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Preface
Emergent many-body phenomena are at the core of the exciting properties of strongly-correlated
materials. Understanding them requires confronting the many-body problem. While, at first,
this appears to be an impossible task, substantial progress has been made by combining physi-
cal insights with modern numerical approaches. A successful strategy is to devise methods that
use the understanding gained from simple models for the construction of physically motivated
wave-functions. Results for the ground state of real materials can then be obtained by opti-
mizing them via deterministic or stochastic algorithms. The methods of choice for determining
spectra are instead based on Green functions. The key idea is to map the complex realistic
many-body Hamiltonian to a simpler auxiliary model that can be solved numerically.

This year’s school will provide an overview of the state-of-the art of these techniques, their
successes and their limitations. After introducing fundamental models and key concepts, lec-
tures will focus on quantum Monte Carlo for optimizing correlated wave-functions, stochas-
tically sampling series expansions for obtaining Green functions, and renormalization group
techniques. Advanced lectures will address approaches to Mott physics, transport phenom-
ena, and out-of-equilibrium dynamics. Applications will cover correlated systems ranging from
transition-metal compounds and frustrated spin systems to correlated molecules.

The goal of the school is to introduce advanced graduate students and up to these modern
approaches for the realistic modeling of strongly-correlated materials.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school and the production of
this book. The Institute for Complex Adaptive Matter (ICAM) supported selected international
speakers and participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Julian Mußhoff, Neda Samani, Qian
Zhang, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, and Shiwei Zhang

August 2019





1 Introduction to Density Functional Theory

Xavier Blase
Institut Néel
CNRS, Grenoble, France
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1.2 Xavier Blase

1 Overview

We present in this Chapter a brief overview of Density Functional Theory (DFT), an exact
mean-field formalism for calculating ground-state total energies and charge densities. Several
excellent books are devoted to DFT and two are listed in the bibliography [1, 2]. At the heart
of DFT lies the idea that there is no need to know the details of the many-body wavefunction
to calculate ground-state properties: the knowledge of the electronic density ρ(r), a simple 3D
scalar function, is enough to obtain the total energy of the system and all quantities that result
(atomic structures, binding or atomization energies, elastic constants, phonon energies, activa-
tion barriers, the forces needed for molecular dynamics simulations, etc.) As an exact theorem,
DFT applies to simple Fermi-liquid-like systems but also to strongly correlated materials.

Unfortunately, the DFT does not say how exactly the ground-state total energy depends on the
ground-state electronic density. In practice, approximations are needed to express the kinetic
energy and the many-body electron-electron interaction as a “functional” of ρ(r). One thus
leaves exact DFT and enters the difficult world of approximations with their specific range of
validity. Here comes a second remarkable feature of DFT, namely that very simple approxima-
tions for such functionals, including the local density approximation (LDA), deliver excellent
results, such as interatomic bond lengths within 1% of experimental data for a very large num-
ber of systems. Such an accuracy, combined with the simplicity of DFT that allows to study
systems comprising several hundred atoms, can explain the formidable success of DFT in terms
of the number of users and systems studied, with the development of very efficient and easy-to-
use codes. This success can certainly contribute to explain that the 1998 Chemistry Nobel prize
was awarded to Walter Kohn (and John Pople) for the development of DFT.

It remains, however, that DFT in its original formulation is limited to ground-state properties.
As such, the field of electronic excitations, and in particular charged excitations as measured
in a photoemission experiment for establishing “band-structures” does not formally lie within
the reach of DFT. Fortunately, and unfortunately, a specific implementation of DFT, the Kohn-
Sham formalism, introduces auxiliary one-body eigenstates and eigenvalues that are very widely
used to calculate electronic energy levels. The rationale for doing so is not firmly established,
but very valuable information about band dispersions, orbital shapes, etc. are usually obtained
for “not-strongly-correlated” systems. Specific limitations are well established (too small band
gaps, underbinding of localized states, etc.) that may find a partial cure by considering “gener-
alized DFT” namely a mean-field approach combining DFT and Hartree-Fock: this is the field
of hybrid functionals.

Clearly, there is the need for more solid foundations allowing, to build a formal link between
DFT and excited states. This is where we stand nowadays, with a healthy competition between
the world of DFT, attempting to bridge the gap with excited states properties, and other ap-
proaches that abandon mean-field techniques to tackle the explicit many-body problem, but at a
cost that needs to be improved to compete in the study of large systems. This will be the subject
of most of the other chapters in this book.
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2 The many-body problem (selected considerations)

We start this chapter with a short reminder of quantum mechanics for many-particle (elec-
trons) systems. The quantum states of an N -electron system are described by a wavefunction:
ψ(r1σ1, r2σ2, ..., rNσN) with ri and σi space and spin variables. The probability to find N elec-
trons with spins (σ1, ..., σN ) in the infinitesimal volume dr1dr2...drN centered at r1, r2, ..., rN
is given by d3NP = |ψ(r1σ1, r2σ2, ..., rNσN)|2dr1dr2...drN . By definition, the electron density
can be found by integrating over N−1 spacial-variables and summing over all spins

ρ(r) = N

∫
dσdx2...dxN |ψ(rσ, x2, ..., xN)|2 where xi = (ri, σi)

with ρ(r)dr the number of electrons in the infinitesimal volume dr centered at r. From the nor-
malization of ψ one obtains

∫
dr ρ(r) = N . The charge density can be obtained by multiplying

by the elementary charge (−e). Note that it is customary to use the wording charge density for
electron density.
The electronic Hamiltonian is actually known (atomic units):

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

vion(ri) +
∑
i<j

1

|ri − rj|
with vion(r) = −

∑
I

ZI
|RI − r|

(1)

where we did not include the kinetic energy of the ions. vion is the ionic potential acting on
electrons with {RI , ZI} the nuclear positions and charges. The energy of the system is given
by the “expectation value” of the Hamiltonian (let’s forget spin)

〈ψ|Ĥ|ψ〉 =
∫
. . .

∫
dr1dr2...drN ψ∗

(
{ri}

)
Ĥ
(
{ri}, {∇ri}

)
ψ
(
{ri}

)
.

As such, it may seem that quantum mechanics is easy, with first-principles equations and for-
malisms developed in the first half of the 20th century. Let’s consider, however, the energy of
a very small system, the water molecule with its 10 electrons. Let’s assume that we want to
calculate its total energy for some wavefunction ψ (let’s not even ask how we obtained it ...)
Applying naively some quadrature (e.g. trapezoidal rule) to calculate such an integral by paving
the space around the molecule with a coarse 10×10×10 grid, one obtains for N=10 electrons
a sum of 103N=1030 terms to calculate and add. Modern computers are “petaflopic”: they per-
form 1015 floating point operations per second. We would therefore need of the order of 1015

seconds, namely 31 710 millennia for this simple evaluation! Clearly, the way we calculated
this integral was very dumb, and clever sampling of phase space can be done much more effi-
ciently using, e.g., Metropolis sampling. It remains that the exact many-body problem becomes
dramatically expensive as soon as the number of electrons increases. Computers are handy, but
the brains of the physicists and chemists to come up with nice approximations are luckily still
required.
We now start by introducing simple considerations demonstrating that one does not always
need all the details of the complex many-body wavefunction to calculate a physical observable.
Unless stated otherwise, we will not display spin variables in the following for sake of brevity
of the equations.
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2.1 One and two-body operators act on the charge and pair density

Let us consider one-body operators, namely operators of the form Ô =
∑N

i=1O(ri), where the
{ri} are the electronic positions. In particular, the electron-ion interaction energy is given by
E ion-e =

∑
i〈ψ
∣∣vion(ri)

∣∣ψ〉 with

〈ψ
∣∣vion(ri)

∣∣ψ〉 =

∫
dr1dr2 . . . drN vion(ri)

∣∣ψ(r1, r2, . . . , ri, . . . , rN)∣∣2
=

∫
dr dr2 . . . drN vion(r)

∣∣ψ(r, r2, . . . , rN)∣∣2
where we have renamed all variables, in particular ri ⇒ r, and reshuffled all space positions
thanks to the symmetry properties of |ψ|2. As a result, all N terms are identical, yielding

E ion-e = N

∫
dr vion(r)

∫
dr2 . . . drN |ψ(r, r2, . . . , rN)|2 =

∫
dr vion(r) ρ(r) .

As such, vion acts only on the electronic (or charge) density: there is no need for the full many-
body wavefunction and its related 3N -integrals to get the E ion-e energy!
To conclude this paragraph, one can introduce another one-body operator, the electron den-
sity operator, ρ̂(r) =

∑N
i=1 δ(r − ri), that “counts” the number of electrons at r. The same

demonstration as above (exercise!) allows to recover the expression for the electronic density:
ρ(r) = 〈ψ|ρ̂(r)|ψ〉 = N

∫
dr2 . . . drN |ψ(r, r2, . . . , rN)|2.

Let’s now consider the crucial case of two-body operators. The electron-electron interaction
energy Eee = 〈ψ

∣∣V̂ ee
∣∣ψ〉 with V̂ ee =

∑N
i<j

1
|ri−rj | can also be simplified by renaming and

reshuffling the integration variables:

〈ψ
∣∣ 1

|ri − rj|
∣∣ψ〉 = ∫ drdr′dr3 . . . drN

|ψ(r, r′, r3, . . . , rN)|2

|r− r′|
independent of the specific (i, j) indices, yielding N(N−1)/2 identical terms so that Eee =∫
drdr′ρ2(r, r

′)/|r− r′| with

ρ2(r, r
′) =

N(N−1)
2

∫
dr3 . . . drN |ψ(r, r′, r3, . . . , rN)|2

which is the density of pairs satisfying
∫
drdr′ρ2(r, r

′) = N(N−1)/2.

For calculating the complex electron-electron energy responsible for electronic corre-
lations, there is no need, in principle, for all the details of the many-body wavefunc-
tions and the related 3N -integrals: we only need averaged (mean-field) quantities such
as the 2-body pair-density! BUT we do not know at this stage how to build ρ2(r, r′)
without the knowledge of ψ.

2.2 Exchange-correlation hole and its sum-rule

Rewriting the pair density as 2ρ2(r, r′) = ρ(r)ρ(r′)
[
1 + h(r, r′)

]
, with h called the pair-

correlation function, one can express Eee in terms of the (charge-charge) Hartree energy J

J =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
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and the exchange-correlation (XC) hole density ρXC(r, r′) := ρ(r′)h(r, r′) as

Eee = J +
1

2

∫
drdr′

ρ(r)ρXC(r, r
′)

|r− r′|
.

It is easy to demonstrate (exercise!) that∫
dr′ρ2(r, r

′) =
N−1
2

ρ(r) and
∫
dr′ ρXC(r, r

′) = −1

yielding the XC-hole sum rule. The XC energy is the Coulomb energy between electrons and
their respective XC-hole, namely the depletion of the charge density by one electron (through
exchange and Coulomb repulsion) dynamically created around each electron. The 1/2 in the
XC energy is an adiabatic factor: the XC hole grows with the electron density and would not
exist without it.

The XC energy beyond the classical Hartree term can be written in a classical form as
the Coulomb interaction between an electron and its XC hole, namely the dynamical
depletion of exactly one charge created “locally” by Fermi and Coulomb repulsion.
Due to the XC sum rule, the composite object (a quasiparticle) made out of the elec-
tron dressed by its XC hole is a neutral object weakly interacting with its surrounding.
Independent-like particle theories, and related 1-body eigenvalue equations, are there-
fore more likely to be successful when applied to such quasiparticles.

3 Density functional theory

We have established that we do not need to know all the details of the many-body wavefunction
to obtain in particular the electron-electron interaction energy. The pair density is sufficient.
It can be shown further that the kinetic energy can be obtained from the knowledge of the
1st-order density matrix: γ1(r, r′) = N

∫
· · ·
∫
dr2 · · · drN ψ(r, r2, · · · , rN)ψ∗(r′, r2, · · · , rN)

which is also a 2-body function averaging out most of the many-body wavefunction degrees
of freedom. Density Functional Theory (DFT) goes one step beyond, demonstrating that the
ground-state (GS) total energy only requires the knowledge of the electronic density, very much
as for the action of the one-body ionic potential.

3.1 Hohenberg and Kohn theorems

Preliminaries: Room temperature is of the order of 25 meV, much smaller than typical elec-
tronic energy gaps or band dispersions, so most unperturbed (no strong light, etc.) solids or
molecules are close to their lowest energy state with wavefunction ψGS and energy EGS .
The variational principle provides a way to find ψGS and energy EGS:

EGS = min
ψ

E[ψ] with E[ψ] = 〈ψ|Ĥ|ψ〉 and 〈ψ|ψ〉 = 1
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This is the standard approach, where the energy is a functional of the many-body wavefunc-
tion ψ. The dramatic result from Hohenberg and Kohn [3] is that the ground-state energy can
be written as a functional of the charge density:

EGS = min
ψ

E[ψ]
DFT
=⇒ EGS = min

ρ
E[ρ] with

∫
drρ(r) = N.

This is an exact result, namely there is an exact mean-field theory for the problem of the ground-
state energy in N -electron systems!
Demonstration for non-degenerate ground-states: The ionic potential acts on the charge
density and the electronic Hamiltonian (without ion-ion interaction) reads

Ĥ = T̂ + V̂ ee +

∫
dr vext(r)ρ(r)

with T̂ the kinetic energy and vext=vion (the ions are “external” to the N -electron system).
Theorem: given a charge density ρ(r), then there exist only one external potential vext(r)
(within a constant) such that the corresponding ground-state electronic density is equal to ρ(r).

Reductio ad absurdum: Assume there exist 2 external potentials vext1 (r) and vext2 (r) that lead to
the same ground-state charge density:

vext1 (r) =⇒ Ĥ1 =⇒ ψGS1 =⇒ ρ(r)

vext2 (r) =⇒ Ĥ2 =⇒ ψGS2 =⇒ ρ(r)

Using the variational principle

EGS
1 = 〈ψ1|Ĥ1|ψ1〉 < 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉+ 〈ψ2|Ĥ1 − Ĥ2|ψ2〉

= EGS
2 +

∫
dr
(
vext1 −vext2

)
(r)ρ(r)

Starting now from 〈ψ2|Ĥ2|ψ2〉 (switching indices 1 and 2) one obtains

EGS
2 < EGS

1 +

∫
dr
(
vext2 − vext1

)
(r)ρ(r)

and by adding the two inequalities

EGS
1 + EGS

2 < EGS
2 + EGS

1 IMPOSSIBLE!

The demonstration hinges here on strict inequalities, namely assuming non-degenerate ground-
states. This is the celebrated 1964 theorem by Hohenberg and Kohn [3].

Ground-state energy as a functional of the charge density: It follows that the charge density
completely determines the external potential and thus the Hamiltonian (just add the universal
kinetic T̂ and V ee operators) and thus the ground-state wavefunction ψGS:

vext −→ Ĥ −→ ψGS −→ ρ(r)

6
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Since ρ(r) determines ψGS , it determines unequivocally the total energy of the ground-state,
EGS = 〈ψGS|Ĥ|ψGS〉. It can be shown further as a corollary (Exercise) that the variational
principle can be now used for EGS as a functional of the charge density:

EGS = min
ψ

E[ψ]
DFT
=⇒ EGS = min

ρ
E[ρ] under the constraint that

∫
dr ρ(r) = N .

Since the electron-ion interaction energy can be written explicitly as a functional of the charge
density, one concludes that the sum of the kinetic and electron-electron interaction energy is
also a functional of ρ(r) that is labeled the universal Hohenberg and Kohn functional FHK [ρ]
with FHK [ρ] = EGS[ρ] −

∫
dr vion(r)ρ(r). It is called universal since, contrary to the ionic

potential that depends on the system of interest via the ionic charges and positions, the kinetic
energy and electron-electron operators do not.
The basic ideas discussed in this section can be generalized without imposing the non-degeneracy
of the ground state, bypassing further the problem of the v-representability of a given density
ρ(r): can we always find some vext potential that leads to a given ρ(r)? This can be done within
the framework of Levy constrained-search formulation [4] that leads to the following definition
for the universal Hohenberg and Kohn functional

FHK [ρ] = min
ψ→ρ
〈ψ|T̂ + V̂ ee|ψ〉

This is formally the standard search over many-body wavefunctions, but with the constraint that
for a given density ρ, the search is restricted to many-body wavefunctions with 〈ψ|ρ̂(r)|ψ〉=ρ(r).
This further allows to define a kinetic energy and electron-electron interaction energy as inde-
pendent functionals of the charge density: T [ρ] = min

ψ→ρ
〈ψ|T̂ |ψ〉 and Eee[ρ] = min

ψ→ρ
〈ψ|V̂ ee|ψ〉.

3.2 The Euler-Lagrange equation: a density-only formulation

The existence of E[ρ] with an associated variational principle allows performing energy mini-
mization with respect to the density under the constraint that the densities we consider integrate
to the total number of electrons N . We thus introduce the Lagrangian

Ω[ρ, µ] = E[ρ] + µ

(
N −

∫
dr ρ(r)

)
where µ is a Lagrange parameter ensuring the conservation of the correct electron number. This
leads by differentiation to the stationary equation

∂Ω[ρ, µ]

∂ρ(r)
= 0 =⇒ ∂FHK [ρ]

∂ρ(r)
+ vion(r) = µ

which is a simple 3D differential equation. Its solution is the ground-state charge density from
which the ground-state energy of the system can be calculated. This is dramatically simpler
than the original many-body wave-function formulation. Unfortunately, we just do not know
the universal functional FHK [ρ] expressing the kinetic energy and electron-electron interaction
as a function of the density. While functionals of the density for the electron-electron interaction
will be discussed and have met much success, one complicated issue remains, the kinetic energy
for which we provide now two limiting expressions.
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3.3 Kinetic-energy functionals: from hydrogen to the HEG

The first case is the well-known non-interacting homogeneous electron gas (the free-electron
gas) that obeys the following relations (see e.g. Kittel)

T =
3

5
NεF with εF =

~2k2F
2me

and k3F = 3π2N

V
,

where V is the volume occupied by theN electrons,EF the Fermi energy and T the total kinetic
energy. In a homogeneous system, N/V is just the electronic density. It is traditional to rewrite

T =
1.105

r2s
(a.u.) with

4

3
πr3s =

V

N
=

1

ρ
the Wigner-Seitz radius.

One may then “cook-up” some kinetic energy per electron

tTF (ρ) =
T

N
=

3

5
× ~2

2me

×
(
3π2ρ

)2/3
yielding the historical Thomas-Fermi (TF) kinetic energy functional approximation for inho-
mogeneous systems with position dependent densities ρ(r)

TTF =

∫
dr ρ(r) tTF (ρ(r)) ' 2.871

∫
dr ρ(r)5/3 (a.u.),

which is the first example of a local functional: the local kinetic energy density only depends
on the density at the same space point. Numerical tests have shown that such an approximation
is rather poor for real systems.
Another exact relation can be obtained for the hydrogen atom. In that case, the only occupied
orbital is the 1s orbital: φ(r) = Ae−r (r in a.u.) with A some normalizing constant taken to be
positive. Since there is only one electron, the density reads ρ(r) = |φ(r)|2. As such

T = −1

2

∫
dr φ(r)∇2φ(r) =

1

2

∫
dr (∇φ(r)) · (∇φ(r)) ,

where we used integration by part with the wavefunction cancelling at infinity. Using now
φ(r) =

√
ρ(r), with ρ(r) positive, we obtain

T =
1

2

∫
dr (∇

√
ρ(r))2 =

1

2

∫
dr

(
∇ρ(r)
2
√
ρ(r)

)2

=
1

8

∫
dr

[∇ρ(r)]2

ρ(r)
.

This expression, called the von Weizsäcker functional, is yet another exact formula valid for a
given specific system, but clearly very different from the one given above for the homogeneous
gas. Anticipating the “gradient corrected functionals” we see that here the energy depends on
the density and its gradient.
The search for a universal functional for the kinetic energy turns to be much more challenging
than finding a decent functional for the electron-electron interaction. As such, “orbital-free”
DFT, namely a DFT based exclusively on the density, has not yet met much success despite its
remarkable simplicity.
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3.4 Kohn-Sham formulation: introducing auxiliary 1-body orbitals

To bypass this problem of the expressing the kinetic energy as a functional of the density, Kohn
and Sham introduced in 1965 their famous approach [5]. The idea goes as follows: in the case
of a non-interacting electron system, electronic states can be described by one-body orbitals
{φn(r)} arranged and populated by increasing energies {εn}. For such systems, the kinetic
energy and electronic density are easily calculated

T0 = −
1

2

N∑
n=1

∫
dr φ∗n(r)∇2φn(r) and ρ(r) =

N∑
n=1

|φn(r)|2.

Can one imagine now a fictitious non-interacting electron gas submitted to an effective external
potential veff(r) such that its charge density is the same as that of the real interacting system?
Since the ground-state electronic density fulfills the Euler-Lagrange equation, the real and ficti-
tious systems should have the same Euler-Lagrange equation in each point, namely

∂FHK [ρ]

∂ρ(r)
+ vion(r) =

∂T0
∂ρ(r)

+ veff(r) ,

yielding the definition of such an effective potential

veff(r) = vion(r) +
∂(FHK [ρ]− T0)

∂ρ(r)
.

Introducing the classical (Hartree) charge-charge interaction potential

vH(r) =
∂J [ρ]

∂ρ(r)
=

∫
dr′

ρ(r′)

|r− r′|

with

J [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|

one can write

veff(r) = vion(r) + vH(r) +
∂EXC [ρ]

∂ρ(r)

with EXC the DFT exchange-correlation energy

EXC = T [ρ]− T0[ρ] + Eee[ρ]− J [ρ].

We observe that T [ρ] and Eee[ρ] are still to be determined, but the standard argument is that
T0[ρ] captures a significant fraction of T [ρ] so that an approximation performed onEXC is likely
to have less detrimental effects as compared to directly approximating T [ρ]. We observe that
within DFT, the exchange-correlation energy contains some correction to the kinetic energy, not
solely the deviation (Eee[ρ]−J [ρ]) from the electron-electron interaction to the classical Hartree
term. Yet, what is the functional EXC [ρ]?
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4 Exchange-correlation functionals

The search for exchange-correlation functionals is the central on-going challenge within DFT
with decades of failures and difficult successes. Below, we very briefly review some key con-
siderations and terminology.

4.1 The local density approximation: Ceperley and Alder QMC data

Proposed in the seminal 1964 Hohenberg and Kohn paper, the local density approximation
(LDA), reminiscent of the Thomas-Fermi kinetic energy functional described above, relies on
the following approximation

EXC [ρ] '
∫
dr ρ(r)eXC(ρ(r))

where it is assumed that the exchange-correlation energy per electron, eXC(r), for an electron
located in r only depends on the local value of the electronic density ρ(r). Such an approx-
imation is strictly valid only in the limit of a homogeneous electron gas. The next step was
then taken by Ceperley and Alder [6] in 1986, who performed nearly exact (within numerical
accuracy) quantum Monte Carlo (QMC) calculations for the interacting homogeneous electron
gas (HEG) at various densities ρhom. For an homogeneous electron gas with homogeneous ionic
positive background, the Hartree and electron-ion energies cancel exactly. The calculated QMC
total energy EQMC [ρhom] contains thus the kinetic energy T and the (Eee−J) electron-electron
interaction beyond the Hartree term. Subtracting now the kinetic energy T 0[ρhom] for the non-
interacting electron gas of same density, as given exactly by the Thomas-Fermi expression, one
obtains straightforwardly

eXC(ρ(r)) =
EQMC [ρhom]− T 0[ρhom]

N
with ρhom = ρ(r)

with N the number of electrons for which the total energy is calculated in the QMC simulation
and ρhom = V/N . One may further subtract the exact exchange energy, namely the total energy
of the HEG in the Hartree-Fock approximation where the many-body wavefunction is described
by a single Slater determinant. This is a famous calculation performed by Dirac in 1930 [7],
yielding for the HEG exchange-energy

EX
N

= −3kF
4π
' −0.458

rs
a.u. with

V

N
=

4

3
πr3s ,

with rs the Wigner-Seitz radius, namely the radius of the sphere with volume V/N . Such an
expression can alternatively be expressed as a function of the electronic density, yielding the
Dirac exchange expression

EDirac
X = −CX

∫
dr ρ(r)4/3 with CX =

3

4

(
3

π

)1/3

.
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By subtraction, one obtains the correlation-only energy per electron ehomC (ρ). The QMC data
points have been fitted by clever functional forms (Vosko-Wilk-Nusair [8], Perdew-Zunger [9],
etc.) that are used nowadays in standard DFT codes. We leave this section by noting that for the
HEG with cancelling Hartree and electron-ion interactions, the kinetic and exchange energies
add up to

EHF
HEG =

1.105

r2s
− 0.458

rs
(a.u.)

Without the exchange term, the HEG is unstable with no finite equilibrium rs value.
Once the exchange-correlation energy is defined, one can proceed with solving the Kohn-Sham
equations associated with the fictitious non-interacting electron gas(
−∇

2

2
+ veff(r)

)
φn(r) = εnφn(r) with veff(r) = vions(r) + V H(ρ(r)) + V XC(ρ(r)) ,

where we use the LDA exchange-correlation potential V XC
LDA(ρ(r)) = ∂ELDA

XC (ρ(r))/∂ρ(r).
Solving the Kohn-Sham equations yields the Kohn-Sham electronic energy levels {εn} and the
Kohn-Sham eigenstates {φn} from which the ground-state density and associated LDA total
energy can be obtained

ρ(r) =
N∑
n=1

|φn(r)|2 and T 0 =
N∑
n=1

〈φn| − ∇2/2|φn〉

ELDA
0 = T 0 +

∫
dr vions(r)ρ(r) + EH [ρ] + EXC

LDA[ρ]

where the sum extends over the N lowest energy levels (ground-state at zero temperature).
An important aspect of such equations is that they are self-consistent: to obtain the {φn} one
needs to solve the Kohn-Sham equations with a potential that depends via the density on ... the
{φn}! In practice, one takes some guess input density ρ0, such as a simple superposition of
tabulated atomic densities, to build an input XC potential V XC

LDA(ρ0(r)) that allows obtaining a
first guess of Kohn-Sham orbitals. These orbitals allow to build an updated electronic density
and a related updated XC potential and Kohn-Sham Hamiltonian, leading to a updated set of
orbitals and density. When the input and output electronic densities and/or XC potentials are
the same, the self-consistent cycle is stopped, leading to the ground-state self-consistent density
and total energy. The technicalities of converging to the correct energy minimum (are there
local minima?) and of the convergence rate are difficult issues not dealt with here.

4.2 Structural properties within LDA: average impressive results

We now know how to calculate in practice the ground-state energy within the LDA approxi-
mation for a given system characterized by ionic positions and nuclear charges (defining the
vion potential) and the number N of electrons. We thus can, in particular, answer the important
question: how good is the LDA approximation? We must remember here that what we are tar-
geting with DFT are the ground-state total energy and charge density. Other observables, such
as electronic energy levels, are not in principle within the scope of what DFT is designed for.
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Ab initio CALCULATION OF PHONON DISPERSIONS IN. . . 7237
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FIG. 1. Calculated phonon dispersions and densities of state of elemental semiconductors, Si and Ge. Experimental data are
denoted by diamonds (from Refs. 28 and 29).

point. " ' The reliability of those experimental data are,
however, somewhat questionable, and the agreement
perhaps fortuitous. More meaningful is that the reliabili-
ty of the present prediction for A1As is confirmed by the
good agreement between our calculations and recent ex-
periments for the closely related compound A1Sb." Even
in the case of GaAs, for which phonon dispersions along
the high-symmetry 6 and A lines had already been calcu-
lated using interplanar force constants, the present cal-
culations represent an important step forward both be-
cause they have been performed for many more (low-

symmetry) directions, and also because they are consider-
ably more accurate, resulting in a much better agreement
with experiment. This is particularly so in what concerns
effective charges and LO-TO splittings, and the Aatness
of the TA branch near the X point. Finally, it is worth
noting that, in the case of GaAs, also the predicted vibra-
tional eigendisplacements at the X and L points are in
good agreement with experiment (see Table III), and with
previous theoretical calculations. ' The main features
of our method, which have made possible these improve-
ments, are the following. First of all, our Green's-

TABLE II. Phonon frequencies calculated at the high-symmetry points I, X, and L, for the six materials considered in this work
(cm '). Experimental data are in parentheses. Data tagged with an asterisk are from Ref. 33.

ITQ
I Lo
XTA
XLA
XTQ
XLQ
L
LLA
LTo
LLQ

Si'

517 (517)
517 (517)
146 (150)
414 (410)
466 (463)
414 (410)
111 (114)
378 (378)
494 (487)
419 (417)

Ge'

306 (304)
306 (304)
80 (80)
243 (241)
275 (27'6)
243 (241)
62 (63)
224 (222)
291 (290)
245 (245)

GaAs'

271 (271)
291 (293)
82 (82)
223 {225)
254 (257)
240 (240)
63 (63)
210 (207)
263 (264)
238 (242)

A1Asd

363 (361)
400 (402)
95 (109)
216 (219)
337 (333)
393 {399)
71
212
352
372

GaSb'

230 (224)*
237 (233)*
57 (57)
162 (166)
210 (212)
211 (212)
45 (46)
157 (153)
203 (205)
221 (216)

A1Sb"

316 (323)
334 {344)
64 (70)
153 (155)
290 (296)
343 (341)
49 (56)
149 (148)
306 (308)
327 (320)

' Experimental data from Ref. 28.
Experimental data from Ref. 29.' Experimental data from Ref. 30.

"Experimental data from Ref. 31.' Experimental data from Ref. 32.
Experimental data from Ref. 11.

Fig. 1: (Left) Energy versus unit-cell volume for silver. DFT energy data points
are fitted by some clever functional form (Birch-Murnagham fit). The energy minimum
gives the equilibrium volume and related lattice parameter as well as interatomic dis-
tances that can be compared to experiment (courtesy http://exciting-code.org/

beryllium-volume-optimization-for-cubic-systems). (Right) Calculated LDA
versus experimental phonon dispersion for silicon (from Ref. [13]).

We will come back to that point in the following Sections. In their original papers, Hohenberg,
Kohn, and Sham were actually critical about the potential success of the LDA, concluding that
for actual systems variations of the charge density were so strong that a model exact in the limit
of homogeneous distribution of charges appeared to have little chance of being successful.
We now present in Fig. 1 (left) the results of a standard numerical exercise consisting in finding
the equilibrium cell volume (or lattice parameter) for a solid using DFT (here silver in its FCC
structure). With the space group known, one can calculate the DFT total energy for various unit
cell volumes. The resulting calculated data points can be fitted by some polynomial law (or
a more adapted functional form such as the Birch-Murnagham law), yielding the equilibrium
volume at zero temperature for a given approximation to the XC potential. The associated error
for several functionals and several crystal families (metals, non-metals) are given in Table 1.
Considering non-metallic structures, that include typical covalent systems such as silicon and
diamond with very inhomogeneous density distributions, one finds that LDA predicts the lattice

Metals(14) Nonmetals (10)
LDA PBEsol PBE TPSS LDA PBEsol PBE TPSS

ME (Å) -0.136 -0.039 0.046 0.039 −0.042 0.026 0.085 0.066
MAE (Å) 0.136 0.042 0.060 0.060 0.042 0.026 0.085 0.066
MRE (%) -2.71 -0.76 0.95 0.74 −0.86 0.56 1.76 1.35
MARE (%) 2.71 0.83 1.24 1.15 0.86 0.56 1.76 1.35

Table 1: Statistical data: mean error, mean absolute error, mean relative error MRE % and
mean absolute relative error MARE %, for lattice constants Å of a selection of 14 metals and 10
nonmetals. Errors with respected to experimental data corrected for ZPAE (zero point anhar-
monic expansion) contribution. The PBEsol functional is a modification of PBE for solids [10]
while TPSS is a “metaGGA” functional [11] with a dependence on the density but also the
Laplacian ∇2ρ(r) proportional to the kinetic energy (adapted from Table IV from Ref. [12]).

http://exciting-code.org/beryllium-volume-optimization-for-cubic-systems
http://exciting-code.org/beryllium-volume-optimization-for-cubic-systems
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Fig. 2: (Left) Charge density for solid argon along an interatomic bond comparing LDA with the
so-called quasiparticle self-consistent QPscGW approximation (from Ref. [14]). (Center and
Right) LDA versus variational Monte Carlo (VMC) one-body density matrix and spherically
averaged XC hole ρXC(r;R) for Silicon (from Ref. [15]).

parameters of solids with an average accuracy well within 1% (see boxed numbers). This is a
remarkable results for an approach that is very simple and relies on a approximation assumed
to be valid only for systems with homogeneous charge densities (e.g. alkali metals). The error
is further systematic, with a tendency to overbind (too small lattice parameters). Such perfor-
mance can certainly explain the success of DFT combined with the Kohn-Sham formalism and
the local density approximation.

Beyond lattice parameters, we further plot in Fig. 1 (right) the LDA phonon band-structure for
silicon as compared to experiment [13], with phonon energies standing as 2nd-order deriva-
tives of total energies with respect to ionic positions via the force-constant matrix. Again, the
agreement is very remarkable for a system far from displaying a homogeneous charge density.

Since the DFT is designed to provide ground-state electronic densities, we now reproduce
in Fig. 2 (left) the density of solid argon along a bond direction, comparing the LDA elec-
tronic density with results of a self-consistent many-body Green’s function approach labeled the
QPscGW formalism [14]. Clearly, the agreement is excellent, even in the present case of a very
inhomogeneous density profile. Similar results are obtained for the one-body density matrix
in Fig. 2 (center) in the case of silicon, comparing now the LDA density matrix built from the
Kohn-Sham eigenstates: γ1(r, r′) =

∑N
n=1 φn(r)φn(r

′) with a variational Monte Carlo (VMC)
reference: γ1(r, r′) = N

∫
dr2 · · · drN ψ∗(r, r2 · · · rN)ψ(r′, r2 · · · rN). The deviation between

the two calculations is well within 1% again.

4.3 LDA satisfies the exchange-correlation sum-rule

This somehow unexpected success of the LDA for systems displaying strongly inhomogeneous
charge density distributions relies in particular on the facts that (a) the exchange-correlation
(XC) energy depends on a Coulomb-weighted spherical average over the XC-hole and (b) the
LDA XC hole satisfies the exchange-correlation sum-rule. Taking the relation between the
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electron-electron XC energy and the XC hole, one obtains indeed

EXC =
1

2

∫
dr ρ(r)

∫ +∞

0

4πRdR ρSAXC(r, R) and ρSAXC(r, R) =
1

4π

∫
|r−r′|=R

dr′
ρXC(r, r

′)

|r− r′|

with ρSAXC(r, R) the spherically averaged XC-hole around the r-point using the Coulomb norm.
We plot in Fig. 2 (right) such a spherically-averaged XC-hole, comparing again LDA and VMC
in the case of Silicon. While for a given (r, r′) pair of positions the LDA and VMC XC hole
differ significantly, their spherically averaged values are remarkably close. Further, it can be
shown [16] that the LDA XC hole satisfies an exact sum rule, namely

4π

∫
R2dR ρSAXC(r, R) = −1

indicating that if the LDA XC-hole is too small for a given R value, then it is too large in
compensation for another R distance. Such properties are very strong desirable constraints
that may explain the success of the LDA and ... the failure of subsequent approximations. The
inclusion of some kinetic energy (T−T0) in the definition of the DFT XC energy leads to caution
when defining the DFT XC hole within what is called the “adiabatic connection formalism”
that builds a connection between the non-interacting and interacting systems sharing the same
density.

4.4 Jacob’s ladder of functionals: towards accuracy heaven?

Improving on the LDA approximation for a better description of observables related to the
total energy (binding energy, atomization energy, structural phase diagrams, activation barriers,
elastic constants, phonon spectra, etc.) remains the central issue in the field of DFT. Roughly
speaking, two strategies can be followed: the first is to develop functionals that satisfy exact
mathematical relations, such as satisfying the XC hole sum rule. The second strategy is more
pragmatic and consists in fitting some general functional form with parameters on experimental
data. An interesting article recently published by Perdew and coworkers in the journal Science
and entitled “Density functional theory is straying from the path toward the exact functional”
[17] provides a nice discussion on the two philosophies, illustrating further the “jungle” of
functionals that exist nowadays. Clearly, functionals fitted to experimental data can be very
accurate, but go away from the ab initio or first-principles character of DFT.
Concerning the strategy that consists in satisfying exact relations, an interesting illustration can
be found in the early days of the so-called gradient corrected functionals that attempt to go
away from the local density approximation by devising functionals that depend not only on the
local density but also on its gradient to capture some information about charge inhomogeneities.
Early functionals with low-order gradient corrections (LGC), such as the following one for the
exchange (X) energy (σ the spin degree of freedom)

ELGC
X = ELDA

X − β
∑
σ

∫
dr ρ4/3σ x2σ with xσ =

|∇ρσ|
ρ
4/3
σ

a-dimensional
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really failed in improving over the LDA. In fact, ELGC
X does not satisfy the exchange-hole sum

rule, leading to a divergency in the vacuum where ρ(r) decays exponentially, etc. Further, the
potential felt by an electron far away from an atom, molecule, surface, etc. should scale as
−1/r. This term comes from the exchange potential, yielding for the exchange energy density
at long distance in the vacuum

lim
r→∞

εX(r) ' −
ρ(r)

2r
with ρ(r) = 2ρ↑(r) = 2ρ↓(r) (unpolarized systems).

To cure such problems, Becke proposed in 1988 an exchange functional (B88) [18] that scales
smoothly between the small and large xσ = |∇ρσ|/ρ4/3σ

EB88
X = ELDA

X − β
∑
σ

∫
dr ρ4/3σ

x2σ
1 + 6βsinh−1(xσ)

(β parameter).

The GGA correction vanishes for small gradients (xσ → 0). With ρ(r) ' e−αr for large r,
xσ → eαr/3, and sinh−1(xσ) → αr/3, the correct (vacuum) asymptotic behavior is recovered.
This is the exchange functional used in the celebrated BLYP functional (B=Becke88). Here
exact relations (asymptotic behavior, low or high density limit, sum rules, etc.) lead to a func-
tional form that still contains one parameter fitted to experimental data, combining de facto the
two above-mentioned strategies. Such generalized gradient approximations (GGA) constitute
the “second rung” of the so-called Jacob’s ladder of functionals that provides a classification
of functionals with increasing average accuracy [19]. Well known functionals of that family
include the PW91 (Perdew-Wang 1991) [20], the PBE (Perdew-Becke-Ernzherof) [21], or the
BLYP (Becke-Lee-Yang-Parr) functionals [22]. As can be seen in Table 1, the PBE functional
leads to better results for metals as compared to the LDA, with a tendency to underbind (too
large lattice parameters), but no improvements for non-metallic systems (e.g. semiconductors).
We witness here the fact that functionals developed for finite size systems, with, e.g., the proper
treatment of long-range behavior in the vacuum, may not be relevant for solids where there is ...
no vacuum. The PBEsol functional (see Table 1) is a modification of PBE for solids, yielding
better results indeed for periodic extended systems.
We now introduce a key generalization of DFT, namely the merging of DFT and Hartree-Fock
yielding “hybrid functionals” where density-dependent expressions are complemented by one-
body-orbital dependent exact exchange. For the Kohn-Sham system, we indeed know how to
calculate the “exact” exchange energy “associated with” the Kohn-Sham eigenstates {φn}

EX = −1

2

occp∑
ij

∫ ∫
drdr′

φ∗i (r)φj(r)φ
∗
j(r
′)φi(r

′)

|r− r′|
δσiσj ,

where we have re-introduced the spin variables. This is more expensive than pure density
functionals (Hartree-Fock (HF) scales as N4 with system size) but helps in several directions:

• it offers clearly the correct asymptotic behavior for the electronic potential in the vacuum
and satisfies the exchange-hole sum rule
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• it helps curing the self-interaction (SI) problem: within DFT, since the charge density
depends on the occupied orbitals, the action of veff[ρ] on an occupied orbital amounts
to having an electron interacting with itself (consider the H atom system!). This is a
dramatic problem for localized orbitals. It does not exist within HF since the SI in the
Hartree and exchange energies cancel out.

However, mixing 100% of exact exchange with a density dependent correlation functional leads
(in general) to a failure. Density-dependent XC functionals are usually built together for re-
producing the total XC potential properties. Namely, they benefit from large error cancella-
tions. Considerations built on the “adiabatic connection” between the non-interacting and in-
teracting electronic systems generated the historical Becke half-and-half functional: EXC =

0.5EX(HF ) + 0.5EX(Slater) + EC(LYP=Lee-Yang-Parr). With a fitting strategy on 56 small
molecules atomization energies, 8 proton affinities, and 10 first-row total atomic energies, the
“Becke 3 parameters” (the B3 of B3LYP) exchange functional [23] mixes Slater LDA and B88
GGA exchange with 20% of exact exchange. Using perturbation theory, Perdew, Burke and
Ernzerhof advocated 25% of exact exchange, leading to the 1996 PBE0 functional [24]. The
B3LYP and PBE0 formula are probably the most popular functionals in quantum chemistry for
finite size systems.

To combine the need for having 100% of exact exchange in the long-range in the case of finite
size systems, while a much smaller amount of exchange in the short-range, range-separated
hybrids were introduced [25]. The idea is to define a short-range (SR) and long-range (LR)
Coulomb interaction thanks, e.g., to the error function erf, allowing the introduction of a long-
range-only exchange potential

vLRX (r, r′;ω) = −
occp∑
i

φi(r)φ
∗
i (r
′)

erf(ω|r− r′|)
|r− r′|

.

The use of the complementary error function allows to introduce a short-range-only exact ex-
change. As such, one can introduce different amounts of local (Dirac) and exact exchange in
the short and long ranges. The ω parameter controls the (inverse) effective length that partition
the interaction between short or long range. The very popular CAM-B3LYP functional [26]
includes 65% of LR exact exchange with ω = 0.33 while the LC-ωPBE includes 100% of LR
exact exchange with ω = 0.4.

We abandon here the hope to provide a thorough description of functionals. Let’s conclude on
the fact that contrary to finite size molecules, long-range Coulomb interactions in solids are
renormalized by the macroscopic dielectric constant εM that diverges in the case of metallic
systems. As such, the long-range amount of exact exchange in solids should be qualitatively
proportional to (1/εm), and even exponentially decaying in metals (Yukawa-type behavior).
This is, e.g., the rational behind the HSE functional, a range-separated hybrid for extended
systems relying on the solid-state physics language of screened Coulomb potentials [27].
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Fig. 3: (Left) Symbolic representation of direct and inverse photoemission experiments inter-
preted from the standard “one-electron energy levels” diagram. (Center) Compilation of LDA
band gaps (red dots) in semiconductors and insulators as compared to experiments (first di-
agonal), Hartree-Fock data (cyan dots), and to a higher-level many-body Green’s function
approach, the so-called G0W0@LDA formalism (courtesy Valerio Olevano). (Right) LDA
(dashed) versus GW (full lines) band-structure of Silicon. The zero of energy has been set
to the valence bands top (from Ref. [28]).

5 On the meaning of Kohn-Sham auxiliary 1-body eigenstates

We tackle now a delicate problem within DFT, namely that of electronic properties. As dis-
cussed above, DFT is a ground state formalism designed to reproduce ground-state total en-
ergies and electronic density. As such, it is not designed to provide electronic energy lev-
els. However, there is a very large literature exploiting Kohn-Sham eigenvalues for plotting
the band-structure of realistic materials, with much success in many situations, but also well-
documented limitations and failures. These are such aspects that we briefly explore now.
The meaning of what we call “electronic energy levels” when we plot a band-structure (or dis-
crete energy levels in the case of a molecule) must be found in the experiment used to measure
them, e.g., a photoemission experiment. In direct photoemission (see Fig. 3 (left)), a photon
with energy hν arrives on a piece of matter in its ground-state (with energyE0[N ]) and ejects an
electron with some residual kinetic energy Ekin, leaving the system with (N−1) electrons and
an energy En[N−1]. The index n labels an eigenstate of the (N−1) electron system. We define
the energy of the electron in the system as εn = E0[N ]−En[N−1], the energy of the level from
which the electron was ejected. Using conservation of energy, E0[N ]−En[N−1] = Ekin − hν
measured experimentally. Similar considerations can be used to assimilate in inverse photoe-
mission the differences of energy (En[N+1]− E0[N ]) between an excited state of the (N+1)-
electron system and the ground-state of theN -electron system as the unoccupied level energies.

Electronic energy levels as measured experimentally using photo-emission experi-
ments are really differences of total energies between excited states of the (N+1)
or (N−1) electron systems and the N -electron system in its ground state, namely
εn = En[N+1]−E0[N ] for unoccupied levels and εn = E0[N ]−En[N−1] for occu-
pied levels. What is the relation between the {εKSn } Kohn-Sham eigenvalues and such
total energy differences between charged and neutral systems?
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5.1 The band gap problem with DFT Kohn-Sham eigenvalues

Before trying to find a rationale for the Kohn-Sham energy levels, namely the energy of the
fictitious independent electrons in the effective potential veff defined above, let’s consider actual
calculations, starting with the band gap of standard semiconductors and insulators. Data are
compiled in Fig. 3 (center). The results of actual DFT calculations using the LDA XC potential
(red dots) drive us to the conclusion that the band structure obtained with Kohn-Sham eigen-
values yields too small gaps. In the DFT Kohn-Sham world, the band gap of silicon turns to be
about 0.5-0.6 eV, a factor two smaller than the 1.2 eV experimental value. Very similar results
are obtained using “pure” DFT functionals, namely functionals not including some amount of
exact exchange such as PBE. This is the band gap problem within DFT. A close inspection of
Fig. 3 (center) for small gap systems further reveals that some systems, that are gaped semicon-
ductors experimentally, turn out to be metallic (negative gap, namely an overlap of the occupied
and empty bands) within LDA. This is the case, e.g., of the simple germanium system. It is
fair to say that turning an insulator into a metal is a somehow dramatic failure. This tendency
to underestimate band gaps can also be witnessed in the case of organic molecules for which
the Kohn-Sham LDA HOMO-LUMO (highest occupied/lowest unoccupied molecular orbitals)
energy gap can be underestimated by several eVs as compared to experiment or higher level
techniques (see Fig. 4 (left)).

To better understand why DFT is still very widely used to study the electronic properties of
a large variety of systems, we provide now in Fig. 3 (right) the LDA band structure for sil-
icon (dashed line) that we compare to a much more accurate many-body perturbation theory
approach, the GW formalism. We align the two band structures at the top of the valence band
(zero of energy). The remarkable feature evidenced by this plot is that besides the band gap
problem, the dispersion of bands in the valence and conduction manifolds are extremely close.
Namely, the two band-structures could agree very well if a “scissor” operation, consisting in
rigidly shifting the conduction bands by 0.5-0.6 eV higher in energy, is applied.

Contrary to Kohn-Sham DFT, Hartree-Fock (HF) yields too large gaps (see cyan dots in Fig. 3
(center) and HF data in Fig. 4 (left)). In the HF world, the band gap of Silicon is of the order
of 6 eV, dramatically too large. This is due to the lack of correlations. Clearly, mixing some
amount of exact exchange with DFT density-dependent XC potentials leads to much better
gaps. This is exemplified in Fig. 4 (left) with the B3LYP data that are in better agreement with
experiment. This is a clear incentive to mix exact exchange and density-dependent functionals,
namely to use hybrid functionals for electronic properties, even though the criteria for selecting
the proper amount of exact exchange for a given system is a difficult challenge if one wishes to
preserve an ab initio (no fitting parameters) approach. The B3LYP functional includes 20% of
exact exchange, an amount that does not seem sufficient to provide an accurate gap.

The band gap problem in DFT has been analyzed in depth and is related to the lack of a dis-
continuity of density-based XC potentials upon addition or removal of an electron [33, 34].
In a typical bulk system composed of the order of 1023 electrons per cm3, adding or remov-
ing an electron delocalized in some Bloch state hardly changes the charge density. As such, an
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Fig. 4: (Left) HOMO-LUMO gap of gas phase (isolated) C60 fullerene and pentacene
molecules. Various DFT and generalized DFT formalisms, including Kohn-Sham LDA,
Hartree-Fock, B3LYP hybrid functionals, optimally-tuned range-separated hybrid (OT-BNL;
Ref. [29]) or Koopmans’ compliant (KNC; Ref. [30]) functionals are compared to many-body
perturbation theories (G0W0 and evGW approaches) and to experiment (horizontal black line).
(adapted from Ref. [31]) (Right) Top-most occupied levels for isolated cytosine DNA nucleoba-
sis as calculated using Kohn-Sham LDA approach and higher level many-body perturbation
theories (evGW , CASPT2, EOM-IP-CCSD). Notice the reordering of levels from LDA to higher
level approaches (adapted from Ref. [32]).

exchange-correlation potential built as a functional of the charge density will show no variations
upon, e.g., adding an electron that will populate the bottom of the conduction bands across the
gap. A simple analysis of the exact exchange operator clearly reveals that the XC potential
should be discontinuous upon adding a charge to the neutral system.
We conclude this section with a warning: as discussed above, the DFT Kohn-Sham approach
may turn a very standard band semiconductor, such as germanium, into a metal. This does
not mean that the “band structure picture” fails and that strong correlations beyond mean-field
(Mott transition) should be invoked to describe germanium. It just means that the DFT Kohn-
Sham formalism with local functionals of the electronic density is not an accurate, not even a
well-defined, formalism to capture band gaps.

5.2 Level ordering and self-interaction problems

This simple analysis in terms of band gap errors that can be cured by a rigid shift of, e.g., empty
states needs however to be taken with care. While silicon and other simple sp-bonded semicon-
ductors or insulators are characterized by Bloch states displaying equivalent spatial localization
properties, systems mixing localized and extended states may suffer from a wrong ordering of
levels at the Kohn-Sham DFT level with density-dependent functionals. Such systems include,
e.g., transition metals displaying localized 3d levels together with itinerant (delocalized) sp
bands, surfaces with extended bulk states versus localized surface states, or modern molecular
electronic devices with extended states in the metallic electrodes but very localized molecular
states in the junction. In the case of occupied levels, the self-interaction problem discussed
above in Section 4.4 affects the localized states much more than the delocalized ones. As such,
the ordering of levels within the occupied manifold can be wrong as well within DFT Kohn-
Sham. This is exemplified in Fig. 4 (right) in the case of the gas phase (isolated) cytosine DNA
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nucleobasis: while the highest occupied molecular orbital should be a delocalized π orbital, the
Kohn-Sham LDA approach predicts erroneously at the top of the occupied manifold a very lo-
calized σO molecular orbital, localized on the oxygen. The self-interaction error is erroneously
repelling high in energy this localized σO orbital. Hybrid functionals, with a portion of exact
exchange, help in curing this problem since Hartree-Fock is self-interaction free.

5.3 What is the meaning of Kohn-Sham eigenvalues?

We now turn to a more formal analysis of the meaning of Kohn-Sham eigenvalues. We start by
recovering the Kohn-Sham eigenvalue equation using the variational principle for the ground-
state energy considered as a functional of the one-body Kohn-Sham auxiliary eigenstates {φn}.
We thus define a Lagrangian

Ω[{φi}, {λij}] = E[{φi}] +
∑
i≤j

λij

(
δij − 〈φi|φj〉

)
,

where the {λij} are the Lagrange parameters insuring that the {φn} are kept orthonormalized
in the minimization process. The minimization of Ω[{φi, λij}] with respect to some φ∗i (r) leads
to(
−∇

2

2
+ veff(r)

)
φi(r) =

∑
j

λijφj(r) with veff(r) = vion(r) + V H(ρ(r)) + V XC(ρ(r)),

using, e.g., the following chain rule for density-dependent potentials
∂

∂φ∗i (r)
=

∂

∂ρ(r)
× ∂ρ(r)

∂φ∗i (r)
=

∂

∂ρ(r)
× φi(r).

A unitary rotation that diagonalizes the λij matrix allows to recover the standard Kohn-Sham
eigenvalue equation postulated in Section 3.4. However, we understand here that the Kohn-
Sham eigenvalues are just Lagrange multipliers and their relation with addition/removal ener-
gies, as defined in a photoemission experiment, is far from clear! As another indication of the
difficulty in identifying Kohn-Sham eigenvalues with total-energy differences between the neu-
tral and charged systems, let’s consider now the sum of Kohn-Sham eigenvalues over occupied
states, namely

N∑
i=1

εn =
N∑
i=1

〈φi| − ∇2/2 + veff(r)|φi〉 = T0 +

∫
dr
(
vion(r) + V H(r) + V XC(r)

)
ρ(r)

to be compared to the ground-state total energy

E[N ] = T0 +

∫
dr vion(r) ρ(r) + J [ρ] + EXC [ρ] with J [ρ] =

1

2

∫
drV H(r) ρ(r).

As a result, the ground-state total energy for, e.g., the N -electron system reads also

E[N ] =
N∑
i=1

εn − J [ρ] + EXC [ρ]−
∫
drV XC(r) ρ(r) with V XC(r) =

∂EXC [ρ]

∂ρ(r)
,

where the sum of occupied level energies are completed by electron interaction terms. As such,
differences of total energies such as E[N+1]− E[N ] cannot be identified simply to individual
Kohn-Sham eigenstates and the meaning of Kohn-Sham eigenstates remains elusive.
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5.4 Janak theorem and fractional occupations in ensemble DFT

Janak theorem [35] is an important relation that may pave the way to progress in the use of DFT
to tackle not only ground-state total energies but also electronic excitations. The seminal idea is
a generalization of the Kohn-Sham formalism to fractional occupation numbers of the electronic
energy levels {εn}. In the standard Kohn-Sham approach, occupation numbers were set to unity
below the Fermi level and zero above (zero temperature). In the generalized fractional approach,
the kinetic energy and electronic density read

TJ [ρ] =
∑
i

ni〈φi|−∇2/2|φi〉 and ρ(r) =
∑
i

ni
∣∣φi(r)∣∣2,

where the index J stands for Janak. As such, the total energy is not only a functional of the
one-body orbitals {φn}, but also of the fractional occupations {ni} as additional variational
parameters, namely

EGS = min
φi,ni

E[{ni, φi}] with E = TJ [{ni, φi}] +
∫
dr vion(r) ρ(r) + J [ρ] + EXC [ρ] ,

where ρ(r) =
∑

i ni
∣∣φi(r)∣∣2. The minimization with respect to the occupation factors leads to

the Janak formula
εi =

∂E

∂ni
(Janak formula)

telling us that one-body eigenvalues are related to the variation of the total energy with respect
to an infinitesimal variation of the population. Since the Kohn-Sham formalism is a reduction of
the Janak approach to ni = 1 or ni = 0 for occupied/empty levels, the Kohn-Sham eigenvalues
can be interpreted as derivatives of the total energy at occupation numbers taken to be 0 or 1
namely

εKSi =

(
∂E

∂ni

)
ni=0 or 1 .

This differs from the experimental definition that electronic energy levels are variations of the
total energy with respect to a unity (not infinitesimal) change of level population.
Apart from the technicalities of the derivation, a central question is related to the meaning of
fractional occupations and, more generally, fractional number of electrons. The two concepts
are not equivalent. One may consider a situation where fractional occupations are introduced
while keeping the number of electrons fixed to N , namely

∑
i ni = N . This is a very natural

situation at finite temperature with the Fermi-Dirac distribution. Even at zero temperature, this
is just reminiscent of Fermi liquid theory revealing that particle interactions lead to non-integer
occupation number close to the Fermi level. On simpler grounds, it is also a useful exercise to
consider the 1st-order density matrix

γ1(r, r
′) = N

∫
· · ·
∫
dr2 · · · drN ψ(r, r2, · · · , rN)ψ∗(r′, r2, · · · , rN)

for which it can be demonstrated that the expression of T and ρ as a function of fractional occu-
pation is exact with the {ni} and {φi} the eigenvalues and eigenstates of γ1. These eigenstates
are called “natural orbitals” and the eigenvalues fulfill

∑
i ni = N .
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Fig. 5: (Left) Symbolic representation of the exact total energy (dotted lines) and DFT total
energy (full line) as a function of the (continuous) electron number. The arrows indicate the
right/left energy derivatives at integer values of the number of electrons in relation to the elec-
tronic affinity of the N−1 electron system (ALSD

N−1) and the ionization potential (ILSDN ) of the N -
electron system. In the DFT Kohn-Sham approach, ALSD

N+1 and ILDD
N are taken as the opposite

of the LUMO energy of the N−1-electron system and HOMO energy of the N -electron system
(from Ref. [30]). (Right) Difference energy of the carbon atom E = E(N0+δN) − E(N0)
(N0 = 6) with several different functionals using OEP (optimized effective potentials) and GKS
(generalized Kohn-Sham). Dotted line follows the initial slope for the non-straight functionals.
The inset shows the range 6 < N < 7 in more detail (from Ref. [39]).

Janak’s theorem considers, however, the second situation where the total number of electrons is
fractional, namely N becomes a continuous variable. As such, while photoemission measures
how much the total energy changes upon the removal/addition of a full electron, Janak’s theorem
provides a relation for the removal/addition of an infinitesimal charge. Such a fractional number
of electrons can be rationalized on the basis of the grand-canonical ensemble, namely when the
system of interest can exchange electrons with a “bath.” The fractional charge can then be
associated with a fractional probability of finding the charge in the (sub)system of interest. In
quantum mechanics, this can be described by mixed states, that is a statistical ensemble of pure
states. This is the basis for “ensemble DFT” [36, 37] that considers ensemble densities

ρ(r) = (1− ω)〈ψ1|ρ̂(r)|ψ1〉+ ω〈ψ2|ρ̂(r)|ψ2〉,

where |ψ1〉 and |ψ2〉 are distinct many-body eigenstates, e.g., the ground-state and first-excited
state of the N -electron system, or the ground-states of the N - and N+1-electrons systems. In
the first case, ensemble DFT strives to build a DFT approach to neutral excitations (e.g. optical
excitations); in the second one, charged excitations (photoemission) are targeted.
We now summarize the main results associated with the variation of the total ground-state en-
ergy with respect to a continuous number of electrons. A first important result is that the total
energy should be concave and piecewise linear between two integer values of N [38]. This is
represented on the left of Fig. 5 as the dotted lines. We observe in particular that the derivative
of the total energy with respect to the number of electrons is discontinuous across an integer
value: the left and right derivatives are not identical. The piece-wise linearity on each side
of an integer value means in particular that the fractional derivatives and the corresponding
differences of total energy between integer N -values are identical.
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Let’s now turn to pure DFT with XC functionals of the density. It can be shown and confirmed
by actual calculations that within DFT, the total energy is a concave and smooth function of
the number of electrons (see Fig. 5 (left) full line and Fig. 5 (right) green line). In particular
the left and right derivatives at integer values of N are identical and not equal to differences
of total energy for integer variations of N . One recovers, in particular, the problem of the lack
of discontinuity of the XC potential. As such, following the Janak theorem, the Kohn-Sham
eigenvalues cannot be identified with electronic energy levels as measured by photoemission.
On the contrary, it is found that the Hartree-Fock energy is a convex function of N with dis-
continuous derivatives at integer values (blue line Fig. 5 (right)). As such, mixing some DFT
local functionals with some amount of exact exchange may result in a close-to-straight-line de-
pendence of the total energy between integer values of N , which is just the condition we need
for matching infinitesimal derivatives with total energy differences upon adding/removing an
electron. This is yet another rationale for using hybrid functionals. However, which amount of
mixing should be used for a given system, is again a difficult question to answer if we do not
accept fitting strategies to known experimental data. See, e.g., Ref. [29,30] for a mathematically
based strategy avoiding empirically adjusted parameters.
Here again, the hunt for a generalized DFT formalism able to tackle excited properties is an
on-going boiling activity. In the case of weakly to moderately correlated systems, rather sim-
ple many-body perturbation theories such as the GW formalism, with a limited O(N4) scaling
with system size, is getting very popular in condensed matter physics and, more recently, quan-
tum chemistry (see Figs. 3 and 4). We emphasize however that even if adopting alternative
approaches to DFT, Kohn-Sham {εKSn , φKSn } eigenvectors remain very valuable zeroth-order
one-body eigenstates to build higher-order correlation operators. In particular, GW calcula-
tions start generally with the knowledge of the time-ordered Green’s function

G(r, r′;ω) =
∑
n

φKSn (r)φKS,∗n (r′)

ω − εKSi + i× sign(εKSn − EF )× 0+

built with KS eigenstates and of the (RPA) screened Coulomb potential W = V + V χ0W and
independent-electron susceptibility χ0 relying again on Kohn-Sham eigenstates

χ0(r, r′;ω) =
∑
nm

(fn − fm)
φKSm (r)φKS,∗n (r)φKSn (r′)φKS,∗m (r′)

ω − (εKSn − εKSm ) + i0+

with (fn/m) occupation factors. Even though DFT Kohn-Sham eigenstates do not represent
here the final quantities that will be used to interpret the experimental data, they remain very
valuable, representing affordable starting piece of information on the electronic properties.
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2.2 Xinguo Ren

1 Introduction

The random phase approximation (RPA) is a fundamental concept that plays a central role in
many-body physics. The concept was developed by Bohm and Pines [1,2] in the early 1950’s in
an endeavor to describe the cohesive properties of the so-called jellium—interacting electrons
moving in a background of a uniform positive charge. Using a Hamiltonian formulation of in-
teracting many-electron system, Bohm and Pines were able to decouple the collective motion
of electrons—the plasma oscillations—from their individual motions, a procedure named as
RPA. It was soon recognized [3] that the original RPA formulation is equivalent to the infinite
summation of ring diagrams from the viewpoint of diagrammatic many-body perturbation the-
ory [4]. Since then, the RPA concept has gone beyond the realm of condensed matter physics
and significantly influenced all branches of physics.
Although the RPA concept can be applied to any interacting many-particle systems (for its
applications in nuclear physics, see, e.g., Ref. [5]), in this review we shall restrict ourselves
to electronic systems which are governed by Coulomb interactions. The next key step towards
applying RPA to real materials was the incorporation of RPA into the Kohn-Sham (KS) density-
functional theory (DFT) framework in 1970’s [6–8]. This formulation turned RPA into a first-
principles electronic-structure method, suitable for computing the ground-state energy of real
materials. Within the KS-DFT framework, RPA can be viewed as a fifth-rung approximation
to the exchange-correlation (XC) energy functional, according to a well-accepted classification
scheme of the XC functionals, known as Jacob’s ladder of DFT as proposed by Perdew [9].
However, the application of RPA to realistic systems was impeded by its high computational
cost and the lack of efficient algorithms at the time. The first application of RPA to small
molecules only appeared in early 2000’s, carried out by Furche [10] and in [11]. Since then,
RPA has been applied to a variety of systems including atoms [12,13], molecules [10,11,14–18],
solids [19–26], surfaces [27,28], interfaces [29,30], layered materials [31], and defects [32,33].
The consensus arising from these studies is that RPA is capable of describing the delicate energy
differences in complex chemical environments [27, 28, 24, 26], the correct asymptotic behavior
of van der Waals (vdW) complexes [34, 35] and layered materials [31, 36], and the correct
dissociation limit of closed-shell molecules [10, 11]. Evidence shows that RPA can provide
unprecedented accuracy compared to lower-rung density-functional approximations at tractable
computational cost. As such, RPA is expected to play an increasingly more important role in
computational materials science, with the rapid development of more efficient algorithms and
the availability of more powerful computing resources.
In a review paper [37] published in 2012, we discussed the history of the RPA concept, its
formulation as a first-principles method, and its applications in quantum chemistry and com-
putational materials science up to that time. These points were nicely summarized by David
Pines in his recent review paper titled as “Emergent behavior in strongly correlated electron
systems” [38]. In particular, Pines noted that,

Sixty-plus years later, the RPA continues to play a significant role in nuclear physics,
bosonic field-theory, the quarkgluon plasma, many-fermion solvable models, and
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especially in computational chemistry and materials science. A recent review by
Ren et al., to which the interested reader is referred, describes the impact of the
RPA in the theoretical chemistry and materials science community, cites some thirty
articles that indicate the renewed and widespread interest in the RPA during the pe-
riod 2001-2011, discusses how it enables one to derive the 1/r6 interaction between
spatially separated closed shell electron systems, and, shows, in some detail, how
the RPA enables one to go beyond density-functional theory in computing ground
state energies.

This highlights the far-reaching impact of the RPA in a variety of fields, in particular in compu-
tational chemistry and materials science. It is worthwhile to mention that several other, comple-
mentary RPA review papers also appeared around that time, where the theoretical foundation
and applications of RPA are discussed from different perspective. More recent account of RPA
of review character can be found in Ref. [39].
In this lecture, we first give an account of the theoretical foundation of RPA, highlighting its
unique role in electronic structure theory. Computational schemes beyond RPA are also briefly
discussed in this section. This is followed by a sketching of the key algorithm of implementing
RPA using the resolution-of-identity technique. We then present some prototypical applica-
tions illustrating the usefulness of RPA in computational materials science. Most recent efforts
devoted to further developing the theoretical and computational aspects of RPA as well as ex-
tending its capabilities are briefly mentioned and commented, before we conclude.

2 Theoretical foundation of RPA and beyond

RPA as a first-principles method can be derived from several theoretical frameworks. One con-
venient framework to derive RPA is the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) which offers a powerful mathematical device to construct the exact XC energy func-
tional via the density response functions of a series of partially interacting systems, connecting
the KS system and the true physical system. In this formulation, an approximation to the density
response function translates into a corresponding approximation to the XC energy functional.
However, this is not the only approach to formulate RPA. In fact, RPA can also be derived from
other theoretical perspectives, including coupled cluster theory [40, 41], the Green-function
based many-body perturbation theory [42, 37, 43], and time-dependent DFT [10]. Below we
focus on the ACFDT perspective.

2.1 Adiabatic connection approach to DFT

An interacting N -electron system is described by the following Hamiltonian

Ĥ = T̂ + V̂ext + V̂ee = −
N∑
i

∇2
i

2
+

N∑
i

vext(r̂i) +
1

2

N∑
i6=j

1

|r̂i − r̂j|
, (1)
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where T̂ , V̂ext, and V̂ee are, respectively, the kinetic energy, the external potential, and the
electron-electron Coulomb interaction operators. Hartree atomic units (~ = e = me = 1)
are used throughout this lecture note. Note that the operators T̂ and V̂ee are universal for any
N -electron systems, and a system is completely specified by the external potential,

vext(r) = −
∑
α

Zα
|Rα − r|

, (2)

with Zα and Rα being, respectively, the nuclear charges and positions of the atoms in the
system. The Hamiltonian in (1) cannot be solved for more than a few electrons. To deal with it,
it is customary to separate Ĥ into two parts,

Ĥ = Ĥ0 + Ĥ ′ (3)

where Ĥ0 is a mean-field (MF) Hamiltonian, describing a collection of noninteracting particles
subjecting to a self-consistently determined effective single-particle potential,

Ĥ0 =
N∑
i

(
−∇

2
i

2
+ vext(ri) + vMF

i

)
. (4)

Here the mean-field potential vMF is an average potential that one electron experiences due
to the presence of other electrons. Different underlying principles to determine vMF lead to
different self-consistency schemes. Suppose Φ0 is the ground-state wave function (a Slater
determinant) of Ĥ0, within Hartree-Fock theory, the effective single-particle potential vMF is
chosen such that the expectation value of 〈Φ0|Ĥ|Φ0〉 is minimized. On the other hand, within
KS-DFT, the effective vMF (now the KS potential vKS) is determined so that the electron density
of the KS system n(r) = 〈Φ0|n̂(r)|Φ0〉 reproduces the density n(r) of the true physical system.
Within the adiabatic connection (AC) approach to KS-DFT, one considers a continuous set of
fictitious Hamiltonians

Ĥ(λ) = −
N∑
i

∇2
i

2
+

N∑
i

vauxλ (r̂i) +
λ

2

N∑
i6=j

1

|r̂i − r̂j|
, (5)

which connects Ĥ0 at λ = 0 (with vauxλ=0 = vext + vKS) and Ĥ at λ = 1 (with vauxλ=1 = vext). The
Hamiltonian Ĥ(λ) for 0 < λ < 1 describes a collection of particles moving under the auxiliary
external potential vauxλ (r) and interacting with a scaled Coulomb interaction λ/|r − r′|. The
auxiliary potential vauxλ (r) (0 < λ < 1) is chosen such that the density of λ-scaled systems is
kept at the physical density, i.e., nλ(r) = n(r), along the AC path. Denoting the ground-state
wavefunction of Ĥ(λ) as |Ψλ〉,

Ĥ(λ)|Ψλ〉 = Eλ|Ψλ〉 , (6)

and adopting the normalization condition 〈Ψλ|Ψλ〉 = 1, the Hellmann-Feynman theorem implies
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that

dEλ
dλ

=
〈
Ψλ

∣∣∣∂Ĥλ

∂λ

∣∣∣Ψλ〉 = 〈Ψλ∣∣∣ N∑
i=1

∂vauxλ (r̂i)

∂λ
+

1

2

N∑
i6=j

1

|r̂i−r̂j|

∣∣∣Ψλ〉
=

∫
dr
〈
Ψλ

∣∣∣n̂(r)∂vauxλ (r)

∂λ

∣∣∣Ψλ〉+
1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)− n̂(r) δ(r−r′)|Ψλ〉
|r−r′|

(7)

=

∫
drn(r)

∂vauxλ (r)

∂λ
+

1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

(8)

To derive (7) and (8), we have used the expression for the density operator of the N -electron
systems

n̂(r) =
N∑
i=1

δ(r− r̂i) , (9)

and the condition 〈Ψλ|n̂(r)|Ψλ〉 = n(r). The ground-state energy of the interacting system can
then be obtained as

E = E0 +

∫ 1

0

dEλ
dλ

dλ

= E0 +

∫
drn(r)

(
vauxλ=1(r)− vauxλ=0(r)

)
+

∫ 1

0

dλ
1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)|Ψλ〉 − n(r) δ(r−r′)
|r−r′|

= E0 −
∫
drn(r) vKS(r) +

1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|

+

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r)δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

, (10)

where we have introduced the fluctuation of the density operator δn̂(r) = n̂(r)−n(r) and used
the fact that 〈Ψλ|δn̂(r)|Ψλ〉 = 0. Now the ground-state energy of the reference KS state (λ = 0)
E0 is given by

E0 = 〈Ψ0|Ĥ0|Ψ0〉 = 〈Φ0|Ĥ0|Φ0〉 = −
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉+∫ dr vext(r)n(r)+

∫
dr vKS(r)n(r) .

(11)
Combining (10) and (11), one arrives at the formal expression of the exact ground-state total
energy of N -electron systems,

E =−
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉+∫ dr vext(r)n(r) +
1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|

+

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r) δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

. (12)

In KS-DFT, the ground-state total energy for an interacting N -electron systems is an (implicit)
functional of the electron density n(r) and can be conveniently separated into four terms:

E[n] = Ts[ψn] + Eext[n] + EH[n] + Exc[n] , (13)
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where

Ts = −
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉 (14)

is the kinetic energy of the KS independent-particle system,

Eext[n] =

∫
dr vext(r)n(r) (15)

is the external potential energy due to the nuclei,

EH[n] =
1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|
(16)

is the classic Hartree energy, and Exc the exchange-correlation energy. Among the four terms
in Eq. (13), only Eext[n] and EH[n] are explicit functionals of n(r). The noninteracting kinetic
energy Ts is treated exactly in KS-DFT in terms of the single-particle KS orbitals ψn(r), which
themselves are a functional of n(r). All the many-body complexity is contained in the unknown
XC energy term, whose exact form is not an explicit functional of the electron density n(r), nor
the KS orbitals ψn(r). Comparing Eq. (13) to (12), one immediately obtains the formally exact
AC expression for the XC energy, in terms of the density-density correlation function,

Exc[n] =

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r) δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

. (17)

A central task of the DFT community is to develop accurate and tractable approximations to
Exc[n]. The success of KS-DFT lies in the fact that usefully accurate approximations can be
found, for which DFT calculations can be done at affordable cost. Widely used approximations
toExc[n] include local-density approximation (LDA) [44], generalized gradient approximations
(GGAs) [45–47], meta-GGA [48,49], and hybrid functional approximations [50,51]. These ap-
proximations belong to the first four rungs of the Jacob’s ladder [9]. Despite their enormous
success, these existing approximate functionals suffer from many-electron self-interaction er-
rors [52], or delocalization errors [53] due to which the localized electronic states tend to de-
localize over the system, leading to several severe consequences. Furthermore, the non-local
correlation effects between widely separated subsystems are not captured within these approx-
imations by constructions. These intrinsic deficiencies limit the possible accuracy that can be
achieved in practical calculations. Qualitative and sometimes quantitative failures have been
documented in a number of situations, among which the most prominent are van der Waals
(vdW) bonded systems [54], materials with strong correlations [55], certain surface adsorption
problems [56], and chemical reaction barrier heights [57].

2.2 RPA derived from the ACFDT framework

The construction of LDA, GGA, and meta-GGA functionals only incorporate local and semi-
local quantities, such as the electron density, density gradients, and the kinetic energy density.
For the construction of hybrid functionals, a non-local quantity—the reduced density matrix—is
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required. To go beyond these approximations, it is necessary to include additional information
in the functional construction. For this purpose, it is instrumental to invoke the zero-temperature
fluctuation-dissipation theorem [58], which relates the density-density correlation (fluctuations)
in Eq. (17) to the imaginary part of the density response function (dissipation) of the system

〈Ψλ|δn̂(r) δn̂(r′)|Ψλ〉 = −
1

2π

∫ ∞
−∞

dω Imχλ(r, r′, ω) . (18)

Here the density response function χλ(r, r′, ω) = δnλ(r, ω)/δv
ext(r′, ω) describes the variation

of the density of the partially interacting system at the spatial point r, up to linear order, due to a
change of the local external potential at r′. From Eqs. (17) and (18), we arrive at the renowned
ACFDT expression for the XC energy in DFT

Exc =
1

2

∫ 1

0

dλ

∫∫
dr dr′

1

|r−r′|

(
− 1

2π

∫ ∞
−∞

dω Imχλ(r, r′, ω)− δ(r−r′)n(r)
)

=
1

2

∫ 1

0

dλ

∫∫
dr dr′

1

|r−r′|

(
− 1

π

∫ ∞
0

dω χλ(r, r′, iω) − δ(r−r′)n(r)
)
. (19)

The fact that the above frequency integration can be performed along the imaginary axis orig-
inates from the analytical structure of χλ(r, r′, ω) and the fact that it becomes purely real on
the imaginary axis. Such a property simplifies the ground-state energy calculation within the
ACFDT framework considerably. The ACFDT expression in Eq. (19) transforms the problem
of computing the XC energy to the computation of the response functions of a continuous set
of fictitious systems along the AC path, which in practice has to be approximated as well.
The exact density response function χλ(r, r′, iω) is not known either. However, according to
linear-response time-dependent DFT (TDDFT), the interacting response function χλ for λ > 0

is linked to the noninteracting response function χ0 via the Dyson-like equation

χλ(r, r′, iω) = χ0(r, r′, iω) +

∫
dr1 dr2 χ

0(r, r1, iω)

[
λ

|r1−r2|
+ fλxc(r1, r2, iω)

]
χλ(r2, r

′, ω) ,

(20)
where

fxc(r1, r2, iω) =
δvxc(r1)

δn(r2, ω)
=

δ2Exc[n]

δn(r1)δn(r2, ω)
(21)

is the so-called fxc kernel, given by the functional derivative of the XC potential with respect to
the frequency-dependent density variation.
Obviously, the fxc kernel is a very complex quantity to deal with, and there are considerable
ongoing efforts to find better approximations for it [59]. In this context, the random phase ap-
proximation amounts to simply neglecting the fxc kernel, and the resultant interacting response
function is termed the RPA response function,

χλRPA(r, r
′, iω) = χ0(r, r′, iω) +

∫
dr1 dr2 χ

0(r, r1, iω)
λ

|r−r′|
χλRPA(r2, r

′, ω) . (22)

In physical terms, the RPA here corresponds to the linearized time-dependent Hartree approxi-
mation, by which the variation of the exchange-correlation potential due to an external pertur-
bation is neglected.
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In Eqs. (20) and (22), χ0(r, r1, iω) is the independent-particle response function of the KS
reference system (λ = 0) and is known explicitly in terms of the single-particle KS orbitals
ψn(r), orbital energies εn, and occupation factors fn

χ0(r, r′, iω) =
∑
mn

(fm − fn)ψ∗m(r)ψn(r)ψ∗n(r′)ψm(r′)
εm − εn − iω

. (23)

Based on Eqs. (19) and (22), the XC energy in RPA can be further decomposed into an exact
exchange (EX) term and a RPA correlation term,

ERPA
xc = EEX

x + ERPA
c , (24)

where

EEX
x =

1

2

∫∫
dr dr′

1

|r−r′|

(
− 1

π

∫ ∞
0

dω χ0(r, r′, iω)− δ(r−r′)n(r)
)

= −
∑
mn

fmfn

∫∫
dr dr′

ψ∗m(r)ψn(r)ψ
∗
m(r

′)ψn(r
′)

|r−r′|
(25)

and

ERPA
c = − 1

2π

∫∫
dr dr′

1

|r−r′|

∫ ∞
0

dω

(∫ 1

0

dλχλRPA(r, r
′, iω)− χ0(r, r

′, iω)

)
=

1

2π

∫ ∞
0

dω Tr
(
ln
(
1−χ0(iω)v

)
+ χ0(iω) v

)
, (26)

with v(r, r′) = 1/|r−r′|. Equation (25) defines the exact-exchange energy in the KS-DFT
context, which has the same expression as the Hartree-Fock exchange energy, but is extended
here to fractional occupation numbers and to be evaluated with KS orbitals. Furthermore, in the
second line of Eq. (26), for brevity the following convention

Tr [fg] =
∫∫

dr dr′ f(r, r′) g(r′, r) (27)

has been adopted.
So far, we have described how the RPA method is defined as an approximate XC energy func-
tional in the KS-DFT context, within the ACFDT framework. As mentioned above, RPA can
also be derived from the perspective of coupled cluster theory and the Green-function based
many-body perturbation theory. For instance, from the perspective of the ring coupled cluster
doubles (rCCD) theory, the RPA correlation energy can be obtained as,

ERPA
c =

1

2
Tr
(
BT rCCD) = 1

2

∑
ij,ab

Bia,jbT
rCCD
jb,ia , (28)

where T rCCD
jb,ia is the rCCD amplitude, to be determined by solving the so-called Riccati equa-

tion [41], and Bia,jb = 〈ij|ab〉 with 〈ij|ab〉 being two-electron Coulomb integrals,

〈ij|ab〉 =
∫∫

dr dr′
ψ∗i (r)ψa(r)ψ

∗
j (r
′)ψb(r

′)

|r−r′|
. (29)
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Here and below, we adopt the convention that i, j, k refer to occupied KS orbitals, a, b, c to
virtual (unoccupied) orbitals, and m, n to general ones. Due to limited space, here we will not
elaborate on the alternative formulations of RPA any further, and interested readers are referred
to Ref. [37] and the original references [41, 42] for more details.

