of the RI approach [76]. With enhanced auxiliary basis functions, the local-
ized RI approach has been shown to be sufficiently accurate in practical calculations [76], and
is instrumental for periodic systems [72].

A final key step is to build the x° matrix in (39). Since the number of auxiliary basis functions
Naux scales linearly with the number of one-electron basis functions, the computational cost
of Eq. (39) scales as O(N?) with respect to the size of the system, and represents the com-
putational bottleneck of RPA calculations. In recent years, lower-scaling algorithms have also
been developed [33, 78], which holds promise for extending the applicability of RPA to large
systems.
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4 The performance of RPA-based methods and
prototypical applications

The revived interest in RPA in recent years comes not only from its appealing concept, but also
from its remarkable performance in practical applications. First of all, RPA can describe vdW
interactions in a seamless way. The reason behind this capability has already been clearly ex-
plained by Dobson in the early days [79], and the performance of RPA has been demonstrated
later for rare-gas crystals [19] and rare-gas dimers [17]. For lower-rung density-functional ap-
proximations (DFAs) ranging from LDA to hybrid functionals, the long-range vdW interactions
are not captured, and ad hoc corrections have to be added in order to describe systems where
vdW interactions play an important role. Furthermore, it seems that RPA is able to describe
the delicate energy differences in complex bonding situations, including molecules adsorbed
on surfaces [27, 28], the isostructural phase transition [24] and the relative stability of different
polymorphs of crystals [26], the binding and ex-foliation energies of layered compounds [36],
and the formation energy of defects [33]. Finally, RPA yields accurate chemical reaction barrier
heights [37], which is crucial for reliably estimating the rate of chemical reactions.

4.1 Van der Waals interactions

Van der Waals (vdW) interactions arise from the coupling between spontaneous quantum charge
fluctuations separated in space. For two well-separated, spherically-symmetric charge-neutral
systems, the interaction energy goes like

AEN% for R — o0 @7)

where Cj is the dispersion coefficient and R is the separation between the two systems. Dobson
showed that the interaction energy between two subsystems A and B obtained by RPA exactly
follows the asymptotic behavior given by (47), with the RPA Cg coefficients given by

3
Ot = = /dw oS (iw) ajPA (iw) (48)
m
RPA

where o} (iw) is the RPA polarizability of the subsystem A, which can be obtained by inte-
grating over the microscopic RPA response function as,

3
1
afPA (jw) = 3 Z //dr dr’ ri " (e, v iw) 1) (49)
i=1

withr 23 = 2,9, 2.

In Fig. 2, the binding energy curves of Ar, obtained using PBE and RPA-based methods are
presented. MP2 is the simplest post-Hartree-Fock quantum chemistry approach capable of de-
scribing vdW interactions, and hence also included here for comparison. The reference curve
is given by the Tang-Toennies potential model, with model parameters determined from exper-
iment. PBE underestimates the bonding strength of Ar, considerably, and this is appreciably
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Fig. 2: Binding energy curves for Ary obtained using PBE, MP2, and RPA-based methods.
All RPA-based methods use PBE orbitals as input. Calculations are done using the FHI-aims
code [75,74]. The “Accurate” reference curve is given by the Tang-Toennies potential model
for Ary [80]. The inset is a zoom-in of the asymptotic behavior at large separations.

improved by RPA. More importantly, at large separations, the PBE binding energy decays
rapidly (in fact exponentially) to the energy zero, but the RPA curve displays a correct Cg/ R®
asymptotic behavior. Compared to the reference result, however, the RPA still shows a sub-
stantial underbinding behavior, in contrast to the MP2 curve which shows too strong binding of
Ary. The underbinding issue of RPA for vdW dimers arises from the too strong Pauli repulsion,
which is in turn due to the Hartree-Fock part of the RPA total energy, obtained with the semi-
local GGA orbitals. This issue can be fixed by the single-excitations corrections [17], and in
particular its renormalized version [35]. As shown in Fig. 2, the RPA+rSE scheme brings the
binding energy curve of Ar, in close agreement with the reference one. The SOSEX correction,
however, does not have a noticeable effect here. Thus the final rPT2 binding energy curve is
almost on top of the RPA+rSE one. The performance of RPA-based methods for other rare-gas
dimers can be found in Ref. [35].

A widely used benchmark set for weak interactions is the S22 test set designed by Jurecka et
al., [82]. This test set collects 22 molecular dimers, among which 7 dimers are of hydrogen bind-
ing type, 8 of pure vdW (also called “dispersion”) bonding, and another 7 of mixed type. Fig-
ure 3(a) shows the structures of water dimer, adenine-thymine dimer, and water-benzene dimer,
representing respectively the three bonding types. Because of its good representativity and the
availability of accurate reference interaction energies obtained using the CCSD(T) method [81],
S22 has been widely used for benchmarking the performance of or training the parameters for
computational schemes that aim at describing weak interactions. The performance of RPA and
some of the RPA-related methods has been benchmarked for this test set [15,18, 17, 83].
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Fig. 3: (a) Structures of water dimer, adenine-thymine dimer, and water-benzene dimer. C, O,
N, and H atoms are represented by grey, red, blue, and white balls. (b) MAEs (in meV) for
the S22 test set given by PBE, MP2, RPA, RPA+rSE, RPA+SOSEX, and rPT2 methods. The
CCSD(T) results of Takatani et al. [81] are used here as the reference.

In Fig. 3(b) the mean absolute errors (MAE) of PBE, MP2, and RPA-based methods are pre-
sented for the three subsets separately and for the entire S22 set. Both PBE and the correlated
methods can describe the hydrogen bonding well, since this type of bonding is dominated by
the electrostatic interactions, which has already been captured by the semi-local functionals to
a large extent. The error of the standard RPA method is still appreciable (MAE > 1 kcal/mol ~
43 meV) arising from its general underbinding behavior. This can again be corrected by rSE,
or by SOSEX terms. However, adding the two types of corrections together, the rPT2 scheme
tends to overbind the hydrogen-bonded molecules, and hence the MAE increases again. For
dispersion and mixed bondings, RPA performs better, and the MAE can be further reduced by
rSE and SOSEX corrections. The MP2 method, on the other hand, yields a relatively large
MAE for dispersion-bonded molecules, owing to its well-known overbinding problem for this
type of interaction. This benchmark test indicates that the RPA+rSE scheme is a suitable ap-
proach recommendable for describing weak interactions. The advantage of this scheme is that
it does not noticeably increase the computational cost, compared to the standard RPA scheme.
In addition to vdW complexes, RPA and its variants have also been applied to chemically
bonded molecules and crystalline solids. Interested readers may look into the literature for
further details [21, 84,37, 35].
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4.2 Surface adsorption

An accurate description of atoms and molecules interacting with surfaces is the key to under-
stand important physical and chemical processes such as heterocatalysis, molecular electronics,
and corrosion. Molecules adsorbed on metal surfaces represent a particularly difficult situation,
since quantitatively accurate results can only be obtained if the approach is able to describe si-
multaneously the chemical bonding, vdW interactions, metallic screening, and charge transfer
processes. The issue is best illustrated by the “CO adsorption puzzle,” where LDA and several
popular GGAs predict the wrong adsorption site for the CO molecule adsorbed on several no-
ble/transition metal surfaces at low coverages [56]. For CO adsorbed on the Cu(111) or Pt(111)
surfaces, LDA and popular GGAs erroneously favor the highly-coordinated hollow site (see,
e.g., Fig. 4(a)), whereas experiments clearly show that the singly-coordinated on-top site is the
energetically most stable site [85,86]. This posed a severe challenge to the first-principles mod-
eling of molecular adsorption problems and represents a key test example for the RPA-based
methods.

In Ref. [27], the performance of the RPA method for CO adsorbed on Cu(111) was investigated.
The computed RPA adsorption energies for both the on-top and fcc (face centered cubic) hollow
sites are presented in Fig. 4(b), together with the results from LDA, AMOS [87], PBE, and the
hybrid PBEO functional [88]. Figure 4 reveals what happens in the CO adsorption puzzle when
climbing the Jacob’s ladder in DFT [9] —going from the first two rungs (LDA and GGAs) to the
fourth (hybrid functionals), and finally to the Sth-rung RPA functional. It can be seen that, along
the way, the adsorption energies on both sites are reduced, but the magnitude of the reduction
is bigger for the fcc hollow site. The correct energy ordering is already restored at the PBEO
level, but the adsorption energy difference between the two sites is vanishingly small. RPA
not only predicts the correct adsorption site, but also produces a reasonable adsorption energy
difference of 0.22 eV, consistent with experiments. The effect of the starting reference state on
the calculated RPA results has also been checked. In Ref. [27], in addition to the commonly
used scheme RPA@PBE, RPA calculations were also done on top of the hybrid functional
PBEQO. Figure 4 indicates that the small difference between RPA@PBE and RPA @PBEQ results
is insignificant for understanding the “CO adsorption puzzle.”

Schimka et al. extended the RPA benchmark studies of the CO adsorption problem to more
surfaces [28], and found that RPA is the only approach that gives both good adsorption energies
and surface energies. GGAs and hybrid functionals at most yield either good surface energies, or
adsorption energies, but not both. Following these works, RPA has subsequently been applied to
the adsorption of small alkanes in Na-exchanged chabazite [89], benzene on the Si(001) surface
[90], graphene on the Ni(111) surface [29, 30] and the Cu(111) and Co(0001) surfaces [30].
In all these studies, RPA was demonstrated to be able to capture the delicate balance between
chemical and dispersion interactions, and yields quantitatively reliable results.

We expect RPA to become an increasingly more important approach in surface science, with
increasing computer power and more efficient implementations.
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Fig. 4: (a): Schematic of CO adsorbed on the Cu(111) surface, with the on-top and hollow
adsorption sites illustrated. (b): Adsorption energies for CO sitting on the on-top and fcc
hollow sites as obtained using LDA, AMO0S5, PBE, PBEO, and RPA. RPA results are presented
for both PBE and PBEQ references. Calculations were done with the FHI-aims code. Adopted
from Ref. [37].

4.3 Structural phase transitions

The f-electron materials, which contain rare-earth or actinide elements, pose a great challenge
to first-principles approaches. A prominent example of an f-electron system is the Ce metal,
which has an intriguing iso-structural o~y phase transition, accompanied by a drastic volume
collapse (as large as 15% at ambient pressure and zero temperature). The two phases are char-
acterized by distinct spectroscopic and magnetic properties. Various theoretical approaches,
including LDA plus dynamical mean-field theory (LDA+DMFT) have been employed to study
this system [91, 92]. DFT within its local and semilocal approximations is unable to describe
the two phases of Ce. In fact, due to the strong delocalization error in these functionals, the lo-
calized nature of the f-electrons in the v phase cannot be properly described; only the o phase
is described with some confidence within LDA/GGAs, although not at a quantitative level.

It was shown by Casadei et al. [24,25] that, remarkably, hybrid functionals like PBEO and HSE
can yield two self-consistent solutions, with distinct lattice constants, cohesive energies, elec-
tronic band structures, local magnetic moments, and different degrees of f-electron localization.
These two solutions can be reasonably associated with the phases of the Ce metal. However,
the energetic ordering of the a-like and ~y-like phases produced by PBEO is not consistent with
the experimental situation where the « phase is energetically more stable at low temperature
and ambient pressure. Adding RPA corrections on top of the PBE cohesive energies for the two
solutions, the energy ordering is reversed, and the a-like solution becomes energetically more
stable. The transition pressure of the two phases given by the Gibbs construction is consistent
with the experimental value.

The capability of RPA to capture the delicate energy difference between competing phases or
polymorphs has also been demonstrated for Iron disulfide (FeS-), a potentially interesting sys-
tem for photovoltaic and photoelectrochemical applications. This material turns out to be rather
challenging, since popular conventional density-functional approximations fail to produce the
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Fig. 5: Calculated PBEO and RPA@PBEQO [RPA denoted here as exact-exchange plus RPA
correlation (EX+cRPA)] cohesive energy (E..n) as a function of the lattice constant aq for
the two electronic states based on self-consistent PBEO solutions. The correction of RPA with
respect to the PBEQ cohesive energies was done for a 19-atom fcc-cerium cluster. The dashed
line illustrates the Gibbs construction for the transition pressure from the o to the v phase. The
arrows on the energy axes indicates the experimental cohesive energy of the o phase. Adapted

from Ref. [24].

relative stability of its two polymorphs: pyrite and marcasite, with the latter artificially stabi-
lized. It was demonstrated by Zhang et al. [26] that RPA, regardless of its reference state, can
correctly restore the energy ordering of the two polymorphs of FeS;. These authors further
reveal that the fact that RPA tends to stabilize the pyrite polymorph is due to its smaller KS
band gap, resulting in a large RPA correlation energy as compared to the marcasite polymorph.
This observation is consistent with the case of the Ce metal [24], where the more metallic -
phase is stabilized within the RPA. Another successful application of this kind is that the tiny
energy difference between the two allotropes of carbon, graphite and diamond, can be reliably
described by RPA, with the correct prediction that graphite is energetically slightly lower than
diamond [31]. More systematic benchmark studies of the performance of RPA and several
beyond-RPA methods for predicting the transition pressure of structural phase transitions of a
set of bulk materials have recently been reported in Ref. [93].

Other types of materials science problems to which RPA has been applied include layered com-
pounds [94, 36] and defect systems [32,33]. We shall not elaborate on these types of appli-
cations here due to limited space, and interested readers may look into the original literature
for details. In summary, there is ample evidence that RPA-based methods perform well in cap-
turing delicate energy differences in materials, and fix some of the qualitative failures of more
conventional approaches.
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S Recent developments

The field of RPA-based methodology development and applications represents a rapidly evolv-
ing branch of computational electronic structure theory. Notable progress has been achieved in
several directions within the last few years, which we would like to briefly recapitulate here.

1. RPA force calculations. Analytical gradients of the RPA total energy with respect to the
atomic positions have been computed within both the atomic orbital basis [95-97,78] and
plane-wave basis [98] frameworks. This allows to compute interatomic forces and relax
structures at the RPA level, which is a long-sought goal of the electronic-structure com-
munity. Moreover, it is now possible to calculate vibrational frequencies [96] and phonon
spectra based on the RPA force constant [98], and even molecular dynamics simulations
can be carried out based on the RPA forces [98]. These advancements greatly enhanced
the capability of RPA in computational chemistry and materials science.

2. Low-scaling RPA implementations. Another noteworthy development is several low-
scaling—ranging from linear scaling to cubic scaling—algorithms for RPA calculations
have been designed and implemented [99, 100, 33, 101-103]. This paves the way for
applying RPA to large-sized and complex materials that were inaccessible in the past.

3. Particle-particle RPA. The above-discussed RPA is represented by ring diagrams and
called particle-hole RPA (phRPA) in the literature. In addition to phRPA, another type
of RPA, consisting of an infinite summation of ladder diagrams, has also been discussed
in the nuclear physics literature [S]. This type of RPA is referred to as particle-particle
RPA and has recently been brought to the attention of electronic structure community
[104-107]. Benchmark calculations show that ppPRA carries interesting features that are
not present in phRPA. Attempts for combining the two types of RPA in one framework
have been made both in a range-separated manner [108] and globally [109]. However,
it seems that merging the two RPA channels into one united theory is a highly nontrivial
task [109].

4. Self-consistent RPA in a generalized Kohn-Sham framework. As mentioned before, the
majority of practical RPA calculations are done in a post-processing fashion, using or-
bitals and orbital energies generated from a preceding DFA calculation. The importance
of the rSE contribution indicates that commonly used semi-local DFAs are not optimal
starting points for RPA calculations. Thus running RPA calculations in a self-consistent
way is highly desirable. However, for orbital-dependent functionals like RPA, the cri-
terion for “self-consistency” is not uniquely defined. The optimized effective potential
(OEP) RPA [110-112] is a well-defined procedure, but the obtained results for binding
energies are not better than perturbative RPA. Most recently, self-consistent RPA schemes
are developed by Jin et al. within a generalized OEP framework [113] and by Voora et
al. within a generalized KS framework [114]. The two schemes differ in details, but the
rSE contribution is captured in both schemes. Initial results obtained from these schemes
look very promising and there is much to explore along this direction.
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5. More beyond-RPA schemes to improve the accuracy. In addition to the beyond-RPA
schemes already discussed in Sec. 2.3, one most recent development by Zhang and Xu
[115] is to introduce a spin-pair distinctive algorithm in the ACFDT context, whereby
the contributions of same-spin and opposite-spin pairs to the correlation energy are sepa-
rated. By scaling the contributions for two types of spin pairs differently, one can achieve
a simultaneous attenuation of both self-interaction errors and static correlation errors.
Similar to the power series approximation of Gorling and coauthors [62,59], the spin-pair
distinctive formalism of Zhang and Xu [115] is particularly successful in dealing with
systems with multi-reference characters.