2.3 Beyond-RPA computational schemes

Despite its appealing features, RPA does not go without shortcomings. The conventional wis-
dom is that RPA describes the long-range correlation very well, whereas it is not adequate for
short-range correlations. This issue has been well known for the homogeneous electron gas. For
real materials, RPA was found to underestimate the cohesive energies of both molecules [10,60]
and solids [21]. This stimulated much research interest and several beyond-RPA schemes have
been developed to fix this deficiency. Among these, two approaches are particularly noteworthy:
1) improving RPA by restoring the contribution of the fxc kernel within the ACFDT formal-
ism; 2) improving RPA from the perspective of diagrammatic many-body perturbation theory.
Successful beyond-RPA schemes of the first type include the truncated adiabatic LDA kernel
correction [61], and the more systematic construction of the XC kernel with respect to a series
expansion of the coupling constant λ within the ACFDT framework [62, 59].
The diagrammatic many-body expansion approach to correct RPA, on which we shall concen-
trate here, exploits the fact that RPA, in contrast with other density-functional approximations
(DFAs), has a clear diagrammatic representation—an infinite summation of the ring diagrams.
The question arises if there is a simple and systematic way to incorporate the missing diagrams
to arrive at an improved theory. The fermionic nature of electrons requires the many-electron
wavefunction to be antisymmetric, and the diagrammatic representation of the correlation en-
ergy contains graphs describing both direct processes and exchange processes. For example,
in the Møller-Plesset perturbation theory, both types of processes are included at each order,
which ensures the theory to be one-electron “self-correlation free”—the correlation energy for
one-electron system being zero. The famous second-order Møller-Plesset perturbation theory
(MP2), a widely used method in quantum chemistry, contains one direct term and one exchange
term, represented respectively by the leading diagram in the first two rows of Fig. 1. These
two terms cancel each other for one-electron systems. RPA is represented by the ring dia-
grams summed up to infinite order, as represented by the first-row diagrams in Fig. 1, where
only “direct” processes are accounted for.1 A simple way to include the exchange processes
and eliminate the self-correlation error is to antisymmetrize the two-electron Coulomb integrals
within the rCCD formulation of RPA [cf. Eq. (28)]. By doing so, a second-order screened ex-
change (SOSEX) term [63–65] is added, and the resultant RPA+SOSEX correlation energy is
given by

ERPA+SOSEX
c =

1

2

∑
ij,ab

(
〈ij|ab〉 − 〈ij|ba〉

)
T rCCD
ia,jb , (30)

1The RPA discussed here is often referred to as direct RPA in quantum chemistry literature. In some literature,
RPA in fact corresponds to the time-dependent Hartree-Fock theory, where the exchange terms are also included.
Nowadays, RPA with exchange included is usually referred to as RPAX or full RPA.



2.10 Xinguo Ren

+ + · · ·

+ + · · ·

+ + + · · ·

Fig. 1: Goldstone diagrams for rPT2. Diagrams in the three rows correspond to RPA, SOSEX,
and rSE, respectively. Dashed lines ending with a cross in the third row denote the matrix
element ∆vmn = 〈ψm|v̂HF−v̂MF|ψn〉. The rules to evaluate Goldstone diagrams can be found
in Ref. [66].

with the two terms in Eq. (30) corresponding to RPA and SOSEX correlation energies respec-
tively. The SOSEX contribution can be represented by the diagrams shown in the second row
of Fig. 1, where the leading term corresponds to the exchange contribution in MP2. The
RPA+SOSEX scheme has the interesting feature that it is one-electron self-correlation free,
and improves substantially the total energy [64, 65]. The underbinding problem of RPA for
chemically bonded molecules and solids is on average alleviated by the SOSEX correction.
As illustrated in Fig. 1, both RPA and SOSEX correlations can be interpreted as infinite-
order summations of selected types of diagrams, with the MP2 terms as the leading order.
This perspective is helpful for identifying important contributions that are still missing in the
RPA+SOSEX scheme. In fact, at the second-order, in addition to the direct and exchange terms,
there is yet another type of contribution, arising from the singles excitations (SE),

ESE
c =

occ∑
i

unocc∑
a

|〈Φ0|Ĥ ′|Φai 〉|2

E0 − E(0)
i,a

=
∑
ia

|〈ψi|v̂HF− v̂MF|ψa〉|2

εi − εa
=
∑
ia

∣∣〈ψi|f̂ |ψa〉∣∣2
εi − εa

, (31)

where v̂HF is the self-consistent Hartree-Fock potential, v̂MF is the mean-field potential, based
on which the reference state is generated, and f̂ = −∇2/2 + v̂ext + v̂HF is the single-particle
Hartree-Fock Hamiltonian (also known as the Fock matrix in the quantum chemistry literature).
Φ0 and Φai are the KS Slater determinant and the singly-excited configuration generated by
exciting one electron from an occupied state i to a virtual state a. A detailed derivation of
Eq. (31) can be found in the supplementary material of Ref. [17]. Obviously for a Hartree-Fock
reference where v̂MF = v̂HF, Eq. (31) becomes zero, a fact known as Brillouin theorem [66].
Therefore, this term is not present in standard MP2 theory based on the Hartree-Fock reference.
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In Ref [17], it was shown that adding the SE term of Eq. (31) to RPA significantly improves the
accuracy of vdW-bonded molecules, which the standard RPA scheme generally underbinds, and
the SOSEX correction does not improve much. Similar to the RPA and SOSEX case, one can
identify a sequence of single-excitation processes up to infinite order, as illustrated in the third
row in Fig. 1. Summing these single-excitation diagrams up to infinite order represents a renor-
malization of the 2nd-order SE, and is termed as renormalized singles excitations (rSE) [37,35].
Remarkably, this infinite summation ends up with a closed expression similar to Eq. (31) ,

ErSE
c =

∑
ia

|f̃ia|2

ε̃i − ε̃a
, (32)

where ε̃i and ε̃a are the eigenvalues obtained by diagonalizing separately the occupied-occupied
and virtual-virtual subblocks of the Fock matrix,∑

k

fikOkj = ε̃iOij∑
c

fac Ucb = ε̃a Uab ,
(33)

with fmn = 〈ψm|f̂ |ψn〉. Note that the matrix fmn is not diagonal since the ψn are the reference
KS orbitals and hence not the eigenfunctions of f̂ , which is the single-particle Hartree-Fock
Hamiltonian. Now f̃ia in the numerator of Eq. (32) are to the “transformed” off-diagonal block
of the Fock matrix

f̃ia =
∑
jb

O∗ij fjb Uba , (34)

where the eigenvectors obtained in (33) are used here as the transformation coefficients. The
physical origin of the SE corrections is that the commonly used KS references for RPA and
beyond-RPA calculations are not the optimal starting point. The SE corrections accounts for
the “orbital relaxation” effect, which leads to a lowering of the ground-state total energy.
Diagrammatically, RPA, SOSEX and rSE are three distinct infinite series of many-body terms,
in which the three leading terms correspond to the three terms in second-order many-body
perturbation theory. Summing them up, the resultant RPA+SOSEX+rSE scheme can be viewed
a renormalization of the normal second-order many-body perturbation theory. Therefore the
RPA+SOSEX+rSE scheme is also termed as “renormalized second-order perturbation theory”
or rPT2 in the literature.
Independent of the rPT2 scheme described above, Bates, and Furche developed a beyond-RPA
formalism termed as RPA renormalized many-body perturbation theory [67]. The essence of
this formalism is to express the correlation energy in terms of an integration over the polarization
propagator (closely related to the density response function) along the AC path. The correlation
energy can be improved by improving the polarization propagator based on a series expansion
in terms of the RPA polarization propagator multiplied with a four-point kernel. Benchmark
calculations [68] show that the approximate exchange kernel (AXK) scheme within this for-
malism performs better than RPA+SOSEX discussed above. However, the rSE contribution is
not included in the AXK scheme.
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3 Implementation of the RPA method

In most practical RPA calculations, the evaluation of the RPA XC energy ERPA
xc as given in

Eqs. (24-26) is done employing the KS orbitals and orbital energies generated by a preceding
KS-DFT calculation under certain lower-rung approximations. The GGA of Perdew, Burke,
and Ernzerhof (PBE) is often used in the preceding KS-DFT calculation, and the RPA cal-
culation based on a PBE reference is often denoted as “RPA@PBE.” In standard RPA@PBE
calculations, the ground-state total energy is given by

ERPA@PBE = EPBE − EPBE
xc + ERPA@PBE

xc

= TPBE
s + EPBE

ext + EPBE
H + EEX@PBE

x + ERPA@PBE
c

= 〈ΦPBE|Ĥ|ΦPBE〉+ ERPA@PBE
c (35)

where TPBE
s ,EPBE

ext ,EPBE
H , andEPBE

xc are, respectively, the noninteracting kinetic energy, the ex-
ternal potential energy, the Hartree energy, and the XC energy obtained from the self-consistent
PBE calculation. The RPA@PBE total energy defined in (35) is obtained by subtracting the
PBE XC energy from the PBE total energy, and then adding on top the RPA XC energy, evalu-
ated using PBE orbitals and orbital energies. Equation (35) indicates that the RPA total energy
can be seen as the sum of the Hartree-Fock energy evaluated with respect to the PBE reference
and the RPA@PBE correlation energy.
Now it is clear that the key in RPA calculations is to evaluate the exact-exchange energy plus
the RPA correlation energy. The algorithm for evaluating the exact-exchange energy in the
present context is exactly the same as the Hartree-Fock exchange energy evaluation, which is
routinely done in quantum chemistry calculations [69,70]. The Hartree-Fock exchange is also a
key component of hybrid density-functionals, which are available in increasingly more software
that can deal with periodic systems [71,72]. Here we shall not discuss the implementation of the
Hartree-Fock exchange, but rather focus on the implementation of the RPA correlation energy
part. To develop efficient algorithms to evaluate Eq. (26), the key is to realize that both χ0 and v
are non-local operators in space. Their real-space forms χ0(r, r′, iω) and v(r, r′) can be seen as
basis representations of the corresponding operator χ0 and v in terms of real-space grid points.
Under such a discretization, χ0 and v become matrices of dimension as large as the number of
real space grid points. This is not an efficient representation since the number of grid points is
rather large, especially in all-electron calculations. To deal with this problem, one can introduce
an auxiliary basis set {Pµ(r)} to represent χ0 and v, namely,

χ0(r, r′, iω) =
Naux∑
µ,ν

Pµ(r)χ
0
µν(iω)Pν(r

′), (36)

and

Vµν =

∫∫
dr dr′

Pµ(r)Pν(r
′)

|r−r′|
(37)

where Naux is the number of auxiliary basis functions. To find the matrix form χ0
µ,ν(iω), one
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needs to expand the products of KS orbitals in terms of Pµ(r),

ψ∗m(r)ψn(r) =
∑
µ

Cµ
mnPµ(r) , (38)

where Cµ
mn is the expansion coefficients. Inserting the expansion (38) into (23), and comparing

to (36), one arrives at

χ0
µν(iω) =

∑
m,n

(fm − fn)Cµ
mnC

ν∗
mn

εm − εn − iω
. (39)

Thus, within the auxiliary basis representation, χ0 and v become Naux×Naux matrices. Since
Naux is typically much smaller than the number of real-space grid points, or the number of
pair products of KS orbitals, the χ0 matrix in (39) and the V matrix in (38) can be seen as
compressed representation of their operators, with the trace of their product unchanged,

Trχ0(iω) v =

∫∫
χ0(r, r′, iω) v(r′, r) dr dr′ =

∑
µν

χ0
µν(iω)Vµν . (40)

Based on this observation, one may conclude that the computed RPA correlation energy is
independent of the basis representation of the χ0 and v operators. Thus one may equivalently
interpret Eq. (26) as matrix algebra with χ0 and v represented within the auxiliary basis as given
by (39) and (37). Using Tr lnA = ln detA (with detA being the determinant of the matrix A),
one obtains the final working expression for evaluating the RPA correlation energy,

ERPA
c =

1

2π

∫ ∞
0

dω ln
(
det(1−χ0(iω) v) + χ0(iω) v

)
=

1

2π

∫ ∞
0

dω ln (det(1−Π(iω)) +Π(iω)) . (41)

In Eq. (41), we have introduced an intermediate quantity Π(iω) = V 1/2 χ0(iω)V 1/2 and used
the property Tr(V 1/2 χ0 V 1/2) = Tr(χ0 V ). The frequency integration in Eq. (41) can be done
relatively easily, since the integrand is rather smooth and peaked at low frequency values. A
modified Gauss-Legendre grid, which transforms a standard Gauss-Legendre grid in the range
[−1, 1] to [0,∞],

x̃i = x0
1 + xi
1− xi

, w̃i = wi
2x0

(1− xi)2
(42)

works rather well for most systems. In (42), (xi, wi) are the abscissas and weights of the grid
points generated from the Gauss-Legendre quadrature formula in an integration range [−1, 1],
whereas (x̃i, w̃i) are abscissas and weights of the transformed grid. Usually a few tens of fre-
quency grid points are sufficient to get highly accurate results, except for systems with vanishing
gaps, where considerably more grid points have to be used. Alternative frequency grids have
been developed for evaluating the RPA correlation energies [73,33], which have been shown to
work well for small gap systems.
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The implementation scheme described above is known as the resolution-of-identity (RI) ap-
proach to RPA [73, 74]. From the above discussion, one may see that once the matrix forms
of χ0 and v within the auxiliary basis are determined, the rest of the RPA calculation is rather
straightforward. The key steps in RPA calculations are thus: 1) Generate the auxiliary basis
functions {Pµ(r)}; 2) Determine the triple coefficients Cµ

m,n; and 3) Construct the χ0
µ,ν matrix

using (39). The choice of auxiliary basis functions {Pµ(r)} depends on the underlying one-
electron basis functions used in the KS-DFT calculations. Our own RPA implementation was
done in the FHI-aims code [75, 74] which employs atom-centered numeric orbitals (NAOs) as
basis functions

φi(r) = uk(r)Ylm(θ, φ) , (43)

where uk(r) is a numerically tabulated radial function and Ylm(θ, φ) is a spherical harmonic.
Our auxiliary basis functions are also constructed as a numerical radial function multiplied by
spherical harmonics

Pµ(r) = ξs(r)Ylm(θ, φ) (44)

but the radial function ξs(r) has a different shape from uk(r). In fact, they are generated in order
to best represent the product of the one-electron orbitals φiφj . Details on how the auxiliary basis
functions are constructed can be found in Refs. [74, 76].
Once the auxiliary basis functions {Pµ(r)} are constructed, we can start to determine the triple
expansion coefficients Cµ

m,n. For any finite auxiliary basis set, the expansion in (38) is an
approximation, incurring an error δρmn(r) =

∑
µC

µ
mnPµ(r) − ψ∗m(r)ψn(r). The accuracy of

this approximation will not only depend on the quality and size of the auxiliary basis, but also
on the expansion coefficients Cµ

m,n. In the RI approach with Coulomb metric [77], instead of
minimizing the norm of the error (δρmn|δρmn), one minimizes the self Coulomb repulsion of
this error (δρmn|v|δρmn), leading to the following expression for Cµ

m,n,

Cµ
m,n =

∑
ν

(mn|v|ν)V −1νµ , (45)

where

(mn|v|ν) =
∫∫

dr dr′
ψ∗m(r)ψn(r)Pν(r

′)

|r−r′|
, (46)

and V −1 is the inverted Coulomb matrix. This conventional (global) RI approach works ex-
tremely well for small molecules. For big molecules and periodic systems, one may switch to
a localized variant of the RI approach [76]. With enhanced auxiliary basis functions, the local-
ized RI approach has been shown to be sufficiently accurate in practical calculations [76], and
is instrumental for periodic systems [72].
A final key step is to build the χ0 matrix in (39). Since the number of auxiliary basis functions
Naux scales linearly with the number of one-electron basis functions, the computational cost
of Eq. (39) scales as O(N4) with respect to the size of the system, and represents the com-
putational bottleneck of RPA calculations. In recent years, lower-scaling algorithms have also
been developed [33, 78], which holds promise for extending the applicability of RPA to large
systems.
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4 The performance of RPA-based methods and
prototypical applications

The revived interest in RPA in recent years comes not only from its appealing concept, but also
from its remarkable performance in practical applications. First of all, RPA can describe vdW
interactions in a seamless way. The reason behind this capability has already been clearly ex-
plained by Dobson in the early days [79], and the performance of RPA has been demonstrated
later for rare-gas crystals [19] and rare-gas dimers [17]. For lower-rung density-functional ap-
proximations (DFAs) ranging from LDA to hybrid functionals, the long-range vdW interactions
are not captured, and ad hoc corrections have to be added in order to describe systems where
vdW interactions play an important role. Furthermore, it seems that RPA is able to describe
the delicate energy differences in complex bonding situations, including molecules adsorbed
on surfaces [27, 28], the isostructural phase transition [24] and the relative stability of different
polymorphs of crystals [26], the binding and ex-foliation energies of layered compounds [36],
and the formation energy of defects [33]. Finally, RPA yields accurate chemical reaction barrier
heights [37], which is crucial for reliably estimating the rate of chemical reactions.

4.1 Van der Waals interactions

Van der Waals (vdW) interactions arise from the coupling between spontaneous quantum charge
fluctuations separated in space. For two well-separated, spherically-symmetric charge-neutral
systems, the interaction energy goes like

∆E ∼ C6

R6
for R→∞ (47)

where C6 is the dispersion coefficient and R is the separation between the two systems. Dobson
showed that the interaction energy between two subsystems A and B obtained by RPA exactly
follows the asymptotic behavior given by (47), with the RPA C6 coefficients given by

CRPA
6 =

3

π

∫
dω αRPA

A (iω)αRPA
B (iω) (48)

where αRPA
A (iω) is the RPA polarizability of the subsystem A, which can be obtained by inte-

grating over the microscopic RPA response function as,

αRPA
A (iω) =

1

3

3∑
i=1

∫∫
dr dr′ ri χ

RPA(r, r′, iω) r′i (49)

with r1,2,3 = x, y, z.
In Fig. 2, the binding energy curves of Ar2 obtained using PBE and RPA-based methods are
presented. MP2 is the simplest post-Hartree-Fock quantum chemistry approach capable of de-
scribing vdW interactions, and hence also included here for comparison. The reference curve
is given by the Tang-Toennies potential model, with model parameters determined from exper-
iment. PBE underestimates the bonding strength of Ar2 considerably, and this is appreciably
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Fig. 2: Binding energy curves for Ar2 obtained using PBE, MP2, and RPA-based methods.
All RPA-based methods use PBE orbitals as input. Calculations are done using the FHI-aims
code [75, 74]. The “Accurate” reference curve is given by the Tang-Toennies potential model
for Ar2 [80]. The inset is a zoom-in of the asymptotic behavior at large separations.

improved by RPA. More importantly, at large separations, the PBE binding energy decays
rapidly (in fact exponentially) to the energy zero, but the RPA curve displays a correct C6/R

6

asymptotic behavior. Compared to the reference result, however, the RPA still shows a sub-
stantial underbinding behavior, in contrast to the MP2 curve which shows too strong binding of
Ar2. The underbinding issue of RPA for vdW dimers arises from the too strong Pauli repulsion,
which is in turn due to the Hartree-Fock part of the RPA total energy, obtained with the semi-
local GGA orbitals. This issue can be fixed by the single-excitations corrections [17], and in
particular its renormalized version [35]. As shown in Fig. 2, the RPA+rSE scheme brings the
binding energy curve of Ar2 in close agreement with the reference one. The SOSEX correction,
however, does not have a noticeable effect here. Thus the final rPT2 binding energy curve is
almost on top of the RPA+rSE one. The performance of RPA-based methods for other rare-gas
dimers can be found in Ref. [35].

A widely used benchmark set for weak interactions is the S22 test set designed by Jurečka et
al., [82]. This test set collects 22 molecular dimers, among which 7 dimers are of hydrogen bind-
ing type, 8 of pure vdW (also called “dispersion”) bonding, and another 7 of mixed type. Fig-
ure 3(a) shows the structures of water dimer, adenine-thymine dimer, and water-benzene dimer,
representing respectively the three bonding types. Because of its good representativity and the
availability of accurate reference interaction energies obtained using the CCSD(T) method [81],
S22 has been widely used for benchmarking the performance of or training the parameters for
computational schemes that aim at describing weak interactions. The performance of RPA and
some of the RPA-related methods has been benchmarked for this test set [15, 18, 17, 83].
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Fig. 3: (a) Structures of water dimer, adenine-thymine dimer, and water-benzene dimer. C, O,
N, and H atoms are represented by grey, red, blue, and white balls. (b) MAEs (in meV) for
the S22 test set given by PBE, MP2, RPA, RPA+rSE, RPA+SOSEX, and rPT2 methods. The
CCSD(T) results of Takatani et al. [81] are used here as the reference.

In Fig. 3(b) the mean absolute errors (MAE) of PBE, MP2, and RPA-based methods are pre-
sented for the three subsets separately and for the entire S22 set. Both PBE and the correlated
methods can describe the hydrogen bonding well, since this type of bonding is dominated by
the electrostatic interactions, which has already been captured by the semi-local functionals to
a large extent. The error of the standard RPA method is still appreciable (MAE > 1 kcal/mol ≈
43 meV) arising from its general underbinding behavior. This can again be corrected by rSE,
or by SOSEX terms. However, adding the two types of corrections together, the rPT2 scheme
tends to overbind the hydrogen-bonded molecules, and hence the MAE increases again. For
dispersion and mixed bondings, RPA performs better, and the MAE can be further reduced by
rSE and SOSEX corrections. The MP2 method, on the other hand, yields a relatively large
MAE for dispersion-bonded molecules, owing to its well-known overbinding problem for this
type of interaction. This benchmark test indicates that the RPA+rSE scheme is a suitable ap-
proach recommendable for describing weak interactions. The advantage of this scheme is that
it does not noticeably increase the computational cost, compared to the standard RPA scheme.
In addition to vdW complexes, RPA and its variants have also been applied to chemically
bonded molecules and crystalline solids. Interested readers may look into the literature for
further details [21, 84, 37, 35].
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4.2 Surface adsorption

An accurate description of atoms and molecules interacting with surfaces is the key to under-
stand important physical and chemical processes such as heterocatalysis, molecular electronics,
and corrosion. Molecules adsorbed on metal surfaces represent a particularly difficult situation,
since quantitatively accurate results can only be obtained if the approach is able to describe si-
multaneously the chemical bonding, vdW interactions, metallic screening, and charge transfer
processes. The issue is best illustrated by the “CO adsorption puzzle,” where LDA and several
popular GGAs predict the wrong adsorption site for the CO molecule adsorbed on several no-
ble/transition metal surfaces at low coverages [56]. For CO adsorbed on the Cu(111) or Pt(111)
surfaces, LDA and popular GGAs erroneously favor the highly-coordinated hollow site (see,
e.g., Fig. 4(a)), whereas experiments clearly show that the singly-coordinated on-top site is the
energetically most stable site [85,86]. This posed a severe challenge to the first-principles mod-
eling of molecular adsorption problems and represents a key test example for the RPA-based
methods.

In Ref. [27], the performance of the RPA method for CO adsorbed on Cu(111) was investigated.
The computed RPA adsorption energies for both the on-top and fcc (face centered cubic) hollow
sites are presented in Fig. 4(b), together with the results from LDA, AM05 [87], PBE, and the
hybrid PBE0 functional [88]. Figure 4 reveals what happens in the CO adsorption puzzle when
climbing the Jacob’s ladder in DFT [9] —going from the first two rungs (LDA and GGAs) to the
fourth (hybrid functionals), and finally to the 5th-rung RPA functional. It can be seen that, along
the way, the adsorption energies on both sites are reduced, but the magnitude of the reduction
is bigger for the fcc hollow site. The correct energy ordering is already restored at the PBE0
level, but the adsorption energy difference between the two sites is vanishingly small. RPA
not only predicts the correct adsorption site, but also produces a reasonable adsorption energy
difference of 0.22 eV, consistent with experiments. The effect of the starting reference state on
the calculated RPA results has also been checked. In Ref. [27], in addition to the commonly
used scheme RPA@PBE, RPA calculations were also done on top of the hybrid functional
PBE0. Figure 4 indicates that the small difference between RPA@PBE and RPA@PBE0 results
is insignificant for understanding the “CO adsorption puzzle.”

Schimka et al. extended the RPA benchmark studies of the CO adsorption problem to more
surfaces [28], and found that RPA is the only approach that gives both good adsorption energies
and surface energies. GGAs and hybrid functionals at most yield either good surface energies, or
adsorption energies, but not both. Following these works, RPA has subsequently been applied to
the adsorption of small alkanes in Na-exchanged chabazite [89], benzene on the Si(001) surface
[90], graphene on the Ni(111) surface [29, 30] and the Cu(111) and Co(0001) surfaces [30].
In all these studies, RPA was demonstrated to be able to capture the delicate balance between
chemical and dispersion interactions, and yields quantitatively reliable results.

We expect RPA to become an increasingly more important approach in surface science, with
increasing computer power and more efficient implementations.
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Fig. 4: (a): Schematic of CO adsorbed on the Cu(111) surface, with the on-top and hollow
adsorption sites illustrated. (b): Adsorption energies for CO sitting on the on-top and fcc
hollow sites as obtained using LDA, AM05, PBE, PBE0, and RPA. RPA results are presented
for both PBE and PBE0 references. Calculations were done with the FHI-aims code. Adopted
from Ref. [37].

4.3 Structural phase transitions

The f -electron materials, which contain rare-earth or actinide elements, pose a great challenge
to first-principles approaches. A prominent example of an f -electron system is the Ce metal,
which has an intriguing iso-structural α-γ phase transition, accompanied by a drastic volume
collapse (as large as 15% at ambient pressure and zero temperature). The two phases are char-
acterized by distinct spectroscopic and magnetic properties. Various theoretical approaches,
including LDA plus dynamical mean-field theory (LDA+DMFT) have been employed to study
this system [91, 92]. DFT within its local and semilocal approximations is unable to describe
the two phases of Ce. In fact, due to the strong delocalization error in these functionals, the lo-
calized nature of the f -electrons in the γ phase cannot be properly described; only the α phase
is described with some confidence within LDA/GGAs, although not at a quantitative level.
It was shown by Casadei et al. [24,25] that, remarkably, hybrid functionals like PBE0 and HSE
can yield two self-consistent solutions, with distinct lattice constants, cohesive energies, elec-
tronic band structures, local magnetic moments, and different degrees of f -electron localization.
These two solutions can be reasonably associated with the phases of the Ce metal. However,
the energetic ordering of the α-like and γ-like phases produced by PBE0 is not consistent with
the experimental situation where the α phase is energetically more stable at low temperature
and ambient pressure. Adding RPA corrections on top of the PBE cohesive energies for the two
solutions, the energy ordering is reversed, and the α-like solution becomes energetically more
stable. The transition pressure of the two phases given by the Gibbs construction is consistent
with the experimental value.
The capability of RPA to capture the delicate energy difference between competing phases or
polymorphs has also been demonstrated for Iron disulfide (FeS2), a potentially interesting sys-
tem for photovoltaic and photoelectrochemical applications. This material turns out to be rather
challenging, since popular conventional density-functional approximations fail to produce the
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Fig. 5: Calculated PBE0 and RPA@PBE0 [RPA denoted here as exact-exchange plus RPA
correlation (EX+cRPA)] cohesive energy (Ecoh) as a function of the lattice constant a0 for
the two electronic states based on self-consistent PBE0 solutions. The correction of RPA with
respect to the PBE0 cohesive energies was done for a 19-atom fcc-cerium cluster. The dashed
line illustrates the Gibbs construction for the transition pressure from the α to the γ phase. The
arrows on the energy axes indicates the experimental cohesive energy of the α phase. Adapted
from Ref. [24].

relative stability of its two polymorphs: pyrite and marcasite, with the latter artificially stabi-
lized. It was demonstrated by Zhang et al. [26] that RPA, regardless of its reference state, can
correctly restore the energy ordering of the two polymorphs of FeS2. These authors further
reveal that the fact that RPA tends to stabilize the pyrite polymorph is due to its smaller KS
band gap, resulting in a large RPA correlation energy as compared to the marcasite polymorph.
This observation is consistent with the case of the Ce metal [24], where the more metallic α-
phase is stabilized within the RPA. Another successful application of this kind is that the tiny
energy difference between the two allotropes of carbon, graphite and diamond, can be reliably
described by RPA, with the correct prediction that graphite is energetically slightly lower than
diamond [31]. More systematic benchmark studies of the performance of RPA and several
beyond-RPA methods for predicting the transition pressure of structural phase transitions of a
set of bulk materials have recently been reported in Ref. [93].

Other types of materials science problems to which RPA has been applied include layered com-
pounds [94, 36] and defect systems [32, 33]. We shall not elaborate on these types of appli-
cations here due to limited space, and interested readers may look into the original literature
for details. In summary, there is ample evidence that RPA-based methods perform well in cap-
turing delicate energy differences in materials, and fix some of the qualitative failures of more
conventional approaches.
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5 Recent developments

The field of RPA-based methodology development and applications represents a rapidly evolv-
ing branch of computational electronic structure theory. Notable progress has been achieved in
several directions within the last few years, which we would like to briefly recapitulate here.

1. RPA force calculations. Analytical gradients of the RPA total energy with respect to the
atomic positions have been computed within both the atomic orbital basis [95–97,78] and
plane-wave basis [98] frameworks. This allows to compute interatomic forces and relax
structures at the RPA level, which is a long-sought goal of the electronic-structure com-
munity. Moreover, it is now possible to calculate vibrational frequencies [96] and phonon
spectra based on the RPA force constant [98], and even molecular dynamics simulations
can be carried out based on the RPA forces [98]. These advancements greatly enhanced
the capability of RPA in computational chemistry and materials science.

2. Low-scaling RPA implementations. Another noteworthy development is several low-
scaling—ranging from linear scaling to cubic scaling—algorithms for RPA calculations
have been designed and implemented [99, 100, 33, 101–103]. This paves the way for
applying RPA to large-sized and complex materials that were inaccessible in the past.

3. Particle-particle RPA. The above-discussed RPA is represented by ring diagrams and
called particle-hole RPA (phRPA) in the literature. In addition to phRPA, another type
of RPA, consisting of an infinite summation of ladder diagrams, has also been discussed
in the nuclear physics literature [5]. This type of RPA is referred to as particle-particle
RPA and has recently been brought to the attention of electronic structure community
[104–107]. Benchmark calculations show that ppPRA carries interesting features that are
not present in phRPA. Attempts for combining the two types of RPA in one framework
have been made both in a range-separated manner [108] and globally [109]. However,
it seems that merging the two RPA channels into one united theory is a highly nontrivial
task [109].

4. Self-consistent RPA in a generalized Kohn-Sham framework. As mentioned before, the
majority of practical RPA calculations are done in a post-processing fashion, using or-
bitals and orbital energies generated from a preceding DFA calculation. The importance
of the rSE contribution indicates that commonly used semi-local DFAs are not optimal
starting points for RPA calculations. Thus running RPA calculations in a self-consistent
way is highly desirable. However, for orbital-dependent functionals like RPA, the cri-
terion for “self-consistency” is not uniquely defined. The optimized effective potential
(OEP) RPA [110–112] is a well-defined procedure, but the obtained results for binding
energies are not better than perturbative RPA. Most recently, self-consistent RPA schemes
are developed by Jin et al. within a generalized OEP framework [113] and by Voora et
al. within a generalized KS framework [114]. The two schemes differ in details, but the
rSE contribution is captured in both schemes. Initial results obtained from these schemes
look very promising and there is much to explore along this direction.
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5. More beyond-RPA schemes to improve the accuracy. In addition to the beyond-RPA
schemes already discussed in Sec. 2.3, one most recent development by Zhang and Xu
[115] is to introduce a spin-pair distinctive algorithm in the ACFDT context, whereby
the contributions of same-spin and opposite-spin pairs to the correlation energy are sepa-
rated. By scaling the contributions for two types of spin pairs differently, one can achieve
a simultaneous attenuation of both self-interaction errors and static correlation errors.
Similar to the power series approximation of Görling and coauthors [62,59], the spin-pair
distinctive formalism of Zhang and Xu [115] is particularly successful in dealing with
systems with multi-reference characters.

6 Summary

In this lecture, we discussed the basic concept, the theoretical formulation, the implementation
algorithm, the prototypical applications, and the recent development of RPA-based methods.
We expect that RPA and its variants will have an ever-increasing impact on computational ma-
terials science, and become the mainstream methods in the near future. Since this is an actively
developing field, and the number of papers is quickly growing, it is well possible some impor-
tant developments are not covered in our discussion. The purpose of this manuscript is to inform
the readers about the overall status of this field, and stimulate more work on the development
and application of RPA-type methodology.
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3.2 Cyrus J. Umrigar

1 Introduction

Quantum Monte Carlo (QMC) methods are a broad and versatile class of stochastic algorithms
for solving the many-body Schrödinger equation. They have been applied to fermions and
bosons at zero and finite temperatures. Zero temperature calculations include both ground and
excited states. Application areas range from quantum chemistry to lattice models of correlated
materials to nuclear physics. Although the various methods differ greatly in their details, there
is a small core of underlying ideas that are common to all the methods, which we will em-
phasize in this lecture. This lecture will be limited to zero temperature methods for fermionic
systems. The emphasis will be on providing a unified description of both variational and pro-
jector Monte Carlo methods, both in discrete and in continuous space. The wide range of QMC
applications will not be discussed. The finite-temperature path-integral Monte Carlo method
has been reviewed in Ref. [1]. Details of zero-temperature methods, which we do not have time
for here, can be found in the original papers, in books and review articles [2–8], and in chapters
by Becca, Lüchow, Prokof’ev, Sandvik, and Zhang in this volume.
The many-body Schrödinger equation can be solved straightforwardly by expanding the wave-
function in a linear combination of determinants of single-particle orbitals, a method that is
known as full configuration interaction. The limitation is that the number of states scales com-
binatorially in the number of orbitals Norb, and the number of electrons N = N↑ + N↓, as
NorbCN↑ × NorbCN↓ , where N↑, N↓ are the number of up- and down-spin electrons respectively,
so this brute-force method can be applied only to tiny systems. In contrast, some of the QMC
methods scale as a low-order polynomial in N , provided that an approximate solution whose
accuracy depends on the quality of a trial wavefunction is acceptable. Frequently high qual-
ity trial wavefunctions can be constructed, making QMC one of the few methods that provide
accurate solutions for difficult problems.

2 QMC in a nutshell

I will distinguish between QMC simulations and QMC calculations, although almost all other
researchers use these terms interchangeably. To my mind the stochasticity in QMC simulations
mimics the stochasticity of the experimental system, e.g., the diffusion of neutrons in a nuclear
reactor. On the other hand, QMC calculations, which is what we will be discussing here,
introduce stochasticity into problems that are in fact deterministic. The solution of the many-
body Schrödinger equation is perfectly deterministic (not to be confused with the probabilistic
interpretation of the wavefunction amplitude) so it is in fact rather remarkable that introducing
stochasticity makes the problem more tractable.
QMC methods are most useful when the dimension of the Hilbert space is very large and other
many-body methods become impractical. They can be used both when the state of the system
is described by discrete degrees of freedom, e.g., spin states or expansion coefficients of the
wavefunction in a finite basis, as well as when the state is described by continuous degrees of
freedom, e.g., the wavefunction amplitudes as a function of 3N−dimensional electron coordi-
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nates, in which case the Hilbert space is in fact infinite! The basic ideas of QMC are the same
in discrete and continuous systems, so I will provide a unified treatment of both cases and will
use discrete and continuous notation (e.g., sums and integrals) interchangeably.

2.1 Variational Monte Carlo

Many QMC methods rely on having good approximate wavefunctions to improve their accu-
racy and efficiency. So, we consider three wavefunctions: the exact wavefunction |Ψ0〉 and two
approximate wavefunctions which we call the trial wavefunction |ΨT 〉 and the guiding wave-
function |ΨG〉: Their expansions in a (complete or incomplete) basis of Nst states are

Exact |Ψ0〉 =
Nst∑

i

ei |φi〉, where ei = 〈φi|Ψ0〉 (1)

Trial |ΨT 〉 =
Nst∑

i

ti |φi〉, where ti = 〈φi|ΨT 〉 (2)

Guiding |ΨG〉 =
Nst∑

i

gi |φi〉, where gi = 〈φi|ΨG〉 (3)

If the basis is incomplete then “exact” should be construed to mean “exact in that basis.” ΨT
and ΨG are frequently chosen to be the same function, but they serve two different purposes
and at times there are good reasons for choosing them to be different, as will become apparent
shortly. The basis state indices may be discrete (e.g., determinants of single-particle orbitals)
or continuous (e.g., the 3N coordinates of the N electrons). In either case one can use |ΨT 〉 to
define the “local energy” of that state

EL(i) =

∑Nst

j Hijtj

ti
. (4)

The variational energy of |ΨT 〉 can be evaluated as follows:

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi〉 〈φi|Ĥ|φj〉 〈φj|ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk|ΨT〉

=

∑Nst

ij tiHijtj∑Nst

k t2k
=

Nst∑

i

t2i∑Nst

k t2k

∑Nst

j Hijtj

ti
=

Nst∑

i

t2i∑Nst

k t2k
EL(i)

≈

[∑NMC

i EL(i)
]
Ψ2
T

NMC

→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]

Ψ2
G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

(5)

In the last line, we switch from the sum over all states to a sum over states sampled with
probability g2

i /
∑Nst

k g2
k, first for ΨG = ΨT (the usual case) and then for ΨG 6= ΨT. In the limit
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that ΨT → Ψ0, EL,i → E0, the exact energy, independent of i. It is now apparent that the
requirements on |ΨT 〉 and |ΨG〉 are rather different. We wish to employ a |ΨT 〉 which is not only
a good approximation to |Ψ0〉 (i.e., one that gives a low EV and has small rms fluctuations in
EL), but also one for which EL can be evaluated efficiently. For a discrete basis, this means that
Ĥ should be very sparse in that basis, whereas for the continuous real space basis this requires
that 〈φk|ΨT〉 and its Laplacian (needed for calculating the kinetic energy) can be evaluated
efficiently. Instead the requirements on |ΨG〉 are that 〈φi|ΨG〉 can be evaluated efficiently and
that it is nonzero whenever 〈φi|Ψ0〉 is nonzero, since otherwise the expectation values would be
biased relative to the actual variational value.
Hence the minimal ingredients for an accurate and efficient VMC algorithm are:

1. A method (Metropolis-Hastings) for sampling 〈φk|ΨT〉2.

2. A |ΨT 〉 with variational parameters that is flexible enough to be a good approximation to
|Ψ0〉 for optimized parameters, and for which 〈φk|ΨT〉 andEL can be evaluated efficiently.

3. Robust and efficient methods for optimizing the variational parameters.

These ingredients will be discussed in Secs. 3, 5, and 6 respectively.

2.2 Projector Monte Carlo

Projector Monte Carlo (PMC) methods evaluate the true energy E0 (in the absence of a “sign
problem”) rather than the variational energyEV using a “mixed estimator,” 〈Ψ0|Ĥ|ΨT〉/〈Ψ0|ΨT〉,
for the energy. Following almost the same steps as in VMC

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi〉 〈φi|Ĥ|φj〉 〈φj|ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk|ΨT〉

=

∑Nst

ij eiHijtj∑Nst

k ektk
=

Nst∑

i

eiti∑Nst

k ektk

∑Nst

j Hijtj

ti
=

Nst∑

i

eiti∑Nst

k ektk
EL(i)

=

[∑NMC

i EL(i)
]
ΨTΨ0

NMC

→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(6)

The only difference between Eqs. (6) and (5) is that the sampled distribution is eigi/
∑Nst

k ekgk
rather than g2

i /
∑Nst

k g2
k. At first sight this seems like an insurmountable obstacle since |ΨG〉

is known, but |Ψ0〉 is not. In Sec. 4 we describe methods for sampling the mixed distribution
needed for PMC. The properties required of |ΨT〉 and |ΨG〉 are exactly the same as for VMC.
Note that although an unbiased energy is obtained in the absence of a sign problem regardless of
|ΨT〉 and |ΨG〉, the statistical error depends on |ΨT〉 and |ΨG〉. When the sign problem is present,
approximations will be needed and their accuracy and efficiency depend on |ΨT〉 and |ΨG〉.
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3 Variational Monte Carlo

3.1 Metropolis-Hastings method

As discussed in Sec. 2.1 we need to sample with probability g2
i /
∑Nst

k g2
k. To familiarize the

reader with both discrete and continuous notation, we now assume we are working in con-
tinuous real space, in which case we need to sample from the probability density function
ρ(R) = ψ2

T(R)/
∫
dR ψ2

T(R), where we assume that the choice |ΨG〉 = |ΨT〉 has been made
since that is the usual practice. It is possible to sample a large number of probability density
functions [9] directly (i.e., with no serial correlations) using the transformation or the rejection
methods, but not such complicated probability density functions, so instead the Metropolis-
Hastings method [10,11] is used. It was originally developed to sample the thermal Boltzmann
distribution, but is in fact a very powerful method for sampling any known discrete or continuous
distribution. (In Sec. 4 we will see how to sample the unknown distribution ψTψ0/

∫
dRψT ψ0!)

3.1.1 Markov chains

The Metropolis-Hastings method employs a Markov chain. A Markov chain is specified by two
ingredients:

1) an initial state

2) a transition matrix M(Rf |Ri) (probability of transition from Ri → Rf .) with the properties

M(Rf |Ri) ≥ 0, and

∫
dRf M(Rf |Ri) = 1. (Column-stochastic matrix) (7)

The first property expresses the fact that probabilities must be non negative. The second prop-
erty expresses the fact that a point at Ri must go somewhere at the next step. The eigenvalues
of a column-stochastic matrix are between 0 and 1, and there is at least one eigenvalue equal
to 1 since the vector with all components equal to one is a left eigenvector with eigenvalue 1,
and the left and right eigenvalues of any matrix are the same. If in addition M is a “primitive
matrix,” i.e., there exists an integer n for which all the elements of Mn are strictly positive, then
there is a unique eigenvector with eigenvalue 1 and the Markov chain is said to be “ergodic.”1

We wish to choose an M such that repeated application of M results in sampling ρ(R), so we
choose an M that satisfies

∫
dRf M(Ri|Rf) ρ(Rf) = ρ(Ri) =

∫
dRf M(Rf |Ri) ρ(Ri) ∀ Ri (8)

The first equality expresses a stationarity condition, namely that the net flux in and out Ri is
zero. Hence if one starts with the correct distribution ρ(R), repeated application of M will
continue to sample from ρ(R). The second equality follows from the definition of a stochastic
matrix. Eq. (8) shows that ρ(R) is a right eigenvector with eigenvalue 1. Since all the other

1Here we ignore some subtleties that arise when the space is infinite.
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eigenvalues are between 0 and 1, but not equal to 1, ρ(R) is the dominant right eigenvector
of M and repeated application of M results eventually in sampling ρ(R).
In practice, the length of Monte Carlo (MC) run should be long enough that there is a significant
probability of the system making several transitions between the neighborhoods of any pair of
representative states that make a significant contribution to the average. This ensures that states
are visited with the correct probability with only small statistical fluctuations. For example in
a double-well system many transitions between the two wells should occur, but we can choose
our Markov matrix to achieve this even if the barrier between wells is high.
A drawback of the Metropolis-Hastings method is that the sampled states are serially correlated.
The rate at which the initial density evolves to the desired density ρ and the autocorrelation time
of estimates of various observables is governed by the subdominant eigenvalues. In the ideal
situation all the other eigenvalues are zero and every sample is independent.

Construction ofM : Detailed balance condition We have as yet not provided a prescription
to construct M , such that ρ is its stationary state. To do this we impose the detailed balance
condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf) (9)

The detailed balance condition is more stringent than the stationarity condition. Instead of
requiring that the net flux in and out of each state is zero, it requires that the net flux between
every pair of states is zero. It is a sufficient, not a necessary condition, but it provides a practical
way to construct M .
To go further, it is convenient employ a 2-step process. Moves from Ri to a provisional point R′f
are proposed with probability T (R′f |Ri) and then accepted with probability A(R′f |Ri). The
corresponding Markov matrix is

M(Rf |Ri) =




A(Rf |Ri) T (Rf |Ri) if Rf 6= Ri

1−
∫
dR′f A(R′f |Ri) T (R′f |Ri) if Rf = Ri

(10)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not. The detailed balance
condition now becomes

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

i.e.
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
. (11)

3.1.2 Choice of acceptance matrix

To satisfy Eq. (11) we can choose

A(Rf |Ri) = F

(
T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)

)
(12)
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where F is any function for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1. Two possible choices
are F (x) = x/(1 + x) and F (x) = min{1, x}, corresponding to

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
, (13)

and A(Rf |Ri) = min

{
1,
T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)

}
. (14)

The latter choice is the optimal choice since it maximizes the acceptance for given ρ and T ,
and is the choice made in the Metropolis et al. and the Hastings papers. Actually, Metropolis
et al. assumed that T (Ri|Rf) = T (Rf |Ri) in which case the factors of T drop out of Eq. (14),
and Hastings made the generalization to T (Ri|Rf) 6= T (Rf |Ri), which enables a more efficient
algorithm.

3.1.3 Choice of proposal matrix T

The optimal choice for the acceptance matrixA(Rf |Ri) is straightforward, Eq. (14), but there is
considerable scope for using one’s ingenuity to come up with good proposal matrices, T (Rf |Ri),
that give small serial correlations between samples. As mentioned before, the ideal choice of
M(Rf |Ri) has one eigenvalue equal to 1 and the rest zero. However, in practice the way to
find efficient choices for T (Rf |Ri) is not to think about eigenvalues, but instead to think about
choosing a T (Rf |Ri) that has large proposed moves and at the same time has high acceptance
probabilities, i.e.,

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ 1. (15)

There is a great deal of freedom in the choice of T (Rf |Ri), the only constraints being that it is a
stochastic matrix leading to an ergodic Markov chain, and that it must be possible to efficiently
sample T (Rf |Ri) with a direct sampling method.
It may appear from Eq. (15) that our goal should be to make T (Rf |Ri) ∝ ρ(Rf) since in that
case the various factors cancel and the product becomes 1. This is in fact the case if it is possible
to achieve that condition over all space, but it is not—if it were possible, we would not be using
Metropolis-Hastings in the first place. So, we will discuss an alternative goal in a moment.
In order to prevent the acceptance from getting too small, it is common practice to restrict the
moves to be in the neighborhood of Ri by choosing T (Rf |Ri) to be non-zero, or at least not
negligible, only within a domain D(Ri) of volume Ω(Ri) around Ri. For a given functional
form of T (Rf |Ri) the acceptance decreases as Ω(Ri) increases, so, there exists an optimal
Ω(Ri) for which the system evolves the fastest.
To make further progress, we now make explicit that T (Rf |Ri) is an ergodic matrix by writing

T (Rf |Ri) =
S(Rf |Ri)∫
dRf S(Rf |Ri)

≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)
, (16)
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where S(Rf |Ri) is non-zero only in the domain D(Ri). Then,

A(Rf ,Ri)

A(Ri,Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ Ω(Ri)

Ω(Rf)

S(Ri|Ri)

S(Rf |Rf)

S(Ri|Rf)

S(Rf |Ri)

ρ(Rf)

ρ(Ri)
. (17)

Noting that for the present purpose S should be viewed as a function of the left index only, it is
apparent that the choice

S(Rf |Ri) ∝
√
ρ(Rf)/Ω(Rf) yields A(Rf ,Ri)/A(Ri,Rf) ≈ 1. (18)

To be more precise, if the log-derivatives of S(Rf |Ri) equal those of
√
ρ(Rf)/Ω(Rf) at Rf =

Ri, the average acceptance goes as 1 − O(∆3), where ∆ is the linear dimension of D(Ri),
provided that D(Ri) is inversion symmetric about Ri.
Another good choice for T (Rf |Ri), motivated by the diffusion Monte Carlo algorithm discussed
in Sec. 4, is

T (Rf |Ri) =
1

(2πτ)3N/2
exp

[
−
(
Rf −Ri −V(Ri) τ

)2

2τ

]
, (19)

where V(Ri) = ∇Ψ(R)/Ψ(R)|R=Ri
is called the drift velocity of the wave function and τ

is the time step which can be adjusted so as to minimize the autocorrelation time of the local
energy. This is sampled by choosing

Rf = Ri + V(Ri)τ + η, (20)

where η is a vector of 3N random numbers drawn from the Gaussian distribution with average 0

and standard deviation
√
τ .

We demonstrate the increase in the acceptance probability that can be achieved by using Eq. (18)
or Eq. (19) with a simple one-dimensional example. We wish to sample Ψ(R)2. The simplest
choice for T (Rf |Ri) is a uniform distribution in Ω(Ri) specified by |Rf − Ri| < ∆ and zero
outside

T (Rf |Ri) =





1

2∆
if Rf ∈ Ω(Ri),

0 elsewhere.
(21)

Instead, our recommended prescription from Eq. (18) is

T (Rf |Ri) =





1

2∆

(
1 +
∇Ψ(R)

Ψ(R)

∣∣∣∣
R=Ri

(Rf −Ri)

)
if Rf ∈ Ω(Ri),

0 elsewhere

(22)

and the prescription of Eq. (19) becomes

T (Rf |Ri) =
1

(2πτ)1/2
exp

[
−
(
Rf −Ri − V (Ri) τ

)2

2τ

]
. (23)
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Fig. 1: Plots of Ψ(R′), S(R′|R),
(
Ψ(R′)
Ψ(R)

)2
T (R,R′)
T (R′,R)

for the three choices of T (R′, R) in
Eqs. (21), (22), (23). The lower two plots have much larger average acceptances than the top.
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In Fig. 1 we show plots of Ψ(R′), S(R′|R), and
(
Ψ(R′)/Ψ(R)

)2
T (R,R′)/T (R′, R) for the

three different choices of T (R′, R) in Eqs. (21), (22), and (23). In the top plot
(
Ψ(R′)
Ψ(R)

)2
T (R,R′)
T (R′,R)

deviates linearly in R′ − R from 1 in the vicinity of R′ = R and deviates greatly from 1 over
much ofΩ(R), in the middle plot it deviates cubically inR′−R from 1 in the vicinity ofR′ = R

and is close to 1 in all of Ω(R), and in the bottom plot it deviates linearly in R′ −R from 1 but
stays close to 1 over a fairly wide range. Hence the choices of T (Rf |Ri) in Eq. (18) and (19)
result in much smaller autocorrelation times than the simple choice of a symmetric T (Rf |Ri).

The analysis in Eqs. (16) to (19) and the examples in Eqs. (21) to (23) assume that ρ(R)=Ψ(R)2

has continuous derivatives. In reality, Ψ(R)2 has derivative discontinuities at electron-nucleus
and electron-electron coincidence points. The former are much more important than the latter,
since the wavefunction is large there and the velocity is directed towards the nucleus, so the
electron tends to overshoot the nucleus. So, there is a high likelihood of having electrons
near the nuclei and their acceptances are likely to be small. To tackle this problem, a highly
efficient VMC algorithm with autocorrelation times of the local energy close to 1 is presented
in Refs. [12, 13] wherein the electron moves are made in spherical coordinates centered on
the nearest nucleus and the size of radial moves is proportional to the distance to the nearest
nucleus. In addition, the size of the angular moves gets larger as one approaches a nucleus.
This algorithm allows one to achieve, in many cases, an autocorrelation time of the local energy
close to 1.

3.1.4 Moving the electrons all at once or one by one?

The accept-reject step can be performed after moving each electron, or after moving all the
electrons. The former requires more computer time since the wavefunction and its gradient
must be recalculated after each move. The increase in computer time is not a factor of N as
one may naively expect, but more like a factor of 2. The reason is that it takes O(N3) time to
calculate a determinant from scratch, but only O(N2) time to recalculate it, using the matrix
determinant lemma and the Sherman-Morrison formula, after a single row or column has been
changed. For systems with many electrons, moving the electrons one at a time leads to a more
efficient algorithm because larger moves can be made for the same average acceptance, so the
autocorrelation time of the local energy is smaller, more than compensating the increase of the
calculation time per MC step.

4 Projector Monte Carlo

In Sec. 2 we wrote down the exact energy as a mixed estimator where the bra is the exact
wavefunction and the ket the trial wavefunction, but we did not explain how one accesses the
exact wavefunction, i.e., the ground state of the Hamiltonian. This is done using a projector.
Projector Monte Carlo is a stochastic realization of the power method for finding the dominant
eigenvector of a matrix. If one repeatedly multiplies an arbitrary eigenvector (not orthogonal
to the dominant eigenvector) by the matrix, then one eventually gets the dominant eigenvector,
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since at each step it gets multiplied by the largest in magnitude eigenvalue of the matrix. The
power method is an example of an iterative eigensolver. Other iterative eigensolvers exist, such
as the Lanczos method and the diagonally-preconditioned Davidson method, and they are much
more efficient than the power method for deterministic calculations. So, if the dimension of the
Hilbert space is not very large, say < 1010 then one would just do a deterministic calculation
using the Lanczos or Davidson methods. However, when the Hilbert space is so large (even
infinite) that it is not possible to store even a few vectors of Hilbert space dimension, then PMC
methods become the method of choice, since at any point in time they store only a sample
of states.
The projector is any function of the Hamiltonian that maps the ground state eigenvalue of Ĥ
to 1, and the higher eigenvalues of Ĥ to absolute values that are < 1 (preferably close to 0). We
use the term “projector” somewhat loosely, since it is only repeated application of the projector
that yields the desired state:

|Ψ0〉 = lim
n→∞

P̂ n(τ) |ΨT〉. (24)

Possible choices for the projector are

Exponential projector: P̂ = eτ(ET 1̂−Ĥ) (25)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ)
(
τ < 2/(Emax−E0)

)
(26)

Green function projector: P̂ =
1

1̂− τ(ET 1̂− Ĥ)
(27)

where ET is an estimate of the ground state energy.

4.1 Importance sampling

The projectors above enable us to sample ei = 〈φi|Ψ0〉. However, according to Eq. (6) we want
to sample from giei = 〈φi|ΨG〉 〈φi|Ψ0〉. Since

∑

f

Pfiei = ef (28)

the similarity transformed matrix with elements

P̃fi =
gfPfi
gi

(29)

has an eigenstate with elements giei:

∑

i

P̃fi(giei) =
∑

i

(
gfPfi
gi

)
(giei) = gfef . (30)

ˆ̃P is called the importance sampled projector and it samples 〈φi|ΨG〉 〈φi|Ψ0〉.
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4.2 Branching random walks

Note that unlike the Markov matrix in Eq. (10) used in the Metropolis-Hastings method, the
columns of the projector are not normalized to 1. We can write P̃fi as

P̃fi =
P̃fi∑
f P̃fi

∑

f

P̃fi ≡ Tfi Wi (31)

where now Tfi is a Markov matrix and Wi are multiplicative weights. So, instead of the un-
weighted Monte Carlo walk that we had when doing VMC, we now have walkers that are
specified by not just their position and but also by their weight. At each Monte Carlo step, the
weight gets multiplied byWi. If we have a single weighted walker, then a few generations of the
walk will dominate the averages and the computational effort expended on the rest of the walk
would be largely wasted. It is possible to have a population of walkers of fluctuating population
size, with each walker having unit weight, but this leads to unnecessary birth/death events. So,
it is best to have a population of walkers, such that all walkers within a generation have roughly
the same weight, say within a factor of 2, and birth/death events when the weights go outside
that range. Even so, the weights of different generations will vary a lot in a sufficiently long run.
So, efficiency demands that we exercise population control to make the weights of each gen-
eration approximately the same. The population control error is proportional to the inverse of
the target population size Nwalk. The error arises because of a negative correlation between the
energy averaged over the generation and the weight of the generation. When the energy is low,
the weight tends to be large and population control artificially reduces the weight and thereby
creates a positive bias in the energy. Similarly, when the energy is high, the weight tends to be
small and population control artificially increases the weight and this too creates a positive bias
in the energy. Since the relative fluctuations in the energy and in the weight go as 1/

√
Nwalk,

the relative fluctuations in their covariance goes as 1/Nwalk, resulting in a O(1/Nwalk) popula-
tion control bias. So, one way to reduce the population control error is to simply use a large
population, and this is what most people do. If one wishes to be sure that the error is sufficiently
small, plot the energy versus 1/Nwalk and take the limit 1/Nwalk → 0. But there exists a better
way that allows us to estimate and remove most of the population control error within a single
run [14, 15].

4.3 Taxonomy of PMC methods

The various PMC methods can be characterized by a) the form of the projector, and, b) the
space in which the walk is performed, i.e., the single-particle basis and the quantization used.
By second quantization we mean that walkers are characterized by only the occupancy of the
single-particle states, whereas by first quantization we mean that walkers are characterized by
the occupancy and by which electrons are on which states. So, walkers that are related by elec-
tron permutations in a first quantized space map onto the same walker in a second quantized
space. Table 1 is a taxonomy of some PMC methods. For example, DMC uses the expo-
nential projector (imaginary-time propagator) with a 1st quantized continuous real space basis,
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Method Projector SP Basis Quantization

Diffusion Monte Carlo (DMC) [16, 17, 15] eτ(ET 1̂−Ĥ) r 1st

GFMC [18–20] eτ(ET 1̂−Ĥ) (samp. τ ) r 1st

Lattice-regularized DMC (Sorella, Casula) eτ(ET 1̂−Ĥ) (samp. τ ) ri 1st

FCIQMC [21–23] 1̂ + τ(ET 1̂− Ĥ) φorthog
i 2nd

phaseless AFQMC [24, 5] eτ(ET 1̂−Ĥ) φnonorthog
i 2nd

Table 1: Taxonomy of PMC methods. The methods are characterized by the projector, and the
space in which the walk is performed, i.e., the single-particle basis and the quantization.

AFQMC also uses the exponential projector but with a 2nd quantized orbital basis, and FCIQMC
uses a linear projector with a 2nd quantized orbital basis. In AFQMC the orbitals are nonorthog-
onal and evolve continuously during the MC run, whereas in FCIQMC they are orthogonal and
are fixed during the entire run. The linear projector has the advantage that if the Hamiltonian is
known exactly in the chosen basis, so also is the projector. However, it can be used only when
the spectrum of the Hamiltonian is bounded.

4.4 Diffusion Monte Carlo

We now discuss in some detail just one of the various PMC methods, the PMC method in real-
space using first-quantized walkers. This method is more commonly known as diffusion Monte
Carlo (DMC), and the projector is often referred to as the Green function since it is the Green
function of the Fokker-Planck equation in the short-time approximation. We limit the following
discussion to ΨG(R) = ΨT(R).
We now derive an approximate expression for

〈
ΨT|R

′
〉
〈R′ |eτ(ET 1̂−Ĥ)|R〉 1

〈R|ΨT〉
≡ ΨT(R

′
)G(R

′
,R, τ)

1

ΨT(R)
≡ G̃(R

′
,R, τ).

We multiply the imaginary-time the Schrödinger equation

−1

2
∇2Ψ(R, t) +

(
V(R)− ET

)
Ψ(R, t) = −∂Ψ(R, t)

∂t
(32)

by ΨT(R) and rearrange terms to obtain

−∇
2

2
(ΨΨT) + ∇ ·

(∇ΨT

ΨT

ΨΨT

)
+

(
−∇2ΨT

2ΨT

+ V
︸ ︷︷ ︸
EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t
(33)

defining f(R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f

︸ ︷︷ ︸
diffusion

+ ∇ ·
(∇ΨT

ΨT

f

)

︸ ︷︷ ︸
drift

+
(
EL(R)− ET

)
f

︸ ︷︷ ︸
growth/decay

= −∂f
∂t

(34)
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Since we know the solution for each individual term on the LHS, an approximation Green
function is

G̃(R
′
,R, τ) =

1

(2πτ)3N/2
e
−(R

′−R−V(R)τ)2/(2τ)+

(
ET−
(
EL(R

′
)+EL(R)

)
/2

)
τ

+O(τ 2). (35)

This is the same as the proposal matrix in Eq. (20) but there is now an additional growth/decay
factor. So, the walker moves exactly as before, but the weight gets multiplied by this factor.
Simply by turning on this multiplicative factor, one can switch between VMC and DMC.
This projector gives rather poor results—it has a very large time-step error and typically gives
charge distributions for finite systems that are too diffuse. We describe next two improvements:
a) take into account the singularities of the projector, and b) introduce an accept-reject step to
ensure that the exact distribution is sampled in the limit that the ΨT(R) is exact.

4.4.1 Singularities of G̃(R
′
,R, τ )

Following Ref. [15], Table 2 shows the singularities of G̃(R
′
,R, τ) at the nodes of ΨT(R)

and the particle coincidences. G̃(R
′
,R, τ) is accurate if V(R) is nearly constant over the time

step, τ , and ifEL changes nearly linearly between R and R
′. Both assumptions fail dramatically

at these singularities. For exact ΨT the local energy EL(R) is constant, but for the approximate
ΨT used in practice, it diverges to ±∞ as the inverse of the distance to the nearest node. On
the other hand the divergence of EL(R) at particle coincidences is easily removed simply by
imposing the electron-nucleus and electron-electron cusps on ΨT. The velocity V(R) diverges
at the nodes and has a discontinuity at particle coincidences even for exact ΨT, so this cannot
be taken care of by improving ΨT. Instead, we must improve upon the implicit assumption in
G̃(R

′
,R, τ) that V(R) is constant during the time step τ . When an electron is near a node,

the velocity diverges as the inverse distance to the node and is directed away from the node,
so the large velocity does not persist over the entire time step τ . Taking this into account and
integrating over the time step we find that the average velocity over the time-step τ is:

V̄ =
−1 +

√
1 + 2V 2 τ

V 2 τ
V →

{
V if V 2 τ � 1√

2/τ V̂ if V 2 τ � 1
(36)

Similar improvements to the average velocity in the vicinity of electron-nucleus coincidences,
and the average of EL can also be made.

Table 2: Singularities of G̃(R
′
,R, τ).

Region Local energy EL Velocity V

nodes EL ∼ ±1/R⊥ for ΨT

EL = E0 for Ψ0

V ∼ 1/R⊥ for both ΨT and Ψ0

e-n and e-e
coincidences

EL ∼ 1/x if cusps not imposed
EL finite if cusps are imposed

EL = E0 for Ψ0

V has a discontinuity for both ΨT and Ψ0
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4.4.2 Imposing detailed balance in DMC

Since G̃(R
′
,R, τ) has a time-step error, it fails to sample the correct distribution even in the limit

that ΨT(R) is exact. So, for large values of τ , the version of DMC presented so far can actually
be less accurate than VMC. Following Refs. [17, 15] this is easily remedied as follows: If we
omit the third term on the left-hand side of Eq. (34) then it can be verified that f(R) = ΨT(R)2

is the solution since

−1

2
∇2ψ2

T(R) + ∇ ·
(∇ψT

ψT

ψ2
T(R)

)
= 0. (37)

However, we can sample ΨT(R)2 using Metropolis-Hastings. So, we can view the drift-diffusion
part of G̃(R

′
,R, τ) as being the proposal matrix T (R′,R) and introduce an accept-reject step

after the drift and diffusion steps and before the reweighting step. With this simple modification,
DMC is guaranteed to give an energy lower than the VMC energy, and in the limit of τ → 0 an
energy that is variational, i.e., higher than the true energy. Finally, we account for the fact that
the walker moves less far, since some of the moves are rejected, by using an effective time step
τeff for reweighting

τeff = τ
R2

accep

R2
prop

, (38)

where R2
prop is the sum of the squares of all the proposed one-electron move distances and

R2
accep is the same sum, but including only the accepted moves.

4.5 Sign problem

PMC suffer from a sign problem except in a few special situations, e.g., 1-dimensional problems
in real space. In all PMC methods, the sign problem occurs because an undesired state grows
relative to the state of interest when the system is evolved by repeated stochastic applications of
the projector. This results in a computational cost that grows exponentially with system size N.
A reasonable definition [25] is that there is no sign problem if the computer time required to
compute the value of an observable for an N -particle system with specified error, ε, scales as
T ∝ N δε−2, where δ is a small power (say, δ ≤ 4). (It is assumed that N is increased in some
approximately homogeneous way, e.g., adding more atoms of the same species.) The details of
how the sign problem manifests itself is different in the various PMC methods, and we discuss
two examples.

4.5.1 Sign problem in DMC

In the absence of importance sampling (which has the important side effect of imposing the
fixed-node constraint), the DMC projector of Eq. (35) becomes

G(R
′
,R, τ) ≡ 〈R′|P̂ (τ)|R〉 ≈ e

−(R
′−R)2/(2τ)+

(
ET−
(
V(R

′
)+V(R)

)
/2

)
τ

(2πτ)3N/2
. (39)
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It is nonnegative everywhere, so there is no sign problem if one were interested in the domi-
nant state of this projector. However, the dominant state of this projector is the Bosonic ground
state whereas the state of interest is the Fermionic ground state. If one started with a positive
distribution and a negative distribution such that their sum is purely Fermionic as illustrated in
Fig. 2, and applied the projector deterministically, both the positive and the negative distribu-
tions would tend to the Bosonic ground state, but, their sum would yield the Fermionic ground
state, though with an amplitude that gets exponentially small relative to the amplitude of the in-
dividual components with increasing MC time. However, the projection is done stochastically
and the probability of positive and negative walkers landing on the same state at the same MC
time step and cancelling is very small if the portion of the state space that contributes signifi-
cantly to the expectation values is finite and large, and it is zero if the state space is continuous
(unless the dynamics of the walkers is modified to force opposite-sign walkers to land on the
same spot). Hence it is not possible to sum the positive and negative contributions to extract
the Fermionic ground state. This is demonstrated in Fig. 2. Furthermore, the problem cannot
be solved by using an extremely large population of walkers. This enhances the probability
of cancellations, but, because of fluctuations, eventually only positive or only negative walkers
will survive and so the Fermionic state will completely disappear.

Fixed-node approximation: The importance-sampled Green function of Eq. (35) is not just
a similarity transform, as in Eq. (29), of the Green function of Eq. (39). A fixed-node constraint
has sneaked in as well. The velocity in Eq. (35) diverges at nodes and is directed away from
them, so the number of node crossings per unit time goes to zero in the τ → 0 limit.2 So,
the solution obtained is the solution to the Schrödinger equation with the boundary condition
that it goes to zero at the nodes of ΨT(R). Since we are now adding in an artificial constraint,
the resulting energy has a positive fixed-node error, which disappears in the limit that the nodal
surface of ΨT(R) is exact. The fixed-node approximation not only enables the calculation of the
Fermionic ground state by eliminating the non-Fermionic states, it also enables the calculation
of Fermionic excited states by preventing a collapse to the Fermionic ground state. For the
excited states one loses the upper-bound property, but nevertheless the method has been used to
calculate challenging excited states accurately [26–28].

4.5.2 Sign problem in FCIQMC

It may appear from the above discussion that the sign problem can be solved by performing
the MC walk in a 2nd-quantized, i.e., antisymmetrized, basis. Each 2nd-quantized basis state
consists of all the permutations of the corresponding 1st-quantized basis states. Then there are
no Bosonic states or states of any symmetry other than Fermionic, so there is no possibility of
getting noise from non-Fermionic states. Of course, it is well known that this does not solve the
sign problem. The problem is that different paths leading from a state to another can contribute
with opposite sign. If the opposite sign contributions occur at the same MC step, then the

2The number of node crossings per MC step goes as τ3/2, so the number of crossings per unit time goes to zero
as
√
τ .
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Fermi ground state
Bose ground state

Trial state

b)

Plus walkers

Minus walkers

c)

Plus walkers

Minus walkers
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d)

Plus walkers
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Plus walkers

Minus walkers

Fermionic state

Fig. 2: Demonstration of the sign problem in DMC. a) The green curve schematically depicts
the Bosonic ground state, the red curve the Fermionic ground state, and the blue curve an
approximate Fermionic wavefunction. b) The starting positive distribution is shown in red and
the starting negative distribution in green. Their sum is purely Fermionic. c-f) The red and
the green curves show the evolution of the positive and negative distributions. Their sum, the
blue curve, converges to the Fermionic ground state. f) For a finite population, the walkers are
depicted as delta functions and in a continuous space they never meet and cancel (unless they
are forced to in some way). Consequently there is an exponentially vanishing “signal to noise”
ratio.
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contributions cancel and yield a net contribution of smaller absolute magnitude, just as they
would in a deterministic calculation. The problem occurs when opposite sign contributions
occur at different MC steps. Further, since Ψ and −Ψ are equally good, they are each sampled
with equal probability in the course of a long MC run.
In a few special situations the sign problem is absent. The necessary and sufficient condition
for there to be no sign problem is that all columns (or equivalently rows) of the projector have
the same sign structure aside from an overall sign. Equivalently, there is no sign problem if
it is possible to find a set of sign changes of the basis functions such that all elements of the
projector are nonnegative. For example, the projector with the following sign structure




+ − + +

− + − −
+ − + +

+ − + +


 (40)

does not have a sign problem, since changing the sign of the 2nd basis state makes all the
elements nonnegative. Note that it is not necessary to actually make these sign changes—the
projectors before and after the sign changes are equally good.
Although a 2nd-quantized basis does not solve the sign problem, it is advantageous to use a 2nd-
quantized basis when designing an exact Fermionic algorithm. First, an antisymmetrized basis
is a factor of N ! smaller, and so the probability of opposite sign walkers meeting and cancelling
is greater. Second, since each 2nd-quantized basis state consists of a linear combination of
1st-quantized basis states, 2nd-quantized states that are connected by the projector may have
multiple connections coming from several of the constituent 1st-quantized states. Hence there
is the possibility of internal cancellations in the 2nd-quantized basis, which reduces the severity
of the sign problem [29]. Third, since Bosonic and other symmetry states are eliminated it is
clear that one can achieve a stable signal to noise for any large but finite basis by making the
walker population very large. The limit of an infinite walker population is equivalent to doing a
deterministic projection, which of course does not have a sign problem.
The FCIQMC method [21] does just this. It uses efficient algorithms for dealing with a large
number of walkers and obtains essentially exact energies for very small molecules in small
basis sets, using a large but manageable number of walkers. The MC walk, is done in an
orbital occupation number (or equivalently determinantal) basis. For somewhat larger systems
it is necessary to employ the initiator approximation [22] which greatly reduces the walker
population needed to achieve a stable signal to noise ratio. Only states that have more walkers
on them than some threshold value can spawn walkers on states that are not already occupied.
The associated initiator error disappears of course in the limit of an infinite population and
in practice it is possible to get accurate energies for interesting systems. However, the initiator
error can be of either sign and it can be nonmonotonic, so extrapolation to the infinite population
limit can be tricky. A large gain in efficiency can be gained by doing the projection on the most
important states deterministically [23] since the sign-problem is present only for stochastic
projection.
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5 Form of trial wavefunctions

A major advantage of QMC methods is that since the integrals are done using Monte Carlo, one
has a great deal of freedom in the choice of the form of the trial wavefunction ΨT(R), allowing
for compact yet accurate choices. As mentioned in Sec. 2.1, both the accuracy and the efficiency
of both VMC and PMC (when there is a sign problem) depend on ΨT(R). The only constraint
on the choice of ΨT(R) is that it should be possible to evaluate it and its local energy quickly
(in low-order polynomial in N time).

5.1 Slater-Jastrow wavefunctions

The most commonly used choice for electronic systems is the so-called Jastrow-Slater form,
that is, the product of a linear combination of determinants Dn of single-particle orbitals and a
Jastrow correlation factor

ΨT =

(∑

n

dn D↑n D↓n

)
× J . (41)

Note that in order to save computation time, we have replaced each determinant by a product
of an up-spin and a down-spin determinant, which is not fully antisymmetric. This is legitimate
because the expectation value is unchanged upon full antisymmetrization for any operator that
does not have explicit spin dependence. The single-particle orbitals are usually expanded in
spherical harmonics times Slater functions (monomial times an exponential in radial distance)
for all-electron calculations in order to be able to impose the electron-nucleus cusps, and in
spherical harmonics times gaussians or Gauss-Slater functions [30] for pseudopotential calcu-
lations. The minimal Jastrow function is a function of the electron-electron coordinates with
the correct antiparallel- and parallel-spin cusps, but more typically it is written as a product of
electron-nucleus, electron-electron and electron-electron-nucleus Jastrows:

J =
∏

αi

exp (Aαi)
∏

ij

exp (Bij)
∏

αij

exp (Cαij) (42)

where α indexes the nuclei, and i and j index the electrons. Adding higher-order Jastrows,
say 3 electrons and a nucleus, leads to minor gains relative to the increase in computational
cost [31]. In all there are 4 kinds of parameters that can be optimized: a) the linear coefficients
dn multiplying the determinants, b) the orbital coefficients that specify the orbitals in terms of
the basis functions, c) the exponents of the basis functions, and d) the Jastrow parameters. The
number of basis exponents and the number of Jastrow parameters scale linearly in the number
of atomic species, the number of orbital parameters scale as the number of electrons times the
number of basis functions, and the number of dn can be combinatorially large in the number
of basis functions and electrons. However, in practice only a very tiny fraction of these are
used. In fact one of the big advantages of QMC methods is that because of the effectiveness of
the Jastrow in capturing some of the correlation, the number of determinants can be orders of
magnitude smaller than in other methods for the same accuracy.
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In real-space QMC, the Jastrow is particularly effective in introducing the so-called “dynamic
correlation.” The multi-determinantal expansion is used mostly to include “near-degeneracy”
or “static” correlation, which requires relatively few determinants. Consequently the number of
determinants required to obtain a given energy is often orders of magnitude less in the presence
of a flexible Jastrow than in its absence. Moreover, the size of the single-particle basis needed
is reduced, particularly if the exponents of the basis functions are also optimized (though this is
rarely done). Note that although the Jastrow does not directly change the nodes of ΨT(R), when
the wavefunction is optimized in the presence of the Jastrow it indirectly changes the nodes of
ΨT(R) and thereby enables accurate fixed-node DMC energies with compact wavefunctions.

The Jastrow plays another very important role in real-space QMC. The local energy, EL(R),
diverges to ±∞ at electron-nucleus and electron-electron coincidences, unless cusp-conditions
[32, 33] are imposed. The electron-nucleus cusps can be imposed by placing constraints on the
orbitals (both intra-atom and inter-atom contributions need to be considered) but the electron-
electron cusp requires the Jastrow function. Once the cusp conditions are imposed, EL(R)

becomes finite at particle coincidences (though there is still a finite discontinuity in the limit
that two electrons approach a nucleus [34]). This greatly reduces the fluctuations of the local
energy and improves the efficiency of both VMC and DMC.

The multideterminant expansion is typically chosen by performing a small complete active
space self consistent field (CASSCF) calculation and keeping the most important determinants.
However, for challenging molecules there are several determinants outside the CAS space of
affordable size that are more important than some of the determinants that are included from
within the CAS space. Consequently, as the number of included determinants is increased,
convergence of the energy is observed but to a spurious value. This problem is solved by
selecting the determinants from a configuration interaction calculation [35, 36], which selects
the most important determinants from the entire Hilbert space.

5.2 Symmetry-projected broken-symmetry mean-field wavefunctions

Recently there has been remarkable increase in the number of determinants that can be effi-
ciently included in the multideterminant expansion [37–39]. Nevertheless, since the number of
determinants grows combinatorially in the size of the single-particle basis and the number of
electrons (though with a much reduced prefactor because of the Jastrow) there is considerable
interest in using more flexible mean-field states than a single determinant, namely the antisym-
metrical geminal power (AGP) [40] and Pfaffian [41,42] as the antisymmetric part of QMC trial
wavefunctions [43]. Recently these ideas have been extended to use, in QMC trial wavefunc-
tions, symmetry-projected broken-symmetry mean-field states [43], first employed in traditional
quantum chemistry calculations [44]. The symmetries that are broken and restored are combi-
nations of particle-number, S2, Sz and complex conjugation. The most flexible of these breaks
bonds correctly and yields remarkably good potential energy curves [43], considering that the
computational cost is only marginally greater than that for a single determinant.
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5.3 Backflow wavefunctions

Another direction (which can be combined with the above) is to use backflow wavefunctions,
first introduced by Feynman to describe correlations in liquid Helium. The orbitals are evaluated
at backflow-transformed coordinates that depend on the positions of all the electrons. These give
considerably improved energies and fluctuations [45–48], but they incur a factor of N increase
in the computational cost since the determinant lemma and Sherman-Morrison formula cannot
be used achieve an O(N2) cost for updating determinants and their derivatives when a single
electron is moved.