6 Summary

In this lecture, we discussed the basic concept, the theoretical formulation, the implementation
algorithm, the prototypical applications, and the recent development of RPA-based methods.
We expect that RPA and its variants will have an ever-increasing impact on computational ma-
terials science, and become the mainstream methods in the near future. Since this is an actively
developing field, and the number of papers is quickly growing, it is well possible some impor-
tant developments are not covered in our discussion. The purpose of this manuscript is to inform
the readers about the overall status of this field, and stimulate more work on the development
and application of RPA-type methodology.
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3.2 Cyrus J. Umrigar

1 Introduction

Quantum Monte Carlo (QMC) methods are a broad and versatile class of stochastic algorithms
for solving the many-body Schrodinger equation. They have been applied to fermions and
bosons at zero and finite temperatures. Zero temperature calculations include both ground and
excited states. Application areas range from quantum chemistry to lattice models of correlated
materials to nuclear physics. Although the various methods differ greatly in their details, there
is a small core of underlying ideas that are common to all the methods, which we will em-
phasize in this lecture. This lecture will be limited to zero temperature methods for fermionic
systems. The emphasis will be on providing a unified description of both variational and pro-
jector Monte Carlo methods, both in discrete and in continuous space. The wide range of QMC
applications will not be discussed. The finite-temperature path-integral Monte Carlo method
has been reviewed in Ref. [1]. Details of zero-temperature methods, which we do not have time
for here, can be found in the original papers, in books and review articles [2—8], and in chapters
by Becca, Liichow, Prokof’ev, Sandvik, and Zhang in this volume.

The many-body Schrodinger equation can be solved straightforwardly by expanding the wave-
function in a linear combination of determinants of single-particle orbitals, a method that is
known as full configuration interaction. The limitation is that the number of states scales com-
binatorially in the number of orbitals N, and the number of electrons N = Ny + N, as
Noww Ny X Norb (f Ny» where NV}, N| are the number of up- and down-spin electrons respectively,
so this brute-force method can be applied only to tiny systems. In contrast, some of the QMC
methods scale as a low-order polynomial in N, provided that an approximate solution whose
accuracy depends on the quality of a trial wavefunction is acceptable. Frequently high qual-
ity trial wavefunctions can be constructed, making QMC one of the few methods that provide
accurate solutions for difficult problems.

2 QMC in a nutshell

I will distinguish between QMC simulations and QMC calculations, although almost all other
researchers use these terms interchangeably. To my mind the stochasticity in QMC simulations
mimics the stochasticity of the experimental system, e.g., the diffusion of neutrons in a nuclear
reactor. On the other hand, QMC calculations, which is what we will be discussing here,
introduce stochasticity into problems that are in fact deterministic. The solution of the many-
body Schrodinger equation is perfectly deterministic (not to be confused with the probabilistic
interpretation of the wavefunction amplitude) so it is in fact rather remarkable that introducing
stochasticity makes the problem more tractable.

QMC methods are most useful when the dimension of the Hilbert space is very large and other
many-body methods become impractical. They can be used both when the state of the system
is described by discrete degrees of freedom, e.g., spin states or expansion coefficients of the
wavefunction in a finite basis, as well as when the state is described by continuous degrees of
freedom, e.g., the wavefunction amplitudes as a function of 3N —dimensional electron coordi-
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nates, in which case the Hilbert space is in fact infinite! The basic ideas of QMC are the same
in discrete and continuous systems, so I will provide a unified treatment of both cases and will
use discrete and continuous notation (e.g., sums and integrals) interchangeably.

2.1 Variational Monte Carlo

Many QMC methods rely on having good approximate wavefunctions to improve their accu-
racy and efficiency. So, we consider three wavefunctions: the exact wavefunction |%) and two
approximate wavefunctions which we call the trial wavefunction |¥r) and the guiding wave-
function |¥): Their expansions in a (complete or incomplete) basis of N states are

Ngt

Exact W) = Zei|q§i), where ¢e; = (¢;|%) (1)
Mo

Trial — [|Ur) = Y ti|¢;), where t; = (¢;|Pr) (2)
Mo

Guiding W) = Y gil¢), where g; = (W) 3)

If the basis is incomplete then “exact” should be construed to mean “exact in that basis.” W
and ¥ are frequently chosen to be the same function, but they serve two different purposes
and at times there are good reasons for choosing them to be different, as will become apparent
shortly. The basis state indices may be discrete (e.g., determinants of single-particle orbitals)
or continuous (e.g., the 3V coordinates of the IV electrons). In either case one can use |¥r) to
define the “local energy” of that state

>, Higt
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The variational energy of |¥7) can be evaluated as follows:
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In the last line, we switch from the sum over all states to a sum over states sampled with
probability g2/3 1" g2, first for Wg = W (the usual case) and then for ¥ # Wrp. In the limit
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that U7+ — ¥, Ep,;, — Ej, the exact energy, independent of ¢. It is now apparent that the
requirements on |¥r) and |Wg) are rather different. We wish to employ a |¥7) which is not only
a good approximation to |%) (i.e., one that gives a low Ey and has small rms fluctuations in
L), but also one for which Ep, can be evaluated efficiently. For a discrete basis, this means that
H should be very sparse in that basis, whereas for the continuous real space basis this requires
that (¢x|¥r) and its Laplacian (needed for calculating the kinetic energy) can be evaluated
efficiently. Instead the requirements on |¥g) are that (¢;|¥q) can be evaluated efficiently and
that it is nonzero whenever (¢;|¥) is nonzero, since otherwise the expectation values would be
biased relative to the actual variational value.

Hence the minimal ingredients for an accurate and efficient VMC algorithm are:
1. A method (Metropolis-Hastings) for sampling (¢ |¥rp)*.

2. A |¥r) with variational parameters that is flexible enough to be a good approximation to
|Wy) for optimized parameters, and for which (¢, |¥r) and Ey, can be evaluated efficiently.

3. Robust and efficient methods for optimizing the variational parameters.

These ingredients will be discussed in Secs. 3, 5, and 6 respectively.

2.2 Projector Monte Carlo

Projector Monte Carlo (PMC) methods evaluate the true energy Ej (in the absence of a “sign
problem”) rather than the variational energy Evy using a “mixed estimator,” (Wo| H &) / (W | W),
for the energy. Following almost the same steps as in VMC

(W H| W) (W Hwr) X5 (olen) (ol Hl) (6]r)

FEy = =
(Wo|Wo) (Wo|¥r) 2 (Tolow) (drlPr)
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The only difference between Egs. (6) and (5) is that the sampled distribution is e;g;/ Z]kv“ek Gk
rather than ¢?/ S"N*'g?2. At first sight this seems like an insurmountable obstacle since |¥¢)
is known, but |%) is not. In Sec. 4 we describe methods for sampling the mixed distribution
needed for PMC. The properties required of |¥r) and |¥() are exactly the same as for VMC.
Note that although an unbiased energy is obtained in the absence of a sign problem regardless of
|¥r) and W), the statistical error depends on |¥r) and | ). When the sign problem is present,
approximations will be needed and their accuracy and efficiency depend on |¥r) and |¥¢).
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3 Variational Monte Carlo

3.1 Metropolis-Hastings method

As discussed in Sec. 2.1 we need to sample with probability g7/ fo“ g?. To familiarize the

reader with both discrete and continuous notation, we now assume we are working in con-
tinuous real space, in which case we need to sample from the probability density function
p(R) = Y3 (R)/[dR ¥4(R), where we assume that the choice |¥g) = [¥r) has been made
since that is the usual practice. It is possible to sample a large number of probability density
functions [9] directly (i.e., with no serial correlations) using the transformation or the rejection
methods, but not such complicated probability density functions, so instead the Metropolis-
Hastings method [10, 11] is used. It was originally developed to sample the thermal Boltzmann
distribution, but is in fact a very powerful method for sampling any known discrete or continuous
distribution. (In Sec. 4 we will see how to sample the unknown distribution ¢ty /[ dR)T 1ho!)

3.1.1 Markov chains

The Metropolis-Hastings method employs a Markov chain. A Markov chain is specified by two
ingredients:

1) an initial state

2) a transition matrix M (R¢|R,) (probability of transition from R; — Ry.) with the properties

M(R¢|Ry) >0, and / dR¢ M(R¢|R;) = 1.  (Column-stochastic matrix) (7)

The first property expresses the fact that probabilities must be non negative. The second prop-
erty expresses the fact that a point at R; must go somewhere at the next step. The eigenvalues
of a column-stochastic matrix are between O and 1, and there is at least one eigenvalue equal
to 1 since the vector with all components equal to one is a left eigenvector with eigenvalue 1,
and the left and right eigenvalues of any matrix are the same. If in addition M is a “primitive
matrix,”’ i.e., there exists an integer n for which all the elements of M™ are strictly positive, then
there is a unique eigenvector with eigenvalue 1 and the Markov chain is said to be “ergodic.”!
We wish to choose an M such that repeated application of M results in sampling p(R.), so we
choose an M that satisfies

/ dR; M(RiRy) p(Ry) = p(R;) — / dR; M(Re|R)) p(R;) ¥ R; ®)

The first equality expresses a stationarity condition, namely that the net flux in and out R; is
zero. Hence if one starts with the correct distribution p(R), repeated application of M will
continue to sample from p(R). The second equality follows from the definition of a stochastic
matrix. Eq. (8) shows that p(R) is a right eigenvector with eigenvalue 1. Since all the other

'Here we ignore some subtleties that arise when the space is infinite.
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eigenvalues are between 0 and 1, but not equal to 1, p(R) is the dominant right eigenvector
of M and repeated application of M results eventually in sampling p(R).

In practice, the length of Monte Carlo (MC) run should be long enough that there is a significant
probability of the system making several transitions between the neighborhoods of any pair of
representative states that make a significant contribution to the average. This ensures that states
are visited with the correct probability with only small statistical fluctuations. For example in
a double-well system many transitions between the two wells should occur, but we can choose
our Markov matrix to achieve this even if the barrier between wells is high.

A drawback of the Metropolis-Hastings method is that the sampled states are serially correlated.
The rate at which the initial density evolves to the desired density p and the autocorrelation time
of estimates of various observables is governed by the subdominant eigenvalues. In the ideal
situation all the other eigenvalues are zero and every sample is independent.

Construction of M : Detailed balance condition We have as yet not provided a prescription
to construct M, such that p is its stationary state. To do this we impose the detailed balance
condition

M (R¢[R;) p(Ri) = M(Ri|Ry) p(Ry) )

The detailed balance condition is more stringent than the stationarity condition. Instead of
requiring that the net flux in and out of each state is zero, it requires that the net flux between
every pair of states is zero. It is a sufficient, not a necessary condition, but it provides a practical
way to construct M.

To go further, it is convenient employ a 2-step process. Moves from R; to a provisional point R}
are proposed with probability 7'(R{|R;) and then accepted with probability A(R{|R;). The
corresponding Markov matrix is

f i R
— de,f A(RHRI) T(I{z/f’:[{q) if ]Et,f i

M (R¢|R;) and T'(R¢|R,) are stochastic matrices, but A(R¢|R;) is not. The detailed balance
condition now becomes

ARs[Ri) T(Re|R;) p(Ri) = A(Ri[R¢) T(Ri|R¢) p(Ry)

e AR¢|Ry) _ T(Ri|Ry) p(Ry) (11
© ARR) ~ T@RR,) p(Ry)

3.1.2 Choice of acceptance matrix

To satisfy Eq. (11) we can choose

(12)

AR¢|R;) = F(T(Ri|Rf) p(Rf)>

T(Ri[Ri) p(Rs)
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where F' is any function for which F'(z)/F(1/z) = x and 0 < F'(x) < 1. Two possible choices
are F'(z) = /(1 + z) and F'(z) = min{1, 2}, corresponding to

T(Ri|Rs) p(Ry)

AR = TR IR p(R)) + T(RR) (R (1
and A(Rs|R) = min{l,ggﬁl"ifi; ZEE; } (14)

The latter choice is the optimal choice since it maximizes the acceptance for given p and 7',
and is the choice made in the Metropolis et al. and the Hastings papers. Actually, Metropolis
et al. assumed that T'(R;|R¢) = T(R¢|R;) in which case the factors of T drop out of Eq. (14),
and Hastings made the generalization to T'(R;|R¢) # T'(R¢|R;), which enables a more efficient
algorithm.

3.1.3 Choice of proposal matrix T

The optimal choice for the acceptance matrix A(R¢|R;) is straightforward, Eq. (14), but there is
considerable scope for using one’s ingenuity to come up with good proposal matrices, 7'(R¢|R;),
that give small serial correlations between samples. As mentioned before, the ideal choice of
M (R¢|R;) has one eigenvalue equal to 1 and the rest zero. However, in practice the way to
find efficient choices for 7'(R¢|R;) is not to think about eigenvalues, but instead to think about
choosing a T'(R¢|R;) that has large proposed moves and at the same time has high acceptance
probabilities, i.e.,

T(Ri|R¢) p(Re)
T(R¢|Ri) p(Ri)

~ 1. (15)

There is a great deal of freedom in the choice of T'(R¢|R), the only constraints being that it is a
stochastic matrix leading to an ergodic Markov chain, and that it must be possible to efficiently
sample T'(R¢|R;) with a direct sampling method.

It may appear from Eq. (15) that our goal should be to make 7' (R¢|R;) o< p(Ry) since in that
case the various factors cancel and the product becomes 1. This is in fact the case if it is possible
to achieve that condition over all space, but it is not—if it were possible, we would not be using
Metropolis-Hastings in the first place. So, we will discuss an alternative goal in a moment.

In order to prevent the acceptance from getting too small, it is common practice to restrict the
moves to be in the neighborhood of R, by choosing 7'(R¢|R;) to be non-zero, or at least not
negligible, only within a domain D(R;) of volume (2(R;) around R;. For a given functional
form of T'(R¢|R;) the acceptance decreases as {2(R;) increases, so, there exists an optimal
2(Ry) for which the system evolves the fastest.

To make further progress, we now make explicit that 7'(R¢|R;) is an ergodic matrix by writing

SReRi) SRRy

T(R¢|R;) = def (R¢|R;) S(Ri|Ri)2(Ry) ’

(16)
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where S(R¢|R;) is non-zero only in the domain D(R;). Then,

AR Ri)  TRiRe) p(Re) - 2(Rs) S(Ri|R;) S(Ri[Ry) p(Ry)

AR.R)  TRiR) pRy) ~ QRe)S(ReRe) SRRy pRy)

Noting that for the present purpose S should be viewed as a function of the left index only, it is
apparent that the choice

S(Re|R;) o /p(Re)/2(Ry) yields ARy, Ry)/A(R;, Ry) ~ 1. (18)

To be more precise, if the log-derivatives of S(R¢|R;) equal those of y/p(R¢)/2(Ry) at Ry =
R;, the average acceptance goes as 1 — O(A3), where A is the linear dimension of D(R;),
provided that D(R;) is inversion symmetric about R;.

Another good choice for T'(R¢|R;), motivated by the diffusion Monte Carlo algorithm discussed
in Sec. 4, is

(Rf — Ry — V(Ry) 7)”

T(R¢| Ry )
(Ri[R.) =

exp | — (19)

1
(27r7')3N/ 2
where V(R;) = V¥ (R)/¥(R)|g_g, is called the drift velocity of the wave function and 7
is the time step which can be adjusted so as to minimize the autocorrelation time of the local
energy. This is sampled by choosing

Rf = Ri + V(Rl)T + n, (20)

where 1 is a vector of 3/V random numbers drawn from the Gaussian distribution with average 0
and standard deviation /7.

We demonstrate the increase in the acceptance probability that can be achieved by using Eq. (18)
or Eq. (19) with a simple one-dimensional example. We wish to sample ¥ (R)?. The simplest
choice for T'(R¢|R;) is a uniform distribution in £2(R;) specified by |Rf — R;| < A and zero
outside

1
— ifR; € 2(Ry),
T(R¢R;) = (24 21

0  elsewhere.

Instead, our recommended prescription from Eq. (18) is

1 VY (R
— |1+ ( ) (Rf—Ri) 1fRf S Q(Rl),
T(ReR;) = (24 Y(R) |p_g, (22)
0 elsewhere
and the prescription of Eq. (19) becomes
1 (R —Ri — V(Ry) 7)°
T ) = — — . 2
RiR) = e [ - (23)
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3.9

3
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(R',R) in

Egs. (21), (22), (23). The lower two plots have much larger average acceptances than the top.
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In Fig. 1 we show plots of ¥(R'), S(R'|R), and (¥(R')/¥(R))’ T(R, R')/T (R, R) for the

hree diff hoices of T(R', R) in Egs. (21), (22), and (23). In th lot (UR))" L(ER)
three different choices of T'(R’, R) in Egs. (21), (22), and (23). In the top plot @) TR
deviates linearly in R — R from 1 in the vicinity of R = R and deviates greatly from 1 over
much of (2(R), in the middle plot it deviates cubically in R’ — R from 1 in the vicinity of R' = R

and is close to 1 in all of £2(R), and in the bottom plot it deviates linearly in R’ — R from 1 but

stays close to 1 over a fairly wide range. Hence the choices of T'(R¢|R;) in Eq. (18) and (19)
result in much smaller autocorrelation times than the simple choice of a symmetric 7'(R¢|R;).

The analysis in Egs. (16) to (19) and the examples in Egs. (21) to (23) assume that p(R)=¥(R.)?
has continuous derivatives. In reality, ¥(R)? has derivative discontinuities at electron-nucleus
and electron-electron coincidence points. The former are much more important than the latter,
since the wavefunction is large there and the velocity is directed towards the nucleus, so the
electron tends to overshoot the nucleus. So, there is a high likelihood of having electrons
near the nuclei and their acceptances are likely to be small. To tackle this problem, a highly
efficient VMC algorithm with autocorrelation times of the local energy close to 1 is presented
in Refs. [12, 13] wherein the electron moves are made in spherical coordinates centered on
the nearest nucleus and the size of radial moves is proportional to the distance to the nearest
nucleus. In addition, the size of the angular moves gets larger as one approaches a nucleus.
This algorithm allows one to achieve, in many cases, an autocorrelation time of the local energy
close to 1.

3.1.4 Moving the electrons all at once or one by one?

The accept-reject step can be performed after moving each electron, or after moving all the
electrons. The former requires more computer time since the wavefunction and its gradient
must be recalculated after each move. The increase in computer time is not a factor of N as
one may naively expect, but more like a factor of 2. The reason is that it takes O(/N?) time to
calculate a determinant from scratch, but only O(N?) time to recalculate it, using the matrix
determinant lemma and the Sherman-Morrison formula, after a single row or column has been
changed. For systems with many electrons, moving the electrons one at a time leads to a more
efficient algorithm because larger moves can be made for the same average acceptance, so the
autocorrelation time of the local energy is smaller, more than compensating the increase of the
calculation time per MC step.

4 Projector Monte Carlo

In Sec. 2 we wrote down the exact energy as a mixed estimator where the bra is the exact
wavefunction and the ket the trial wavefunction, but we did not explain how one accesses the
exact wavefunction, i.e., the ground state of the Hamiltonian. This is done using a projector.
Projector Monte Carlo is a stochastic realization of the power method for finding the dominant
eigenvector of a matrix. If one repeatedly multiplies an arbitrary eigenvector (not orthogonal
to the dominant eigenvector) by the matrix, then one eventually gets the dominant eigenvector,
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since at each step it gets multiplied by the largest in magnitude eigenvalue of the matrix. The
power method is an example of an iterative eigensolver. Other iterative eigensolvers exist, such
as the Lanczos method and the diagonally-preconditioned Davidson method, and they are much
more efficient than the power method for deterministic calculations. So, if the dimension of the
Hilbert space is not very large, say < 10'° then one would just do a deterministic calculation
using the Lanczos or Davidson methods. However, when the Hilbert space is so large (even
infinite) that it is not possible to store even a few vectors of Hilbert space dimension, then PMC
methods become the method of choice, since at any point in time they store only a sample
of states.

The projector is any function of the Hamiltonian that maps the ground state eigenvalue of H
to 1, and the higher eigenvalues of H to absolute values that are < 1 (preferably close to 0). We
use the term “projector” somewhat loosely, since it is only repeated application of the projector
that yields the desired state:

W) = lim P"(r) |r). (24)

n—0o0

Possible choices for the projector are

Exponential projector: P = ¢(Bri-H) (25)

Linear projector: P = 1+7(Er1-H) (7 < 2/(Emax—FEo)) (26)
A 1

Green function projector: P = - - - (27)

where Er is an estimate of the ground state energy.

4.1 Importance sampling

The projectors above enable us to sample e¢; = (¢;|¥). However, according to Eq. (6) we want
to sample from g;e; = (¢;|¥q) (¢;|¥). Since

> Pre; = ¢ (28)
f
the similarity transformed matrix with elements
. Py
Py =10 (29)
Gi

has an eigenstate with elements g;e;:

X P,
ZPﬁ(giei) = > (gfgf > (gi€:) = grey. (30)

i

P is called the importance sampled projector and it samples (¢;|¥a) (¢:|¥o).
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4.2 Branching random walks

Note that unlike the Markov matrix in Eq. (10) used in the Metropolis-Hastings method, the
columns of the projector are not normalized to 1. We can write ﬁ’ﬂ as

i P < -
Zf Py ;

where now T'; is a Markov matrix and W; are multiplicative weights. So, instead of the un-

weighted Monte Carlo walk that we had when doing VMC, we now have walkers that are
specified by not just their position and but also by their weight. At each Monte Carlo step, the
weight gets multiplied by W;. If we have a single weighted walker, then a few generations of the
walk will dominate the averages and the computational effort expended on the rest of the walk
would be largely wasted. It is possible to have a population of walkers of fluctuating population
size, with each walker having unit weight, but this leads to unnecessary birth/death events. So,
it is best to have a population of walkers, such that all walkers within a generation have roughly
the same weight, say within a factor of 2, and birth/death events when the weights go outside
that range. Even so, the weights of different generations will vary a lot in a sufficiently long run.
So, efficiency demands that we exercise population control to make the weights of each gen-
eration approximately the same. The population control error is proportional to the inverse of
the target population size Ny. . The error arises because of a negative correlation between the
energy averaged over the generation and the weight of the generation. When the energy is low,
the weight tends to be large and population control artificially reduces the weight and thereby
creates a positive bias in the energy. Similarly, when the energy is high, the weight tends to be
small and population control artificially increases the weight and this too creates a positive bias
in the energy. Since the relative fluctuations in the energy and in the weight go as 1/v/Nyau,
the relative fluctuations in their covariance goes as 1/Ny.a, resulting in a O(1/Nyai) popula-
tion control bias. So, one way to reduce the population control error is to simply use a large
population, and this is what most people do. If one wishes to be sure that the error is sufficiently
small, plot the energy versus 1/Ny.y and take the limit 1/N.;c — 0. But there exists a better
way that allows us to estimate and remove most of the population control error within a single
run [14,15].

4.3 Taxonomy of PMC methods

The various PMC methods can be characterized by a) the form of the projector, and, b) the
space in which the walk is performed, i.e., the single-particle basis and the quantization used.

By second quantization we mean that walkers are characterized by only the occupancy of the
single-particle states, whereas by first quantization we mean that walkers are characterized by
the occupancy and by which electrons are on which states. So, walkers that are related by elec-
tron permutations in a first quantized space map onto the same walker in a second quantized
space. Table 1 is a taxonomy of some PMC methods. For example, DMC uses the expo-
nential projector (imaginary-time propagator) with a 1** quantized continuous real space basis,
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Method Projector SP Basis Quantization
Diffusion Monte Carlo (DMC) [16,17,15] ¢™(Eri-H) r 15t
GFMC [18-20] em(Eri-H) (samp. 7) 1 15t
Lattice-regularized DMC (Sorella, Casula) eT(Bri-H) (samp. 7) 1 1%t
FCIQMC [21-23] 1+7(Epl—H)  grthes pnd
phaseless AFQMC [24, 5] em(Bri-H) gronerthos - ond

Table 1: Taxonomy of PMC methods. The methods are characterized by the projector, and the
space in which the walk is performed, i.e., the single-particle basis and the quantization.

AFQMC also uses the exponential projector but with a 2"¢ quantized orbital basis, and FCIQMC
uses a linear projector with a 2"¢ quantized orbital basis. In AFQMC the orbitals are nonorthog-
onal and evolve continuously during the MC run, whereas in FCIQMC they are orthogonal and
are fixed during the entire run. The linear projector has the advantage that if the Hamiltonian is
known exactly in the chosen basis, so also is the projector. However, it can be used only when
the spectrum of the Hamiltonian is bounded.

4.4 Diffusion Monte Carlo

We now discuss in some detail just one of the various PMC methods, the PMC method in real-
space using first-quantized walkers. This method is more commonly known as diffusion Monte
Carlo (DMC), and the projector is often referred to as the Green function since it is the Green
function of the Fokker-Planck equation in the short-time approximation. We limit the following
discussion to ¥ (R) = ¥(R).

We now derive an approximate expression for

/ / 3 & 1 / ’ 1 ~ /
0z R> R/ |em(Eri-I)|R = U (R)G(R, R, T = GR.R,7).
(w|R) (R R) gy = WRIGRRT) fos = GRIR.T)
We multiply the imaginary-time the Schrodinger equation
1 oV (R,
—§V2LD(R, t) + (V(R) — Er)¥(R,t) = —% (32)

by ¥r(R) and rearrange terms to obtain

2 _\72
v (W) + V- (V%MT/T) + < V +V—ET) (W) = _ o) (33)

2 U Wiy ot
—— —
EL(R)
defining f(R,t) = (R, t)¥r(R), this is
1_, VU _of
_EV f + V- ( 7 f) + (EL(R) = Er)f = 5 (34)

v/ TV 4 N TV -
diffusion drift growth/decay
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Since we know the solution for each individual term on the LHS, an approximation Green
function is

1 e—(R' _R-V(R)r)?/(2r)+ (ET— (BL(R)+ELR)) /2) .
(277)3N/2

This is the same as the proposal matrix in Eq. (20) but there is now an additional growth/decay

G(R,R,7) = +0(1%).  (35)

factor. So, the walker moves exactly as before, but the weight gets multiplied by this factor.
Simply by turning on this multiplicative factor, one can switch between VMC and DMC.

This projector gives rather poor results—it has a very large time-step error and typically gives
charge distributions for finite systems that are too diffuse. We describe next two improvements:
a) take into account the singularities of the projector, and b) introduce an accept-reject step to
ensure that the exact distribution is sampled in the limit that the ¥ (R)) is exact.

4.4.1 Singularities of G(R, R, 7)

Following Ref. [15], Table 2 shows the singularities of G(R’, R, 7) at the nodes of ¥r(R)
and the particle coincidences. G(R', R, 7) is accurate if V(R) is nearly constant over the time
step, 7, and if Ey, changes nearly linearly between R and R’. Both assumptions fail dramatically
at these singularities. For exact W the local energy Ep,(R) is constant, but for the approximate
Y used in practice, it diverges to oo as the inverse of the distance to the nearest node. On
the other hand the divergence of Ep(R) at particle coincidences is easily removed simply by
imposing the electron-nucleus and electron-electron cusps on ¥r. The velocity V(R) diverges
at the nodes and has a discontinuity at particle coincidences even for exact ¥, so this cannot
be taken care of by improving ¥r. Instead, we must improve upon the implicit assumption in
G(R, R, 7) that V(R) is constant during the time step 7. When an electron is near a node,
the velocity diverges as the inverse distance to the node and is directed away from the node,
so the large velocity does not persist over the entire time step 7. Taking this into account and
integrating over the time step we find that the average velocity over the time-step 7 is:

. —1+V1+2V2r \% ifV2r <1
vV = vV - NI
Vir V2/TV it V2> 1

Similar improvements to the average velocity in the vicinity of electron-nucleus coincidences,

(36)

and the average of Ep, can also be made.

Table 2: Singularities of G(R, R, 7).

Region Local energy Fp, Velocity V
Ey, ~ +1/R, for ¥
d L L T V ~1/R, for both ¥ and ¥,
nodes By — B, for /R, for both ¥t and ¥,
d Ep, ~ 1/z if cusps not imposed
cenaneee E;, finite if cusps are imposed | V' has a discontinuity for both ¥ and ¥
coincidences

EL = EO for Epo
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4.4.2 Imposing detailed balance in DMC

Since G(R’, R, 7) has a time-step error, it fails to sample the correct distribution even in the limit
that U (R) is exact. So, for large values of 7, the version of DMC presented so far can actually
be less accurate than VMC. Following Refs. [17,15] this is easily remedied as follows: If we
omit the third term on the left-hand side of Eq. (34) then it can be verified that f(R) = ¥(R)?
is the solution since

Vip
Y

However, we can sample ¥ (R)? using Metropolis-Hastings. So, we can view the drift-diffusion

_%v%(m + V-( w%<R)) =0 (37)

part of G(R,R, 7) as being the proposal matrix 7(R’, R) and introduce an accept-reject step
after the drift and diffusion steps and before the reweighting step. With this simple modification,
DMC is guaranteed to give an energy lower than the VMC energy, and in the limit of 7 — 0 an
energy that is variational, i.e., higher than the true energy. Finally, we account for the fact that
the walker moves less far, since some of the moves are rejected, by using an effective time step
Tet for reweighting
2
Teff =T ];‘chep , (38)

prop

where Rgrop is the sum of the squares of all the proposed one-electron move distances and

R2__is the same sum, but including only the accepted moves.

accep

4.5 Sign problem

PMC suffer from a sign problem except in a few special situations, e.g., 1-dimensional problems
in real space. In all PMC methods, the sign problem occurs because an undesired state grows
relative to the state of interest when the system is evolved by repeated stochastic applications of
the projector. This results in a computational cost that grows exponentially with system size /V.
A reasonable definition [25] is that there is no sign problem if the computer time required to
compute the value of an observable for an N-particle system with specified error, €, scales as
T o N% 2, where ¢ is a small power (say, 6 < 4). (It is assumed that /V is increased in some
approximately homogeneous way, e.g., adding more atoms of the same species.) The details of
how the sign problem manifests itself is different in the various PMC methods, and we discuss
two examples.

4.5.1 Sign problem in DMC

In the absence of importance sampling (which has the important side effect of imposing the
fixed-node constraint), the DMC projector of Eq. (35) becomes

67(3'73)2/(%” (ETf (V(R’)+V(R)) /2) T

G(R',R,7) = (R'|P(T)|R) ~ (39)

(277)3N/2
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It is nonnegative everywhere, so there is no sign problem if one were interested in the domi-
nant state of this projector. However, the dominant state of this projector is the Bosonic ground
state whereas the state of interest is the Fermionic ground state. If one started with a positive
distribution and a negative distribution such that their sum is purely Fermionic as illustrated in
Fig. 2, and applied the projector deterministically, both the positive and the negative distribu-
tions would tend to the Bosonic ground state, but, their sum would yield the Fermionic ground
state, though with an amplitude that gets exponentially small relative to the amplitude of the in-
dividual components with increasing MC time. However, the projection is done stochastically
and the probability of positive and negative walkers landing on the same state at the same MC
time step and cancelling is very small if the portion of the state space that contributes signifi-
cantly to the expectation values is finite and large, and it is zero if the state space is continuous
(unless the dynamics of the walkers is modified to force opposite-sign walkers to land on the
same spot). Hence it is not possible to sum the positive and negative contributions to extract
the Fermionic ground state. This is demonstrated in Fig. 2. Furthermore, the problem cannot
be solved by using an extremely large population of walkers. This enhances the probability
of cancellations, but, because of fluctuations, eventually only positive or only negative walkers
will survive and so the Fermionic state will completely disappear.

Fixed-node approximation: The importance-sampled Green function of Eq. (35) is not just
a similarity transform, as in Eq. (29), of the Green function of Eq. (39). A fixed-node constraint
has sneaked in as well. The velocity in Eq. (35) diverges at nodes and is directed away from
them, so the number of node crossings per unit time goes to zero in the 7 — 0 limit.? So,
the solution obtained is the solution to the Schrodinger equation with the boundary condition
that it goes to zero at the nodes of ¥(R). Since we are now adding in an artificial constraint,
the resulting energy has a positive fixed-node error, which disappears in the limit that the nodal
surface of U (R) is exact. The fixed-node approximation not only enables the calculation of the
Fermionic ground state by eliminating the non-Fermionic states, it also enables the calculation
of Fermionic excited states by preventing a collapse to the Fermionic ground state. For the
excited states one loses the upper-bound property, but nevertheless the method has been used to
calculate challenging excited states accurately [26-28].

4.5.2 Sign problem in FCIQMC

It may appear from the above discussion that the sign problem can be solved by performing
the MC walk in a 2"¢-quantized, i.e., antisymmetrized, basis. Each 2"¢-quantized basis state
consists of all the permutations of the corresponding 15'-quantized basis states. Then there are
no Bosonic states or states of any symmetry other than Fermionic, so there is no possibility of
getting noise from non-Fermionic states. Of course, it is well known that this does not solve the
sign problem. The problem is that different paths leading from a state to another can contribute
with opposite sign. If the opposite sign contributions occur at the same MC step, then the

2The number of node crossings per MC step goes as 75/ so the number of crossings per unit time goes to zero

as /7.
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Fermi ground state
Bose ground state Plus walkers
Trial state Minus walkers

Plus walkers Plus walkers
Minus walkers Minus walkers
Fermionic state Fermionic state

c) d)
\\
—N
Plus walkers Plus \walkers
Minus walkers Minus walkers
Fermionic state Fermionic state

e) f)

Fig. 2: Demonstration of the sign problem in DMC. a) The green curve schematically depicts
the Bosonic ground state, the red curve the Fermionic ground state, and the blue curve an
approximate Fermionic wavefunction. b) The starting positive distribution is shown in red and
the starting negative distribution in green. Their sum is purely Fermionic. c-f) The red and
the green curves show the evolution of the positive and negative distributions. Their sum, the
blue curve, converges to the Fermionic ground state. f) For a finite population, the walkers are
depicted as delta functions and in a continuous space they never meet and cancel (unless they
are forced to in some way). Consequently there is an exponentially vanishing “signal to noise”
ratio.
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contributions cancel and yield a net contribution of smaller absolute magnitude, just as they
would in a deterministic calculation. The problem occurs when opposite sign contributions
occur at different MC steps. Further, since ¥ and —¥ are equally good, they are each sampled
with equal probability in the course of a long MC run.

In a few special situations the sign problem is absent. The necessary and sufficient condition
for there to be no sign problem is that all columns (or equivalently rows) of the projector have
the same sign structure aside from an overall sign. Equivalently, there is no sign problem if
it is possible to find a set of sign changes of the basis functions such that all elements of the
projector are nonnegative. For example, the projector with the following sign structure

+ - + +
_+__

40
+ - + 4 0
+ - + 4

does not have a sign problem, since changing the sign of the 2"¢ basis state makes all the
elements nonnegative. Note that it is not necessary to actually make these sign changes—the
projectors before and after the sign changes are equally good.

Although a 2"¢-quantized basis does not solve the sign problem, it is advantageous to use a 2"¢-
quantized basis when designing an exact Fermionic algorithm. First, an antisymmetrized basis
is a factor of V! smaller, and so the probability of opposite sign walkers meeting and cancelling
is greater. Second, since each 2"-quantized basis state consists of a linear combination of
1%-quantized basis states, 2"¢-quantized states that are connected by the projector may have
multiple connections coming from several of the constituent 1%-quantized states. Hence there
is the possibility of internal cancellations in the 2"¢-quantized basis, which reduces the severity
of the sign problem [29]. Third, since Bosonic and other symmetry states are eliminated it is
clear that one can achieve a stable signal to noise for any large but finite basis by making the
walker population very large. The limit of an infinite walker population is equivalent to doing a
deterministic projection, which of course does not have a sign problem.