5.4 Wavefunctions in orbital-space QMC

Although most VMC and PMC calculations for electronic systems have been done in real space,
recently there has been considerable interest in orbital-space QMC [49–51]. The orbital-space
Jastrow plays a rather different role than its real-space counterpart—its most important con-
tribution is to suppress double occupancy of orbitals and so it is effective in describing static
correlations. The straightforward approach has a computational cost that scales as O(N4) for
constant error per electron, but ideas borrowed from the semistochastic heatbath configuration
interaction (SHCI) method [52], reduce this cost to O(N2) [51].

6 Optimization of trial wavefunctions

Accurate variational wavefunctions typically have a large number of linear and nonlinear param-
eters, that have to be optimized. As many as several hundred thousand have been used [53, 39].
One of the interesting features of QMC methods is that sometimes tiny changes in the algo-
rithm, that may go unnoticed, can make a dramatic improvement to its efficiency. It is very
helpful to think about ideal situations where the variance becomes zero; although this may
never be achieved in practice, it is helpful for designing algorithms with low variance. This
is particularly true in the case of wavefunction optimization algorithms. At the present time
the 3 most used optimization algorithms are the stochastic reconfiguration method [54, 40], the
Newton method [55], and the linear method [56–58]. We will present the Newton method in
some detail to illustrate the sort of small algorithmic changes that can provide large efficiency
improvements, but will mention the other two methods only cursorily.
Optimizing the wavefunctions is important for several reasons. We enumerate below the various
errors in QMC calculations that are reduced by optimizing the wavefunction:

1. Statistical error (both the rms fluctuations of EL and the autocorrelation time)
2. Variational error in EVMC

3. Fixed-node error in EDMC

4. Time-step error in DMC
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal pseudopotentials
7. Error of mixed estimates of observables that do not commute with the Hamiltonian in DMC
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In fact all errors, aside from the finite-size errors present in calculations of periodic systems,
benefit from wavefunction optimization.
The next question for optimizing wavefunctions is: precisely what quantity do we want to
optimize? Possible choices are:

1) minimize EVMC =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

= 〈EL〉Ψ2
T

(43)

2) minimize σ2
VMC =

〈ΨT|(H − ET)2|ΨT〉
〈ΨT|ΨT〉

=
〈
E2

L(Ri)
〉
Ψ2
T
− 〈EL(Ri)〉2Ψ2

T
(44)

3) maximize Ω2 =
| 〈ΨFN |ΨT〉 |2

〈ΨFN |ΨFN〉 〈ΨT|ΨT〉
=

〈
ΨFN

ΨT

〉2

Ψ2
T〈∣∣∣ΨFN

ΨT

∣∣∣
2
〉

Ψ2
T

(45)

4) minimize EDMC =
〈ΨFN |H|ΨT〉
〈ΨFN |ΨT〉

= 〈EL〉|ΨFNΨT| (46)

In fact all of the above have been studied to some extent in published and unpublished work.
For an infinitely flexible wave function all these optimization criteria will yield the exact wave-
function (except that minimizing σ could yield an excited state) but for the imperfect functional
forms used in practice they differ. Since the final energy is obtained from EDMC rather than
EVMC, the most desirable option is the last one. However, the very limited experience gained so
far indicates that minimizing EVMC with flexible wavefunctions results in approximately mini-
mizing also EDMC, so the additional effort of minimizing EDMC is not worthwhile. Hence the
common practice is to minimize EVMC or a linear combination of EVMC and σ2

VMC, with most
of the weight on EVMC.
Early work on optimizing wavefunctions used variance minimization [59, 60] because early
attempts at minimizing EVMC required many more Monte Carlo samples than for minimizing
σ2

VMC. This is explained in Fig. 3. In green we schematically show the local energies for some
sampled points. Since the wavefunction is not exact these energies have a spread. In red we
show how these energies change as one attempts to minimize EVMC. Most of the energies go
down and some may go up, but the average on the sample goes down. As the wavefunction is
made more flexible the average may go down well below the true energy. Now if one draws
a fresh sample, then we find that the average on this sample has actually gone up rather than
down! Once one realizes the problem with energy minimization it becomes clear that the way
around it is to minimize the variance of the local energies as shown in blue. In that case local
energies move closer to each other and the average energy also tends to go down, less so than
for energy minimization, but this gain in energy is genuine—an independent sample shows the
same effect. Of course energy minimization will work if one has a sufficiently large number of
samples, but the point of the above thought experiment is that the number of samples needed is
smaller for variance minimization than for naive energy minimization. We next discuss more
clever ways to minimize the energy that overcome this problem by minimizing the expectation
value of the energy without minimizing the energy of the chosen sample.
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Variance vs. Energy
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Fig. 3: Why variance minimization requires fewer samples than naive energy minimization.

6.1 Newton method
6.1.1 Minimization of EVMC

In the Newton method, the parameter changes, δp, are obtained by solving linear equations

h δp = −g , (47)

where h is the Hessian and g the gradient of EVMC with respect to the variational parameters.
In the rest of this section ΨT and EVMC are the only wavefunction and energy of relevance, so
in the interest of notational brevity we replace these by Ψ and Ē respectively.

Ē =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 = 〈EL〉|Ψ |2 ; EL(R) =

HΨ(R)

Ψ(R)
(48)

where the notation 〈· · ·〉|Ψ |2 denotes a Monte Carlo average over samples drawn from |Ψ |2.
Following Ref. [55] the energy gradient wrt parameter pi, denoted by Ēi, is

Ēi =
〈Ψi|HΨ〉+ 〈Ψ |HΨi〉

〈Ψ |Ψ〉 − 2
Ē 〈Ψ |Ψi〉
〈Ψ |Ψ〉 = 2

〈Ψi|HΨ〉 − Ē 〈Ψ |Ψi〉
〈Ψ |Ψ〉 (49)

≈
〈
Ψi
Ψ
EL +

HΨi
Ψ
− 2Ē

Ψi
Ψ

〉

ψ2

≈ 2

〈
Ψi
Ψ

(EL − Ē)

〉

ψ2

(50)

In Eq. (49) we use the Hermiticity of the Hamiltonian to go from the expressions on the left
to that on the right. The expressions in Eq. (50) are the MC estimates of the corresponding
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expressions in Eq. (49). Note however, that the expressions on the left and right of Eq. (50)
become precisely equal only in the limit of an infinite sample. For a finite sample, the expression
on the right has much smaller fluctuations than the one on the left for sufficiently good trial
wavefunctions3 because it has zero variance in the limit that Ψ is exact.
Rewriting the gradient as

Ēi = 2
〈Ψi|HΨ〉 − Ē 〈Ψ |Ψi〉

〈Ψ |Ψ〉 = 2

〈
ΨiΨ(EL − Ē)

〉

〈|Ψ |2〉 (51)

and taking the derivative wrt pj , we obtain the following expression for the hessian:

Ēij = 2

[〈
(ΨijΨ + ΨiΨj)(EL − Ē)

〉
+
〈
ΨiΨ(EL,j − Ēj)

〉
− Ēi 〈ΨΨj〉

〈|Ψ |2〉

]
(52)

= 2

[〈(
Ψij
Ψ

+
ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

Ēj −
〈
Ψj
Ψ

〉

ψ2

Ēi +

〈
Ψi
Ψ
EL,j

〉

ψ2

]
. (53)

What can be done to reduce the variance of this expression? The last term is not symmetric in
i and j because we started from the right hand rather than the left hand expression in Eq. (50),
so we can symmetrize it, but that does not affect the variance appreciably.

Next note that 〈EL,i〉|Ψ |2 =
〈|Ψ |2(HΨΨ )

i
〉

〈|Ψ |2〉 =

〈
|Ψ |2

(
HΨi
Ψ
− Ψi

|Ψ |2
HΨ

)〉
〈|Ψ |2〉 = 〈ΨHΨi−ΨiHΨ〉

〈|Ψ |2〉 = 0, so we are free

to add terms such as
〈
Ψj
Ψ

〉
ψ2
〈EL,i〉ψ2 . Now, the fluctuations of the covariance 〈ab〉−〈a〉〈b〉 are

smaller than those of the product 〈ab〉, when
√
〈a2〉−〈a〉2 � |〈a〉| and 〈b〉 is small. (〈EL,i〉ψ2

is 0 on an infinite sample and small on a finite sample.) Hence we make the replacement
〈
Ψi
Ψ
EL,j

〉

ψ2

→ 1

2

(〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2

)
.

The resulting expression is

Ēij = 2

[〈(
Ψij
Ψ

+
ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

Ēj −
〈
Ψj
Ψ

〉

ψ2

Ēi

]

+

〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2 (54)

= 2

[〈(
Ψij
Ψ
− ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

(0 for pi linear in exponent)

+2

〈(
Ψi
Ψ
−
〈
Ψi
Ψ

〉

ψ2

)(
Ψj
Ψ
−
〈
Ψj
Ψ

〉

ψ2

)
(
EL − Ē

)
〉

ψ2

]

+

〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2 . (55)

3A subtle point is that the zero-variance estimator on the RHS of Eq. (50) is also an infinite-variance estimator
when ΨT is not exact and the parameters being optimized can change the nodes of the wavefunction. So, for poor
wavefunctions it may be preferable to use a known alternative expression that has finite variance for approximate
ΨT.
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Fig. 4: Energy convergence of C2 using a Slater CVB1 basis with 48 basis functions, optimizing
24 Jastrow, 164 CSF and 90 orbital parameters. If the basis exponents are optimized then
with 44 basis functions, a considerably more compact wavefunction with just 13 CSFs gives
an energy better than this by 1 mHa (not shown). However, converging the wavefunction takes
many more optimization iterations.

The expressions in the first two lines have zero variance in the limit of an exact trial wavefunc-
tion and the last line has a much reduced variance compared to our starting point, Eq. (53).
Finally, we note that the individual summands in Eq. (55) have a leading 3rd-order divergence
near the nodes of the trial wavefunction for parameters that change wavefunction nodes, but
the leading divergences cancel each other, leaving a 2nd-order divergence which gives a finite
expectation value but infinite variance. Despite having infinite variance estimators for the gra-
dient and the hessian, the method works remarkably well for small systems even for parameters
that move the nodes of ΨT, as shown in Fig. 4. If finite variance estimators are needed they are
obtained by using nodeless ΨG with ΨG ≈ |ΨT| except near the nodes of ΨT [61].

6.1.2 Minimization of σVMC

As mentioned earlier, another option is to minimize the variance of the energy

σ2 =

∫
d3NR |Ψ |2(EL − Ē)2

∫
d3NR |Ψ |2 . (56)

The exact gradient and hessian have been derived and used but the following simpler option
works just as well. When the parameters are changed, the variance changes both because EL

changes and because the distribution of sampled points changes. If we ignore the latter, which
means that we are computing the variance on a fixed set of Monte Carlo configurations, we get

(σ2)i = 2
〈
EL,i(EL − Ē)

〉
= 2

〈
(EL,i − Ēi)(EL − Ē)

〉
. (57)
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Energy Minimum

Variance Minimum

Fig. 5: Schematic of energy and variance contours.
Adding a small fraction of variance to the energy in the
function to be minimized can reduce the variance while
raising the energy only very slightly.

In the case of energy minimization we added a term with zero expectation value to reduce the
variance of the energy. Similarly, in the right hand expression above we have added a term to
minimize the variance of the variance.
Then the (positive definite) Levenberg-Marquardt approximation to the Hessian matrix is

(σ2)ij = 2
〈
(EL,i − Ēi)(EL,j − Ēj)

〉
. (58)

6.1.3 Mixed minimization

A linear combination of the energy and variance can be optimized simply by using the same
linear combination for the gradient and the hessian. The reason for possibly wanting to use a
linear combination is that by adding in small fraction of variance minimization (say 0.01-0.05)
to energy minimization, it may be possible to reduce the variance without appreciably raising
the energy. To explain why, we show in Fig. 5 schematic contours for the energy and variance.
If only the energy is minimized then the parameters may lie anywhere close to the bottom of
the energy well, but if a small fraction of the variance is added to the mix then the portion of
the energy well closer to the bottom of the variance minimum is favored.
Fig. 6 has convergence plots for energy, variance, and mixed minimization for the NO2 molecule
using a pseudopotential. The optimization takes only a few iterations. We see that mixed mini-
mization lowers the variance while raising the energy only slightly. However, energy minimiza-
tion has the smallest autocorrelation time, Tcorr, so the benefit from doing a mixed minimization
rather than just an energy minimization is small.

6.1.4 Stabilizing the optimization

If we add a positive constant adiag to the diagonal of the hessian matrix, i.e., h → h + adiagI,
where I is the identity matrix, then the proposed moves get smaller and rotate from the New-
tonian direction to the steepest descent direction. We use this to stabilize the optimization. At
each optimization iteration, we perform two kinds of MC runs. First we do a run to compute
the gradient and the hessian. Second, we do a 10-times shorter MC run, that does 3 correlated
sampling calculations with parameters obtained from this gradient and hessian and 3 values
of adiag that differ from each other by factors of 10 to get the corresponding 3 values of the
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Fig. 6: Optimization of Jastrow parameters for an NO2 molecule using energy minimization,
variance minimization, and mixed energy and variance minimization. Convergence is achieved
in just a few iterations. Mixed minimization lowers σ while raising the energy only slightly.
Tcorr is smallest for energy minimization.
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energy (or whatever linear combination of the energy and variance that we are optimizing). The
optimal value of adiag is then predicted from a parabolic fit of the 3 energy values with some
bounds imposed, provided the 2nd derivative of the fit is positive; else the adiag value that gives
the lowest energy is chosen. In addition, adiag is forced to increase if the parameter variations
exceed some chosen thresholds, or if some parameters exit their allowed domain of variation
(e.g., if a basis exponent becomes negative). Despite these precautions, the energy occasionally
goes up a lot, in which case one goes back to the earlier gradient and hessian and proposes new
parameter changes with a larger value of adiag. This only happens for the larger systems that we
study; for small systems such as NO2 shown in Fig. 6 the optimization converges within a few
iterations with no need to go back to an earlier iteration. Note that even when it is necessary
to go back, the entire procedure is automatic; there is no need for human intervention. Finally
we note that we do not necessarily choose the parameters from the last optimization iteration
as the final best parameters. Instead we choose the parameters from the iteration for which
EVMC + 3σVMC is lowest. In fact, this often is the last iteration because in order to save time,
we use a small number of MC steps in the first iteration and gradually increase the number of
MC steps with each new iteration (upto some maximum), so even after EVMC has converged,
σVMC continues to go down with iteration number.

6.2 Linear method

The linear optimization method is probably at the present time the most commonly used opti-
mization method. It was originally developed for linear parameters [62], but was extended to
nonlinear parameters [56–58]. It has the advantage that it does not require calculating the 2nd

derivatives of ΨT(R) and it converges just as quickly as the Newton method. Similar to what
we have described for the Newton method, there are far from obvious changes that need to be
made to the straightforward version of the method in order to make it efficient. The details can
be found in the original literature [62, 56–58].

6.3 Stochastic reconfiguration method

The stochastic reconfiguration method [54, 40] can be viewed as an approximation to the New-
ton method. Of the 3 methods mentioned in this lecture, it requires the least computation per
optimization iteration, but it typically takes several times as many iterations to converge. Al-
though it converges more slowly, when applied to heavy systems it can sometimes oscillate
less than the other methods because it requires fewer derivatives and suffers less from infinite-
variance estimators.
Optimization of many parameters: When the number of parameters to be optimized is large
(more than a few thousand) storage of the relevant matrices (hessian for Newton method, Hamil-
tonian and overlap for the linear method, overlap for the stochastic reconfiguration method)
becomes a problem. However, they need not be stored if iterative methods are used to solve the
relevant equations. Then it becomes practical to optimize on the order of 105–106 parameters.
Details can be found in Refs. [53, 8].
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7 Outlook

I hope this lecture has given you some flavor of the sort of thinking that goes into designing
accurate and efficient QMC algorithms. QMC methods have been worked upon less that some
other electronic structure methods. Hence, I think there is still considerable room for improve-
ment. An example of that would be the development of a continuous real-space PMC method
that does not have a time-step error. In fact one of the earliest PMC methods invented [18–20]
does not have a time-step error. However, despite this major advantage, it is not used anymore
because it is much less efficient that DMC. Further, there exist, in a discrete space, efficient
PMC methods that use the exponential projector with no time-step error. It seems possible that
one could invent an efficient time-step error free algorithm for continuous real-space PMC as
well.

Acknowledgments

I acknowledge valuable discussions with Sandeep Sharma. This work was supported by the
AFOSR through grant FA9550-18-1-0095.



3.30 Cyrus J. Umrigar

References

[1] D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

[2] M.P. Nightingale and C.J. Umrigar (eds.): Quantum Monte Carlo Methods in Physics and
Chemistry, NATO ASI Ser. C 525 (Kluwer, Dordrecht, 1999)

[3] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001)

[4] J. Kolorenc and L. Mitas, Rep. Prog. Phys. 74, 026502 (2011)

[5] S. Zhang, in E. Pavarini, E. Koch, and U. Schollwöck (eds.) Emergent Phenomena in
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1 Introduction

Electron structure quantum Monte Carlo (QMC) refers to a number of Monte Carlo-based tech-
niques for electron structure calculations. In this lecture, we focus on real-space QMC where
the electronic Schrödinger equation in first quantized form is the starting point. Recently, a
number of Monte Carlo methods have evolved where the Schrödinger equation is treated in the
Fock space, i.e., in second quantized form. While this equation has a number of advantages, its
exact solution is defined by the finite basis set, and the physical solution is obtained only after
basis set extrapolation. The electronic Schrödinger equation

H Ψ = E Ψ , with H = T + Ven + Vee (1)

contains kinetic energy of the electrons T , Coulombic electron-nucleus (or electron-core) at-
traction Ven, and the electron-electron repulsion Vee.
There are two seemingly unrelated Monte Carlo methods for obtaining approximate solutions
for Eq. (1). The first option is the evaluation of the energy expectation value 〈H〉 = 〈Ψ |H|Ψ〉
for a trial wave function Ψ with Monte Carlo integration. The variational principle allows the
optimization of the trial wave function Ψ by minimizing 〈H〉 with respect to parameters of
the wave function. This method is usually called variational Monte Carlo (VMC). The wave
function depends on all electrons, and depends thus on the real coordinates r1, . . . rn of all n
electrons and, additionally, on the spin state of each electron. Note that the Monte Carlo-based
integration allows arbitrary forms for the trial wave function. Therefore, Ψ can deviate from the
standard Slater determinant form and, for instance, compact correlated wave functions can be
employed easily. The optimization of trial wave functions is the subject of this lecture.
The other option for solving the Schrödinger equation with Monte Carlo methods is a stochas-
tic projection method where the exact solution of Eq. (1) is projected out of a starting wave
function. These methods are known under the name projector Monte Carlo or diffusion Monte
Carlo (DMC) and are, due to the projection, in general more accurate than the VMC methods.
Surprisingly, the DMC and the VMC methods are closely related, and the optimized VMC trial
wave function can improve the DMC energies substantially as we demonstrate in section 4.
This lecture is organized as follows. The VMC and DMC methods are briefly described in the
next section before the wave function optimization techniques are discussed in detail in the sub-
sequent section. Selected applications demonstrating the optimization of trial wave functions
are given in the final section.

2 Real-space quantum Monte Carlo methods

2.1 Variational Monte Carlo

In this lecture, the following notation will be used: ri = (xi, yi, zi) denotes the cartesian coor-
dinates of electron i while the spin is indicated by the quantum number ms,i = ± 1

2
.

xi = (ri,ms,i) = (xi, yi, zi, ms,i) (2)



QMC optimization 4.3

collects all electron variables and R = (x1, . . . ,xn) all electrons of the (finite) system. With
this notation, the energy expectation of an unnormalized wave function Ψ(R) is given in real
space by

EVMC =
〈Ψ(R)|H |Ψ(R)〉
〈Ψ(R)|Ψ(R)〉

. (3)

This ratio can be rewritten as an integral over a probability density p(R) and the local energy
EL(R)

EVMC =

∫
EL(R) p(R) dτ, EL(R) =

HΨ(R)

Ψ(R)
, p(R) =

|Ψ(R)|2∫
|Ψ(R)|2 dR

(4)

where the integration extends over all space. Note that p(R) describes the probability density
of positions and spins of all electrons simultaneously.
A sample with the probability density p(R) can be obtained efficiently with the Metropolis-
Hastings algorithm [1, 2] without the necessity of calculating the normalization integral. The
integral in Eq. (4) can then be obtained simply as the sample mean of the local energy over a
large sample of p(R)

EVMC = lim
K→∞

1

K

K∑
k=1

EL(Rk) , with Rk ∼ p(R) (5)

where ∼ p means ’distributed according to the probability density p.’ It is important to note
that this energy evaluation requires only the ability to calculate the Laplacian of the trial wave
function with respect to all electrons but no integration other than the Monte Carlo integration
itself. This obviously allows substantial freedom in the choice of Ψ , and in particular the use
of correlation factors coupling the electron coordinates for optimal description of the electron-
electron interaction and correlation. Variational Monte Carlo refers to the energy calculation
using Monte Carlo integration and Metropolis-Hastings sampling of the probability density.
Further details can be found in several review articles, for instance in [3, 4] and in references
therein.

2.2 Diffusion Monte Carlo

The diffusion Monte Carlo method yields more accurate energies than the VMC method because
in DMC the exact ground state wave function is projected according to

lim
t→∞

e−Ht Ψ ∝ Ψ0 (6)

The projection of the ground state wave function is obtained after constructing the correspond-
ing Green function with a short-time approximation which leads to a stochastic process, called
drift-diffusion process,

Rk+1 = Rk + b(Rk)τ +∆Wτ , R0 ∼ p(R) (7)
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with a discretized time step τ = t/N and a drift vector b defined with the trial function Ψ

b(R) =
∇Ψ(R)

Ψ(R)
. (8)

∆Wτ denotes a normal variate with mean µ = 0 and variance σ2 = τ . The drift-diffusion
process implements the antisymmetry of the projected solution because the drift is directed
away from the nodes of the trial function Ψ and is, at the nodal surface, in fact a normal vector
of the surface.
The drift-diffusion process is coupled with a weighting process

wk+1 = wke
−
[
1
2

(
EL(Rk)+EL(Rk+1)

)
−Eref

]
τ
, w0 = 1 (9)

where a reference energy Eref is employed to stabilize the process. The weighted drift-diffusion
process is implemented by a sample of walkers which are propagated according to Eq. (7).
Each walker has a weight attached which changes in each step according to Eq. (9). Note that
a walker corresponds to the positions of all electrons simultaneously. The stochastic process is
therefore capable of describing the electron correlation in real space. It is usually stabilized by
a branching/killing process based on the walker weights. As in molecular dynamics, the exact
distribution is obtained in the limit of vanishing time step, but also in the long total time limit.
With the final distribution of weighted walkers the DMC energy is obtained as a weighted mean

EDMC =

∑N
k=1wkEL(Rk)∑N

k=1wk
(10)

with the weight wk of the kth walker with the coordinates Rk.
VMC and DMC are closely related as the drift-diffusion process Eq. (7) is usually employed
as proposed step in the Metropolis-Hastings algorithm. Both algorithms are Markov chains,
and after reaching the equilibrium distribution, the energy or other estimators are calculated as
’time’ and sample average where the time is not the physical time. Each step in the Markov
chain is referred to as Monte Carlo step. Furthermore, the VMC distribution p(R) is usually
the starting distribution for the DMC process as indicated in Eq (7). But the main connection
results from the trial function Ψ whose nodes, or more precisely nodal hypersurface, Ψ(R) = 0

is imposed on the DMC solution via the drift Eq. (8). The DMC algorithm described above is
known as fixed-node DMC and results in the long t and short τ limit in the exact ground state
energy of the Schrödinger equation with the nodes of the trial function Ψ as additional boundary
condition. Without this boundary condition, the stochastic process would converge toward the
mathematical ground state of H which is the nodeless bosonic solution. The error resulting
from the fixed node approximation is called fixed-node error.
The optimization of the VMC energy requires the minimization of the energy expectation value
Eq. (5) with respect to the parameters of Ψ . The optimization of the DMC energy would require
the variation of the nodes of Ψ . Unfortunately, no efficient method is known for the direct
optimization of the nodes and hence usually DMC energies are optimized indirectly via the
minimization of the VMC energy.
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3 Stochastic optimization of electronic wave functions

The basis of all stochastic optimizations is a large sample of electron configurations {Rk}, k =

1, . . . , K with a distribution of p(R) = |Ψ(R)|2/
∫
|Ψ(R)|2 dτ , see Eq. (4), obtained with the

Metropolis-Hastings algorithm. The calculation of the sample is costly due to the serial cor-
relation between successive Monte Carlo steps, and it can be attempted to do a fixed sample
optimization which is a deterministic minimization [5]. As can be expected, the resulting pa-
rameters are biased toward this sample, and in practice a small number of iterations with new,
independent samples of electron configurations is required.
The trial wave function Ψ(R,p) ≡ Ψ(p) and the local energy EL(R,p) ≡ EL(p) both depend
on all electron positions and a set of parameters collected in a parameter vector p. The VMC
energy as sample mean of the local energy depends on the parameters and is simply

Em(p) =
1

K

K∑
k=1

EL(Rk,p). (11)

As the parameter optimization proceeds from the initial parameters p0 to p the fixed sample
(∼ |Ψ(p0)|2) does no longer correspond to the distribution |Ψ(p)|2 of the modified wave func-
tion. The change in the distribution can be corrected with a weighted mean

Ewm(p) =

∑K
k=1wkEL(Rk,p)∑K

k=1wk
, wk =

|Ψ(Rk,p)|2

|Ψ(Rk,p0)|2
. (12)

The variance of the local energy

Vm(p) =
1

K

K∑
k=1

(
EL(Rk,p)− Em

)2 (13)

determines the standard error of the sample mean energy
√
Vm/
√
K. The more accurate the

wave function the smaller the local energy fluctuations and thus the variance. For any exact
eigenfunction of H the local energy is constant and thus the sample variance exactly zero. This
zero-variance property of the sample mean as energy estimator allows the determination of
energies with small statistical error bars with reasonable sample sizes provided that accurate
(i.e. low variance) wave functions are used. It is important for an efficient optimization to
construct similar estimators for instance for gradients with respect to parameters.
For the optimization, the gradients of the wave function and the local energy with respect to the
parameters are required. Here, we denote the parameter derivatives as follows

Ψi =
∂Ψ(p)

∂pi
, Ψij =

∂2Ψ(p)

∂pi∂pj
, EL,i =

∂EL(p)

∂pi
. (14)

Minimization of the VMC energy with respect to the parameters is desired similarly to the
Hartree-Fock or configuration interaction (CI) methods. Minimization of the variance is, in
principle, equivalent to energy minimization because only exact eigenfunctions of H have a
variance of zero. Variance minimization is substantially simpler and more efficient because the



4.6 Arne Lüchow

sample variance is a sum of squares, while the local energy is possibly not bounded from below.
In earlier QMC work the variance minimization was preferred while in more recent papers the
energy minimization dominates because of a higher accuracy of the results.

3.1 Variance and MAD minimization

The sample variance is often simplified with an estimate Eref of the mean energy (which is
easily available from a previous DFT calculation)

Vr(p) =
1

K

K∑
k=1

(
EL(Rk,p)− Eref

)2 (15)

The variance minimization is a nonlinear least-squares minimization problem that can be solved
with standard methods such as the Levenberg-Marquardt method. The minimization requires
the Jacobian, the derivativesEL,i(Rk) of the residualsEL(Rk,p)−Eref , and has been employed
for many years [6]. We have obtained best results with the standard code ’nl2sol’ for nonlinear
least squares problems [7]. The variance minimization is very stable and suitable even for initial
parameters that differ substantially from the optimal ones. It is therefore often used as a first
optimization step followed by an energy minimization. Nonlinear least-squares minimizations
require a number of iterations. If the fixed sample is used, the variance defined in Eq. (15)
ignores the change of the distribution |Ψ(p)|2 with the parameters which can be accounted for
by using a weighted mean as in Eq. (12)

Vwm(p) =

∑K
k=1wk(EL(Rk,p)− Eref)

2∑K
k=1wk

(16)

Unfortunately, the weighted variance tends to be unstable when the weights start to deviate
substantially from one. In this case, the effective sample size is substantially reduced. Investi-
gations have shown that the unweighted variance Eq. (13) or Eq. (15) leads to more stable and
efficient minimizations [8].
Alternatively, it is possible to optimize the mean absolute deviation (MAD) of the local energy

MADr(p) =
1

K

K∑
k=1

|EL(Rk,p)− Eref | (17)

Since a sum of positive elements is involved the MAD minimization is also stable and found to
be advantageous in some cases [9].

3.2 Energy minimization

Energy minimization is preferable to variance minimization when the goal is to calculate en-
ergy differences. As mentioned above, energy minimization requires more computational effort
meaning substantially larger samples than variance minimization. Due to the stochastic nature
of QMC most codes use specifically optimized routines based on standard methods. The main
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variants for energy optimization are Newton-like methods, the linear method, and the stochas-
tic reconfiguration method. The methods require different derivatives and matrix elements and
differ in efficiency. For the stochastic optimization of wave functions the number of iterations
to reach a convergence threshold is only one aspect of the efficiency, another being the compu-
tational effort for each step.
The computational effort for each optimization step depends on the variance of the estimators
for the required gradient or matrix elements. In many cases, different estimators can be con-
structed that have the same limit but show different variances. Substantial work has been done
in the past in finding low variance estimators, in particular estimators whose variance vanishes
as the trial wave function approaches the exact eigenfunction of H .
In this section, we follow the notation used by Toulouse and Umrigar who gave an excellent
account of energy minimization methods including a discussion of earlier work [10]. The ex-
pectation value over p(R) is denoted

〈A〉 =
∫
A(R) p(R) dR, p(R) =

|Ψ(R)|2∫
|Ψ(R)|2 dR

, (18)

and the corresponding estimator is the sample mean

〈A〉 = lim
K→∞

1

K

K∑
k=1

A(Rk), Rk ∼ p(R). (19)

3.2.1 Newton methods

When expanding EVMC(p) around p0 with p = p0 +∆p in a Taylor series up to second order,
the Newton method is obtained leading to the parameter vector change

∆p = −h−1g (20)

with the gradient and Hessian matrix of the VMC energy

gi =
∂EVMC

∂pi
, hij =

∂2EVMC

∂pi∂pj
(21)

It is numerically more stable to solve the linear system h∆p = −g rather than inverting the
estimator of the Hessian matrix. The Newton method has been first used for energy optimization
in VMC by Lin et al. [11] and later improved by Umrigar and Filippi [12] and Sorella [13].
Newton methods are known for their limited convergence radius. One common stabilization
technique is the adaptive addition of a positive constant to the diagonal of the Hessian matrix
h which has the effect of switching smoothly with growing constant to steepest descent. For
details see reference [10] and references therein.
The greatest challenge for the use of the Newton method for energy minimization is the con-
struction of low variance estimators for the gradient and the Hessian matrix. For the gradient of
the VMC energy we first observe that

∂EVMC

∂pi
=
∂〈EL〉
∂pi

6= 〈EL,i〉 (22)



4.8 Arne Lüchow

because of the dependence of the distribution p(R) = p(R,p) on the parameters. An estimator
of the gradient can be derived as follows

∂

∂pi
〈EL〉 =

∂

∂pi

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∂
∂pi
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

− 〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

∂
∂pi
〈Ψ |Ψ〉
〈Ψ |Ψ〉

=
〈Ψi|H|Ψ〉
〈Ψ |Ψ〉

+
〈Ψ |H|Ψi〉
〈Ψ |Ψ〉

− 2〈EL〉
〈Ψi|Ψ〉
〈Ψ |Ψ〉

=

〈
Ψi
Ψ
EL

〉
+

〈
HΨi
Ψ

〉
− 2〈EL〉

〈
Ψi
Ψ

〉
(23)

Comparing

EL,i =
HΨi
Ψ
− EL

Ψi
Ψ
⇒ 〈EL,i〉 =

〈
HΨi
Ψ

〉
−
〈
Ψi
Ψ
EL

〉
(24)

one obtains
∂

∂pi
〈EL〉 = 2

[〈
Ψi
Ψ
EL

〉
−
〈
Ψi
Ψ

〉
〈EL〉

]
+ 〈EL,i〉 (25)

The last term vanishes due to Hermicity of H

〈EL,i〉 =
〈
HΨi
Ψ

〉
−
〈
Ψi
Ψ

HΨ

Ψ

〉
=
〈Ψ |H|Ψi〉
〈Ψ |Ψ〉

− 〈Ψi|H|Ψ〉
〈Ψ |Ψ〉

= 0 (26)

and we obtain finally [11]

∂EVMC

∂pi
= 2

[〈
Ψi(R)

Ψ(R)
EL(R)

〉
−
〈
Ψi(R)

Ψ(R)

〉
〈EL(R)〉

]
. (27)

Note that this estimator of the parameter derivative of the VMC energy does not depend on
the parameter derivative of the local energy! The wave function derivative Ψi arises only in a
ratio with the wave function Ψ itself. Normalization constants, which are expensive to calculate
in QMC, therefore cancel. Furthermore, this estimator has the zero-variance property because
the two terms in the difference become identical as the local energy becomes a constant for the
exact eigenfunction ofH . The difference is calculated with correlated sampling, using the same
sample for both terms such that fluctuations of Ψk(R)/Ψ(R) cancel substantially. Additionally,
the estimator has the form of a covariance, and it has been observed that the fluctuations of the
covariance 〈xy〉−〈x〉〈y〉 are much smaller than fluctuations of either x or y [12].
In the light of this result, a number of different estimators for the Hessian matrix h have been
proposed and employed that are based on the ratios Ψi/Ψ , Ψij/Ψ and the covariance form. For
the Hessian matrix, no estimator without the parameter derivative of the local energy EL,i is
known. The estimators are a bit lengthy and not reproduced here. For a discussion of the
various estimators of the Hessian matrix see reference [10].
The implementation of Newton-type methods requires therefore implementations of the follow-
ing three terms for every type of trial wave function

EL,i(R),
Ψi(R)

Ψ(R)
,

Ψij(R)

Ψ(R)
(28)
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Below, we discuss the computational effort for these terms for some common wave function
and Hamiltonian types.

3.2.2 Linear method

If the wave function depends linearly on the parameters as in CI or Jastrow-CI wave functions,
the parameters are obtained non-iteratively by diagonalization of the Hamiltonian matrix. This
approach can be extended to nonlinear parameters by expanding the wave function to first order
in the parameters

Ψ (1)(p) = Ψ (1)(p0 +∆p) = Ψ(p0) +

np∑
i=1

∆piΨi(p0) (29)

The idea is now to consider Ψi = Ψi(p0), i = 0, . . . , np, with Ψ0 ≡ Ψ(p0) and the number
of parameters np as a basis and obtain the energy minimum by solving the matrix eigenvalue
problem

H∆p = ES∆p (30)

with the Hamilton Hij = 〈Ψi|H|Ψj〉 and overlap matrices Sij = 〈Ψi|Ψj〉. Note that ∆p0 = 1

in Eq. (29) which defines the normalization of the resulting eigenvector corresponding to the
intermediate normalization in standard quantum chemistry. In the case of linear parameters the
CI method is recovered. In the case of nonlinear parameters the linear expansion is repeated
iteratively until convergence.
Nightingale and Melik-Alaverdian demonstrated that it is advantageous and, in fact, leads to
a zero-variance property if the finite sample estimators of the Hamiltonian matrix elements do
not make use of the Hermicity of the Hamiltonian [14, 10]. This results for finite samples in
unsymmetric Hamiltonian matrices in the eigenvalue problem and in parameter changes with
substantially reduced variances.
In practice, the dependence of the normalization constant of the wave function on the parameter
change is accounted for. The normalized wavefunction

Ψ̃0(p) =
1√

〈Ψ(p)|Ψ(p)〉
Ψ(p) (31)

results in the parameter derivatives

Ψ̃i(p) =
1√

〈Ψ(p)|Ψ(p)〉

(
Ψi(p)−

〈
Ψi(p)

Ψ0(p)

〉
Ψ(p)

)
(32)

with
〈Ψ(p)|Ψi(p)〉
〈Ψ(p)|Ψ(p)〉

=

〈
Ψi(p)

Ψ0(p)

〉
. (33)

The first order expansion now reads

Ψ̃ (1)(p0 +∆p) = Ψ̃0(p0) +

np∑
i=1

∆piΨ̃i(p0) . (34)
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The finite sample estimators for the matrices are constructed as follows. H00 is simply the
current sample mean of the local energy H00 = 〈EL〉. The Hi0 elements have the estimator

Hi0 = 〈Ψ̃i|H|Ψ̃0〉 =
∫

Ψ̃i(R)

Ψ̃0(R)
EL(R) p(R) dR =

〈
Ψi
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉
〈EL〉 (35)

with
Ψ̃i

Ψ̃0

=
Ψi
Ψ0

−
〈
Ψi
Ψ0

〉
. (36)

For the H0i elements we obtain with Eq. (32) and without making use of Hermicity

H0i = 〈Ψ̃0|H|Ψ̃i〉 =
〈(

1

Ψ0

HΨi −
〈
Ψi
Ψ0

〉
EL

)〉
= 〈EL,i〉+

〈
Ψi
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉
〈EL〉 (37)

using

EL,i =
1

Ψ0

(
∂HΨ0

∂pi
− EL

∂Ψ0

∂pi

)
. (38)

Analogously, one can derive for the remaining matrix elements Hij with i, j > 0 [10]

Hij =

〈
Ψi
Ψ0

Ψj
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

EL

〉
−
〈
Ψj
Ψ0

〉〈
Ψi
Ψ0

EL

〉
+

〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

〉
〈EL〉+

〈
Ψi
Ψ0

EL,j

〉
−
〈
Ψi
Ψ0

〉
〈EL,j〉 (39)

and for the overlap matrix

Sij =

〈
Ψi
Ψ0

Ψj
Ψ0

〉
−
〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

〉
, S00 = 1 . (40)

Note that the estimator for the Hamilton matrix of the linear method requires the local energy
derivatives EL,i like the estimator for the Hessian matrix of the Newton method.
In practice, after the generalized “almost symmetric” eigenvalue problem in Eq. (30) has been
solved, the correct right eigenvector has to be identified. For finite samples the correct eigen-
vector may not correspond to the lowest eigenvalue as spurious solutions may occur. Since the
eigenvectors are orthogonal it is not difficult to identify the physical solution. A reliable way
is a very short VMC calculation with new parameters arising from all eigenvectors of a few
lowest eigenvalues. Alternatively, the overlap of the new wavefunction with the previous can
be estimated, see [10, 15] for further discussions. For a large number of parameters the linear
method becomes restricted by the necessity to store the Hamilton and overlap matrices. Zhao
and Neuscammam have recently presented a blocked linear method that has been shown to be a
very good approximation to the original linear method while requiring substantially less mem-
ory which is particularly important for the parallel implementation [16]. The linear method,
in one of its variants, turns out to be the most efficient energy minimization method in most
applications.
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3.2.3 Stochastic reconfiguration, energy fluctuation potential, and perturbative
optimization methods

Both the linear method and the Newton method require the calculation of the local energy
parameter derivative EL,i which is computational expensive if pseudo potentials are used. A
possibly cheaper energy optimization method is the stochastic reconfiguration method [17] and
its variants, the energy fluctuation potential method [18] (EFP) and the perturbative optimiza-
tion method [10]. The stochastic reconfiguration method is based on the expansion of the DMC
propagator to first order exp(−tH) ≈ 1−Ht applied to the trial wave function Ψ and projected
into the space of derivative functions Ψi including Ψ0 ≡ Ψ .

〈Ψi|1− tH|Ψ〉 =
np∑
j=0

αj〈Ψi|Ψj〉 (41)

The terms of this linear equation can be sampled analogously to the linear method, and the
resulting parameter changes are ∆pi = αi/α0. For the related EFP method we refer to Ref. [18]
and references therein. In this paper, Scemama and Filippi also derived an efficient perturbative
EFP method that we present here in the notation by Toulouse and Umrigar used so far who
discuss the various optimization methods in some detail [10]. The formula for the perturbative
method is

∆pi = −
1

∆εi

np∑
j=1

(S−1)ijHj0 (42)

with
∆εi =

Hii

Sii
−H00 . (43)

By comparison of Eq. (35) and (27), Hj0 is identified as half the gradient g of the VMC energy.
Hence, Eq. (42) has the form of a Newton step with the inverse overlap matrix as approximative
Hessian. In practice, ∆p is obtained from the corresponding linear equation. The main differ-
ence to the expressions obtained from Eq. (41) lies in the factor 1/∆εi replacing the scalar t in
the stochastic reconfiguration method. This adds flexibility to the method and leads to improved
convergence [18]. The local energy derivative EL,i is required for the denominator ∆εi but not
for Hj0. If EL,i is expensive to calculate one may replace ∆εi by a constant ∆ε as is done
in the stochastic reconfiguration method [17, 10]. A less drastic approximation that we have
successfully applied is a more approximative calculation of ∆εi only in the first iteration step
and with a small sample. The convergence of the three variants are demonstrated in Figure 1 for
the orbital optimization in C2 with a full valence CAS and Jastrow wave function and Burkatzki
pseudo potentials to remove the core electrons [19, 20]. It can be seen that the calculation of
all ∆εi only in the first step with a small sample does not lead to a diminished accuracy or
slower convergence while the convergence is substantially slower if all ∆εi are replaced by a
constant [21].
In Figure 2, a comparison of all three optimization techniques is shown for the MO optimization
of C2 in a full valence CAS wave function with a polarized triple zeta STO basis and a Jastrow
factor. In this example, all three methods converge extremely fast and lead to a significant
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Fig. 1: Orbital optimization in C2 with full valence CAS and Jastrow using ECPs with the
perturbative method with full ∆ε calculation, calculation of ∆ε only in the first iteration, and
only in the first iteration with a small sample [21].

drop in energy. While the linear method converges usually very quickly for all parameters the
perturbative method does not work well for Jastrow parameters [10].
The stochastic reconfiguration method was computationally accelerated by Neuscamman et al.
who observed that the overlap matrix 〈Ψi|Ψj〉 does not have to be built explicitly if stochastic
estimators for matrix-vector products are used [22]. The replacement of explicit matrices by
matrix-vector products is widely employed in numerical methods, often allowing to increase
the dimension of systems substantially. The authors show that the calculation of matrix-vector
products is only possible when the conjugate-gradient method is used to solve the linear equa-
tion Eq. (41). The accelerated stochastic reconfiguration method allowed the optimization of
more than hundred thousand parameters in an massively parallel implementation.

3.3 Terms required for parameter optimization

The implementation of the energy and variance minimization requires parameter derivatives
of the wave function and the local energy. We discuss here a few important aspects of these
parameter derivatives with the restriction to the commonly used Slater-Jastrow wave functions

Ψ(c,κ,q) = Φ(c,κ) eU(q) (44)

with a Jastrow correlation function U with parameter vector q and, in general, a linear combi-
nation of Slater determinants Φd composed of orthogonal molecular orbitals (MO) depending
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Fig. 2: Comparison of the linear method with the Newton and the perturbative method for the
MO optimization in the C2 molecule [21].

on parameters κ

Φ(c,κ) =

ndet∑
d=1

cd Φ
(d)(κ) . (45)

In the following, we stick to the above notation and indicate derivatives with respect to param-
eter pi with subscript i. In the given formulae, the parameter derivatives arise only in the ratio
Ψi/Ψ which is then given here. For Jastrow parameters we obtain

Ψi
Ψ

=
1

Ψ

∂ Ψ(c,κ,q)

∂qi
=
∂U

∂qi
=: Ui (46)

and for the CI parameters ci

Ψi
Ψ

=
1

Ψ

∂ Ψ(c,κ,q)

∂ci
=
Φ(i)

Φ
. (47)

The derivatives with respect to the MO parameters are somewhat more involved. We obtain

Ψi
Ψ

=
1

Ψ

∂Ψ(c,κ,q)

∂κi
=

1

Φ

ndet∑
d=1

cd Φ
(d)
i (48)

where the derivative of a Slater determinant Φ(d)
i = ∂Φ(d)/∂κi is required.

All Slater determinants are formed by a set of orthogonal MOs which form, as column vectors
corresponding to a basis set, a matrix Φ. The discussion here is restricted to real orbitals. Each
orbital rotation x̂ij acts on this matrix by mixing MO i and j with the angle xij

x̂ijΦ = cosxijΦ+ sin xij

(
â†i âj − â

†
j âi

)
Φ. (49)
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It is sufficient to calculate derivatives for the current set of orbitals corresponding to xij = 0.
Taking the derivative with respect to the rotation angle at xij = 0 results in

∂

∂xij
x̂ijΦ

∣∣∣∣
xij=0

=
(
â†i âj − â

†
j âi

)
Φ.

With the singlet excitation operator as defined in standard second quantized quantum chemistry
[23]

Ê−ij = â†i âj − â
†
j âi

we obtain for all Slater determinants Φ(d) built from this set of MOs

∂

∂xij
x̂ijΦ

(d)

∣∣∣∣
xij=0

= Ê−ijΦ
(d). (50)

Note that the operator Ê−ij has to be applied for each spin orbital. Hence, the derivative of a
Slater determinant with respect to an orbital rotation angle (at zero angle) is obtained simply as
the value of the corresponding singly excited determinant.
The orbitals are usually partitioned in the inactive, active, and virtual orbitals where inactive or-
bitals are occupied in all determinants, active orbitals are occupied in some of the determinants,
and virtual orbitals are not occupied in any determinant. Orbital rotations between two inac-
tive and between two virtual orbitals do not change the Slater determinant except for possibly
a sign change. In complete active space (CAS) wave functions, active-active rotations are also
invariant.
The MO parameters κ are therefore built from the set of non-invariant orbital rotations xij form-
ing a real antisymmetric matrix X. The general treatment of orbital rotations makes use of the
fact that exponentials of antisymmetric (or skew symmetric) matrices are unitary. Multiplica-
tion of the current set of MOs Φ by U = exp(X) results in the new set of MOs. The unitary
matrix U can be obtained with [23]

U = W cos τWT +Wτ−1 sin τWTX (51)

where W and −τ 2 are the eigenvectors and eigenvalues of the symmetric matrix X2, respec-
tively. For more details on the MO optimization see Ref. [10] and references given therein.

3.3.1 Gradient of the local energy EL

For variance minimization as well as for some of the energy minimization methods, the param-
eter derivative of the local energy EL is required. We obtain straightforwardly for H = T + V

EL,i :=
∂EL
∂pi

=
HΨi
Ψ
− EL

Ψi
Ψ

= −1

2

∇2Ψi
Ψ

+
1

2

∇2Ψ

Ψ

Ψi
Ψ

+
∂V

∂pi
(52)

where the last term, the parameter derivative of the potential V , vanishes unless a localized
pseudo potential is used. Note that the Laplacians ∇2Ψ and ∇2Ψi refer to second derivatives
with respect to all electron positions, but not to parameter derivatives. The Laplacian of the
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wave function derivative ∇2Ψi is the new term in Eq. (52). Based on the Laplacian of the
wave function ∇2Ψ which is required already for the local energy evaluation, the parameter
derivatives can be established for Jastrow, CI, and MO parameters similarly to the formulae
given above.
More interesting is the common case of the presence of a nonlocal pseudo potential V̂nl in
addition to a local potential Vloc. In this case we obtain for the local energy

EL = −1

2

∇2Ψ

Ψ
+ Vloc + Vnl, Vnl =

V̂nlΨ

Ψ
(53)

with the localized nonlocal pseudo potential Vnl.
The parameter derivative becomes

EL,i = −
1

2

∇2Ψi
Ψ

+
1

2

∇2Ψ

Ψ

Ψi
Ψ

+
∂Vnl
∂pi

(54)

and EL,i differs from the case without pseudo potential only by the last term

∂Vnl
∂pi

=
V̂nlΨi
Ψ
− V̂nlΨ

Ψ

Ψi
Ψ

=
V̂nlΨi
Ψ
− Vnl

Ψi
Ψ

(55)

The localized pseudo potential is usually calculated numerically on a spherical Lebedev grid
[24]. The parameter derivatives V̂nlΨi/Ψ can be calculated analogously. In spite of efficient
update formulae the numerical integration has to be done for all electrons within a cut off radius.
This is a computationally expensive step, and more so the calculation of the parameter derivative
vector. The Lebedev integration is particularly costly for the MO optimization which is based
on singlet excitations Ê−ijΦ

(d) according to Eq. (50) because a large number of determinants is
constructed, all of which require an evaluation at the Lebedev grid points. This step is the reason
why the energy minimization for MO parameters is computationally especially expensive with
methods requiringEL,i and why the perturbative method is the most efficient choice in this case,
provided that∆εi in Eq. (43) is calculated only approximately with a small sample and possibly
only once.

4 Examples of wave function optimizations

In this section, simultaneous and alternating parameter optimizations are discussed before some
examples of trial wave function optimizations are presented. In particular, it will be shown that
the VMC energy minimization can lead to substantial and systematic improvements of the nodal
surface and thus to more accurate DMC energies. Single- as well as multi-reference approaches
are employed. The Jastrow, CI, and MO parameters are both partially and fully optimized in
order to assess the effect on the variational energy. Results are given for atomic species, main
group, and transition metal dimers. Dissociation energies and spectroscopic constants are pre-
sented. The BFD pseudo potentials by Burkatzki, Filippi, and Dolg [19, 20] which are specifi-
cally designed for QMC are used with the corresponding triple zeta basis set in all calculations.
The Jastrow factors in the examples below contain two-electron and two-electron-nucleus terms
as described in [29].
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Fig. 3: Comparison of simultaneous and alternating optimization of Jastrow, MO, and CI pa-
rameters in C2 with an all electron full valence CAS wave function with Jastrow factor using
the linear method [21].
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Fig. 4: Comparison of simultaneous and alternating optimization of Jastrow, MO, and CI pa-
rameters in C2 with pseudo potentials using the linear method [21].

4.1 Simultaneous and alternating parameter optimizations

Not all optimization methods work equally well for all kinds of parameters. For instance, the
linear method is expected to obtain the optimal CI parameters in one step as discussed above.
On the other hand, the linear method is computationally more expensive than the perturba-
tive method for the optimization of MO parameters when pseudo potentials are employed. It
would therefore desirable to optimize different kinds of parameters alternatingly with possibly
different methods. Alternating optimization instead of simultaneous optimization can lead to
substantially slower convergence if the parameters are strongly coupled. As an example, we
show in Figure 3 the comparison of simultaneous and groupwise alternating optimization of
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Jastrow, MO, and CI parameters in C2 with an all electron full valence CAS wave function with
Jastrow factor using the linear method. The slow convergence of the alternating optimizations
in comparison to the very fast convergence in the simultaneous case is very obvious. On the
other hand, Figure 4 demonstrates that alternating optimization can be very efficient. In this ex-
ample, the same C2 molecule is treated, the only difference being the use of pseudo potentials.
In general, it has been observed that slow convergence is found in alternating optimizations for
all electron calculations while the alternating optimization is efficient when pseudo potentials
are used [21].

4.2 Atomic species
4.2.1 Nickel spectrum

The energy gaps between different atomic states is a quantity that can be experimentally deter-
mined in a very accurate way, therefore the opportunity to verify the accuracy of the employed
method presents itself. The ground state of Nickel, as well as two excited states, are evaluated.
Ni is assigned a ground state of 3F with an occupation of 3d84s2. The first excited state is a 3D
state with an occupation of 3d94s1 which is energetically close to the ground state. The third
considered state is of 1S symmetry with a 3d10 occupation.
The VMC and the zero time-step extrapolated DMC energies can be found in Table 1. The
calculations were performed with HF and CAS orbitals. All parameters are optimized with
respect to the energy using the linear method except for the MO parameters that are optimized
with the perturbative method using a small sample only for ∆εi.

Table 1: Ni VMC and DMC energies in Eh for three states at various optimization levels, using
different starting orbitals and BFD-VTZ/sm666.

State Wave Function Ansatz Optimization level VMC energy DMC energy

3F

HF
Jas -170.0563(4) -170.1146(5)

Jas+MO -170.0645(4) -170.1185(5)

[10,6]-CAS
Jas+CI -170.0554(4) -170.1151(5)

Jas+MO+CI -170.0636(4) -170.1212(5)

3D

HF
Jas -170.0565(4) -170.1152(5)

Jas+MO -170.0641(4) -170.1189(5)

[10,6]-CAS
Jas -170.0558(4) -170.1152(5)

Jas+MOa -170.0656(4) -170.1199(5)

1S

HF
Jas -169.9964(4) -170.0500(5)

Jas+MO -169.9972(3) -170.0506(5)

[10,6]-CAS
Jas+CI -169.9991(4) -170.0525(6)

Jas+MO+CI -170.0006(4) -170.0532(5)
a Only one CSF is obtained.
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Table 2: DMC energy gaps in Eh between the ground state and two excited states of Ni at
various optimization levels, using different starting orbitals and BFD-VTZ/sm666. The experi-
mental values are taken from the NIST Atomic Spectra Database [25].

Transition Method Optimization level ∆E

3F - 3D

HF
Jas -0.016(19)

Jas+MO -0.011(19)

CAS
Jas -0.003(19)

Jas+MO 0.035(19)

NIST 0.02539

3F - 1S

HF
Jas 1.759(21)

Jas+MO 1.848(21)

CAS
Jas+CI 1.703(21)

Jas+MO+CI 1.850(21)

NIST 1.82614

The MO optimization leads to an improvement of the energy, regardless of choice of initial
orbitals. The lowering is however only significant for the 3F and the 3D state. Table 1 shows
that the correct ground state of Ni cannot be reproduced at the VMC level. Even after MO
optimization, the 3D state exhibits a lower energy than 3F. This may be rectified by choosing
a more accurate Jastrow correlation function. For the Ni 3F state, the HF trial wave function
yields slightly lower VMC energies than the CAS one. This can be traced back to a loss of
symmetry of the HF trial wave function compared to the CAS one. The higher flexibility of the
former leads to a lowering of the energy. As for the DMC results, the MO optimization again
leads to lower energies which can be explained by the improved nodal surface of the guide
functions. The correct ground state can only be portrayed by the CAS guide function at the
highest optimization level.

The excitation energies for the different transitions are shown in Table 2. The energy gap is
severely underestimated by the HF guide function as well as by the CAS guide function without
orbital optimization. The negative energy gaps mirror the fact that these approaches cannot
portray the correct ground state for Nickel. One can thus deduce that the single determinant
ansatz is not suitable to describe the states of the Ni atom and that the optimization of the
orbital parameters is essential. The energy gap, derived from the NIST database, can however
be reproduced by the CAS guide function where the orbitals are optimized in the presence of a
Jastrow correlation function.
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Table 3: C2 VMC and DMC energies in Eh at various optimization levels (Jas = Jastrow only),
using different starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz Orbitals Optimization level VMC energy DMC energy

[8,8]-CAS
CAS Jas -11.0680(2) -11.0886(2)
CAS Jas+CI -11.0779(3) -11.0925(3)
opt Jas+MO+CI -11.0792(2) -11.0934(2)

Table 4: C2 MR-DMC dissociation energies in eV at various optimization levels, using different
starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz Orbitals Optimization level D0

CAS
CAS Jas 6.351(9)
CAS Jas+CI 6.368(9)
opt Jas+MO+CI 6.378(7)

exp. 6.30(2) [27]

4.3 Main group compounds
4.3.1 Carbon dimer C2

The carbon dimer C2 is the benchmark compound for static correlation at equilibrium bond dis-
tance, the small number of electrons making it easily feasible for multi-reference calculations.
The VMC and time-step extrapolated DMC energies are given in Table 3. In contrast to the
other calculations, the nine-term SM-9t Jastrow as suggested by Schmidt and Moskowitz [26] is
employed for the C2 calculations. The Jas+CI optimization improves both the VMC and DMC
energies considerably. By further optimizing the molecular orbital parameters, a lowering of the
energies can be observed, it is however less significant. The close DMC energies at the Jas+CI
optimization level and for the fully optimized guide function indicate that the nodes must be
similar.
Table 4 shows the computed MR-DMC dissociation energies at different optimization levels.
The given dissociation energies D0 are corrected for zero point energy, the core-valence cor-
relation contribution, and spin-orbit contributions. All multi-reference dissociation energies
presented here agree well with experiment, which is rather surprising since the absolute DMC
energies differ significantly from one another.

4.4 Transition-metal compounds
4.4.1 Absolute energies

In this section, the VMC and DMC energies of ZnO and the effect that the parameter opti-
mization has on them are evaluated. The VMC and the time-step extrapolated DMC energies
are presented in Table 5. The non-optimized parameters are taken from the respective ab initio
calculations.
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Table 5: ZnO VMC and DMC energies in Eh at various optimization levels (Jas = Jastrow
only), using different starting orbitals and BFD-VTZ/sm666. The data are taken from ref. [28]

Ansatz Orbitals Optimization level VMC energy DMC energy

Single det
HF Jas -242.8836(3) -242.9931(5)

B3LYP Jas -242.8944(3) -243.0022(5)
opt Jas+MO -242.9013(3) -243.0065(6)

[16,9]-CAS
CAS Jas -242.8971(3) -242.9950(5)
CAS Jas+CI -242.9047(3) -243.0023(6)
opt Jas+MO+CI -242.9176(3) -243.0111(5)

Table 5 shows a systematic lowering of the VMC energies when moving from HF over B3LYP
KS to CAS orbitals. By only optimizing the Jastrow parameters, similar energies are obtained
for the single- and multi-determinant trial wave functions. This shows how crucial the opti-
mization of the antisymmetric part of the wave function is. The vast lowering in VMC energy
due to the optimization of the molecular orbitals in the presence of a Jastrow correlation factor
shows the substantial impact that the coupling between dynamic and static correlation has on
the energies calculated with HF and CAS orbitals. For the B3LYP KS orbitals on the other hand,
the MO optimization only has a small effect on the energy of the trial wave function because
DFT is able to partly capture this coupling.
The MO optimization significantly improves the nodal surface of the CAS guide function. The
improvement is less substantial for the KS guide function which indicates that the nodal surface
was already almost optimal for this approach before the optimization. Only the fully optimized
guide function is able to yield a DMC energy that is lower than the one calculated for the single-
determinant approach with optimized orbitals. This emphasizes the impact that the dynamic
correlation has on the quality of the nodal surface. If the molecular orbitals are not optimized,
the Jastrow optimization does not change the nodal surface, due to its totally symmetric nature.

4.4.2 Dissociation energies

As example for accurate calculations of dissociation energies of small transition metal com-
pounds we discuss the diatomics FeH, FeO, FeS, and ZnO. For all these molecules accurate
experimental dissociation energies are known, while calculated dissociation energies even for
accurate methods deviate substantially from the experimental data. We can demonstrate that
the nodal surface obtained by VMC energy minimization of Jastrow, CI, and MO parameters in
multireference Slater-Jastrow wave functions does lead to accurate dissociation energies with
the DMC method. Only the VMC energy minimization for the molecule FeH is discussed here
in detail as a typical example for an accurate transition metal wave function. The wave func-
tion is constructed from a [9,7]-CAS, built from the 3d and 4s orbitals on Fe and 1s on H,
and the sm666 Jastrow factor from Ref. [29]. This results in 69 Jastrow parameters, 159 MO
parameters, and 29 CI parameters. The energy minimization steps are shown in Figure 5 after
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Fig. 5: VMC energy minimization of the diatomic FeH using alternating optimization of Jas-
trow, CI, and MO parameters using the linear method for Jastrow and CI, and the perturbative
method for the MO parameters. The first two steps shown in grey refer to preoptimization of the
Jastrow and MO parameters.

an initial variance optimization of the Jastrow parameters. The Jastrow and MO parameters are
preoptimized with the linear and the perturbative method, respectively (shown in grey). Then
the Jastrow, MO, and CI parameters are groupwise alternatingly optimized yielding a smooth
and fast convergence.

The dissociation energies of several transition metal compounds at various optimization levels
are illustrated in Table 6. The data for ZnO, FeH, and FeO are taken from Ref. [28], while the
ones for FeS are presented in Ref. [21]. First of all, a systematic lowering of the deviation from
the experimental dissociation energies can observed for all compounds for the different ansätze
and optimization levels. The dissociation energies of ZnO and FeO follow similar trends. The
single-determinant guide function with optimized orbitals yields more accurate dissociation
energies than the CAS nodes at the Jas+CI optimization level. The optimization of the CAS
orbitals in the presence of a Jastrow correlation function substantially improves the dissociation
energy. For both compounds, an excellent agreement with the experiment is obtained.

For FeH, the single-determinant DMC nodes fail to reproduce the dissociation energy of Schultz
and Armentrout [30]. The optimization of the KS orbitals does not change the dissociation en-
ergy which implies that the nodal surface was already almost optimal for the single-determinant
approach before the optimization. Both the CI and MO optimization significantly improve the
dissociation energy of the CAS guide function. The MR-DMC dissociation energy computed
for the fully optimized guide function agrees well with the experimental one.

Moving towards a multi-reference guide function is also necessary for the FeS system. The
single-determinant approach underestimates the experimental dissociation energy, while the
fully optimized MR-DMC ansatz is able to reproduce it.
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Table 6: DMC dissociation energies in eV for several transition metal dimers at various op-
timization levels, using different starting orbitals and BFD-VTZ/sm666. The energies are cor-
rected for core-valence correlation and spin-orbit effects.

Compound Ansatz Orbitals Optimization level D0

ZnO

Single det
HF Jas 1.201(19)

B3LYP Jas 1.449(19)
opt Jas+MO 1.566(21)

CAS
CAS Jas 1.253(19)
CAS Jas+CI 1.451(21)
opt Jas+MO+CI 1.691(19)

exp. 1.61(4) [31]

FeO

Single det
HF Jas 2.885(20)

B3LYP Jas 3.688(20)
opt Jas+MO 3.826(20)

CAS
CAS Jas 3.266(20)
CAS Jas+CI 3.761(20)
opt Jas+MO+CI 4.112(20)

exp. 4.18(1) [32, 33]

FeH

Single det
HF Jas 0.814(17)

B3LYP Jas 1.020(17)
opt Jas+MO 1.020(17)

CAS
CAS Jas 1.099(17)
CAS Jas+CI 1.369(17)
opt Jas+MO+CI 1.791(17)

exp. 1.63(8) [30]

FeS
Single det opt Jas+MO 2.914(15)

CAS opt Jas+MO+CI 3.159(15)

exp. 3.31(15) [34]

4.4.3 Spectroscopic constants

The evaluation of quantities, such as the equilibrium bond distance, the harmonic frequency,
and the anharmonicity allows an assessment of the accuracy of the employed method. Those
spectroscopic constants are presented in Table 7 for different compounds. The data for the
oxides and for FeH are taken from Ref. [28], the ones of FeS from Ref. [35].

The potential energy curves were computed for the fully optimized MR-DMC guide functions
at a fixed time-step and then fitted to a Morse function, from which the spectroscopic constants
could be deduced.
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Table 7: Spectroscopic constants for the different transition metal compounds. The equilibrium
bond distance is given in Å, the harmonic frequency and the anharmonicity in cm−1.

System Investigators Method re ωe ωexe

ZnO
This work MR-DMC 1.709 746(8) 4.4(1)

Zack et al. [37] Direct-absorption methods 1.7047(2) 738 4.88
Fancher et al. [38] Photoelectron spectrum 805(40)

FeO
This work MR-DMC 1.623 866(79) 4.7(7)

Allen et al.a 1.619
Drechsler et al. [39] anion-ZEKE 882 4

FeH
This work MR-DMC 1.567 1842(27) 38.9(9)

Philips et al. [40] Near IR spectrum 1826.86 31.96
Dulick et al. [41] 1831.8(19) 34.9(9)

FeS
This work MR-DMC 2.031(7) 499(11) 2.53(11)

Takano et al. [36] Microwave spectrum 2.017
Wang et al. [42] Fluorescence spectroscopy 518(5) 1.7(2)

a derived from Allen et al. [43]

The MR-DMC bond distances of ZnO and FeO agree well with the experimental ones. The
computed equilibrium bond distance of FeS is slightly larger than the one from Takano et al.
[36]. The harmonic frequencies as well as the anharmonicities are in good agreement with
the experiment for the four dimers. All in all, we showed that MR-DMC can yield promising
results for the compounds evaluated here, provided that all sets of parameters of the trial wave
functions are optimized. In particular, the difficult energy minimization of the MO parameters
does lead to substantially improved accuracy of the VMC and DMC results.
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1 Introduction

Ordinary metals are characterized by wide electronic bands and large screening effects, thus im-
plying that electron-electron interactions may be considered perturbatively or even neglected.
The situation changes completely in transition-metal oxides, where the bands close to the Fermi
energy are relatively narrow and the electronic interactions play a predominant role in determin-
ing low-energy properties. Indeed, while the kinetic energy favors electron delocalization, the
Coulomb repulsion drives the system towards localization, whose ultimate effect is the stabiliza-
tion of an insulator. This state, which is established by the strong electron-electron correlation,
goes under the name of Mott insulator [1]. In addition, materials characterized by strong cor-
relations possess unusual properties in the metallic phase, as well as the possibility to show
unconventional superconductivity [2, 3]. The lack of a consistent microscopic description of
these phenomena clearly implies that a better understanding of correlation effects is needed.
Since the early pioneering works on transition-metal oxides, the theoretical approach to Mott
insulators has focused on the Hubbard model, which has been independently conceived by
Hubbard [4], Gutzwiller [5], and Kanamori [6]. Here, electrons on a lattice interact among each
others through a simplified “Coulomb” potential that includes only the on-site term

H =
∑
i,j,σ

ti,jc
†
i,σcj,σ + h.c.+ U

∑
i

ni,↑ni,↓ , (1)

where ti,j is the hopping amplitude in a d-dimensional lattice with L sites (in the simplest case,
ti,j is non-zero only for nearest-neighbor sites and is denoted by t) and U is the local electron-
electron repulsion; c†j,σ (cj,σ) creates (destroys) one electron with spin σ on a Wannier orbital
residing on the site j

Ξj(r) =
1√
L

∑
k

e−ik·Rj Ψk(r) , (2)

where Ψk(r) are Bloch states constructed with the orbitals φ(r−Ri) centered around each site i.
The operators at different sites create orthogonal states, thus satisfying the anti-commutation
relations {

ci,σ, c
†
j,τ

}
= δi,j δσ,τ , (3){

c†i,σ, c
†
j,τ

}
= 0. (4)

The Hubbard model is defined in the Hilbert space where each site can be empty, singly occu-
pied (with either spin up or down), or doubly occupied. Moreover, the Hamiltonian (1) com-
mutes with the total number of particles with up or down spin (i.e., N↑ and N↓, Ne = N↑ +N↓
being the total number of electrons), thus allowing us to consider sectors with different number
of particles separately. Although very simple in its formulation, the Hubbard model is generally
not solvable with the available analytical techniques, apart from the one-dimensional case [7].
Therefore, several approximate schemes have been introduced, with the support of numerical
calculations.
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Within the standard approaches, based upon the independent-electron approximation, it is not
possible to obtain a metal-insulator transition when the band is half-filled (with one electron
per site on average, i.e., Ne = L), unless some kind of magnetic order is imposed. As a conse-
quence, these techniques turn the Mott insulator into a conventional band insulator, thus missing
the essence of the Mott phenomenon, where a charge gap appears independently of spin order.
Dynamical mean-field theory [8] offered an alternative route to this problem, giving a descrip-
tion of the Mott transition without the need for a symmetry breaking. However, this scheme
fully neglects spatial correlations and becomes exact only in the limit of infinite dimensionality.
Since charge fluctuations are very strong in low-dimensional systems and are expected to deter-
mine their physical properties, an alternative method, which allows one to take into account the
role of charge fluctuations, would be very useful.

Here, we consider variational wave functions, which can be treated within Monte Carlo tech-
niques, as a possible route to capture the low-energy properties of strongly-correlated systems.
In particular, our approach is based on an approximate form for the ground-state wave func-
tion that contains the physically relevant terms for the correct description of the Mott insulating
state, and, at the same time, is simple enough to allow a straightforward calculation of the phys-
ical quantities. In this way, we obtain a transparent and physically intuitive way to understand
the correlation-induced localization of electrons.

In the limit of U/t → ∞ (i.e., for Heisenberg or t-J models), the general form for correlated
wave functions corresponds to fully-projected Slater determinants [9, 10], where the configu-
rations having a finite number of double occupancies are completely removed. At half-filling,
these wave functions are obviously insulating, since no charge fluctuations can occur. Within
the Hubbard model, early calculations showed that the variational description of a Mott insu-
lator is a non-trivial problem, whenever charge fluctuations are present. Indeed, the Gutzwiller
on-site correlation factor [5], which is the natural extension of the full projector in the case of
finite (on-site) interaction, gives an insulating state only in the limit of infinite repulsion (apart
from infinite dimension), while for finite Coulomb interaction it always corresponds to a cor-
related metallic state. The reason for its failure has been widely discussed in the past, and an
intuitive argument has been found in the lack of correlation among the charge carriers, which
correspond to the empty sites (holons) and doubly occupied sites (doublons), created by charge
fluctuations at finite interactions [11]. In fact, holons possess an effective positive charge, since
one electron is missing, and doublons are negatively charged objects, having one more electron
with respect to the average occupation number; if the system is perturbed with the insertion of
an electric field, holons and doublons can move freely in opposite directions, thus leading to a
metallic behavior. Variational attempts done by adding a short-range correlation term up to a
distance ξ among holons and doublons, turned out to be likewise unsuccessful [11,12]. Naively,
this happens because the configurations where holons and doublons are at distances larger than
ξ are not subject to any correlation term, hence they can move freely on the lattice and con-
duct. Following this insight, it turns out that, in order to describe a correlated insulator without
breaking any symmetry, it is necessary to correlate particles over all length scales. Let us con-
sider a more general argument in view of the above considerations. For realistic Hamiltonians,
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the dynamical properties of a system reflect the long-distance behavior of the static correlation
functions of its ground state. Within a variational approach, this implies that a good Ansatz for
an insulating state requires the correct description of the density-density correlations at large
distances or, equivalently, the correct behavior of the charge structure factor at small momenta.
For fermionic systems, the standard form for a correlated wave function is constituted by a cor-
relation term acting on a Slater determinant, the latter corresponding to an uncorrelated metallic
state. As a consequence, a variational wave function built with a short-range correlation fac-
tor cannot change the metallic character of the determinant, unless one fully suppresses charge
fluctuations, since the large distance physics remains untouched.
The above arguments suggest that a long-range correlation factor is needed in order to correctly
describe the insulating state. In particular, since we are interested in the density-density corre-
lations, a natural choice of the correlation factor contains two-body terms, which corresponds
to the so-called Jastrow factor [13]. It has been widely used in the context of liquid Helium on
the continuum, where it gives the correct behavior of the density structure factor [14,15]. Here,
the analytic form of the Jastrow parameters can be deduced from weak-coupling calculations.
Unfortunately, for the purpose of describing an insulating state, a proper analytic form of the
Jastrow parameters cannot be obtained by weak-coupling techniques. The lack of a functional
form for the Jastrow term, together with the large number of variational parameters required for
a long-range correlation factor, represented the main obstacle to the use of this wave function
in presence of strong correlation. Nowadays, this difficulty has been overcome with the help
of advanced stochastic optimization techniques, which allow one to optimize many variational
parameters independently, without assuming any functional form [16, 17].

2 The variational principle

In this section, we discuss the basic aspects of the variational principle, which represents one im-
portant pillar when searching for reliable approximations of strongly-correlated systems. Given
any approximate state |Ψ〉 for the exact ground state |Υ0〉 of a given Hamiltonian, we can define
its variational energy as

E =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (5)

Since any state in the Hilbert space can be expanded in terms of the eigenfunctions |Υi〉 of the
Hamiltonian (with energies Ei), the variational state can be written as

|Ψ〉 =
∑
i

ai|Υi〉, (6)

with ai = 〈Υi|Ψ〉. The normalization condition reads as

〈Ψ |Ψ〉 =
∑
i

|ai|2 = 1. (7)

By using the expansion of Eq. (6), we easily obtain that

ε ≡ E − E0 =
∑
i6=0

|ai|2(Ei − E0) ≥ 0, (8)
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which implies that any trial state |Ψ〉 provides an upper bound of the exact energy, thus giving a
controlled way to approximate the original problem. Then, all computational efforts are devoted
to minimizing the variational energy E.
Let us now analyze in what sense an approximate wave function, with given “distance” in
energy ε from the exact ground state, can be considered as a good approximation of the many-
body ground state |Υ0〉. A crucial role is played by the gap to the first excited state, which
is always finite in a system with Ne particles (apart from accidental degeneracies), namely
∆ = E1 − E0 > 0. From Eq. (8) and the fact that, for i 6= 0, Ei − E0 ≥ ∆, it follows that

ε ≥ ∆
∑
i6=0

|ai|2 ; (9)

then, by using the normalization condition (7), we obtain

η = 1− |a0|2 ≤
ε

∆
. (10)

This relation tells us that, in order to have an accurate approximation of the exact ground state
(i.e., η � 1), a sufficient condition is that the error ε in the variational energy has to be much
smaller than the gap ∆ to the first excited state.
The accuracy of generic correlation functions (i.e., expectation values of Hermitian operators,
which do not commute with the Hamiltonian, over |Ψ〉) is usually worse than the one on the
ground-state energy. In fact, let us consider a generic operator O and express the variational
wave function as

|Ψ〉 = a0|Υ0〉+
√
η|Υ ′〉, (11)

where |Υ ′〉 is orthogonal to the ground state |Υ0〉. Then, the difference between the expectation
value calculated with the variational state and the exact one is given by∣∣〈Ψ |O|Ψ〉 − 〈Υ0|O|Υ0〉∣∣ = ∣∣2a0√η〈Υ0|O|Υ ′〉+ η〈Υ ′|O|Υ ′〉 − η〈Υ0|O|Υ0〉

∣∣, (12)

where, for simplicity, we have assumed real wave functions. Then, whenever the variational
state is close to the exact ground state, η � √

η and we can neglect all the terms that are
proportional to η ∣∣〈Ψ |O|Ψ〉 − 〈Υ0|O|Υ0〉∣∣ ≈ 2

√
η
∣∣〈Υ0|O|Υ ′〉∣∣, (13)

which shows that the accuracy in correlation functions is more problematic than the one on the
ground-state energy, with a term proportional to

√
η.

3 The variational Monte Carlo method

3.1 General principles

Let us start by describing the general framework in which variational Monte Carlo methods
are defined. First of all, we fix a complete basis set {|x〉} in the Hilbert space, in which (for
simplicity) the states are taken to be orthogonal and normalized such that∑

x

|x〉〈x| = I. (14)
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Then, any quantum state |Ψ〉 can be written as

|Ψ〉 =
∑
x

|x〉〈x|Ψ〉 =
∑
x

Ψ(x)|x〉. (15)

In turn, the expectation value of an operator O over a given variational wave function |Ψ〉 takes
the following form

〈O〉 = 〈Ψ |O|Ψ〉
〈Ψ |Ψ〉

=

∑
x〈Ψ |x〉〈x|O|Ψ〉∑
x〈Ψ |x〉〈x|Ψ〉

. (16)

The main problem in evaluating the expectation value is that the number of configurations in
the sum is exponentially large with the number of particles. Therefore, for large systems, it
is impossible to perform an exact enumeration of the configurations to compute 〈O〉 exactly.
Nevertheless, Eq. (16) can be recast into a form that can be easily treated by standard Monte
Carlo methods. Indeed, we have that

〈O〉 =
∑

x |Ψ(x)|2OL(x)∑
x |Ψ(x)|2

, (17)

where we have defined the local estimator of the operator O

OL(x) =
〈x|O|Ψ〉
〈x|Ψ〉

. (18)

The important point is that

P(x) = |Ψ(x)|2∑
x |Ψ(x)|2

(19)

can be interpreted as a probability, since it is a non-negative quantity for all configurations |x〉
and is normalized, i.e.,

∑
xP(x) = 1. Therefore, the problem of computing a quantum average

of the operator O can be rephrased into the calculation of the average of the random variable
OL(x) over the distribution probability P(x)

〈O〉 =
∑
x

P(x)OL(x). (20)

In particular, if we consider the expectation value of the Hamiltonian, the local estimator corre-
sponds to the so-called local energy, which is defined by

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

. (21)

An important feature of the variational Monte Carlo approach is the zero-variance property. Let
us suppose that the variational state |Ψ〉 coincides with an exact eigenstate ofH (not necessarily
the ground state), namelyH|Ψ〉 = E|Ψ〉. Then, it follows that the local energy eL(x) is constant

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

= E
〈x|Ψ〉
〈x|Ψ〉

= E. (22)
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Therefore, the random variable eL(x) does not depend on |x〉, which immediately implies that
its variance is zero, while its mean value E coincides with the exact eigenvalue (in other words,
eL(x) is not a random variable). Clearly, this is an extreme case that is very rare for generic
correlated models. However, in general, the variance of eL(x) will decrease its value when-
ever the variational state |Ψ〉 will approach an exact eigenstate. This fact is very important to
reduce the statistical fluctuations and improve the numerical efficiency. The zero-variance prop-
erty is a feature that exists only for quantum expectation values, while it is absent in classical
calculations, where observables have thermal fluctuations.