The FCIQMC method [21] does just this. It uses efficient algorithms for dealing with a large
number of walkers and obtains essentially exact energies for very small molecules in small
basis sets, using a large but manageable number of walkers. The MC walk, is done in an
orbital occupation number (or equivalently determinantal) basis. For somewhat larger systems
it is necessary to employ the initiator approximation [22] which greatly reduces the walker
population needed to achieve a stable signal to noise ratio. Only states that have more walkers
on them than some threshold value can spawn walkers on states that are not already occupied.
The associated initiator error disappears of course in the limit of an infinite population and
in practice it is possible to get accurate energies for interesting systems. However, the initiator
error can be of either sign and it can be nonmonotonic, so extrapolation to the infinite population
limit can be tricky. A large gain in efficiency can be gained by doing the projection on the most
important states deterministically [23] since the sign-problem is present only for stochastic
projection.
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5 Form of trial wavefunctions

A major advantage of QMC methods is that since the integrals are done using Monte Carlo, one
has a great deal of freedom in the choice of the form of the trial wavefunction ¥(R ), allowing
for compact yet accurate choices. As mentioned in Sec. 2.1, both the accuracy and the efficiency
of both VMC and PMC (when there is a sign problem) depend on ¥r(R). The only constraint
on the choice of ¥(R) is that it should be possible to evaluate it and its local energy quickly
(in low-order polynomial in /V time).

5.1 Slater-Jastrow wavefunctions

The most commonly used choice for electronic systems is the so-called Jastrow-Slater form,
that is, the product of a linear combination of determinants D,, of single-particle orbitals and a

Ty = <Z d, D! Dﬁ) x J. (41)

Note that in order to save computation time, we have replaced each determinant by a product

Jastrow correlation factor

of an up-spin and a down-spin determinant, which is not fully antisymmetric. This is legitimate
because the expectation value is unchanged upon full antisymmetrization for any operator that
does not have explicit spin dependence. The single-particle orbitals are usually expanded in
spherical harmonics times Slater functions (monomial times an exponential in radial distance)
for all-electron calculations in order to be able to impose the electron-nucleus cusps, and in
spherical harmonics times gaussians or Gauss-Slater functions [30] for pseudopotential calcu-
lations. The minimal Jastrow function is a function of the electron-electron coordinates with
the correct antiparallel- and parallel-spin cusps, but more typically it is written as a product of
electron-nucleus, electron-electron and electron-electron-nucleus Jastrows:

J = Hexp (Awi) Hexp (Bij) Hexp (Caij) (42)
i ij

le%%1

where « indexes the nuclei, and ¢ and j index the electrons. Adding higher-order Jastrows,
say 3 electrons and a nucleus, leads to minor gains relative to the increase in computational
cost [31]. In all there are 4 kinds of parameters that can be optimized: a) the linear coefficients
d,, multiplying the determinants, b) the orbital coefficients that specify the orbitals in terms of
the basis functions, c¢) the exponents of the basis functions, and d) the Jastrow parameters. The
number of basis exponents and the number of Jastrow parameters scale linearly in the number
of atomic species, the number of orbital parameters scale as the number of electrons times the
number of basis functions, and the number of d,, can be combinatorially large in the number
of basis functions and electrons. However, in practice only a very tiny fraction of these are
used. In fact one of the big advantages of QMC methods is that because of the effectiveness of
the Jastrow in capturing some of the correlation, the number of determinants can be orders of
magnitude smaller than in other methods for the same accuracy.
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In real-space QMC, the Jastrow is particularly effective in introducing the so-called “dynamic
correlation.” The multi-determinantal expansion is used mostly to include “near-degeneracy”
or “static” correlation, which requires relatively few determinants. Consequently the number of
determinants required to obtain a given energy is often orders of magnitude less in the presence
of a flexible Jastrow than in its absence. Moreover, the size of the single-particle basis needed
is reduced, particularly if the exponents of the basis functions are also optimized (though this is
rarely done). Note that although the Jastrow does not directly change the nodes of ¥ (R.), when
the wavefunction is optimized in the presence of the Jastrow it indirectly changes the nodes of
U (R) and thereby enables accurate fixed-node DMC energies with compact wavefunctions.

The Jastrow plays another very important role in real-space QMC. The local energy, Fr(R),
diverges to +o0 at electron-nucleus and electron-electron coincidences, unless cusp-conditions
[32,33] are imposed. The electron-nucleus cusps can be imposed by placing constraints on the
orbitals (both intra-atom and inter-atom contributions need to be considered) but the electron-
electron cusp requires the Jastrow function. Once the cusp conditions are imposed, Fr,(R)
becomes finite at particle coincidences (though there is still a finite discontinuity in the limit
that two electrons approach a nucleus [34]). This greatly reduces the fluctuations of the local
energy and improves the efficiency of both VMC and DMC.

The multideterminant expansion is typically chosen by performing a small complete active
space self consistent field (CASSCF) calculation and keeping the most important determinants.
However, for challenging molecules there are several determinants outside the CAS space of
affordable size that are more important than some of the determinants that are included from
within the CAS space. Consequently, as the number of included determinants is increased,
convergence of the energy is observed but to a spurious value. This problem is solved by
selecting the determinants from a configuration interaction calculation [35, 36], which selects
the most important determinants from the entire Hilbert space.

5.2 Symmetry-projected broken-symmetry mean-field wavefunctions

Recently there has been remarkable increase in the number of determinants that can be effi-
ciently included in the multideterminant expansion [37-39]. Nevertheless, since the number of
determinants grows combinatorially in the size of the single-particle basis and the number of
electrons (though with a much reduced prefactor because of the Jastrow) there is considerable
interest in using more flexible mean-field states than a single determinant, namely the antisym-
metrical geminal power (AGP) [40] and Pfaffian [41,42] as the antisymmetric part of QMC trial
wavefunctions [43]. Recently these ideas have been extended to use, in QMC trial wavefunc-
tions, symmetry-projected broken-symmetry mean-field states [43], first employed in traditional
quantum chemistry calculations [44]. The symmetries that are broken and restored are combi-
nations of particle-number, S?, S, and complex conjugation. The most flexible of these breaks
bonds correctly and yields remarkably good potential energy curves [43], considering that the
computational cost is only marginally greater than that for a single determinant.
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5.3 Backflow wavefunctions

Another direction (which can be combined with the above) is to use backflow wavefunctions,
first introduced by Feynman to describe correlations in liquid Helium. The orbitals are evaluated
at backflow-transformed coordinates that depend on the positions of all the electrons. These give
considerably improved energies and fluctuations [45-48], but they incur a factor of /V increase
in the computational cost since the determinant lemma and Sherman-Morrison formula cannot
be used achieve an O(N?) cost for updating determinants and their derivatives when a single
electron is moved.

5.4 Wavefunctions in orbital-space QMC

Although most VMC and PMC calculations for electronic systems have been done in real space,
recently there has been considerable interest in orbital-space QMC [49-51]. The orbital-space
Jastrow plays a rather different role than its real-space counterpart—its most important con-
tribution is to suppress double occupancy of orbitals and so it is effective in describing static
correlations. The straightforward approach has a computational cost that scales as O(N*) for
constant error per electron, but ideas borrowed from the semistochastic heatbath configuration
interaction (SHCI) method [52], reduce this cost to O(N?) [51].

6 Optimization of trial wavefunctions

Accurate variational wavefunctions typically have a large number of linear and nonlinear param-
eters, that have to be optimized. As many as several hundred thousand have been used [53,39].
One of the interesting features of QMC methods is that sometimes tiny changes in the algo-
rithm, that may go unnoticed, can make a dramatic improvement to its efficiency. It is very
helpful to think about ideal situations where the variance becomes zero; although this may
never be achieved in practice, it is helpful for designing algorithms with low variance. This
is particularly true in the case of wavefunction optimization algorithms. At the present time
the 3 most used optimization algorithms are the stochastic reconfiguration method [54,40], the
Newton method [55], and the linear method [56-58]. We will present the Newton method in
some detail to illustrate the sort of small algorithmic changes that can provide large efficiency
improvements, but will mention the other two methods only cursorily.

Optimizing the wavefunctions is important for several reasons. We enumerate below the various
errors in QMC calculations that are reduced by optimizing the wavefunction:

1. Statistical error (both the rms fluctuations of £y, and the autocorrelation time)

Variational error in Evyv ¢

Fixed-node error in Epyc

Time-step error in DMC

Population control error in DMC

Pseudopotential locality error in DMC when using nonlocal pseudopotentials

Error of mixed estimates of observables that do not commute with the Hamiltonian in DMC

i
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In fact all errors, aside from the finite-size errors present in calculations of periodic systems,
benefit from wavefunction optimization.

The next question for optimizing wavefunctions is: precisely what quantity do we want to
optimize? Possible choices are:

. Ur| H |
1) minimize FEyye = % = (EL)W% (43)
L (Wr|(H — Ex)*[¥r)
2) minimize vy = Gl ) = <E5(Rz)>w% - <EL(R1)>§% (44)
| e 0) (%),
. Upn YT LAz
3) maximize 2° = — 45
) (VN |Yen) (U |Pr) < Tpy 2> )
Y
w3
. (pn|H|Wr)
4) minimize Epyc = e |Ur) = (BL) gy (46)

In fact all of the above have been studied to some extent in published and unpublished work.
For an infinitely flexible wave function all these optimization criteria will yield the exact wave-
function (except that minimizing o could yield an excited state) but for the imperfect functional
forms used in practice they differ. Since the final energy is obtained from Epyc rather than
Exvie, the most desirable option is the last one. However, the very limited experience gained so
far indicates that minimizing Fyvyc with flexible wavefunctions results in approximately mini-
mizing also Fpyc, so the additional effort of minimizing Epyc is not worthwhile. Hence the
common practice is to minimize Eyyic or a linear combination of Eyvyc and 0%, with most
of the weight on Fvyc.

Early work on optimizing wavefunctions used variance minimization [59, 60] because early
attempts at minimizing Evyc required many more Monte Carlo samples than for minimizing
02yc- This is explained in Fig. 3. In green we schematically show the local energies for some
sampled points. Since the wavefunction is not exact these energies have a spread. In red we
show how these energies change as one attempts to minimize Evyic. Most of the energies go
down and some may go up, but the average on the sample goes down. As the wavefunction is
made more flexible the average may go down well below the true energy. Now if one draws
a fresh sample, then we find that the average on this sample has actually gone up rather than
down! Once one realizes the problem with energy minimization it becomes clear that the way
around it is to minimize the variance of the local energies as shown in blue. In that case local
energies move closer to each other and the average energy also tends to go down, less so than
for energy minimization, but this gain in energy is genuine—an independent sample shows the
same effect. Of course energy minimization will work if one has a sufficiently large number of
samples, but the point of the above thought experiment is that the number of samples needed is
smaller for variance minimization than for naive energy minimization. We next discuss more
clever ways to minimize the energy that overcome this problem by minimizing the expectation
value of the energy without minimizing the energy of the chosen sample.
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Variance VS. Energy
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Fig. 3: Why variance minimization requires fewer samples than naive energy minimization.

6.1 Newton method

6.1.1 Minimization of Ev\ic
In the Newton method, the parameter changes, dp, are obtained by solving linear equations
hop = g, (47)

where h is the Hessian and g the gradient of Fy)\c with respect to the variational parameters.
In the rest of this section ¥t and Ey\ic are the only wavefunction and energy of relevance, so
in the interest of notational brevity we replace these by ¥ and £ respectively.

W) Hi(R)
i) i V(R)
where the notation (- - -)y2 denotes a Monte Carlo average over samples drawn from |¥|?.
Following Ref. [55] the energy gradient wrt parameter p;, denoted by Ej, is
_ v, |HY V| HY; E (0|, ;| HY) — E (|,
L WD) B @l -B@w) o
(W]@) (]@) (@]@)
Wi HWZ — Lpz L-Dz I~
~ (—F —2F— ~ 2(—(kb,—F 50
<!P L+ V7 W>2 <lp(L )>2 (50)

In Eq. (49) we use the Hermiticity of the Hamiltonian to go from the expressions on the left
to that on the right. The expressions in Eq. (50) are the MC estimates of the corresponding
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expressions in Eq. (49). Note however, that the expressions on the left and right of Eq. (50)
become precisely equal only in the limit of an infinite sample. For a finite sample, the expression
on the right has much smaller fluctuations than the one on the left for sufficiently good trial
wavefunctions® because it has zero variance in the limit that ¥ is exact.

Rewriting the gradient as

_ V| HV) — E (|, VW (B, — E
B = SN -~ By _ (B0 (5~ B) -
(W[¥) (¥12)
and taking the derivative wrt p;, we obtain the following expression for the hessian:
_ (W0 + 00;) (B — E)) + (BW(EL; — E;)) — E; (0
Eij:2 <( J ])( L )> <2 ( L,j ])> < J) (52)
_ (17P)
(W, , AL AN
=2 4 E,—-F —(=) E,—{(-2L) E —FEy . (53
(7 +8) -2) (%), 5-(7), B+ (78), | &

What can be done to reduce the variance of this expression? The last term is not symmetric in
1 and j because we started from the right hand rather than the left hand expression in Eq. (50),

so we can symmetrize it, but that does not affect the variance appreciably.

(P (2)) (PP g2 H7))  whv—wmw)
wr ) = P

to add terms such as <%> , (ElLi)y2- Now, the fluctuations of the covariance (ab)—(a)(b) are
P

smaller than those of the product (ab), when /(a®)—(a)*> < [(a)| and (b) is small. ((EL ;)
is 0 on an infinite sample and small on a finite sample.) Hence we make the replacement

v, 1 v, v, v; v,
2B - Z 2B Y ELi), LB, — (= EL)o .
<W L7j>w2—>2<<lp LJ>2 <W>2< L7]>¢ +<y7 L’>2 <W>2< L>w>

The resulting expression is

. _ . _
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+ < lpE'LJ> T <E> ] <EL]> <E]EL1> T <EJ>¢2 <EL,Z‘>¢2 . (55)

3A subtle point is that the zero-variance estimator on the RHS of Eq. (50) is also an infinite-variance estimator
when Y is not exact and the parameters being optimized can change the nodes of the wavefunction. So, for poor
wavefunctions it may be preferable to use a known alternative expression that has finite variance for approximate
Up.

= 0, so we are free

Next note that (£, ; ju2 =

=2
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Fig. 4: Energy convergence of Cs using a Slater CVBI basis with 48 basis functions, optimizing
24 Jastrow, 164 CSF and 90 orbital parameters. If the basis exponents are optimized then
with 44 basis functions, a considerably more compact wavefunction with just 13 CSFs gives
an energy better than this by 1 mHa (not shown). However, converging the wavefunction takes
many more optimization iterations.

The expressions in the first two lines have zero variance in the limit of an exact trial wavefunc-
tion and the last line has a much reduced variance compared to our starting point, Eq. (53).
Finally, we note that the individual summands in Eq. (55) have a leading 3"¢-order divergence
near the nodes of the trial wavefunction for parameters that change wavefunction nodes, but
the leading divergences cancel each other, leaving a 2"%-order divergence which gives a finite
expectation value but infinite variance. Despite having infinite variance estimators for the gra-
dient and the hessian, the method works remarkably well for small systems even for parameters
that move the nodes of Y, as shown in Fig. 4. If finite variance estimators are needed they are
obtained by using nodeless Y with ¥ = |¥r| except near the nodes of ¥ [61].

6.1.2 Minimization of ovyic

As mentioned earlier, another option is to minimize the variance of the energy
2 J &R WP (B — E)?
(e} —=
f d3NR ‘@‘2

The exact gradient and hessian have been derived and used but the following simpler option

(56)

works just as well. When the parameters are changed, the variance changes both because Ef,
changes and because the distribution of sampled points changes. If we ignore the latter, which
means that we are computing the variance on a fixed set of Monte Carlo configurations, we get

(0%)i = 2(BELi(EL — E)) =2((EL; — E)(BL— E)). (57)
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Fig. 5: Schematic of energy and variance contours.
Adding a small fraction of variance to the energy in the
function to be minimized can reduce the variance while
raising the energy only very slightly.

Variance Minimum
Energy Minimum

In the case of energy minimization we added a term with zero expectation value to reduce the
variance of the energy. Similarly, in the right hand expression above we have added a term to
minimize the variance of the variance.

Then the (positive definite) Levenberg-Marquardt approximation to the Hessian matrix is

(0%)ij = 2((EL; — Ei)(EL; — Ej)) . (58)

6.1.3 Mixed minimization

A linear combination of the energy and variance can be optimized simply by using the same
linear combination for the gradient and the hessian. The reason for possibly wanting to use a
linear combination is that by adding in small fraction of variance minimization (say 0.01-0.05)
to energy minimization, it may be possible to reduce the variance without appreciably raising
the energy. To explain why, we show in Fig. 5 schematic contours for the energy and variance.
If only the energy is minimized then the parameters may lie anywhere close to the bottom of
the energy well, but if a small fraction of the variance is added to the mix then the portion of
the energy well closer to the bottom of the variance minimum is favored.

Fig. 6 has convergence plots for energy, variance, and mixed minimization for the NOy molecule
using a pseudopotential. The optimization takes only a few iterations. We see that mixed mini-
mization lowers the variance while raising the energy only slightly. However, energy minimiza-
tion has the smallest autocorrelation time, 7,,,, so the benefit from doing a mixed minimization
rather than just an energy minimization is small.

6.1.4 Stabilizing the optimization

If we add a positive constant agi,e to the diagonal of the hessian matrix, i.e., h — h + agiael,
where I is the identity matrix, then the proposed moves get smaller and rotate from the New-
tonian direction to the steepest descent direction. We use this to stabilize the optimization. At
each optimization iteration, we perform two kinds of MC runs. First we do a run to compute
the gradient and the hessian. Second, we do a 10-times shorter MC run, that does 3 correlated
sampling calculations with parameters obtained from this gradient and hessian and 3 values
of agisg that differ from each other by factors of 10 to get the corresponding 3 values of the
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energy (or whatever linear combination of the energy and variance that we are optimizing). The
optimal value of agiag 18 then predicted from a parabolic fit of the 3 energy values with some
bounds imposed, provided the 2™¢ derivative of the fit is positive; else the aqi,g value that gives
the lowest energy is chosen. In addition, aqi,g 1s forced to increase if the parameter variations
exceed some chosen thresholds, or if some parameters exit their allowed domain of variation
(e.g., if a basis exponent becomes negative). Despite these precautions, the energy occasionally
goes up a lot, in which case one goes back to the earlier gradient and hessian and proposes new
parameter changes with a larger value of agj,g. This only happens for the larger systems that we
study; for small systems such as NO, shown in Fig. 6 the optimization converges within a few
iterations with no need to go back to an earlier iteration. Note that even when it is necessary
to go back, the entire procedure is automatic; there is no need for human intervention. Finally
we note that we do not necessarily choose the parameters from the last optimization iteration
as the final best parameters. Instead we choose the parameters from the iteration for which
Evyvic 4+ 3ovmc 1s lowest. In fact, this often is the last iteration because in order to save time,
we use a small number of MC steps in the first iteration and gradually increase the number of
MC steps with each new iteration (upto some maximum), so even after Fvyic has converged,
ovmc continues to go down with iteration number.

6.2 Linear method

The linear optimization method is probably at the present time the most commonly used opti-
mization method. It was originally developed for linear parameters [62], but was extended to
nonlinear parameters [56-58]. It has the advantage that it does not require calculating the 2"¢
derivatives of ¥(R) and it converges just as quickly as the Newton method. Similar to what
we have described for the Newton method, there are far from obvious changes that need to be
made to the straightforward version of the method in order to make it efficient. The details can
be found in the original literature [62,56-58].

6.3 Stochastic reconfiguration method

The stochastic reconfiguration method [54,40] can be viewed as an approximation to the New-
ton method. Of the 3 methods mentioned in this lecture, it requires the least computation per
optimization iteration, but it typically takes several times as many iterations to converge. Al-
though it converges more slowly, when applied to heavy systems it can sometimes oscillate
less than the other methods because it requires fewer derivatives and suffers less from infinite-
variance estimators.

Optimization of many parameters: = When the number of parameters to be optimized is large
(more than a few thousand) storage of the relevant matrices (hessian for Newton method, Hamil-
tonian and overlap for the linear method, overlap for the stochastic reconfiguration method)
becomes a problem. However, they need not be stored if iterative methods are used to solve the
relevant equations. Then it becomes practical to optimize on the order of 10°-10° parameters.
Details can be found in Refs. [53, 8].
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7 Outlook

I hope this lecture has given you some flavor of the sort of thinking that goes into designing
accurate and efficient QMC algorithms. QMC methods have been worked upon less that some
other electronic structure methods. Hence, I think there is still considerable room for improve-
ment. An example of that would be the development of a continuous real-space PMC method
that does not have a time-step error. In fact one of the earliest PMC methods invented [18-20]
does not have a time-step error. However, despite this major advantage, it is not used anymore
because it is much less efficient that DMC. Further, there exist, in a discrete space, efficient
PMC methods that use the exponential projector with no time-step error. It seems possible that
one could invent an efficient time-step error free algorithm for continuous real-space PMC as
well.
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1 Introduction

Electron structure quantum Monte Carlo (QMC) refers to a number of Monte Carlo-based tech-
niques for electron structure calculations. In this lecture, we focus on real-space QMC where
the electronic Schrodinger equation in first quantized form is the starting point. Recently, a
number of Monte Carlo methods have evolved where the Schrodinger equation is treated in the
Fock space, i.e., in second quantized form. While this equation has a number of advantages, its
exact solution is defined by the finite basis set, and the physical solution is obtained only after
basis set extrapolation. The electronic Schrodinger equation

HU =FEW, with H=T+V,,+V.. (1)

contains kinetic energy of the electrons 7', Coulombic electron-nucleus (or electron-core) at-
traction V., and the electron-electron repulsion V.

There are two seemingly unrelated Monte Carlo methods for obtaining approximate solutions
for Eq. (1). The first option is the evaluation of the energy expectation value (H) = (V|H|¥)
for a trial wave function ¥ with Monte Carlo integration. The variational principle allows the
optimization of the trial wave function ¥ by minimizing (H) with respect to parameters of
the wave function. This method is usually called variational Monte Carlo (VMC). The wave
function depends on all electrons, and depends thus on the real coordinates ry,...r, of all n
electrons and, additionally, on the spin state of each electron. Note that the Monte Carlo-based
integration allows arbitrary forms for the trial wave function. Therefore, ¥ can deviate from the
standard Slater determinant form and, for instance, compact correlated wave functions can be
employed easily. The optimization of trial wave functions is the subject of this lecture.

The other option for solving the Schrédinger equation with Monte Carlo methods is a stochas-
tic projection method where the exact solution of Eq. (1) is projected out of a starting wave
function. These methods are known under the name projector Monte Carlo or diffusion Monte
Carlo (DMC) and are, due to the projection, in general more accurate than the VMC methods.
Surprisingly, the DMC and the VMC methods are closely related, and the optimized VMC trial
wave function can improve the DMC energies substantially as we demonstrate in section 4.
This lecture is organized as follows. The VMC and DMC methods are briefly described in the
next section before the wave function optimization techniques are discussed in detail in the sub-
sequent section. Selected applications demonstrating the optimization of trial wave functions
are given in the final section.

2 Real-space quantum Monte Carlo methods

2.1 Variational Monte Carlo

In this lecture, the following notation will be used: r; = (z;, y;, 2;) denotes the cartesian coor-
dinates of electron ¢ while the spin is indicated by the quantum number m,; = =+ %

X; = (ri7ms,i) = (xia Yi, Zi, ms,i) (2)



QMC optimization 4.3

collects all electron variables and R = (x1,...,x,) all electrons of the (finite) system. With
this notation, the energy expectation of an unnormalized wave function ¥(R)) is given in real

space by
By = R)H 7 (R))
((R)[Z(R))

3)

This ratio can be rewritten as an integral over a probability density p(R) and the local energy
EL(R)

_ r®)P?
P(R)*W 4)

_ HY(R)

EVMC = /EL(R) p(R) dT, EL(R) W,

where the integration extends over all space. Note that p(R)) describes the probability density
of positions and spins of all electrons simultaneously.

A sample with the probability density p(R) can be obtained efficiently with the Metropolis-
Hastings algorithm [1, 2] without the necessity of calculating the normalization integral. The
integral in Eq. (4) can then be obtained simply as the sample mean of the local energy over a
large sample of p(R))

K
) 1 i
Evve = [}I_I)HOO Ve ; ErL(Rg), with Ry ~p(R) (5)

where ~ p means ’distributed according to the probability density p.” It is important to note
that this energy evaluation requires only the ability to calculate the Laplacian of the trial wave
function with respect to all electrons but no integration other than the Monte Carlo integration
itself. This obviously allows substantial freedom in the choice of ¥, and in particular the use
of correlation factors coupling the electron coordinates for optimal description of the electron-
electron interaction and correlation. Variational Monte Carlo refers to the energy calculation
using Monte Carlo integration and Metropolis-Hastings sampling of the probability density.
Further details can be found in several review articles, for instance in [3, 4] and in references
therein.

2.2 Diffusion Monte Carlo

The diffusion Monte Carlo method yields more accurate energies than the VMC method because
in DMC the exact ground state wave function is projected according to

lim e ' ¥ x ¥, (6)

t—o00

The projection of the ground state wave function is obtained after constructing the correspond-
ing Green function with a short-time approximation which leads to a stochastic process, called
drift-diffusion process,

Rk+1 = Rk + b(Rk)T -+ AWT, Ro ~ p(R) (7)



4.4 Arne Liichow

with a discretized time step 7 = t/N and a drift vector b defined with the trial function ¥

b(R) — %g). (8)

AW, denotes a normal variate with mean ;. = 0 and variance 0> = 7. The drift-diffusion
process implements the antisymmetry of the projected solution because the drift is directed
away from the nodes of the trial function ¥ and is, at the nodal surface, in fact a normal vector
of the surface.
The drift-diffusion process is coupled with a weighting process

Wiey = wke— [% (EL(Rk)+EL(Rk+1)) _Ercf:|7—’ wo = 1 ©)
where a reference energy F,. is employed to stabilize the process. The weighted drift-diffusion
process is implemented by a sample of walkers which are propagated according to Eq. (7).
Each walker has a weight attached which changes in each step according to Eq. (9). Note that
a walker corresponds to the positions of all electrons simultaneously. The stochastic process is
therefore capable of describing the electron correlation in real space. It is usually stabilized by
a branching/killing process based on the walker weights. As in molecular dynamics, the exact
distribution is obtained in the limit of vanishing time step, but also in the long total time limit.
With the final distribution of weighted walkers the DMC energy is obtained as a weighted mean

> oey Wi B (Ry)

N
> k1 Wk

with the weight wy, of the kth walker with the coordinates Ry.

Epnvc = (10)

VMC and DMC are closely related as the drift-diffusion process Eq. (7) is usually employed
as proposed step in the Metropolis-Hastings algorithm. Both algorithms are Markov chains,
and after reaching the equilibrium distribution, the energy or other estimators are calculated as
"time’ and sample average where the time is not the physical time. Each step in the Markov
chain is referred to as Monte Carlo step. Furthermore, the VMC distribution p(R) is usually
the starting distribution for the DMC process as indicated in Eq (7). But the main connection
results from the trial function ¥ whose nodes, or more precisely nodal hypersurface, ¥ (R) = 0
is imposed on the DMC solution via the drift Eq. (8). The DMC algorithm described above is
known as fixed-node DMC and results in the long ¢ and short 7 limit in the exact ground state
energy of the Schrodinger equation with the nodes of the trial function ¥ as additional boundary
condition. Without this boundary condition, the stochastic process would converge toward the
mathematical ground state of [ which is the nodeless bosonic solution. The error resulting
from the fixed node approximation is called fixed-node error.

The optimization of the VMC energy requires the minimization of the energy expectation value
Eq. (5) with respect to the parameters of ¥. The optimization of the DMC energy would require
the variation of the nodes of ¥. Unfortunately, no efficient method is known for the direct
optimization of the nodes and hence usually DMC energies are optimized indirectly via the
minimization of the VMC energy.
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3 Stochastic optimization of electronic wave functions

The basis of all stochastic optimizations is a large sample of electron configurations {Ry}, k =
1,..., K with a distribution of p(R) = [¥(R)|*/ [|#(R)[*dr, see Eq. (4), obtained with the
Metropolis-Hastings algorithm. The calculatlon of the sample is costly due to the serial cor-
relation between successive Monte Carlo steps, and it can be attempted to do a fixed sample
optimization which is a deterministic minimization [5]. As can be expected, the resulting pa-
rameters are biased toward this sample, and in practice a small number of iterations with new,
independent samples of electron configurations is required.

The trial wave function ¥ (R, p) = ¥(p) and the local energy F (R, p) = E(p) both depend
on all electron positions and a set of parameters collected in a parameter vector p. The VMC
energy as sample mean of the local energy depends on the parameters and is simply

1 K
LS BRp) an
k=1

As the parameter optimization proceeds from the initial parameters py to p the fixed sample
(~ |¥(po)|?) does no longer correspond to the distribution |¥(p)|? of the modified wave func-

tion. The change in the distribution can be corrected with a weighted mean

K 2
ErL(R V(R
Ewm(P) _ Zk:lw’;( L( /fvp)7 wy, = ‘ ( kap)|2. (12)
D et W ¥ Ry, po)|
The variance of the local energy
1 & 2
72 (BL(Ri,p) — Ey) (13)
k:l

determines the standard error of the sample mean energy /V;,/ VK. The more accurate the
wave function the smaller the local energy fluctuations and thus the variance. For any exact
eigenfunction of H the local energy is constant and thus the sample variance exactly zero. This
zero-variance property of the sample mean as energy estimator allows the determination of
energies with small statistical error bars with reasonable sample sizes provided that accurate
(i.e. low variance) wave functions are used. It is important for an efficient optimization to
construct similar estimators for instance for gradients with respect to parameters.

For the optimization, the gradients of the wave function and the local energy with respect to the
parameters are required. Here, we denote the parameter derivatives as follows

o¥ (p) 9*¥(p) o _ OEup)

Lpi = ) Lpl = ) i
Op; 7 OpiOp, b Op;

(14)

Minimization of the VMC energy with respect to the parameters is desired similarly to the
Hartree-Fock or configuration interaction (CI) methods. Minimization of the variance is, in
principle, equivalent to energy minimization because only exact eigenfunctions of I have a
variance of zero. Variance minimization is substantially simpler and more efficient because the
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sample variance is a sum of squares, while the local energy is possibly not bounded from below.
In earlier QMC work the variance minimization was preferred while in more recent papers the
energy minimization dominates because of a higher accuracy of the results.

3.1 Variance and MAD minimization

The sample variance is often simplified with an estimate F,. of the mean energy (which is
easily available from a previous DFT calculation)

K

Viip) = > (Eu(Re.p) ~ ) (1)
The variance minimization is a nonlinear least-squares minimization problem that can be solved
with standard methods such as the Levenberg-Marquardt method. The minimization requires
the Jacobian, the derivatives Ey, ;(Ry) of the residuals £ (R, p) — Eyer, and has been employed
for many years [6]. We have obtained best results with the standard code ’nl2sol’ for nonlinear
least squares problems [7]. The variance minimization is very stable and suitable even for initial
parameters that differ substantially from the optimal ones. It is therefore often used as a first
optimization step followed by an energy minimization. Nonlinear least-squares minimizations
require a number of iterations. If the fixed sample is used, the variance defined in Eq. (15)
2

ignores the change of the distribution |¥(p)|* with the parameters which can be accounted for

by using a weighted mean as in Eq. (12)

_ > iey Wi(EL(Ry, P) — Frer)?

Zszl W

Unfortunately, the weighted variance tends to be unstable when the weights start to deviate

Vium (P) (16)

substantially from one. In this case, the effective sample size is substantially reduced. Investi-
gations have shown that the unweighted variance Eq. (13) or Eq. (15) leads to more stable and
efficient minimizations [8].

Alternatively, it is possible to optimize the mean absolute deviation (MAD) of the local energy

K
1
MAD, (p) = Ve E |EL(Rg, p) — Eret (17)
=1

Since a sum of positive elements is involved the MAD minimization is also stable and found to
be advantageous in some cases [9].

3.2 Energy minimization

Energy minimization is preferable to variance minimization when the goal is to calculate en-
ergy differences. As mentioned above, energy minimization requires more computational effort
meaning substantially larger samples than variance minimization. Due to the stochastic nature
of QMC most codes use specifically optimized routines based on standard methods. The main
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variants for energy optimization are Newton-like methods, the linear method, and the stochas-
tic reconfiguration method. The methods require different derivatives and matrix elements and
differ in efficiency. For the stochastic optimization of wave functions the number of iterations
to reach a convergence threshold is only one aspect of the efficiency, another being the compu-
tational effort for each step.

The computational effort for each optimization step depends on the variance of the estimators
for the required gradient or matrix elements. In many cases, different estimators can be con-
structed that have the same limit but show different variances. Substantial work has been done
in the past in finding low variance estimators, in particular estimators whose variance vanishes
as the trial wave function approaches the exact eigenfunction of H.

In this section, we follow the notation used by Toulouse and Umrigar who gave an excellent
account of energy minimization methods including a discussion of earlier work [10]. The ex-
pectation value over p(R) is denoted

- fampmar ) - )

and the corresponding estimator is the sample mean

(A) = lim — ZA (Ry), Ry ~p(R). (19)

3.2.1 Newton methods

When expanding Eyyc(p) around py with p = pg + Ap in a Taylor series up to second order,
the Newton method is obtained leading to the parameter vector change

Ap=—-hlg (20)

with the gradient and Hessian matrix of the VMC energy

IFEvc 0? Eyvc
9i = T ) ij = SN (2D
Op; OpiOp;
It is numerically more stable to solve the linear system hAp = —g rather than inverting the

estimator of the Hessian matrix. The Newton method has been first used for energy optimization
in VMC by Lin et al. [11] and later improved by Umrigar and Filippi [12] and Sorella [13].
Newton methods are known for their limited convergence radius. One common stabilization
technique is the adaptive addition of a positive constant to the diagonal of the Hessian matrix
h which has the effect of switching smoothly with growing constant to steepest descent. For
details see reference [10] and references therein.