3.2 Markov chains

Instead of an exact enumeration of all configurations {|x〉} in the Hilbert space, the quantum
average of the operator O is evaluated by sampling a set of configurations {|xn〉} that are dis-
tributed according to the probability P(x), such that

〈O〉 ≈ 1

N

N∑
n=1

OL(xn). (23)

From now on, we denote configurations by using only x, dropping the ket notation. The idea to
sample a generic probability distribution is to construct a non-deterministic, i.e., random, pro-
cess for which a configuration xn evolves as a function of a discrete iteration time n according
to a stochastic dynamics. A particularly simple case is given by the so-called Markov chains,
where the configuration at time n+1 just depends upon the one at time n

xn+1 = F (xn, ξn), (24)

where the function F is taken to be time independent. The stochastic nature of the dynamics (24)
is due to the fact that F depends upon a random variable ξn that is distributed according to a
probability density χ(ξn). Here, the main point is to define a suitable function F such that the
configurations xn will be distributed (for large enough time n) according to the probability that
we want to sample. Notice that, although ξn and ξn+1 are independent random variables, xn ≡ x

and xn+1 ≡ x′ are not independent. The joint probability distribution of these variables can be
decomposed into the product of the marginal and the conditional probability

Pjoint,n(x
′, x) = ω(x′|x)Pn(x), (25)

where the conditional probability is such that ω(x′|x) ≥ 0 for all x and x′ and satisfies the
following normalization ∑

x′

ω(x′|x) = 1. (26)

It represents the probability that, having the configuration x at the iteration n, x′ appears at
n+1; its actual form depends upon the function F (x, ξ) and the probability distribution χ(ξ).
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We are now in the position of deriving the so-called Master equation, associated to the Markov
chain. Indeed, the marginal probability of the variable x′ is given by

Pn+1(x
′) =

∑
x

Pjoint,n(x
′, x), (27)

so that, by using Eq. (25), we get

Pn+1(x
′) =

∑
x

ω(x′|x)Pn(x). (28)

This equation allows us to calculate the evolution of the marginal probabilityPn(x) as a function
of n, since the conditional probability ω(x′|x) is determined by the stochastic dynamics in
Eq. (24) and does not depend upon n.
The important question about the Markov process is to understand under which conditions the
sequence of distributions Pn(x) converges to some limiting (i.e., equilibrium) distribution P(x)
or not. In particular

1. Does a stationary distribution P(x) exist?

2. Is the convergence to P(x) guaranteed when starting from a given arbitrary P0(x)?

The first question requires that

P(x′) =
∑
x

ω(x′|x)P(x). (29)

In order to satisfy this condition, it is sufficient (but not necessary) to satisfy the so-called
detailed balance condition

ω(x′|x)P(x) = ω(x|x′)P(x′). (30)

The second question requires the ergodicity condition, i.e., the possibility to reach any state x
from any other one x′ by performing a finite number of steps.

3.3 The Metropolis-Hastings algorithm

Finally, we present a practical way of constructing a conditional probability ω(x′|x) that sat-
isfies the detailed balance condition (30), such that, for large values of n, the configurations
xn are distributed according to a given probability distribution P(x). Metropolis and collab-
orators [18] introduced a very simple scheme, which is also very general and can be applied
to many different cases. Later, the so-called Metropolis algorithm has been extended to more
general cases by Hastings [19] (very often, the name of “Metropolis-Hastings algorithm” is also
used). As a first step, we split the transition probability ω(x′|x) into two pieces

ω(x′|x) = T (x′|x)A(x′|x), (31)

where T (x′|x) defines a trial probability that proposes the new configuration x′ from the present
one x and A(x′|x) is the acceptance probability. In the original work by Metropolis and co-
workers, the trial probability has been taken symmetric, i.e., T (x′|x) = T (x|x′). However,
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in the generalized version of the algorithm T (x′|x) can be chosen with large freedom, as long
as ergodicity is ensured. Then, in order to define a Markov process that satisfies the detailed
balance condition, the proposed configuration x′ is accepted with a probability

A(x′|x) = min

{
1,
P(x′)T (x|x′)
P(x)T (x′|x)

}
. (32)

Without loss of generality, we can always choose T (x|x) = 0, namely we never propose to
remain with the same configuration. Nevertheless, ω(x|x) can be finite, since the proposed
move can be rejected. The actual value of ω(x|x) is fixed by the normalization condition∑

x′ ω(x
′|x) = 1.

The proof that detailed balance is satisfied by considering the acceptance probability of Eq. (32)
is very simple. Indeed, let us consider the case in which x and x′ 6= x are such that

P(x′)T (x|x′)
P(x)T (x′|x)

> 1, (33)

in this case, we have that

A(x′|x) = 1, (34)

A(x|x′) = P(x)T (x
′|x)

P(x′)T (x|x′)
; (35)

then, we can directly verify that the detailed balance is satisfied. A similar proof can be obtained
in the opposite case where P(x′)T (x|x′)/[P(x)T (x′|x)] < 1.

4 Variational wave functions

4.1 The Hartree-Fock wave function

For fermionic models, the simplest example for a variational wave function is given by the
Hartree-Fock approximation, where the many-body state is taken to be a product state of suit-
ably optimized single-particle orbitals

|ΨHF〉 =
Ne∏
α=1

Φ†α|0〉; (36)

here, Φ†α can be expressed in terms of the original fermionic operators as

Φ†α =
∑
i

W ∗
↑,α,ic

†
i,↑ +

∑
i

W ∗
↓,α,ic

†
i,↓ , (37)

where {Wσ,α,i} are complex coefficients that can be optimized to get the best variational state.
The condition that orbitals are normalized and orthogonal to each other implies that∑

i

(
W↑,α,iW

∗
↑,β,i +W↓,α,iW

∗
↓,β,i
)
= δα,β . (38)
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The expectation value of any Hamiltonian can be easily evaluated analytically. On the lattice, it
is relatively simple to obtain a solution for the Hartree-Fock equations by using iterative meth-
ods. However, while the Hartree-Fock approximation may give reasonable results in the weak-
coupling regime, its accuracy becomes questionable for moderate and strong interactions. For
example, a Mott insulator, with no symmetry breaking, cannot be described within this approxi-
mation; moreover, it is also not possible to stabilize superconducting phases in purely repulsive
Hamiltonians. Therefore, a step forward is needed, in order to reach a better description of
strongly-correlated systems.

4.2 The Gutzwiller wave function

The simplest example of a correlated state, which goes beyond the Hartree-Fock approximation,
has been proposed by Gutzwiller to describe the effect of the Hubbard-U interaction in reducing
the weight of configurations with doubly-occupied sites [5]. The Gutzwiller wave function is
constructed by starting from the ground state |Φ0〉 of the U = 0 model and then applying an
operator PG that suppresses the weight of configurations with doubly-occupied sites

|ΨG〉 = PG|Φ0〉; (39)

here, PG is the so-called Gutzwiller factor that depends upon a single variational parameter g
(e.g., g > 0 for the repulsive Hubbard model)

PG = exp

[
−g
2

∑
i

(ni − n)2
]
, (40)

where n is the average density.
The effect of the Gutzwiller factor becomes clear once the variational state is expanded in a
basis set whose elements {|x〉} represent configurations with particles sitting on the lattice sites.
Indeed, since the Gutzwiller factor is diagonal in this basis (it contains the density operator on
each site ni), we have that

〈x|ΨG〉 = PG(x)〈x|Φ0〉, (41)

where PG(x) ≤ 1 is a number that depends on how many doubly-occupied sites are present in
the configuration |x〉. Therefore, the amplitude of the non-interacting state 〈x|Φ0〉 is renormal-
ized by PG(x).
For the Hubbard model with a generic hopping amplitude ti,j , when the particle density is
n = 1, a metal-insulator transition is expected at finite values of U/t. However, a simple argu-
ment suggests that the Gutzwiller wave function can describe such a transition only when the
variational parameter g tends to infinity. Indeed, for n = 1, on average, there is one particle per
site and density excitations are represented by doublons and holons. In the non-interacting state
|Φ0〉, these objects are free to move and then responsible for the conductivity (a doublon is neg-
atively charged with respect to the average background, while the holon is positively charged).
The effect of the Gutzwiller factor is to penalize the formation of such objects; however, once



Variational Wave Functions 5.11

created, doublons and holons are no longer correlated, thus being free to move independently.
Only when the energetic penalty is infinite, an insulator is obtained; here, all the density degrees
of freedom are frozen and no transport is possible, implying an oversimplified description of
a true insulator, where instead density fluctuations are always present. Extensive calculations
have shown that g remains finite for all values of U/t and diverges only for U/t =∞ [20, 21].

4.3 The fully-projected Gutzwiller wave function

Here, we briefly discuss the limit of g =∞, which corresponds to the fully-projected Gutzwiller
state. For n = 1, the Gutzwiller factor becomes a projector in the sub-space with only singly-
occupied sites

P∞ =
∏
i

(ni,↑ − ni,↓)2 , (42)

which implies that all configurations with empty or doubly occupied sites are annihilated. In
fermionic models, there is still an exponentially large number of states with one electron per
site, which differ by their spin configurations. Therefore, non-trivial spin fluctuations are still
allowed. These kinds of fully-projected wave functions |Ψ∞〉 = P∞|Φ0〉 have been considered
within the so-called resonating-valence bond (RVB) approach, which has been proposed by
Anderson to capture the physics of exotic magnetic systems (spin liquids) [22] in frustrated
Heisenberg models [23].
The case to include empty sites, which is relevant when n < 1, has been widely used to describe
high-temperature superconductors in the t-J model [9,10]. In this case the Gutzwiller projection
is written as

P∞ =
∏
i

(1− ni,↑ni,↓) , (43)

which annihilates all configurations containing doubly-occupied sites, but leaving untouched
configurations with only empty and singly-occupied sites.

4.4 The Jastrow wave function

As we have discussed above, the variational description of an insulator with density fluctuations
is not captured by the simple Gutzwiller wave function (39) and requires a modification of
the correlation term that is applied to the non-interacting wave function. A straightforward
generalization of the Gutzwiller wave function is given by the inclusion of long-range terms in
the correlator

|ΨJ〉 = J |Φ0〉, (44)

where J is the Jastrow factor [13] that has been introduced in continuum models much before
the Gutzwiller wave function. On the lattice, J takes a simple form

J = exp

[
−1

2

∑
i,j

vi,j(ni − n)(nj − n)

]
, (45)
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where vi,j is a pseudo-potential for density-density correlations in the variational state. For
translationally invariant models, vi,j only depends upon the relative distance of the two sites i
and j, i.e., |Ri−Rj|; moreover, the on-site term vi,i corresponds to the Gutzwiller parameter g.
The Jastrow pseudo-potential can be either parametrized in some way, in order to reduce the
number of variational parameters, or optimized for all possible distances, which are O(L) in
translationally invariant systems. The role of the long-range tail of the Jastrow factor is to
create a bound state between holons and doublons, possibly impeding conduction, but still
allowing local density fluctuations. Indeed, we have shown that such Jastrow terms may turn
a non-interacting metallic state |Φ0〉 into an insulator [24, 25]. In particular, by denoting the
Fourier transform of the (translationally invariant) pseudo-potential vi,j by vq, the gapless (i.e.,
metallic) phase is described by having vq≈1/|q| for |q| → 0, in any spatial dimension d; by
contrast, a fully gapped (i.e., insulating) phase is obtained in one-dimension with vq≈1/|q|2 for
|q| → 0 [24]. This singular behavior of the pseudo-potential induces an exponential decay of the
density-density correlations. In two and three spatial dimensions, a holon-doublon bound-state
is generated by vq ≈ β/|q|d for a sufficiently large value of β [25]. However, these behaviors of
the pseudo-potential, which are obtained by an energy minimization, are not sufficient to have
a fully gapped phase, since a residual power-law behavior in the density-density correlations is
still present.
The Jastrow wave function of Eq. (44) has been introduced to study models on the contin-
uum [13] and has been employed to perform the first quantum Monte Carlo calculation in a
many-body system [14]. More precisely, a system of interacting bosons has been considered
to model the ground-state properties of 4He in three spatial dimensions with Lennard-Jones
interactions. Here, in a first-quantization notation, the wave function with Nb bosons reads

ΨJ(r1, . . . , rNb
) =

∏
i<j

f(ri,j) = exp

[
−
∑
i<j

u(ri,j)

]
, (46)

where {ri} are the coordinates of the bosons and f(ri,j) = exp[−u(ri,j)] is a function that
depends upon the relative distance between two bosons ri,j = |ri − rj|. Notice that the wave
function of Eq. (46) is totally symmetric when exchanging two particles, thus having the correct
symmetry for a bosonic wave function.
A suitable correlated wave function for Ne fermions can be obtained by applying the sym-
metric Jastrow factor

∏
i<j f(ri,j) to a (anti-symmetric) Slater determinant, which, by using

first-quantization notations, reads as

ΨHF(r1, . . . , rNe) = det{φα(rj)}, (47)

where {φα(rj)} is a set of one-particle orbitals. Then the Jastrow-Slater wave function is given
by

ΨJS(r1, . . . , rNe) =
∏
i<j

f(ri,j)× ΨHF(r1, . . . , rNe). (48)

In total, this wave function is anti-symmetric when exchanging two particles and, therefore, has
the correct symmetry for a fermionic state.
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4.5 The backflow wave function

An alternative way to include some correlation inside the original variational state is to introduce
a parametrization that allows the orbitals to depend upon the positions of the other particles,
leading to the concept of backflow correlations. In quantum systems, a particle that moves is
surrounded by a counter-flow generated by all the other particles; the existence of this flow
pattern pushes away the particles, thus preventing a significant overlap among them. This idea
has been originally introduced by Wigner [26] and then developed by Feynman [27, 28] in
the context of excitations in 4He and the effective mass of a 3He impurity in liquid 4He. In
the fermionic case, the Slater determinant is not constructed with the actual positions of the
electrons (r1, . . . , rNe), see Eq. (47), but with new “coordinates” given by

rbi = ri +
∑
j 6=i

η(|ri − rj|)(rj − ri), (49)

where η(|ri − rj|) is a suitable function that describes the effective displacement of the i-th
particle due to the j-th one. The simplest wave function is built by taking plane-waves with
positions given by {rbi}. The effect of backflow correlations introduces many-body effects
inside the Slater determinant, since, when the i-th electron is moved, all the new “coordinates”
are modified, such that all particles respond to the movement of the single electron, adapting
their positions accordingly.
Wave functions including both Jastrow factors and backflow correlations have been used to
study Helium systems within the so-called hyper-netted chain approximation [29, 30]. They
also have been used in Monte Carlo calculations to compute the properties of the homogeneous
electron gas in two and three spatial dimensions [31, 32]. The advantage of the backflow wave
function is that a single Slater determinant is used, allowing us to perform calculations with a
large number of particles.
More recently, the same idea of modifying the single-electron orbitals to improve variational
wave functions has been extended for lattice models [33, 34]. Here, the transformation (49)
cannot be applied, since electrons live on the lattice sites. Nevertheless, we can imagine that the
amplitudes of the Hartree-Fock orbitals (37) are changed according to the many-body configu-
ration

W b
σ,i,α = η0Wσ,i,α +

∑
j 6=i

ηjOi,jWσ,j,α, (50)

where {ηj} is a set of variational parameters and Oi,j is a generic many-body operator that acts
on the sites i and j. For example, within the repulsive Hubbard model, the formation of holon-
doublon pairs is energetically expensive for large values of U/t; therefore, these objects tend to
recombine into singly-occupied sites. In this case, we can consider a many-body operatorOi,j =
DiHj , where Di (Hi) is the operator that gives 1 if the site i is doubly occupied (empty) and 0

otherwise. Then, the many-body state, which is constructed by taking the Slater determinant of
these new “orbitals”, will contain terms with single occupation, thus releasing the energy. More
complicated expressions of the new “orbital” can be considered, as described in Refs. [33, 34].
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5 Practical implementations

In the Monte Carlo evaluation of quantum averages, see Eq. (20), we must compute

• The ratio of probabilities with different configurations, which implies the ratio of overlaps
between the given variational state and two configurations of the basis set

P(x′)
P(x)

=

∣∣∣∣〈x′|Ψ〉〈x|Ψ〉

∣∣∣∣2 , (51)

as required in the Metropolis algorithm.

• The local estimatorOL(x), which, in turn, implies ratios of overlaps and matrix elements
of the observable between states of the basis set. For example, when considering the
energy, we have

eL(x) =
〈x|H|Ψ〉
〈x|Ψ〉

=
∑
x′

〈x|H|x′〉〈x
′|Ψ〉
〈x|Ψ〉

. (52)

Naively, the computation of the local estimator looks a tremendously hard task, since it requires
a summation over all the states of the many-body Hilbert space; however, thanks to the locality
of the Hamiltonian (or, similarly, any other local operator or correlation function), only few
terms actually contribute to the sum. Indeed, given the configuration |x〉, the matrix element
〈x|H|x′〉 is non-zero only for O(L) configurations |x′〉. As an example, let us consider the
fermionic Hubbard model: by using the local basis, |x〉 is connected only to few other configu-
rations that differ for the hopping of one electron from a given site to one of its neighbors; then,
the maximum number of such processes is equal to the number of sites L times the number of
bonds times 2 (due to the spin). Therefore, the computation of the local estimator only requires
a small number of operations, usually proportional to the number of sites/particles.
Therefore, the building block of the variational Monte Carlo approach is the computation of
〈x|Ψ〉, which is the amplitude of the variational state over a generic element of the basis set.
More precisely, along all the Markov process, only ratios of these overlaps must be computed.
This calculation must be done for each configuration that is visited along the Markov process
and, therefore, it must be done as fast as possible. This fact imposes some constraint on the
form of the variational wave function. Usually, fermionic states require the calculation of deter-
minants. Fortunately, there are fast (i.e., polynomial) algorithms to evaluate determinants, thus
allowing us to consider these states as variational Ansätze for electron systems.

5.1 The Jastrow factor

Let us focus on the Jastrow factor of Eq. (45). For a translational invariant model, vi,j only
depends upon the distance between i and j, thus the number of parameters can be reduced to
O(L). We would like to remark that, within the Monte Carlo approach, it is possible to treat
exactly (but still having statistical errors) the limit of singular Jastrow factors with vi,i = ∞,
e.g., the Gutzwiller projector that eliminates all doubly-occupied sites (this case being relevant
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for an infinite Hubbard-U interaction). Indeed, this case can be easily incorporated by building
a Markov chain where only configurations |x〉 that satisfy this constraint are visited.
The advantage of considering the Jastrow-Slater wave function in the variational Monte Carlo
technique is that the calculations can be extremely efficient and fast. Indeed, whenever the
Jastrow factor is diagonal in the chosen basis, we have that

〈x|ΨJ〉 = J (x)〈x|Φ0〉, (53)

where J (x) is the value of the Jastrow operator computed for the configuration |x〉, i.e., J |x〉 =
J (x)|x〉. Therefore, given the electronic configuration, J (x) is a number that can be eval-
uated in O(L2) operations, thus leading to the same complexity when computing the ratio
J (x′)/J (x) that appears in the Metropolis ratio (51). However, whenever the two configu-
rations differ only by few electron hoppings, it is possible to apply a fast computation of the
ratio, which involves O(L) operations.
Finally, we emphasize that, in order to have a polynomial algorithm, the Jastrow factor must
only contain operators that are diagonal in the basis |x〉, otherwise J |x〉 would generate an
exponentially large number of states, ruling out any calculation on large systems.

5.2 Slater determinants

A generic Slater determinant can be obtained as the ground state of a suitable quadratic Hamil-
tonian H0. First of all, we contract the spin index σ and the lattice site i into a single index I
running from 1 to 2L

ci,↑ ≡ di , (54)

ci,↓ ≡ di+L. (55)

Then, we start from the simple case in which the non-interacting Hamiltonian is written as

H0 =
∑
I,J

tI,Jd
†
IdJ , (56)

which contains hopping terms only, also including processes in which the spin along z is not
conserved, i.e., the terms with I ≤ L and J > L and vice-versa. In a compact form, the
non-interacting Hamiltonian of Eq. (56) can be written as

H0 = d†Td , (57)

where
d† =

(
d†1 . . . d†2L

)
(58)

and

T =

 t1,1 . . . t1,2L
... . . . ...

t2L,1 . . . t2L,2L

 . (59)
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Since H0 commutes with the total number of electrons Ne =
∑

I d
†
IdI , the eigenstates are

single-particle orbitals. In practice, the 2L × 2L matrix T can be easily diagonalized by using
standard libraries (e.g., LAPACK routines)

H0 = d†U U†TU U†d = Φ†EΦ =
∑
α

εαφ
†
αφα, (60)

where U is a unitary matrix (that preserves anti-commutation relations of fermionic operators),
E = diag(ε1, . . . , ε2L) is the diagonal matrix containing the 2L eigenvalues εα of T, and Φ† =

(φ†1, . . . , φ
†
2L) is defined in terms of the eigenvectors of T

φ†α =
∑
I

UI,αd
†
I . (61)

Now, the many-body state |Φ0〉 can be constructed by occupying the Ne lowest-energy orbitals

|Φ0〉 =
Ne∏
α=1

φ†α|0〉 =

(∑
I

UI,1d
†
I

)
. . .

(∑
I

UI,Ned
†
I

)
|0〉. (62)

The generic configuration, with Ne electrons, which is visited along the Markov process, reads

|x〉 = d†R1
. . . d†RNe

|0〉, (63)

where j = 1, . . . , Ne includes both up and down spins and Rj assumes values from 1 to 2L: the
positions of spin-up electrons coincide with the site number, while the positions of spin-down
electrons must be shifted by L. The overlap 〈x|Φ0〉 is then given by

〈x|Φ0〉 = 〈0|dRNe
. . . dR1

(∑
I

UI,1d
†
I

)
. . .

(∑
I

UI,Ned
†
I

)
|0〉

= 〈0|dRNe
. . . dR1

[∑
p

(−1)p
Ne∏
α=1

Up{Rj},α

]
d†R1

. . . d†RNe
|0〉, (64)

where the sum inside the square bracket is over all the possible permutations of the {Rj} in |x〉;
the sign appears because of the anti-commutation relations of fermionic operators. Then, we
get

〈x|Φ0〉 = det{URj ,α}. (65)

When constructing the many-body state (62), we must pay attention to construct a unique many-
body state, i.e., occupy the correct lowest-energy orbitals. When the highest-occupied orbital
and the lowest-unoccupied one have different energies (closed shell configuration), the choice is
unique. Instead, it can also happen that there is a degeneracy that does not allow a unique choice
(open shell configuration). Whenever the non-interacting Hamiltonian H0 is diagonalized nu-
merically, the eigenstates provided by standard libraries do not carry definite quantum numbers
(like momentum), but are given by generic linear combinations of degenerate orbitals (which
erratically depend on the numerical precision used for the computation). This is not a problem
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whenever all the degenerate eigenstates are included in the many-body state (62), since taking
any linear combination of columns in the matrix U will not change the value of the determinant
in Eq. (65). By contrast, not including all degenerate eigenstates will cause a problem, since the
determinant will depend on the particular combination of states that is considered. Therefore,
whenever a numerical diagonalization is done, we must verify that a closed-shell configuration
occurs. Otherwise, the problem of having a vanishing gap can be overcome by constructing
suitable orbitals with definite quantum numbers, to obtain a reproducible simulation of the
many-body state.
In practice, the diagonalization of the non-interacting Hamiltonian H0 must be performed at
the beginning of the Monte Carlo calculation; then, we need to store the reduced part of the
U, obtained by keeping only the Ne columns that correspond to occupied orbitals. This is a
2L×Ne matrix

U =

 U1,1 . . . U1,Ne

... . . . ...
U2L,1 . . . U2L,Ne

 . (66)

Then, the overlap with a generic electronic configuration is given by the determinant of the
matrix obtained by considering only the rows of (66) corresponding to the electron positions
{Rj}, thus giving a Ne ×Ne matrix.
Remarkably, the same kind of formalism can be used also if the non-interacting Hamiltonian
contains an electron pairing that couples up and down spins. Indeed, let us consider a Bardeen-
Cooper-Schrieffer (BCS) Hamiltonian described by

H0 =
∑
i,j,σ

ti,jc
†
i,σcj,σ − µ0

∑
i,σ

c†i,σci,σ +
∑
i,j

∆i,jc
†
i,↑c
†
j,↓ + h.c., (67)

where we have included a chemical potential µ0, which fixes, on average, the number of elec-
trons. In this case, the total number of particles is not conserved and the concept of single-
particle orbitals is not defined. Indeed, the ground state of the BCS Hamiltonian is naturally
written in terms of a pairing function. Nevertheless, we can perform a particle-hole transforma-
tion on the spin-down electrons

ci,↑ → fi,↑ ≡ di (68)

ci,↓ → f †i,↓ ≡ d†i+L. (69)

Then, apart from constant terms, the transformed BCS Hamiltonian has the form of Eq. (57).
Since, after the particle-hole transformation, the number of particles (but not the z component of
the spin) is conserved, the eigenstates of the BCS Hamiltonian can be expressed into “orbitals”,
similarly to the ones of Eq. (61), but without having a definite spin component along z.

5.3 Fast computation of the determinants

Let us now show how to compute efficiently the ratio of determinants when the two configu-
rations |x〉 and |x′〉 differ by one or few electron hoppings. According to Eq. (65) the overlap
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〈x|Φ0〉 is given by the determinant of Ũj,α ≡ URj ,α

Ũ =


UR1,1 . . . UR1,Ne

... . . . ...
URl,1 . . . URl,Ne

... . . . ...
URNe ,1

. . . URNe ,Ne

 , (70)

which is obtained taking only the rows corresponding to the occupied sites of the matrix U of
Eq. (66).
Let us start and consider the electronic configurations in which |x′〉 is obtained from |x〉 just by
hopping the one electron from Rl to R′l, i.e., |x′〉 = d†R′

l
dRl
|x〉. The new matrix Ũ′ will be equal

to Ũ, except that the elements of the l-th row will be changed from URl,α to UR′
l,α

Ũ′ =


UR1,1 . . . UR1,Ne

... . . . ...
UR′

l,1
. . . UR′

l,Ne

... . . . ...
URNe ,1

. . . URNe ,Ne

 . (71)

Then, the ratio between two configurations that differ only by a single fermion hopping is

〈x′|Φ0〉
〈x|Φ0〉

=
〈x|d†Rl

dR′
l
|Φ0〉

〈x|Φ0〉
=

det Ũ′

det Ũ
. (72)

By denoting withK the new site of the l-th electron (i.e., K ≡ R′l), the updated matrix elements
are given by a compact form

Ũ ′j,α = Ũj,α + δj,l(UK,α − Ũl,α) = Ũj,α + δj,lv
K,l
α , (73)

where we have defined vK,lα ≡ UK,α− Ũl,α; here the indicesK and l are fixed, since they specify
the site where the electron is hopping and the electron index, respectively. This equation can be
rewritten in the following way

Ũ ′j,α =
∑
β

Ũj,β

(
δβ,α + Ũ−1β,l v

K,l
α

)
=
∑
β

Ũj,βQβ,α , (74)

where
Qβ,α = δβ,α + Ũ−1β,l v

K,l
α . (75)

Therefore, Ũ′ = ŨQ, which implies that the calculation of the ratio of the determinants of Ũ′

and Ũ is equivalent to the calculation of the determinant of Q

det Ũ′

det Ũ
= detQ. (76)
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The great simplification comes from the fact that the determinant of Q can be easily computed.
Indeed, Q has a particularly simple form that can be written as

Qβ,α = δβ,α + BβAα, (77)

where Bβ = Ũ−1β,l and Aα = vK,lα . Although the matrix is not Hermitian, the eigenvalues of the
matrix Q can be obtained from the secular equation∑

α

Qβ,αυα = λυβ; (78)

by using the explicit form of Eq. (77), we obtain

υβ + Bβ
∑
α

Aαυα = λυβ, (79)

which implies that all vectors υα that are orthogonal to Aα are eigenvectors with eigenvalue
λ = 1 (there are Ne − 1 of such vectors); in addition, υα = Bα is also eigenvector with
λ = 1 +

∑
αAαBα =

∑
α UK,αŨ

−1
α,l . Therefore, we have that

det Ũ′

det Ũ
= detQ =

∑
α

UK,αŨ
−1
α,l . (80)

Having stored (at the beginning of the simulation) the matrix Ũ−1 for the configuration |x〉, this
calculation requires O(Ne) operations, instead of the O(N3

e ) needed to evaluate a determinant.
Then, once the new configuration |x′〉 is accepted along the Markov process, the matrix Ũ−1

must be updated. This can be done in O(N2
e ) operations. In fact, we have that (Ũ′)−1 =

Q−1Ũ−1, the inverse of the matrix Q being given by (as easily verified)

Q−1α,β = δα,β −
1

detQ
BαAβ. (81)

Then, the updated matrix elements of (Ũ′)−1 are given by

Ũ−1′α,j = Ũ−1α,j −
Ũ−1α,l
detQ

(∑
β

UK,βŨ
−1
β,j − δl,j

)
. (82)

This is a closed equation for updating the matrix Ũ−1.
We would like to emphasize that the previous results for the calculation of the ratio of determi-
nants and the updating can be further simplified. Indeed, at the beginning of the calculation, we
can compute and store a 2L×Ne matrix W, whose elements are given by

WI,j =
∑
α

UI,αŨ
−1
α,j ; (83)

then the ratio of determinants (80) costs O(1) operations, since it consists in taking the element
corresponding to the new site (row) and the electron performing the hopping process (column)

det Ũ′

det Ũ
= WK,l. (84)



5.20 Federico Becca

The evaluation of W requires the knowledge of the full matrix U, which has been computed and
stored once for all at the beginning of the simulation (it does not depend upon the electronic
configuration), and Ũ−1, which instead depends upon the configuration |x〉. Then, a simple
updating scheme for W is possible. In fact, by multiplying both sides of Eq. (82) by UI,α and
summing over α, we obtain

W ′
I,j = WI,j −

WI,l

WK,l

(WK,j − δl,j) , (85)

where, we have used that detQ = WK,l, according to Eq. (84) and the definition of Eq. (83).
Since each matrix element must be updated with O(1) operations, the total cost is O(2LNe).
Let us finish this part by generalizing the previous formalism to the case where more than one
electron hop, i.e., |x′〉 = d†R′

l1

dRl1
. . . d†R′

lm

dRlm
|x〉, thus leading to a modification of m rows of

the Ũ matrix; for example, this could be the case for pair-hopping or spin-flip processes. Then,
Eq. (73) generalizes into

Ũ ′j,α = Ũj,α +
m∑
r=1

δj,lr(UKr,α − Ũlr,α) = Ũj,α +
m∑
r=1

δj,lrv
Kr,lr
α ; (86)

as before, the indices Kr and lr (for r = 1, . . . ,m) are fixed, because they specify the sites
where the electrons are hopping and the electron indices, respectively. By performing the same
algebra as before, we get

Ũ ′j,α =
∑
β

Ũj,β

(
δβ,α +

m∑
r=1

Ũ−1β,lrv
Kr,lr
α

)
=
∑
β

Ũj,βQβ,α, (87)

where now the matrix Q has the following form

Qβ,α = δβ,α +
m∑
r=1

BrβArα, (88)

where Brβ = Ũ−1β,lr andArα = vKr,lr
α . As before, the determinant of Q can be easily computed by

solving the corresponding eigenvalue problem

∑
α

Qβ,αυα = υβ +
m∑
r=1

Brβ
∑
α

Arαυα = λυβ, (89)

which implies that all vectors that are orthogonal to the subspace defined by theArα’s are eigen-
vectors with λ = 1; moreover, υα =

∑m
r=1 xrBrα is an eigenvector provided that the coefficients

xr satisfy
m∑
s=1

(
δr,s +

∑
α

ArαBsα

)
xs = λxr. (90)

Therefore, the m non-trivial eigenvalues of Q are those of the m×m matrix

Cr,s = δr,s +
∑
α

ArαBsα = WKr,ls . (91)
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The final expression of the ratio of the two determinants is given by

det Ũ′

det Ũ
= det(WKr,ls). (92)

Also in this case, once the move is accepted, we have to update the matrix (Ũ′)−1 = Q−1Ũ−1.
As before, the inverse of the Q matrix can be obtained

Q−1α,β = δα,β −
m∑

r,s=1

BrαC−1r,sAsβ . (93)

Therefore, we get

Ũ−1′α,j = Ũ−1α,j −
m∑

r,s=1

Ũ−1α,lrC
−1
r,s

(∑
β

UKs,βŨ
−1
β,j − δls,j

)
. (94)

Then, the updated W′ is obtained by multiplying both sides of the previous equation by Ui,α
and summing over α

W ′
I,j = WI,j +

m∑
r=1

WI,lrb
(r)
j , (95)

where

b
(r)
j = −

m∑
s=1

C−1r,s
(
WKs,j − δls,j

)
. (96)

5.4 Backflow correlations

Here, we would like to discuss how to implement the updating of the determinant part in the
presence of backflow correlations that have been introduced on lattice problem. In practice, we
consider a quadratic Hamiltonian to construct the non-interacting orbitals {UI,α}, see Eq. (61).
In the simplest approach, in which the backflow correlations act on holon-doublon (nearest-
neighbor) pairs [33], the overlap between the generic configuration |x〉 and the backflow wave
function |Φb0〉 is constructed from the “correlated” orbital with backflow correction

U b
I,α = η0UI,α + η1

∑
〈j〉i

DiHjUJ,α, (97)

where I = i (I = i + L) for electrons with spin up (down), and equivalently for J and j; 〈j〉i
indicates the sites j that are nearest neighbors of i; Di (Hi) is the operator that gives 1 if the
site i if doubly occupied (empty) and 0 otherwise; finally η0 and η1 are variational parameters.
Then, the wave function for the given configuration |x〉 is obtained by taking the determinant of
the matrix

Ũb =

 U b
R1,1

. . . U b
R1,Ne

... . . . ...
U b
RNe ,1

. . . U b
RNe ,Ne

 , (98)

in which the rows correspond to the sites occupied by the electrons.
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In practice, we can consider more general forms for the “correlated” orbitals, by considering
further terms [34], but still remaining with the spirit of considering a linear combination of non-
interacting orbitals depending on the many-body configuration |x〉 (in the previous case, the
linear combination is taken for configurations having holons and doublons at nearest-neighbor
sites).

6 Optimization techniques

6.1 Calculation of derivatives

In this section, we consider wave functions that depend upon a set of p variational parameters,
which are arranged into a vector α = (α1, . . . , αp) and explicitly specified in the definition of
the quantum state

Ψα(x) = 〈x|Ψα〉, (99)

In the following, we discuss the basics ingredients that are necessary to compute the derivatives
of the variational energy with respect to a given variational parameter αk

fk = −
∂Eα
∂αk

= − ∂

∂αk

〈Ψα|H|Ψα〉
〈Ψα|Ψα〉

. (100)

The dependence of Eα on the variational parameters is just a consequence of the fact that the
wave function |Ψα〉 depends upon α. Thus, in order to differentiate Eα, it is convenient to
expand |Ψα〉 for small changes αk → αk + δαk. For a given configuration |x〉, where Ψα(x) is
a complex number (in case of complex parameters, we can assume that all the αk are real, once
we consider their real and imaginary parts separately), we have that

Ψα+δαk
(x) = Ψα(x) + δαk

∂Ψα(x)

∂αk
+O(δα2

k), (101)

where the notation Ψα+δαk
(x) means that only the component αk of the vector α has been in-

cremented by δαk. In the following, for simplicity, we assume that Ψα(x) 6= 0 for all the config-
urations. For fermionic systems in the continuous space, the nodal region Ψα(x) = 0 represents
a negligible (i.e., with zero measure) integration domain. On the lattice, accidental configu-
rations with Ψα(x) = 0 can be removed by considering a tiny perturbation of the variational
Ansatz (e.g., by adding a small noisy part) and considering the limit of vanishing perturbation.
Then, Eq. (101) can be formally written in terms of a local operator Ok, corresponding to the
parameter αk and defined by diagonal matrix elements Ok(x)

〈x|Ok|x′〉 = δx,x′Ok(x), (102)

Ok(x) =
∂ lnΨα(x)

∂αk
=

1

Ψα(x)

∂Ψα(x)

∂αk
; (103)

here, in principle, Ok(x) may depend upon the variational parameters α, however, to keep the
notation simple, we prefer not to put the label α in the local operators. The important point is
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that Ok(x) can be usually computed for the given Ansatz of the variational state. In this way,
we can write a formal expansion of the many-body state as

|Ψα+δαk
〉 = (1 + δαkOk)|Ψα〉, (104)

which can be readily verified by taking the overlap of both sides of the above equation with
|x〉 and using Eqs. (102) and (103). Notice that the diagonal operator Ok is not necessarily
Hermitian, as its diagonal elements are not necessarily real, for a generic complex case.
Let us now show how to obtain the explicit form of the energy derivative with respect to a
given variational parameter. It is clear that the variational energy Eα (as well as any other
correlation function) does not depend on the overall normalization (and global phase) of the
wave function. In other words, by scaling the wave function by an arbitrary complex constant
c, i.e., |Ψα〉 → c|Ψα〉, Eα remains unchanged. In order to exploit this property, it is better to
consider explicitly normalized wave functions. First of all we define

|v0,α〉 ≡
|Ψα〉
||Ψα||

, (105)

where ||Ψα|| indicates the norm of the state |Ψα〉. Then, we define a set of states (one for each
value of k = 1, . . . , p)

|vk,α〉 ≡ (Ok −Ok)|v0,α〉, (106)

where

Ok = 〈v0,α|Ok|v0,α〉 =
〈Ψα|Ok|Ψα〉
〈Ψα|Ψα〉

. (107)

The states |vk,α〉 are orthogonal to |v0,α〉, as easily verified when using Eq. (107); however,
they are neither normalized nor orthogonal to each other, i.e., in general 〈vk,α|vk′,α〉 6= δk,k′ for
k, k′ 6= 0. Therefore, the set of states |v0,α〉 and {|vk,α〉} defines a semi-orthogonal basis.
In order to compute the normalized wave function when the parameter αk is changed, we first
compute the norm of |Ψα+δαk

〉

||Ψα+δαk
||2 = 〈Ψα|(1 + δαkOk)∗(1 + δαkOk)|Ψα〉

= ||Ψα||2
[
1 + 2<(δαkOk) +O(δα2

k)
]
. (108)

Then, we have that

|v0,α+δαk
〉 = |Ψα+δαk

〉
||Ψα+δαk

||
= |v0,α〉+

[
δαkOk −<(δαkOk)

]
|v0,α〉+O(δα2

k)

= [1 + i=(δαkOk)]|v0,α〉+ δαk|vk,α〉+O(δα2
k), (109)

which can be finally recast as

|v0,α+δαk
〉 = exp(iδφ) [|v0,α〉+ δαk|vk,α〉] +O(δα2

k), (110)

where δφ = =(δαkOk).
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By using the above expression, it is immediate to work out the derivative of the variational
energy Eα with respect to a given variational parameter αk

∂Eα
∂αk

= lim
δαk→0

〈v0,α+δαk
|H|v0,lpha+δαk

〉 − 〈v0,α|H|v0,α〉
δαk

= 〈vk,α|H|v0,α〉+ 〈v0,α|H|vk,α〉

= 2<
[
〈Ψα|H(Ok −Ok)|Ψα〉

〈Ψα|Ψα〉

]
.

(111)

Notice also that, as expected, the phase factor δφ does not enter in the above expression.
In order to evaluate the force fk by a standard Monte Carlo sampling, we introduce a complete-
ness relation to have

fk = −2<
[∑

x〈Ψα|H|x〉〈x|(Ok −Ok)|Ψα〉∑
x〈Ψα|x〉〈x|Ψα〉

]
=

= −2<

[∑
x

e∗L(x)(Ok(x)−Ok)|Ψα(x)|2∑
x |Ψα(x)|2

]
, (112)

where e∗L(x) is the complex conjugate of the local energy (here, we omitted the index α, in
harmony with the notation adopted for the local operators Ok), as it is generally a complex-
valued function. Then, fk can be evaluated by considering

fk ≈ −2<

[
1

N

N∑
i=1

e∗L(xi)
(
Ok(xi)−Ok

)]
, (113)

Ok ≈
1

N

N∑
i=1

Ok(xi). (114)

6.2 The stochastic reconfiguration

The knowledge of energy derivatives of Eq. (100) allows us to employ the steepest-descent
method [35] to change the variational parameters α = (α1, . . . , αp), even when p is very large

α′k = αk + δαk, (115)

δαk = ∆fk, (116)

where ∆ is an arbitrary (small) constant. In principle, its value can be optimized to reach the
lowest possible energy at each iteration; however, in most applications, it is common practice
to keep ∆ constant along the minimization procedure. Then, the variational parameters are
iteratively improved along a Markov chain procedure. In absence of noise, the steepest-descent
method always converges to a minimum, where the Euler conditions fk = 0 are satisfied.
Indeed, let us suppose that fk 6= 0, then the energy for α′ is given by a Taylor expansion to
linear order in ∆

Eα′ = Eα +
∑
k

∂Eα
∂αk

δαk +O(∆2) = Eα −∆
∑
k

f 2
k +O(∆2), (117)
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where we used that ∂Eα/∂αk = −fk and δαk = ∆fk. Therefore, for small ∆, when the linear
truncation is accurate enough in the Taylor expansion, we obtain that

∆E ≡ Eα′ − Eα = −∆
∑
k

f 2
k ≤ 0; (118)

here, the equality sign holds only when fk = 0. Thus, the method converges to a minimum for a
large number of iterations just because the energy monotonically decreases with the number of
iterations. Within the steepest-descent method only the first derivative of the energy is computed
and it is certain that a small change of the parameters δα = (δα1, . . . , δαp) parallel to the force
f = (f1, . . . , fp) will decrease the energy; the only issue concerns the size of ∆, which must be
taken sufficiently small to make the quadratic term in Eq. (117) negligible.
Although the steepest-descent approach eventually converges to a local minimum, its effec-
tiveness may suffer from cases where the dependence on the variational parameters is highly
non-linear (e.g., in the Jastrow factors). In this case, a small change of a given variational
parameter can produce very different wave functions and physical quantities, whereas another
parameter may weakly affect the wave function. In order to overcome these difficulties, it is
important to introduce an appropriate metric δs2 that is used to estimate the “proximity” of two
normalized (complex) wave functions |v0,α〉 and |v0,α+δα〉

δs2 = minδθ|| exp(−iδθ)v0,α+δα − v0,α||2. (119)

Here, the minimization on the phase factor δθ is necessary because we do not want to distinguish
between two wave functions that differ only by an overall phase factor, as they produce the same
correlation functions. In other words, we want to define a distance δs2 that vanishes when we
have physically equivalent wave functions. Then, we replace in Eq. (119) the expression for
|v0,α+δα〉 that is obtained by generalizing Eq. (110) to the case where several parameters are
changed

|v0,α+δα〉 = exp(iδφ)

[
|v0,α〉+

∑
k

δαk|vk,α〉

]
+O(|δα|2), (120)

where δφ =
∑

k =(δαkOk). Now, the minimization over δθ gives δθ = δφ, thus leading to

δs2 =
∑
k,k′

〈vk,α|vk′,α〉δαkδαk′ +O(|δα|2). (121)

Since all increments δαk are assumed real (as discussed previously, here we assume that all
parameters are real), we can symmetrize the previous expression with respect to the indices k
and k′ and neglect the terms that are O(|δα|2), obtaining

δs2 =
1

2

∑
k,k′

(〈vk,α|vk′,α〉+ 〈vk′,α|vk,α〉) δαkδαk′ . (122)

In this way, we can finally identify a matrix S that fully determines the metric in the space of
normalized wave functions

Sk,k′ = < (〈vk,α|vk′,α〉) , (123)
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which implies that the distance between two wave functions reads

δs2 =
∑
k,k′

Sk,k′ δαkδαk′ . (124)

At this point, it is natural to improve the steepest-descent method by using the metric given by S.
The minimization of∆E+µδs2 with the metric δs2 given in Eq. (124) improves the convergence
to the minimum of the variational energy with respect to the simple steepest-descend approach,
as non-equivalent parameters can be appropriately changed with a different scale. This approach
is called stochastic reconfiguration [16]. The minimization of ∆E + µδs2 gives∑

k′

Sk,k′ δαk′ =
fk
2µ
, (125)

which is a set of linear equations for the unknown vector δα. After having solved this lin-
ear system, we can update the variational parameters until convergence is reached; as in the
steepest-descent method, we can set ∆ = 1/(2µ) small enough, which may be kept fixed dur-
ing the optimization. We would like to stress the fact that, since the matrix S is strictly positive
definite, the energy is monotonically decreasing along the optimization as

∆E = −∆
∑
k,k′

S−1k,k′fkfk′ < 0. (126)

Within a Monte Carlo procedure, the matrix S is evaluated by a finite sampling of N configura-
tions {xi} as

Sk,k′ ≈ <

[
1

N

N∑
i=1

(Ok(xi)−Ok)(Ok′(xi)−Ok′)

]
; (127)

note that the forces are computed in a similar way, see Eq. (113).

7 Selected results

Here, we would like to show a few selected results that have been obtained by using Jastrow-
Slater wave functions, also including backflow correlations. First of all, we would like to em-
phasize the importance of the long-range tail in the Jastrow factor, in order to correctly repro-
duce the strong-coupling regime of the Hubbard model. In Fig. 1, we report the variational
energies for the one-dimensional Hubbard model at half filling for two different clusters with
L = 18 and 82 sites. The Slater determinant is obtained by filling the lowest-energy states of
a the quadratic Hamiltonian (56) with only nearest-neighbor hopping (dubbed as “Fermi sea”).
The comparison is between the cases with (on-site) Gutzwiller and (long-range) Jastrow factors.
It is well known that, the fully-projected Gutzwiller state gives very accurate energies for the
Heisenberg model [36]. Instead, considering the Hubbard model with finite repulsion U/t, it
turns out that, in the strong-coupling limit, the Gutzwiller state gives a rather poor variational
description, missing completely the super-exchange energy generated by the virtual-hopping
processes. This happens because, by increasing U/t, the Gutzwiller parameter g increases, and
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Fig. 1: Energy per site (in units of 4t2/U ) for the one-dimensional Hubbard model at half
filling. The results for wave functions in which the Gutzwiller and Jastrow factors are applied
to the Fermi sea are reported for two cluster sizes (L = 18 and 82). The arrow indicates the
energy per site for the fully-projected Fermi sea in the Heisenberg model.

the hopping processes, which create double occupancies, become less probable, with a conse-
quent kinetic-energy loss. By contrast, the long-range Jastrow factor enables us to connect the
fully-projected insulator valid in the strong-coupling limit to an insulating state at finite U/t, as
demonstrated by the fact that the variational energy of |ΨJ〉 approaches the one calculated with
the fully-projected Gutzwiller wave function.
In two dimensions (or for frustrated one-dimensional cases, with next-nearest-neighbor hop-
ping t′), the situation is more delicate: the Jastrow factor is no longer sufficient to correctly
reproduce the ground-state properties in the strongly-correlated regime and, in many cases,
backflow correlations are necessary to reach high accuracies. For example, we consider the
Hubbard model with t′ = 0 and t′/t = 0.7, for two different variational wave functions. The
first is constructed by applying a Jastrow factor on top of a BCS state, which is suitable to
describe non-magnetic (i.e., spin-liquid) states. The second is obtained from a quadratic Hamil-
tonian that explicitly includes antiferromagnetic order, to describe a magnetically ordered phase

HAF = −t
∑
〈i,j〉,σ

c†i,σcj,σ + h.c.+∆AF

∑
j

(
ei Q·Rjc†j,↑cj,↓ + e−i Q·Rjc†j,↓cj,↑

)
, (128)

where 〈. . . 〉 indicates neighboring sites and Q = (π, π) is the pitch vector for the Néel order.
In order to have the correct spin-spin correlations at large distance, we can apply a long-range
spin Jastrow factor

Js = exp

[
−1

2

∑
i,j

ui,jS
z
i S

z
j

]
, (129)
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Fig. 2: Energies per site (in units of J = 4t2/U ) for the two-dimensional Hubbard model at
half filling, for both the unfrustrated (t′ = 0) and frustrated (t′/t = 0.7) case. The cases with
and without backflow correlations are reported (for the BCS state). The results for the wave
function with antiferromagnetic order and no BCS pairing are also shown. Arrows indicate the
energies per site for the corresponding fully-projected states in the Heisenberg model.
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Fig. 3: Phase diagram of the t-t′ Hubbard model at half-filling with the metallic phase with
gapped spin excitations (C1S0) and the insulating phase with gapless spin excitations (C0S1).
The insulating phase with gapped spin excitations (C0S0) has regions with commensurate (Q=π
and Q = π/2) and incommensurate (Q incomm) spin-spin correlations.

where Szi=1/2(ni,↑−ni,↓) and ui,j is a pseudo-potential that can be optimized for each indepen-
dent distance. In analogy with the density Jastrow factor of Eq. (45), it governs spin fluctua-
tions orthogonal to the magnetic field ∆AF [37]. It is important to stress that the uncorrelated
state, obtained from Eq. (128), can easily satisfy the single-occupancy constraint by taking
∆AF →∞. In this limit, it also contains the virtual hopping processes, which are generated by
the kinetic term, implying that it is possible to reproduce super-exchange processes.

The results for the energies of these two variational states are reported in Fig. 2. In general, the
results for the Hubbard model (at finite interaction U/t) are not smoothly connected to the ones
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Fig. 4: Schematic phase diagram for the two-dimensional Hubbard model by varying U/t and
the filling factor δ = 1−n (where n is the density of electrons). The red star labels the location
of the hidden Mott transition UMott/t at half filling. The black line with black dots denotes the
boundary of the phase-separation region, that shrinks for U/t & UMott/t. The dashed blue line
with blue dots marks the disappearance of ∆AF in the variational state. The dashed red line
indicates the boundary of the region where sizable pairing correlations are detected. Finally,
in the shaded gray region finite-size effects are strong and precise results cannot be obtained in
the thermodynamic limit.

obtained with the fully-projected states and the Heisenberg model, except for the unfrustrated
case with t′ = 0 and the antiferromagnetic wave function. However, thanks to backflow cor-
relations, it is possible to obtain a correct extrapolation to the infinite-U limit. The importance
of backflow correlations is extremely important in the frustrated case, where they are essential
also for improving the accuracy of the antiferromagnetic wave function.
Therefore, by using Jastrow-Slater states, which include backflow correlations, it is possible to
get quite accurate results in a variety of models. As an example, we report the phase diagram
of the t-t′ Hubbard model in one dimension at half filling, see Fig. 3 [38]. There are three main
phases: one is stabilized for small values of the frustrating ratio t′/t, which is gapless in the spin
sector and gapped in the charge one (denoted by C0S1); another, for small values of U/t and
sufficiently large t′/t, which is gapless in the charge sector and gapped in the spin one (C1S0);
and the last one, for large U/t and t′/t, which is fully gapped and dimerized (C0S0).
As a final example, we show the phase diagram that is obtained for the two-dimensional Hub-
bard model, as a function of U/t and the filling factor δ = 1−n, see Fig. 4 [39]. Here, the anti-
ferromagnetic phase, which is stable at half filling (i.e., δ = 0), gives rise to phase separation at
small values of the interaction strength. Remarkably, these results suggest that a reminiscence
of the Mott transition, hidden by the antiferromagnetic phase at half-filling, emerges after a
careful analysis of the BCS pairing. This hidden Mott transition is intimately related with the
change from Slater to Mott antiferromagnetism, the former being related to a Fermi surface in-
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stability towards antiferromagnetic order, while the latter being connected to a super-exchange
mechanism. For Coulomb interactions that are smaller than this “critical” value, the system is
unstable towards phase separation and there is no strong evidence that superconductivity may
emerge; by contrast, for larger values of U/t, hole doping drives the Mott antiferromagnet into a
homogeneous superconducting phase, with the condensation energy gain shifting from potential
to kinetic by increasing U/t.

8 Conclusions

Variational wave functions, such as Jastrow-Slater states, represents a very powerful and use-
ful tool to investigate strongly-correlated systems on the lattice. In the recent past, there has
been increasing evidence that it is possible to construct many-body states that may compete
with other numerical methods, such as density-matrix renormalization group or its recent de-
velopments based upon tensor networks [40]. Future developments, in which neural networks
may be used to generalize the Jastrow factor and better describe correlation effects [41], may
be beneficial to solve the many-body problem.



Variational Wave Functions 5.31

References

[1] N. Mott, Proc. Phys. Soc. (London) 62, 416 (1949)

[2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

[3] P. Lee, N. Nagaosa, and X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

[4] J. Hubbard, Proc. Royal Soc. of London 276, 238 (1963)

[5] M. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

[6] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

[7] H. Bethe, Z. Phys. 71, 205 (1931)

[8] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

[9] P. Anderson, Science 235, 1196 (1987)

[10] F. Zhang and T. Rice, Phys. Rev. B 37, 3759 (1988)

[11] T. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett. 49, 889 (1982)

[12] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 59, 3669 (1990)

[13] R. Jastrow, Phys. Rev. 98, 1479 (1955)

[14] W. McMillan, Phys. Rev. 138, A442 (1965)

[15] L. Reatto and G. Chester, Phys. Rev. 155, 88 (1967)

[16] S. Sorella, Phys. Rev. B 64, 024512 (2001)

[17] S. Sorella, Phys. Rev. B 71, 241103 (2005)

[18] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
J. Chem. Phys. 21, 1087 (1957)

[19] W. Hastings, Biometrika 57, 97 (1970)

[20] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490 (1987)

[21] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 3582 (1987)

[22] P. Anderson, Mater. Res. Bull. 8, 153 (1973)

[23] L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett. 87, 097201 (2001)

[24] M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti,
Phys. Rev. Lett. 94, 026406 (2005)



5.32 Federico Becca

[25] M. Capello, F. Becca, S. Yunoki, and S. Sorella, Phys. Rev. B 73, 245116 (2006)

[26] E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934)

[27] R. Feynman, Phys. Rev. 94, 262 (1954)

[28] R. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956)

[29] V. Pandharipande and N. Itoh, Phys. Rev. A 8, 2564 (1973)

[30] K. Schmidt and V. Pandharipande, Phys. Rev. B 19, 2504 (1979)

[31] Y. Kwon, D. Ceperley, and R. Martin, Phys. Rev. B 48, 12037 (1993)

[32] Y. Kwon, D. Ceperley, and R. Martin, Phys. Rev. B 58, 6800 (1998)

[33] L. Tocchio, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 78, 041101 (2008)

[34] L. Tocchio, F. Becca, and C. Gros, Phys. Rev. B 83, 195138 (2011)

[35] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery:
Numerical recipes 3rd edition: the art of scientific computing
(Cambridge University Press, 2007)

[36] C. Gros, Ann. Phys. 189, 53 (1989)

[37] F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700 (2000)

[38] L. Tocchio, F. Becca, and C. Gros, Phys. Rev. B 81, 205109 (2010)

[39] L. Tocchio, F. Becca, and S. Sorella, Phys. Rev. B 94, 195126 (2016)

[40] J. LeBlanc, A. Antipov, F. Becca, I. Bulik, G.L. Chan, C.M. Chung, Y. Deng, M. Fer-
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1 Introduction

Auxiliary-field quantum Monte Carlo (AFQMC) is increasingly becoming a general and pow-
erful tool for studying interacting many-fermion systems, in different sub-areas including the
study of correlated electron models, cold Fermi gas, electronic structure of solids, and quantum
chemistry. My lecture will give an introduction to the advances, both in the zero-temperature
or ground-state form and in the non-zero-temperature (T > 0 K) form, which have allowed
AFQMC to become a systematic and scalable tool. The ground-state portion of the lecture will
draw (or even copy!) from Refs. [1] and [2]; the T > 0 K portion is based on Refs. [3] and [4].
As we have seen repeatedly echoed through this school, the accurate treatment of interacting
quantum systems is one of the grand challenges in modern science. Explicit solution of the
many-body Schrödinger equation leads to rapidly growing computational cost as a function of
system size (see, e.g., [5]). To circumvent the problem, most computational quantum mechani-
cal studies of large, realistic systems rely on simpler independent-particle approaches based on
density-functional theory (DFT) (see, e.g., [6, 7]), using an approximate energy functional to
include many-body effects. These replace the electron-electron interaction by an effective po-
tential, thereby reducing the problem to a set of one-electron equations. Methods based on DFT
and through its Car-Parrinello molecular dynamics implementation [8] have been extremely ef-
fective in complex molecules and solids [6]. Such approaches are the standard in electronic
structure, widely applied in condensed matter, quantum chemistry, and materials science.
Despite the tremendous successes of DFT, the treatment of electronic correlation is approxi-
mate. For strongly correlated systems (e.g., high-temperature superconductors, heavy-fermion
metals, magnetic materials, optical lattices), where correlation effects from particle interac-
tion crucially modify materials properties, the approximation can lead to qualitatively incorrect
results. Even in moderately correlated systems when the method is qualitatively correct, the
results are sometimes not sufficiently accurate. For example, in ferroelectric materials the usu-
ally acceptable 1% errors in DFT predictions of the equilibrium lattice constant can lead to
almost full suppression of the ferroelectric order. Additional challenges are present to go be-
yond ground state and account for thermal as well as quantum fluctuations.
The development of alternatives to independent-particle theories is therefore of paramount fun-
damental and practical significance. To accurately capture the quantum many-body effects,
the size of the Hilbert space involved often grows exponentially. Simulation methods utilizing
Monte Carlo (MC) sampling [9–14] are, in principle, both non-perturbative and well-equipped
to handle details and complexities in the external environment. They are a unique combination
of accuracy, general applicability, favorable scaling (low-power) of computational cost with
physical system size, and scalability on parallel computing platforms [15].
For fermion systems, however, a so-called sign problem [16–18] arises in varying forms in
these MC simulation methods. The Pauli exclusion principle requires that the states be anti-
symmetric under interchange of two particles. As a consequence, negative signs appear, which
cause cancellations among contributions of the MC samples of the wave function or density
matrix. In some formalisms, as we discuss below, a phase appears which leads to a continuous
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degeneracy and more severe cancellations. As the temperature is lowered or the system size
is increased, such cancellation becomes more and more complete. The net signal thus decays
exponentially versus noise. The algebraic scaling is then lost, and the method breaks down.

In AFQMC, we cast the MC random walks in a space of over-complete Slater determinants,
which significantly reduces the severity of the sign problem. In this space we study the prop-
erties of the paths and derive exact boundary conditions for the sign of their contributions in
the ground-state wave function or T > 0 K density matrix. This then allows us to formulate
approximate constraints on the random walk paths which are less sensitive to the details of the
constraint. We then develop internal checks and constraint release methods to systematically
improve the approach. These methods have come under the name of constrained path Monte
Carlo (CPMC) [19] for systems where there is a sign problem (for example, Hubbard-like mod-
els where the auxiliary-fields are real due to the short-ranged interactions). For electronic sys-
tems where there is a phase problem (as the Coulomb interaction leads to complex auxiliary
fields), the methods have been referred to as phaseless or phase-free AFQMC [14, 20, 21]. We
will refer to the methods as AFQMC following more recent literature in ab initio electronic
structure. When it is necessary to emphasize the constrained-path (CP) approximation, to dis-
tinguish from unconstrained zero-temperature (free-projection) or T > 0 K (sometimes referred
to as determinantal MC) calculations, we will refer to them as CP-AFQMC.

2 Formalism

The Hamiltonian for any many-fermion system with two-body interactions (e.g., the electronic
Hamiltonian under the Born-Oppenheimer approximation) can be written as

Ĥ = Ĥ1 + Ĥ2 = − ~2

2m

M∑
m=1

∇2
m +

M∑
m=1

Vext(rm) +
M∑
m<n

Vint(rm − rn) , (1)

where rm is the real-space coordinate of the m-th fermion. The one-body part of the Hamilto-
nian, Ĥ1, consists of the kinetic energy of the electrons and the effect of the ionic (and any other
external) potentials. (We have represented the external potential as local, although this does not
have to be the case. For example, in plane-wave calculations we will use a norm-conserving
pseudopotential, which will lead to a non-local function Vext.) The two-body part of the Hamil-
tonian, Ĥ2, contains the electron-electron interaction terms. The total number of fermions, M ,
will be fixed in the ground-state calculations; for T > 0 K, a chemical potential term will be
included and the number of fermions will fluctuate. For simplicity, we have suppressed the
spin-index; when the spins need to be explicitly distinguished, Mσ will denote the number of
electrons with spin σ (σ =↑ or ↓). We assume that the interaction is spin-independent, so the
total Sz, defined by (M↑ − M↓), is fixed in the ground-state calculation, although it will be
straightforward to generalize our discussions to treat other cases, for example, when there is
spin-orbit coupling (SOC) [22].
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With any chosen one-particle basis, the Hamiltonian can be written in second quantization in
the general form

Ĥ = Ĥ1 + Ĥ2 =
N∑
i,j

Tijc
†
icj +

1

2

N∑
i,j,k,l

Vijklc
†
ic
†
jckcl , (2)

where the one-particle basis, {|χi〉} with i = 1, 2, . . . , N , can be lattice sites (Hubbard model),
plane-waves (as in solid state calculations) [23], or Gaussians (as in quantum chemistry) [20,
24], etc. The operators c†i and ci are creation and annihilation operators on |χi〉, satisfying
standard fermion commutation relations. The one-body matrix elements, Tij , contain the effect
of both the kinetic energy and external potential. For the T > 0 K calculations we will discuss,
a term µ n̂ containing the chemical potential µ and density operator is included [12,25,26]. The
two-body matrix elements, Vijkl, are from the interaction. The matrix elements are expressed in
terms of the basis functions, for example,

Vijkl =

∫
dr1dr2χ

∗
i (r1)χ∗j(r2)Vint(r1 − r2)χk(r2)χl(r1) . (3)

In quantum chemistry calculations, these are readily evaluated with standard Gaussian basis
sets. In solid state calculations with plane-waves, the kinetic and electron-electron interaction
terms have simple analytic expressions, while the electron-ion potential leads to terms which
are provided by the pseudopotential generation. We will assume that all matrix elements in
Eq. (2) have been evaluated and are known as we begin our many-body calculations.

2.1 Hubbard-Stratonovich transformation

The two-body part in the Hamiltonian in Eq. (2), Ĥ2, can be written in the following form

Ĥ2 =
1

2

Nγ∑
γ=1

λγ v̂
2
γ , (4)

where λγ is a constant, v̂γ is a one-body operator similar to Ĥ1, and Nγ is an integer. There are
various ways to achieve the decomposition in Eq. (4) for a general two-body term [27]. Below
we outline the two most commonly applied cases in electronic structure: (a) with plane-wave
basis and (b) for a more dense matrix Vijkl resulting from a general basis set such as Gaussians.
In a plane-wave basis, the two-body part is the Fourier transform of 1/|rm − rn| [23]

Ĥ2 →
1

2Ω

∑
i,j,k,l

4π

|Gi−Gk|2
c†ic
†
jclck δGi−Gk,Gl−Gj

δσi,σk δσj ,σl , (5)

where {Gi} are planewave wave-vectors, Ω is the volume of the supercell, and σ denotes spin.
Let us use Q ≡ Gi −Gk, and define a density operator in momentum space

ρ̂(Q) ≡
∑
G,σ

c†G+Q,σcG,σ, (6)
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where the sum is over all G vectors which allow both G and G + Q to fall within the pre-
defined kinetic energy cutoff, Ecut, in the planewave basis. The two-body term in Eq. (5) can
then be manipulated into the form

Ĥ2 →
∑
Q6=0

π

ΩQ2

[
ρ̂†(Q) ρ̂(Q) + ρ̂(Q) ρ̂†(Q)

]
, (7)

where the sum is over all Q’s except Q = 0, since in Eq. (5) the Gi = Gk term is excluded due
to charge neutrality, and we have invoked ρ†(Q) = ρ(−Q). By making linear combinations of[
(ρ†(Q) + ρ(Q)

]
and

[
(ρ†(Q)− ρ(Q)

]
terms, we can then readily write the right-hand side in

Eq. (7) in the desired square form of Eq. (4) [23].
With a general basis (e.g., Gaussians basis as standard in chemistry), the most straightforward
way to decompose Ĥ2 is through a direct diagonalization [20, 28, 2]. However, this is com-
putationally costly. A modified Cholesky decomposition leads to O(N) fields [24, 21]. This
approach, which has been commonly used in AFQMC for molecular systems with Gaussian
basis sets and for downfolded Hamiltonians [29], realizes the following

Vijkl = V(i,l),(j,k) = Vµν
.
=

Nγ∑
γ=1

LγµL
γ
ν , (8)

where µ = (i, l) and ν = (j, k) are composite indices introduced for convenience. The process
is carried out recursively using a modified Cholesky algorithm [30,31]. Recently an alternative
with density-fitting has also been used [32]. The 4-index matrix elements can be represented
to a pre-defined accuracy tolerance δ (which for molecular calculations is typical of δ range
between 10−4 and 10−6 in atomic units [21]), such that

Ĥ2 →
1

2

NCD∑
γ=1

(∑
il

Lγµ(i,l)c
†
icl

)(∑
jk

Lγν(j,k)c
†
jck

)
+O(δ) . (9)

Hence the form in Eq. (4) is realized, with v̂γ =
∑

il L
γ
µ(i,l)c

†
icl. The process decomposing the

two-body interaction is illustrated in Fig. 1.

V

j

l

i

k

v v

i

l

j

k

Fig. 1: Schematic illustration of the decoupling of the two-body interaction, either via Cholesky
decomposition, the planewave factorization, or density fitting. The number of auxiliary index γ
(magenta wiggly line) controls the number of auxiliary fields.
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We can then apply the Hubbard-Stratonovich (HS) transformation to each term in Eq. (4)

e−
∆τ
2
λ v̂2 =

∫ ∞
−∞

dx
e−

1
2
x2

√
2π

ex
√
−∆τλ v̂, (10)

where x is an auxiliary-field variable. The key idea is that the quadratic form (in v̂) on the left
is replaced by a linear one on the right. If we denote the collection of auxiliary fields by x and
combine one-body terms from Ĥ1 and Ĥ2, we obtain the following compact representation of
the outcome of the HS transformation

e−∆τĤ =

∫
dx p(x)B̂(x), (11)

where p(x) is a probability density function (PDF), for example, a multi-dimensional Gaussian.
The propagator B̂(x) in Eq. (11) has a special form, namely, a product of operators of the type

B̂ = exp
(∑

ij

c†iUijcj

)
, (12)

with Uij depending on the auxiliary field. The matrix representation of B̂(x) will be denoted
by B(x). See Appendix B for more details.
Note that the constant in front of v̂ in the exponent on the right-hand side of Eq. (10) can be
real or imaginary. So the matrix elements of B(x) can become complex, for example when λ
in Eq. (10) is positive, which occurs in both of the forms discussed above. Sometimes we
will refer to this situation as having complex auxiliary fields, but it should be understood that
this is interchangeable with B̂(x) being complex, and the relevant point is whether the Slater
determinant develops complex matrix elements which evolve stochastically.
In essence, the HS transformation replaces the two-body interaction by one-body interactions
with a set of random external auxiliary fields. In other words, it converts an interacting system
into many non-interacting systems living in fluctuating external auxiliary-fields. The sum over
all configurations of auxiliary fields recovers the interaction.
Different forms of the HS transformation can affect the performance of the AFQMC method.
For example, it is useful to subtract a mean-field “background” from the two-body term prior to
the decomposition [33, 34, 20]. The idea is that using the HS to decompose any constant shifts
in the two-body interaction will necessarily result in more statistical noise. In fact, it has been
shown [35, 21] that the mean-field background subtraction can not only impact the statistical
accuracy, but also lead to different quality of approximations under the CP methods that we
discuss in the next section.

2.2 Ground-state projection

Most ground-state quantum MC (QMC) methods are based on iterative projection

|Ψ0〉 ∝ lim
τ→∞

e−τĤ |ΨT 〉; (13)
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that is, the ground state |Ψ0〉 of a many-body Hamiltonian Ĥ can be projected from any known
trial state |ΨT 〉 that satisfies 〈ΨT |Ψ0〉 6= 0. This can be achieved by numerical iteration

|Ψ (n+1)〉 = e−∆τĤ |Ψ (n)〉, (14)

where |Ψ (0)〉 = |ΨT 〉. The ground-state expectation 〈Ô〉 of a physical observable Ô is given by

〈Ô〉 = lim
n→∞

〈Ψ (n)|Ô|Ψ (n)〉
〈Ψ (n)|Ψ (n)〉

. (15)

For example, the ground-state energy can be obtained by letting Ô = Ĥ . A so-called mixed
estimator exists, however, which is exact for the energy (or any other Ô that commutes with Ĥ)
and can lead to considerable simplifications in practice

E0 = lim
n→∞

〈ΨT |Ĥ|Ψ (n)〉
〈ΨT |Ψ (n)〉

. (16)

QMC methods carry out the iteration in Eq. (14) by Monte Carlo (MC) sampling. At the sim-
plest conceptual level, one can understand the difference between different classes of QMC
methods as what space is used to represent the wave function or density matrix and to carry
out the integration. The AFQMC methods work in second quantized representation and in a
non-orthogonal space of Slater determinants. Ground-state AFQMC represents the many-body
wave function stochastically in the form

|Ψ (n)〉 =
∑
φ

αφ|φ〉 , (17)

where |φ〉 is a Slater determinant

|φ〉 ≡ ϕ̂†1ϕ̂
†
2 · · · ϕ̂

†
M |0〉 . (18)

The Slater determinants evolve with n via rotations of the orbitals, as do their coefficients,
which are represented by the weights in the MC sampling. The T > 0 AFQMC formalism, as
we will see later, is closely related and works in the same space.
From Thouless’ theorem, the operation of e−τĤ1 on a Slater determinant simply yields another
determinant. Thus for an independent-particle Hamiltonian, where Ĥ2 is replaced by a one-
body operator, the ground-state projection would therefore turn into the propagation of a single
Slater determinant. In DFT, for example, under the local density approximation (LDA), Ĥ2 is
replaced by ĤLDA = Ĥ1+V̂xc, where V̂xc contains the density operator in real-space, with matrix
elements given by the exchange-correlation functional which is computed with the local density
from the current Slater determinant in the self-consistent process. An iterative procedure can
be carried out, following Eq. (14), to project the solution using the approximate Hamiltonians,
as an imaginary-time evolution of a single Slater determinant [36]. This is illustrated by the
blue line in Fig. 2. Note that this procedure is formally very similar to time-dependent DFT
(TDDFT), except for the distinction of imaginary versus real time.
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With Eq. (11), we can now turn the many-body projection into a linear combination of iterative
projections, mimicking the evolution of an ensemble of the corresponding non-interacting sys-
tems subjected to fluctuating external (auxiliary) fields. For simplicity, we will take |Ψ (0)〉 (i.e.,
|ΨT 〉) as a single Slater determinant. Using the mixed estimator in Eq. (16), we can visualize
the calculation of the energy as carrying out the projection of the ket |Ψ (n)〉 by an open-ended
random walk. Aside from technical steps such as importance sampling, population control,
numerical stabilization, etc. to make this process practical and more efficient [19, 2], we could
think of the calculation at the conceptual level as: (i) start a population of walkers {|φ0)

k 〉} with
k = 1, . . . , Nw labeling the walkers, (ii) sample an x from p(x) for each walker, (iii) propagate
it byB(x), (iv) sweep through the population to advance to n=1, and repeat steps (ii) and (iii) to
iterate n. The ideas are illustrated in Fig. 2. [Note that, if we use a linear combination of Slater
determinants of the form of Eq. (17) for |Ψ (0)〉, we can sample the determinants to initialize the
population in (i).] In Appendix A we include a brief review of MC and random walks.

We now expand on the formalism a bit more to make a more explicit connection with the T > 0

formalism that we will discuss in Sec. 2.3. There we will look more deeply into the origin
of the sign problem. By making the formal connection, the discussion on the sign problem at
finite-T can be straightforwardly connected to the ground-state situation here. For computing

n��

Fig. 2: Illustration of the iterative imaginary-time projection to the ground state. The overlap
of the Slater determinants with a test wave function (e.g., the exact ground state |Ψ0〉) is plotted
vs. imaginary time n∆τ . The thick blue line indicates a projection using e−∆τĤLDA(φ(n)) which
converges to the LDA ground state (or a local minimum). The wiggly magenta lines indicate
an AFQMC projection which captures the many-body effect beyond LDA as a stochastic linear
superposition. The propagator is obtained by expanding the two-body part of the Ĥ , namely
Ĥ2−V̂xc, by a Hubbard-Stratonovich transformation as discussed in Sec. 2.1. The dotted redline
indicates a path which can lead to a sign problem (Sec. 3.1).
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the ground-state expectation 〈Ô〉 in Eq. (15), the denominator is

〈ψ(0)|e−n∆τĤ e−n∆τĤ |ψ(0)〉 =

∫ 〈
ψ(0)

∣∣ 2n∏
l=1

dx(l)p(x(l)) B̂(x(l))
∣∣ψ(0)

〉
=

∫ ∏
l

dx(l)p(x(l)) det
(

[Ψ (0)]†
∏
l

B(x(l))Ψ (0)
)
. (19)

In the early forms of ground-state AFQMC calculations [13, 37] (which in the presence of a
sign problem are transient estimates that have exponential scaling), a value of n is first chosen
and fixed throughout the calculation. If we use X to denote the collection of the auxiliary-fields
X = {x(1),x(2), . . . ,x(2n)} and D(X) to represent the integrand in Eq. (19), we can write an
estimator of the expectation value of Eq. (15) as

〈Ô〉 =

∫
〈Ô〉D(X) dX∫
D(X) dX

=

∫
〈Ô〉

∣∣D(X)
∣∣ s(X) dX∫ ∣∣D(X)

∣∣ s(X) dX
, (20)

where
s(X) ≡ D(X)/

∣∣D(X)
∣∣ (21)

measures the “sign” of D(X), and 〈s〉 = 〈s(X)〉|D| gives an indication of the severity of the
sign problem, as further discussed in Sec. 3.1 under the T > 0 formalism. The non-interacting
expectation for a given X is 〈Ô〉 ≡ 〈Ô〉φL φR as defined in Eq. (55) in Appendix B, where

〈φL| = 〈ψ(0)| B̂(x(2n))B̂(x(2n−1)) · · · B̂(x(n+1))

|φR〉 = B̂(x(n))B̂(x(n−1)) · · · B̂(x(1)) |ψ(0)〉,

which are both Slater determinants. In Appendix B, basic properties of Slater determinants and
the computation of expectation values are reviewed.
D(X) as well as 〈φL| and |φR〉 are completely determined by the path X in auxiliary-field
space. The expectation in Eq. (20) is therefore in the form of Eq. (49), with f(X) = |D(X)|
and g(X) = 〈Ô〉. The important point is that, for each X , |D(X)| is a number and g(X) can
be evaluated using Eqs. (56) and (57). Often the Metropolis Monte Carlo algorithm [38] is
used to sample auxiliary-fields X from |D(X)|. Any 〈Ô〉 can then be computed following the
procedure described by Eq. (48) in Appendix A.

2.3 Finite-temperature, grand-canonical ensemble calculations

At a temperature T > 0 K, the expectation value of any physical observable

〈Ô〉 ≡ Tr(Ô e−βĤ)

Tr(e−βĤ)
, (22)

which is a weighted average in terms of the partition function Z in the denominator

Z ≡ Tr(e−βĤ) = Tr[ e−∆τĤ · · · e−∆τĤe−∆τĤ︸ ︷︷ ︸
L

], (23)
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where β = 1/kT is the inverse temperature, ∆τ = β/L is the time-step, and L is the number
of “time slices.” Substituting Eq. (11) into Eq. (23) gives

Z =
∑
X

∫
dXP (X) Tr[B(xL) · · ·B(x2)B(x1)], (24)

where X ≡ {x1,x2, . . . ,xL} denotes a complete path in auxiliary-field space, and P (X) =∏L
l=1 p(xl). Note that, similar to the T = 0 K case, a Trotter error can be present in Eq. (11),

which is controllable (by, e.g., extrapolating results with different values of ∆τ ). The trace over
fermion degrees of freedom can be performed analytically [12, 39], which yields

Z =

∫
dXP (X) det[I +B(xL) · · ·B(x2)B(x1)], (25)

where I is the N × N unit matrix. Note that the trace in Eq. (24), which is over numbers of
particles and initial states, is now replaced by the fermion determinant

D(X) ≡ P (X) det[I +B(xL) · · ·B(x2)B(x1)], (26)

which can be readily computed for each pathX . The sum over all paths is evaluated by standard
Monte Carlo techniques. Relating L to 2n in the ground-state discussions around Eq. (20), we
can now connect these two classes of methods. Below we will rely on the finite-T form in
understanding the origin of the sign problem. This will serve as a common framework for
thinking about the sign problem, and then subsequently the phase problem, by analyzing the
nature and behavior of the paths in X space.
The symptom of the sign problem is that D(X) is not always positive. In practice, the MC
samples of X are drawn from the probability distribution defined by |D(X)|. As β increases,
D(X) approaches an antisymmetric function and its average sign,

〈s〉 =
∑
X

D(X)/
∑
X

|D(X)|, (27)

vanishes exponentially, as illustrated in Fig. 3. In the limit of T → 0 or β →∞, the distribution
becomes fully antisymmetric. (In ground-state calculations discussed in Sec. 2.2, the situation
depicted in Fig. 3 corresponds to the equilibration phase at shorter projection times τ . When
the ground state is reached after equilibration, there will be no “green” part left.)

det[]

Fig. 3: Schematic illustration of the sign problem. The horizontal axis denotes an abstraction of
the many-dimensional auxiliary-field paths X . The sign problem occurs because the contribut-
ing part (shaded area) is exponentially small compared to what is sampled, namely |D(X)|.
The origin of the symptoms shown here is explained in Sec. 3.1.
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3 Constraining the paths in AFQMC

The sign/phase problem is a generic feature, and is only absent in special cases where the single-
particle propagator B̂(x) satisfies particular symmetries (see, for example, Ref. [40]). In these
cases, D(x) is real and non-negative, and s(X) remains strictly 1. The symmetries are affected
by the choice of the basis and the form of the decomposition, so it is possible to “engineer
away” the sign problem in some cases. However, these are still limited to very special classes
of Hamiltonians. In general, a sign problem arises if B̂(x) is real, and a phase problem arises if
B̂(x) is complex.
For real B̂(x) (e.g. Hubbard-type of short-range repulsive interactions with the spin decom-
position), the sign problem occurs because of the fundamental symmetry between the fermion
ground-state |Ψ0〉 and its negative −|Ψ0〉 [18, 41]. In T = 0 K calculations, for any ensemble
of Slater determinants {|φ〉} which gives a MC representation of the ground-state wave func-
tion, as in Eq. (17), this symmetry implies that there exists another ensemble {−|φ〉} which is
also a correct representation. In other words, the Slater determinant space can be divided into
two degenerate halves (+ and −) whose bounding surface N is defined by 〈Ψ0|φ〉 = 0. This
dividing surface is unknown. (In the cases with special symmetry mentioned above, the two
sides separated by the surface are both positive.) In the illustration in Fig. 2, the surface is the
horizontal axis; the “−” ensemble is given by the mirror images of the paths shown, i.e., by
reflecting them with respect to the horizontal axis.