The greatest challenge for the use of the Newton method for energy minimization is the con-
struction of low variance estimators for the gradient and the Hessian matrix. For the gradient of
the VMC energy we first observe that

aE\/MC . 3<EL> ‘
Ops  Ops 7 {ELa 2
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because of the dependence of the distribution p(R) = p(R, p) on the parameters. An estimator
of the gradient can be derived as follows
0 0 (V|HW¥
5y O W)
Opi Op; (P|¥)
- (HW) (0| H W) 5 (P]P)

(V@) (wlw) (v|w)
(Wi|H[Y)  (V[H[) (W |7)
= + —2(F
wy )
G e
Comparing
Er; = 7 _ELE = <EL1> =< 7 >— <EEL> (24)
one obtains 3 v v
otn) =2 | () = () ()] + (B 25)
The last term vanishes due to Hermicity of H
_/HY; U HY N\ (VIH|Y)  (GIHP)
E = () (7' )= T o = 0

and we obtain finally [11]

Pone o [(4 gm0 - () (e @)

Note that this estimator of the parameter derivative of the VMC energy does not depend on

the parameter derivative of the local energy! The wave function derivative ¥; arises only in a
ratio with the wave function ¥ itself. Normalization constants, which are expensive to calculate
in QMC, therefore cancel. Furthermore, this estimator has the zero-variance property because
the two terms in the difference become identical as the local energy becomes a constant for the
exact eigenfunction of 1. The difference is calculated with correlated sampling, using the same
sample for both terms such that fluctuations of ¥, (R)/¥(R) cancel substantially. Additionally,
the estimator has the form of a covariance, and it has been observed that the fluctuations of the
covariance (xy)—(x)(y) are much smaller than fluctuations of either x or y [12].

In the light of this result, a number of different estimators for the Hessian matrix h have been
proposed and employed that are based on the ratios ¥; /¥, ¥;; /¥ and the covariance form. For
the Hessian matrix, no estimator without the parameter derivative of the local energy Ep ; is
known. The estimators are a bit lengthy and not reproduced here. For a discussion of the
various estimators of the Hessian matrix see reference [10].

The implementation of Newton-type methods requires therefore implementations of the follow-
ing three terms for every type of trial wave function

7(R)  ¥;(R)

P®ymy iR

(28)
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Below, we discuss the computational effort for these terms for some common wave function
and Hamiltonian types.

3.2.2 Linear method

If the wave function depends linearly on the parameters as in CI or Jastrow-CI wave functions,
the parameters are obtained non-iteratively by diagonalization of the Hamiltonian matrix. This
approach can be extended to nonlinear parameters by expanding the wave function to first order
in the parameters

Tp
v (p) = v (py + Ap) = ¥(po) + Y Apiti(po) (29)

i=1
The idea is now to consider ¥; = ¥;(py), i = 0,...,n,, with ¥, = ¥(py) and the number
of parameters n,, as a basis and obtain the energy minimum by solving the matrix eigenvalue

problem
HAp = ESAp (30)

with the Hamilton H;; = (¥;|H|¥;) and overlap matrices S;; = (¥;|¥;). Note that Apy = 1
in Eq. (29) which defines the normalization of the resulting eigenvector corresponding to the
intermediate normalization in standard quantum chemistry. In the case of linear parameters the
CI method is recovered. In the case of nonlinear parameters the linear expansion is repeated
iteratively until convergence.

Nightingale and Melik-Alaverdian demonstrated that it is advantageous and, in fact, leads to
a zero-variance property if the finite sample estimators of the Hamiltonian matrix elements do
not make use of the Hermicity of the Hamiltonian [14, 10]. This results for finite samples in
unsymmetric Hamiltonian matrices in the eigenvalue problem and in parameter changes with
substantially reduced variances.

In practice, the dependence of the normalization constant of the wave function on the parameter
change is accounted for. The normalized wavefunction

W (p) = 7(p) (31)

7 (D) — 1 o/ %(p)
7;(p) T ®) (L’/z(p) <%(p>>w(p)> (32)

((p)|%i(p)) _ <%(p) > (33)

with

The first order expansion now reads

7 (pg + Ap) = W(po) + > Api (34)
=1
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The finite sample estimators for the matrices are constructed as follows. Hyg is simply the
current sample mean of the local energy Hyy = (E). The H;y elements have the estimator

_iH — [ E(R) L\ W
Hio = (| H| ) = / 7o) LR P(R) R = < %EL> < %> (BL) (39
with 3
G_% %
7 (&) .

For the H,; elements we obtain with Eq. (32) and without making use of Hermicity

using
1 (OHY, o
Eri=—|———-F : 38
B ( Opi Lapi) 8

Analogously, one can derive for the remaining matrix elements H;; with 7, 7 > 0 [10]

- (3= (2 )3 )
(g (- (B o

and for the overlap matrix

(BN [N Y _
so=(Za) - (E)(F).  Sw-1 (40)

Note that the estimator for the Hamilton matrix of the linear method requires the local energy

derivatives E ; like the estimator for the Hessian matrix of the Newton method.

In practice, after the generalized “almost symmetric” eigenvalue problem in Eq. (30) has been
solved, the correct right eigenvector has to be identified. For finite samples the correct eigen-
vector may not correspond to the lowest eigenvalue as spurious solutions may occur. Since the
eigenvectors are orthogonal it is not difficult to identify the physical solution. A reliable way
is a very short VMC calculation with new parameters arising from all eigenvectors of a few
lowest eigenvalues. Alternatively, the overlap of the new wavefunction with the previous can
be estimated, see [10, 15] for further discussions. For a large number of parameters the linear
method becomes restricted by the necessity to store the Hamilton and overlap matrices. Zhao
and Neuscammam have recently presented a blocked linear method that has been shown to be a
very good approximation to the original linear method while requiring substantially less mem-
ory which is particularly important for the parallel implementation [16]. The linear method,
in one of its variants, turns out to be the most efficient energy minimization method in most
applications.
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3.2.3 Stochastic reconfiguration, energy fluctuation potential, and perturbative
optimization methods

Both the linear method and the Newton method require the calculation of the local energy
parameter derivative Ey,; which is computational expensive if pseudo potentials are used. A
possibly cheaper energy optimization method is the stochastic reconfiguration method [17] and
its variants, the energy fluctuation potential method [18] (EFP) and the perturbative optimiza-
tion method [10]. The stochastic reconfiguration method is based on the expansion of the DMC
propagator to first order exp(—tH) ~ 1 — Ht applied to the trial wave function ¥ and projected
into the space of derivative functions ¥; including ¥y = V.

(W1 —tH|W) = (] ;) (41)
=0

The terms of this linear equation can be sampled analogously to the linear method, and the
resulting parameter changes are Ap; = «;/«ap. For the related EFP method we refer to Ref. [18]
and references therein. In this paper, Scemama and Filippi also derived an efficient perturbative
EFP method that we present here in the notation by Toulouse and Umrigar used so far who
discuss the various optimization methods in some detail [10]. The formula for the perturbative

method is .
1 L 1
Ap; = _AEZ- ;(S )z‘jHjO (42)
with o
Agi = SZ — HOO . (43)

By comparison of Eq. (35) and (27), Hj is identified as half the gradient g of the VMC energy.
Hence, Eq. (42) has the form of a Newton step with the inverse overlap matrix as approximative
Hessian. In practice, Ap is obtained from the corresponding linear equation. The main differ-
ence to the expressions obtained from Eq. (41) lies in the factor 1/Ae; replacing the scalar ¢ in
the stochastic reconfiguration method. This adds flexibility to the method and leads to improved
convergence [18]. The local energy derivative Ey ; is required for the denominator Ae; but not
for H;o. If E;; is expensive to calculate one may replace Ae; by a constant Ac as is done
in the stochastic reconfiguration method [17, 10]. A less drastic approximation that we have
successfully applied is a more approximative calculation of Ae; only in the first iteration step
and with a small sample. The convergence of the three variants are demonstrated in Figure 1 for
the orbital optimization in Cs, with a full valence CAS and Jastrow wave function and Burkatzki
pseudo potentials to remove the core electrons [19,20]. It can be seen that the calculation of
all Ae; only in the first step with a small sample does not lead to a diminished accuracy or
slower convergence while the convergence is substantially slower if all Ae; are replaced by a
constant [21].

In Figure 2, a comparison of all three optimization techniques is shown for the MO optimization
of Cs in a full valence CAS wave function with a polarized triple zeta STO basis and a Jastrow
factor. In this example, all three methods converge extremely fast and lead to a significant
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Fig. 1: Orbital optimization in Cy with full valence CAS and Jastrow using ECPs with the
perturbative method with full Ae calculation, calculation of Ae only in the first iteration, and
only in the first iteration with a small sample [21].

drop in energy. While the linear method converges usually very quickly for all parameters the
perturbative method does not work well for Jastrow parameters [10].

The stochastic reconfiguration method was computationally accelerated by Neuscamman et al.
who observed that the overlap matrix (¥;|¥;) does not have to be built explicitly if stochastic
estimators for matrix-vector products are used [22]. The replacement of explicit matrices by
matrix-vector products is widely employed in numerical methods, often allowing to increase
the dimension of systems substantially. The authors show that the calculation of matrix-vector
products is only possible when the conjugate-gradient method is used to solve the linear equa-
tion Eq. (41). The accelerated stochastic reconfiguration method allowed the optimization of
more than hundred thousand parameters in an massively parallel implementation.

3.3 Terms required for parameter optimization

The implementation of the energy and variance minimization requires parameter derivatives
of the wave function and the local energy. We discuss here a few important aspects of these
parameter derivatives with the restriction to the commonly used Slater-Jastrow wave functions

¥(c,k,q) = d(c,k)e’@ (44)

with a Jastrow correlation function U with parameter vector q and, in general, a linear combi-
nation of Slater determinants ¢, composed of orthogonal molecular orbitals (MO) depending
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Fig. 2: Comparison of the linear method with the Newton and the perturbative method for the
MO optimization in the Cy molecule [21].

on parameters K
Ndet

&(c, k) = Z ca PV (k). (45)
d=1
In the following, we stick to the above notation and indicate derivatives with respect to param-
eter p; with subscript 7. In the given formulae, the parameter derivatives arise only in the ratio
W; /¥ which is then given here. For Jastrow parameters we obtain

¥  10V¥(c,k,q) 0U

= U, (46)

and for the CI parameters c;

¥ 10V¥(c,k,q) il0) @7
v v O I

The derivatives with respect to the MO parameters are somewhat more involved. We obtain

v, 1 8&17 (¢c,k,q) o
5 @ _— Z Cd (48)
where the derivative of a Slater determinant 913 = 00D /Ok; is required.

All Slater determinants are formed by a set of orthogonal MOs which form, as column vectors
corresponding to a basis set, a matrix @. The discussion here is restricted to real orbitals. Each
orbital rotation Z;; acts on this matrix by mixing MO ¢ and j with the angle z;;

71y® = cos 1, ® + sinzy; (ala, - aly) @. (49)
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It is sufficient to calculate derivatives for the current set of orbitals corresponding to z;; = 0.
Taking the derivative with respect to the rotation angle at z;; = 0 results in

B
iy P

8:52']' ! J

- (a*aj - a*ai) P.
Tij =0
With the singlet excitation operator as defined in standard second quantized quantum chemistry
(23]

109 = (50)

Note that the operator EE has to be applied for each spin orbital. Hence, the derivative of a
Slater determinant with respect to an orbital rotation angle (at zero angle) is obtained simply as
the value of the corresponding singly excited determinant.

The orbitals are usually partitioned in the inactive, active, and virtual orbitals where inactive or-
bitals are occupied in all determinants, active orbitals are occupied in some of the determinants,
and virtual orbitals are not occupied in any determinant. Orbital rotations between two inac-
tive and between two virtual orbitals do not change the Slater determinant except for possibly
a sign change. In complete active space (CAS) wave functions, active-active rotations are also
invariant.

The MO parameters k are therefore built from the set of non-invariant orbital rotations x;; form-
ing a real antisymmetric matrix X. The general treatment of orbital rotations makes use of the
fact that exponentials of antisymmetric (or skew symmetric) matrices are unitary. Multiplica-
tion of the current set of MOs @ by U = exp(X) results in the new set of MOs. The unitary
matrix U can be obtained with [23]

U=Wecos™W! + WrlsinTtWTX (&28)

where W and —72 are the eigenvectors and eigenvalues of the symmetric matrix X2, respec-
tively. For more details on the MO optimization see Ref. [10] and references given therein.

3.3.1 Gradient of the local energy E,

For variance minimization as well as for some of the energy minimization methods, the param-
eter derivative of the local energy £ is required. We obtain straightforwardly for H =7 + V

OE;, HY,; E% 1V3, 1V20y, oV
_ — B =

E.. - — _ R
L v > v 2w v o

’_apl_lﬁ

(52)

where the last term, the parameter derivative of the potential 1/, vanishes unless a localized
pseudo potential is used. Note that the Laplacians V?¥ and V?Y; refer to second derivatives
with respect to all electron positions, but not to parameter derivatives. The Laplacian of the
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wave function derivative V2¥; is the new term in Eq. (52). Based on the Laplacian of the
wave function V2¥ which is required already for the local energy evaluation, the parameter
derivatives can be established for Jastrow, CI, and MO parameters similarly to the formulae
given above.

More interesting is the common case of the presence of a nonlocal pseudo potential Vi in
addition to a local potential Vj,.. In this case we obtain for the local energy

1 V2w Vo
5+ Ve tVar, V= 1 (53)

Ep = 7
with the localized nonlocal pseudo potential V.

The parameter derivative becomes

1V3, 1V20y, 0V

Epi=—5 54
L 2w T2 w v o 54
and L, ; differs from the case without pseudo potential only by the last term
WV  Val, ValW,  Va¥, v,
= o (55)

op; ¥ v v 7z

The localized pseudo potential is usually calculated numerically on a spherical Lebedev grid
[24]. The parameter derivatives ‘A/HILZ/Z» /W can be calculated analogously. In spite of efficient
update formulae the numerical integration has to be done for all electrons within a cut off radius.
This is a computationally expensive step, and more so the calculation of the parameter derivative
vector. The Lebedev integration is particularly costly for the MO optimization which is based
on singlet excitations EZ; @D according to Eq. (50) because a large number of determinants is
constructed, all of which require an evaluation at the Lebedev grid points. This step is the reason
why the energy minimization for MO parameters is computationally especially expensive with
methods requiring £, ; and why the perturbative method is the most efficient choice in this case,
provided that Ae; in Eq. (43) is calculated only approximately with a small sample and possibly
only once.

4 Examples of wave function optimizations

In this section, simultaneous and alternating parameter optimizations are discussed before some
examples of trial wave function optimizations are presented. In particular, it will be shown that
the VMC energy minimization can lead to substantial and systematic improvements of the nodal
surface and thus to more accurate DMC energies. Single- as well as multi-reference approaches
are employed. The Jastrow, CI, and MO parameters are both partially and fully optimized in
order to assess the effect on the variational energy. Results are given for atomic species, main
group, and transition metal dimers. Dissociation energies and spectroscopic constants are pre-
sented. The BFD pseudo potentials by Burkatzki, Filippi, and Dolg [19, 20] which are specifi-
cally designed for QMC are used with the corresponding triple zeta basis set in all calculations.
The Jastrow factors in the examples below contain two-electron and two-electron-nucleus terms
as described in [29].
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Fig. 3: Comparison of simultaneous and alternating optimization of Jastrow, MO, and CI pa-
rameters in Cy with an all electron full valence CAS wave function with Jastrow factor using
the linear method [21].
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Fig. 4: Comparison of simultaneous and alternating optimization of Jastrow, MO, and CI pa-
rameters in Cy with pseudo potentials using the linear method [21].

4.1 Simultaneous and alternating parameter optimizations

Not all optimization methods work equally well for all kinds of parameters. For instance, the
linear method is expected to obtain the optimal CI parameters in one step as discussed above.
On the other hand, the linear method is computationally more expensive than the perturba-
tive method for the optimization of MO parameters when pseudo potentials are employed. It
would therefore desirable to optimize different kinds of parameters alternatingly with possibly
different methods. Alternating optimization instead of simultaneous optimization can lead to
substantially slower convergence if the parameters are strongly coupled. As an example, we
show in Figure 3 the comparison of simultaneous and groupwise alternating optimization of
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Jastrow, MO, and CI parameters in C, with an all electron full valence CAS wave function with
Jastrow factor using the linear method. The slow convergence of the alternating optimizations
in comparison to the very fast convergence in the simultaneous case is very obvious. On the
other hand, Figure 4 demonstrates that alternating optimization can be very efficient. In this ex-
ample, the same C5 molecule is treated, the only difference being the use of pseudo potentials.
In general, it has been observed that slow convergence is found in alternating optimizations for
all electron calculations while the alternating optimization is efficient when pseudo potentials
are used [21].

4.2 Atomic species

4.2.1 Nickel spectrum

The energy gaps between different atomic states is a quantity that can be experimentally deter-
mined in a very accurate way, therefore the opportunity to verify the accuracy of the employed
method presents itself. The ground state of Nickel, as well as two excited states, are evaluated.
Ni is assigned a ground state of *F with an occupation of 3d®4s%. The first excited state is a °D
state with an occupation of 3d%4s' which is energetically close to the ground state. The third
considered state is of 'S symmetry with a 3d'° occupation.

The VMC and the zero time-step extrapolated DMC energies can be found in Table 1. The
calculations were performed with HF and CAS orbitals. All parameters are optimized with
respect to the energy using the linear method except for the MO parameters that are optimized
with the perturbative method using a small sample only for Ag;.

Table 1: Ni VMC and DMC energies in Ey, for three states at various optimization levels, using
different starting orbitals and BFD-VTZ/sm666.

State Wave Function Ansatz Optimization level VMC energy DMC energy

HF Jas -170.0563(4) -170.1146(5)
Jas+MO -170.0645(4) -170.1185(5)

3
F [10.6]-CAS Jas+ClI -170.0554(4) -170.1151(5)
’ Jas+MO+CI -170.0636(4) -170.1212(5)
HF Jas -170.0565(4) -170.1152(5)
Jas+MO -170.0641(4) -170.1189(5)

3
D [10.6]-CAS Jas -170.0558(4) -170.1152(5)
’ Jas+MO? -170.0656(4) -170.1199(5)
HF Jas -169.9964(4) -170.0500(5)
Jas+MO -169.9972(3) -170.0506(5)

1
S [10.6]-CAS Jas+CI -169.9991(4) -170.0525(6)
’ Jas+MO+CI -170.0006(4) -170.0532(5)

® Only one CSF is obtained.



4.18 Arne Liichow

Table 2: DMC energy gaps in Ey, between the ground state and two excited states of Ni at
various optimization levels, using different starting orbitals and BFD-VTZ/sm666. The experi-
mental values are taken from the NIST Atomic Spectra Database [25].

Transition Method Optimization level AFE
HE Jas -0.016(19)
Jas+MO -0.011(19)
3p .3
P s Jas -0.003(19)
Jas+MO 0.035(19)
NIST 0.02539
HF Jas 1.759(21)
Jas+MO 1.848(21)
SF-1S
CAS Jas+ClI 1.703(21)
Jas+MO+CI 1.850(21)
NIST 1.82614

The MO optimization leads to an improvement of the energy, regardless of choice of initial
orbitals. The lowering is however only significant for the 3F and the 3D state. Table 1 shows
that the correct ground state of Ni cannot be reproduced at the VMC level. Even after MO
optimization, the 3D state exhibits a lower energy than 3F. This may be rectified by choosing
a more accurate Jastrow correlation function. For the Ni °F state, the HF trial wave function
yields slightly lower VMC energies than the CAS one. This can be traced back to a loss of
symmetry of the HF trial wave function compared to the CAS one. The higher flexibility of the
former leads to a lowering of the energy. As for the DMC results, the MO optimization again
leads to lower energies which can be explained by the improved nodal surface of the guide
functions. The correct ground state can only be portrayed by the CAS guide function at the
highest optimization level.

The excitation energies for the different transitions are shown in Table 2. The energy gap is
severely underestimated by the HF guide function as well as by the CAS guide function without
orbital optimization. The negative energy gaps mirror the fact that these approaches cannot
portray the correct ground state for Nickel. One can thus deduce that the single determinant
ansatz is not suitable to describe the states of the Ni atom and that the optimization of the
orbital parameters is essential. The energy gap, derived from the NIST database, can however
be reproduced by the CAS guide function where the orbitals are optimized in the presence of a
Jastrow correlation function.
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Table 3: C; VMC and DMC energies in Ey, at various optimization levels (Jas = Jastrow only),
using different starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz ~ Orbitals Optimization level VMC energy DMC energy

CAS Jas -11.0680(2)  -11.0886(2)
[8,8]-CAS  CAS Jas+CI -11.0779(3)  -11.0925(3)
opt Jas+MO+CI -11.0792(2)  -11.0934(2)

Table 4: Co MR-DMC dissociation energies in eV at various optimization levels, using different
starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz Orbitals Optimization level Dy
CAS Jas 6.351(9)
CAS CAS Jas+CI 6.368(9)
opt Jas+MO+ClI 6.378(7)
exp. 6.30(2) [27]

4.3 Main group compounds
4.3.1 Carbon dimer C,

The carbon dimer C, is the benchmark compound for static correlation at equilibrium bond dis-
tance, the small number of electrons making it easily feasible for multi-reference calculations.
The VMC and time-step extrapolated DMC energies are given in Table 3. In contrast to the
other calculations, the nine-term SM-9t Jastrow as suggested by Schmidt and Moskowitz [26] is
employed for the C; calculations. The Jas+CI optimization improves both the VMC and DMC
energies considerably. By further optimizing the molecular orbital parameters, a lowering of the
energies can be observed, it is however less significant. The close DMC energies at the Jas+CI
optimization level and for the fully optimized guide function indicate that the nodes must be
similar.

Table 4 shows the computed MR-DMC dissociation energies at different optimization levels.
The given dissociation energies D are corrected for zero point energy, the core-valence cor-
relation contribution, and spin-orbit contributions. All multi-reference dissociation energies
presented here agree well with experiment, which is rather surprising since the absolute DMC
energies differ significantly from one another.

4.4 Transition-metal compounds

4.4.1 Absolute energies

In this section, the VMC and DMC energies of ZnO and the effect that the parameter opti-
mization has on them are evaluated. The VMC and the time-step extrapolated DMC energies
are presented in Table 5. The non-optimized parameters are taken from the respective ab initio
calculations.
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Table 5: ZnO VMC and DMC energies in E\, at various optimization levels (Jas = Jastrow
only), using different starting orbitals and BFD-VTZ/sm666. The data are taken from ref. [28]

Ansatz Orbitals Optimization level VMC energy DMC energy

HF Jas -242.8836(3) -242.9931(5)

Single det  B3LYP Jas -242.8944(3) -243.0022(5)
opt Jas+MO -242.9013(3) -243.0065(6)

CAS Jas -242.8971(3) -242.9950(5)

[16,9]-CAS  CAS Jas+CI -242.9047(3) -243.0023(6)
opt Jas+MO+CI -242.9176(3) -243.0111(5)

Table 5 shows a systematic lowering of the VMC energies when moving from HF over B3LYP
KS to CAS orbitals. By only optimizing the Jastrow parameters, similar energies are obtained
for the single- and multi-determinant trial wave functions. This shows how crucial the opti-
mization of the antisymmetric part of the wave function is. The vast lowering in VMC energy
due to the optimization of the molecular orbitals in the presence of a Jastrow correlation factor
shows the substantial impact that the coupling between dynamic and static correlation has on
the energies calculated with HF and CAS orbitals. For the B3LYP KS orbitals on the other hand,
the MO optimization only has a small effect on the energy of the trial wave function because
DFT is able to partly capture this coupling.

The MO optimization significantly improves the nodal surface of the CAS guide function. The
improvement is less substantial for the KS guide function which indicates that the nodal surface
was already almost optimal for this approach before the optimization. Only the fully optimized
guide function is able to yield a DMC energy that is lower than the one calculated for the single-
determinant approach with optimized orbitals. This emphasizes the impact that the dynamic
correlation has on the quality of the nodal surface. If the molecular orbitals are not optimized,
the Jastrow optimization does not change the nodal surface, due to its totally symmetric nature.

4.4.2 Dissociation energies

As example for accurate calculations of dissociation energies of small transition metal com-
pounds we discuss the diatomics FeH, FeO, FeS, and ZnO. For all these molecules accurate
experimental dissociation energies are known, while calculated dissociation energies even for
accurate methods deviate substantially from the experimental data. We can demonstrate that
the nodal surface obtained by VMC energy minimization of Jastrow, CI, and MO parameters in
multireference Slater-Jastrow wave functions does lead to accurate dissociation energies with
the DMC method. Only the VMC energy minimization for the molecule FeH is discussed here
in detail as a typical example for an accurate transition metal wave function. The wave func-
tion is constructed from a [9,7]-CAS, built from the 3d and 4s orbitals on Fe and 1s on H,
and the sm666 Jastrow factor from Ref. [29]. This results in 69 Jastrow parameters, 159 MO
parameters, and 29 CI parameters. The energy minimization steps are shown in Figure 5 after
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Fig. 5: VMC energy minimization of the diatomic FeH using alternating optimization of Jas-
trow, CI, and MO parameters using the linear method for Jastrow and CI, and the perturbative
method for the MO parameters. The first two steps shown in grey refer to preoptimization of the
Jastrow and MO parameters.

an initial variance optimization of the Jastrow parameters. The Jastrow and MO parameters are
preoptimized with the linear and the perturbative method, respectively (shown in grey). Then
the Jastrow, MO, and CI parameters are groupwise alternatingly optimized yielding a smooth
and fast convergence.

The dissociation energies of several transition metal compounds at various optimization levels
are illustrated in Table 6. The data for ZnO, FeH, and FeO are taken from Ref. [28], while the
ones for FeS are presented in Ref. [21]. First of all, a systematic lowering of the deviation from
the experimental dissociation energies can observed for all compounds for the different ansétze
and optimization levels. The dissociation energies of ZnO and FeO follow similar trends. The
single-determinant guide function with optimized orbitals yields more accurate dissociation
energies than the CAS nodes at the Jas+CI optimization level. The optimization of the CAS
orbitals in the presence of a Jastrow correlation function substantially improves the dissociation
energy. For both compounds, an excellent agreement with the experiment is obtained.

For FeH, the single-determinant DMC nodes fail to reproduce the dissociation energy of Schultz
and Armentrout [30]. The optimization of the KS orbitals does not change the dissociation en-
ergy which implies that the nodal surface was already almost optimal for the single-determinant
approach before the optimization. Both the CI and MO optimization significantly improve the
dissociation energy of the CAS guide function. The MR-DMC dissociation energy computed
for the fully optimized guide function agrees well with the experimental one.

Moving towards a multi-reference guide function is also necessary for the FeS system. The
single-determinant approach underestimates the experimental dissociation energy, while the
fully optimized MR-DMC ansatz is able to reproduce it.
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Table 6: DMC dissociation energies in eV for several transition metal dimers at various op-
timization levels, using different starting orbitals and BFD-VTZ/sm666. The energies are cor-
rected for core-valence correlation and spin-orbit effects.

Compound  Ansatz  Orbitals Optimization level Dy
HF Jas 1.201(19)
Single det B3LYP Jas 1.449(19)
opt Jas+MO 1.566(21)
Zn0 CAS Jas 1.253(19)
CAS CAS Jas+ClI 1.451(21)
opt Jas+MO+ClI 1.691(19)
exp. 1.61(4) [31]
HF Jas 2.885(20)
Single det B3LYP Jas 3.688(20)
opt Jas+MO 3.826(20)
FeO CAS Jas 3.266(20)
CAS CAS Jas+ClI 3.761(20)
opt Jas+MO+CI 4.112(20)
exp. 4.18(1) [32,33]
HF Jas 0.814(17)
Single det B3LYP Jas 1.020(17)
opt Jas+MO 1.020(17)
FeH CAS Jas 1.099(17)
CAS CAS Jas+ClI 1.369(17)
opt Jas+MO+CI 1.791(17)
exp. 1.63(8) [30]
Single det opt Jas+MO 2.914(15)
FeS CAS opt Jas+MO+CI 3.159(15)
exp. 3.31(15) [34]

4.4.3 Spectroscopic constants

The evaluation of quantities, such as the equilibrium bond distance, the harmonic frequency,
and the anharmonicity allows an assessment of the accuracy of the employed method. Those
spectroscopic constants are presented in Table 7 for different compounds. The data for the
oxides and for FeH are taken from Ref. [28], the ones of FeS from Ref. [35].

The potential energy curves were computed for the fully optimized MR-DMC guide functions

at a fixed time-step and then fitted to a Morse function, from which the spectroscopic constants

could be deduced.
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Table 7: Spectroscopic constants for the different transition metal compounds. The equilibrium

bond distance is given in A, the harmonic frequency and the anharmonicity in cm™".

System Investigators Method Te We WeTe
This work MR-DMC 1.709 746(8) 4.4(1)
Zn0 Zack et al. [37] Direct-absorption methods 1.7047(2) 738 4.88
Fancher et al. [38]  Photoelectron spectrum 805(40)
This work MR-DMC 1.623 866(79)  4.7(7)
FeO  Allen et al.? 1.619
Drechsler et al. [39] anion-ZEKE 882 4
This work MR-DMC 1.567 1842(27) 38.9(9)
FeH  philips et al. [40] Near IR spectrum 1826.86  31.96
Dulick et al. [41] 1831.8(19) 34.9(9)
This work MR-DMC 2.031(7) 499(11) 2.53(11)
FeS Takano et al. [36] Microwave spectrum 2.017
Wang et al. [42]  Fluorescence spectroscopy 518(5) 1.7(2)

4 derived from Allen et al. [43]

The MR-DMC bond distances of ZnO and FeO agree well with the experimental ones. The
computed equilibrium bond distance of FeS is slightly larger than the one from Takano et al.
[36]. The harmonic frequencies as well as the anharmonicities are in good agreement with
the experiment for the four dimers. All in all, we showed that MR-DMC can yield promising
results for the compounds evaluated here, provided that all sets of parameters of the trial wave
functions are optimized. In particular, the difficult energy minimization of the MO parameters
does lead to substantially improved accuracy of the VMC and DMC results.
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1 Introduction

Ordinary metals are characterized by wide electronic bands and large screening effects, thus im-
plying that electron-electron interactions may be considered perturbatively or even neglected.
The situation changes completely in transition-metal oxides, where the bands close to the Fermi
energy are relatively narrow and the electronic interactions play a predominant role in determin-
ing low-energy properties. Indeed, while the kinetic energy favors electron delocalization, the
Coulomb repulsion drives the system towards localization, whose ultimate effect is the stabiliza-
tion of an insulator. This state, which is established by the strong electron-electron correlation,
goes under the name of Mott insulator [1]. In addition, materials characterized by strong cor-
relations possess unusual properties in the metallic phase, as well as the possibility to show
unconventional superconductivity [2,3]. The lack of a consistent microscopic description of
these phenomena clearly implies that a better understanding of correlation effects is needed.
Since the early pioneering works on transition-metal oxides, the theoretical approach to Mott
insulators has focused on the Hubbard model, which has been independently conceived by
Hubbard [4], Gutzwiller [5], and Kanamori [6]. Here, electrons on a lattice interact among each
others through a simplified “Coulomb” potential that includes only the on-site term

H = Zti7j63700j70 + h.c. + U Z NNy |, (1)

Z7j70—

where ¢; ; is the hopping amplitude in a d-dimensional lattice with L sites (in the simplest case,
t; ; 1s non-zero only for nearest-neighbor sites and is denoted by ¢) and U is the local electron-
electron repulsion; c}a (¢;,) creates (destroys) one electron with spin o on a Wannier orbital
residing on the site j

1 .
Zi(r) = 77 > e R (r), )
k

where ¥ (r) are Bloch states constructed with the orbitals ¢(r—R;) centered around each site 1.
The operators at different sites create orthogonal states, thus satisfying the anti-commutation
relations

{cw, C}J} =0, 007 3)
{docl.} =0 4)

The Hubbard model is defined in the Hilbert space where each site can be empty, singly occu-
pied (with either spin up or down), or doubly occupied. Moreover, the Hamiltonian (1) com-
mutes with the total number of particles with up or down spin (i.e., Ny and N, N, = Ny + N
being the total number of electrons), thus allowing us to consider sectors with different number
of particles separately. Although very simple in its formulation, the Hubbard model is generally
not solvable with the available analytical techniques, apart from the one-dimensional case [7].
Therefore, several approximate schemes have been introduced, with the support of numerical
calculations.
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Within the standard approaches, based upon the independent-electron approximation, it is not
possible to obtain a metal-insulator transition when the band is half-filled (with one electron
per site on average, i.e., N, = L), unless some kind of magnetic order is imposed. As a conse-
quence, these techniques turn the Mott insulator into a conventional band insulator, thus missing
the essence of the Mott phenomenon, where a charge gap appears independently of spin order.
Dynamical mean-field theory [8] offered an alternative route to this problem, giving a descrip-
tion of the Mott transition without the need for a symmetry breaking. However, this scheme
fully neglects spatial correlations and becomes exact only in the limit of infinite dimensionality.
Since charge fluctuations are very strong in low-dimensional systems and are expected to deter-
mine their physical properties, an alternative method, which allows one to take into account the
role of charge fluctuations, would be very useful.

Here, we consider variational wave functions, which can be treated within Monte Carlo tech-
niques, as a possible route to capture the low-energy properties of strongly-correlated systems.
In particular, our approach is based on an approximate form for the ground-state wave func-
tion that contains the physically relevant terms for the correct description of the Mott insulating
state, and, at the same time, is simple enough to allow a straightforward calculation of the phys-
ical quantities. In this way, we obtain a transparent and physically intuitive way to understand
the correlation-induced localization of electrons.

In the limit of U/t — oo (i.e., for Heisenberg or ¢-J models), the general form for correlated
wave functions corresponds to fully-projected Slater determinants [9, 10], where the configu-
rations having a finite number of double occupancies are completely removed. At half-filling,
these wave functions are obviously insulating, since no charge fluctuations can occur. Within
the Hubbard model, early calculations showed that the variational description of a Mott insu-
lator is a non-trivial problem, whenever charge fluctuations are present. Indeed, the Gutzwiller
on-site correlation factor [5], which is the natural extension of the full projector in the case of
finite (on-site) interaction, gives an insulating state only in the limit of infinite repulsion (apart
from infinite dimension), while for finite Coulomb interaction it always corresponds to a cor-
related metallic state. The reason for its failure has been widely discussed in the past, and an
intuitive argument has been found in the lack of correlation among the charge carriers, which
correspond to the empty sites (holons) and doubly occupied sites (doublons), created by charge
fluctuations at finite interactions [11]. In fact, holons possess an effective positive charge, since
one electron is missing, and doublons are negatively charged objects, having one more electron
with respect to the average occupation number; if the system is perturbed with the insertion of
an electric field, holons and doublons can move freely in opposite directions, thus leading to a
metallic behavior. Variational attempts done by adding a short-range correlation term up to a
distance £ among holons and doublons, turned out to be likewise unsuccessful [11,12]. Naively,
this happens because the configurations where holons and doublons are at distances larger than
& are not subject to any correlation term, hence they can move freely on the lattice and con-
duct. Following this insight, it turns out that, in order to describe a correlated insulator without
breaking any symmetry, it is necessary to correlate particles over all length scales. Let us con-
sider a more general argument in view of the above considerations. For realistic Hamiltonians,
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the dynamical properties of a system reflect the long-distance behavior of the static correlation
functions of its ground state. Within a variational approach, this implies that a good Ansatz for
an insulating state requires the correct description of the density-density correlations at large
distances or, equivalently, the correct behavior of the charge structure factor at small momenta.
For fermionic systems, the standard form for a correlated wave function is constituted by a cor-
relation term acting on a Slater determinant, the latter corresponding to an uncorrelated metallic
state. As a consequence, a variational wave function built with a short-range correlation fac-
tor cannot change the metallic character of the determinant, unless one fully suppresses charge
fluctuations, since the large distance physics remains untouched.