3.1 An exact boundary condition

To gain further insight on the origin of the sign problem, we conduct a thought experiment in
which we generate all the complete paths X by L successive steps, from x1 to xL [25]. We
use the T > 0 K formalism, whose understanding will provide a straightforward connection
to the ground-state method. We consider the contribution in Z of an individual partial path
{x1,x2, · · · ,xl} at step l

Pl({x1,x2, · · · ,xl}) ≡ Tr[ BB · · · B︸ ︷︷ ︸
L−l

B(xl) · · ·B(x2)B(x1)], (28)

where B ≡ e−∆τH , which in general is not a single-particle propagator. In particular, we
consider the case when Pl = 0. This means that, after the remaining L − l steps are finished,
the collective contribution from all complete paths that result from the partial path will be
precisely zero. In other words, complete paths whose first l elements are {x1,x2, · · · ,xl} do
not contribute in Z; the sum over all possible configurations of {xl+1,xl+2, · · · ,xL} simply
reproduces the B’s in (28), leading to zero by definition.
Thus, in our thought experiment any partial path that reaches the axis in Fig. 4 immediately
turns into noise, regardless of what it does at future l’s. A complete path which is in contact
with the axis at any point belongs to the “antisymmetric” part of D(X) in Fig. 3, whose contri-
butions cancel. The “noise” paths, which become an increasingly larger portion of all paths as
β increases, are the origin of the sign problem.
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Since P0 is positive and Pl changes continuously with l at the limit ∆τ → 0, a complete
path contributes iff it stays entirely above the axis in Fig. 4. Thus, in our thought experiment,
imposition of the boundary condition (BC)

P1({x1}) > 0, P2({x1,x2}) > 0, · · · , PL({x1,x2, · · · ,xL}) > 0 (29)

will ensure all contributing complete paths to be selected while eliminating all noise paths. The
axis acts as an infinitely absorbing boundary. A partial path is terminated and discarded as soon
as it reaches the boundary. By discarding a path, we eliminate all of its future paths, including
the ones that would eventually make positive contributions. The BC makes the distribution of
complete paths vanish at the axis, which accomplishes complete cancellation of the negative
and the corresponding positive contributions in the antisymmetric part of D(X). Calculation of
Z from our thought experiment remains exact.

3.2 Implementing the boundary condition and importance sampling

3.2.1 Implementation of the boundary condition (BC) at finite ∆τ

In actual simulations ∆τ is finite and paths are defined only at a discrete set of imaginary times.
The BC on the underlying continuous paths is the same, namely that the probability distribution
must vanish at the axis in Fig. 4.
In Fig. 5, we illustrate how the BC is imposed under the discrete representation. The “contact”
point is likely to be between time slices and not well defined, i.e., Pl may be zero at a non-
integer value of l. To the lowest order, we can terminate a partial path when its Pl first turns
negative. That is, we still impose Eq. (29) in our thought experiment to generate paths. In
Fig. 5, this means terminating the path at l = n (point B) and thereby discarding all its future
paths (represented by the dashed lines ‘BS...’ and ‘BT...’).
We actually use a higher order approximation, by terminating at either l = n− 1 or l = n, i.e.,
either point B or point A. The probability for terminating at A is chosen such that it approaches
1 smoothly as Pn−1 → 0, for example, pA = 1/[1 + Pn−1/|Pn|]. If A is chosen, all future

det[]

 l

lP

L

Z

0

Fig. 4: Schematic illustration the boundary condition to control the sign problem. Pl (Eq. (28))
is shown as a function of the length of the partial path, l, for several paths. When Pl becomes 0,
ensuing paths (dashed lines) collectively contribute zero. Only complete paths with Pl > 0 for
all l (solid line) contribute in Z.
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paths from A are discarded (represented by ‘AR...’ and ‘AB...’); otherwise we terminate at B as
above. This is in the spirit of the so-called mirror correction (see, e.g., Ref. [42, 19]).
It is important to note that, in both approaches, the finite-∆τ error in imposing the BC vanishes
as ∆τ → 0. The first method, terminating at B, makes a fluctuating error of O(∆τ) in the
location of the absorbing boundary. The method we actually use ensures that the location of the
boundary is correct to the next order, and is a second order algorithm.

3.2.2 Approximating the boundary condition

In practice B is not known. We replace it by a known trial propagator BT . The BC now yields
approximate results, which become exact if BT is exact. If BT is in the form of a single-particle
propagator, we can evaluate Eq. (28) and combine it with Eq. (29) to obtain the approximate
BC: For each l,

PTl ({x1,x2, · · · ,xl}) = det[I + (
L−l∏
m=1

BT )B(xl) · · ·B(x1)] > 0. (30)

Different forms of B are possible, and of course it is valuable and important to think about
improving B. Recently self-consistent constraints formulated in ground-state AFQMC [43]
have been generalized to the T > 0 method [4].

3.2.3 Importance sampling algorithm—automatic imposition of the constraint and
“nudge” in the random walks

(1) Automatic imposition of the constraint. To implement the constraint in a path-integral frame-
work of Eq. (20) at T = 0 K and Eq. (25) at T > 0 K would have severe difficulties with
ergodicity. We wish to generate MC samples of X which satisfy the conditions in (30). The
most natural way to accomplish this is to incorporate the boundary conditions on the path as
an additional acceptance condition [44]. However, the BC is non-local; it also breaks trans-
lational invariance in imaginary time, since the condition selects an l = 1 to start. Updating
the auxiliary-fields at a particular time l can cause violation of the constraint in the future (at

L C n-1 0l

Pl

Z
n

A

B

R

S

T

Fig. 5: Imposition of the boundary condition at finite ∆τ . Paths are discrete. The point of con-
tact, C (see Fig. 4), must be approximated, either by B (low order algorithm) or by interpolation
between B and A (higher order).
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larger l) or in the past (when sweeping the path backwards in l). Without a scheme to pro-
pose paths that incorporates information on future contributions, it is difficult to find complete
paths which satisfy all the constraints, especially as β increases. Global updating is difficult,
because the number of green paths is exponentially small compared to the total number of pos-
sible paths, as illustrated in Fig. 4. The formulation of the open-ended, branching random walk
approach [19, 25] in imaginary-time solves this problem. An additional advantage is that it is
straightforward to project to longer imaginary-time in order to approach the ground state for
T = 0 K. Moreover, when we carry out constraint release [35], the formalism will rely on the
open-ended random walk.

(2) Nudging the random walk. The goal of the branching random walk algorithm is to generate
MC samples of X which both satisfy the conditions in (30) and are distributed according to
D(X). The basic idea is to carry out the thought experiment stochastically. We construct
an algorithm which builds directly into the sampling process both the constraints and some
knowledge of the projected contribution. In terms of the trial projected partial contributions
PTl ≡ PTl ({x1,x2, · · · ,xl}) in the T > 0 K method, the fermion determinant D(X) can be
written as

D(X) =
PTL
PTL−1

PTL−1

PTL−2

· · · P
T
2

PT1
PT1
PT0
PT0 . (31)

As illustrated in Fig. 6, we construct the path X by a random walk of L steps, corresponding
to stochastic representations of the L ratios in Eq. (31). At the l-th step, we sample xl from
the conditional probability density function defined by (PTl /PTl−1). This allows us to select xl
according to the best estimate of its projected contribution in Z. In other words, we sample
from a probability distribution function of the contributing paths only (solid lines in Fig. 4),
instead of all possible paths. Note that the probability distribution for xl vanishes smoothly as
PTl approaches zero, naturally imposing the BC in Eq. (30) as anticipated in part (1) of this
section. Ref. [4] contains a more detailed outline of the procedure.

(3) Connecting the importance sampling algorithms between T = 0 and T > 0 K methods.
In the above we have used the T > 0 K framework to describe the basic idea of importance
sampling. At each step, the importance-sampling transformation uses PTl /PTl−1 to modify the
probability distribution from which xl is sampled. The ground-state version, conceptually, uses
〈ΨT |φ(n)〉/〈ΨT |φ(n−1)〉. In Sec. 3.3, we show how this is actually realized when the auxiliary-
fields are continuous (complex), by the use of a force bias. To connect back to the T > 0 K
form, all we need is to invoke the formal equivalence

〈ΨT |φ′(x)〉
〈ΨT |φ〉

⇐⇒ det[I + (
∏L−l

m=1 BT )B(x)B(xl−1) · · ·B(x1)]

det[I + (
∏L−l+1

m=1 BT )B(xl−1) · · ·B(x1)]
. (32)

On the right of Eq. (32), the finite-T path segment {x1, · · · ,xl−1} has been generated already,
and the step in question is l, where we wish to generate xl, denoted by x.
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3.3 The phaseless formalism for complex auxiliary-fields

When the many-body Hamiltonian leads to a decomposition with λ > 0 in Eq. (4), the resulting
HS transformation will have complex auxiliary-fields. This is the case for the electron-electron
repulsion. (As mentioned earlier, when we refer loosely to having complex auxiliary-fields,
what we really mean is that the propagator resulting from the two-body Hamiltonian is com-
plex. Incidentally, it is always possible to have real auxiliary-fields, for example by making a
negative shift to the positive potential, but that simply leads to many fluctuating fields to recover
a constant background, and a much more severe sign problem [14,35].) In this situation a phase
problem arises, as illustrated in Fig. 7. The random walks now extend into a complex plane,
and the boundary condition discussed in Sec. 3.1 must be generalized. This generalization is not
straightforward, since the orbitals (or one-particle propagators) contain random phases which
are entangled with the phases in the coefficients in front of the determinants. We next describe
the formalism to deal with the problem [14], using the T = 0 K framework. See Eq. (32) in the
previous section for how to “translate” this to T > 0 K.
With a continuous auxiliary-field, importance sampling is achieved with a force bias [14, 45].
To sketch a derivation we write the full many-body propagator as∫ (

1√
2π

)Nγ
e−x

2/2B(x) dx, (33)

where for formal convenience we will assume that we can combine products of one-body prop-
agators, as in Eq. (12), into a joint form by summing the one-body operators in the exponent, or
vice versa, possibly incurring additional Trotter errors which will be dealt with separately. For

step

L

2

0

1

L--1

Fig. 6: Illustration of the sampling procedure in the algorithm. Circles represent auxiliary-
fields xl. A row shows the field configuration at the corresponding step number shown on the
right. Within each row, the imaginary-time index l increases as we move to the left, i.e., the
first circle is x1 and the last xL. Red circles indicate fields which are not “activated” yet, i.e.,
BT is still in place of B. Green circles indicate fields that have been sampled, with the arrow
indicating the one being sampled in the current step.



6.16 Shiwei Zhang

compactness we will also omit the normalization factor, (1/
√

2π)Nγ , of the Gaussian probabil-
ity density function from here on.
We introduce a shift in the integral in Eq. (33), which leads to an alternative propagator∫

e−x
2/2 ex·x̄−x̄

2/2B(x− x̄) dx. (34)

The new propagator is exact for any choice of the shift x̄, which can be complex in general.
We recall that the random walk is supposed to sample the coefficient αφ in Eq. (17)

|Ψ0〉
.
=
∑
{φ}

wφ|φ〉 . (35)

The sum in Eq. (35) is over the population of walkers after equilibration and is over the Monte
Carlo samples, typically much smaller than the sum in Eq. (17). The weight of each walker |φ〉,
wφ, can be thought of as 1 (all walkers with equal weight); it is allowed to fluctuate only for
efficiency considerations.
Using the idea of importance sampling, we seek to replace Eq. (35) by the following to sample
Eq. (17):

|Ψ0〉 =
∑
φ

wφ
|φ〉
〈ΨT |φ〉

, (36)

where any overall phase of the walker |φ〉 is cancelled in the numerator and denominator on the
right-hand side [14]. This implies a modification to the propagator in Eq. (34):∫

〈ΨT |φ′(x)〉e−x2/2 exx̄−x̄
2/2B(x− x̄)

1

〈ΨT |φ〉
dx, (37)

where |φ′(x)〉 = B(x− x̄)|φ〉 and the trial wave function |ΨT 〉 represents the best guess to |Ψ0〉.
Now the weight of the waker under importance sampling becomes

wφ′(x) = wφ
〈ΨT |φ′(x)〉
〈ΨT |φ〉

ex·x̄−x̄
2/2 . (38)

We can minimize the fluctuation of the factor on the right-hand side with respect to x, by
evaluating the ratio 〈ΨT |φ′(x)〉/〈ΨT |φ〉 in Eqs. (37) and (38), or correspondingly, the ratio on
the right-hand side of Eq. (32) for T > 0 K. Expanding the propagators in ∆τ , and rearranging
terms [1, 21], we obtain the optimal choice for the force bias

x̄ = v̄ ≡ −〈ΨT |v̂|φ〉
〈ΨT |φ〉

∼ O(
√
∆τ) (39)

for ground state and a similar expectation value v̄ evaluated at time-step l for T > 0. The
weight factor in Eq. (38) can then be manipulated into a more compact form

wφ′(x) = wφ exp
(
−∆τEL(φ)

)
, (40)

where EL is the local energy of the Slater determinant

EL(φ) ≡ 〈ΨT |Ĥ|φ〉
〈ΨT |φ〉

. (41)



AFQMC 6.17

β

Im

Re

−1 −0.5 0 0.5 1

Re<ΨT|φ>

−1

−0.5

0

0.5

1

I
m

<
Ψ

T
|φ

>

Fig. 7: Schematic illustration of the phase problem and the constraint to control it, using the
ground-state formalism. The left panel shows, as a function of projection time β ≡ n∆τ ,
trajectories of 5 walkers characterized by the real (Re) and imaginary (Im) parts of their overlap
with the ground-state wave function. The right panel shows the walker distribution integrated
over imaginary time, i.e., the different frames in the left panel stacked together along β. The
phase problem occurs because the initial phase “coherence” of the random walkers rapidly
deteriorates with β, as they become uniformly distributed in the Re-Im-plane. The idea of the
phase constraint [14] is to apply a gauge transformation such that confining the random walk
in the single magenta plane (left) is a good approximation.

We now have the full propagator of Eq. (37)∫
e−x

2/2B(x− v̄) exp
(
−∆τEL(φ)

)
dx . (42)

Projection with Eq. (42) will in principle lead to the ground-state wave function in the form of
Eq. (36). The weight of the walker is determined by EL, which is independent of any phase
factor of the determinant. We will refer to this as the local energy form of AFQMC. As an
alternative, referred to as the hybrid form, we could evaluate the weight of each walker directly
according to Eq. (38) after the propagation. (In this form x̄ can in principle be anything, but of
course poor choices will lead to larger fluctuations in the weights.)
In the limit of an exact |ΨT 〉, EL is a real constant, and the weight of each walker remains real.
The mixed estimate for the energy from Eq. (16) is phaseless

Ec
0 =

∑
φwφEL(φ)∑

φwφ
. (43)

With a general |ΨT 〉 which is not exact, a natural approximation is to replace EL in Eq. (42) by
its real part, ReEL. The same replacement is then necessary in Eq. (43).
In early tests in the electron gas and in simple solids, we found that the phase of EL could be
carried for very long imaginary-times (and then resetting) without causing any noticeable effect
on the phase problem. Keeping the phase also did not appear to affect the total energy computed
from the mixed estimator. For computing observables in the ground state, back-propagation
(BP) [19, 45] is needed. It was found that restoring the phases of EL in the BP paths helped
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improve the computed observables and correlations [46]. More tests for T > 0 are necessary
but it is likely that keeping the phase will be preferable (especially because the paths are much
shorter than in ground-state calculations). At T > 0, it was also found that restoring time-
translation symmetry after the compete path has been sampled improves the results [4].
This formalism is all that is needed to handle the sign problem in the case of a real v̂. For any
v̂ the shift x̄ diverges as a walker approaches the origin in the complex plane shown in the right
panel of Fig. 7, i.e., as 〈ΨT |φ′〉 → 0. The effect of the divergence is to move the walker away
from the origin. With a real v̂, ∆θ = 0 and the random walkers move only on the real axis. If
they are initialized to have positive overlaps with |ΨT 〉, x̄ will ensure that the overlaps remain
positive throughout the random walk. Thus in this case our formalism above reduces to the CP
methods ground state [42, 19] and finite-T [25].
For a general case with a complex v̂, however, the phaseless formalism alone is not sufficient to
remove the phase problem. To illustrate this we consider the phase of 〈ΨT |φ′(x − x̄)〉/〈ΨT |φ〉,
or the equivalent form for T > 0 K given by Eq. (32). This phase, which we shall denote by
∆θ, is in general non-zero: ∆θ ∼ O(−x Im(x̄)). The walkers will thus undergo a random walk
in the complex plane defined by 〈ΨT |φ′〉. At large β they will therefore populate the complex
plane symmetrically, independent of their initial positions. This is illustrated in the right panel
of Fig. 7, which shows 〈ΨT |φ〉 for three-dimensional jellium with two electrons at rs = 10 for a
total projection time of β = 250. The distribution of the walkers is seen to be symmetric about
the phase angle, and any signal that the walkers are all real initially (and 〈ΨT |φ(0)〉 = 1) is lost
in the statistical noise.
In other words, for a complex v̂, the random walk is “rotationally invariant” in the complex
plane, and the divergence of x̄ is not enough to prevent the build-up of a finite density at the
origin. Near the origin the local energy EL diverges, which causes diverging fluctuations in
the weights of walkers. To address this we make an additional approximation. We project
the random walk to “one-dimension” and multiply the weight of each walker in each step by
cos(∆θ)

wφ′ = wφ′ max{0, cos(∆θ)} (44)

in addition to Eq. (40) (or Eq. (38) if the hybrid form is used). This is only a good approximation
in the presence of the similarity transformation that we have already preformed in what we have
been calling importance sampling. There is a subtle but fundamental distinction between the
formalism we have introduced and “traditional” importance sampling. In the latter, only the
sampling efficiency is affected, not the expectation, because the transformation involves only
real and non-negative functions. Here, in contrast, the functions, as given in Eq. (32), are
complex and determine a gauge choice for our random walks. The proper choice of the force
bias ensures that the leading order in the overall phase of |φ〉 in the propagator in Eq. (37) is
eliminated.
Several alternatives to Eq. (44) were tested [14, 47, 34]. One that seemed to work as well was
exp
(
− (Im(x̄))2/2

)
, which is the same as cos(∆θ) in the limit of small values of ∆θ. Another

was to impose Re 〈ΨT |φ′〉 > 0, which gave similar results, but with somewhat larger variance.
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4 Overview of applications, further reading, and outlook

Due to space limitations, we will not include any examples of applications here. The AFQMC
method has been applied to lattice models, ultracold atoms, solids, and molecular systems.
In lattice models, most of the applications involve “only” a sign problem, because of the short-
range nature of the interaction, although in multi-band models there can be tradeoffs between
decompositions which lead to a sign or a phase problem [48]. A large body of results ex-
ist, including recent benchmark results [49]. Systems of O(1000) electrons have been treated
quite routinely. The AFQMC method has demonstrated excellent capabilities and accuracy,
illustrating its potential as a general many-body computational paradigm. A key recent devel-
opment [43] is to use the density or density matrix computed from AFQMC as a feedback into a
mean-field calculation. The trial wave function or density matrix obtained from the mean-field
is then fed back into the AFQMC as a constraint, and a self-consistent constraining condition
is achieved. This has lead to further improvement in the accuracy and robustness of the calcu-
lation [43, 50]. This development is also seeing more applications in molecules and solids.
A related area involves ultracold atoms, where many valuable calculations have been performed
with AFQMC. In addition to the physics advances these calculations have lead to, this has
proved a fertile test ground for methodological developments, including better sampling meth-
ods [51,52], computation of excitations and dynamical correlations [53], the use of BCS [or an-
tisymmetrized geminal power (AGP)] trial wave functions [54, 55] and projection/path-integral
in Hartree-Fock-Bogoliubov (HFB) space [56], treatment of spin-orbit coupling (SOC) [22],
Bose systems and Fermi-Bose mixtures [45, 57], and achieving linear scaling in lattice or ba-
sis size at T > 0 K [58]. Many of these developments have direct applications in correlated
systems of molecules and solids.
For molecular systems, a recent review article [21] describes in more detail the application of
AFQMC in quantum chemistry. The formulation of AFQMC with Gaussian basis sets [20, 24]
has been extremely valuable. Direct comparisons can be made with high-level QC results,
which have provided valuable benchmark information and have been crucial in developing the
method. Many calculations have been performed using AFQMC as a “post-DFT” or “post-HF”
approach for molecules and solids by simply feeding in the solution from standard DFT or HF.
Several other systematic benchmarks have appeared, for example on the G1 set [59], on a set
of 44 3d transition-metal containing diatomics [60], on singlet-triplet gaps in organic biradicals
[61], etc. Major recent methodological advances include the computation of observables [46],
geometry optimization [62], and speedups using GPUs [32], low-rank tensor decomposition
[63], embedding [64] and localization/downfolding [65], and correlated sampling [66], etc.
For solids, calculations have been done using planewaves and pseudopotentials including recent
implementation of multiple-projector ones [67], with downfolding [29], with Gaussian-type
orbitals [68], etc. A benchmark study [69] was recently carried out involving a large set of
modern many-body methods. AFQMC was found to be comparable in accuracy to CCSD(T),
the gold standard in chemistry [70,71], near equilibrium geometry. For bond breaking, AFQMC
was able to maintain systematic accuracy. The AFQMC method can also be used to study
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excited states. Excited states distinguished by different symmetry from the ground state can
be computed in a manner similar to the ground state. For other excited states, prevention of
collapse into the ground state and control of the fermion sign/phase problem are accomplished
by a constraint using an excited state trial wave function [72]. An additional orthogonalization
constraint is formulated to use virtual orbitals in solids for band structure calculations [73].

The AFQMC method is a computational framework for many-body calculations which com-
bines a field-theoretic description with stochastic sampling. AFQMC has shown strong promise
with its scalability (with system size and with parallel computing platforms), capability (total
energy computation and beyond), and accuracy. The method is just coming into form, and rapid
advances in algorithmic development and in applications are on-going. The literature is grow-
ing and I only listed a portion of it above. In addition, there is a pedagogical code for lattice
models written in Matlab [74] that will be very useful for getting into the method.

We have discussed both ground-state and T > 0 auxiliary-field-based methods for correlated
electron systems. We have outlined the formalism in a rather general way which allows for
a systematic understanding of the origin of the sign/phase problem as well as the underlying
theory for a scalable method capable of handling large molecules and bulk systems.

Often in the study of correlated models in condensed matter or cold atoms in optical lattices, the
comment “But there is a sign problem” is made, to imply “so QMC calculations cannot be used
here.” I hope that these lectures and the large number of results in the literature with AFQMC
will change this mindset. Calculations indeed can be done in systems where a sign problem is
present—often with some of the most accurate results that are presently possible.

The AFQMC method has low-polynomial (cubic) scaling with system size, similar to DFT
calculations. The structure of the open-ended random walk makes it ideally suited for modern
high-performance computing platforms, with exceptional capacity for parallel scaling [15]. The
rapid growth of high-performance computing resources will thus provide a strong boost to the
application of AFQMC in the study of molecules and solids. The connection with independent-
electron calculations, as we have highlighted, makes it straightforward to build AFQMC on top
of DFT or HF codes, and take advantage of the many existing technical machineries developed
over the past few decades in materials modeling. It also gives AFQMC much versatility as
a general many-body method, offering, for example, straightforward treatment of heavier el-
ements and spin-orbit coupling, computation of dynamical correlations, and the capability to
embed AFQMC naturally and seamlessly in a calculation at the independent-particle level.

The development of AFQMC is entering an exciting new phase. We expect the method and the
concept discussed here to see many applications, and to significantly enhance the capability of
quantum simulations in interacting fermion systems. A large number of possible directions can
be pursued, including many opportunities for algorithmic improvements and speedups. These
will be spurred forward and stimulated by growth in applications, which we hope will in turn
allow more rapid realization of a general many-body computational framework for correlated
quantum materials.
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Appendices

A A few basics of Monte Carlo techniques

We list a few key elements from standard Monte Carlo (MC) techniques which are important to
our discussions on QMC. For an introduction on MC methods, see, e.g., Ref. [38].
MC methods are often used to compute many-dimensional integrals of the form

G =

∫
Ω0
f(x)g(x)dx∫
Ω0
f(x)dx

, (45)

where x is a vector in a many-dimensional space and Ω0 is a domain in this space. We will
assume that f(x) ≥ 0 on Ω0 and that it is normalizable, i.e., the denominator is finite. A
familiar example of the integral in Eq. (45) comes from classical statistical physics, where f(x)

is the Boltzmann distribution.
To compute G by MC, we sample x from a probability density function (PDF) proportional to
f(x): f̄(x) ≡ f(x)/

∫
Ω0
f(x)dx. This means to generate a sequence {x1,x2, . . . ,xi, . . . } so

that the probability that any xi is in the sub-domain (x,x + dx) is

Prob{xi ∈ (x,x + dx)} = f̄(x)dx . (46)

There are different techniques to sample a many-dimensional function f(x). The most general
and perhaps most commonly used technique to sample f(x) (i.e., the PDF f̄(x)) is the Metropo-
lis algorithm, which creates a Markov chain random walk [38] in x-space whose equilibrium
distribution is the desired function. We will also use a branching random walk, in which case
there can be a weight wi associated with each sampled xi. (In Metropolis, wi = 1.) The MC
samples provide a formal representation of f

f(x) ∝
∑
i

wi δ(x− xi) . (47)

GivenM independent samples from f(x), the integral in Eq. (45) is estimated by

GM =
M∑
i=1

wi g(xi)/
M∑
i=1

wi (48)

The error in the estimate decays algebraically with the number of samples: |GM−G| ∝ 1/
√
M.

Using the results above, we can compute

G′ =

∫
Ω0
f(x)g(x)h(x)dx∫
Ω0
f(x)h(x)dx

, (49)

if the function h(x) is such that both the numerator and denominator exist. Formally

G′M =

∑M
i=1 wig(xi)h(xi)∑M

i=1wih(xi)
, (50)
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although, as we will see, difficulties arise when h(x) can change sign and is rapidly oscillating.
Integral equations are another main area of applications of MC methods. For example [38], the
integral equation

Ψ ′(x) =

∫
Ω0

K(x,y) w(y) Ψ(y)dy, (51)

can be viewed in terms of a random walk if it has the following properties: Ψ(y) and Ψ ′(x)

can be viewed as PDF’s (in the sense of f in Eq. (45)), w(y) ≥ 0, and K(x,y) is a PDF for x
conditional on y. Then, given an ensemble {yi} sampling Ψ(y), the following two steps will
allow us to generate an ensemble that samples Ψ ′(x). First an absorption/branching process is
applied to each yi according to w(yi). For example, we can make int(w(yi) + ξ) copies of yi,
where ξ is a uniform random number on (0, 1). Second we randomly walk each new yj to an
xj by sampling the PDF K(xj,yj). The resulting {xj} are MC samples of Ψ ′(x). An example
of this is the one-dimensional integral equation

Ψ(x) =

∫ ∞
−∞

1√
π
e−(x−y)2

√
2e−y

2/2 Ψ(y)dy, (52)

which has a solution Ψ(x) = e−x
2/2. The random walks, starting from an arbitrary distribution,

will iteratively converge to a distribution sampling Ψ(x).
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B Properties of non-orthogonal Slater determinants

In Eq. (18), the operator ϕ̂†m ≡
∑

i c
†
i ϕi,m, with m taking an integer value among 1, 2, . . . ,M ,

creates an electron in a single-particle orbital ϕm: ϕ̂†m|0〉 =
∑

i ϕi,m|χi〉. The content of the
orbital can thus be conveniently expressed as an N -dimensional vector {ϕ1,m, ϕ2,m, . . . , ϕN,m}.
The Slater determinant |φ〉 in Eq. (18) can then be expressed as an N ×M matrix

Φ ≡


ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M

...
...

...
ϕN,1 ϕN,2 · · · ϕN,M

 .

Each column of this matrix represents a single-particle orbital that is completely specified by its
N -dimensional vector. For convenience, we will think of the different columns as all properly
orthonormalized, which is straightforward to achieve by, for example, modified Gram-Schmidt
(see e.g., [2,21]). For example the occupied manifold in a DFT solution forms a “wave function”
which is a Slater determinant.
A key property of Slater determinants is the Thouless Theorem: any one-particle operator B̂
of the form in Eq. (12), when acting on a Slater determinant, simply leads to another Slater
determinant [75], i.e.,

B̂|φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂

′ †
M |0〉 ≡ |φ

′〉 (53)

with φ̂′ †m =
∑

j c
†
j Φ
′
jm and Φ′ ≡ eUΦ, where U is a square matrix whose elements are given by

Uij and B ≡ exp(U) is therefore an N×N square matrix as well. In other words, the operation
of B̂ on |φ〉 simply involves multiplying an N × N matrix to the N ×M matrix representing
the Slater determinant.
In standard quantum chemistry (QC) methods, the many-body ground-state wave function is
also represented by a sum of Slater determinants. However, there is a key difference between it
and the AFQMC representation. In QC methods, the different Slater determinants are orthogo-
nal, because they are obtained by excitations based on a fixed set of orbitals (for instance, the
occupied and virtual orbitals from a reference calculation such as Hartree-Fock). In AFQMC,
the Slater determinants are non-orthogonal because they are generated by “rotating” (only) the
occupied orbitals through the operations in Eq. (53).
Several properties of non-orthogonal Slater determinants are worth mentioning. The overlap
between two of them is given by

〈φ|φ′〉 = det(Φ†Φ′). (54)

We can define the expectation of an operator Ô with respect to a pair of non-orthogonal Slater
determinants

〈Ô〉φφ′ ≡
〈φ|Ô|φ′〉
〈φ|φ′〉

, (55)
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for instance single-particle Green function Gij ≡ 〈cic†j〉φφ′

Gij ≡
〈φ|cic†j|φ′〉
〈φ|φ′〉

= δij − [Φ′(Φ†Φ′)−1Φ†]ij. (56)

Given the Green function matrixG, the general expectation defined in Eq. (55) can be computed
for most operators of interest. For example, we can calculate the expectation of a general two-
body operator, Ô =

∑
ijklOijkl c

†
ic
†
jckcl, under the definition of Eq. (55)

〈Ô〉φφ′ =
∑
ijkl

Oijkl

(
G′jkG

′
il −G′ikG′jl

)
, (57)

where the matrix G′ is defined as G′ ≡ I −G.
There are several generalizations of the formalism we have discussed which extend the capa-
bility and/or accuracy of the AFQMC framework. These can be thought of as generalizing one
or both of the Slater determinants in Eqs. (54), (55), and (56). From the viewpoint of AFQMC,
the“bra” in these equations represents the trial wave function, and the “ket” represents the ran-
dom walker:

• The first generalization is to replace 〈φ| by a projected Bardeen-Cooper-Schrieffer (BCS)
wave function, that is, to use a projected BCS as a trial wave function, which can be ad-
vantageous for systems with pairing order. The corresponding overlap, Green functions,
and two-body mixed expectations have been worked out [54].

• The second is to have both 〈φ| and |φ′〉 in generalized HF (GHF) form, which is necessary
to treat systems with SOC. The required modification to the formalism outlined above is
given by [22].

• The third generalization is to have both sides in Hartree-Fock-Bogoliubov (HFB) form,
for example, to treat Hamiltonians with pairing fields. This will also be useful when
using AFQMC as an impurity solver in which the embedding induces pairing order. The
corresponding AFQMC formalism has been described [56].
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1 Many-electron states

One of the great surprises of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. This means that every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all electrons in the universe. In practice we can, of course, distinguish electrons localized on the
moon from those in our lab to an excellent approximation. Thus, for all practical purposes, we
can restrict our description to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the variables xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i6=j

M (2)(xi, xj) +
1

3!

∑
i6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wave functions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wave function should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2, 3]: The wave functions of particles with integer spin are symmetric, those of parti-
cles with half-integer spin change sign when two arguments are exchanged. From an arbitrary
N -particle wave function we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1√
N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) := Aϕα1(x1) · · ·ϕαN (xN)=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
.

(4)
For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕn(x)ϕn(x′) = δ(x− x′) (complete)
∫
dxϕn(x)ϕm(x) = δn,m (orthonormal) . (5)

To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕn} as

a(x1, . . . , xN) =
∑
n1

an1(x2, . . . , xN)ϕn1(x1)

with expansion coefficients that depend on the remaining coordinates

an1(x2, . . . , xN) =

∫
dx1 ϕn1(x1) a(x1, x2, . . . , xN) .

These, in turn, can be expanded as a functions of x2

an1(x2, . . . , xN) =
∑
n2

an1,n2(x3, . . . , xN)ϕn2(x2) .

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

n1,...,nN

an1,...,nN ϕn1(x1) · · ·ϕnN (xN) .

When the N -particle function is antisymmetric, applying the antisymmetrizer (3) will leave
it unchanged, i.e., the expansion coefficients will be antisymmetric under permutation of the
indices: anp(1),...,np(N)

= (−1)Pan1,...,nN . Fixing some particular order of the indices, e.g., n1 <

n2 < . . . < nN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

n1<...<nN

an1,...,nN

√
N !Φn1,...,nN (x1, . . . , xN) .

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φn1,...,nN (x1, . . . , xN)
∣∣∣ n1 < n2 < · · · < nN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)

(xn)ϕαp′(n)
(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant. Thus, strictly, a Slater determinant is not
determined by the set of indices we usually give, but, up to a phase, by the N -dimensional sub-
space spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert space. The projector to
this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi6=n(x2, . . . , xN) , (9)

where Φαi6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Any many-electron wave function
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1.
We can generalize this procedure and calculate higher order density matrices by introducing the
generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}

(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N −p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

While originally introduced for quantizing the electromagnetic field, we can use the formalism
of second quantization just as a convenient way of handling antisymmetric wave functions [5,6].
The idea behind this approach is remarkably simple: When writing Slater determinants in the
form (4) we are working in a real-space basis. It is, however, often simpler to consider abstract
states: Instead of a wave function ϕα(x), we write a Dirac state |α〉. Second quantization allows
us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(
ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)

)
. (11)

This expression is quite cumbersome because we explicitly specify the coordinates. We can try
to get rid of the coordinates by defining a two-particle Dirac state

|α, β〉 :=
1√
2

(
|α〉|β〉 − |β〉|α〉

)
.

While the expression is somewhat simpler, we still have to keep track of the order of the particles
by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

|α, β〉 = c†βc
†
α|0〉. (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (13)

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators ought to have.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the
vacuum state with no electron, which we assume to be normalized 〈0|0〉 = 1. Next we introduce
for each single-electron state |α〉 an operator c†α such that c†α|0〉 = |α〉. We call them creation
operators since they add an electron (in state α) to the state that they act on: in c†α|0〉 the creation
operator adds an electron to the vacuum state (N=0), resulting in a single-electron state (N=1).
Applying another creation operator produces a two-electron state c†βc

†
α|0〉, (N=2). To ensure

the antisymmetry of the two electron state, the product of creation operators has to change sign
when they are reordered: c†αc

†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by

introducing the anti-commutator

{A, B} := AB +BA . (14)
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As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |α〉 = c†α|0〉. When we want to calculate its norm, we have to consider the adjoint
of c†α|0〉, formally obtaining 〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This

implies that cα, the adjoint of a creation operator, must remove an electron from the state,
otherwise the overlap of cαc

†
β|0〉 with the vacuum state 〈0| would vanish. We therefore call the

adjoint of the creation operator an annihilation operator. We certainly cannot take an electron
out of the vacuum state, so cα|0〉 = 0. To obtain the overlap of one-electron states we postulate
the anticommutation relation {cα, c

†
β} = 〈α|β〉, giving 〈0|cαc

†
β|0〉 = 〈0|{cα, c†β} − c

†
βcα|0〉 =

〈α|β〉. For completeness, taking the adjoint of the anticommutation relation for the creation
operators, we obtain the corresponding anticommutator of the annihilators: {cα, cβ} = 0.
Thus, we are led to define the vacuum state |0〉 and the set of operators cα related to single-
electron states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(15)

As a direct consequence we obtain the Pauli principle in the form cαcα = 0 = c†αc
†
α.

We note that the creators transform in the same way as the single-electron states they represent

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i|0〉 =
∑
µ

c†αµ |0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (16)

The creators and annihilators are clearly not operators in a Hilbert space, but transfer states
from an N -electron to an N±1-electron Hilbert space, i.e., they are operators defined on Fock
space. It is also remarkable that the mixed anti-commutator is the only place where the orbitals
that distinguish different operators enter.
To make contact with the notation of first quantization, we introduce the field operators Ψ̂ †(x),
with x = (r, σ), that create an electron of spin σ at position r, i.e., in state |x〉 = |r, σ〉. Given a
complete, orthonormal set of orbitals {ϕn}, we can expand |x〉

Ψ̂ †(x)|0〉 = |x〉 =
∑
n

|ϕn〉〈ϕn|x〉 =
∑
n

c†ϕn|0〉〈ϕn|x〉 (17)

from which we obtain

Ψ̂ †(x) =
∑
n

〈x|ϕn〉 c†ϕn =
∑
n

ϕn(x) c†ϕn . (18)

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,{
Ψ̂(x), Ψ̂ †(x′)

}
=
∑
n,m

〈x|ϕn〉
{
cϕn , c

†
ϕm

}︸ ︷︷ ︸
=δn,m

〈ϕm|x′〉 =
∑
n

〈x|ϕn〉〈ϕn|x′〉 = 〈x|x′〉 = δ(x− x′),

resulting in the anticommutation relations for the field operators{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= 〈x|x′〉. (19)
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We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|χi〉}, as
long as it is complete,

∑
i,j |χi〉(S−1)ij〈χj| = 1, where Sij = 〈χi|χj〉 is the overlap matrix,

Ψ̂ †(x) =
∑
i,j

c†i (S−1)ij 〈χj|x〉. (20)

Conversely, given any single-electron wave functions in real space ϕ(x), we can express the
corresponding creation operator in terms of the field operators

c†ϕ =

∫
dxϕ(x) Ψ̂ †(x). (21)

Its anticommutator with the field annihilator just gives back the single-electron wave function{
Ψ̂(x), c†ϕ

}
=

∫
dx′ ϕ(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕ(x) . (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (23)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (23) is by induction. As a warm-up we consider the case of a
single-electron wave function (N=1). Using the anticommutation relation (22), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1) . (24)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (25)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N−1 terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .



7.8 Erik Koch

Using (23) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (23) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wave functions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†nN · · · c
†
n1
|0〉
∣∣ n1 < · · · < nN

}
, (26)

which allows us to express any N -electron state as

|Ψ〉 =
∑

n1<···<nN

an1,...,nN c
†
nN
· · · c†n1

|0〉. (27)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (28)

For N -electron Slater determinants this becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1

· · · cβN Ψ̂
†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c

†
α1
|0〉

=
〈
0
∣∣ cβ1
· · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ :=
1

N !

∫
dx1 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (29)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 1. Keeping this in mind, we can work entirely in terms of our algebra (15).
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To see what (29) means, we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (30)

We start with the simplest case, the zero-body operator, which, up to a trivial prefactor, is
M (0) = 1. Operating on an N -electron wave function, it gives

M̂ (0) =
1

N !

∫
dx1dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 , (31)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the number of electrons: Applied to the vacuum state it gives N̂ |0〉 = 0, while its
commutator with any creation operator produces that operator

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n. (32)

where we have used the simple relation [AB, C] = A{B, C} − {A, C}B. Commuting with
an annihilator we pick up a minus sign [N̂ , Ψ̂(x′)] = −Ψ̂(x′). Thus, commuting N̂ through a
general product state, we obtain for each creation operator that we encounter a copy of the state,
while for each annihilator we obtain minus that state, giving in total the original state times the
difference in the number of creation and annihilation operators.

Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.

We note that (31) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (33)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (34)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (35)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(16) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (36)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (35) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (37)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (38)
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2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′ |M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (39)

where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index
for the second, while taking the adjoint of the operators changes their order. Mnn′,mm′ =

〈ϕnϕn′ |M (2)|ϕmϕm′〉 transforms like a fourth-order tensor: Transforming to a different basis
(16) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (40)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (39) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (41)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way. We note that, while we started from
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a form of the operators (30) that was explicitly formulated in an N -electron Hilbert space, the
results (31), (35), and (39) are of the same form no matter what value N takes. Thus these op-
erators are valid not just on some N -electron Hilbert space, but on the entire Fock space. This
is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (16) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (42)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (43)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (44)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator

[c†αµcαν , c
†
ακ ] = c†αµ δν,κ (45)

from which we obtain for the repeated commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (46)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary creation operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (47)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (42), are simply

{
cαj , e

−c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (48)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.
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3 Exact diagonalization

We have worked, so far, with complete, i.e., infinite bases. This is, of course, not possible
in actual computer simulations, where we have to confine ourselves to finite basis sets. Such
calculations on subspaces are based on the variational principle.

3.1 Variational principles

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (49)

Its variation is

E[Ψ + δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (50)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψ〉 , (51)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (52)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (53)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (54)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (55)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
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For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

, (56)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (57)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (58)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (59)

Unfortunately, for an ab-initio Hamiltonian like (56) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ1〉, . . . , |ΦL̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenvectors

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (60)

are related to those of H . The answer is surprisingly simple [7]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (61)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course, to devise clever basis sets such that this is achieved already for bases of
low dimensions.



ED and Lanczos 7.15

The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular.
Let us extend our original basis of L̃ states by an additional L − L̃ states. Then, repeating the
above argument with the L-dimensional problem taking the role of Ĥ , we obtain (61) with En
being the eigenvalues of the L-dimensional Hamiltonian matrix H . Since H now is finite, we
can use the same argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (62)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (63)

For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (64)

3.2 Matrix eigenvalue problem

For practical calculations we have to set up the Hamiltonian matrix H̃ = 〈Φ̃|Ĥ|Φ̃〉 and the
state vectors ã for the chosen basis. This is particularly easy for a basis of Slater determinants
constructed from a basis set of K orbitals

{
ϕk
∣∣ k = 0, . . . , K−1

}
. The basis states are then the

N -electron product states of |Φk1,...,kN 〉 = c†kN · · · c
†
k1
|0〉 with k1 < · · · kN . We can write them

more computer friendly as

|nK−1, . . . , n0〉 =
K−1∏
k=0

(
c†k
)nk |0〉 (65)

which is the occupation number representation with nk ∈ {0, 1} and
∑
nk = N . It is natural to

interpret the vector of occupation numbers as the binary representation of the integer
∑

k 2nk .
This implies a natural ordering of the basis functions |Φl〉. For the simple case of K=4 orbitals
and N=2 electrons we obtain i (n3, n2, n1, n0) state l

0 0000
1 0001
2 0010
3 0011 c†1c

†
0|0〉 = |Φ1〉 1

4 0100
5 0101 c†2c

†
0|0〉 = |Φ2〉 2

6 0110 c†2c
†
1|0〉 = |Φ3〉 3

7 0111
8 1000
9 1001 c†3c

†
0|0〉 = |Φ4〉 4

10 1010 c†3c
†
1|0〉 = |Φ5〉 5

11 1011
12 1100 c†3c

†
2|0〉 = |Φ6〉 6

13 1101
14 1110
15 1111
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The bit representation of the basis states also simplifies setting up the Hamiltonian matrix.
Given the Hamiltonian in second quantization

Ĥ =
∑
n,m

Tnm c
†
ncm +

∑
n′>n,m′>m

(
Unn′,mm′ − Un′n,mm′

)︸ ︷︷ ︸
=Ŭnn′,mm′

c†n′c
†
ncmcm′ (66)

the matrix element 〈Φl|Ĥ|Φ′l〉, with |Φl′〉 = c†k′N
· · · c†l′1|0〉, is given by∑

n,m

Tnm〈0|cl1 · · · clN c
†
ncm c

†
l′N
· · · c†l′1|0〉+

∑
n′>n
m′>m

Ŭnn′,mm′〈0|cl1 · · · clN c
†
n′c
†
ncmcm′ c

†
l′N
· · · c†l′1|0〉.

Anticommuting the operators coming from the Hamiltonian, the matrix elements become over-
laps of N+1 and N+2-electron product states, which, by (33) and (7), are just the determinants
of the overlap matrices of the corresponding orbitals. When Ĥ is written in the same orbitals as
these |Φl〉, the overlap matrices simplify to permutation matrices with determinant ±1. In the
occupation number representation, calculating this Fermi sign reduces to counting set bits. As
an example we consider a simple hopping of an electron:

c†6c2|Φl(181)〉 = c†6c2 c
†
7c
†
5c
†
4c
†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4c2c

†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4

(
1− c†2c2

)
c†0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4·c
†
0|0〉

= +|Φl(241)〉 = (−1)2c†7c
†
6c
†
5c
†
4·c
†
0|0〉

In the occupation number representation this becomes
?

10110101 = (−1)c 11110001

where c is the count of set bits between the orbitals of the electron hop. Note that a dedicated
machine instruction, popcnt, for counting set bits is part of the x86 SSE4 instruction set, see
also [8].

3.3 Dimension of the Hilbert space and sparseness

Setting up basis states and Hamiltonian matrix in this way, we can easily solve the many-
body problem on our variational space by using any linear algebra library. This is the ex-
act diagonalization approach. As discussed above, it gives us variational estimates of the
ground and excited states. But there is a serious practical problem: the dimension of the
many-body Hilbert space. For an N -electron problem with a basis set of K orbitals there are
K (K−1) (K−2) · · · (K − (N−1)) ways of picking N occupied orbitals out of K. Since we
only use one specific ordering of these indices, we have to divide by N ! to obtain the number
of such determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (67)



ED and Lanczos 7.17

Using Stirling’s formula we see that for an N -electron problem this increases faster than ex-
ponentially with the size K of the basis set. This is the problem we face when converging the
basis set for a finite system, e.g., a molecule. For solids we usually keep the number of orbitals
per lattice site fixed, but scale to the thermodynamic limit, increasing the system size M while
keeping the electron densityN/M fixed. Also here the Hilbert space increases faster than expo-
nentially. To give an impression of the problem we note that forN = 25 electrons andK = 100

orbitals the dimension already exceeds 1023.
For exact diagonalization the problem gets even worse. Assuming we have a machine with
1 TeraBytes = 240 Bytes of RAM available. Using single precision (4 bytes) for the matrix
elements, storing a matrix of dimension (240/4)1/2 = 524 288 would already use up all memory.
The dimension problem can be somewhat mitigated by exploiting symmetries: When the Hamil-
tonian commutes with the projection of the total spin, the number of up- and down-spin elec-
trons is conserved separately. The N -electron Hamiltonian is then block diagonal in the sectors
with fixed N↑ and N↓. The dimension of these blocks is significantly smaller than that of the
full N -electron Hilbert space. Using the same orbital basis for each spin

dimH(N↑,N↓)
2K =

(
K

N↑

)
×
(
K

N↓

)
. (68)

The Sz symmetry can be very easily implemented using the same ideas as introduced for the
general case: just use bit representations for the up- and down-spin electrons separately. In fact,
when the total spin projection is conserved, we can distinguish electrons of different spin. Still,
the Hilbert space of the single-band, half-filled Hubbard model with just 12 sites has dimension
853 776. Using further symmetries, if they exist, we could bring down the dimension somewhat
further, however at the expense of considerable and problem-specific effort.
The key to going to larger systems is the realization that the vast majority of the elements of the
Hamiltonian matrix is zero. This is quite easy to see. For the ab-initio Hamiltonian (56) with
electron-electron repulsion, matrix elements between configurations that differ in more than
two electron occupations vanish. Thus, for each configuration there may only be the diagonal
element, N × (K−1) hopping terms, and N(N−1)/2 × (K−N)(K−N−1)/2 pair-hopping
terms. Thus the fraction of non-zero matrix elements of H̃ to the total number is(

1 +N

(
1 +

N−1

2

(K−N−1)

2

)
(K−N)

)/(K
N

)
(69)

which, with increasing problem size, rapidly approaches zero. For the example of N = 25

electrons in K = 100 orbitals only 834 376 of the (over 1023) matrix elements per row can be
non-zero. This is the worst case. The sparsity of many-body Hamiltonians is even more pro-
nounced when working in a tight-binding basis with short-ranged hopping and local electron-
electron repulsion. Thus, many-body Hamiltonians are exceedingly sparse and the more so the
larger the problem. They are therefore ideally suited for approaches like the Lanczos method,
that are based on matrix-vector products, which for the sparse matrices scale close to linearly in
the matrix dimension.
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4 Lanczos Method

As we have seen, we can find the ground-state |Ψ0〉 and its energy E0 for a Hamiltonian H from
the variational principle. The wavefunction-functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

(70)

is minimized for Ψ = Ψ0, with E[Ψ0] = E0. The functional gradient

δE[Ψ ]

δ〈Ψ |
=
H|Ψ〉 − E[Ψ ]|Ψ〉

〈Ψ |Ψ〉
= |Ψa〉 (71)

gives the direction of steepest-ascent of the functional from the point |Ψ〉. Moving in the
opposite direction will thus result in a wavefunction with lower energy expectation value:
E[Ψ − αΨa] < E[Ψ ] for small, positive α.
To find the optimum value of α, we minimize the quadratic form E[Ψ − αΨa]. For this, it is
convenient to introduce an orthogonal basis in the space spanned by the two vectors |Ψ〉 and
|Ψa〉. From (71) we see that span (|Ψ〉, |Ψa〉) = span (|Ψ〉, H|Ψ〉). As first basis vector, we
normalize |Ψ〉

|v0〉 = |Ψ〉/
√
〈Ψ |Ψ〉 ,

for the second vector we orthogonalize H|v0〉 to |v0〉

|ṽ1〉 = H|v0〉 − |v0〉〈v0|H|v0〉 (72)

and normalize to obtain |v1〉. With an := 〈vn|H|vn〉 and b2
1 := 〈ṽ1|ṽ1〉, eq. (72) becomes

H|v0〉 = b1|v1〉+ a0|v0〉 (73)

from which we see that 〈v1|H|v0〉 = b1.
We can then write any normalized wavefunction in span (|Ψ〉, H|Ψ〉) = span (|v0〉, |v1〉) as

|v〉 = cos(θ)|v0〉+ sin(θ)|v1〉 . (74)

Minimizing the expectation value

〈v|H|v〉 = a0 cos2(θ) + 2b1 sin(θ) cos(θ) + a1 sin2(θ) , (75)

with respect to θ, we obtain, dividing by cos2(θ), the quadratic equation

b1 tan2(θ) + (a0 − a1) tan(θ)− b1 = 0 . (76)

Solving for θ we find the lowest-energy state on the subspace spanned by |v0〉 and H|v0〉. Alter-
natively, we can diagonalize the Hamiltonian matrix on the two-dimensional subspace, which
in the basis |v0〉, |v1〉 is given by

Hspan(|Ψ〉,H|Ψ〉) =

(
a0 b1

b1 a1

)
. (77)
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Fig. 1: Convergence of the residual (filled circles) and the corresponding lowest eigenvalue
(open circles) for a steepest-descent minimization of a Hubbard-chain of 10 sites at half-filling,
starting from a random initial vector.

Naturally, we can use the variational state of lowest energy

|Ψ (2)〉 = cos(θmin)|v0〉+ sin(θmin)|v1〉 (78)

as the starting point for another steepest-descent minimization. Doing this repeatedly, we obtain
a series of vectors with decreasing energy expectation value, which rapidly converge to a min-
imum. For a generic functional such a steepest-descent minimization would usually end up in
a local, not the global minimum, which makes the optimization of high-dimensional functions
such a hard problem. The energy functional (70), however, has only minima for the ground-
states, all other stationary points are saddle points. We can thus expect rapid convergence to the
ground state, examples given in figure 1, except when the starting vector |v0〉 is orthogonal to
the ground state. In this case also 〈Ψ0|H|v0〉 = 0 so that we only converge to the lowest state
that overlaps with |v0〉. Should |v0〉 happen to be an exact eigenvector, H|vn〉 does not add a
new dimension so that the algorithm terminates with b1 = 0.
For checking convergence of this steepest-descent method, introduced by Kantorovich [9] and,
independently, by Hestenes and Karush [10], we can monitor the change in the energy expecta-
tion value or determine when the residual

r[Ψ ] =
∥∥ (H − E[Ψ ])|Ψ〉

∥∥2
= 〈Ψ |H2|Ψ〉 − E[Ψ ]2 , (79)

which measures the quality of the eigenstate, becomes sufficiently small. As shown in Fig. 1,
both are closely related.
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4.1 Krylov space

If we apply the method of steepest-descent L times, starting from a vector |v0〉, the resulting
vector will lie in

KL
(
|v0〉
)

= span
(
|v0〉, H|v0〉, H2|v0〉, . . . , HL|v0〉

)
, (80)

the L+1-dimensional Krylov space [11] of H over |v0〉. Instead of repeatedly minimizing
the energy in two-dimensional subspaces, we could directly find the state of lowest energy
in KL

(
|v0〉
)
. Having more degrees of freedom for the minimization will lead to even faster

convergence.
To implement this idea, we construct an orthonormal basis |vn〉 of the Krylov space. We start
with the normalized vector |v0〉. The second basis vector |v1〉 is constructed as in the steepest-
descent method (72):

b1|v1〉 = |ṽ1〉 = H|v0〉 − a0|v0〉 . (81)

The next basis vector is likewise constructed as H|vn〉 orthogonalized to all previous vectors,
and normalized

b2|v2〉 = |ṽ2〉 = H|v1〉 −
1∑
i=0

|vi〉〈vi|H|v1〉 = H|v1〉 − a1|v1〉 − b1|v0〉 . (82)

where an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. The fourth basis vector is

b3|v3〉 = |ṽ3〉 = H|v2〉 −
2∑
i=0

|vi〉〈vi|H|v2〉 = H|v2〉 − a2|v2〉 − b2|v1〉 . (83)

The last term in the orthogonalization vanishes, because (81) together with the orthogonality of
the already constructed basis vectors for n < 3 implies 〈v2|H|v0〉 = b1〈v2|v1〉+ a0〈v2|v0〉 = 0.
The construction of the further basis vectors follows the same scheme

bn+1|vn+1〉 = |ṽn+1〉 = H|vn〉 −
n∑
i=0

|vi〉〈vi|H|vn〉 = H|vn〉 − an|vn〉 − bn|vn−1〉

with an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. Rearranging shows that H is tridiagonalized

H|vn〉 = bn|vn−1〉+ an|vn〉+ bn+1|vn+1〉

which in turn implies that H|vi〉 is orthogonal to all basis states, except |vi〉 and |vi±1〉. This
tridiagonalization of H is the essence of the Lanczos method [12].
After L steps the Hamiltonian on the L+1-dimensional Krylov space is given by

HKL(|v0〉) =



a0 b1 0 0 0 0

b1 a1 b2 0 · · · 0 0

0 b2 a2 b3 0 0

0 0 b3 a3 0 0
... . . . ...

0 0 0 0 aL−1 bL
0 0 0 0 · · · bL aL


(84)
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v=init
b0=norm2(v) not part of tridiagonal matrix
scal(1/b0,v) v= |v0〉
w=0
w=w+H*v w= H|v0〉
a[0]=dot(v,w)
axpy(-a[0],v,w) w= |ṽ1〉 = H|v0〉 − a0|v0〉
b[1]=norm2(w)
for n=1,2,...

if abs(b[n])<eps then exit invariant subspace
scal(1/b[n],w) w= |vn〉
scal( -b[n],v) v= −bn|vn−1〉
swap(v,w)
w=w+H*v w= H|vn〉 − bn|vn−1〉
a[n]=dot(v,w) a[n]= 〈vn|H|vn〉 − bn〈vn|vn−1〉
axpy(-a[n],v,w) w= |ṽn+1〉
b[n+1]=norm2(w)
diag(a[0]..a[n], b[1]..b[n]) getting an+1 needs another H|v〉
if converged then exit

end

Table 1: The implementation of the Lanczos iteration requires only two N -dimensional vec-
tors for tridiagonalizing H and thus for calculating the ground-state energy. Constructing the
Lanczos-approximation of the ground-state vector requires a second iteration and one addi-
tional N -dimensional vector. The by far most expensive operation is the matrix-vector product,
which requires a problem specific implementation, while the vector operations use the BLAS.

If we do not normalize the basis vectors, we obtain an iteration of the form

|Φn+1 〉 = H |Φn 〉 −
〈Φn|H|Φn〉
〈Φn|Φn〉

|Φn 〉 −
〈Φn|Φn〉
〈Φn−1|Φn−1〉

|Φn−1 〉 (85)

where |Φn 〉 =
∏n

i=1 bi |vn 〉 in terms of which we have

an =
〈Φn|H|Φn〉
〈Φn|Φn〉

, b2
n =

〈Φn|Φn〉
〈Φn−1|Φn−1〉

. (86)

In this unnormalized basis the Hamiltonian appears non-Hermitian

H |Φn 〉 = b2
n |Φn−1 〉+ an |Φn 〉+ |Φn+1 〉 , (87)

but, of course, it actually is

〈Φn+1|H|Φn〉 = 〈Φn+1|Φn+1〉 = b2
n+1 〈Φn|Φn〉 = 〈Φn|H|Φn+1〉 . (88)

The numerical implementation only requires keeping two N -dimensional vectors in memory. It
is shown in table 1.
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Fig. 2: Convergence of the lowest eigenvalue for a Lanczos iteration (full circles) compared to
steepest-descent minimization (open circles) of a 10-site Hubbard-chain at half-filling, starting
from a random initial vector. Due to the additional variational degrees of freedom, Lanczos
converges significantly faster. Overall, convergence for the half-filled system gets harder for
larger U , as the distance to the lowest excited states is reduced (∼ t2/U ) and the spectrum
widens (∼ U ). In all cases, convergence is reached after less than L ≈ 100 Lanczos iterations,
to be compared to the dimension N=63 504 of the Hilbert space.

Diagonalizing (84), after a few tens to hundred iterations, the lowest eigenvalue of the tridiag-
onal representation of H on the Krylov space gives an excellent approximation to the ground-
state energy of H in the full Hilbert space (Fig. 2). A formal estimate of the convergence
was given by Kaniel and Paige [13]: For an N+1-dimensional, symmetric matrix H with
eigenvalues En, the lowest eigenvalue Ě0 of the tridiagonal representation of H on the (L+1)-
dimensional Krylov space over |v0〉 fulfills

Ě0 − E0

EN − E0

≤

tan(arccos(〈Ψ̌0|Ψ0〉))

TL

(
1 + 2 E1−E0

EN−E1

)
2

(89)

where TL(x) is the Chebyshev polynomial of order L and 〈Ψ̌0|Ψ0〉 the overlap of the Lanczos
approximation to the ground-state Ψ̌0 with the ground-state of H . Thus, if the initial state |v0〉
is not orthogonal to the non-degenerate ground-state, convergence is exponential with a rate
roughly increasing with the square root of the gap to the first excited state measured in units of
the width of the spectrum.
The approximate ground-state vector is given by the linear combination

|Ψ̌0〉 =
L∑
n=0

ψ̌0,n|vn〉 , (90)

where ψ̌0 is the ground-state vector of the L+1-dimensional tridiagonal matrix (84). Instead
of storing all L+1 basis vectors |vn〉, we can restart the Lanczos iteration from the same |v0〉,
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Fig. 3: Lanczos method for a matrix with eigenvalues −3, −3, −2.5, −2, −1.99, −1.98, . . . ,
−0.01, 0. For clarity the n-th lowest/highest Lanczos eigenvalues are connected by lines. Note
how the eigenvalues of successive steps are nested as described by (64). Because of the gap the
lowest eigenvalue is reached much faster than the highest. For the degenerate eigenspace of
value −3 only the state proportional to the projection of |v0〉 on that space is found. Well after
convergence of the low eigenvalues orthogonality is lost and ghost states appear.

accumulating the sum (90) iteration by iteration. This only requires keeping one additional
N -dimensional vector in memory.
So far we have tacitly assumed that the Krylov vectors Hn|v0〉 are linearly independent. If
not, there will be a vector H|ṽm〉 that vanishes when orthogonalized to the previous states, i.e.,
bn = 0. This means that the Krylov space span (|v0〉, |v1〉, . . . , |vm〉) is invariant under H , i.e.,
we have found an exact eigenspace of H . For a large matrix H it is quite unlikely to be that
lucky. Still, as the Lanczos iteration approaches the ground-state, we encounter a similar situa-
tion: Close to an eigenstate, the functional (70) becomes almost stationary, i.e., the coefficients
bn almost vanish. Normalization of the very short vector |ṽn〉 then amplifies numerical noise in
that vector. This makes the numerical |vn〉, which in theory should automatically be orthogonal
to all |vm〉withm < n−2, actually have finite overlaps with these vectors. This loss of orthogo-
nality manifests itself in the appearance of multiple copies of eigenvectors (ghost states) which
are unrelated to the actual multiplicities of the eigenvalues. This makes the Lanczos method
unpractical for tridiagonalizing dense matrices. For the ground-state the variational principle
prevents severe problem from the loss of orthogonality. An example of the appearance of ghost
states is shown in figure 3.
If we want to reliably obtain excited states, we need to explicitly orthogonalize to the previous
basis states. This leads to the Lanczos method with complete reorthogonalization [13]. A
similar orthogonalization is performed in the Arnoldi method [14], which, however, is devised
for unsymmetric matrices.
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4.2 Spectral functions

The Lanczos method gives excellent approximations to the largest and smallest eigenvalues, but,
as seen in Fig. 3, not for the bulk of the spectrum. It therefore looks ill suited for determining
functions that depend on the excited states, like the Lehmann representation

Gc(z) =

〈
Ψc

∣∣∣∣ 1

z −H

∣∣∣∣Ψc〉 =
N∑
n=0

〈Ψc|Ψn〉 〈Ψn|Ψc〉
z − En

(91)

which, in terms of the eigenstates on the Krylov space KL(|Ψc〉), would be written as

Ǧc(z) =

〈
Ψc

∣∣∣∣ 1

z − Ȟc

∣∣∣∣Ψc〉 =
L∑
n=0

〈Ψc|Ψ̌n〉 〈Ψ̌n|Ψc〉
z − Ěn

. (92)

This is straightforward to calculate: We run L Lanczos iterations, starting from the (normalized)
vector |Ψc〉, to create the tridiagonal Ȟc. The matrix element of the resolvent is the top left
matrix element of the inverse of

z − Ȟc =



z − a0 − b1 0 0 · · · 0 0

−b1 z − a1 − b2 0 · · · 0 0

0 − b2 z − a2 − b3 · · · 0 0

0 0 − b3 z − a3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · z − aL−1 − bL
0 0 0 0 · · · − bL z − aL


. (93)

This is easily determined, partitioning the matrix as indicated

z − Ȟc =

(
z − a0 B(1)T

B(1) z − Ȟ(1)
c

)
(94)

and inverting the block-matrix, giving, see appendix A.3,[
(z − Ȟc)

−1
]

00
=
(
z − a0 −B(1)T (z − Ȟ(1)

c )−1B(1)
)−1

=
(
z − a0 − b2

1

[
(z − Ȟ(1)

c )−1
]

00

)−1
.

Repeating inversion by partitioning for the submatrices Ȟ(n) we obtain the continued fraction

Ǧc(z) =
[
(z − Ȟc)

−1
]

00
=

1

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − · · ·

, (95)

which terminates with −b2
L/(z− aL). We find the spectral representation (92) by diagonalizing

the Lanczos matrix Ȟc giving us the L+1 eigenvalues Ěn and eigenvectors ψ̌n. Since

|Ψ̌n〉 =
L∑
l=0

ψ̌n,l|vl〉 (96)
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Fig. 4: Convergence of the spectral function with increasing number of Lanczos steps, L=5,
10, 15, 25, 50, 75, and 100, for a 14-site Hubbard chain with U = 5t at half filling. With
increasing L, more and more moments of the photoemission and inverse photoemission part of
the spectrum are reproduced correctly.

the matrix elements are given by 〈Ψ̌n|Ψc〉 = ψ̌n,0. Thus

Ǧc(z) =
L∑
n=0

|ψ̌n,0|2

z − Ěn
. (97)

The spectral function Ǎ(ω± iη) = ∓ 1
π

Im Ǧ(ω± iη) obtained this way, surprisingly, converges
very quickly. An example is shown in figure 4.
To understand how the L+1 eigenstates of Ȟ can represent the full spectrum so well, we con-
sider the moments of the spectral function∫ ∞

−∞
dω ωmǍ(ω) =

L∑
n=0

|ψ̌n,0|2Ěm
n =

L∑
n=0

〈Ψc|Ψ̌n〉〈Ψ̌n|Ψc〉 Ěm
n = 〈Ψc|Ȟm|Ψc〉. (98)

Since Ȟ is the projection of H onto the Krylov spaceKL(|Ψc〉), we have Ȟm|Ψc〉 = Hm|Ψc〉 for
m ≤ L. Thus the Lanczos representation Ǎ(z) correctly reproduces the first 2L+1 moments of
the spectral function A(z). A further Lanczos step adds one new level to the continued fraction
(95), leaving all previous terms unchanged. b2

m = 0 then implies that the continued fraction
terminates, and all moments are given correctly. A near vanishing b2

m ≈ 0, which gives rise
to the loss of orthogonality of the Lanczos vectors, for the spectral function merely means that
further terms in the continued fraction hardly contribute any more.
So far we have considered diagonal elements of the resolvent. Off-diagonal matrix elements

Gc1,c2(z) =

〈
Ψc2

∣∣∣∣ 1

z −H

∣∣∣∣Ψc1〉 (99)

are easily obtained by considering the diagonal elements for the linear combinations〈
Ψc1 ± Ψc2

∣∣∣∣ 1

z −H

∣∣∣∣Ψc1 ± Ψc2〉 = Gc1,c1(z)±Gc1,c2(z)±Gc2,c1(z) +Gc2,c2(z) . (100)
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A Appendices

A.1 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (101)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(102)
Collecting all components this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉 [15]. It is, however, often more conve-

nient to have an orthonormal basis, so that we do not have to deal with the overlap matrices in
the definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (103)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn − δmn)
∥∥∥2

= Tr (T † − 1)S (T − 1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (104)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (105)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (106)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [16]

TLöwdin = S−1/2 (107)

minimizes the modification of the basis vectors due to orthogonalization.
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A.2 Useful commutation relations

Expressions of commutators of products of operators can be derived by adding and subtracting
terms that differ only in the position of one operator, e.g.,

[A1A2 · · ·AN , B] = A1A2 · · ·ANB −BA1A2 · · ·AN
= A1A2 · · ·ANB − A1A2 · · ·BAN

+ A1A2 · · ·BAN − A1 · · ·BAN−1AN

+ · · ·
+ A1BA2 · · ·AN −BA1A2 · · ·AN

=
∑
i

A1 · · ·Ai−1 [Ai, B] Ai+1 · · ·AN

The following special cases are particularly useful

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[A, BC] = B [A, C] + [A, B]C

= [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are [
c†icj, c

†
γ

]
= 〈j|γ〉 c†i[

c†icj, cγ
]

= −〈i |γ〉 cj

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl
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A.3 Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

H =

(
H00 T01

T10 H11

)
, (108)

where H00 is the Hamiltonian restricted to the states of interest (reduced Hilbert space), H11

the Hamiltonian for the ‘other’ states, and the T matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

G(ω) = (ω −H)−1 =

(
ω −H00 −T01

−T10 ω −H11

)−1

. (109)

Its elements are easily determined by solving the system of two linear matrix equations(
ω −H00 −T01

−T10 ω −H11

)(
G00 G01

G10 G11

)
=

(
1 O

O 1

)
, (110)

keeping track of the order of the sub-matrix products. The resolvent on the reduced Hilbert
space is thus given by

G00(ω) =

(
ω −

(
H00 + T01(ω −H11)−1 T10︸ ︷︷ ︸

=Heff(ω)

))−1

. (111)

This expression looks just like the resolvent for a Hamiltonian Heff on the reduced Hilbert
space. This effective Hamiltonian describes the physics of the full system, but operates only on
the small reduced Hilbert space: For an eigenvector H|Ψ〉 = E|Ψ〉 on the full Hilbert space

H|Ψ〉 =

(
H00 T01

T10 H11

)(
|Ψ0〉
|Ψ1〉

)
= E

(
|Ψ0〉
|Ψ1〉

)
(112)

its projection |Ψ0〉 onto the reduced Hilbert space is an eigenstate of Heff(E). On the other
hand, we can construct the full eigenstate from a solution Heff(E)|Ψ0〉 = E|Ψ0〉 on the reduced
Hilbert space by upfolding |Ψ〉 ∝ (1+ (E −H11)−1T10)|Ψ0〉.
Of course, this drastic simplification comes at a price: the effective Hamiltonian is energy
dependent. If the hopping matrix elements in T01 are small, and/or the states in the part of the
Hilbert space that has been integrated out are energetically well-separated from the states that
are explicitly considered, this energy dependence can, to a good approximation, be neglected.
We can then replace ω by some characteristic energy ε0 for the states in the reduced Hilbert
space to obtain an energy-independent Hamiltonian

Heff(ω) = H00 + T01(ω −H11)−1 T10 ≈ H00 + T01(ε0 −H11)−1 T10 = Heff(ε0) (113)

that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with
an energy close to ε0. Expanding (ω − H11)−1 about ε0, we can systematically improve the
approximation (linear and higher-order methods).
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8.2 E. Miles Stoudenmire

1 Introduction

The electronic structure problem, and the quantum many-body problem in general, is an expo-
nentially hard problem. A full accounting of the quantum mechanical behavior of N electrons
would take truly astronomical resources once N is greater than about 30 electrons. This is
far fewer than in most chemical or solid state systems! Electronic structure is also a contin-
uum problem, so to apply most computational methods one must discretize the Hamiltonian.
The approximations needed to handle the exponentially large many-body wavefunction and the
multi-scale details of continuum discretization involve subtle tradeoffs.
By now there are many computational approaches for simulating systems of interacting elec-
trons, but each has major limitations. In quantum chemistry, many computational approaches
start from a non-interacting picture, where the electronic wavefunction is a Slater determinant—
the fermionic analogue of a product state. Interactions are treated by summing multiple Slater
determinants. Such approaches break down when the system becomes strongly correlated,
meaning that exponentially many Slater determinants are necessary to express the wavefunc-
tion accurately. Other approaches like quantum Monte Carlo are limited by the complicated
sign structure of the wavefunction. Thus a demand remains for complementary approaches to
electronic structure, so that a computational technique exists to treat every type of system.
The computational method which is the focus of this chapter is the density matrix renormaliza-
tion group (DMRG) algorithm. DMRG is interesting for a number of reasons. It can handle
strong correlation very naturally, often working better when the system is strongly correlated
versus weakly correlated. DMRG is a controlled method with an arbitrary accuracy level deter-
mined by the user, though it may come at a high cost depending on the specific system. Finally,
DMRG is just one of a number of methods for optimizing tensor network wavefunctions, in
particular matrix product states (MPS), which we define and discuss in more detail below. The
tensor network / MPS perspective has become instrumental in adding new capabilities to DMRG
and pushing its range of applications, and has opened up an entire field of study into tensor net-
work methods. We will see later how a tensor network representation of the electronic structure
Hamiltonian enables very favorable scaling of DMRG calculations for chemistry.
In what follows, we first introduce and review the basics of DMRG, what it accomplishes and
how it works. Then we review the essentials of quantum chemistry, defining the electronic struc-
ture problem and discussing various ways of discretizing it for computational approaches. We
finally turn to recently developed techniques for transforming the electronic structure problem
into a form especially suitable for DMRG, built around spatially local choices of basis.

2 DMRG and matrix product states

The density matrix renormalization group (DMRG) algorithm is a method for optimizing a
particular class of wavefunctions, primarily with the goal of finding ground states of many-body
quantum systems [1–4]. The class of wavefunctions DMRG optimizes are known as matrix
product states (MPS) [5, 4]; these form a very powerful class that can represent wavefunctions
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of widely different systems and notably do not suffer from issues related to strong correlation.
Though DMRG works best for studying one-dimensional lattice model systems, it can be suc-
cessfully applied to narrow two-dimensional lattice models [6] and to ab initio Hamiltonians
such as in quantum chemistry [7, 8]. DMRG also has extensions which can treat excited states,
time evolution, finite-temperature systems, and open systems. Much can be said about tech-
nical aspects of DMRG and properties of MPS, such as the number of variational parameters
needed for an MPS to represent ground states of various systems accurately. The extensive re-
view Ref. [4] provides a detailed review of MPS techniques in the DMRG context, and Ref. [9]
discusses mathematical aspects of the class of MPS wavefunctions and how their complexity
scales with properties such as the entanglement entropy of the wavefunction they represent.

2.1 Matrix product state form of the wavefunction

Before introducing the DMRG algorithm itself, let us first define and discuss matrix product
states (MPS). Because the focus of this chapter is quantum chemistry, let us focus the discus-
sion to wavefunctions of electrons, which are just fermions that have a spin. Thus the many-
body Hilbert space will be a product of single-site (or single-orbital) spaces which are four
dimensional, corresponding to the states {|0〉, |↑〉, |↓〉, |↑↓〉}. Indices sj = 1, 2, 3, 4 will refer
to these four states on site j of a discrete lattice system (which could be a discretized form of a
continuum quantum chemistry system as we will see later in Section 3).
The most general form of a many-body wavefunction on an N site system is

|Ψ〉 =
∑

{s}

Ψ s1s2s3···sN |s1s2s3 · · · sN〉 . (1)

All of the parameters of this wavefunction are stored in the amplitudes Ψ s1s2s3···sN which have
the form of an N -index tensor. The fact that this tensor has 4N distinct components is one
manifestation of the exponential many-body problem. For readers not used to the second quan-
tization formalism for describing fermions, note that any choice of amplitudes in Eq. (1) yields a
properly antisymmetrized fermionic wavefunction, even if the amplitude tensor has no particu-
lar symmetry properties itself. This is because all operators acting on this wavefunction and the
basis states |s1s2s3 · · · sN〉 are defined in terms of fundamental raising and lowering operators
ĉ†jσ and ĉjσ (where σ =↑, ↓) which anti-commute with each other.

2.1.1 Matrix product states

The challenge in dealing with the wavefunction Eq. (1) is finding a manageable representation
of the amplitude tensor Ψ s1s2s3···sN . Fortunately, for any N -index tensor there is a powerful
factorization known as the matrix product state, having the following form:

Ψ s1s2s3s4s5s6 =
∑

{α}

As1α1
As2α1α2

As3α2α3
As4α3α4

As5α4α5
As6α5

(2)

where the above equation shows the example of an MPS for a N = 6 index tensor. Note how
each of the factor tensors Asjαj−1αj carries exactly one of the original physical indices sj . Note



8.4 E. Miles Stoudenmire

also how each factor tensor carries two bond indices αi, except for the first and last tensor which
carry only one bond index.1

The range, m, of the bond indices αi = 1, 2, . . . ,m is called the bond dimension of the MPS.
Although this dimension can vary for each bond index, for simplicity we will sometimes refer
to a single overall bond dimension by which we mean the maximum or typical one. The bond
dimension of an MPS controls both the expressivity the MPS, meaning its ability to accurately
represent complicated wavefunctions, and the cost of computations with the MPS, such as steps
of the DMRG algorithm which scale as m3. For a large enough bond dimension, an MPS
can represent any wavefunction, but in the worst case this requires the bond dimension to be
exponentially large. What makes MPS so useful is that in practice they can accurately capture
ground states and low-lying excited states of one-dimensional (1D) or quasi-one-dimensional
systems for modest bond dimensions, usually in just the many hundreds or few thousands. And
in many interesting cases, such as 1D Hamiltonians with finite-range interactions, the accuracy
corresponding to a given bond dimension is essentially independent of system size.2

The name matrix product state comes from the fact that any single amplitude of the quantum
state the MPS represents can be computed as a product of matrices. Say we want to know the
amplitude for the state |0 0 ↑ 0 ↓ 0〉 in other words the tensor component Ψ 0 0↑0↓0. We can
obtain this by fixing the physical indices in Eq. (2):

Ψ 0 0↑0↓0 =
∑

{α}

A0
α1
A0
α1α2

A↑α2α3
A0
α3α4

A↓α4α5
A0
α5
. (3)

Note that after the physical indices are set to fixed values, the factor tensors have at most two free
indices. So the above expression can be computed by just treating A0

α1
as a vector, multiplying

it with matrix A0
α1α2

, and so on until all of the bond indices and contracted, resulting in the
amplitude as a scalar with a computational effort scaling as m2.
If a certain wavefunction, such as a ground state, can be successfully approximated by an MPS
with a modest bond dimension independent of system size, then one has obtained a hugely
compressed representation. Observe that an MPS of typical bond dimension m has a number of
parameters which scales as 4Nm2 versus 4N for an arbitrary uncompressed wavefunction. So
if m does not depend on N , or depends only very weakly on N , then the number of parameters
grows only linearly with system size which is very manageable. In many interesting cases
the number of parameters and thus the cost of calculation can be reduced even more using
symmetries such as spin symmetry or particle number conservation.

2.1.2 Tensor diagrams

Expressions in traditional tensor notation such as Eq. (2) are tedious to write and difficult to read
for computations involving MPS. Fortunately there is a fully rigorous graphical notation for
expressing tensor computations known as diagram notation [10]. In diagram notation, tensors

1Another more common name for an MPS or tensor network bond index is virtual index.
2There is a logarithmic dependence of bond dimension with system size for critical 1D systems, for which MPS

still work very well in practice.
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are represented as shapes and indices as lines. Connecting two lines implies those indices are
summed over or contracted.
As an example, consider two tensors Aij and Bjkl. The tensor Cilk resulting from contracting
A and B over the index j can be notated diagrammatically as

i
j

k

l

A B ∑
j

AijBjkl=i k

l

C
=

Common matrix operations can be expressed as tensor diagrams as:

X

j

Mijvj
ji

AijBjk = AB

AijBji = Tr[AB]

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8=">AAACt3icdVHBThsxEHWWUkIKLdBjLxarSj1F6wip5YCExIVjkBoSKbuKZp3ZxIrt3dpeULTkC7jCnd/ib+osOQAJI1l6evOe39iTFlJYF0XPjWDr0/bnneZu68ve/tdvB4dH1zYvDccez2VuBilYlEJjzwkncVAYBJVK7Kezi2W/f4PGilz/dfMCEwUTLTLBwXnq6mx0EEbtqC66DtgKhGRV3dFh4yke57xUqB2XYO2QRYVLKjBOcImLVlxaLIDPYIJDDzUotElVT7qgPz0zpllu/NGO1uxrRwXK2rlKvVKBm9r3vSW5qTcsXfYnqYQuSoeavwRlpaQup8tn07EwyJ2cewDcCD8r5VMwwJ3/nFas8ZbnSoEeV/EM3WLIkipGbUuDy6zqLmSxAT3xD1y8VacG1tSxrKUhu9ugrq/vbDRQ7wg79IMkuJl8lOSNr1x+p+z9BtfBdafNoja7OgnPL1bbbZIf5Jj8Ioz8JufkknRJj3CC5J48kMfgNBgFWTB9kQaNlec7eVPBv/8lH9uo</latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

=<latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit><latexit sha1_base64="N8YTSY5h7j1e+HmUk/7xKJTSJp8="></latexit>

Tensor diagram notation has many advantages, such as removing the need to name every index
in tensor expressions. Diagrams also make it easy to see how many indices the result of a
computation will have. For example, if all of the index lines in a complicated diagram are
contracted with another line, then the result must be a scalar, as in the Tr[AB] example above.
The advantage of tensor diagrams becomes most apparent for complicated networks of con-
tracted tensors. For example, the diagram for the MPS of Eq. (2) is just

 s1s2s3s4s5s6 =<latexit sha1_base64="sHp5bWkoggdGWwC02z7mA51Mb68="></latexit>

s1 s2 s3 s4 s5 s6
<latexit sha1_base64="rckQPTfXLS2BQujMflzuuFUiXa4="></latexit>

(4)

which is much simpler than the expression in Eq. (2). Note that not only the αi bond indices
but even the physical sj indices can be suppressed when using diagrams, but we have shown the
physical indices above to make comparison to Eq. (2) easier.

2.2 Overview of the DMRG algorithm

The goal of the DMRG algorithm is to find the ground state of a given Hamiltonian in MPS
form. For DMRG to be efficient, not only must the wavefunction be represented efficiently as
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an MPS, but the Hamiltonian has to be represented efficiently too. As we will discuss later,
finding a compact representation of the Hamiltonian is one of the central challenges in applying
DMRG to problems in quantum chemistry. But for the purpose of this section, let us just assume
the Hamiltonian is a sum of strictly local terms, such as the Hubbard model in one dimension.
Local Hamiltonians have the property that they can be represented as a tensor network known
as a matrix product operator (MPO).3 This means the Hamiltonian H , viewed as a tensor with
2N indices, can be written as a contracted product of factor tensors as follows

H
s0
1s0

2s0
3s0

4s0
5s0

6
s1s2s3s4s5s6 =

<latexit sha1_base64="76HI81Wy5PqT/7MWcHiNuWCYhp4="></latexit>

s1 s2 s3 s4 s5 s6
<latexit sha1_base64="rckQPTfXLS2BQujMflzuuFUiXa4="></latexit>

s01 s02 s03 s04 s05 s06
<latexit sha1_base64="rxFEvizqfnfBb2udoxX+Fdjj3XA=">AAAC5HicdVFNbxMxEHWWrxK+UjhysVghOKBovS0tx0q9cCwSaSvFq2jWmU2t2N6V7S2KtvkHnEBcET+DK/wL/g3Odg9tk45kvaeZ9zweT14p6XyS/OtFd+7eu/9g62H/0eMnT58Ntp8fu7K2AkeiVKU9zcGhkgZHXnqFp5VF0LnCk3x+uKqfnKN1sjSf/aLCTMPMyEIK8CE1GbxzbyaMU04Dph3udLjb4fsO9yaDOBkmbdB1wjoSky6OJtu9X3xailqj8UKBc2OWVD5rwHopFC77vHZYgZjDDMeBGtDosqYda0lfh8yUFqUNx3jaZq86GtDOLXQelBr8mbtZWyU31ca1Lz5kjTRV7dGIy0ZFragv6eqP6FRaFF4tAgFhZXgrFWdgQfjwk31u8IsotQYzbfgc/XLMsoajcbXFVa/mImbcgpmFAZfX1bmFNTVXrTRmFxvU7fXpRgMNjjilt3SC89ltnYLxiivslN3c4Do5TodsZ5h+2o0PDrvtbpGX5BV5SxjZJwfkIzkiIyLIN/Kb/CF/oyL6Gn2PflxKo17neUGuRfTzPy146TE=</latexit>

(5)

In Section 2.3 we briefly discuss some details of how to define the MPO tensors which represent
a given Hamiltonian, but for this section let us assume the Hamiltonian is given in MPO form
and focus on optimizing the MPS approximation to the ground state.
Finding an MPS approximation to the ground state of H means that the MPS obeys the eigen-
value equation

≃ E0
(6)

where E0 is the smallest extremal eigenvalue of H .
A very efficient way to find extremal eigenvalues of Hermitian matrices is by using iterative
eigensolver algorithms such as the Lanczos or Davidson algorithms. Without going into a
detailed description of these algorithms, the main operation needed to perform them is the
multiplication of the current approximate ground state wavefunction by H . The key idea of
DMRG is to use an iterative eigensolver algorithm to improve the approximate ground state in
MPS form, but only one or two tensors at a time—here for pedagogical reasons we will discuss
the case of just improving one MPS tensor at a time.
When only improving one tensor of an MPS, the other temporarily frozen MPS tensors can be
interpreted as defining a sub-basis of the full Hilbert space in which the unfrozen MPS tensor is
defined. For a correct implementation of DMRG, transformations of the MPS tensors need to
be carried out to ensure this sub-basis is an orthonormal basis, but here we will omit these steps
and refer the interested reader to Ref. [4] for further discussion of this important point.
Let us say that we are currently improving the third tensor of an MPS defined on six sites. Then
the step of multiplying H by this tensor in order to use an iterative algorithm such as Lanczos

3Hamiltonians which are not strictly local, such as in systems with long-range Coulomb interactions, can still
be approximated well by MPOs using appropriate compression techniques.
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to improve it is equivalent to performing the following tensor contractions

=
(7)

Note that the resulting tensor on the right-hand side above has the same index structure as the
third MPS tensor, so that it is possible for the MPS tensor being optimized to obey an eigenvalue
equation, when interpreting all of the other tensors—both the frozen MPS tensors and the MPO
tensors—as a square “matrix” multiplying the unfrozen third MPS tensor. The reason the frozen
MPS tensors appear on both the top and bottom of the left-hand side of the above expression is
that they are acting on the Hamiltonian MPO as a transformation which changes the basis of H
from the full Hilbert space to just the subspace of the indices of the third MPS tensor.
For the contractions in Eq. (7) to be efficient, it is important in practice to perform them in a
certain order. To begin with, the projection of the Hamiltonian MPO tensors into the frozen
MPS tensors is performed efficiently by iterating the following pattern of contractions, showing
just the case of tensors to the right of the site being optimized:

= = =

=
(8)

A similar pattern is carried involving frozen MPS tensors to the left of the site to be optimized.
The resulting “Hamiltonian projection” tensors are saved in memory for reuse in the iterative
optimization loop and in later steps of DMRG when the optimization returns to the current site.
Then, within the iterative eigensolver algorithm, an efficient pattern of contractions for carrying
out one step of multiplication by H as in Eq. (7) is given by

(9)



8.8 E. Miles Stoudenmire

where in the first transformation above the saved Hamiltonian projection tensors were recalled
from memory.
Having performed just a few iterations of the eigensolver algorithm for the third MPS tensor
(the iterative eigensolver should not be fully converged, since the other MPS tensors are not
fully optimized), the DMRG algorithm continues by freezing the improved third tensor and
next optimizing the fourth MPS tensor, then the fifth tensor, etc. until reaching the end of the
system. Then the tensors are optimized one at a time in reverse order, until returning to the first
site, completing what is called one sweep of DMRG. In cases where DMRG is very well suited
for the problem, very accurate results can often be obtained in fewer than ten sweeps. But for
challenging systems many more sweeps may be needed.
One other note about the convergence of DMRG is that the single-site algorithm outlined above
may get stuck in a local minimum unless extra steps are included in the algorithm, such as
using a noise term [11] or a subspace expansion step [12]. Both of these approaches usually
lead to very robust convergence for a wide variety of systems. Another important and frequently
used variant of DMRG involves optimizing two neighboring MPS tensors at a time. In addition
to helping with convergence, optimizing two tensors together allows one to easily adapt the
dimension of the bond between them, letting it grow or shrink as necessary to reach a desired
accuracy goal while using a few parameters as possible.
Finally, it is important to consider the scaling of the DMRG algorithm when applying it to a
given system. DMRG scales as p1m3k + p2m

2k2 where m is the wavefunction MPS bond di-
mension, k is the Hamiltonian MPO bond dimension, and p1, p2 are constant prefactors which
depend on further implementation details. So although the leading cost is driven by the com-
plexity of the wavefunction MPS, a very important driver of cost can also be the complexity of
the Hamiltonian and how efficiently it can be represented as an MPO.

2.3 MPO forms of Hamiltonians

Though it is not necessary or always advantageous to represent the Hamiltonian in MPO form
in order to carry out DMRG optimization, it can be very convenient to do so. For applications
such as quantum chemistry, MPO techniques can also offer huge efficiency gains when used
to compress the long-range Coulomb interaction terms, as discussed further in Section 4.3.2.
While full discussion of how to construct MPO Hamiltonian representations is beyond the scope
of this chapter, let us discuss one illustrative case to motivate MPO constructions.
Consider the one-dimensional Hubbard model, which shares some similarities with the Hamil-
tonians one encounters in quantum chemistry calculations, such as a Hilbert space of mobile
electrons, as well as orbital-hopping and Coulomb interaction terms, though admittedly very
local versions of such terms. Recall that the Hamiltonian of this model is

Ĥ = −t
∑

jσ

(
ĉ†jσ ĉj+1σ + ĉ†j+1σ ĉjσ

)
+ U

∑

j

n̂j↑n̂j↓ . (10)

An exact MPO representation of the above Hamiltonian can be obtained by choosing the MPO
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tensor on site j to have the form

Ŵrj−1cj =




Îj
ĉj↑
ĉ†j↑
ĉj↓
ĉ†j↓

Un̂j↑n̂j↓ −tĉ†j↑ tĉj↑ −tĉ†j↓ tĉj↓ Îj




(11)

where matrix elements which are not shown are equal to zero. By saying an MPO tensor is
equal to an operator-valued matrix as in the expression above, what is meant is that fixing the
bond entries to a given pair of values (r, c) makes the resulting tensor, now carrying only two
physical indices, equal to the operator listed in the operator-valued matrix. A few examples of
fixing the bond indices on the MPO tensor defined by Eq. (11) above are

sj

s′�j

1 1 = ̂Is′�j
sj

sj

s′�j

2 1 = ̂cs′�j
↑sj

sj

s′�j

6 2 = − t ̂c†s′�j
↑sj

(12)

To apply the particular MPO above to a finite system with open boundary conditions, the open
bond index on the left of the first MPO tensor is contracted with the standard basis vector e6 and
the open index on the right of the last MPO tensor is contracted with the standard basis vector e1.
The motivated reader can verify by constructing and fully contracting the MPO described above
on small systems that it indeed reproduces the Hubbard model Hamiltonian.
Note that the size of the MPO tensor Eq. (11) is tied very closely to the number of distinct terms
making up the Hamiltonian, such as up-spin hopping versus down-spin hopping terms. Terms
with distinct coefficients that act on sites different distances apart also count as distinct terms
for the purposes of determining the minimum size of an MPO representation. Since we will
see below that discretized quantum chemistry Hamiltonians involve many such distinct terms
with different ranges and coefficients, the size of MPO needed to represent them can grow very
quickly with system size unless additional techniques or approximations are used.
For many more details about MPOs, their construction, and their use in quantum chemistry see
Ref. [13].

3 Quantum chemistry:
brief overview and discretization methods

There is a wide range methods in chemistry for studying atoms and molecules computationally,
with large variations in the degree of approximation made. In the setting of quantum chemistry,
one attempts a fully quantum treatment of either all the electrons, or at least those electrons
most important for chemical processes.
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It is common to work within the Born-Oppenheimer approximation, which we will do here.
This approximation treats each atomic nucleus as a classical point object with positive charge Z,
which is the atomic number. For each set of nuclear positions {Ra}, with a indexing each atom,
one solves the Schrödinger equation Ĥ|Ψ0〉 = E0|Ψ0〉 to find the instantaneous ground state |Ψ0〉
of the electrons. Here Ĥ , |Ψ0〉, and E0 are all functions of the nuclear coordinates, with Ĥ given
by

Ĥ =
∑

σ

∫

r

ψ̂†rσ

(
−1

2
∇2 + v(r)

)
ψ̂rσ +

1

2

∑

σσ′

∫

rr′
ψ̂†rσψ̂

†
r′σ′ u(r, r

′) ψ̂r′σ′ψ̂rσ . (13)

with the summation over σ =↑, ↓ taken over up and down spin states, and with all integrations
taken over the entire 3D space, unless stated otherwise.
The nuclear positions Ra and atomic numbers Za enter through the one-body potential v(r)

v(r) =
∑

a

−Za
|r−Ra|

, (14)

parameterizing the Coulomb attraction of the electrons to the protons of each atom a. The
function u(r, r′) parameterizes the Coulomb repulsion between electrons

u(r, r′) =
1

|r− r′| . (15)

This Hamiltonian is known as the electronic structure Hamiltonian, and solving for its ground
state or other properties known as the electronic structure problem.
In general, the electronic structure problem is very difficult. One reason is that it involves many
strongly interacting fermions. It is also a three dimensional problem in the continuum, raising
the challenging issue of how best to discretize it for methods which operate in a discrete Hilbert
space, with DMRG being one such method.
A wide variety of methods have been devised to study electronic structure. Density functional
theory is one common approach, especially when the electronic structure problem must be
solved at a relatively low cost within other algorithms such as molecular dynamics simulations.
Another method is coupled cluster, which often serves as the standard for high-accuracy studies
of small molecules. Other important methods include variants of configuration-interaction [14,
15] and quantum Monte Carlo within a fixed-node approximation [16,17]. And of course there
is DMRG which is the focus of this chapter [7, 8].
One common approach in electronic structure is to divide valence electrons from core electrons—
those whose orbitals are occupied with probability essentially equal to one—then remove the
core electrons and appropriately modify the one-electron potential v(r) by adding a so-called
pseudopotential. But in what follows, we will only consider an all-electron approach for sim-
plicity, meaning we will give every electron a fully quantum mechanical treatment.

3.1 Basis set discretization

A very common way to discretize the electronic structure problem is to project the single-
particle basis onto a finite set of functions. The set of functions used is called the basis set. If
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the initial set of functions are not normalized and orthogonal to each other (under the 2-norm),
which is often the case for standard basis sets, then one typically expresses the discretized
Hamiltonian in a set of orthonormal functions obtained by an transformation of the original
functions. Here by basis set, we will usually mean the final set of orthonormal functions ob-
tained after the transformation.
Consider a basis set given by N orthonormal functions {φi(r)} where i = 1, . . . , N . Then this
basis set can be used to discretize the electronic structure Hamiltonian by defining the integrals
tij and Vijkl, where

tij =

∫

rr′
φi(r)

(
−1

2
∇2 + v(r)

)
φj(r

′) (16)

Vijkl =

∫

rr′

φi(r)φj(r
′)φk(r

′)φl(r)

|r− r′| . (17)

One also defines orbital annihilation operators

ĉi =

∫

r

φi(r)ψ̂r (18)

and conjugate orbital creation operators ĉ†i .
With these definitions, the electronic structure Hamiltonian projected into the basis set is

Ĥ =
1

2

∑

ijσ

tij ĉ
†
iσ ĉjσ +

1

2

∑

ijklσσ′

Vijkl ĉ
†
iσ ĉ
†
jσ′ ĉkσ′ ĉlσ . (19)

In this form, the Hamiltonian is in principle straightforwardly treatable by lattice methods such
as DMRG, though it is crucial to make sure that the very large number of terms involving
the Vijkl interaction integrals are treated efficiently. To apply DMRG to a complicated lattice
Hamiltonian such as the one above, one must choose some one-dimensional ordering of the
basis. Within this ordering, the system can be viewed as a one-dimensional chain with non-
local interactions. Which ordering to choose is not obvious, but different heuristics can be used
to determine very good orderings, such as an analysis of the entanglement of the Hartree-Fock
approximation to the ground state.
Regarding scaling, observe there are N4 interaction integrals Vijkl for a basis set of size N .
Thus quantum chemistry calculations using basis sets have a cost that grows at least as N4, and
often much more rapidly, with the total number of basis functions N . However we will see in
Section 4 that one can obtain much better scaling using local bases within DMRG for certain
classes of systems.

3.1.1 Gaussian basis sets

Because integrals involving Gaussian functions admit exact closed-form expressions, even when
the integrand involves Gaussians, derivatives of Gaussians, and additional polynomial factors,
basis sets built from three-dimensional Gaussians are a very common choice in quantum chem-
istry due to the efficiency they offer when performing integrals, Eqs. (16) and (17), to construct
the Hamiltonian. For computational scientists used to working with lattice models such as the
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Hubbard model, it can be surprising to learn that just constructing the Hamiltonian for a quan-
tum chemistry calculation can take significant time, but note that for N = 100 basis functions,
there are a hundred million Vijkl terms, each defined by a six-dimensional integral!
Despite their name, the basis functions in a Gaussian basis set are not necessarily themselves
Gaussians, but are made by summing (or “contracting”) a small number of Gaussian functions
together, then possibly multiplying them by integer powers of x, y, and z for those functions
designated as capturing P or D orbitals. The purely Gaussian functions which get summed
together are called primitive Gaussians.
Standard and popular Gaussian basis sets are designated by acronyms such as STO-3G or
cc-pVDZ (standing for “Slater-type orbitals fit to three Gaussians” or “correlation-consistent,
polarized valence double-zeta”). These standard basis sets differ not only in the specific Gaus-
sian functions they contain, but also how these functions were chosen and for what purpose.
For example, the correlation consistent (cc-) basis sets were constructed for the purpose of ex-
trapolating energies smoothly to the continuum limit, which in chemistry parlance is called the
complete basis set limit.
The typical procedure for using a Gaussian basis set, which generally consists of groups of
non-orthogonal functions centered on each atom, is to compute a set of orthogonal functions
φj(r) from each of the functions bi(r) in the initial non-orthogonal basis. For example, one can
diagonalize the overlap matrix Oij =

∫
r
bi(r)bj(r) and use the resulting orthogonal matrix of

eigenvectors to define the φj(r) basis. Then the same transformation can be used to transform
the integrals tij and Vijkl to the orthonormal basis. It is important to note that although the
original bi(r) are somewhat local and are centered on one of the atoms, the orthonormal φj(r)
functions typically end up being much less localized. Though various strategies can be used to
ensure the φj are as local as possible, in general they will have significant overlap with many
other basis functions φk, which has negative consequences when used as a starting point for
methods based on locality such as DMRG.

3.1.2 Quantum chemistry DMRG with Gaussian basis sets

The use of DMRG for quantum chemistry originates from the proposal of White and Martin [7]
to use DMRG in combination with standard Gaussian basis sets, as well as an earlier study [18].
Since then, DMRG has become a powerful technique for certain quantum chemistry problems,
in large part due to its ability to handle strongly correlated systems, as it does not rely on an
expansion of the wavefunction in Slater determinants unlike many other quantum chemistry
methods. Some notable examples of applying DMRG within Gaussian basis are an accurate
study of the strongly-correlated Mn4CaO5 cluster in the photosystem II protein complex [19],
and calculations of the challenging Cr2 dimer [20].
Many technical improvements to the DMRG algorithm have been developed in the setting of
chemistry with Gaussians or adapted to this setting. These include using the “complemen-
tary operator” technique to handle very large Hamiltonians with non-local interactions [21, 7],
exploiting SU(2) symmetries [22], and using matrix product operators (MPO) to compress
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Hamiltonians and simplify calculations [13]. Another important step often used in conjunc-
tion with DMRG is the selection of an active space of orbitals, which are a subset of the full
basis set most important for estimating chemical properties [19]. Advanced DMRG and MPS
techniques for going beyond ground-state calculations have also been developed and refined in
the quantum chemistry setting, such as tangent-space linear response methods [23]. For review
articles about using DMRG in quantum chemistry with Gaussian basis sets, see Refs. [24], [8],
and [25].

3.2 Grid discretization

An alternative to using a basis set to discretize the continuum Hamiltonian Eq. (13) is to use a
grid discretization. Within a grid approximation to the continuum, one introduces grid points rn
indexed by a set of integers n = (nx, ny, nz) where nx = 1, 2, . . . , Nx and similar for y and z.
Rather than associating individual functions to these grid points, one thinks of them as loca-
tions at which to sample from any smooth function. Operators in the continuum Hamiltonian
are replaced by operators defined only on grid points, such that for any sufficiently smooth
wavefunction, the expected values of the grid operators accurately approximate that of the con-
tinuum operators.
For terms not involving derivatives, the replacement of continuum operators ψ̂rσ with grid op-
erators ĉnσ is

ψ̂rσ →
∑

n

δ(r− rn) ĉnσ . (20)

Thus for terms such as the one-body potential energy, the transformation from continuum to
grid form is

1

2

∑

σ

∫

r

v(r)ψ̂†rσψ̂rσ →
1

2

∑

nn′σ

∫

r

v(r)δ(r− rn)δ(r− r′n)ĉ
†
nσ ĉn′σ =

1

2

∑

nσ

v(rn)ĉ
†
nσ ĉnσ (21)

from which we see that the basic replacement is just to evaluate the coefficient functions at grid
points and replace continuum with grid operators.
For the Coulomb interaction term, the transformation to the grid is

1

2

∑

σσ′

∫

rr′
u(r, r′) ψ̂†rσψ̂

†
r′σ′ψ̂r′σ′ψ̂rσ →

1

2

∑

n6=n′

u(rn, rn′) n̂nn̂n′ (22)

which gives a particularly simple and compact form for this computationally expensive term.
Crucially, unlike the basis set approach which results in N4

b discrete Coulomb terms for a basis
set consisting of Nb functions, the number of Coulomb terms in the grid approach is just N2

where N = NxNyNz is the number of grid points. So the scaling of the number of Coulomb
integrals is much more favorable in the grid approach than in the basis-set approach, though this
is not the entire story as we will see just below.
Finally, for the kinetic energy term of the Hamiltonian, in the grid approach one replaces deriva-
tives by finite-difference approximations over neighboring grid points. There are many finite-
difference approximations for the second derivative operator, which can be obtained by ap-
proaches such as fitting low-order polynomials or using wavelet techniques. For a regular grid
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with grid spacing a, the resulting transformation of the kinetic energy takes the form

− 1

2

∑

σ

∫

r

ψ̂†rσ∇2ψ̂rσ → −
1

2a2

∑

nn′σ

∆nn′ ĉ
†
nσ ĉn′σ (23)

where the ∆nn′ are finite-difference coefficients which fall exactly to zero once n and n′ are
more than a certain distance apart, depending on the order of the approximation.

3.3 Comparison of basis set and grid discretization

Having just reviewed two of the major approaches to discretizing continuum Hamiltonians—
Gaussian basis set discretization and grid discretization—let us contrast the key aspects of each
approach.
One important consideration is whether the resulting approximation is variational, meaning
whether the ground-state energy of the approximate Hamiltonian is always greater than or equal
to the continuum ground-state energy. A key advantage of the basis set approach is that it is
variational. Grid discretization is typically not variational.
The other key consideration is the overall computational cost, with the number of Coulomb
interaction terms being a major driver of cost. The number of Coulomb terms scales much
better within the grid approach: just N2

g Coulomb terms for Ng grid points, versus N4
b Coulomb

terms when using a basis set of Nb functions. However, Gaussian basis sets often need many
fewer functionsNb compared to the number of grid pointsNg needed to reach a similar accuracy.
For example, approximating a small molecule with about Nb = 100 Gaussian basis functions
requires a grid of linear size roughly Nx,y,z = 100 giving Ng = 106 grid points in total, making
the grid approach more costly overall, despite its better scaling.
Thus at least for the study of small molecules using high-accuracy quantum chemistry tech-
niques, Gaussian basis set discretization is typically the preferred approach due to its variational
nature and relatively low costs.
But as we will see in the next section, one can successfully combine the best features of the grid
and basis set approaches—low cost and good scaling—for use within methods such as DMRG.

4 Local bases for quantum chemistry DMRG

We turn now to a promising approach of using basis sets made from local functions for DMRG
and tensor network methods for quantum chemistry. These bases are distinct from standard
Gaussian basis sets, though the first one we will discuss uses Gaussian bases as an ingredient.
Although choosing a local basis often results in the basis being larger than the number of Gaus-
sians needed to resolve the continuum to the same accuracy, we will see that the tradeoff is
worthwhile because tensor networks very naturally exploit real-space locality.
The motivation for developing alternative bases for DMRG calculations is that calculations us-
ing Gaussian basis sets scale poorly compared to DMRG calculations of lattice systems, such
as of the 1D Hubbard model, which have local Hamiltonian terms only. For example, quantum
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chemistry DMRG calculations of one-dimensional chains of 3D hydrogen atoms can only han-
dle about a hundred atoms using Gaussian basis sets, whereas 1D Hubbard DMRG calculations
can scale to thousands of sites. Yet both quantum chemistry calculations and Hubbard model
calculations use the same local single-site or single-orbital basis: {|0〉, |↑〉, |↓〉, |↑↓〉}. Thus it
follows that scaling is not about whether the degrees of freedom are electrons, but instead must
originate from either the range or complexity of the Hamiltonian.
To be more precise, there are three significant factors which determine the cost of DMRG
calculations for quantum chemistry:

1. the size of the Hamiltonian within the particular basis and format used within DMRG

2. the bond dimension of the MPS needed to accurately represent the ground state wave-
function in the basis used

3. the number of sweeps, or passes, over the system necessary to reach convergence

Crucially, factors number (1) and (2) are both tied very strongly to the size and locality of
the basis one uses. For example, if one uses a basis set which is local in the sense that any
function φi only overlaps with a small, finite number of other functions φj , then the number
of non-zero interaction integrals Vijkl scales only as N2, not as N4. This better scaling has
immediate implications for the costs (1) coming from the size of the Hamiltonian. Regarding
the costs (2) associated with the MPS bond dimension, a ground state in a spatially local basis
can be accurately captured by an MPS of a bond dimension growing only logarithmically with
the largest direction of a system extended along one dimension. In contrast, a basis that is not
spatially local can result in MPS bond dimensions which are orders of magnitude larger, with
the most extreme example being that of an interacting system in a non-local plane-wave basis,
for which an accurate MPS representation must have a bond dimension growing exponentially
with system size!
Yet one does not immediately gain from just choosing a basis set of local functions because
such local bases can require many more functions N to capture the continuum than a non-local
basis. But with a smart choice of local functions (Sections 4.1 and 4.2), and technology for
representing the electronic structure in a compressed form (Section 4.3.2), local basis sets can
be a very beneficial choice.

4.1 Approach 1: hybrid grid and basis set, or “sliced basis” approach

One idea to develop a local basis for DMRG is to combine grid discretization with Gaussian
basis set discretization, with the goal of obtaining the best aspects of each. A successful way
to combine a grid and basis set is to use a grid only along one spatial direction, such as the z
direction, then a Gaussian basis set along the other two directions x and y. This idea, called
sliced-basis, was recently developed for use with DMRG in Ref. [26] and successfully applied
to DMRG calculations of one-dimensional, strongly correlated chains of hydrogen atoms in
Refs. [26, 27].
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Fig. 1: Visualization of a sliced-basis representation of the continuum, where the z direction is
discretized using a grid spacing a and the (x, y) directions are captured using a set of functions
which can be derived from a 3D Gaussian basis.

To carry out the grid discretization along just the z direction, define a regular grid spacing a and
grid points zn = n · a. Each value of n defines an infinite two-dimensional plane (x, y, zn) we
will call a slice of three-dimensional space. Next, within each continuum slice, discretize using
a basis set of functions {ϕnj(x, y)} with j = 1, 2, ..., No. The number of functions No used on
each slice could differ from slice to slice in principle, but here we consider just the case where
No the same for every slice. Fig. 1 shows schematically how a sliced basis might represent
a three-dimensional continuum function such as an electron orbital as linear combinations of
two-dimensional functions arranged on planes separated by a small spacing a in the z direction.
Although such a discretization does not strictly speaking correspond to using a basis set, it is
still pedagogically useful to think of it as involving a basis set given by

φnj(r) = ϕnj(x, y) δ
1/2(z − a · n) (24)

such that these “sliced basis functions” are ultra-local along the z-direction. The 1/2 power on
the delta function simply indicates that the φ are square normalized. The reason the sliced-basis
approach is not technically a basis set approach is that it uses a finite-difference approximation
for the z-direction kinetic energy as we will discuss below. Thus it lacks the guarantee of a
variational energy. But it can still be useful to picture it in terms of the functions Eq. (24).
After introducing the grid and basis set approximations, the discrete electronic structure Hamil-
tonian takes the form

Ĥ =
1

2

∑

nn′ijσ

tnn
′

ij ĉ†niσ ĉn′jσ +
1

2

∑

nn′ijklσσ′

V nn′

ijkl ĉ
†
niσ ĉ

†
jσ′ ĉkσ′ ĉlσ . (25)

where the slice or grid indices run over n, n′ = 1, 2, ..., Nz and the orbital indices over i, j, k, l =
1, 2, ..., No. Note the resemblance to Eq. (19), except that the one-body integrals tnn′ij and two-
body interaction integrals V nn′

ijkl carry extra indices n, n′ labeling pairs of slices along the z
direction. The one-body integrals are defined as

tnn
′

ij = δnn′

∫

ρ

ϕni(ρ)

(
−1

2
∇2
ρ + v(ρ, zn)

)
ϕn′j(ρ)− δij

1

2a2
∆nn′ , (26)

where ρ = (x, y) is a convenient shorthand, and ∆nn′ are second-derivative finite-difference
coefficients. The two-body interaction integrals are defined as

V nn′

ijkl =

∫

ρ,ρ′

ϕni(ρ)ϕn′j(ρ
′)ϕn′k(ρ

′)ϕnl(ρ)√
|ρ− ρ′|2 + (zn − zn′)2

. (27)
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4.1.1 Scaling of the sliced-basis approach

Despite the resemblance to the basis-set form of the electronic structure Hamiltonian Eq. (19),
a key distinctive of the sliced-basis approach is that the number of interaction integrals V nn′

ijkl

scales as N2
zN

4
o , with Nz the number of slices and No the number of orbitals on each slice.

When treating quasi-1D, chainlike molecules it is only the number of slices Nz that grows with
the number of atoms, not No. Therefore the overall scaling of the method as a function of the
number of atoms is quadratic, which is a huge improvement over the quartic scaling with the
number of atoms incurred by the basis set approach. We discuss in Section 4.3.2 how the z-
locality of the sliced-basis approach allows its quadratic scaling to be improved to just linear
scaling when taking advantage MPO compression techniques. Thus the sliced-basis approach
realizes some of the best aspects of a grid while avoiding the pitfall of the huge number of grid
points arising from a fully 3D grid. By using a grid only along one direction, the overall number
of interaction integrals that must be treated remains tractable.

4.1.2 Deriving the transverse basis functions

A crucial step in setting up a sliced basis for a chemistry calculation is selecting or deriving the
transverse functions {ϕnj(x, y)} which define the basis of each slice. While many approaches
could be conceived to do this, the approach taken in Ref. [26] derives the transverse functions
from a standard, atom-centered Gaussian basis set.

In the simplest setting, all of the atoms are of the same type (such as hydrogen atoms) and
the “parent” Gaussian basis set consists purely of Gaussians (that is, the basis functions are
“uncontracted”). This can be made to be true by just using the primitive Gaussians from a set
without contracting them. Because we assumed the atoms are the same, the entire basis consists
of the same set of Gaussian functions centered on each atom. Then for a given basis function
bi(x, y, z) the associated transverse function intersecting a slice is just ϕ̃ni(x, y) = bi(x, y, zn).
Because in this case bi(r) is a Gaussian bi(r) ∝ exp(−ζi|r− ri|2), its restriction to slice n will
also be a Gaussian with the same length scale ζi. Thus although every basis function for every
atom intersects with a given slice, there will only be as many unique Gaussian functions as in
the basis set of just a single atom. The final transverse basis of each slice is formed by just
creating an orthonormal linear combination of the ϕ̃ni.

More generally, though, the atoms will be of different types and some of the basis functions will
be contracted, so their restrictions to slice will result in large set of functions, much larger than
was needed to represent any one atom in the original Gaussian basis. Using all of these functions
would be costly and would not give enough extra accuracy relative to the other approximations
being made to be worthwhile. So for this more general case one must truncate the functions
on a slice in some sensible way. A very reasonable and effective approach is to use principal
component analysis (PCA). Here this just means the following: say that we obtain a set of
functions b̃ni(x, y) = bi(x, y, zn) by restricting each function bi from a Gaussian basis set to the
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nth slice. Compute the overlap matrix

Oij =
∫

x,y

b̃ni(x, y)b̃nj(x, y) . (28)

Now diagonalize this matrix and sort its eigenvalues from largest to smallest. Keep the eigen-
vectors vjk corresponding to the largest k = 1, 2, . . . , No eigenvalues, where for the case of
molecules consisting of only one atom type, No can be chosen to be the number of functions in
the basis set of a single atom. The resulting eigenfunctions take the form

ϕ̃nk(x, y) =
∑

j

vjkb̃nj(x, y) . (29)

The final transverse basis {ϕni(x, y)}No
i=1 of slice n is then found by normalizing the ϕ̃.

4.1.3 The sliced-basis approach in practice

To test the sliced-basis approach outlined above, Refs. [26, 27] applied sliced bases to finding
the ground state of one-dimensional chains of hydrogen atoms with their nuclei evenly spaced
by a distance R. Although hydrogen atoms lack core orbitals, solving hydrogen chains still
involves reckoning with most of the issues that make quantum chemistry challenging. These
issues include scaling to large numbers of atoms, converging to the continuum or complete basis
set limit, and dealing with strongly correlated wavefunctions.
One goal of studying hydrogen molecules was to compare to results obtained with standard
Gaussian basis sets such as those in Ref. [27]. For this purpose, it is sufficient to study finite
hydrogen chains of ten atoms or H10—see the results in Fig. 2. The energy obtained using a
sliced basis derived from a given Gaussian basis is similar to the energy obtained just using
that Gaussian basis without slicing. This is encouraging to see, since it demonstrates that the
sliced-basis maintains favorable aspects of the parent Gaussian basis like the ability to smoothly
extrapolate to the continuum or complete basis set limit. On the other hand, a sliced basis is
much more scalable to long hydrogen chains as we will see below. Another observation about
the results in Fig. 2 is that the sliced-basis energies are generally slightly lower than the energy
of the corresponding Gaussian basis, at least for larger basis sets such as cc-pVDZ (double ζ)
and cc-pVTZ (triple ζ). This can be readily understood as a consequence of finer resolution of
a sliced basis along the z direction, allowing electrons more freedom to avoid costly Coulomb
interactions.
Another goal of studying hydrogen chains with the sliced-basis approach was to test that it can
scale to very long systems extended along the z direction, with a cost that is only linear in
system length. Here a crucial technical step for achieving good scaling is the compression of
the Coulomb interaction using matrix product operator techniques, which we describe later in
Section 4.3.2 below. Taking a fixed inter-atomic spacing R = 3.6 and working with a sliced
basis derived from the STO-6G basis set, Fig. 3 shows results for the timing and energy of
calculations up to 1000 hydrogen atoms. From the inset of the figure, one can see very close to
linear scaling of the method with number of atoms, while getting consistently accurate energies
across all system sizes.
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Fig. 2: Ground-state energies of H10 chains as a function of inter-atomic spacing R calculated
using DMRG within standard Gaussian basis sets (dashed curves) and sliced basis sets (solid
curves and points) using a uniform grid spacing of a = 0.1 atomic units [26].
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Fig. 3: Scaling with number of atoms of sliced-basis calculations up to 1000 hydrogen atoms.
The inter-atomic spacing is fixed to R = 3.6 and a sliced basis derived from the STO-6G
Gaussian basis was used. The outer plot shows the ground state energy from DMRG using the
standard STO-6G basis and the sliced version (SB-STO-6G). The inset shows the average time
per DMRG sweep, taking a bond dimension of m = 100.

4.2 Approach 2: multi-sliced gausslet basis

The sliced basis approach to discretizing the electronic structure Hamiltonian demonstrates a
successful marriage of the grid and basis set approaches to quantum chemistry. Counterintu-
itively, it demonstrates that using more functions to represent the Hamiltonian can result in a
more affordable calculation overall, by choosing the functions to be local (at least along one
direction), so that the DMRG algorithm and MPO methods for compressing the Hamiltonian
(Section 4.3.2) can perform to their full potential.
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There are some drawbacks to the sliced-basis approach though. It is very oriented toward one-
dimensional systems, and only scales well along the z direction: the direction discretized with
a grid. The cost of including more transverse functions within each (x, y) slice is high. The
sliced-basis also requires a small grid spacing a to get good accuracy. Finally, because sliced-
basis transverse functions are derived from standard Gaussian bases, they sometimes inherit
their weaknesses when dealing with certain molecules for which they were not designed. This
can include molecules where the nuclei are extremely close together or for which electrons
occupy very spatially extended orbitals.
Because these issues mostly stem from the use of Gaussian bases in making the transverse
functions, a better approach would be to start from a completely different set of basis func-
tions. Ideally such functions would behave like grid points in terms of the simplicity of the
Hamiltonian formed from them, yet a relatively small number of them would be able to cap-
ture continuum details. Fortunately such functions have been recently developed for quantum
chemistry applications and are called gausslets [28]. Gausslet basis sets have been extended to
real 3D chemistry calculations based on DMRG through an approach called multi-slicing [29].
We will discuss both gausslets and multi-slicing below, with examples of the improvements
they give over the sliced-basis approach. A key reason for these improvements is not only
that multi-sliced gausslets capture the continuum with relatively few functions, but that their
properties enable diagonal approximations for the costly Coulomb interaction terms.

4.2.1 Gausslet functions and their properties

In the one-dimensional case, a gausslet is a function G(x) which is symmetric about x = 0 and
which is orthonormal

∫
x,x′

G(x)G(x′) = δ(x − x′). Gausslets are also smooth, in the precise
sense of being orthogonal to a certain hierarchy of oscillatory functions; they are local in the
sense of falling rapidly to zero past a certain length scale; they have excellent completeness
properties, meaning that linear combinations of neighboring gausslets can represent any poly-
nomial up to a certain very high order (such as order 10); and finally gausslets have an important
property of integrating like a delta function when integrated with sufficiently smooth functions.
What this means is that for any polynomial p(x) that is not too high-order

∫ ∞

−∞
dxG(x− x′)p(x) = p(x′) . (30)

Thus integration against a gausslet “plugs in” the coordinate where the gausslet is centered.
All of these desirable properties of gausslets resemble those of wavelets (technically wavelet
scaling functions), yet underneath a gausslet is defined as a weighted sum of Gaussian functions,
hence the name gausslet. Defining gausslets in terms of underlying Gaussians makes them very
convenient and efficient for the integrations necessary to perform when constructing quantum
chemistry Hamiltonians.
Figure 4 shows an array of one-dimensional gausslet functions with a length scale of 1.0, such
that their centers are arranged on a grid with a 1.0 spacing. Gausslets can be constructed in var-
ious ways involving trade-offs in their favorable properties listed above. For more information
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about the details of constructing them, see Ref. [28] which proposes and constructs gausslets,
building upon the development in Ref. [30] of compact and symmetric families of orthogonal
wavelets.
Importantly, after constructing a grid of gausslets like in Fig. 4 and using them to discretize
quantum chemistry Hamiltonians, one can obtain very accurate continuum results using a gaus-
slet spacing of about 1.0, in contrast to grid discretization which requires about an order of
magnitude smaller spacing to obtain similar accuracy [28]. Better yet, we will see next that by
adapting the grid on which the gausslets are centered, one can even better resolve the continuum
using small numbers of gausslet functions.

4.2.2 Adapted grid of gausslets

Using an even-spaced grid of gausslet functions, as in Fig. 4 to discretize quantum chemistry
Hamiltonians is more efficient that using a simple grid, yet still requires more functions than
are actually needed. The reason is that while high resolution is required to capture details of the
electronic wavefunction near atomic nuclei, much less resolution is needed away from nuclei. A
straightforward way to reduce the number of functions needed while preserving high resolution
near nuclei is to perform a coordinate mapping on the gausslet functions so that they form an
adapted grid, with a finer spacing near nuclei and a coarser spacing otherwise.
Such a coordinate mapping may be defined via a function x(u) which maps from a fictitious
space u where the gausslets are defined to have a regular grid spacing into the actual space x
used for the quantum chemistry calculation. Let u(x) be defined as the inverse of the mapping
x(u). For the case of a single atom, a sensible coordinate mapping is

u(x) =
1

s
sinh−1(x/a) (31)

defined by a scale parameter s and a core cutoff parameter a. Figure 5(a) shows how this
mapping takes an evenly spaced grid along the y direction of the plot into a variable spaced grid
along the x direction.
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Fig. 5: Illustration of (a) a coordinate mapping Eq. (31) which maps a regularly spaced grid
in the u coordinates to an adapted grid in the x coordinates. The resulting adapted gausslets
shown in (b) remain orthonormal, but achieve a higher resolution near the origin. One gausslet
is shown with a bold line to highlight details.

Having chosen a coordinate mapping, the transformation of the gausslets which moves their
centers onto the adapted, variable-spacing grid while preserving their orthogonality and other
good properties is

G̃j(x) = Gj(u(x))
√
u′(x) (32)

where Gj(u) is the gausslet centered at the integer grid point j in the u space. Figure 5(b)
shows the adapted gausslets G̃j(x) resulting from using the coordinate mapping u(x) defined
in Eq. (31) above. One of the adapted gausslets is highlighted with a bolder line, and you
can observe that it takes a distorted shape compared to the unadapted gausslets in Fig. 4. The
placement of more and finer-sized gausslets near the origin gives better resolution there.
Note that when adapting gausslets for systems of multiple atoms, there are modifications of the
transformation Eq. (31) which make it better suited for treating molecules. The supplemental
information of Ref. [29] discusses such multi-atom coordinate transformations.

4.2.3 Multi-sliced grid

To apply the above ideas of gausslet basis sets to 3D systems, the most straightforward approach
is to define basis functions as products Gi(x)Gj(y)Gj(z) of 1D gausslets. But how to maintain
this product form while also adapting the gausslet spacing near atomic nuclei is less obvious; for
example, performing the coordinate transformations in a radially symmetric way destroys the
product form of the 3D functions, resulting in integrals which are too costly when constructing
the discrete Hamiltonian.
Fortunately, there is a simple way around this problem that only incurs a modest overhead in the
total number of functions needed. This workaround is called multi-slicing and is just the idea
of performing the coordinate transformation sequentially: first in the z direction (the direction
along the greatest extent of the system), then in the y direction, and finally the in x direction.
In more detail, one starts by first defining a coordinate transformation uz(z) to determine an
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FIG. 1. (a) Array of gausslets, with the gausslet centered at
the origin emphasized to show detail. (b) Coordinate trans-
formation function u(x) for a single atom, with a = s = 0.7
in Eq. (2), to give gausslets variable resolution. (c) Distorted
gausslet basis based on the transformation of (b), which is or-
thonormal and allows a diagonal approximation. One of the
functions is emphasized. (d) Schematic representation of mul-
tislicing in 2D. The vertical lines represent slices, with three
shown in detail. Each dot is the center of a basis function, and
the shaded rectangles illustrate the principle support region of
some of the functions, although they have smooth tails well
beyond the rectangles. The multicolored shaded rectangles
represent long, thin basis functions which one would want to
contract at a later stage.

its inverse u(x) define a 1D smooth one-to-one coordinate
mapping, which will be used to make the grid narrow and
closely spaced near nuclei, and wide and sparse far away.
First consider a 1D arrangement, with just one atom at
x = 0. Define the gausslets on a uniform grid in the
u space and then map to x-space, inserting a Jacobian
factor to preserve orthonormality. If Gj(u) is a gausslet
centered at integer j, define

G̃j(x) = Gj(u(x))
p

u0(x) . (1)

The G̃j are orthonormal if the Gj are.
The coordinate mapping we choose for a single atom

is given by

u(x) = sinh�1(x/a)/s (2)

where the parameter s, the scale, sets or adjusts the over-
all gausslet spacing, and a, the core cuto↵ sets the range
in x over which we stop decreasing the gausslet spacing.
The smallest gausslet spacing at the nucleus is about
a · s. This transformation is shown in Fig. 1(b), with
the resulting 1D functions shown in Fig. 1(c). In the
Supplemental Material, we discuss the motivation for the
above form of the transformation u(x), as well as a modi-
fied form of the transformation better suited for multiple
atoms.
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FIG. 2. (a)Energies of a hydrogen atom in an MSG basis as
a function of a and s, in Hartrees, using the full Hamiltonian
(“exact H”) and using the integral diagonal approximation.
The exact energy is �1/2. (b) Energy of a hydrogen molecule
with separation R = 2 in standard Gaussian and MSG bases.

For 3D basis functions, a coordinate-product form
G(x, y, z) = f(x)g(y)h(z) greatly simplifies evaluation of
integrals defining the Hamiltonian. To keep this form,
we apply coordinate transformations to each coordinate
separately, in a method we call “multislicing”. The co-
ordinate directions are sliced up sequentially, z (which
runs along the chain), then y, then x. A first coordi-
nate transformation uz(z) determines a set of z-values
zk (k = 1, 2, . . .), with uz(zk) = k, at which are centered

distorted 1D gausslets G̃k(z). The plane z = zk and func-

tion G̃k(z) together define a z-slice. Next we slice up each
z-slice in the y direction, with a coordinate transforma-
tion unique to k, uy

k(y), which defines a set of y-values
ykj . A y “slice” (or “subslice” of a “parent” z-slice) is
the line z = zk, y = ykj , with associated 2D function

G̃k(z)G̃kj(y). Finally, for each y-slice, define a unique
coordinate transformation ux

kj(x), determining a set of x

values xkji, and 3D basis functions G̃k(z)G̃kj(y)G̃kji(x).
The key point in using this successive procedure is to

use of the knowledge of where a slice is, relative to the
nuclei, to make subsequent transformations with the low-
est density of functions. This is illustrated schematically
in 2D in Fig. 1(d). Preserving the product form via mul-
tislicing means that some basis functions are long and
thin; however, at a later stage on can devise methods
to contract such functions with their neighbors, reducing
unnecessary degrees of freedom. The details of the co-
ordinate transformations in the multisliced case are dis-
cussed in the Supplementary Material.

Each basis function has a well defined center
(xkji, ykj , zk), and we can make a simple rule for which
functions to keep: if the basis function is within a dis-
tance b of an atom, we keep it. Here b = 9 a.u. proved
very accurate (< 0.1 mH errors compared to larger b)
except for R = 1 for H10, where we used b = 13.

Figure 2(a) shows energies for a single hydrogen atom
for various a and s, using both the standard Hamilto-
nian and one where a diagonal approximation is made for
the single particle potential [1]. Since there are only N2

single particle terms, using this diagonal approximation

Fig. 6: Illustration of a fixed-z cut through a multi-sliced grid, showing the primary non-zero
support of selected gausslet functions as colored rectangles. The vertical lines are selected
x-slices and points are centers of adapted gausslets. The position of a nucleus is shown, illus-
trating how the multi-sliced grid bunches more gausslets of a smaller size nearby.

adapted grid of discrete z values zk, k = 1, 2, . . . , Nz which are more closely spaced when-
ever planes z = zk pass nearby atomic nuclei. This transformation defines planes z = zk with
adapted functions G̃k(z) centered on them, forming what is called a z-slice. Now within each
z-slice, a coordinate transformation is applied to the y coordinates, defining an adapted grid
through a function uy(y) which yields discrete y values ykj with j = 1, 2, . . . , Ny. The trans-
formation uy(y) is also chosen to make the ykj values more closely bunched whenever lines
of fixed (ykj, zk) pass nearby an atomic nucleus. This second step defines y-slices as lines of
fixed (ykj, zk) with functions G̃kj(y) G̃j(z) centered on them. Finally discrete x points xkji
with i = 1, 2, . . . , Nx are defined through a transformation ux(x) such that points (xkji, ykj, zk)
are more densely spaced the closer they are to nuclei. All these transformations taken together
define 3D functions G̃kji(x) G̃kj(y) G̃j(z) centered on points (xkji, ykj, zk). To make the basis
finite, only functions whose centers lie within a certain distance of at least one of the atoms
are kept in the basis. By construction these final basis functions maintain a product form and
orthonormality, while being adapted for higher resolution near nuclei. For more technical dis-
cussion on how to make a good choice for the uz, uy, and uz coordinate transformations, see
the supplemental information section of Ref. [29]. Essentially these coordinate transformation
functions are chosen to have a form like that of Eq. (31), but with the s and a parameters varying
according to the 3D distance of a particular z or y slice from the nearest atomic nucleus.
Figure 6 shows a 2D cut through a multi-sliced grid, with boxes illustrating the non-zero support
of selected gausslet functions. From the figure, one can observe that a downside of multi-slicing
is that it results in many long and thin functions far away from any nucleus which provide
more resolution than is actually needed. But by using an approximate wavefunction as a guide,
such as a wavefunction from a Hartree-Fock calculation, one can take the additional step of
combining such redundant functions together into single functions to reduce the basis size.
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4.2.4 Diagonal approximations

A final and very important step when using multi-sliced gausslet bases is to make a diagonal
approximation to the Coulomb repulsion term when discretizing the Hamiltonian. Being able
to use a diagonal form for this very expensive term is a crucial way to reduce calculation costs.
A diagonal approximation to the Coulomb term means a discretization of the form

1

2

∑

σσ′

∫

rr′
u(r, r′) ψ̂†rσψ̂

†
r′σ′ψ̂r′σ′ψ̂rσ →

1

2

∑

m6=m′

Vm,m′ n̂m n̂m′ (33)

where m = (i, j, k) are the grid points on which the gausslets are centered and the n̂m = ĉ†mĉm
operators measure the occupation of the gausslet basis functions G̃kji(x)G̃ji(y)G̃k(z) at position
rm = rijk. Such a form is called diagonal because it only involves N2 terms, with N being the
total number of 3D gausslet functions, rather than N4 terms as in the most general form of the
discrete Coulomb interaction Eq. (19).
The justification for using a diagonal approximation with multi-sliced gausslets is that gausslets
have the ability to represent a wide variety of smooth functions while also integrating like a
delta function, meaning: ∫

x

G̃i(x)f(x) = wif(xi) (34)

for any smooth function f where xi is the center of the adapted gausslet G̃i(x) andwi =
∫
x
G̃i(x).

Note that this delta-function relation differs from Eq. (30) by the inclusion of the weightwi. This
is because, although adapted gausslets remain square-normalized, they generally no longer in-
tegrate to 1.0.
To see how the representability and delta function properties of gausslets lead to a diagonal
approximation, consider just the single-particle potential term v(x) for a 1D Hamiltonian in the
first-quantization formalism. The action of this Hamiltonian term on a single-particle wave-
function ψ(x) is v(x)ψ(x). Define the resulting function to be φ(x) = v(x)ψ(x). Now if we
assume that both ψ(x) and φ(x) are smooth enough that they can be approximated by gausslets,
that means there exist coefficients ψi and φi such that

ψ(x) =
∑

i

ψi G̃i(x) (35)

φ(x) =
∑

i

φi G̃i(x) , (36)

where in fact

ψi =

∫

x

G̃i(x)ψ(x) = wi ψ(xi) (37)

φi =

∫

x

G̃i(x)φ(x) = wi φ(xi) (38)

because of the delta-function integration property Eq. (30) of gausslets. The discrete form of
the Hamiltonian we seek are the coefficients vij which are defined as mapping

φi =
∑

j

vij ψj . (39)
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Now observe that

φi =

∫

x

G̃i(x)φ(x) =

∫

x

G̃i(x)
(
v(x)ψ(x)

)
= wiv(xi)ψ(xi) = v(xi)ψi , (40)

where we used the delta-function property of the gausslets and Eq. (37) above to obtain the
last expression. By inspection of the above equation and from the definition of vij in Eq. (39),
we finally see that vij = δij v(xi) which is the diagonal approximation we seek (in a first-
quantized form). Note that the most general expression for vij in a gausslet basis would be vij =∫
x
G̃i(x) v(x) G̃j(x) = wi v(xi) G̃j(xi) which is non-zero for i 6= j and thus non-diagonal. So

for the diagonal approximation to be justified, one is making additional smoothness assumptions
about the functions being transformed by the Hamiltonian and not just invoking properties of
the Hamiltonian itself. By similar arguments one can make a diagonal approximation to the
two-body Coulomb interaction of the form Vijkl = δil δjku(xi, xj) when using gausslet basis
functions.
The form of diagonal approximation we just outlined is called the point-wise approximation.
Another type of diagonal approximation that can be derived is the integral approximation:

Vijkl =
δil δjk
wiwj

∫

x,x′
G̃i(x)u(x, x

′) G̃j(x
′) , (41)

which is much more accurate than the point-wise approximation. There is also a summed
diagonal approximation which is discussed in Ref. [28]. A straightforward generalization of
one of these diagonal approximations to the case of 3D gausslet bases leads to the expression
Eq. (33) at the beginning of this section.

4.2.5 The multi-sliced gausslet approach in practice

To test multi-sliced gausslet bases for quantum chemistry, Ref. [29] considered systems of hy-
drogen atoms, much like in the Ref. [26] studies of sliced-bases. But whereas Ref. [26] primar-
ily emphasizes scalability to very long systems, Ref. [29] emphasizes the ability of multi-sliced
gausslets to reach the complete basis set limit (or continuum limit). Yet multi-sliced gausslets
are also scalable to very long systems when used in DMRG.
To study the effect of the scale parameter s controlling the typical spacing between neighbor-
ing gausslets, Fig. 7 shows Hartree-Fock calculations of 10-atom hydrogen chains with inter-
atomic spacing R = 1 in standard Gaussian basis sets (horizontal lines) such as quadruple-zeta
(cc-pVQZ) and 5-zeta (cc-pV5Z), as well as continuum extrapolations of Gaussian bases. In
contrast, the more jagged set of points shows results of converged multi-sliced gausslet (MSG)
calculations as a function of the scale or gausslet spacing (x axis of plot). For a scale below
s = 0.6 in atomic units, the MSG results converge smoothly and systematically until reaching
close agreement with the best Gaussian basis extrapolation to the complete basis set limit.
To test the multi-sliced gausslet approach within high-accuracy DMRG calculations, Fig. 8
shows DMRG calculations of 10-atom hydrogen chains as a function of the inter-atomic spac-
ing R, including strongly correlated stretched or larger-R chains. The figure shows results
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3

barely improves computational e�ciency, but one would
expect this approximation to mimic the performance of
the more important two-particle diagonal approximation.
The diagonal approximation is sensitive to the singular-
ity in the potential at the nucleus, but increasing the
basis function density near the nucleus by decreasing a,
for fixed s, nearly eliminates the diagonal approximation
error. A simple procedure to systematically converge to
the ground state for this system would be to fix a/s to
be a constant, say 0.5-0.6, and then decrease s.

Figure 2(b) shows the energy for a hydrogen molecule,
compared to standard basis sets cc-pVxZ, where x=D,
T, and Q, and also compared to the exact energy from a
treatment in special coordinates [9]. A diagonal approx-
imation for the two particle interaction is used here and
in all subsequent MSG bases, since calculations would
not be practical with the standard Vijkl form. All re-
sults shown are exact (full CI) given the approximate
Hamiltonian. The MSG bases systematically converge
to the exact results, and the diagonal approximation for
the single particle potential closely approximates the full
Hamiltonian, particularly for smaller s.

Also shown in Fig. 2(b) is a basis with a special delta-
function correction for the nuclear cusp. Increasing the
resolution near nuclei by using a small a is ine�cient,
leading to many basis functions. For example, for the
hydrogen atom of Fig. 2(a), taking a = 0.3, s = 0.6
produced 1179 functions, which resulted in an error of
0.13 mH. Our correction consists of adding a single-
particle potential at each atom ↵ of the form v↵�(~r�~r↵).
The parameter v↵ is set by “turning o↵” all nuclear elec-
tron potentials for atoms other than ↵ (yet keeping the
same set of functions to be used for the entire system),
and adjusting v↵ so that the one-electron ground state
energy is the exact hydrogen atom energy �1/2. The
errors associated with choosing a too large are localized
near the nuclei; the delta function potential alters the
terms in the Hamiltonian only for the basis functions
overlapping with a nucleus. Most importantly, v↵ ! 0
as a ! 0 or s ! 0, so this correction does not change
what the basis converges to, only how fast it converges,
accelerating the convergence. In Fig. 2 and for the rest
of the results, we set a = s and use the delta correction.

We now turn to a more challenging system, a linear
chain of hydrogen atoms spaced R apart. Hydrogen chain
systems were the subject of a recent benchmark study
which compared more than a dozen methods in their
ability to reach the combined limit of exact correlation,
complete basis set, and infinite number of atoms [4]. We
first consider unrestricted Hartree Fock (UHF) on H10,
shown in Fig. 3. The plot shows HF energy di↵erences
relative to those of a large Gaussian basis, cc-pV5Z. The
convergence of the MSG basis is irregular because the
centers of the gausslets are not aligned with the nuclei;
but it is easy to get very accurate results and judge the
accuracy. At small R, the Gaussian basis sets have trou-
ble due to linear dependence [4], leading to a small but
noticeable discrepancy between the 5Z and MSG results.

1 1.5 2 2.5 3 3.5
R

-0.5

0

0.5

1

(E
-E

5Z
)/N

at
om

 (m
H

)

s=0.8
s=0.7
s=0.6
s=0.5
MSG-CBS

0.4 0.6 0.8
s

-4.16

-4.155

-4.15

-4.145

E H
F

MSG (HF)

5ZExtrap(T-5)

QZ

R=1

Extrap(D-5)

FIG. 3. Hartree Fock energies per atom of H10 versus R,
relative to the Gaussian basis set cc-pV5Z (5Z)[4]. The con-
nected symbols are MSG-HF results at constant s = a, as
labeled. For small R, they converge to a small but notice-
ably di↵erent result from cc-pV5Z. The inset shows MSG-HF
data versus s = a, at R = 1. Horizontal lines show Gaussian
results, along with two exponential extrapolations, based on
(TZ,QZ,5Z) (labeled T-5), and on (DZ,TZ,QZ,5Z) (labeled
D-5). The MSG-HF agrees for small s with the T-5 extrapo-
lation, although the D-5 extrapolation was used in Ref. [4].

As shown in the inset, at R = 1 the Gaussians converge
slowly, and di↵erent extrapolations give di↵erent results.
As a rough comparison of the calculational e↵ort for these
very high accuracy calculations: for R = 1, a = s = 0.5,
the MSG basis has just over 13, 000 basis functions; the
number of two-electron integrals is the square of this, or
1.7⇥108. The 5Z basis has 550 functions, but the number
of integrals (N4, ignoring symmetry) is 9.2 ⇥ 1010. The
calculation time of our UHF algorithm, which takes ad-
vantage of the diagonal nature of the Hamiltonian, scales
as N2Ne, where Ne is the number of electrons, with the
dominant part coming from a Davidson diagonalization,
for Ne eigenvectors, of the Fock matrix.

For correlated calculations, to decrease the number of
basis functions, one can use the HF occupied orbitals to
contract the MSG basis to smaller size. This can be done
in a way that maintains the diagonal form of the interac-
tions. One can also extrapolate in a cuto↵ that controls
this contraction, to obtain results for the uncontracted
basis. The largest systems needed for a extrapolation
are still about a factor of 2 or 3 smaller than the uncon-
tracted basis, and the results below follow this procedure,
which is described in the Supplementary Material.

We now turn to MSG-DMRG calculations for H10. Our
DMRG implementation uses the matrix product opera-
tor compression of our earlier sliced basis DMRG (SB-
DMRG) approach [3]. This compression makes the cal-
culation time for fixed accuracy per atom scale linearly
in the number of atoms in a hydrogen chain both in SB-
DMRG and MSG-DMRG. We are currently limited to

Fig. 7: Hartree-Fock energies (in units of Hartree) of 10-atom hydrogen chains with inter-
atomic spacing R = 1. The points are results from multi-sliced gausslet (MSG) bases with
varying scale parameter controlling the spacing between gausslets. The lines labeled QZ and
5Z are energies obtained with the cc-pVQZ and cc-pv5Z Gaussian basis sets, while the lines
labeled Extrap are extrapolations to the complete basis set limit using either double-zeta or
triple-zeta up through 5-zeta. 4
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FIG. 4. Complete basis set energies per atom of H10 versus R,
relative to a di↵usion Monte Carlo method, for MSG-DMRG
(labeled by s) versus various approaches from Ref. 4.

about 3000-4000 basis functions. (In contrast, standard
DMRG in a Gaussian basis—with no diagonal approxi-
mation and no compression—is limited to about 100-200
active basis functions.) We find that the DMRG performs
very well. For the very high accuracy results shown be-
low, we generally only needed to keep about 200 states
for larger R, and up to 400-500 for R = 1 (due to its
more metallic character). This excellent performance is
due to the high locality of the basis, which DMRG and
other tensor network methods [10–12] strongly prefer.

We find that the correlation energy converges faster
with s than the HF energy. This is not surprising: the
representation of the nuclear cusp is poor with a coarse
gausslet basis, which is is primarily a single particle e↵ect.
Therefore, to get total energies we use the HF energy
with very small s, and add to it the correlation energy
obtained with a larger s, where the correlation energy is
defined by subtracting the unrestricted HF energy from
the total energy for the same basis set.

In Fig. 4, we show a comparison of total energies
for several methods [4] and our MSG-DMRG for var-
ious s = a. All methods attempt to reach the CBS
limit; for all but the MSG-DMRG and DMC methods,
this involved an extrapolation in the basis set. The en-
ergy di↵erences here are generally well below chemical
accuracy. Often such high accuracy is unnecessary, but
studying the high accuracy limit is an excellent way to
demonstrate the usefulness of MSG-DMRG. The ener-
gies are measured relative to one of the di↵usion Monte
Carlo methods, LR-DMC-AGP (or DMC). In Ref. [4], at
this level of accuracy, none of the best available methods
agreed, so it was not known which was best, and refer-

ence plots were made relative to MRCI+Q for smaller
systems and AFQMC for larger ones. DMRG based on
standard Gaussian basis sets could not be done beyond
the TZ level, so no CBS results were available. Here, we
find systematic convergence of MSG-DMRG to energies
agreeing with the LR-DMC-AGP method. Agreement
was poorer at small R with a DMC method based on an
LDA trial function. There are systematic errors in DMC
stemming from the fixed node approximation, which are
unusually small in this 1D system, but hard to quantify.
Since the nature of errors in DMC and MSG-DMRG are
completely di↵erent, and since the MSG-DMRG energies
converge systematically with a control parameter, we can
be rather sure that MSG-DMRG and DMC are both get-
ting the most accurate energies.

The MSG-DMRG errors for fixed s = a are biggest
at small R. This is expected; at small R, it would be
more natural to scale s with R, keeping the number of
basis function more nearly constant. The smallest grid
spacings are about a ·s, or about 0.5 for s = 0.7. Small R
is challenging to the Gaussian basis set methods because
the basis functions become linearly dependent.

In summary, even in this first implementation of the
MSG-DMRG method, for the strongly-correlated H10

system we surpass the best Gaussian basis approaches
in the high-accuracy CBS regime. We believe larger Z
systems, not just in the linear geometry of H10, could be
treated straightforwardly using pseudopotentials. How-
ever, we believe our approach can also be improved so
that resorting to pseudopotentials is not necessary for
moderate Z. For example, one could add some Gaus-
sians from a standard basis to a gausslet basis, orthog-
onalizing the Gaussians to the gausslets, to better rep-
resent core orbitals. This is very simple to do in prin-
ciple, but we would also like to find diagonal approxi-
mations involving the Gaussians, or develop convenient
partially-diagonal approximations, where the number of
non-diagonal terms is not too big. The delta correction
would likely be eliminated in any of these approaches.
Another way to improve fitting core orbitals would in-
volve adapting the gausslets during the slicing to fit 1D
Gaussians taken from a standard basis. Regarding how
one uses MSG bases, in the hydrogen chains studied here,
the linear geometry makes DMRG especially powerful.
For less linear molecules or solids, one might couple mul-
tisliced gausslets with tensor network states [10–12] or
quantum Monte Carlo.

We acknowledge useful conversations with Ryan Bab-
bush, Jarrod McClean, Shiwei Zhang, Mario Motta, Gar-
net Chan, and Sandro Sorella. We acknowledge support
from the Simons Foundation through the Many-Electron
Collaboration, and from the U.S. Department of Energy,
O�ce of Science, Basic Energy Sciences under award
#DE-SC008696. The Flatiron Institute is a division of
the Simons Foundation.

Fig. 8: Energies of 10-atom hydrogen chains computed by various methods relative to those
obtained by diffusion Monte Carlo (EDMC). Energy differences are shown in milli-Hartree.
Results are from Ref. [27].

from competitive quantum chemistry methods including coupled cluster (UCCSD(T)), multi-
reference configuration interaction (MRCI+Q), auxiliary field quantum Monte Carlo (AFQMC),
DMRG using a sliced-basis (SBDMRG), and finally diffusion quantum Monte Carlo (DMC),
which is used as the reference energy for the figure. These results were first obtained and dis-
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cussed in much more detail in Ref. [27]. Multi-sliced gausslet DMRG (MSG-DMRG) results
are labeled by the scale factor s they used. The figure shows that for scale factors s = 0.8

and especially s = 0.7, the MSG-DMRG results have the closest agreement with the DMC
results on a scale of less than 0.1 milli-Hartree. Because the sources of error in DMC versus
MSG-DMRG have a very different origin, their close agreement strongly suggests they are both
resolving the continuum limit to the highest accuracy of the methods shown.
To obtain such accurate results, it should be noted for completeness that additional technical
steps are used in Ref. [29] which are beyond the scope of the discussion here. These include a
delta-function correction to the single-particle potential and combining the single-particle part
of the energy with Hartree-Fock energies on a finer scale to reduce finite-scale errors in the
MSG-DMRG calculations.

4.3 DMRG with sliced-basis or multi-sliced discretization

Having introduced two types of local bases which allow quantum chemistry DMRG to scale to
larger numbers of atoms and better resolve the continuum limit, let us now discuss some of the
technical steps involved in using these bases in actual DMRG calculations.

4.3.1 Splitting terms into multiple MPOs

One simple but very effective optimization of DMRG when treating discrete quantum chemistry
Hamiltonians of the form Eq. (19) is to split different types of Hamiltonian terms into separate
matrix product operators (MPOs). The reason for doing this is that even after making the
most efficient possible MPO representation of the entire Hamiltonian as a single MPO, one can
observe that this MPO consists of disjoint blocks of terms which do not mix with one another,
such that its bond dimension is the sum of the dimensions of each of the blocks.
To illustrate why splitting the terms associated with each block into separate MPOs is more
efficient, consider an example where there are four different blocks, each contributing a size k
to the bond dimension. Because DMRG scales as the sum of squares of the bond dimensions
of each MPO used, storing these blocked terms in separate MPOs will have a cost 4k2 within
DMRG whereas combining them into a single MPO will have a much higher cost of (4k)2 =

16k2 in DMRG.
An example of a possible splitting of terms into separate Hamiltonians which are summed to
make the total Hamiltonian could be

H = H↑ +H↓ +HV (42)

H↑ =
1

2

∑

ij

tij ĉ
†
i↑ĉj↑ (43)

H↓ =
1

2

∑

ij

tij ĉ
†
i↓ĉj↓ (44)

HV =
1

2

∑

ijklσσ′

Vijkl ĉ
†
iσ ĉ
†
jσ′ ĉkσ′ ĉlσ . (45)



8.28 E. Miles Stoudenmire

This is only one possible splitting because additional structure may be present in the Vijkl terms
resulting from different choices of local bases. This structure can suggest additional further
splittings, such as separating terms which connect orbitals entirely in one slice versus across
two different slices within the sliced-basis approach.

4.3.2 Compressing long-range interactions with MPOs

A crucial optimization that can be applied when using spatially local bases in DMRG is the
compression of the two-particle Coulomb terms in the electronic structure Hamiltonian using
MPO techniques. In the discussion of the sliced-basis and multi-sliced gausslet bases above, we
have alluded to this compression a few times since it is so important, but delayed discussing it to
this section since it is also very technical and requires a detailed familiarity with the construction
of MPOs. A very detailed discussion of the compression algorithm and MPO structure is given
in the appendix of Ref. [26].
Due to the limited technical scope of this chapter, let us first describe what this MPO com-
pression accomplishes, treating the method itself as just a “black box” algorithm. In the most
general case, given a set of Coulomb interaction integrals Vijkl running overN orbitals, meaning
i, j, k, l = 1, 2, . . . , N , the minimum size MPO which exactly represents the discrete Hamilto-
nian Eq. (19) has a bond dimension which scales as N2 [13]. Because the DMRG algorithm
scales quadratically in the bond dimension of the Hamiltonian MPO, using an uncompressed
MPO for quantum chemistry results in an N4 scaling which is typical for quantum chemistry
but nevertheless very costly. However, for systems extended primarily along one dimension
(taken to be the z direction) and represented using either a sliced-basis or multi-sliced gaus-
slet basis which have the important property of consisting of local functions, exploiting both
sparsity and an off-diagonal low-rank structure in the Coulomb integrals Vijkl allows one to
numerically construct an MPO approximation of the Coulomb interaction terms whose bond
dimension grows at most logarithmically with the number of atoms in the system. In practice a
compressed bond dimension of a few hundreds in size gives very good accuracy even for very
large systems consisting of hundreds or thousands of atoms.
To briefly describe how the MPO compression is accomplished, consider a purely diagonal form
of the Coulomb interaction 1

2

∑
ij Vijn̂in̂j which could result from the diagonal approximation

within a gausslet basis, for example. Empirically, one can observe that all of the blocks V (p)
ij

of the symmetric matrix V defined by restricting i ≤ p and j ≥ i are approximately low
rank, implying they can be approximated well by a truncated singular value decomposition
(SVD). This block-low-rank property can be understood as resulting from the smoothness of
the Coulomb interaction for electrons far apart from one another. Furthermore, the unitary
matrices computed in the SVD factorizations of each block V (p) can be related to each other
by auxiliary unitary maps of a fixed size, related to the number of singular values kept. By
defining MPO tensors which implement these maps, the MPO can reconstruct any of the matrix
elements Vij while having a bond dimension determined only by the number of singular values
kept in the factorization of V , which depends very weakly on the size of the system [26].



Quantum chemistry DMRG 8.29

5 Conclusions and future directions

In this chapter, we reviewed the DMRG algorithm for optimizing many-body wave functions
in matrix product state form and the application of DMRG to quantum chemistry calculations.
A key consideration in making DMRG efficient is choosing a basis that allows the Hamiltonian,
typically represented as a matrix product operator (MPO) tensor network within DMRG, to
have a manageable size. This issue becomes extremely important when applying DMRG to the
electronic structure Hamiltonian used in quantum chemistry.
Although the approach of discretizing the electronic structure Hamiltonian using Gaussian basis
sets has been very successful for applying DMRG to chemistry, here we reviewed two recent
alternative basis constructions which are much more spatially local than standard 3D Gaussian
basis sets. Though locality makes these bases much larger than Gaussian bases, these local
bases can nevertheless be very advantageous for DMRG calculations whose costs are tied much
more strongly to the spatial locality or smooth spatial decay of Hamiltonian terms than the
number of sites or total size of the Hilbert space used in the calculation.
Looking ahead, it would be extremely welcome if a basis such as multi-sliced gausslets could be
used for PEPS tensor network calculations, which are tensor networks that are scalable along
two dimensions in contrast to MPS which are only scalable in one dimension. One of the
key challenges is developing efficient Coulomb interaction representations suitable for PEPS,
though significant progress was recently made in Ref. [31]. Another interesting direction would
be to use the sliced-basis or multi-sliced gausslet bases in quantum chemistry methods very
different from DMRG, such as auxiliary field quantum Monte Carlo (AFQMC). Ideas similar
to the compression of the Coulomb terms (Section 4.3.2) would have to be adapted to AFQMC,
but then it could benefit from the high continuum resolution of gausslets, for example.

Acknowledgements

Thanks to Steve R. White for many helpful discussions and supporting information regarding
both the sliced-basis and multi-sliced Gausslet approach to quantum chemistry with DMRG.



8.30 E. Miles Stoudenmire

References

[1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

[2] S. White, Phys. Rev. B 48, 10345 (1993)
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Centro Atómico Bariloche and Instituto Balseiro
San Carlos de Bariloche, Argentina

Contents

1 Introduction 2

2 Calculating ground states with the DMRG 2
2.1 Definitions and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantum information analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Standard algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Calculating dynamical quantities with the DMRG 7
3.1 Lanczos dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Correction vector dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Using the DMRG as the impurity solver for dynamical mean-field theory 9
4.1 Implementation for multi-site and multi-orbital problems . . . . . . . . . . . . 10

5 Conclusions 14

E. Pavarini, E. Koch, and S. Zhang (eds.)
Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9
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1 Introduction

The density matrix renormalization group (DMRG) has evolved to become one of the most re-
liable and versatile numerical methods in modern computational physics. It allows for a very
precise calculation of ground states and excitations of strongly correlated fermionic and bosonic
systems. After its original inception by S. White in 1992 [1, 2], when it was developed to solve
problems in low-dimensional quantum condensed matter, it has been extended to other fields as
well, and it is now being successfully used in quantum chemistry, statistical mechanics, quan-
tum information theory, nuclear and high-energy physics. It has been applied to a great variety
of systems and problems such as spin chains and ladders, fermionic and bosonic systems, dis-
ordered models, impurities, molecules, nanoscopic systems as well as 2D electrons in high
magnetic fields. And extensions to the method include two dimensional (2D) classical systems,
stochastic models, phonons, quantum chemistry, field theory, finite temperature and the calcula-
tion of dynamical and time-dependent properties. Some calculations have also been performed
in 2D quantum systems.
In this chapter we will introduce the basic formulation of the DMRG. We will also delve on the
extension of this method to calculate dynamical behavior and show how this was implemented
to enhance the performance of one of the most reliable methods to solve correlated matter,
dynamical mean-field theory (DMFT).
Among the several reviews, I recommend the basic textbook [3] and reviews such as [4–6]. For
newcomers to the field, it is advisable to visit the ALPS code library, containing state-of-the-
art methods for solving interacting quantum systems [8] and the website containing updated
information on the DMRG and publications [9].
The development DMRG has paved the way to the rich and promising world of tensor networks
(see the chapter by Miles Stoudenmire in this book). A comprehensive set of lectures is given
in [10]. There is a very useful library for tensor network calculations in [11].