The above arguments suggest that a long-range correlation factor is needed in order to correctly
describe the insulating state. In particular, since we are interested in the density-density corre-
lations, a natural choice of the correlation factor contains two-body terms, which corresponds
to the so-called Jastrow factor [13]. It has been widely used in the context of liquid Helium on
the continuum, where it gives the correct behavior of the density structure factor [14,15]. Here,
the analytic form of the Jastrow parameters can be deduced from weak-coupling calculations.
Unfortunately, for the purpose of describing an insulating state, a proper analytic form of the
Jastrow parameters cannot be obtained by weak-coupling techniques. The lack of a functional
form for the Jastrow term, together with the large number of variational parameters required for
a long-range correlation factor, represented the main obstacle to the use of this wave function
in presence of strong correlation. Nowadays, this difficulty has been overcome with the help
of advanced stochastic optimization techniques, which allow one to optimize many variational
parameters independently, without assuming any functional form [16, 17].

2 The variational principle

In this section, we discuss the basic aspects of the variational principle, which represents one im-
portant pillar when searching for reliable approximations of strongly-correlated systems. Given
any approximate state [7) for the exact ground state |15) of a given Hamiltonian, we can define
its variational energy as

o ) s

(@]¥)

Since any state in the Hilbert space can be expanded in terms of the eigenfunctions |7;) of the
Hamiltonian (with energies F;), the variational state can be written as

@) =Y alT), 6)

(2

with a; = (1;|¥). The normalization condition reads as
@) =) o =1. @)
By using the expansion of Eq. (6), we easily obtain that
EEE—E0:Z|G,Z‘|2(E¢—E0) ZO, (8)
i#0
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which implies that any trial state |¥) provides an upper bound of the exact energy, thus giving a
controlled way to approximate the original problem. Then, all computational efforts are devoted
to minimizing the variational energy F.

Let us now analyze in what sense an approximate wave function, with given “distance” in
energy € from the exact ground state, can be considered as a good approximation of the many-
body ground state |1p). A crucial role is played by the gap to the first excited state, which
is always finite in a system with NV, particles (apart from accidental degeneracies), namely
A = E; — Ey > 0. From Eq. (8) and the fact that, for i # 0, F; — Ey > A, it follows that

e>AY ail; ©)
i#£0
then, by using the normalization condition (7), we obtain
€
=1—lag)* < —. 10
n ‘Gof =4 (10)

This relation tells us that, in order to have an accurate approximation of the exact ground state
(i.e., n < 1), a sufficient condition is that the error € in the variational energy has to be much
smaller than the gap A to the first excited state.

The accuracy of generic correlation functions (i.e., expectation values of Hermitian operators,
which do not commute with the Hamiltonian, over |¥)) is usually worse than the one on the
ground-state energy. In fact, let us consider a generic operator O and express the variational
wave function as

V) = ao|Yo) + v/n|T"), (an
where |17} is orthogonal to the ground state |7;). Then, the difference between the expectation
value calculated with the variational state and the exact one is given by

[(Z|O17) — (TH|O[T0)| = [2a0/n(To|OT") + n(T'|OT) — n(T|O|Ty)|,  (12)

where, for simplicity, we have assumed real wave functions. Then, whenever the variational
state is close to the exact ground state, n < /7 and we can neglect all the terms that are
proportional to n

(Z1017) — (H|OIT)] ~ 27| (L] OT)

which shows that the accuracy in correlation functions is more problematic than the one on the

) (13)

ground-state energy, with a term proportional to /7.

3 The variational Monte Carlo method

3.1 General principles

Let us start by describing the general framework in which variational Monte Carlo methods
are defined. First of all, we fix a complete basis set {|x)} in the Hilbert space, in which (for
simplicity) the states are taken to be orthogonal and normalized such that

> o) =1 (14)
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Then, any quantum state |¥) can be written as
)= o) (ald) = (). (15)

In turn, the expectation value of an operator O over a given variational wave function |7) takes
the following form

o) S Wla)op)
O =Ty TS W« 16

The main problem in evaluating the expectation value is that the number of configurations in

the sum is exponentially large with the number of particles. Therefore, for large systems, it
is impossible to perform an exact enumeration of the configurations to compute (O) exactly.
Nevertheless, Eq. (16) can be recast into a form that can be easily treated by standard Monte
Carlo methods. Indeed, we have that

L @) POL()
O =T wwp (a7

where we have defined the local estimator of the operator O

_ (z|OW)
The important point is that
2
P) = A 19)

2. [¥(@)?

can be interpreted as a probability, since it is a non-negative quantity for all configurations |z)
and is normalized, i.e., ) P(x) = 1. Therefore, the problem of computing a quantum average
of the operator O can be rephrased into the calculation of the average of the random variable
OL(z) over the distribution probability P(z)

(0) => P(x)0.(). (20)

In particular, if we consider the expectation value of the Hamiltonian, the local estimator corre-
sponds to the so-called local energy, which is defined by
(x|H|P)

er(r) = ) (21)

An important feature of the variational Monte Carlo approach is the zero-variance property. Let
us suppose that the variational state |¥) coincides with an exact eigenstate of 7 (not necessarily
the ground state), namely H|¥) = E|¥). Then, it follows that the local energy ey (z) is constant
(z|@)

_ (z[H|¥) _ _
er(z) = ey~ Pl = P (22)
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Therefore, the random variable ey (z) does not depend on |z), which immediately implies that
its variance is zero, while its mean value £ coincides with the exact eigenvalue (in other words,
er(x) is not a random variable). Clearly, this is an extreme case that is very rare for generic
correlated models. However, in general, the variance of ey (x) will decrease its value when-
ever the variational state |W) will approach an exact eigenstate. This fact is very important to
reduce the statistical fluctuations and improve the numerical efficiency. The zero-variance prop-
erty is a feature that exists only for quantum expectation values, while it is absent in classical
calculations, where observables have thermal fluctuations.

3.2 Markov chains

Instead of an exact enumeration of all configurations {|z)} in the Hilbert space, the quantum
average of the operator O is evaluated by sampling a set of configurations {|x,,)} that are dis-
tributed according to the probability P(x), such that

1 N
(0) % < > Orlwn). (23)
n=1

From now on, we denote configurations by using only x, dropping the ket notation. The idea to
sample a generic probability distribution is to construct a non-deterministic, i.e., random, pro-
cess for which a configuration x,, evolves as a function of a discrete iteration time n according
to a stochastic dynamics. A particularly simple case is given by the so-called Markov chains,
where the configuration at time n+1 just depends upon the one at time n

Tp+1 = F(xna fn); (24)

where the function F' is taken to be time independent. The stochastic nature of the dynamics (24)
is due to the fact that F' depends upon a random variable &, that is distributed according to a
probability density x(&,). Here, the main point is to define a suitable function F' such that the
configurations x,, will be distributed (for large enough time n) according to the probability that
we want to sample. Notice that, although &, and &, ; are independent random variables, z,, = x
and x,, ., = 2’ are not independent. The joint probability distribution of these variables can be
decomposed into the product of the marginal and the conditional probability

Piownt.n (', x) = w(a'|x) Pu(z), (25)

where the conditional probability is such that w(2’|x) > 0 for all = and 2’ and satisfies the
following normalization

Zw(x’\x) = 1. (26)

I',

It represents the probability that, having the configuration x at the iteration n, x’ appears at
n+1; its actual form depends upon the function F'(x, ¢) and the probability distribution x(&).
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We are now in the position of deriving the so-called Master equation, associated to the Markov
chain. Indeed, the marginal probability of the variable 2’ is given by

Pn—l—l(x/) - Z 7)joint,n<l’/a I)7 (27)

so that, by using Eq. (25), we get
Posr(2) =Y w(a'|z) Pp(x). (28)

This equation allows us to calculate the evolution of the marginal probability P, (x) as a function
of n, since the conditional probability w(z'|z) is determined by the stochastic dynamics in
Eq. (24) and does not depend upon n.

The important question about the Markov process is to understand under which conditions the
sequence of distributions P, (x) converges to some limiting (i.e., equilibrium) distribution P ()
or not. In particular

1. Does a stationary distribution P (z) exist?
2. Is the convergence to P(x) guaranteed when starting from a given arbitrary Py(x)?

The first question requires that
P = Zw(:c’]sc) P(z). (29)

In order to satisfy this condition, it is sufficient (but not necessary) to satisfy the so-called
detailed balance condition

w(@'|x) P(z) = w(z|z") P(z)). (30)

The second question requires the ergodicity condition, i.e., the possibility to reach any state x
from any other one x’ by performing a finite number of steps.

3.3 The Metropolis-Hastings algorithm

Finally, we present a practical way of constructing a conditional probability w(z'|x) that sat-
isfies the detailed balance condition (30), such that, for large values of n, the configurations
x,, are distributed according to a given probability distribution P(z). Metropolis and collab-
orators [18] introduced a very simple scheme, which is also very general and can be applied
to many different cases. Later, the so-called Metropolis algorithm has been extended to more
general cases by Hastings [19] (very often, the name of “Metropolis-Hastings algorithm” is also
used). As a first step, we split the transition probability w(z’|z) into two pieces

w(a'|z) = T(a'|z) A('|z), 31

where T'(z'|z) defines a trial probability that proposes the new configuration 2’ from the present
one = and A(z'|x) is the acceptance probability. In the original work by Metropolis and co-
workers, the trial probability has been taken symmetric, i.e., 7'(z'|z) = T'(z|z’). However,
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in the generalized version of the algorithm 7'(z’|z) can be chosen with large freedom, as long
as ergodicity is ensured. Then, in order to define a Markov process that satisfies the detailed
balance condition, the proposed configuration z’ is accepted with a probability

oy — e [ PE)T (]’
A(2'|z) = min {1, W} : (32)

Without loss of generality, we can always choose T'(z|x) = 0, namely we never propose to
remain with the same configuration. Nevertheless, w(z|x) can be finite, since the proposed
move can be rejected. The actual value of w(z|z) is fixed by the normalization condition
Yo aw(@x) =1

The proof that detailed balance is satisfied by considering the acceptance probability of Eq. (32)
is very simple. Indeed, let us consider the case in which z and 2’ # x are such that

P(2")T (z]z')
PO T ()~ 33)
in this case, we have that
A'|z) =1, (34)
n_ P@)T(2'|2)

then, we can directly verify that the detailed balance is satisfied. A similar proof can be obtained
in the opposite case where P(x')T (x|z")/[P(z)T(z'|x)] < 1.

4 Variational wave functions

4.1 The Hartree-Fock wave function

For fermionic models, the simplest example for a variational wave function is given by the
Hartree-Fock approximation, where the many-body state is taken to be a product state of suit-
ably optimized single-particle orbitals

Ne
Wr) = [ [ 2410); (36)
a=1
here, @1, can be expressed in terms of the original fermionic operators as
@L - Z W{O‘JC;T + Z Wf,oz,icj"7¢ ) (37)

where {W, ,;} are complex coefficients that can be optimized to get the best variational state.
The condition that orbitals are normalized and orthogonal to each other implies that

> (WhaiWigi+ WiaiWis,) = 0as. (38)

i
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The expectation value of any Hamiltonian can be easily evaluated analytically. On the lattice, it
is relatively simple to obtain a solution for the Hartree-Fock equations by using iterative meth-
ods. However, while the Hartree-Fock approximation may give reasonable results in the weak-
coupling regime, its accuracy becomes questionable for moderate and strong interactions. For
example, a Mott insulator, with no symmetry breaking, cannot be described within this approxi-
mation; moreover, it is also not possible to stabilize superconducting phases in purely repulsive
Hamiltonians. Therefore, a step forward is needed, in order to reach a better description of
strongly-correlated systems.

4.2 The Gutzwiller wave function

The simplest example of a correlated state, which goes beyond the Hartree-Fock approximation,
has been proposed by Gutzwiller to describe the effect of the Hubbard-U interaction in reducing
the weight of configurations with doubly-occupied sites [5]. The Gutzwiller wave function is
constructed by starting from the ground state |®,) of the U = 0 model and then applying an
operator P that suppresses the weight of configurations with doubly-occupied sites

Va) = PalPo); (39)

here, P 1s the so-called Gutzwiller factor that depends upon a single variational parameter g
(e.g., g > 0 for the repulsive Hubbard model)

Pg = exp [—g Z(nz — n)2] , (40)

i

where n is the average density.
The effect of the Gutzwiller factor becomes clear once the variational state is expanded in a
basis set whose elements {|x) } represent configurations with particles sitting on the lattice sites.
Indeed, since the Gutzwiller factor is diagonal in this basis (it contains the density operator on
each site n;), we have that

(2li) = Po(x)(zldo), 41)

where Pg(x) < 1 is a number that depends on how many doubly-occupied sites are present in
the configuration |z). Therefore, the amplitude of the non-interacting state (x|9,) is renormal-
ized by Pg(x).

For the Hubbard model with a generic hopping amplitude ¢; ;, when the particle density is
n = 1, a metal-insulator transition is expected at finite values of U/¢. However, a simple argu-
ment suggests that the Gutzwiller wave function can describe such a transition only when the
variational parameter g tends to infinity. Indeed, for n = 1, on average, there is one particle per
site and density excitations are represented by doublons and holons. In the non-interacting state
|Do), these objects are free to move and then responsible for the conductivity (a doublon is neg-
atively charged with respect to the average background, while the holon is positively charged).
The effect of the Gutzwiller factor is to penalize the formation of such objects; however, once
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created, doublons and holons are no longer correlated, thus being free to move independently.
Only when the energetic penalty is infinite, an insulator is obtained; here, all the density degrees
of freedom are frozen and no transport is possible, implying an oversimplified description of
a true insulator, where instead density fluctuations are always present. Extensive calculations
have shown that ¢ remains finite for all values of U/t and diverges only for U/t = oo [20,21].

4.3 The fully-projected Gutzwiller wave function

Here, we briefly discuss the limit of ¢ = oo, which corresponds to the fully-projected Gutzwiller
state. For n = 1, the Gutzwiller factor becomes a projector in the sub-space with only singly-
occupied sites

Poo = [ [ (ig —niy)* (42)
which implies that all configurations with empty or doubly occupied sites are annihilated. In
fermionic models, there is still an exponentially large number of states with one electron per
site, which differ by their spin configurations. Therefore, non-trivial spin fluctuations are still
allowed. These kinds of fully-projected wave functions |¥,,) = P |Po) have been considered
within the so-called resonating-valence bond (RVB) approach, which has been proposed by
Anderson to capture the physics of exotic magnetic systems (spin liquids) [22] in frustrated
Heisenberg models [23].
The case to include empty sites, which is relevant when n < 1, has been widely used to describe
high-temperature superconductors in the ¢-./ model [9,10]. In this case the Gutzwiller projection
1s written as

Poo = [ (1 = nigmnay), 43)
which annihilates all configurations containing doubly-occupied sites, but leaving untouched
configurations with only empty and singly-occupied sites.

4.4 The Jastrow wave function

As we have discussed above, the variational description of an insulator with density fluctuations
is not captured by the simple Gutzwiller wave function (39) and requires a modification of
the correlation term that is applied to the non-interacting wave function. A straightforward
generalization of the Gutzwiller wave function is given by the inclusion of long-range terms in
the correlator

V) = T|Po), (44)

where 7 is the Jastrow factor [13] that has been introduced in continuum models much before
the Gutzwiller wave function. On the lattice, J takes a simple form

1
J = exp ) Z ULj(ni - ”)(”] —n)|, (45)
4,J
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where v; ; is a pseudo-potential for density-density correlations in the variational state. For
translationally invariant models, v; ; only depends upon the relative distance of the two sites 7
and j,ie., |R; —R;
The Jastrow pseudo-potential can be either parametrized in some way, in order to reduce the

; moreover, the on-site term v; ; corresponds to the Gutzwiller parameter g.

number of variational parameters, or optimized for all possible distances, which are O(L) in
translationally invariant systems. The role of the long-range tail of the Jastrow factor is to
create a bound state between holons and doublons, possibly impeding conduction, but still
allowing local density fluctuations. Indeed, we have shown that such Jastrow terms may turn
a non-interacting metallic state |®) into an insulator [24,25]. In particular, by denoting the
Fourier transform of the (translationally invariant) pseudo-potential v; ; by v, the gapless (i.e.,
metallic) phase is described by having v,~1/|q| for || — 0, in any spatial dimension d; by
contrast, a fully gapped (i.e., insulating) phase is obtained in one-dimension with v,~1/|q|? for
|q| — 0 [24]. This singular behavior of the pseudo-potential induces an exponential decay of the
density-density correlations. In two an