2 Calculating ground states with the DMRG

When working with quantum systems one encounters the exponential problem, i.e., the total
number of states of the systems grows exponentially with system size. In non-interacting or
weakly interacting systems, one can make approximations and solve for one particle, assuming
that the result will depend very weakly on the number of particles. For more strongly interacting
systems, however, this is not possible and a many-body calculation is necessary. Let’s consider,
for example, a quantum spin chain with spins S = 1/2 in each of the N sites of the chain.
The total Hilbert space grows exponentially as 2N , and this is the size of the operators, in
particular of the Hamiltonian, to be diagonalized to solve the system. This means that the
problem becomes intractable very quickly (currently, using exact diagonalization one cannot
solve for more than around N = 30 sites).
The first successful renormalization of a correlated systems was done by K. Wilson when he
developed the Numerical Renormalization Group for the single impurity Anderson model [12].
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However, later attempts to apply real space renormalization techniques to quantum correlated
models led to poor results, as for example, the attempts to solve the 1D Hubbard model [13], for
which the system was separated into several blocks and only the lowest-lying energy levels were
kept for the new iterations. White and Noack [14] realized that one of the main problems with
these real space renormalizations was the separation of the basic blocks into separate entities,
so they tried solving the problem by including varying boundary conditions between them.
This basic idea led White to think about using the reduced density matrix defined in part of
the system as a new criterion to choose the relevant states. As we will show below, this idea
solved the block boundary problem and provided a straightforward way to discard non relevant
states. This led to the development of the DMRG, which proved to be one of the most accurate
numerical methods to solve interacting quantum problems.
The DMRG is based on a systematic truncation of the Hilbert space by keeping the most prob-
able states describing one or several wave functions. These wave functions will be called the
target states since they will be the ones we are aiming to describe in an accurate way (for ex-
ample, they could be the ground state, of some excited states). The truncations are done by
calculating the reduced density matrix in part of the system and keeping only its eigenvectors
with the highest eigenvalues. As we will show below, the eigenvalue is the weight of its cor-
responding eigenvector in the target wave function. So from here it is clear that this is a good
criterion to trim the Hilbert space.
We will start with the standard DMRG as it was originally developed by S. White [1, 2]. Since
then there have been other ways of implementing the same basic idea of using the information
provided by the density matrix to reduce the Hilbert space. These methods include the matrix
product state (MPS) representation [15]

2.1 Definitions and method

Before writing the algorithm explicitly we need to define some basic concepts. The method
is based on the partitioning the whole lattice into two parts, S being the system and E the
environment. This way, states |i〉 are part of S and states |j〉 form E. Any state of the whole
lattice |ψ〉 can be written as

|ψ〉 =
∑
i,j

ψij |i〉 |j〉 .

Given this bipartition, any operator acting only on the system S can be calculated as

〈ψ|OS|ψ〉 =
∑
ij,i′j′

ψ∗i′j′ψij〈i′j′|OS|ij〉 =
∑
ij,i′

ψ∗i′jψij〈i′|OS|i〉 =
∑
ii′

OS
i′i

∑
j

ψijψ
∗
i′j︸ ︷︷ ︸

ρS
ii′

= Tr ρSOS.

Here we have straightforwardly defined the reduced density matrix ρS = TrE |ψ〉〈ψ| which is
defined in S and has the following properties:
• it is Hermitian: ρS† = ρS

• Tr ρS =
∑

αwα = 1

• it is positive-semidefinite (so all eigenvalues are wα ≥ 0)
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In the diagonal basis ρS =
∑

αwα|wα〉〈wα|, so the mean value of the operator on S is

〈ψ|OS |ψ〉 = TrS ρ
SOS =

∑
α

wα 〈wα|OS |wα〉 . (1)

When more than one target state is used, the density matrix is defined as

ρSii′ =
∑
l

pl
∑
j

ψl,ijψl,i′j , (2)

where pl defines the probability of finding the system in the target state |ψl〉 (not necessarily an
eigenstate of the Hamiltonian).
It can be easily shown [2] that the density matrix eigenvalues wα represent the probability of
the state |ψ〉 being in substate |wα〉. The density matrix leads directly to the optimal states in
the system as we demonstrate below.
We define again

|ψ〉 =
M,M ′∑
i,j=1

ψij|i〉|j〉 (3)

as a state of the S+E, having real coefficients for simplicity. Our aim is to obtain a variational
wave function |ψ̂〉 defined in an optimally reduced space, generated by the m vectors of S,
|α〉 =

∑m
i=1 uαi|i〉,

|ψ̂〉 =
m∑
α=1

M∑
j=1

aαj|α〉|j〉 (4)

such that the difference with the original wave function is minimal with respect to aαj∣∣|ψ〉 − |ψ̂〉∣∣2 = 1− 2
∑
αij

ψijaαjuαi +
∑
αj

a2αj . (5)

This condition leads to ∑
i

ψijuαi = aαj . (6)

Using the definition of the reduced density matrix for S

ρSii′ =
∑
j

ρij,i′j′ =
∑
j

〈j|〈i|ψ〉〈ψ|i′〉|j〉 =
∑
j

ψijψi′j , (7)

and placing (6) into Eq. (5) we obtain

1−
∑
αii′

uαiρ
S
ii′uαi′ = 1−

m∑
α=1

ωα , (8)

where uαi is the operator that changes basis from |i〉 to |α〉, and ωα are the density-matrix eigen-
values. The above expression is minimum for the largest eigenvalues of the density matrix ρS ,
which are all positive or zero and the last term corresponds to the discarded error.
So, summarizing, the best approximation to |ψ〉 is done by considering the highest eigenvalued
(most probable) eigenstates of ρS when trimming the basis states. This is the basic mechanism
of the DMRG.
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2.2 Quantum information analysis

It is useful to consider concepts from quantum information, such as the von Neumann entropy

SvN = −
∑
α

wα logwα = −Tr ρS log ρS . (9)

This quantum entropy gives a quantitative measure of the entanglement between S and E if
the target state |ψ〉 is a pure state. The larger the entropy, the larger the entanglement. If, for
example, ρS has only one eigenvalue w1 = 1, then there is only one eigenvector in each block
and |ψ〉 is a product state with no entanglement. If thewα decrease rapidly, then it is sufficient to
consider only the largest eigenvalues to have a reliable representation of the target state |ψ〉. The
worst case scenario happens when there is no information about the state and all wα have the
same value so SvN = N , the system size. SvN is the number of qubits (sites with two degrees
of freedom) one has to consider to describe the state, so one can estimate that the number of
states m one should keep without losing crucial information is m ∼ 2SvN . The DMRG works
best for low quantum entangled systems (it is particularly exact for product states).
This analysis gives us a good insight into the DMRG performance in different systems and
dimensions. By using geometric arguments in a d+1-dimensional field theory including a d−1-
dimensional hypersurface dividing the system in two, S+E, it is shown that the entropy resides
essentially at the surface and scales as the area of the hypersurface [16]

SvN(L) α (L/λ)d−1, (10)

were λ is an ultraviolet cutoff and L the linear dimension. In one dimension, d = 1, a more
detailed calculation for gap-less critical systems leads to a logarithmic scaling of the entropy,
SvN(L) = c/3 ln(L) + λ1, where c is the central charge of the underlying conformal field
theory. A saturated entropy for non critical, gapped systems is obtained [17–19] when the
system size exceeds the correlation length. In two dimensions SvN ∼ L, so one expects a
poorer performance of the DMRG.

2.3 Standard algorithm

Now we are ready to introduce the main algorithm in the standard implementation. As said, the
DMRG is based on a systematic truncation of the Hilbert space by keeping the most probable
states describing a target wave function (e.g. the ground state, or excited states). For this, it is
important to define the space in which the Hamiltonian operates (for example, real space, but a
description in momentum, orthonormal orbitals or energy space is also feasible). The elements
of this space (sites, momenta, orbitals, or energies) are ordered in a one-dimensional way and
then it is partitioned into two, not necessarily equal, parts. From now on we will call them sites
without loss of generality. In its classical formulation, one begins with a growing or “warm-up”
phase starting with a small system, e.g., with N0 sites, and then gradually increase its size to
N0+2, N0+4, ...) until the desired length N is reached.
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Based on Fig. 1 we define block [B] as a finite chain with l sites having an associated Hilbert
space with m states in which operators such as the block Hamiltonian HB, connecting, and
correlation operators are defined and expressed in matrix form. Except for the first iteration, the
basis in this block is not explicitly known due to previous basis rotations and reductions which
are non-unitary if there has been a reduction of states. An additional site with n states is defined
as [a]. For a general iteration our system S is formed by blocks [B] and [a]: S = [B] ⊗ [a].
Equivalently, the environment is E = [a′]⊗ [B′] (see Fig. 1).
To illustrate the general iteration let us consider the one-dimensional spin S = 1/2 Heisenberg
Hamiltonian

H =
∑
i

SiSi+1 = Szi S
z
i+1 +

1

2
(S+

i S
−
i+1 + S−i S

+
i+1). (11)

The general iteration runs as follows:

(i) Define the Hamiltonian HBB′ for the whole system [20] S+E = [Baa′B′]:

[HB1B2 ]ij;i′j′ = [HB1 ]ii′δjj′+[HB2 ]jj′δii′+[Sza]ii′ [S
z
a′ ]jj′+

1

2
[S+
a ]ii′ [S

−
a′ ]jj′+

1

2
[S−a ]ii′ [S

+
a′ ]jj′

(12)

(ii) Diagonalize HBB′ to obtain the ground state |ψ〉 or other states (target states) using the
Lanczos [21] or Davidson [22] algorithms.

(iii) Calculate the density matrix
ρSii′ =

∑
j

ψijψi′j (13)

on block S=[Ba] defined by states i, tracing over the bath E=[B′a′] defined by states j.

(iv) Diagonalize ρS and keep the m states with the largest eigenvalues. The truncation error
is 1−

∑m
α=1 ωα, which should be kept small, typically much less than 10−6.

(v) Rotate and change basis of all operators in [Ba] and simultaneously redefine [Ba]→ [B]:
for example HB = O†HBaO, where O is a rectangular matrix.

(vi) A new block [a] is added (one site in our case) and the iteration goes back to (i)

Once the desired length N is reached a higher accuracy can be obtained by sweeping to and
fro a couple of iterations along the chain without changing N. The block sizes change with the
internal variable l as [Baa′B′], N = l+1+1+l′ where l and l′ = N−l−2 are the number of
sites in B and B′ respectively. The density matrix is used to project onto the growing block and
stored operators from previous iterations are used for the shrinking block.
It saves time and memory to include symmetries in the DMRG algorithm. For example, for
a spin model like the one mentioned above, the total spin z projection Sz is conserved, which
is the sum of the spin projections of each constituting block. Total particle number is also a
common symmetry that can be easily implemented. When the total quantum number can be
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Fig. 1: Iterations of the classical DMRG. Left: warm up growth. Right: Finite-size sweeps.
Here system S and environment E are also defined, as well as the blocks used in the iterations.

obtained as an addition of quantum numbers of each block of the system, the density matrix is
block diagonal: if the global state |ψ〉 =

∑
i,j ψij |i〉 |j〉 has Np particles, ψij = ψij δNi+Nj ,Np ,

where Ni is the particle number of state |i〉, the reduced density matrix is

ρSii′ =
∑
j

ψijψ
∗
i′j =

∑
j

ψijψ
∗
i′jδNi+Nj ,NpδNi′+Nj ,Np =

∑
j

ψijψ
∗
i′jδNiNi′

,

which is block diagonal with a fixed particle number Ni. The eigenstates of ρS will then also
have a defined particle number and this means that the renormalization maintains the particle
number symmetry. Non abelian or non additive symmetries like SU(2) or total spin are more
difficult to implement, however possible in some cases.

3 Calculating dynamical quantities with the DMRG

The density matrix renormalization group can also be used to calculate dynamical properties
(mainly at zero temperature) of low-dimensional systems, which are useful to interpret ex-
perimental results from, for example, nuclear magnetic resonance (NMR), neutron scattering,
optical absorption and photoemission, among others.
The main current approaches for the calculation of spectral functions include the Lanczos
method [23–26], the correction vector technique (CV) [24, 27, 28], Fourier transformation of
time-dependent excitations [29–32] and Chebyshev polynomials [33, 34].
In this lecture we will focus on the two first ones: the Lanczos dynamics gives complete in-
formation of the whole excitation spectrum at the expense of less accuracy for large systems,
specially at high energies, while the CV focuses on particular energy values and gives more pre-
cise information, being numerically much more expensive, unless the program is parallelized,
so several energy values are calculated simultaneously.
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We define the following dynamical correlation function at T = 0

CA(t−t′) = 〈ψ0|A†(t)A(t′)|ψ0〉, (14)

where A† is the Hermitian conjugate of the operator A (other operators are also feasible with
slight changes in the formulation), A(t) is the Heisenberg representation of A, and |ψ0〉 is the
ground state of the system. Its Fourier transform can be written in the Lehmann representation

CA(ω) =
∑
n

∣∣〈ψn|A|ψ0〉
∣∣2 δ(ω − (En−E0)

)
= − 1

π
lim
η→0+

Im GA(ω + iη + E0) , (15)

where the sum is taken over all the eigenstates |ψn〉 of the Hamiltonian H with energy En, E0

is the ground state energy, and the Green function is defined as

GA(z) = 〈ψ0|A†(z−H)−1A|ψ0〉, (16)

where z = w+ iη and η is a small shift towards imaginary frequencies, or, equivalently, a finite
Lorentzian width of the delta poles.

3.1 Lanczos dynamics

In the Lanczos formalism the function GA can be written in the form of a continued fraction:

GA(z) =
〈ψ0|A†A|ψ0〉

z − a0 − b21

z−a1−
b22

z−...

, (17)

where the coefficients an and bn can be obtained using the recursion equation [35]

|fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉 (18)

with

|f0〉 = A|ψ0〉 , an =
〈fn|H|fn〉
〈fn|fn〉

, b2n =
〈fn|fn〉
〈fn−1|fn−1〉

, and b0 = 0 . (19)

As for finite systems the Green functionGA(z) has a finite number of poles, only a finite number
of coefficients (typically less than a few hundreds) an and bn has to be obtained.
For the implementation in the DMRG, one has to take into account several target states using
Eq. (2) in order to have a good description of the excitations, for example, the ground state |ψ0〉
and the first few |fn〉 with n = 0, 1... and |f0〉 = A|ψ0〉.

3.2 Correction vector dynamics

This method leads to a more precise determination of the spectral functions since it focuses on
one particular energy w at a time (or z = w+iη if a finite shift is needed). This is achieved by
using a correction vector (related to the operator A that can depend on momentum q).
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From the Green function Eq. (16), the (complex) correction vector |x(z)〉 can be defined as

|x(z)〉 = 1

z −H
A|ψ0〉 (20)

so the Green function can be calculated as G(z) = 〈ψ0|A†|x(z)〉. Writing the correction vector
in its real and imaginary parts |x(z)〉 = |xr(z)〉+ i|xi(z)〉, we obtain(

(H − w)2 + η2
)
|xi(z)〉 = −ηA|ψ0〉

|xr(z)〉 = 1

η
(w −H)|xi(z)〉 . (21)

The first equation is solved, for example, using the conjugate gradient method. Here the follow-
ing target states are kept in the DMRG iterations: the ground state |ψ0〉, the first Lanczos vector
A|ψ0〉 and the correction vector |x(z)〉. The results lead to reliable excitations for an energy
range surrounding this particular point [24].
In [28] a variational formulation of the correction vector technique has been used. From
Eq. (21), the following equation is minimized with respect to |X〉

WA,η(ω,X) = 〈X|(H − w)2 + η2|X〉+ η〈ψ0|A|X〉+ η〈X|A|ψ0〉. (22)

For any η 6= 0 and finite ω this function has a well defined minimum for the quantum state
which is the solution of Eq. (21), i.e., |xi(z)〉.

4 Using the DMRG as the impurity solver
for dynamical mean-field theory

Among the most interesting physical phenomena observed in strongly correlated materials, we
can mention high-temperature superconductivity, magnetism, ferroelectricity, and the metal-
insulator transition. In spite of the enormous efforts devoted to understanding these phenomena,
little progress has been achieved, and this is due to the highly complex character involving the
strong correlations mainly of localized electrons. These strong correlations are not correctly
treated in methods designed for weakly correlated materials such as density-functional theory
(DFT) [36] for which the local density approximation (LDA) [37] and other generalizations are
used. Thus, non-perturbative numerical methods are the only reliable approach.
To this end, more than twenty years ago, dynamical mean-field theory (DMFT) was developed
[38,39] (see also the chapter by Eva Pavarini). By using it together with LDA it has allowed for
band structure calculations of a large variety of correlated materials (see reviews [40, 41]) for
which DMFT accounts mainly for local interactions [42, 43].
DMFT consists of a mapping of the correlated system to an effective interacting quantum im-
purity problem which has to be solved in a self-consistent way. This is the most computation-
ally expensive step within DMFT and determines its success. Since its development, several
impurity solvers have been used, like the iterative perturbation theory (IPT) [44, 45], exact di-
agonalization (ED) [46,47], the Hirsch-Fye quantum Monte Carlo (HFQMC) [48], the continu-
ous time quantum Monte Carlo (CTQMC) [49–53], non-crossing approximations (NCA) [54],
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the numerical renormalization group (NRG) [12, 55–57], the rotationally invariant slave-boson
mean-field theory (RISB) [58–60] and quantum chemistry-based techniques [61]. However,
they all suffer from limitations, for example, the sign problem and the difficulty in reaching
low temperatures in the QMC-based algorithms, the difficulty of the NCA in obtaining a re-
liable solution for the metallic state, the limitation to few lattice sites of the ED, far from the
thermodynamic limit, and the reduced high-energy resolution of the NRG technique.
More recently, to overcome some of these difficulties, an impurity solver based on the DMRG
technique was proposed [62–66]. With this method one can obtain the density of states directly
on the real frequency axis (or with a very small imaginary offset). This, together with the
avoidance of the fermionic sign, is the major advantage given by using the DMRG as compared
to QMC impurity solvers. More still, no a priori approximations are made and the method
provides equally reliable solutions for both gapless and gapped phases. The DMRG impurity-
solver provides accurate estimates for the distribution of spectral intensities of high frequency
features such as the structure of the Hubbard bands, which is of main relevance for the analysis
of x-ray photoemission and optical conductivity experiments, among others.
Subsequent related techniques have been proposed, such as using different methods to obtain
the dynamical properties within the DMRG [67, 65], or the time-evolution DMRG algorithm
(time evolving block decimation, TEBD) [68] for the one- and two-orbital models [69]. Other
developments include the kernel polynomial method (Chebyshev expansion for Green func-
tions) [70, 34, 71], a pole decomposition technique within the correction-vector method for the
dynamics [72], the block Lanczos approach [73], the application to non-equilibrium DMFT us-
ing MPS [74], and other bath geometries [75]. In this work the authors explore other geometries
for the impurity bath, showing an increased efficiency for the star environment. In [76], it was
shown that the convergence of the DMFT iterative loops on the imaginary energy axis implies a
great reduction of computational costs because, mainly, the imaginary-time evolution does not
create entanglement. However, the price to be paid is a reduced resolution on the real-frequency
axis.

4.1 Implementation for multi-site and multi-orbital problems

Generalizations of the original DMFT can be considered for these cases, which lead to matrix
formulations of the DMFT equations (for details see [66], where the operators are defined within
the cell which contains Nc orbitals or sites and which is the effective “impurity” to be solved).
For the general formulation let us consider a Hamiltonian which is the sum of a non-interacting
term plus local interactions: H = H0 + V where V =

∑
i Vi and i is the site or cell index

(i.e., the cluster containing Nc sites or orbitals). We define the local operators of H0 as h0i =∑
IJ tIJ c

†
iIσciJσ, where c†iIσ creates an electron in cell i and local “orbital” I = 1, 2, ..., Nc with

spin σ = ↑, ↓. We also define the local coefficients T = (tIJ).
The main approximation of DMFT is to neglect the self-energy between different cells i and j
in the lattice, i.e. to consider only the local self-energy, Σij(ω) ≈ Σcell(ω) δij , neglecting spatial
correlations to a certain degree, albeit with a good treatment of the local dynamical correlations.
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Fig. 2: Schematic representation of Hamiltonian (24) corresponding to the impurity problem
for the one, two, and four-site cellular DMFT. See text for details [66].

If we define the non-interacting Green function matrix as G0(ω 1−T ), the local Green function
within the DMFT is now given by [77]

G(ω) = G0 (ω 1− T −Σ(ω)) , (23)

which defines the self-consistency condition for the Nc×Nc matrices G and Σ. The lattice
problem can now be mapped onto an auxiliary impurity problem that has the same local mag-
nitudes G(ω) and Σ(ω). This impurity problem should be determined iteratively. Note that
G0, T , and Σ are Nc×Nc matrices for the spin-symmetric solution, and 2Nc×2Nc matrices
in the general case. Spatial correlations or the momentum dependence of Σ can be obtain by
periodization [78].
The “impurity” Hamiltonian reads

Himp = h00 + V0 +Hb , (24)

where the non-interacting part Hb represents the bath

Hb =
∑
IJqσ

λIJq b
†
IqσbJqσ +

∑
IJq

υIJq

[
b†Iqσc0Jσ +H.c.

]
, (25)

and b†Iqσ corresponds to the creation operator for the bath-site q, associated to the “orbital” I
and spin σ. In Fig. 2 we show a scheme of this effective impurity. Here the circles (squares)
represent the non-interacting (interacting impurity) sites. The red lines correspond to the λIJq
parameters between bath sites q related to impurities I and J (they are the only hybridization
between the baths related to different impurities). The blue lines are the υIJq with I 6= J while
the black lines are the υIIq . In the bottom scheme we omit some obvious connections for clarity.
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The self-consistent iterations of the DMFT can be summarized as follows:

(i) Start with Σ(ω) = 0 ,

(ii) Calculate the Green function

G(ω) = G0 (ω − T −Σ(ω)) , (26)

(iii) Obtain the hybridization

Γ (ω) = ω 1− T −Σ(ω)− [G(ω)]−1 , (27)

(iv) Find a Hamiltonian representation Himp with hybridization Γ̃ (ω) to approximate Γ (ω).
The hybridization Γ̃ (ω) is characterized by the parameters Υq =

(
υIJq
)

and Λq =
(
λIJq
)

of Hb through
Γ̃ (ω) =

∑
q

Υq · [ω 1− Λq]−1 · Υq. (28)

(v) Calculate the impurity Green matrix Gimp(ω) of the Hamiltonian Himp using DMRG,

(vi) Obtain the self-energy

Σ(ω) = ω 1− T − [Gimp(ω)]
−1 − Γ̃ (ω) . (29)

Return to (ii) until convergence.

Step (iv) requires fitting for Υq and Λq (for details see [66]).
As mentioned above, our problem is completely defined through the parameters Vi, G0, and T.
Notice that G0 and T are typically well known one-particle quantities for a given lattice prob-
lem. Some particular cases are given below. For example, for the Hubbard model, when con-
sidering the single-site, one-orbital DMFT, the defining matrices are Vi=Uni↑ni↓, T=−µ and

G0(ω−T ) =

 1
N

∑
k [ω − ε(k)]

−1 Square lattice

2
[
ω +
√
ω2 − 1

]−1
Bethe lattice

where ε(k) = −2t (cos kx+cos ky)− 4t′ cos kx cos ky, with k=(kx, ky) the Fourier space of the
square lattice withN sites, N→∞, and t ( t′) the (next-)nearest-neighbor hopping integral [79].
For the 2- or 4-site cluster Hubbard model (called the cellular DMFT [80]), Nc = 2 or Nc = 4,
respectively, and the main matrices are

Vi = U

NC∑
I=1

niI↑niI↓ , T =



 −µ t

t −µ

 c2-DMFT


−µ t t t′

t −µ t′ t

t t′ −µ t

t′ t t −µ

 c4-DMFT

and
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G0(ω1− T ) =
Nc

N

∑
k̃

[
ω 1− ε̃(k̃)

]−1
.

Here, T is the non-interacting intracluster matrix and ε̃(k̃) is the intercluster hopping on the
superlattice Fourier space k̃, which is connected to the one-site lattice through

ε̃(k̃)IJ =
1

Nc

∑
K

exp
[
i(K+ k̃) ·RIJ

]
ε(K+ k̃) (30)

with K the intracluster Fourier-space vectors, see Eq. (23) of [81]. The above implementation
is done in a real space clustering, the so-called cellular DMFT (CDMFT). An alternative and
complementary cluster approach is the Dynamical Cluster Approximation (DCA). For a detailed
analysis between the two see [82].

4.1.1 Example: application to the two-orbital Hubbard model

As an application of this method, we studied the non-hybridized two-orbital Hubbard model
with different band widths

H =
∑
〈ij〉ασ

tαc
†
iασcjασ + U

∑
iα

niα↑niα↓ +
∑
iσσ′

U12ni1σni2σ′ , (31)

where 〈ij〉 are nearest-neighbor sites on a Bethe lattice, c†iασ creates an electron at site i in
orbital α = 1, 2 with spin σ, and niα = niα↑ + niα↓. U (U12) is the intra(inter)-orbital Coulomb
repulsion between electrons. The nearest neighbor hoppings are t1 ≥ t2, for bands 1 and 2,
respectively. We set t1 = 0.5 which defines the unit of energy and we define ∆ = U − U12.
We solved this Hamiltonian at half filling (electron-hole symmetric) using the DMFT with
the improved impurity solver based on the DMRG described above, which allowed us to ob-
tain the detailed DOS directly on the real axis directly (or with a very small imaginary offset
0.01<η<0.2), zero temperature and system sizes of L = 40 - 60 sites. Here we show that,
thanks to this combined method, we can observe a rich structure in the DOS which had not
been seen before with more approximate techniques. We find that a finite density of states at the
Fermi energy in one band is correlated with the emergence of well defined quasiparticle states
at excited energies ∆ = U − U12 in the other band. We have identified these excitations as
inter-band holon-doublon bound states [83] (see Fig. (3)).
In summary, the DMFT+DMRG solver produces reliable results for non-local self energies at
arbitrary dopings, hybridizations, and interactions, at any energy scale. It also allows for the
calculation of large effective “impurities” to study multi-band interacting models and multi-
site or multi-momenta clusters. In addition, it also gives reliable results for the case of real
impurity problems, such as adsorbed atoms, cold atoms, and interacting nanoscopic systems
like quantum dot arrays among others.
This method paves the way towards the inclusion of additional improvements such as symme-
tries, finite temperature, and more realistic systems by taking into account configurations given
by ab-initio methods.
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Fig. 3: Orbital-discriminated DOS for the half-filled two-orbital Hubbard model, (31), for
U = 2.3, ∆ = 0.2 where we observe the existence of in-gap quasiparticle peaks [83].

5 Conclusions

The DMRG has become one of the most reliable techniques to calculate ground states and dy-
namical properties of correlated systems. In this lecture we have presented the basic DMRG
formalism and given a justification of its performance from a quantum information perspective.
This enables the understanding of more recent techniques based on matrix product states and
tensor networks. In addition to the calculation of ground state and dynamical properties of mod-
els for correlated systems (mainly in low dimensions), we gave an example of how the DMRG
can be used to solve the most complex part of the now well established DMFT, i.e, the impurity
solver, for the calculation of electronic properties of more realistic models for materials. This
technique uses the correction vector to obtain precise Green functions on the real frequency axis
directly thus avoiding ill-posed analytic continuation methods from the Matsubara frequencies
and fermionic sign problems present in quantum Monte Carlo-based techniques, allowing also
for zero temperature calculations. By using a self-consistent bath with low entanglement, it
produces precise spectral functions.
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[64] Y. Núñez Fernández, D. Garcı́a, and K. Hallberg, J. Phys.: Conf. Series 568, 042009
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1 Introduction

The discovery of the high-temperature cuprate superconductors in the late 80’s triggered a
strong interest in the physics of transition-metal oxides. It was soon realized that understanding
these systems posed a significant theoretical challenge, namely, to describe electronic systems
where the independent-electron approximation fails. This became known as the problem of
strongly correlated electron systems, and to a large extent remains a challenge. Nevertheless,
some significant progress has been accomplished. In this lecture we shall be concerned with a
particularly successful approach, namely, dynamical mean-field theory (DMFT), which was de-
veloped in the 90’s and has allowed to gain new insights into the problem of strong correlations.
Specifically, it provided a significant advance in our understanding and description of one of the
classic problems in the field, the Mott metal-insulator transition. For a detailed account on how
DMFT was developed, the interested reader is referred to the review article [1]. The goal of the
present lecture is to introduce DMFT and its application to the problem of the Mott-Hubbard
transition in a pedagogical manner, putting emphasis on the new concepts that it brought to
light. The lecture is aimed at final-year undergraduates, beginning graduates, or anybody look-
ing for an accessible presentation to the concepts of DMFT, including experimentalists. The
lecture is supplemented with a computational code, which allows the interested reader to solve
the basic DMFT equations. We also propose a set of problems that will guide the reader in the
discovery of the physics of the Mott-Hubbard metal-insulator transition.
We shall begin by illustrating, from an experimental point of view, the manifestations of strong
correlation phenomena with special attention to that of the Mott transition. We shall then de-
scribe in simple terms the DMFT approach by drawing an analogy with the classic mean-field
theory of spin models. We then move on to consider the solution of the prototype model of
strongly correlated systems, the Hubbard model, which is a minimal model to capture the metal-
insulator transition. We shall discuss the transition as a function of interaction strength, temper-
ature, and doping in both, the paramagnetic and the antiferromagnetic phase. We shall describe
some basic experimental data on a material that is widely considered to exhibit an actual Mott
transition and discuss the connection to theoretical results of the Hubbard model within DMFT.

1.1 Strongly correlated systems

How do we know that we are dealing with a strongly correlated system? This question is impor-
tant, because the models and their solutions should illustrate precisely those aspects. There are a
few physical phenomena which we may consider to be key. The first that we can mention is the
presence of complex phase diagrams (Fig. 1). Ordinary materials, are either metals or insula-
tors, or even semiconductors if their gaps are small with respect to room temperature. Common
examples are gold, diamond (gap 5.5 eV), and silicon (gap 0.67 eV), respectively. They are
relatively easy to understand already by looking whether the outermost electronic orbital shell
is partially filled or not. In the case of carbon, the 2p orbital has two electrons and this permits
different structural arrangements that lift the orbital degeneracy. Thus if the degeneracy is fully
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Fig. 1: A complex phase diagram is characteristic of systems with strong electronic corre-
lations. Examples from manganites (A), cuprates (B), ruthenates (C), cobaltates (D), 2-d κ-
organics (E), and heavy fermions (F). From [2].

lifted, the 2p band is full as in diamond, but if not, it is metallic as in graphite. In the case of gold,
the outermost shell is the partially filled 6s1, which leads to a metallic structure. These simple
materials remain in their stable phase upon heating from low temperatures, without significant
changes in their electronic structure. Only at very large temperatures, well above room tem-
perature, the crystalline structure may eventually give up due to phonon excitations. Strongly
correlated systems are different. They exhibit dramatic changes in their electronic properties,
even at temperatures smaller than room temperature. Examples of these phenomena are the
metal insulator transition in V2O3 and in the family of nickelates XNiO3 (X= La, Sm, Pr, etc.)
the magneto-resistance of manganites La1−yXyMnO3 (X= Sr, Ca, etc.) and the superconductiv-
ity in cuprates such as La2−ySryCuO4, Bi2Sr2Ca1Cu2O8+y, YBa2Cu3O7−y, HgBa2Ca2Cu3O8,
among many others [2]. Iridates, such as Sr2IrO4 [3, 4] are currently receiving a great deal of
attention for their potential “topological” properties. And we may also mention more exotic
structures, such as the molecular crystals of “buckyballs” A3C60 (A= K, Rb, Cs, etc.) that may
exhibit superconductivity at∼ 35K [5,6]. These changes in their electronic transport properties
are also correlated with anomalous spectroscopic properties, which involve transfer of spectral
intensity that takes place over energy scales of the order of an eV. This becomes significant
when we realize that 1 eV ∼ 11 000 K. So the question is how, by heating up a material to
∼100 K, we may observe changes on energy scales 100 times larger.
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Fig. 2: Schematic phase diagram of transition-metal oxides as a function of the partial filling
of the 3d-orbital band and the intensity of Coulomb correlations. Mott insulators are found at
integer fillings of the d-shell. From [7].

The most amusing playground for strongly correlated physics, from the point of view of materi-
als, has been that of transition-metal oxides. In particular those transition metals that occupy the
third row of the periodic table, filling the 3d orbital shell. As a function of the filling we find a
large variety of oxide materials, which are expected to be metals from density-functional theory
(DFT) calculations, but are found to be insulators, as illustrated in the Fig. 2. Moreover, those
unexpected insulators lead to anomalous metallic states upon chemical doping. A survey of
those systems has been condensed into an excellent review by Imada, Fujimori, and Tokura [8].
A practical, but certainly non-rigorous definition of strongly correlated systems could be given:
They are those materials whose electronic state and band-structure fail to be described by DFT.

1.2 Kondo model and Kondo problem

One of the oldest problems in strongly correlated materials, and certainly one of the, conceptu-
ally, most important, is that of the observed minimum of the resistivity in metals with magnetic
impurities, which led to the formulation of the Kondo model. The physical phenomenon con-
sists on the observation of a minimum in the resistivity of an ordinary metal with a small amount
of magnetic impurities, such as gold with Mn impurities, as schematically depicted in Fig. 3.
The problem was theoretically addressed by Kondo, who considered a Hamiltonian of an ordi-
nary metal of bandwidthW, interacting with an embedded single magnetic impurity with a spin
interaction J . Kondo showed that diagrammatic perturbation theory broke down at a low tem-
perature, where logarithmic divergences developed. This became the Kondo problem, which
led to very important developments. We may mention a wonderful paper by Anderson, known
as “Poor’s man scaling,” which was an important step in the right direction. Eventually, Wilson
invented the numerical renormalization group (NRG) in the 70’s, providing an exact numeri-
cal solution and a conceptual breakthrough. The problem was analytically solved by Andrei
and Tsvelik in the 80’s using the Bethe Ansatz, a highly technical mathematical methodology.
An important concept that emerged from the solution of the Kondo problem was that of the
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Fig. 3: Schematic illustration of the Kondo effect. Top: (left) The magnetic moment of an
impurity site emerges when the second electron is hindered to doubly-occupy a site below the
Fermi sea due to the interaction energy cost U (dotted energy level). The physical manifestation
of the Kondo effect are: (middle) a logarithmic increase of the resistivity at low T (red line), with
respect to the non-magnetic impurity scattering (black line); and (right) a sharp resonance in
the DOS at the Fermi energy (the Kondo peak). Bottom: Illustration of the (dynamic) screening
of the magnetic impurity by the conduction electrons forming a many-body singlet state.

Kondo resonance and the Kondo temperature. The former is a peak in the local density of
states (at the site of the magnetic impurity), which corresponds to a many-body state where the
metallic electrons dynamically screen the magnetic moment of the impurity, forming a singlet
state. This phenomenon occurs below the Kondo temperature, which is exponentially small:
TK ∼ We−W/J . The solution of this problem already illustrates the characteristics of strong
correlations we have mentioned before: There is a change in the electronic conduction (Kondo
minimum) and in the spectral properties (Kondo resonance), which all occur at a low temper-
ature (Kondo temperature) well below the bare energies scales of the model (W and J ∼ eV,
while TK∼10 K).

The Kondo model can be generalized into the single impurity Anderson model (SIAM), where
the magnetic impurity is represented by an atomic site with energy ε0 6 0 (beneath the surface
of the Fermi sea) and a local Coulomb repulsion U. For large values of U, the double occupa-
tion of the site is penalized so the orbital occupied by only one electron describes a magnetic
impurity. The atomic site is hybridized with the conduction band of the metallic host via an am-
plitude V. This permits the conduction electrons to briefly (doubly) occupy the impurity site,
screening its spin. Because of the high energetic cost U, one of the electrons of the impurity
returns to the metal, which may produce a “spin-flip” of the impurity spin. These processes
lead to the formation of a non-magnetic many-body state involving both the impurity and the
conduction electron degrees of freedom. Similarly as in the Kondo model, this occurs below a
low temperature scale. The relation between the two models is J ∼ V 2/U , for the case where
ε0 = 0 and U is large. An instructive problem to solve is to consider a minimal SIAM as a
two-site Hamiltonian problem, where one “impurity” site has energy ε0 and a correlation term
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Un0↑n0↓, the other “conduction band” site has energy zero, and they are hybridized by a hop-
ping amplitude V. The density of states (DOS) of the sites can be computed, along with all
interesting observables, such as the magnetic correlation functions and the magnetic moments,
with relatively small numerical effort, even at finite T. Already the DOS will show a strik-
ing temperature dependence, with transfers of spectral weight across large energy scales, the
emergence of a precursor of the Kondo peak, and the magnetic screening of the impurity spin.
As we shall see below, the importance of the Kondo and the SIAM is not only conceptual: they
form the very heart of the DMFT method.

2 Dynamical mean-field theory: a primer

The best way to introduce dynamical mean-field Theory (DMFT) is to draw an analogy with the
familiar mean-field theory of the Ising model, which is a text book case of statistical physics.
However, before doing that we need to give a brief introduction to Green functions (GF), since
these mathematical objects are central to the formulation of DMFT. Unlike the Ising spins, GF
are frequency (or time) dependent objects, hence the “dynamical” aspect of the DMFT. We
shall avoid mathematical rigor and focus just on the aspects of the GF that we need to carry on
the discussion. We shall avoid using vectors, also in the sake of keeping the notation light. The
meaning should be always clear from the context. There are excellent text books on the topic of
GFs, a classic one is that by G. Mahan [9].

2.1 Green functions in a nutshell

Physically, the GF are mathematical objects that characterize the propagation of particles through
the lattice. Therefore they have site and time coordinates, or equivalently, lattice momentum
and frequency (k, ω). In this case, the physical interpretation is that the GF describes the pro-
cess of adding (removing) a particle with energy ω > 0 (ω < 0) and momentum k. The GF
are complex functions that are defined on the whole complex plane G(k, z), with z ∈ C, where
ω=Re(z). They are analytic, so they are defined on both, the real and imaginary axis. In practice
we use both. The real frequency axis GF provide functions that can be compared with experi-
ments. For instance, the imaginary part of the local GF (i.e., at position x=0) as a function of
real frequency ω is the density of states (DOS) ρ(ω), which is measured by photoemission and
scanning tunneling spectroscopy experiments,

ρ(ω) = − 1

π
Im Gloc(ω) = −

1

π
Im
∑
k

G(k, ω). (1)

In contrast to the continuous variable ω, on the imaginary frequency axis the GF is defined on
a set of discrete frequencies, called (fermionic) Matsubara frequencies ωn=(2n+1)π/β, with
n∈Z and β ≡ 1/T is the inverse temperature. The interest of using GFs on the imaginary axis
is that they are often easier to compute than their real axis counterparts. There is an important
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price to pay, however, which is the need to analytically continue the G(k, iωn) to obtain the
G(k, ω) so comparisons can be made with experiments.
The simplest GF is that of a single orbital state, isolated, and of energy ε0,

G(ω) =
1

ω + ε0 − iη
. (2)

The imaginary part (i.e., the DOS) has a delta function from the simple pole at ε0. For a tight
binding Hamiltonian, with a band that disperses as εk, the GF becomes a function of k and ω

G(k, ω) =
1

ω − εk + iη
, (3)

whose imaginary part has delta-peaks at the poles of G(k, ω) that provide the electronic band
energy dispersion εk, while iη provides a small width to the peaks. It is called the spectral
function, A(k, ω)=−ImG(k, ω)/π and is, in principle, measured in ARPES experiments.
The lifetime of the excitations is given by the inverse of the frequency-width of the peaks ap-
pearing in the spectral functions A(k, ω). In a non-interacting system, as in a tight binding
Hamiltonian with dispersion εk, the single particle states are eigenstates and are stationary, so
they have an infinite lifetime. Accordingly, the poles of the GF become infinitely narrow delta-
peaks δ(k−k0, ω−εk0) in the spectral function.
Interactions, such as on-site Coulomb repulsion, that in the Hubbard model have the same
form, Un↑n↓, as in the SIAM affect the non-interacting band structure. They may change
the energy dispersion and can also change the lifetime of the excitations. In extreme cases,
they can qualitatively change the energy dispersion or “electronic structure.” We shall see a
concrete instance in the Mott-Hubbard metal-insulator transition. Mathematically, the effects
of the interactions is encoded in the calculation of another complex function that shares the
same analytic properties as the GF. It is called the self-energy Σ(k, ω). Thus solving the many-
body problem of an interacting model amounts to obtaining the self-energy. Let’s write down
the definitions for the concrete case of a Hubbard model (HM)

H = H0 + U
∑
i

ni↑ni↓ with H0 = −t
∑
〈i,j〉σ

c†iσcjσ , (4)

where 〈i, j〉 denote nearest neighbors sites and niσ = c†iσciσ. Thus, we have for the GF

G0(k, ω) =
1

ω − εk + iη
and G(k, ω) =

1

ω − εk −Σ(k, ω)
, (5)

where G0 is called the non-interacting GF. We see in the expression of the GF how the Σ
function can modify the electronic dispersion ofH0: ReΣ changes the energy of the excitations,
while ImΣ changes their lifetime τL = 1/ImΣ(ω=0).
Two more definitions will be useful. The notion of quasiparticle residue Z and renormalized
mass m∗. They both serve to parametrize the effect of interactions for the low energy band-
structure. We can write it as the sum of two contributions

G(k, ω) ≈ Z

ω−Z εk
+ (1−Z)Ginc(k, ω). (6)
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Fig. 4: One site from the lattice is embedded into an effective electronic bath. The bath is
self-consistently determined to best represent the lattice environment of the site. This single-site
quantum-impurity problem remains a non-trivial many-body problem.

The quasiparticle residue is 0≤Z≤1, and represents the part of the DOS which remains with
a well defined energy dispersive structure. The excitations are modified as Zεk, which implies
that the electronic band becomes flatter, i.e., has a higher mass. If εk = −t cos(ka) ≈ k2/2m,
we see that Zεk gives an enhanced effective mass m∗ = m/Z > m. Since the DOS is normal-
ized to 1, the spectral weight which is not in the quasiparticle part at low energy has to appear a
higher energy. This contribution does not have a very well defined dispersion (due to short life-
times from a large ImΣ) and thus we have the factor 1−Z in front of the second contribution,
which we call incoherent Ginc.
We have gone fast on these definitions. There are excellent text books for the interested reader
to learn more details [9].

2.2 The DMFT self-consistency equations

We use the functional integral formalism to introduce the main DMFT equations. Again, there
are excellent text books on that formalism too [10]. The method is based on writing down the
action of a Hamiltonian model. We shall skip all the details of the formalism and simply write
down directly the most important expressions, which should be clear enough. For simplicity we
shall focus on the Hubbard model (HM) defined above in Eq. (4). The action of the HM reads

S =

∫ β

0

dτ

(∑
iσ

c†iσ ∂τ ciσ − t
∑
〈i,j〉σ

c†iσcjσ − µ
∑
iσ

niσ + U
∑
i

ni↑ni↓

)
. (7)

The model is defined on a given lattice. The next step is, as in standard mean-field theory, to
single out a site and try to replace the original lattice problem by an effective quantum impu-
rity problem (QIP) embedded in a medium that is determined so to best represent the original
environment of the site. This is pictorially represented in Fig. 4. More concretely, we split the
action into that of the single lattice site i = 0 at the “origin,” S0, the rest of the lattice, S(0), and
the coupling between them, ∆S: S = S0 +∆S + S(0)

S0 =

∫ β

0

dτ

(
c†0σ(∂τ − µ)c0σ +Un0↑n0↓

)
and ∆S =

∫ β

0

dτ

(
− t
∑
〈i,0〉σ

c†iσc0σ + c†0σciσ

)
. (8)
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By means of standard field-theory methods we integrate out the rest of the lattice and write the
full effective action on the lattice site at the origin alone as

Seff =

∫ β

0

dτ

(
c†0σ(∂τ − µ)c0σ −

∑
ijσ

t0i tj0 G
(0)
ij + ...+ U

∑
i

ni↑ni↓

)
. (9)

G
(0)
ij denotes the exact propagator of the lattice with the 0-site excluded and (...) stand for higher

order terms in the hopping t. Up to now there are no approximations, but the problem remains
too hard to deal with. DMFT corresponds to taking the limit of large dimensionality, large lattice
connectivity or large lattice coordination. An evident problem is that the number of neighbor
sites to 0 grows to infinity (i.e., the band-width would grow to∞). Metzner and Vollhardt [11]
realized that the reasonable way to cure this problem is by rescaling the hopping amplitude t→
t/
√
d, where d is the number of spatial dimensions. The simplest way to see this is noting that

the typical value of the kinetic energy for a random k vector isEkin =
∑d

i −t cos(ka) ∝ (
√
d t)2

(using the central limit theorem). A key consequence of this scaling is that the (...) in Eq. (9)
vanish (as they are higher order in t), which is a great simplification. Thus, we recognize from
Seff the quantum impurity problem that we were looking for

SQIP =
∑
nσ

c†0σ G−10 (iωn) c0σ + β Un0↑n0↓ , (10)

with the “non-interacting” GF of the QIP defined as

G−10 = iωn + µ− t2
∑
(ij)

G
(0)
ij (iωn), (11)

where (ij) denotes the sites neighboring 0 and we went from imaginary time τ to the Matsubara
frequency ωn representation. Notice that the G0 is the bare propagator of the QIP and should not
be confused with G0, which is the bare local propagator of the lattice. The last term represents
the environment of the impurity, which still needs to be determined. Its physical interpretation
is that an electron at the impurity site has an amplitude t to hop out to a neighbor site i, then it
propagates through the rest of the lattice from i to j with G(0)

ij , and returns from site j back to
the impurity site with a second hop t. The 0 index in G0 indicates that it is the non-interacting
GF of the impurity problem, but this object is, in general, different from the original lattice local
non-interacting GF.
G

(0)
ij is a fully interacting GF whose solution is, in principle, at least as hard as the original

problem. So we need to do something about it. Diagrammatically, we can write the cavity GF

G
(0)
ij = Gij −

Gi0G0j

G00

, (12)

where the second term subtracts from the first all the diagrams that go back to the origin, and its
denominator takes care of the double counting of local diagrams. Notice thatG(0) has now been
written in terms of the lattice GF. If we assume a k-independent self-energy we can express
the lattice GF in real space by summing over specifying the geometry of the lattice and Fourier
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transforming. Then, inserting Eq. (12) into (11) the sum over spatial indices can be performed
and one obtains the self-consistency equation [1]

G−10 (iωn)−Σ(iωn) =
∑
k

1

iωn + µ− εk −Σ(iωn)
= Gloc(iωn). (13)

This expression is valid for all lattices. For instance, on a hyper-cubic lattice, which is the
generalization of the square and cubic lattices to high dimensions, the integral over k can be
done as a sum over the hyper-cubic lattice single-particle energies ε

Gloc(iω) =

∫ +∞

−∞

1

iωn + µ− ε−Σ(iωn)
DOS(ε) dε , (14)

where

DOS(ε) =
e−ε

2/2t2

t
√
2π

(15)

is a Gaussian function (again using the central limit theorem).
A few comments are in order now. From Eq. (13) and (10) we see that Σ(iωn) is the self-
energy of the QIP. It is obtained as the solution of the many-body single-site problem, i.e., the
QIP, which depends on G0. Thus, we can write Σ = Σ[G0] so that the self-consistent nature
of Eq. (13) becomes evident. The key feature that links this equation to the original lattice
problem is that it can be shown that at the self-consistent point, the QIP self-energy Σ(iωn)

coincides with the exact self-energy of the lattice Σ(iωn) [1]. Crucially, in the limit of large
dimensionality or lattice connectivity and with the re-scaling of the hopping made above, the
lattice self-energy is k-independent, which validates the assumption made to obtain Eq.13 [1].
Hence, at the self-consistent point, we also recognize on the right hand side of Eq. (13) the local
GF of the lattice problem Gloc(iωn), which we set out to solve.
So the issue is now reduced to obtaining the self-energy, given the impurity G0. We see that
given a guess for G0, we solve the many-body QIP to obtain a guess for Σ. We input that into
the r.h.s. of Eq. (13) to obtain a guess for Gloc. Then, from Gloc + Σ we get a new guess for
G0. This has to be iterated until self-consistency is attained. Then the problem is solved as we
obtain the DMFT solution for the lattice GF as

G(k, iωn) =
1

iωn − εk −Σ(iωn)
. (16)

This equation, with a k-independent Σ is exact for lattices in infinite spatial dimensions or
infinite connectivity. However, the procedure may be adopted for lattices in any dimension and
that case the DMFT and the k-independence of Σ become an approximation, which is at the
root of the realistic DMFT approach for materials that we shall describe later.

2.3 DMFT on the Bethe lattice

Another illuminating light can be cast on the DMFT self-consistency condition by considering
the Bethe lattice. There are two main features that make this lattice a very popular choice for
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Fig. 5: The Bethe lattice (for connectivity d = 3). The red line indicates the “cavity” propaga-
tor. When the origin (0) is taken out, the electrons have to leave and return to the origin via the
same neighbor site (i), rendering the cavity propagator site-diagonal, cf. Eq. (12).

DMFT studies. The first one is that the DOS(ω) is a semi-circle, which has a finite band-width
and band-edges similar to 3D cubic lattices. The second is that the self-consistency equations
are easier to derive. The Bethe lattice of coordination z is a “branching tree”, where from each
node emanates a number z of branches. In Fig. 13 we show the case z=3. In this type of
lattice the cavity G

(0)
ij is easy to obtain. In the left panel of the figure we depict with a red

line a propagation from site i to j, both nearest neighbors of the 0-site. The cavity propagator
has to be obtained with the 0-site removed. The right panel shows that when we do that, an
electron that has hopped from 0 to i can only return back to 0 hopping from i. In other words,
G

(0)
ij = G

(0)
ii δij . Now, if we consider the limit of large lattice coordination, z → ∞, we see

from the right panel of Fig. 5 that the G(0)
ii is identical to Gii, which by definition is Gloc. Thus,

from the cavity Eq. (12)

G
(0)
ij = G

(0)
ii δij = Gii δij = Gloc δij . (17)

Replacing into Eq. (11), we can perform the sum to get

G−10 = iωn + µ− t2Gloc(iωn), (18)

where we used that the hopping is rescaled, as mentioned before, by t → t/
√
z. The self-

consistency equation for the Bethe lattice has a very compact and intuitive form, and avoids the
need of the ε integral of the hyper-cubic case.
From the point of view of the QIP problem we observe that the quantum impurity is embedded
in a medium that is nothing but t2 times the local GF. The problem is dealt with similarly as
before: given a guess for the G0, the many-body problem of the 0-site is solved. An interacting
GF for the impurity is obtained and a new guess for G0 is simply computed from Eq. (18).
The iteration proceeds until convergence is attained and at that point, as before, the Gloc(iωn)

becomes the local GF of the original lattice problem.
To show that the self-consistency condition obeys the general form of Eq. (13), we first compute
the local non-interacting Bethe lattice DOS(ε). Since U=0, we have Gloc=G0. Thus, replac-
ing into Eq. (18) and solving the quadratic equation, we can get the Gloc(iωn) and from the
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imaginary part of the analytic continuation to the real-frequency axis

DOS(ε) =
2

πD2

√
1−

( ε
D

)2
for |ε| < D , (19)

where we introduced the half-bandwidth D = 2t. Inserting this DOS(ε) into the general
Eq. (14) and using the Dyson equation for the quantum impurity, G−1loc = G−10 − Σ, one re-
derives the Bethe lattice self-consistency condition Eq. (18).
Experience has shown that for simple model Hamiltonians there are no qualitative differences
in the DMFT solutions of different lattices, therefore, the simplicity of the Bethe lattice often
justifies the choice.
An important feature of the solution is that the lattice self-energy Σ, which coincides with that
of the QIP at self-consistency, does not depend on momentum. This is evidently not a charac-
teristic of a Σ in general, so we may ask if this makes sense. Or, in other words, when should
we expect Σ to be independent, or weakly dependent, of the momentum? The answer is for
physical problems where the stronger interactions are local and when the lattice coordination is
large. In fact, the latter follows from a mathematical statement, which is that the DMFT solution
becomes exact in the limit of large spatial dimensions [11, 1]. In practice, one may then expect
that for cubic, bcc, and fcc lattices with coordinations 6, 8, and 12 � 1, the approach should
be reliable. On the other hand, in regard to locality of interactions, we may expect them to
dominate the physics when the orbitals are small with respect to the interatomic distances of the
material (or more simply to the lattice spacing). This is the case for two types of materials, such
as the 3d transition-metal oxides and the heavy fermions. Among the first we have the strongly
correlated materials that we listed in the Introduction (Sec. 1). Heavy fermions are typically
inter-metallic compounds, such as CeCu6, CeAl3, UBe13, and UPt3, that have an ordinary metal
and one with active f -electrons, such as the actinides.
How about the case for a material that has a relatively low coordination but does have strong
local interactions? That is the case of an important class of materials, the high-Tc cuprate and
the iron-based superconductors. Both these systems have layered structures. The answer may
depend on the person that this question is asked to. But more fairly, one should say that the
relevance of DMFT may depend on the type of physical question that one is asking. We shall
see some examples later on that shall illustrate this point.
We can summarize the DMFT method and its self-consistent nature by drawing an analogy with
the familiar mean-field theory of an Ising model. This is schematically shown in Fig. 6. On the
left panel we have the main DMFT ingredients: a lattice model and Hamiltonian; the mapping
to the quantum impurity problem and the effective action of the single-site of the lattice; the
restoration of the spatial translation invariance of the lattice by enforcing a self-consistency
constraint; and the requirement for a rescaling of the original hopping parameter so that all
terms in the model remain of finite energy when one takes the limit of high dimensionality.
As we can see in the right panel of the figure, all those ingredients have a counterpart in the
Ising model MFT. One can observe that in the latter the local magnetization m (or heff) is an
a priori unknown that needs to be determined, similarly as the G0. Another feature is that the
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H = −
∑
i,j, σ

tij c
†
iσcjσ + U

∑
i

ni↑ni↓ H =
∑
i,j

Jij SiSj

Seff[G0] = −
∫∫

dτ dτ ′ c†0σ G
−1
0 c0σ + U

∫
dτ n0↑n0↓ Heff =

(∑
i

J0i Si

)
S0 = zJ mS0 = heff S0

G−10 = iωn + µ− t2G(iωn) m = 〈S0〉 = tanh(βzJm)

tij ∼ 1/
√
z Jij ∼ 1/z

Fig. 6: Analogy between Hubbard model DFMT and Ising model MFT. We highlight the similar
role of the “origin” site 0 and the a priori unknown “cavity” or “Weiss field” function G−10 and
the mean magnetization m. Also, both methods become exact in the limit of large dimensions
(or connectivity z) after the required “rescaling” of the hopping in DMFT and the magnetic
interaction in the MFT. Notice that in the Hubbard model the super-exchange J ∼ 4t2/U also
becomes rescaled by 1/z.

numerical difficulty to solve the model is dramatically reduced by mapping to a single site.
Solving a single Ising-spin is trivial, however, solving the QIP still remains a difficult many-
body problem. A variety of techniques have been developed over the years to obtain reliable
numerical solutions.

2.4 Quantum impurity problem solvers

An important technical point that we should mention is the practical solution of the QIP, which
remains a non-trivial many-body problem [12]. From the start we should say that despite almost
30 years of work, where a variety of methods have been proposed [13], there is no single ideal
one. We shall briefly comment on the most important techniques. We recall that the goal is to
solve an arbitrary single-impurity Anderson model (SIAM), where the interacting atomic site is
hybridized to an environment, or “bath” that is specified by a DOS(ω). In the standard SIAM
the bath represents a metal, but in the present case the bath is a function that evolves under the
iterative procedure. For a Bethe lattice it coincides with the local GF as we discussed above.
The main techniques are the following:
Quantum Monte Carlo: This is a finite temperature method that is performed on the imagi-
nary time axis, so it produces solutions to the model on the Matsubara frequency axis. This
has the drawback that it requires the additional step of analytic continuation, which presents
significant technical problems regarding the reliability and the precision of the spectra. This
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can be mitigated improving the accuracy of the MC calculation. It is perhaps the most power-
ful method. It was originally implemented via a Trotter expansion of the action and a discrete
Hubbard-Stratonovich transformation [14,1]. More recently, a continuous time formulation was
developed, based on a statistical sum of diagrams [15]. Its main advantages are that it is numer-
ically exact (in the statistical sense), that its scaling to multi-orbital models is not bad, and that
is easily parallelizable. Among its main drawbacks are the need of analytic continuation that we
mentioned, the increased numerical cost to lower the simulation temperature, and the so called
“minus sign” problem that prevents the solution of certain multi-orbital problems, especially in
the case of cluster methods.
Exact Diagonalization: In this method one adopts a bath of non-interacting fictitious atoms
that are coupled to the impurity site. The bath is thus defined by the atomic energies and
the coupling amplitudes. Given a set of values for these parameters, a SIAM Hamiltonian is
exactly diagonalized by standard techniques and the GF is obtained. The solution is used, via
the self-consistency equation (Eq. (13) and 18) to compute the new bath, which is fit to obtain
a new set of parameters for the fictitious atoms [1]. The main advantages of this method is
that it can be formulated at zero or finite temperature, that it does not pose the problem of
analytic continuation, and that its accuracy can be systematically improved. Its drawbacks are
that it is numerically costly, especially for multi-orbital models and going to finite temperatures
(requires full diagonalization of the Hamiltonian). This is due to the poor scaling of the size
of the Hilbert space, which severely limits the number of sites in the bath, typically to about
10, which makes the pole structure of the GF quite discrete. This problem can be overcome by
representing the bath with a linear chain and using the DMRG method for the solution [16,17].
One can implement baths with up to 100 atoms. However, the scaling to multi-orbital models
is still poor. We may also mention the solution of the SIAM using Wilson’s NRG method [18].
This approach also allows to implement large atomic baths and provides excellent accuracy at
low frequency and zero temperature. Its main shortcoming is, as for DMFT-DMRG, the poor
scaling for multi-orbital models moreover it is not particularly advantageous for the study of
insulating states.
Iterative Perturbation Theory: The IPT method has both, remarkable advantages and limita-
tions. It is based on a perturbative evaluation to the second order in U/t of the self-energy.
The method is very simple and fast. It provided extremely valuable insights on the Mott tran-
sition. Its value relies on a fortunate fact, namely, it provides an asymptotically correct solu-
tion in the large coupling limit. This is by no means obvious and, apparently, it just works
by a lucky stroke. Perturbation theory is by construction good at small coupling, and by no
means should be expected to work at large U/t. However, it is not hard to demonstrate it. It
is most simply done in the case of a Bethe lattice. We just need to know that, for 0 < τ < β,
1
β

∑
n e
−iωnτ 1

iωn
= −1

2
, if ωn is a fermionic Matsubara frequency. From Eq. (18) in the atomic

limit (t = 0), we see that at half filling G0(iωn) = 1
iωn

. Thus, for 0 < τ < β, we have
G0(τ) = −1

2
and G0(−τ) = 1

2
. The 2nd order diagram of Σ(iωn) therefore takes the value

Σ(2)(iωn) = −U2

∫ β

0

dτeiωmτ [G0(τ)]2G0(−τ) =
(
U

2

)2 ∫ β

0

dτeiωmτG0(τ) =
U2

4

1

iωn
. (20)
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Using this result and Eq. (14) and (19), we obtain for the Gloc in the large-U limit

Gloc(iωn) ≈
2

iωn − (U/2)2/iωn +

√
(iωn − (U/2)2/iωn)

2 −D2

(21)

and from its imaginary part on the real axis we get the DOS

DOS(ω) ≈ 2

πD2

√(
ω − (U/2)2/ω

)2 −D2 with
∣∣ω − (U/2)2/ω

∣∣ < D (22)

which corresponds to two bands of width ≈ D, split by a gap ≈ U, where we recall D = 2t

is the half-bandwidth of the original non-interacting lattice model, so this solution correctly
captures the “atomic” limit of D � U .
How do we know that it works in between where U ∼ D? It is because the IPT solution can be
benchmarked with the two exact methods that we described before. Comparisons have shown
that, quite remarkably, the IPT solution reproduces most of the physical features of the Mott-
Hubbard transition at both zero and finite temperature, including the first-order metal-insulator
transition that ends in a finite temperature critical point [19, 1]. The surprise gets even bigger:
Besides the Hubbard model, the second-order “recipe” for Σ also qualitatively works for the
solution of the periodic Anderson model [20] and for the dimer Hubbard model [21]. Unfor-
tunately, the IPT only works at the particle-hole symmetric point. Upon doping the systems,
pathological behavior occurs, such as negative compressibility.
In Sec. 4 we provide a link to the IPT source code and propose simple exercises to guide the
“hands-on” discovery of the Mott-Hubbard transition.

2.5 Long-range order

DMFT can also be used to explore simple types of magnetic (charge, position, orbital, etc.)
long-range ordering, such as ferromagnetic and Néel (i.e. checkerboard) order. In the first case,
the equations remain the same, one just needs to consider that the bath may be different for
spin up and down. In the case of Néel order, one has to explicitly take into account the two
sub-lattices, say A and B. In that case the self-consistency equations read

GA0σ(iωn) =
1

iωn + µ− t2GB
σ (iωn)

GB0σ(iωn) =
1

iωn + µ− t2GA
σ (iωn)

(23)

and using the symmetry properties of Néel order between sub-lattices, we get just one equation

G0σ(iωn) =
1

iωn + µ− t2G−σ(iωn)
. (24)

Note that Gσ(iωn) is equal to −G∗−σ(iωn) in the particle-hole symmetric case, but in general it
is not.
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3 The Mott-Hubbard transition in DMFT

Before describing the solution of the Hubbard model within DMFT and its relation to the Mott
transition, we shall describe some experimental background to motivate this study. The Mott
transition is a central problem of strongly correlated systems, and has been occupying a center
stage since the discovery of the high Tc cuprate superconductors in the 80’s [22], followed
by the manganites in the 90’s [2], and so on [8]. The interest has been essentially non-stop,
with the most recent instance being the fascinating discovery of superconductivity in twisted
bi-layer graphene [23]. Once again, this validates the notion that we already discussed in the
introduction, namely, that interesting physics always emerges close to a Mott transition. Hence,
the relevance of this physical concept.

The Mott transition is a metal-insulator transition (MIT), and the concept goes well before
the cuprates, to an argument made by Mott in the 40’s [24]. He argued that by considering
the dependence of the kinetic and potential energy as a function of the electron density in a
solid, one should expect a discontinuous phase transition. In simplest terms the argument is
that Ekin ∼ k2F/m ∼ 1/a2 ∼ n2/3, while the Epot ∼ e2/a ∼ n1/3, so that at low n the Epot

dominates, while at large n the kinetic energy does. Hence, as a function of the density, a first
order transition should occur between an insulator and a metal. While this argument advances
the notion of competition of electronic delocalization versus Coulomb repulsion, which are the
ingredients of the Hubbard model, Mott’s argument does not immediately apply. What came
to be known as the Mott-Hubbard MIT is a phenomenon that occurs at “half-filling,” that is,
when a band has an occupation of one electron per site (remember that a band has room for
two electrons due to the spin), thus, at electronic density n = 1. If a band is half-filled, it is
partially filled and should have plenty of states just above the Fermi energy. So it should be a
metal. Thus, the Mott insulator state is an insulator state that is realized in a half-filled band due
to strong Coulomb interactions. Intuitively, if Coulomb repulsion dominates, it will cost a lot
of energy to bring two electrons onto the same atomic site. Hence if n = 1, the best one can do
is to avoid the double occupation of any site, which can be achieved by localizing each electron
onto a respective atomic site. They would then be locked in their positions, since to move they
would have to jump to a neighboring site and that is too costly. Thus, we may think of the Mott
state as a global Coulomb blockade.

We should also emphasize that the notion of a Mott transition does not involve a change in the
symmetry, such as antiferromagnetic ordering or a lattice dimerization. These two phenomena,
associated to the names of Slater and Peierls, can open a gap in the band but do not require
strong interactions. Thus, we call them weak-coupling mechanisms, since they emerge from
perturbation theory, such as Hartree-Fock. In Fig. 7 we schematically illustrate this point. The
ordering effectively doubles the unit cell, thus halving the Brillouin zone (BZ) and doubling the
bands that open a gap at the border of the BZ [25].
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Fig. 7: Schematic representation of the weak-coupling gap opening from the effective lattice
parameter doubling 2a due to magnetic (left) or lattice (right) symmetry breaking. These mech-
anisms are associated to Slater and Peierls respectively.

3.1 V2O3 a strongly correlated material with a metal-insulator transition

Now we can ask ourselves the question, is the Mott transition realized in nature? Or, is it just
an idealized concept? The answer is yes, to both. The Mott transition that we just described
is obviously a very idealized and simplified situation: exact half-filling, no change in the sym-
metry, no disorder, no temperature effect, etc. etc. Yet, and quite remarkably, there seems to
be a realization of the Mott-transition concept in the compound V2O3. In Fig. 8 we show the
phase diagram of this famous compound. We observe three phases, an antiferromagnetic insu-
lator (AFI) at low temperature, and two paramagnetic phases at intermediate temperatures, one
insulator (PMI) and one metallic (PMM) that are separated by a first-order line, which ends in a
critical point (CP). The important feature is that the MIT occurs with no change in lattice sym-
metry. It can be driven by temperature or by pressure (hydrostatic or chemical). The small Cr
and Ti substitution is considered to slightly change the lattice spacing, hence the bandwidth, but
not the number of carriers. In fact, the no change in the lattice symmetry is easily understood
from the fact that if one starts, say in the PMI next to the first-order line, and then heats-up
the system just above the CP, then applies pressure just past the CP, and cool down again, one
arrives to the qualitatively different PMM phase, all through a continuous and smooth process.
This feature shows that the MIT in V2O3 is qualitatively similar to the familiar liquid-vapor
transition in water.

The study of the MIT in V2O3 continues to be a matter of strong scientific interest, attention and
debates with many interesting findings that continuously challenge our physical understanding
of this compound. Among the most recent and exciting discoveries is that strong electric pulsing
may collapse the Mott insulating state and that the phenomenon may be exploited to implement
artificial neurons [26–28]. From a conceptual point of view understanding this new and un-
expected neuromorphic functionality [29] poses a significant challenge, namely to describe the
Mott transition out-of-equilibrium. This is a topic of great current interest [30], which is also
motivated by the fast development of so called “pump-probe” experiments.

After this brief introduction to the Mott phenomenon and its relevance, we now move on to
describe the Mott-Hubbard transition within DMFT.
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Fig. 8: Left: Phase diagram of V2O3. Negative and positive chemical pressure can be applied
with a few % of Cr and Ti substitution. The blue line indicates the first-order line between the
metal and the insulator within the paramagnetic phase. The orange square indicates the second-
order critical end-point. Center: Resistivity of V2O3 across the meta-insulator transitions.
Right: A similar first-order line and critical end-point are present in the familiar water-vapor
phase transition.

3.2 The Mott-Hubbard transition

As mentioned before, the Mott insulator is realized at half-filling, i.e., one electron per site
in a mono-atomic lattice. From experiments, we observe that the transition can be driven by
changing the bandwidth, i.e., applying pressure, and by heating. Thus, in the framework of a
Hubbard model, which can be considered as a minimal model to capture the physics, one may
explore the behavior at half-filling and as a function of the ratio of interaction to bandwidth
(U/W ), temperature (T ), and doping (δ) away from half-filling, i.e., δ = n− 1. For simplicity,
we shall consider the case of a Bethe lattice with a semicircular DOS. We shall adopt as unit of
energy of the problem the half-bandwidth D = W/2 that we set equal to one, unless indicated.
As we discussed before, to study the Mott transition as observed in Cr-doped V2O3, we need
to restrict ourselves to paramagnetic (PM) states. However, the solution of the Hubbard model
on a bipartite lattice, such as Bethe or the (hyper-)cubic, has strong “Néel nesting” that favors
an AFI state at low T . Thus, we shall ignore for the moment antiferromagnetic solutions and
only be concerned with paramagnetic ones, and we shall explore whether Coulomb repulsion
can lead to the break down of a metallic state in the half-filled band of a tight-binding model.
In Fig. 9 we show the beginning of the answer to this question within DMFT. We show the
evolution of the DOS of a half-filled tight-binding model on a Bethe lattice at T = 0 as the
interaction U is increased.
The main feature of the solution is the existence of a MIT as a function of increasing interaction
strength U. We observe that the DOS(ω = 0) is finite at low U, but becomes zero when a
insulating gap opens at large U. We can look at the nature of this evolution in more detail. We
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Fig. 9: DOS(ω) of the HM at T = 0 for increasing values of U. The quasiparticle peak narrows
as U increases until it collapses at the critical value Uc2. From [31].

observe that there is a peak developing at low frequency which becomes increasingly narrow.
This is called the quasi-particle peak and its origin can be connected to the Kondo physics we
discussed in the introduction. The narrowing of the peak corresponds to an increase of the
effective mass as the MIT is approached. A detailed numerical study shows that the effective
mass goes as m∗ ∼ 1/Z ∼ (Uc2 − U), where Z is the quasiparticle residue, i.e., the spectral
intensity of the peak, that we defined before, and Uc2 ≈ 3D is the critical value of the interaction
where the MIT occurs. The other feature that we observe is the growth of two large peaks with
the spectral weight that is lost from the central peak (i.e. 1−Z) at frequencies ±U/2. After the
transition only these two peaks are left and are separated by a charge gap ∆ ≈ U−2D. They
are called the Hubbard bands.

3.3 Band-structure evolution across the metal-insulator transition

It is interesting to go back to the lattice to observe what is the nature of the electronic states
that conform these peaks. In the case of a Bethe lattice the notion of momentum space is not
obvious, so instead of labelling the single-particle states by their momentum quantum number
we shall use their single particle energy ε. So the dispersion relation of the interacting energies
that is usually denoted by E = E(k) with k ∈ BZ becomes E = E(ε) with ε ∈ [−D,D]. So,
Eq. (16) becomes

G(ε, iωn) =
1

iωn − ε−Σ(iωn)
(25)

In the non-interacting case U = 0 and Σ = 0. Then, the GF has poles at ε and the non-
interacting dispersion is simply linear with E(ε) = ε and ε ∈ [−D,D]. One intuitive way to
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Fig. 10: Top: DOS of the HM at T = 0 for the Mott insulator U > Uc2 (left) and the correlated
metal U < Uc2 (right). Middle: A(ε, ω) for increasing values of ε ∈ [−D,D]. Bottom: Idem in
a color intensity plot (the label k plays an analogous role as ε denoting the quantum number of
the non-interacting single-particle states (see text).

think of this band structure is that it is qualitatively similar to that of a 1D tight binding model,
i.e., a linearized − cos(k). Thus, the state ε = −D, with E(−D) = −D is the bottom of the
band, i.e., often the Γ -point; the state ε = +D with E(+D) = +D is the top of the band and
the edge of the BZ; and the state ε = 0 with E(0) = 0 is the Fermi energy. From Eq. (25) we
clearly see that the self-energy function encodes the interaction effects, as it modifies the pole
structure of the non-interacting GF and also broadens the poles giving a finite lifetime to the
electronic states. In Fig. 10 we show the spectral functions A(ε, ω) = −ImG(ε, ω)/π of the
interacting model for the strongly correlated metal and for the insulator. The ω < 0 spectral
functions are measured in ARPES photoemission experiments.

We observe various features which are worth pointing out. In the case of the metal we observe
that the pole structure at low energy remains a collection of sharp resonances with a linear
dispersion. This indicates that the metallic states are well defined quasi-particle states (i.e.,
have long life-times) and that their mass is enhanced by the effect of interactions. The effec-
tive mass is larger because the band is flatter, as it disperses linearly between [−ZD,+ZD],
where we recall that the quasiparticle residue Z < 1. Thus, heavy mass aside, the states are
qualitatively similar to Bloch waves and we call these states coherent. We also observe the
Hubbard bands developing at higher frequency. While they show dispersive features, the nature
of the propagation that they describe is very different. The electronic states are broad in energy,
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which indicates that the excitations are rather short-lived and the propagation of the electrons
is incoherent. In other words, they describe rather localized particle-like states that are qualita-
tively different from momentum eigenstates. This correlated metallic state is perhaps the most
profound physical insight that emerged from DMFT. We see that the solution of the Hubbard
model within DMFT is a concrete realization of a quantum many-body electronic state which
simultaneously shares both, wave-like and particle-like features [32].
The Mott-Hubbard insulator has only incoherent Hubbard bands with a dispersion that resem-
bles the non-interacting dispersion, but split by the Coulomb repulsion U , thus approximately
follows E(ε) = ±U

2
ε. We note that the lifetime has a non-trivial variation across the BZ, with a

more quasiparticle-like character at the bottom and top of the lower and upper Hubbard bands
respectively, and becomes more incoherent close to the gap edges.

3.4 Coexistence of solutions and the first-order transition line

Another remarkable feature of the MIT is the coexistence of solutions. In Fig. 9 we showed the
evolution of the DOS(ω) as the interaction U is increased, which displays a MIT at a critical
value Uc2. However, this is not the only transition. If one starts from the insulator at large U
and reduces the interaction one observes that the two Hubbard bands get closer and the gap
∆ ≈ U − 2D shrinks. The remarkable feature is that this insulating solution continues to exist
for U < Uc2. The solution eventually breaks down at a value Uc1 ≈ 2D, where the gap closes.
Thus, for U ∈ [Uc1, Uc2] two qualitatively different solutions one metallic the other insulating
coexist. This feature can be considered analogous to the coexistence of solutions in the MFT of
the ferromagnetic Ising model, with all-up and all-down.
There are many consequences that follow from this feature. If keeping the occupation fixed
at n = 1, at particle-hole symmetry, and increasing the temperature, the solutions will not
disappear. They smoothly evolve, giving rise to a coexistence region in the U -T plane. The
evolution of the two solutions with increasing T is qualitatively different.
The metallic one has a low frequency quasiparticle peak. Its width can be related to the Kondo
energy scale of the associated impurity problem. This sets a dynamically generated new low-
energy scale in the system, much smaller that D (i.e. t) and U. As T is increased, the Kondo
resonance can no longer be sustained and the dynamical singlet state that the impurity forms
with the bath is broken. The energy scale of the quasiparticle peak is ∼ (Uc2 − U), thus we
may expect that the correlated metallic solution will break down along a line Uc2(TMIT ), with
TMIT being proportional to (Uc2(0) − U). This expectation is indeed realized as shown in
Fig. 11. Near Uc2 there is a significant magnetic moment due to the penalizing effect of U on
the probability of double occupation. Moreover, above the line Uc2(T ), the temperature is too
large for the moment to be Kondo screened and we are left with an incoherent collection of
disordered magnetic moments at each lattice site.
On the other hand, as T is increased in the insulating solution, the gap may get thermally filled
without any significant effect. Thus we may expect that the coexistence region in the U -T plane
has a triangular shape, which is actually the case as shown in Fig. 11. The figure also indicates
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Fig. 11: Phase diagram in the U -T plane. The dotted lines show the region where the param-
agnetic metallic and insulating solutions coexist. The red dotted line is Uc2(T ) and the green
dotted line is Uc1(T ). The blue line denotes the first-order transition where the free energies of
the two solutions cross. The orange square denotes the finite-T critical end-point.

the line where the free energies of the two solutions cross, which denotes a first order metal-
insulator transition in this model. The fact that the metal is more stable at low T, due to the
additional energy gain of the Kondo state, implies also that the physical transition is from a
metal to an insulator upon heating. This is qualitatively the case in the MIT within the param-
agnetic phase of V2O3 that we discussed before. We should perhaps remark here that there is
another vanadate, VO2, that also displays a transition driven by temperature between two para-
magnetic states. However, in that case and contrary to V2O3, the transition is from an insulator
to a metal upon heating. Thus the two transitions are qualitatively different. Nevertheless, one
may also understand the transition in VO2 as a Mott transition with a two-site quantum impu-
rity, where the insulating ground-state wins as the two moments screen each other into a local
singlet. Such an insulator-metal transition has been discussed recently [33, 21, 34].

3.5 Endless directions

We have described the core of the Mott transition physics that was unveiled by the introduction
of the DMFT approach formulated as a mapping of the (infinite-dimensional) lattice problem
onto a self-consistent quantum impurity [35–37,31]. From that starting point an endless number
of problems and extensions have been explored and continue to be developed. We shall briefly
mention some of them here.

3.5.1 Doping driven Mott transition

In this lecture we have investigated the MIT at half-filling keeping one electron per site. The
system is at particle-hole (p-h) symmetry, hence the DOS(ω) are always even functions. In
this situation we have seen that if the interaction U is strong enough and the temperature T
low enough the system is in a Mott insulator state. We can destabilize this insulator state by
doping the system, i.e., by changing the particle occupation by δ. This can be done by changing
the chemical potential away from the p-h symmetry at µ = U/2. In the simple single band
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Fig. 12: Left: Paramagnetic DOS(ω) of a lightly hole-dope Hubbard model at U = 3.125,
T = 0.1, and increasing δ = 0.003, 0.0076, 0.0114, 0.022, 0.038, and 0.055, from top to
bottom. Top right: Detail of the evolution of the quasiparticle peak in the previous results.
Bottom right: Phase diagram as a function of δ and T for U > Uc2. From [38].

Hubbard model that we consider it is equivalent to dope particles or holes, the resulting GFs
are related by the change ω → −ω. The effect of doping is to create a correlated metallic state.
It shares several features of the n = 1 correlated metal that we have already described. It has
a narrow quasiparticle peak at ω = 0 that is flanked by the two Hubbard bands. The spectral
intensity of the quasiparticle peak is in this case controlled by the doping, with Z ≈ 1/δ.
Thus the renormalized bandwidth is ∼ δD. This is again a small energy scale and increasing
the temperature will destroy the quasiparticle peak. The way this takes place is qualitatively
different from the p-h symmetric case. As shown in Fig. 12 one observes that the quasiparticle
peak becomes very asymmetric with respect to the origin. This signals a departure from the
Fermi liquid state and is associated to the notion of resilient quasiparticles and of bad metal
states [38]. In a bad metal state the system has spectral weight at the Fermi energy but the
quasiparticles have very short lifetimes or, equivalently, very large scattering rates that lead
to a resistivity in excess of the Ioffe-Regel limit. In other words the mean-free path becomes
shorter than the lattice spacing. This feature is often observed in strongly correlated systems
including the metallic phase of the vanadates that we mentioned before and the high-Tc cuprate
superconductors.

By a continuity argument one should also expect that the coexistence region of solutions must
extend into the non p-h symmetric case for µ 6= U/2. This feature has been investigated in [39]
where the main consequence was the finding of a divergence in the electronic compressibil-
ity. This electronic anomaly can be considered as a precursor for charge density waves, phase
separation, and lattice structural changes [40].
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Fig. 13: Phase diagram of the 2-orbital degenerate band Hubbard model. See Fig. 2 for com-
parison. From [43].

3.5.2 Mott-Hubbard transition in the presence of long-range order

So far we have been mostly concerned with the paramagnetic state. In Sec. 2.5 we described
how DMFT can be extended to consider phases with LRO, such as Néel antiferromagnetism.
In fact, the lowest energy solution of the Hubbard model at half-filling and T = 0 in bipartite
lattices, such as Bethe or the hyper-cubic, is an antiferromagnetic insulator (AFI). This state is
the most stable below an ordering temperature TN , which depends on the value of U. At small
U the AFI state can be considered as a Slater AF, with a TN and a gap ∆ that are both small,
and grow exponentially with U. This state is rather well captured by Hartree-Fock MFT. In
contrast, at high values of U, the electrons are Mott localized and the AFI should be considered
as a Heisenberg AF where the ordering follows from the super-exchange interaction J = 4t2/U.
In this case, the gap is large and ∼ U , while the TN ∼ J, so it decreases with increasing U.
This situation is realized in high-Tc superconductors, which have a large gap ∼ eV and a TN
one or two orders of magnitude smaller.

An interesting issue is to explore the behavior of the model when one dopes away from the
half-filled AF Mott insulator. Despite a significant amount of work done in DMFT, there are
few studies that consider this question in the Hubbard model and the detailed evolution remains
rather poorly known [38]. From those studies the physical picture that emerges is that of a
heavy-mass renormalized quasiparticle band at low frequencies, which is split in two due to
the effective doubling of the lattice periodicity. These coherent bands are flanked by Hubbard
bands, which are separated by an energy ∼ U and have different spectral intensities for the up
and down spin projections. Interestingly, these features are qualitatively similar to those ob-
tained in solutions of Cluster DMFT calculations, which unlike “standard” DMFT incorporate
spatial spin fluctuations [41, 42].
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Fig. 14: Schematic representation of the embedding of a dimer (cluster) in the DHM. This
model can be considered the simplest instance of CDMFT.

3.5.3 Multi-orbital models

DMFT can be naturally extended to consider atomic sites with multiple orbitals that lead to
multiple bands. This was initially done for the simplest case of two orbitals with identical
hopping amplitudes that leads to two degenerate bands [43]. In Fig. 13 we show the phase
diagram in the U -n plane. The interesting feature is that for an N -orbital Hubbard model, Mott
transitions are found for fractional dopings n/2N with n = 1, ..., 2N−1, which extends the
notion of half-filling to the multi-orbital case. The intuitive way to think about this is that Mott
states are found when there is an integer filling of electrons at a lattice site. The energy to add
an extra electron to the lattice, would be the Coulomb charging energy ∼ U . Interestingly, the
correlated metal and insulator states are qualitatively similar to those at half-filling, presenting
Hubbard bands and heavy quasiparticle bands. Moreover, Mott transitions also have regions of
coexistence and therefore the MITs have first order character.
One novelty that the multi-orbital models incorporate is the Hund interaction. This is respon-
sible for the FM alignment of electrons occupying the same atomic site, creating large local
magnetic moments as in the colossal magnetoresistive manganites [2]. The large magnetic
moment is more difficult to screen, leading to a decrease of the Kondo temperature of the asso-
ciated impurity model. This has as a consequence the emergence of correlated metallic states
with low coherence temperatures and bad metallic features [44, 45]. These systems are known
as Hund’s metals and their study is relevant for correlated materials like the iron based super-
conductors [46].

3.5.4 Cluster DMFT

Since DMFT is exact in the limit of∞-d, where the lattice problem is mapped to a single impu-
rity by taking one site and embedding it in a self-consistent environment, a natural extension is
to consider the embedding of a small portion of the lattice, or a cluster. Such approaches go by
the name of cluster-DMFT (CDMFT) [47] and dynamical cluster approximation (DCA) [48].
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In the first case one defines a cluster of atoms in real space and embeds it in an effective self-
consistent medium, pretty much as we have described before (Sec. 2.2). This is schematically
illustrated for the case of a lattice of dimers in Fig. 14. The dimer Hubbard model (DHM)
can be exactly solved within CDMFT method [49,33], and has recently been considered for the
interpretation of experiments in VO2. However, when applied to general lattices there are certain
technical difficulties to restore translational invariance and different approximate schemes have
been proposed.
The DCA method is formulated in reciprocal space. It is based on computing a coarse grained
self-energy of a finite cluster, i.e., in a space of discrete momentum K, which is then used to
obtain estimates of the actual infinite-lattice self-energy (where the momentum k is continu-
ous). Thus the method is fully formulated in momentum space, including the generalization
of G0(iωn) to a G0(K, iωn). So the issue of restoring translational invariance does not emerge.
However, there is a price to pay, which is the discontinuity of the self-energy that is defined of
coarse-grain “patches” of the BZ.
Both extensions of DMFT enable the exploration of momentum dependence. One of the main
results that these approaches provided is the notion of momentum-space differentiation. Namely,
the possibility that a Mott gap may open only in certain regions of the Fermi surface. This pro-
vides an interpretation to the intriguing observation of “Fermi arcs” in the cuprates [50].

3.5.5 Realistic DMFT or LDA+DMFT

DMFT has also been extended to incorporate real material-specific information. This methodol-
ogy goes by the names of DFT+DMFT, LDA+DMFT, or Realistic-DMFT [47]. Schematically,
the approach retains the same mapping onto an QIP and its self-consistent solution, but the
material-specific electronic structure dispersion replaces the εk in the k-summations, Eq. (13).
Since LDA solution to the DFT equations is a self-consistent method itself, this opens the door
to a variety of possible schemes. We shall not dwell further on this topic since there is the
dedicated lecture by E. Pavarini.

3.5.6 Out-of-equilibrium Mott transition

An exciting new frontier is the investigation of the correlated systems driven away from equi-
librium conditions. This is relevant for recently developed experimental techniques such as
“pump-probe” spectroscopies that give access to the time-resolved evolution of a strongly in-
teracting quantum material. Particularly interesting to us is the possibility of driving a Mott
insulator out of equilibrium, which has been considered in a variety of experimental studies.
Here we cite some particularly interesting ones related to vanadates [51, 52] that indicate that a
sharp insulator-metal transition (IMT) can be induced by strong enough light irradiation. Par-
ticularly interesting is that these experiments seem to have provided strong evidence of the
meta-stable states (i.e. the state coexistence) that has been predicted by DMFT studies of the
Hubbard and dimer Hubbard models. The latter case is particularly interesting is where a pho-
toemission study of the Mott insulator VO2 was conducted [53]. The main observations where
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Fig. 15: Top: Photoemission spectra of the VO2 insulator “before and after” the pump pulse.
Bottom: Difference between after- and before-pump spectra showing the transfer of spectral in-
tensity across the pump-driven Mott transition. Mid-top: Occupied part (ω < 0) of the DOS(ω)
of the insulator (blue) and metal (red) coexistent solutions of the DHM. Mid-bottom: Difference
between the model DOS(ω). Bottom: Detail of experimental photoemission difference data.

the existence of a sharp light-fluence threshold for the IMT, that the resulting metallic state was
very long lived (> 10 ps) and that the photoemission spectrum was different from the high-T
metallic state. We found that this intriguing metallic state could be the realization of a mono-
clinic metal in VO2, which emerges from a DMFT study of the Mott insulating state of a dimer
Hubbard model [33, 21, 34]. In Fig. 15 we show the experimental variation of the spectrum
across the IMT along with the results from the theoretical study [54]
The time-resolved behavior across the Mott-Hubbard transition can be studied by extending
the DMFT approach to the out-of-equilibrium situation by adopting the Kadanoff-Baym and
Keldysh GFs formalism. These extension of DMFT received a great deal of attention in recent
years [55,30]. Despite significant progress and new insights the detailed solution of the problem
in the coupling regime where there are coexistent solutions still remains a challenge. We shall
not devote much more here and point to the lecture on this topic by J. Freericks.

3.5.7 Mottronics for Artificial Intelligence

One of the latest and perhaps most original and exciting developments regarding the Mott tran-
sition is the possibility of using the Mott insulators to fabricate artificial electronic neurons for
spiking neural networks [28]. This is particularly timely given the current explosion and inter-
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est in artificial intelligence (AI). The algorithms of AI are often based on neural networks (NN)
such as the classic Hoppfield model, popular in the 70’s, to the more modern convolutional NN.
In general, NN have two types of units, a non-linear input-output device, the neuron, and devices
that interconnects the neurons and modulate the intensity of their coupling, the synapses. Mod-
els of NN can be implemented in software or in hardware. In the first case, a notable example
is the AlphaGo code that has defeated the world champion of Go [56]. However, running this
algorithm requires a powerful supercomputer that consumes several kW. In the second case,
powerful chips are built using state-of-the-art electronics that can implement a million neurons,
such as TrueNorth [57]. They are energetically efficient but their main limitation is that they re-
quire almost 1010 transistors to implement a million neurons (synapses require relatively fewer
transistors than neurons). While this accomplishment is remarkable, these chips are still several
orders of magnitude below the 109 neurons in a cat’s brain. This situation opens the way for a
disruptive technology, which may implement artificial neurons using far fewer components.
Recently, we have shown that a Mott insulator may accomplish this task [58, 29]. The key
finding was that Mott insulators under electric pulsing realize a neuromorphic functionality,
which consists in behaving analogously to the leaky-integrate-and-fire (LIF) model of spiking
neurons [59]. The LIF model is a classic and basic model of biological neurons. It describes
the integration of electric input that arrives at a neuron through its dendrites, the leakage during
the time in-between arriving input spikes, and the fire of an action potential when the integrated
input reaches a threshold. A Mott insulator under electric pulsing may behave similarly. The
key feature is that in narrow gap Mott insulators, such as GaTa4Se8 [60] or V2O3, when a strong
voltage is applied, creating a field of the order of kV/cm, a collapse of the resistance is observed
after a certain delay time τd ∼ tens of µs [61]. Let us now consider applying instead of a
constant voltage a train of pulses, where the duration of each pulse τp is smaller than τd. It
is easy to understand that if the time between the pulses τw is very long, then each pulse is
an independent perturbation that will not produce the resistive collapse of the Mott state. On
the other extreme, if τw goes to zero, then the pulses will simply accumulate and produce the
collapse after nsw pulses, where nminsw = τd/τp. Thus, nsw is a function of τw that increases from
nminsw to ∞. This behavior was originally predicted by a phenomenological model of resistive
breakdown in Mott insulators and experimentally observed [61], as illustrated in Fig. 16.
The phenomenological model consisted of a resistor network, where the key assumption for the
resistive units was the existence of two resistive states. One more stable with high resistance
and a metastable one with low resistance. This assumption was motivated by the coexistence of
solutions of the DMFT studies of Hubbard models that we described in this lecture. Interest-
ingly, the equations that describe the resistor network model can be shown to be analogous to
that of the LIF model of neurons [29], where the role of spikes is played by the applied pulses.
The “firing” of an action potential corresponds to the current spike through the Mott insulator
as its resistance collapses.
Interestingly, following a different line of work a group at Hewlett-Packard has proposed an
implementation of another classic biological neuron model, the Hodking-Huxley model [59],
using NbO2, which is also a Mott insulator material [62].
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Fig. 16: Top: Collapse of the Mott insulator state in GaTa4Se8 observed after 5 pulses by the
collapse of the resistance (i.e., the voltage drop on the sample). Middle: Resistor network model
simulation that qualitatively captures the behavior of the Mott insulator under strong electric
pulsing. Bottom: Systematic behavior of nsw as a function of the time between pulses τw (left is
experimental data and right model simulations). From [61].

Thus the neuromorphic functionalities of Mott insulators, owing to the unique non-linear be-
havior of their I-V characteristics, are emerging as a new and exciting road towards bringing
Mott materials to the realm of future electronics — or rather Mottronics.

4 Hands-on exercise (with IPT code):
The Mott-Hubbard transition

Many of the plots in this lecture illustrating the Mott-Hubbard transition were obtained by
solving the DMFT equations using an impurity solver based on iterative perturbation theory
(Sect. 2.4) [35, 31]. This approximate method has the advantage of being simple and providing
qualitatively good solutions across the transition. The interested reader is invited to download
the IPT codes and go through the proposed exercises that serve as a guide for a hands-on explo-
ration of the Mott-Hubbard metal-insulator transition in DMFT. Codes are available for free at
http://mycore.core-cloud.net/index.php/s/oAz0lIWuBM90Gqt.

http://mycore.core-cloud.net/index.php/s/oAz0lIWuBM90Gqt
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https://tel.archives-ouvertes.fr/tel-01690699

[55] J.K. Freericks, V.M. Turkowski, and V. Zlatić, Phys. Rev. Lett. 97, 266408 (2006)

[56] D. Silver et al., Nature 529, 484 (2016)

[57] P.A. Merolla et al., Science 345, 668 (2014)

[58] US Patent 15307269: Single-component artificial neuron based on Mott insulators, net-
work of artificial neurons and corresponding manufacturing method, Inventors: L. Cario,
B. Corraze, P. Stoliar, V. Tranchant, E. Janod, M.-P. Belsand, and M.J. Rozenberg

[59] D.W. Gerstner, W.M. Kistler, R. Naud, and L. Paninksi: Neuronal Dynamics: From Single
Neurons to Networks and Models of Cognition (Cambridge University Press, 2014)

[60] A. Camjayi et al., Phys. Rev. Lett. 113, 086404 (2014)

[61] P. Stoliar et al., Adv. Mater. 25, 3222 (2013)

[62] M.D. Pickett et al., Nat. Mater. 12, 114 (2013)

http://www.cond-mat.de/events/correl17
https://tel.archives-ouvertes.fr/tel-01690699


11 Dynamical Mean-Field Theory for Materials

Eva Pavarini
Institute for Advanced Simulation
Forschungszentrum Jülich
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1 Introduction

In 1965, when the two founding papers [1] of density-functional theory (DFT) had just been
published in the Physical Review, very few could recognize the revolution in the making. Ef-
ficient techniques for materials science applications were missing and computers were not that
powerful. And yet in 50 years, thanks to remarkable ideas, novel algorithms and steady ad-
vance in computational power, brilliant minds brought DFT to its present splendor, making it
the standard model of condensed matter physics. In 1998, in his Nobel lecture [2], Walter Kohn,
described the most important contributions of DFT to science with these words

The first is in the area of fundamental understanding. Theoretical chemists and
physicists, following the path of the Schrödinger equation, have become accus-
tomed to think in a truncated Hilbert space of single particle orbitals. The spec-
tacular advances achieved in this way attest to the fruitfulness of this perspective.
However, when very high accuracy is required, so many Slater determinants are
required (in some calculations up to∼ 109!) that comprehension becomes difficult.

DFT changed the focus from the N -electron ground-state wavefunction Ψ(r1, . . . rN) to a
three-dimensional variable, the electronic ground-state density n(r), or other directly measur-
able quantities, such as response functions. These, within a given approximation of the DFT
exchange-correlation functional, could be calculated from first principles, i.e., using as input the
type of atoms involved and, at most, their positions. In practice, n(r) is obtained by mapping
the actual many-body problem onto an auxiliary single-electron Hamiltonian with the same
ground-state electron density, the Kohn-Sham Hamiltonian. The associated Kohn-Sham eigen-
values are thus in principle merely Lagrange multipliers. Remarkably, however, the big success
of DFT came, in part, from bold applications of the theory beyond its actual realm of validity.
To general surprise, the Kohn-Sham eigenvalues turned out to be in many cases excellent ap-
proximations to the actual elementary excitations of a given material. Early on it became clear,
however, that this Ansatz fails qualitatively for a whole category of systems, those in which
local Coulomb repulsion effects are large, also known as strongly-correlated materials. Para-
doxically, simple models describing generic features of the microscopic mechanism are much
more effective than DFT-based material-specific calculations in describing strong-correlation
phenomena. This happens, e.g., for the Kondo effect, heavy-fermion behavior, or the metal-
insulator transition. Thus criticisms arose. Particularly outspoken in this contest was another
Nobel laureate, P.W. Anderson, who emphasized the emergent nature of a true many-body phe-
nomenon [3]. Emergent states typically elude a simple mapping to an effective non-interacting
system. For a while, two apparently not compatible philosophies thus coexisted. The first-
principles school identified in the material dependence the essential ingredient for understand-
ing the real world, and tried to correct the failures of the practical implementations of DFT by
corrections, often ad hoc, of the exchange-correlation potential. Instead, the many-body mod-
els school identified canonical models which explain specific emergent phenomena, dismissing
the materials dependence as non-relevant, non-generic detail. Only in recent years these two
world-views started to merge, and it became apparent that both sides were right and wrong at
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the same time. While the local Coulomb repulsion is indeed key, materials aspects turn out to be
essential for understanding real correlated materials. In hindsight, we can now put this debate
in a different perspective. The electronic many-body problem, in the non-relativistic limit and
in the Born-Oppenheimer approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri −Rα|

+
∑

i>j

1

|ri − rj|
+
∑

α>α′

ZαZα′

|Rα −Rα′ |
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {φa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

.

Here the hopping integrals are given by

tab = −
∫
dr φa(r)

(
−1

2
∇2−

∑

α

Zα
|r −Rα|

︸ ︷︷ ︸
ven(r)

)
φb(r),

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 φa(r1)φa′(r2)

1

|r1 − r2|
φb′(r2)φb(r1).

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals, {φKS

a (r)}, obtained, e.g., in the local
density approximation (LDA) or its simple extensions.1 In this case, it is useful to replace the
electron-nuclei interaction ven(r) with the DFT potential vR(r), which includes in addition the
Hartree term vH(r) and the (approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r − r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

so that

t̃ab = −
∫
dr φKS

a (r)
(
−1

2
∇2 + vR(r)

)
φKS
b (r). (2)

To avoid double counting (DC), we have however to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

.

1For the purpose of many-body calculations the differences between LDA, GGA or their simple extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.
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For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian, however. A model of form ĤLDA

e does not describe correctly the Mott
metal-insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus
for strongly-correlated systems the low-energy effective model must have a different form. For
Mott systems a canonical Hamiltonian is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (3)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This
Hamiltonian captures the essence of the Mott transition. At half filling, for U = 0 it describes a
paramagnetic metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortu-
nately, differently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved ex-
actly in the general case. Remarkably, till 30 years ago, no method for describing the complete
phase diagram of (3) in one coherent framework, including the paramagnetic insulating phase,
was actually known. This changed between 1989 and 1992, when the dynamical mean-field
theory (DMFT) was developed [4–7]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [4, 5].
DMFT was initially applied to simple cases, due to limitations in model building, computational
power and numerical methods for solving the auxiliary impurity problem (the quantum impurity
solvers). In the last twenty years remarkable progress lifted many of these limitations. First, re-
liable schemes to build realistic low-energy materials-specific Hubbard-like models have been
devised, in particular using Kohn-Sham localized Wannier functions. This is remarkable, given
that we do not know the exact operator Ŝ which gives the effective low-energy Hamiltonian,
and thus a truly systematic derivation is not possible. Second, key advances in quantum impu-
rity solvers and increasingly more powerful supercomputers made it possible to study always
more complex many-body Hamiltonians. The approach which emerged, consisting in solving
within DMFT materials-specific many-body Hamiltonian constructed via LDA, is known as the
LDA+DMFT method [8–10]. This technique (and its extensions) is now the state-of-the-art for
describing strongly-correlated materials. In this lecture I will outline the basic ideas on which
the method is based, its successes and its limitations.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

In this section we introduce the basics of DMFT. We start from a case for which we can perform
analytic calculations, the two-site Hubbard Hamiltonian. This is a toy model, useful to illus-
trate how the method works, but for which, as we will see, DMFT is not a good approximation.
Indeed, the Hubbard dimer is the worst case for DMFT, since the coordination number is the
lowest possible. Next we extend the formalism to the one-band and then to the multi-orbital
Hubbard Hamiltonian. For three-dimensional lattices the coordination number is typically large
and thus DMFT is an excellent approximation. In Sec. 3 we describe modern schemes to con-
struct materials-specific many-body models. They are based on Kohn-Sham Wannier orbitals,
calculated, e.g, using the LDA functional. The solution of such models via DMFT defines the
LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓,

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (4)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U ,

and

∆(t, U) =
√
U2 + 16t2.

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
.

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

1

4

(
1 + w(t, U)

iνn − (E0(2)− εd+t−µ)
+

1− w(t, U)

iνn −
(
E0(2)− εd−t−µ

)

+
1− w(t, U)

iνn −
(
− E0(2) + U+3εd+t−µ

) +
1 + w(t, U)

iνn −
(
− E0(2) + U+3εd−t−µ

)
)
,

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.1.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies, µ = εd + U/2 is the chemical
potential, and the weight is w(t, U) = 2a1(t, U)a2(t, U). The local Green function can be
rewritten as the average of the Green function for the bonding (k = 0) and the anti-bonding
state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0, iνn)︸ ︷︷ ︸
Gσ(0,iνn)

+
1

iνn + µ− εd − t−Σσ(π, iνn)︸ ︷︷ ︸
Gσ(π,iνn)

)
.

The self-energy is given by

Σσ(k, iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
− eik 3t

.

The self-energies Σσ(0, iνn) and Σσ(π, iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π, iνn) +Σσ(0, iνn)

)
=
U

2
+
U2

4

iνn + µ− εd − U
2

(iνn + µ− εd − U
2

)2 − (3t)2
.

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π, iνn)−Σσ(0, iνn)

)
=
U2

4

3t

(iνn + µ− εd − U
2

)2 − (3t)2
,

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

which for U = 0 becomes

F σ
0 (iνn) =

t2

iνn
.

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (5)

It is important to point out that, as one may see from the formulas above, the local Green
function and the local self-energy satisfy the following local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

,

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
.
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Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓. (6)

The first constraint would be that Hamiltonian (6) has a ground state with the same occupations
of the 2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition
is satisfied if εs = µ = εd + U/2. This can be understood by comparing the Hamiltonian
matrices of the two models in the Hilbert space with N = 2 electrons. To this end, we first
order the two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




.

The ground state, the singlet given in Eq. (4), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




.

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two doubly occupied states |5〉 and |6〉 have
different energies and thus the two sites i = 1, 2 are differently occupied in the ground state.
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By setting εs = µ we find that ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). The N = 2 ground state of

ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉,

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states.4 The
impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

)
,

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
,

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
.

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

.

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

.

The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
.

For U = 0, Gσ
d,d(iνn) equals the non-interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
.

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.2.
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Fig. 1: Green functions of the Hubbard dimer (t = 1, U = 4) and the Anderson molecule
(εs = εd+U/2) in the zero temperature limit. Left panels, blue: Hubbard dimer with local self-
energy only, i.e., with ∆Σσ

l (ω) = 0. Left panels, orange: Anderson molecule. Right panels:
Exact Green function of the Hubbard dimer. Dashed lines: Poles of the Green function of the
Anderson molecule (left) or Hubbard dimer (right).

In Fig. 1 we show the impurity Green function of the Anderson molecule (orange, left panels)
and the local Green function of the 2-site Hubbard model, in the local self-energy approximation
(blue, left panels) and exact (blue, right panels). Comparing left and right panels we can see
that setting ∆Σσ

l (ω) = 0 yields large errors. The left panels demonstrate, however, that the
spectral function of the Anderson molecule is quite similar to the one of the Hubbard dimer
with ∆Σσ

l (ω) = 0. The small remaining deviations come from the fact that, for the Hubbard
dimer, in the impurity Dyson equation, the non-interacting impurity Green function is replaced
by Gσ

i,i(iνn) in the local self-energy approximation, i.e., with the bath Green function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
,

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

.
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We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (6) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.

3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn − εa
+

1

iνn + εa

)

where p2 = U2/8ε2
a and εa =

√
9t2 + U2/4. If we use the Anderson molecule as quantum-

impurity model we neglect ∆Fl(iνn); the error made is small, as shown in the left panels of
Fig. 1. To further improve we would have to modify the auxiliary model adding more bath
sites. Remaining with the Anderson molecule, let us compare in more detail its spectral func-
tion with the exact spectral function of the Hubbard dimer. Fig. 2 shows that the evolution as a
function of U is different for the two Hamiltonians. Anticipating the discussion of later sections,
if we compare to the spectral function of the actual lattice Hubbard model, we could say that the
Anderson molecule partially captures the behavior of the central “quasi-particle” or “Kondo”
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Fig. 2: Imaginary part of the Green function of the Anderson molecule (orange) and Hubbard
dimer (blue) in the zero temperature limit. For the Hubbard dimer the exact Green functions
are used, as in the right panels of Fig. 1. Parameters: t = 1, εs = µ. Top: U = 0 (left) and
U = 4t (right). Bottom: Evolution with increasing U from 0 to 4t in equal steps.

peak with increasing U , although the Kondo effect itself is unrealistically described; as a matter
of fact, the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case
of the Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic
bath. On the other hand, the Hubbard dimer captures well the Hubbard bands and the gap in the
large-U limit. The example of the Anderson molecule also points to the possible shortcomings
of DMFT calculations for the lattice Hubbard model (3) in which the quantum-impurity model
is solved via exact diagonalization, however using a single bath site or very few; this might
perhaps be sufficient in the limit of large gap,5 but is bound to eventually fail approaching the
metallic regime. Indeed, this failure is one of the reasons why the solution of the Kondo prob-
lem required the development of—at the time new—non-perturbative techniques such as the
numerical renormalization group. Finally, the example of the Hubbard dimer shows that DMFT
is not a good approximation for molecular complexes with two (or few) correlated sites. This
is because in such systems the coordination number is the lowest possible, the worst case for
dynamical mean-field theory. In three dimensional crystals, instead, the coordination number is
typically large enough to make DMFT an excellent approximation.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [11].
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2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V − 2JV − JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
,

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd + V −3JV 0 0 0 0 0

0 2εd + V −3JV 0 0 0 0

0 0 2εd + V −3JV 0 0 0

0 0 0 2εd + V −JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd +U −JV
0 0 0 −

√
2t −JV 2εd +U




.

Since JV > 0, the effect of JV is to lower the energy of triplet states with respect singlet states.
This might change the nature of the ground state. If, however, JV is sufficiently small, the
ground state remains a singlet. Setting for simplicity JV = 0, we can notice that ĤNL

2 equals
Ĥ2(ε′d, U

′, t), the corresponding N= 2-electron Hamiltonian of the JV =V= 0 Hubbard dimer,
with parameters ε′d = εd + V/2 and U ′=U−V . The N= 2 ground state is thus still given
by Eq. (4), provided, however, that we replace U with U ′ in the coefficients. Eventually, in
the limit case U=V , ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer. What happens away from half filling? For N= 1 electrons, eigenvectors and eigenvalues
are the same as in the V= 0 case; for N= 3 electrons all energies are shifted by 2V . This leads
to further differences in the local Green function with respect to the V=0 case—in addition
to those arising from replacing U with U ′; to some extent, these additional changes can be
interpreted as a hopping enhancement from t to t + V/2. Putting all these results together, we
could thus say that, in first approximation, the (positive) intersite coupling V effectively reduces
the strength of correlations.
In conclusion, strong-correlation effects typically appear when the local term of the electron-
electron repulsion dominates, i.e., when it is much larger than long-range terms. Instead, a
hypothetical system in which the Coulomb interaction strength is independent on the distance
between sites (here U=V ) is likely to be already well described via an effective weakly corre-
lated model. Of course, in real materials, the effects of long-range Coulomb repulsion can be
much more complicated than in the two-site model just discussed, but the general considerations
made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum impurity
solver and the one that provides most insights. Methods based on quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site mod-
els. Here we explain how to obtain the impurity Green function of the Anderson molecule via
strong-coupling continuous-time QMC [12], a very successful QMC-based quantum impurity
solver. In this approach, the first step consists in splitting the Hamiltonian into bath (Ĥbath),
hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

.

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂)e−β(Ĥ0+Ĥhyb−µN̂) =
∑

m

∫ β

0

dτ1· · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

,

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂)Ĥhybe
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
.

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of d (and s) creator-annihilator couples. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ )

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
.

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity destructors
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫ k

dτ

∫ k

dτ̄
∑

σ,σ̄

dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ )

dkσ̄,σ(τ , τ̄ ) = (t)2k Trbath

(
e−β(Ĥbath−µN̂s)T Π1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)
/Zbath

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T Π1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
,

where

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem, for which Wick theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
F k
σ̄,σ(τ , τ̄ )

)

of the k × k hybridization-function matrix, with elements
(
F k
σ̄,σ(τ , τ̄ )

)
i′,i

= Fσ̄i′ ,σi(τ̄i′ − τi)

and

Fσ̄,σ(τ̄ − τ) = δσ̄,σ
t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0

This is the imaginary time Fourier transform of the hybridization function introduced previously

Fσ̄,σ(iνn) =
t2

iνn − (εs − µ)
δσ̄,σ.

The calculation of the local trace is in general more complicated. In the case discussed here, the
local Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫ kσ

dτσ

∫ kσ

dτ̄σ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ )

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
.

The latter can be calculated analytically. To do this, first we parametrize all configurations for
a given spin via a timeline [0, β) plus a number of creator/annihilator couples which define
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β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1
k=2

!1 !2 !2

!2 !1

!1

Fig. 3: Representative configurations contributing to the local trace at zero, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of a
destructor (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

segments on the timeline. At zero order two possible configurations exist per spin, an empty
timeline, which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to
the state c†dσ|0〉. A given configuration yields at order k

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′

where lσ,σ′ is the length of the overlap of the τ segments for spin σ and σ′, while sσ = sign(τσ1−
τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are shown in Fig. 3. Next,
the partition function is represented as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc.

In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
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shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc|sign wc∑
c |wc|sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô〉csign wc

1
Nc

∑
c sign wc

.

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is in practice impossible—in these cases we have
a sign problem. In practice, the QMC simulation starts from a random configuration c. Next we
propose an update c→ c′. Within the Metropolis algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′|
|wc|

)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 3), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and a
destructor. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is. Hence

pc→c′ =
dτ̄

β

dτ

lmax

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ + 1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
.

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j − τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσσj,σδσ̄σi,σ

where Mk =
(
F k
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′ + β)) τ ′ < 0
.
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2.4 Hartree-Fock versus DMFT approximation

Let us now compare the exact solution of the Hubbard dimer with the result of the Hartree-Fock
(HF) approximation, which consists in replacing

ĤU = U
∑

i

n̂i↑n̂i↓ → ĤHF
U = U

∑

i

(
n̂i↑n̄i↓ + n̂i↓n̄i↑ − n̄i↑n̄i↓

)
, (7)

where n̄iσ is the HF expectation value of the operator n̂iσ. It is convenient to define

ni = n̄i↑ + n̄i↓ n =
1

2
(n1 + n2) δn =

1

2
(n1 − n2)

mi =
1

2
(n̄i↑ − n̄i↓) m+ =

1

2
(m1 +m2) m− =

1

2
(m1 −m2)

Inverting these relations, in the absence of charge disproportionation (δn = 0), we find

n̄i↑ = (m+ + (−1)i−1m−) + n/2 n̄i↓ = −(m+ + (−1)i−1m−) + n/2

The Hartree-Fock version of the Hubbard dimer Hamiltonian equals the non-interacting Hamil-
tonian plus a shift of the on-site level. This shift depends on the site and the spin

ĤHF =
∑

iσ

(
εd +∆iσ

)
n̂iσ − t

∑

σ

(
c†1σc2σ + c†2σc1σ

)
−∆0

∆0 = 2U

(
n2

4
−m2

+ −m2
−

)

∆iσ = U

(
1

2
n− σ

(
m+ + (−1)i−1m−

))
,

where σ = +1 for spin up and σ = −1 for spin down. Thus we can write immediately the local
Green function matrix for site i. It is convenient to use the site basis, hence, to calculate the
matrix Gσ

i,i′(iνn). Then we have

Gσ
i,i(iνn) =

(
iνn −

(
εd − µ+Σσ

1,1(iνn)
)

t

t iνn −
(
εd − µ+Σσ

2,2(iνn)
)
)−1

i,i

where we introduced the diagonal self-energy matrix

Σσ
i,i′(iνn) = ∆iσ δi,i′ .

This shows that the self-energy is not dependent on the frequency, i.e., Hartree-Fock is a static
mean-field approach. The value of the parameters m+ and m− have to be found solving the
self-consistent equations

n̄iσ = 〈n̂iσ〉 =
1

β

∑

n

e−iνn0−Gσ
i,i(iνn) = Gσ

i,i(0
−). (8)
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Since the exact ground state of the Hubbard dimer is a singlet, let us consider first the anti-
ferromagnetic Hartree Fock solution (m+=0 and m− 6=0). In this case, the Hartree-Fock self-
energy depends on the site and the interaction couples k states. This becomes clear rewriting
the Green-function matrix in the basis of the bonding (k = 0) and anti-bonding (k = π) cre-
ation/annihilation operators

Gσ(iνn) =
1

2

(
iνn −

(
εd − t− µ+ 1

2

∑
iΣiσ(iνn)

)
1
2

∑
i(−1)i−1Σiσ(iνn)

1
2

∑
i(−1)i−1Σiσ(iνn) iνn −

(
εd + t− µ+ 1

2

∑
iΣiσ(iνn)

)
)−1

.

The diagonal terms are identical, hence

Σσ
0,0(iνn) = Σσ

π,π(iνn) =
1

2

(
Σσ

1,1(iνn) +Σσ
2,2(iνn)

)
.

The off-diagonal terms Σσ
0,π(iνn) and Σσ

π,0(iνn) are not zero, however. This tells us that, by
introducing the antiferromagnetic HF correction, we lower the symmetry of the system. Let
us now calculate explicitly the eigenstates for different fillings. It is sufficient to diagonalize
Ĥ1, the Hamiltonian in the 1-electron sector; the many-electron states can be obtained by filling
the one-electron states respecting the Pauli principle. The Hamiltonian Ĥ1 can be written as
Ĥ1 = Ĥ ′1 + εdN̂ −∆0, and, in the antiferromagnetic case we then have

Ĥ ′1 =




U(1
2
n−m−) −t 0 0

−t U(1
2
n+m−) 0 0

0 0 U(1
2
n+m−) −t

0 0 −t U(1
2
n−m−)



.

This leads to the (normalized) states

|1〉l El(1)

|1〉3 = a2|1, 1/2, ↑〉1 − a1|1, 1/2, ↑〉2 ε0(1) +∆1(t, U)

|1〉2 = a1|1, 1/2, ↓〉1 − a2|1, 1/2, ↓〉2 ε0(1) +∆1(t, U)

|1〉1 = a1|1, 1/2, ↑〉1 + a2|1, 1/2, ↑〉2 ε0(1)−∆1(t, U)

|1〉0 = a2|1, 1/2, ↓〉1 + a1|1, 1/2, ↓〉2 ε0(1)−∆1(t, U)

where ε0(1) = εd + U(1/2 + 2m2
− − n2/2) and a2

1 = 1
2

(
1 + Um−

∆1(t,U)

)
, while ∆1(t, U) =

√
(m−U)2 + t2. At half filling, if we assume that only the ground doublet is occupied, solving

the self-consistent equations (8) yields

m− = 0 or m− =
1

2

√
1− 4t2

U2
.
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Fig. 4: Local Green function Gσ(ω) of the Hubbard dimer (t = 1, U = 4) at half filling and
in the zero temperature limit. Left: Antiferromagnetic Hartree-Fock (HF) approximation; green
and violet distinguish G↑(ω) and G↓(ω) at a given site. Right: Exact local Green function, for
which G↑(ω) = G↓(ω). Dashed lines: Poles of the exact local Green function.

As a result, for the non-trivial solution (m− 6=0), the gap at half filling is EHF
g = 2∆1(t, U) = U.

In Fig. 4, Hartree-Fock and exact spectral function are compared for a specific parameters
choice. Looking at the size of the gap only, one could naively infer that, for the case shown,
Hartree-Fock is an excellent approximation, better than DMFT (see Fig. 2 top-right panel). This
would be, however, the wrong conclusion. Although, due to the small coordination number, in
this specific case, DMFT indeed sizably underestimates the gap, it nevertheless captures the
essential nature of the ground state. Instead, while HF, in this specific case,6 gives an almost
exact gap, it does it via a qualitatively incorrect description (antiferromagnetic ground state). In-
creasing the coordination number, DMFT approaches the exact solution, while the Hartree-Fock
approximation, which is based on a wrong picture, does not. Let us analyze in more detail the
differences between the Hartree-Fock approximation and the exact solution. The Hartree-Fock
Hamiltonian for two electrons is given by Ĥ2 = Ĥ ′2 + εdN̂ −∆0, and

Ĥ ′2 =




U 0 0 −2Um− 0 0

0 U(1− 2m+) 0 0 0 0

0 0 U(1 + 2m+) 0 0 0

−2Um− 0 0 U −
√

2t −
√

2t

0 0 0 −
√

2t U 0

0 0 0 −
√

2t 0 U




6The Hartree-Fock approximation often overestimates the size of the gap, however.
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For m+=0 and m− 6= 0 (antiferromagnetic solution) the eigenvalues and eigenvectors are

|2〉l El(2)

|2〉5 = 1√
2

(
|2, 0, 0〉0 + a2|2, 1, 0〉 − a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2) + 2∆1(t, U)

|2〉4 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε0(2)

|2〉3 = |2, 1, 1〉 ε0(2)

|2〉2 = |2, 1,−1〉 ε0(2)

|2〉1 = a1|2, 1, 0〉+ a2
1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
ε0(2)

|2〉0 = 1√
2

(
|2, 0, 0〉0 − a2|2, 1, 0〉+ a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2)− 2∆1(t, U)

where ε0(2) = 2εd + U(1 + 2m2
− − n2/2), and a2

1 = t2/∆2
1(t, U). The antiferromagnetic

Hartree-Fock ground state has an overlap with the correct ground state, however incorrectly
mixes triplet and singlet states, thus breaking the rotational symmetry of the model. For this
reason, its energy, in the large U limit, is 2εd− 2t2/U and not 2εd− 4t2/U as in the exact case.
For the ferromagnetic solution of the Hartree-Fock equations (m−=0 and m+ 6= 0) the eigen-
values and eigenvectors are instead

|2〉l El(2)

|2〉5 = |2, 1,−1〉 ε+
0 (2) + 2Um+

|2〉4 = 1√
2

(
|2, 0, 0〉0 − 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2) + 2t

|2〉3 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε+

0 (2)

|2〉2 = |2, 1, 0〉 ε+
0 (2)

|2〉1 = 1√
2

(
|2, 0, 0〉0 + 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2)− 2t

|2〉0 = |2, 1, 1〉 ε+
0 (2)− 2Um+

where ε+
0 (2) = 2εd + U(1 + 2m2

+ − n2/2). The ferromagnetic Hartree-Fock correction thus
yields an incorrect sequence of levels; the ground state for large U/t, indicated as |2〉0 in the
table, has no overlap with the exact ground state of the Hubbard dimer. It is, instead, one of the
states of the first excited triplet. An important observation is that, despite the errors, the energy
difference between ferro- and antiferro-magnetic ground state is

EAF − EF ∼ −
2t2

U
,

which is indeed the correct value in the small t/U limit. It does not correspond, however, to the
actual singlet-triplet excitation energy, Γ ∼ 4t2/U .
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We can now directly compare the Hartree-Fock and the dynamical mean-field approximation
for the two-site Hubbard model. Both approaches are based on the solution of self-consistent
mean-field-type equations, and therefore they are both mean-field methods. In Hartree-Fock
the self-energy is frequency-independent (static), while in DMFT depends on the frequency
(dynamical). In Hartree-Fock the self-energy can be site-dependent, as we have seen in the
antiferromagnetic case. In DMFT, allowing for a site-dependent self-energy leads to cluster or
cluster-like extensions of the method. If the same unit cell is used in DMFT and Hartree-Fock,
we can identify another relation between the two methods. In the infinite-frequency limit, the
DMFT self-energy equals the Hartree-Fock self-energy. This can be shown analytically in a
simple way. For the case of the two-site Hubbard model, the expansion of the local lattice
Green function at high frequency in the local-self-energy approximation is

Gσ
i,i(iνn) =

1

iνn
−
(
µ− εd −Σσ

l (∞)
)

(iνn)2
+O

(
1

(iνn)3

)
.

Instead, the expansion of the impurity Green-function can be written as

Gσ
d,d(iνn) =

∫ β

0

dτ eiνnτGσ
d,d(τ)

=
1

iνn

∫ β

0

dτ
deiνnτ

dτ
Gσ
d,d(τ) =

1

iνn

(
−Gσ

d,d(β
−)−Gσ

d,d(0
+)−

∫ β

0

dτ eiνnτ
dGσ

d,d(τ)

dτ

)

=
1

iνn
+

1

(iνn)2

(
dGσ

d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

+

∫ β

0

dτ eiνnτ
d2Gσ

d,d(τ)

dτ 2

)

=
1

iνn
+

dGσd,d(τ)

dτ

∣∣∣∣
β−

+
dGσd,d(τ)

dτ

∣∣∣∣
0+

(iνn)2
+O

(
1

(iνn)3

)

where

dGσ
d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

= −
〈{[

ĤA − µN̂, cdσ
]
, c†dσ

}〉
= −µ+ εd + U〈n̂−σ〉

From this result we can conclude that, assuming self-consistency has been reached,

Σσ
l (∞) = U〈n̂−σ〉.

This is exactly the Hartree-Fock expression of the self-energy that we found earlier, and indeed
equals the infinite-frequency limit of the DMFT self-energy we previously calculated; however,
the occupations 〈n̂−σ〉 in DMFT and Hartree-Fock calculations are typically not the same. In
the case of the dimer, DMFT yields 〈n̂−σ〉 = 1/2; this would correspond in Hartree-Fock to a
trivial solution, in which the self-energy merely shifts all the energy levels by the same amount,
and has therefore no relevant effects.
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2.5 DMFT for the one-band Hubbard model

The Hubbard Hamiltonian (3) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (9)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (9)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

.

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, or QMC. Here
we describe the DMFT self-consistency loop for a QMC quantum-impurity solver. Solving
the quantum-impurity model yields the impurity Green function Gσ

d,d(iνn). From the impurity
Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
.

Next, we adopt the local approximation, i.e., we assume that the self-energy of the Hubbard
model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

,

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn).
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Fig. 5: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking once more at the
effects of self-consistency in a simpler approach, the static mean-field Hartree-Fock method.7

If we chose the same primitive cell as in DMFT, the Hartree-Fock self-energy matrix is

Σσ
i,i′(iνn) = U

(
n

2
− σm

)
δi,i′ ,

where σ = +1 for spin up and σ = −1 for spin down and m = m+ = (n↑ − n↓)/2, with
nσ = niσ. The approximation is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

[
εk + U

(
1

2
− σm

)]
n̂kσ. (10)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF,

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−σm)−µ)

1 + e−β(εk+U( 1
2
−σm)−µ)

.

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (10) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin up
and spin down bands split, and eventually a gap can open. This is shown in Fig. 5. The static
mean-field correction in Eq. (10) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
7Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 6: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [13]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [14].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If mU is larger than the bandwidth, the system can even become an insulator.
In DMFT the role of the Weiss field is played by the bath Green function Gσi,i(iνn). The emerging
picture of the Mott transition is described in Fig. 6 for a representative single-band material. In
the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left panel). For
finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop starts with
A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar to A0(ω).
This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 6. Further increasing U/t,
sizable spectral weight is transferred from the zero-energy quasi-particle peak to the lower (LH)
and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed in the U = 1

panel of Fig. 6. The system is still metallic, but with strongly renormalized masses and short
lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than a critical
value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator. When this
happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+

A

ω + i0+
.

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W , where W is the bandwidth.
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2.6 DMFT for multi-orbital models

The multi-orbital Hubbard-like Hamiltonian has the form

Ĥ = Ĥ0 + ĤU

Ĥ0 = −
∑

ii′

∑

σ

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ,

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this form, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn + µ)→ (iνn + µ)1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 7.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [13]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
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Fig. 7: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

is the rotational invariance of spins, from which follows

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn),

where A = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn) = δσ,σ′ Am′,m(iνn).

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 7.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m(iνn) δm,m′ .
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3 Building materials-specific many-body models

3.1 Model construction

How do we build realistic Hubbard-like models for correlated materials? The state-of-the art
approach relies on constructing, for a given system, materials-specific Kohn-Sham Wannier
functions φKS

imσ(r). These can be obtained via electronic structure calculations based on density-
functional theory [8–10], e.g., in the LDA approximation.8 After we have built the complete
one-electron basis, the first steps in model-building are those already described in the intro-
duction. We recall here the essential points and then discuss the next stage. The many-body
Hamiltonian can be expressed as Ĥ = Ĥ0 + ĤU − ĤDC, with

Ĥ0 = ĤLDA = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′c
†
imσci′m′σ,

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ.

The double-counting correction ĤDC arises from the fact that the hopping integrals are cal-
culated replacing the electron-nuclei interaction ven(r) with the self-consistent DFT reference
potential

vR(r) = ven(r) +

∫
dr′

1

|r − r′|︸ ︷︷ ︸
vH(r)

+vxc(r),

which includes the long-range Hartree term vH(r) and the exchange-correlation contribution
vxc(r). To avoid to count these terms twice, we thus subtract from ĤU the effects already
included in Ĥ0

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are indeed included in Ĥ0 via
vR(r), and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes
of the LDA suggest, however, that in many materials the LDA is overall a good approximation,
and therefore, in those systems at least, the term ∆ĤU can be completely neglected. What
about strongly-correlated materials? Even in correlated systems, most likely the LDA works
rather well for the delocalized electrons or in describing the average or the long-range Coulomb
effects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [8], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for

8Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;
on the other hand, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be
subtracted via the double-counting correction.
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Fig. 8: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [15].

transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.

Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g.,
given by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure,
however. By splitting electrons into correlated and uncorrelated we implicitly assume that
the main effect of the latter is the renormalization or screening of parameters for the former,
in particular of the Coulomb interaction. The computation of screening effects remains, un-
fortunately, a challenge. The calculation of exact screening would require the solution of the
original many-body problem, taking all degrees of freedom into account, an impossible task.
Commonly-used approximate schemes are the constrained LDA approximation (cLDA) and
the constrained random-phase approximation (RPA) [8–10]. Both methods give reasonable es-
timates of screened Coulomb parameters for DMFT calculations. Typically cRPA calculations
include more screening channels and are performed for less localized bases than cLDA calcula-
tions; thus cRPA parameters turn out to be often smaller than cLDA ones. To some extent, the
difference can be taken as an estimate of the error bar. After we have selected the electrons for
which we think is necessary to include explicitly the Hubbard correction, in order to build the
final Hamiltonian for DMFT calculations, it is often convenient to integrate out or downfold,
in part or completely, the weakly correlated states. There are different degrees of downfolding.
The two opposite extreme limits are (i) no downfolding, i.e., keep explicitly in the Hamilto-
nian all weakly-correlated states (ii) massive downfolding, i.e., downfold all weakly correlated
states. If we perform massive downfolding, e.g., downfold to the d (or eg or t2g) bands at the
Fermi level, the Hamiltonian relevant for DMFT takes a simpler form. The LDA part is limited
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to the selected orbitals or bands, which, in the ideal case, are decoupled from the rest

ĤLDA = −
∑

σ

∑

ii′

∑

mαm
′
α

ti,i
′

mα,m
′
α
c†imασ ci′m′ασ.

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.9

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be
necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 8. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.
Considered all advantages and disadvantages, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in general
is that they carry information about the lattice, bonding, chemistry and distortions. This can
be seen once more in Fig. 8, where orbitals are tilted and deformed by the actual structure and
chemistry of the compound. Indeed, one might naively think of using an “universal” basis, for
example atomic functions, the same for all systems, and thus calculating the hopping integrals
using simply the electron-nuclei interaction ven(r). Apart the complications arising from the
lack of orthogonality, such a basis has no built-in materials-specific information, except lattice
positions. It is therefore a worse starting point to describe the electronic structure, even in the
absence of correlations; larger basis sets are required to reach the same accuracy. From the
point of view of LDA+DMFT, an advantage of an universal basis would be that it is free from
double-counting corrections; on the other hand, however, exactly because we do not use the
LDA potential and LDA orbitals to calculate the hopping integrals, we also cannot count on
the successes of LDA in the description of average and long-range Coulomb effects. For these
reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
Nth-Order Muffin-Tin Orbital (NMTO) method [15], the maximal-localization scheme [16] or
projectors. Fig. 8 shows examples of NMTO-based Wannier functions.

9The choice might influence how severe the QMC sign problem is, however.



11.30 Eva Pavarini

3.2 Localization of the basis and range of the Coulomb interaction

No matter what construction procedure is used, a common characteristic of ab-initio Wannier
functions is that they are site-centered and localized.10 A question naturally arises: How crucial
is it to use localized functions as one-electron basis? This is an important point, since we have
seen that strong-correlation effects arise in systems in which the on-site Coulomb interaction
is much larger than longer-range terms. Let us consider therefore two opposite extreme limits.
The first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would be
the same for every couple of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′δ(r − Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local. It is given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti − Tj|
,

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r − Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 9 for a simple example of two quantum well
potentials.11 We therefore cannot use it to write the many-body Hamiltonian in the usual form
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

10Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

11Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 9: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3.3 Hubbard Hamiltonians for t2g and eg systems

Several strongly-correlated transition-metal oxides can be described via minimal materials-
specific Hubbard-like models which involve only t2g or only eg bands. A representative system
of this kind is the layered perovskite Sr2RuO4 with the 4d t42g electronic configuration. Its crys-
tal structure is shown in Fig. 10 (left side), together with the associated LDA bands crossing
the Fermi level (top-right panel). Due to the layered structure the xz and yz bands are quasi
one-dimensional and the xy band is quasi two-dimensional. Thus, the t2g bands give rise, in
first approximation, to a Fermi surface made of four crossing lines (from the xz, yz bands) and
a circle (from the xy band), shown schematically in the bottom-right panel of Fig. 10. Exper-
imentally, Sr2RuO4 is a correlated metal down to 1.5 K; below this temperature it becomes an
anomalous superconductor. Other representative cases of t2g systems are the Mott insulating
perovskites LaTiO3 and YTiO3, with the electronic configuration 3d t12g. A paradigmatic eg
system is instead the orbitally ordered insulator KCuF3, with the electronic configuration t62ge

3
g.

For all these materials, if we massively downfold all LDA bands but the t2g (or the eg), the
resulting 3-band (or 2-band) generalized Hubbard model takes the following form

Ĥ =
∑

iσ

∑

mm′

εm,m′ c
†
imσcim′σ −

∑

σ

∑

i6=i′

∑

mm′

ti,i
′

m,m′ c
†
imσci′m′σ

+U
∑

i m

n̂im↑n̂im↓ +
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

− J
∑

i m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
,

wherem,m′ = xy, yz, xz for t2g andm,m′ = 3z2−r2, x2−y2 for eg. The parameters U and J
are the direct and exchange screened Coulomb integrals. The Coulomb interaction ĤU is here
assumed to have full O(3) rotational symmetry, as in the atomic limit.12 The first two terms of

12A derivation of the Coulomb interaction tensor for the free atom can be found in my chapter in Ref. [8]. There
the differences in the values of U and J for the t2g and eg orbitals is also discussed.
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Fig. 10: Left: Crystal structure of the tetragonal layered perovskite Sr2RuO4. Right: Low-
energy LDA band structure (top) and schematic representation of the associated Fermi surface
(bottom). The band structure was calculated using the Nth-Order Muffin-Tin Orbital (NMTO)
method. The figure is rearranged from Ref. [17].

ĤU are the so-called density-density terms, and the last two are the pair-hopping and spin-flip
interactions. We dropped the double-counting correction ĤDC, which in this case is a mere shift
of the chemical potential. The energies εm,m′ are the elements of the crystal-field matrix. In
the case of cubic symmetry, the crystal-field matrix, the self-energy, the Green function and the
spectral function are all diagonal in orbital space. For low-symmetry systems, however, this is
not true. It can be seen in Fig. 11, which shows the diagonal and off-diagonal elements of the
spectral-function matrix for the orthorhombic Mott insulator YTiO3.

3.4 Spin-orbit interaction and effects of the basis choice

In many interesting systems the spin-orbit interaction ĤSO plays an important role. In the atomic
limit, for the d shells the spin-orbit interaction is

ĤSO =
∑

µ

λµ
∑

mm′

∑

σσ′

εµmσ,m′σ′ c
†
mσcm′σ′ , εµmσ,m′σ′ = 〈mσ|lµsµ|m′σ′〉,

where µ = x, y, z, and λµ are the spin-orbit couplings, with λµ = λ in O(3) symmetry, and

λ ∼ gµ2
B

〈
1

r

d

dr
vR(r)

〉
.

For t2g systems the matrix with elements ε̂mσ,m′σ′ =
∑

µ λµε
µ
mσ,m′σ′ is given by
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Fig. 11: The LDA+DMFT spectral function matrix of the orbitally-ordered t12g system YTiO3,
in the (xz, yz, xy) basis (left panels) and in the crystal-field basis (right panels) [15, 22].

ε̂ =




εxy 0 0 0 λy
2
− iλx

2

0 εyz
iλz
2

−λy
2

0 0

0 − iλz
2

εxz
iλx
2

0 0

0 −λy
2
− iλx

2
εxy 0 0

λy
2

0 0 0 εyz − iλz
2

iλx
2

0 0 0 iλz
2

εxz




.

Although ĤSO looks like an innocent one-body term, it turns out that, for materials, simulations
including this term are more difficult. This has two reasons: (i) QMC calculations involve
Green function matrices of larger size, e.g., 6×6 as in the case just discussed, hence they are
from the start computationally more demanding; (ii) QMC calculations are often hampered by
a much stronger sign problem; even when it can be tamed, this often happens at the price of
further increasing the computational time. Thus, specific basis choices and approximations are
used. A possible approach consists in working in the basis that diagonalizes the non-interacting
local Green function or the non-interacting local Hamiltonian; such a choice is known to reduce
the sign problem, as was first shown in Ref. [13] for the case without spin-orbit interaction. For
a system with tetragonal symmetry, the states that diagonalize the local Green function belong
either to the Γ6 or to the Γ7 irreducible representations, both 2-dimensional. There are two
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Fig. 12: Fermi surface of Sr2RuO4 calculated with LDA (a), LDA+SO (b), LDA+DMFT (c) and
LDA+SO+DMFT (d) [18]. The grey maps are experimental results from Ref. [21].

(coupled) Γ7 representations, defining the space Γ ′7⊕Γ ′′7 . The analytic expression of these states
can be found in Refs. [17–19]. The transformation to the Γ6 ⊕ Γ ′7 ⊕ Γ ′′7 basis is, of course, in
principle, a mere basis change. Approximations are made, however, if all off-diagonal elements
of the Green function are set to zero or the Coulomb tensor is truncated to further tame the sign
problem or to reduce the computational time.

It has to be noticed that the Coulomb interaction of the t2g Hubbard Hamiltonian is only invari-
ant under orthogonal transformations of the basis. Thus if we change basis to the Γ6-Γ ′7-Γ ′′7
representation, the form of the interaction tensor changes. The exact expression of the Coulomb
tensor in the angular momentum basis (i.e., the one relevant when the t2g crystal-field splitting
is zero) can be found in Ref. [20]. For the Coulomb interaction tensor in the basis of spherical
harmonics you can instead look the derivation in Ref. [8].

In the presence of crystal-field splitting, if the spin-orbit interaction does not dominate, it is
often preferable to perform the calculations in the t2g basis. To this end, it is key to make
QMC codes very efficient in order to reduce as much as possible statistical errors and increase
the average sign. Exact LDA+SO+DMFT calculations in the t2g basis have been successfully
performed, e.g., for Sr2RuO4, using an interaction-expansion continuous-time quantum Monte
Carlo solver, and an orbital-dependent phase which makes the Green function matrix real [18,
19]. This approach allowed us to study, for example, the effects of the spin-orbit interaction on
the Fermi surface without approximations. The results are shown in Fig. 12 in comparison with
experimental data; we will discuss them in the next section.
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3.5 Non-spherical Coulomb terms and double-counting correction

While for a free atom the Coulomb tensor is spherical (symmetry O(3)), in a material the
screened Coulomb tensor has, in general, the symmetry of the lattice. Taking into account non-
spherical Coulomb terms is, in general hard, both because they make QMC calculations more
difficult and can worsen the sign problem, and because in their presence the double-counting
correction has to be explicitly accounted for, even when massive downfolding is used. For these
reasons they are typically neglected. Recently it was shown that they can play, however, a very
important role for the Fermi surface [18]. Let us therefore discuss how the double-counting
correction can be treated with and without such terms, following the approach of Ref. [18].
One of the classical approximations for the double-counting correction is the so called “around
mean-field” approximation. The idea is that LDA describes well the average Coulomb term, in
the absence of orbital polarization. This is equivalent to using as double-counting correction
the Hartree term of the Coulomb interaction tensor, i.e., the operator

ĤDC
U = U

∑

m

(
n̂m↑n̄m↓ + n̄m↑n̂m↓

)
+ (U − 2J)

∑

m6=m′

(
n̂m↑n̄m′↓ + n̄m↑n̂m′↓

)

+ (U − 3J)
∑

σ

∑

m>m′

(n̂mσn̄m′σ + n̄mσn̂m′σ)− µN̂d

− U
∑

m

n̄m↑n̄m↓ + (U − 2J)
∑

m6=m′
n̄m↑n̄m′↓ + (U − 3J)

∑

σ

∑

m>m′

n̄mσn̄m′σ

where n̄mσ = n/d, if n is the number of the correlated electrons per site and d the orbital
degeneracy. Within this approximation we have, after collecting all terms,

ĤDC
U =(δµ− µ)N̂d −

n2

d

(
U (2d− 1)− 5 (d− 1)

)

δµ =
n

d

(
U(2d− 1)− 5J(d− 1)

)
.

If we perform massive downfolding to the correlated bands, as previously mentioned, this is
merely a shift of the chemical potential and can therefore be neglected. Let us now consider the
case in which the Coulomb interaction has an additional term that does not change the averageU
but has tetragonal symmetry

∆ĤU =
∆U

3

(
2n̂xy↑n̂xy↓ − n̂xz↑n̂xz↓ − n̂yz↑n̂yz↓

)

We can now use the around mean-field approximation for this term as well. We find

∆ĤDC
U =

n

6

∆U

3

∑

σ

(
2n̂xyσ − n̂xzσ − n̂yzσ

)
=
n

6
∆U

∑

σ

n̂xyσ − δµ′N̂

δµ′ =
n

6

∆U

3
.

This term, in addition to a shift of the chemical potential, yields an effective change of the
crystal-field splitting εCF, and has therefore to be accounted for explicitly.
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How does ∆U change the Fermi surface of Sr2RuO4? The Fermi surface is determined by the
poles of the Green function at zero frequency. These depend on the non-interacting Hamilto-
nian and the self-energy matrix at zero frequency. In the Fermi-liquid regime, and within the
DMFT approximation, the effect of the self-energy is merely to modify the on-site part of the
Hamiltonian, i.e., the crystal-field splitting and the spin-orbit couplings

εCF →εCF +∆εCF(0),

λµ →λµ +∆λµ(0).

Both ∆εCF(0) and ∆λµ(0) are positive for Sr2RuO4, and lead to an almost doubling of the
LDA parameters. The positive ∆εCF(0) shrinks the β sheet (xz/yz bands) and enlarges the
γ (xy band) sheet. This can be understood from the schematic Fermi surface and the LDA
band structure in Fig. 10. Enhancing the crystal-field splitting corresponds to slightly moving
the xy band downwards and the xz/yz bands upwards with respect to the Fermi level. The
enhancement of the spin-orbit couplings has a large Hartree-Fock component [19], since the
spin-orbit interaction yields a small but finite off-diagonal occupation matrix. For an O(3)-
symmetric Coulomb tensor, the Hartree-Fock enhancement of the spin-orbit coupling is thus

∆λz
2

= i(U − 3J)n↑↑xz,yz

∆λy
2

= − (U − 3J)n↑↓xy,yz,

∆λx
2

= −i(U − 3J)n↑↓xz,xy,

where nσσ′m,m′ are the off-diagonal elements of the density matrix. The Coulomb-enhanced spin-
orbit coupling improves the agreement with the experimental Fermi surface at the degeneracy
points (e.g., along the Γ -X direction). The agreement with ARPES data, however, further
deteriorates for the γ sheet. This can be seen in Fig. 12, in which the LDA and LDA+DMFT
Fermi surface are shown on top of ARPES data from Ref. [21].
Including correlation effects has thus two opposite effects: on the one hand, the agreement with
experiments improves (with respect to LDA) for the β sheet; on the other hand, it deteriorates
for the γ sheet. This can be seen comparing either panels (a) and (c) or panels (b) and (d)
in Fig. 12. Introducing tetragonal Coulomb terms, and in particular the term ∆U, however,
reduces the crystal-field enhancement to

εCF → εCF +∆ε′CF(0),

where ∆ε′CF(0) becomes almost zero for cRPA-based estimates of ∆U . This leads to an almost
perfect Fermi surface, as shown in Fig. 13. Non-spherical Coulomb terms turn out to be more
important for properties that reflect the point symmetry of the lattice, like the Fermi surface,
than for properties that average over orbitals, like the total spectral function [19].
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α
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X

Γ

Fig. 13: The LDA+SO+DMFT Fermi surface of Sr2RuO4 calculated including the effects of the
non-spherical Coulomb term ∆U .

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [22]. The method is also becoming very versatile. It is now
possible, e.g., to study multi-orbital models including the full Coulomb vertex and spin-orbit
interaction, and to calculate response functions or bosonic excitations. Still, many challenges
remain. Models with more than a few orbitals or sites and out of equilibrium phenomena re-
main, e.g., very hard to study. Furthermore, since the birth of DFT, Moore’s law constantly
helped as much as new algorithms in extending the frontier; that has come now slowly to a halt.
Quantum computers and artificial intelligence, or other new, not yet foreseeable, technological
advances might help us in the future. The present deceleration, however, urges us to think
to what we should strive for. It is perhaps easier to discuss first what we do not need. We
do not need a magical calculating machine that gives us, either via an “exact” first principles
scheme or via artificial intelligence, answers with no explanations. Reproducing the data is,
of course, the aim of theory, but not the only goal. As scientists we need to know why. The
danger of giving this question up is evident if we look back at the historical controversy between
copernican and ptolemaic system [23]. At the time, the ptolemaic system was the one which
agreed better with experiments. Indeed, it had been fine-tuned along the years, via a series of ad
hoc assumptions. The copernican system was initially not performing so well, because it was
based on circular orbits. But, at the end, it is the copernican system that made a contribution to
science, by identifying the correct picture. A theory should reproduce the generic aspects of a
phenomenon, but providing at the same time, as Walter Kohn underlined, understanding, via a
coherent description and the essential details. This should be our aim.
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Appendices

A Eigenstates of two-site models

A.1 Hubbard dimer

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

niσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 3εd + U

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.



Dynamical Mean-Field Theory for Materials 11.39

This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
εd + t 2

|1, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
εd − t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd + U 0

0 0 0 −
√

2t 0 2εd + U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U +∆(t, U)) 1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U −∆(t, U)) 1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

(∆(t, U)− U)
,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
3εd + U + t 2

|3, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
3εd + U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

A.2 Anderson molecule

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εd + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 1
2

(
εd + εs +

√
(εd − εs)2 + 4t2

)
2

|1, 1/2, σ〉− = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 1
2

(
εd + εs −

√
(εd − εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(U, t)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U + 2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U − 2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1/2, σ〉+ = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 3εd + U + 1
4

(
U +∆(t, U)

)
2

|3, 1/2, σ〉− = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 3εd + U + 1
4

(
U −∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτeiνnτ 〈T ciσ(τ)c†iσ(0)〉,

where T is the time-ordering operator, β = 1/kBT , and νn a fermionic Matsubara frequency.
Let us assume to know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N . Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτeiνnτe−∆El(N)β〈Nl|ciσ(τ)c†iσ(0)|Nl〉,

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτeiνnτe−∆El(N)β〈Nl|ciσ(τ)|N ′l′〉〈N ′l′ |c†iσ|Nl〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτe−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ |〈N ′l′|c†iσ|Nl〉|2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
|〈N ′l′ |c†iσ|Nl〉|2.

Due to the weight |〈N ′l′ |c†iσ(0)|Nl〉|2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

(
|〈(N−1)l′ |ciσ|Nl〉|2

iνn −∆El(N)+∆El′(N−1)
+

|〈(N + 1)l′ |c†iσ|Nl〉|2
iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2(1 + eβU/2) and

|〈(N−1)l′ |ciσ|Nl〉|2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

|〈(N+1)l′ |c†iσ|Nl〉|2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
.
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http://www.cond-mat.de/events/correl18

[11] E. Koch, G. Sangiovanni, and O. Gunnarsson, Phys. Rev. B 78, 115102 (2008)

[12] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner,
Rev. Mod. Phys. 83, 349 (2011)

[13] A. Flesch, E. Gorelov, E. Koch, E. Pavarini, Phys. Rev. B 87, 195141 (2013)

[14] A. Kiani and E. Pavarini, Phys. Rev. B 94, 075112 (2016)

[15] E. Pavarini, A. Yamasaki, J. Nuss, and O.K. Andersen,
New. J. Phys 7, 188 (2005)

[16] N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, and D. Vanderbilt,
Rev. Mod. Phys. 84, 1419 (2012)

http://www.cond-mat.de/events/correl11
http://www.cond-mat.de/events/correl14
http://www.cond-mat.de/events/correl18


11.44 Eva Pavarini

[17] G. Zhang and E. Pavarini, Phys. Status Solidi RRL, 1800211 (2018)

[18] G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)

[19] E. Sarvestani, G. Zhang, E. Gorelov, and E. Pavarini, Phys. Rev. B 97, 085141 (2018)

[20] G. Zhang and E. Pavarini, Phys. Rev. B 99, 125102 (2019)

[21] A. Damascelli, D.H. Lu, K.M. Shen, N.P. Armitage, F. Ronning, D.L. Feng, C. Kim, Z.-X.
Shen, T. Kimura, Y. Tokura, Z.Q. Mao, and Y. Maeno, Phys. Rev. Lett. 85, 5194 (2000)

[22] E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, and O.K. Andersen,
Phys. Rev. Lett. 92, 176403 (2004)

[23] S. Singh: Big Bang. The most important scientific discovery of all time
and why you need to know about it (Harper Perennial, London, 2005)



12 Analytical Properties of Self-Energy
and Luttinger-Ward Functional

Robert Eder
Institut für Festkörperphysik
Karlsruhe Institute of Technology

Contents

1 Introduction 2

2 Green function, self-energy, and their analytical properties 2

3 Proof of the theorem by Luttinger and Ward 9
3.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The case λ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Calculation of ∂Ω/∂λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Definition and properties of the Luttinger-Ward functional . . . . . . . . . . . 12
3.5 Calculation of ∂Ω̃/∂λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conserving approximations 20

5 Conclusion 24

A A theorem on Fourier transforms 25

B A theorem on determinants 26

E. Pavarini, E. Koch, and S. Zhang (eds.)
Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9
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1 Introduction

In 1961 Luttinger and Ward (LW) published a seminal paper [1] which became the foundation
of many important developments in the quantum theory of many particle systems. In particular,
they gave an explicit expression for the grand canonical potential Ω of an interacting Fermion
system. A key step thereby was the construction of the Luttinger-Ward functional, a functional
of the Green function which essentially describes the deviation of Ω from a non-interacting
system. The expression for Ω became the basis for the derivation of the famous Luttinger
theorem [2], which states that interactions between electrons do not change the volume of the
Fermi surface. Subsequently, Baym and Kadanoff [3] investigated the question, under which
conditions approximate response functions for systems of interacting particles comply with
certain conservation laws, i.e., what is the criterion for the construction of conserving approxi-
mations. Baym showed [4] that the Luttinger-Ward functional thereby plays a key role in that a
self-energy derived from an approximate Luttinger-Ward functional always gives rise to a con-
serving approximation. It is the purpose of the present notes to give an introduction to Green
functions and the self-energy, derive the LW expression for Ω and briefly discuss the ideas of
Baym regarding conserving approximations.

2 Green function, self-energy, and their analytical properties

In this section we discuss Green functions, their properties and use. Thereby we will also refer
to the representation of Green functions in terms of Feynman diagrams but we will not give a
derivation of these. Excellent introductions to this subject can be found in various textbooks [5–
7]. In the present notes we try to be consistent with Fetter-Walecka (FW) [6].
We consider a system of interacting fermions and assume that there is some complete basis of
single-electron states. Each state is labeled by a set of quantum numbers, α, we denote the
number of different sets α as nα. Introducing Fermionic creation/annihilation operators c†α/cα
for electrons in these states, the Hamiltonian, assumed to be time-independent, can be written
as H = H0 +H1 with

H0 =
∑
α,β

tα,β c
†
αcβ , (1)

H1 =
1

2

∑
α,β,γ,δ

Vα,β,δ,γ c
†
αc
†
βcγcδ . (2)

Note the factor of 1/2 and the ‘inverted’ order of indices on the interaction matrix element V
in (2) which follows from the prescription for second quantization [5–7]. H commutes with the
operator N̂ of particle number, which means that eigenstates of H have a fixed particle number.
In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. Introducing K = H−µN the thermal average of any operator Ô is

〈Ô〉th =
1

Z
Tr
(
e−βKÔ

)
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with the grand partition function
Z = Tr

(
e−βK

)
. (3)

For any operator Ô the imaginary time Heisenberg operator is Ô(τ) = eτK/~ Ô e−τK/~. Now
let Â and B̂ be any two operators and nB = [N̂ , B̂], nA = [N̂ , Â]. The imaginary time Green
function then is GA,B(τ, τ ′) = −

〈
T [Â(τ)B̂(τ ′)]

〉
th

where T is the time-ordering operator. It is
easy to see that GA,B is a function of τ − τ ′ only and setting τ ′ = 0 we find the more explicit
expression (with ξB = (−1)nB )

GA,B(τ) = −Θ(τ)
〈
Â(τ) B̂

〉
th
− ξB Θ(−τ)

〈
B̂ Â(τ)

〉
th

(4)

=
1

Z

(
−Θ(τ)

∑
i,j

e−βKi e
τ
~ (Ki−Kj) 〈i|Â|j〉〈j|B̂|i〉

− ξB Θ(−τ)
∑
i,j

e−βKi e
τ
~ (Kj−Ki) 〈i|B̂ |j〉〈j|Â|i〉

)
, (5)

Here |i〉 are the exact eigenstates of H and Ki = Ei− µNi the corresponding eigenvalues of K
with energy Ei and particle number Ni. It is obvious from (5) that G can be different from zero

only if nA = −nB. The τ -dependence of both terms in (5) is e
(
−β+ |τ |~

)
Ki e−

|τ |
~ Kj . Since the Ki

are bounded from below (namely by theK for the ground state with the given µ) but unbounded
from above in the thermodynamical limit, G is well-defined only for τ ∈ [−β~, β~] [8]. Using
the cyclic property of the trace one can show that for τ ∈ [−β~, 0] one has G(τ+β~) =

ξB G(τ). Accordingly, G can be expanded in a Fourier series

G(τ) =
1

β~

∞∑
ν=−∞

e−iωντ G(iων),

G(iων) =

∫ β~

0

dτ eiωντ G(τ), (6)

with ων = νπ
β~ and integer ν. The ων are called Matsubara frequencies and for even nB (odd nB)

only even ν (odd ν) contribute in the Fourier expansion. Using (5) one finds

GA,B(iων) =
1

Z

∑
i,j

e−βKi − ξB e−βKj
iων + 1

~(Ki−Kj)
〈i|Â|j〉 〈j|B̂|i〉. (7)

Next, we consider the retarded real-time Green function. The real-time Heisenberg operator is
Ô(τ) = eitK/~ Ô e−itK/~ and the retarded real-time Green function is

GR
A,B(t) = −iΘ(t)

(
〈 Â(t)B̂ 〉th − ξB 〈B̂Â(t) 〉th

)
. (8)

It is straightforward to write down the expression of GR
A,B(t) corresponding to (5), and using

the theorem in Appendix A one finds its Fourier transform

GR
A,B(ω) =

1

Z
lim
η→0+

∑
i,j

e−βKi − ξB e−βKj
ω + iη + 1

~(Ki−Kj)
〈i|Â|j〉 〈j|B̂|i〉. (9)
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Comparing with (7) it is obvious that GR
A,B(ω) can be obtained from GA,B(iων) by replacing

iων → ω + i0+. In other words, there is one function GA,B(z) of the complex variable z
– usually called ‘the’ Green function – which gives GA,B(iων) when it is evaluated for the
Matsubara frequencies, and GR

A,B(ω) when it is evaluated along a line infinitesimally above the
real axis. Equation (7) is the Lehmann representation of the Green function. The existence of
‘the’ Green function is the very reason why the imaginary time Green function is so useful. In
principle, the quantity of physical interest is the real-time Green function. For example one can
show that if a system is acted upon by a time dependent perturbation of the form Hp = f(t)B̂

(with B̂ some Hermitean operator and f(t) a real function), the change of the expectation value
of some operator Â which is linear in f(t) is given by (see FW (32.2))

δ 〈Â〉(t) =
1

~

∫ ∞
−∞

dt′ GR
AB(t−t′)f(t′).

On the other hand, the imaginary-time Green function can be evaluated approximately by using
the powerful technique of expansion in Feynman diagrams [5–7], which is not possible for the
real-time Green functions. The standard way to obtain the real-time Green function, which is
used over and over again in the literature, is to first obtain an approximate GA,B(iων) by doing
an expansion in Feynman diagrams and then continue this analytically to a line infinitesimally
above the real axis to obtain the real-time Green function of physical interest.
We now specialize to the single-particle Green function which corresponds to Â = cα, B̂ = c†β
(so that ξB = −1). It may be viewed as a matrix of dimension nα×nα, denoted by G, and we
can write it

Gα,β(z) =
1

Z

∑
i,j

e−βKi

[
〈i|c†β|j〉〈j|cα|i〉
z − (Ki−Kj)/~

+
〈i|cα|j〉〈j|c†β|i〉
z − (Kj−Ki)/~

]
, (10)

=

∫ ∞
−∞

dω
ρ
(−)
α,β(ω)

z − ω
+

∫ ∞
−∞

dω
ρ
(+)
α,β(ω)

z − ω
(11)

ρ
(−)
α,β(ω) =

1

Z

∑
i,j

e−βKi 〈i|c†β|j〉〈j|cα|i〉 δ
(
ω − (Ki−Kj)/~

)
, (12)

ρ
(+)
α,β(ω) =

1

Z

∑
i,j

e−βKi 〈i|cα|j〉〈j|c†β|i〉 δ
(
ω − (Kj−Ki)/~

)
. (13)

Since Kj−Ki is real, G(z) has a number of poles on the real axis. For both, ρ(−) and ρ(+),
one has ρ∗α,β(ω) = ρβ,α(ω) i.e., the ω-dependent matrix ρ(ω) is Hermitean. Moreover, for any
vector v of length nα we have∑

α,β

v∗α ρ
(−)
α,β(ω) vβ =

1

Z

∑
i,j

e−βKi |〈j|cv|i〉|2 δ
(
ω − (Ki−Kj)/~

)
> 0

with cv =
∑

vαcα so that ρ are positive definite. It follows from the Hermiticity of ρ that
[G(z)]+ = G(z∗) which shows that, for complex z, G(z) is not Hermitean.
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Fig. 1: Top: Graphical representation of the Dyson equation. Middle: Self-energy diagrams
have two open ends. Bottom: The convention for the representation of the Green function
implies the labeling of the open ends of the self-energy.

We now assume that the range of ω where the elements of ρ(±) are different from zero is finite,
which means that the change in energy upon adding or removing an electron is bounded. Then
we consider the limit |z| → ∞ and expand

1

z ± (Kj−Ki)/~
→ 1

z
∓ Kj−Ki

~z2
+O

(
1

z3

)
.

Inserting this into (10) and using (Kj−Ki)〈j|cα|i〉 = 〈j|[K, cα]|i〉 we find

Gα,β(z) → δα,β
z

+

〈{
c†β, [cα, K]

}〉
th

~z2
+O

(
1

z3

)
.

Using the Hamiltonian (1) and (2) one finds〈{
c†β, [cα, K]

}〉
th

= tα,β − µ δα,β +
∑
γ,δ

(Vα,γ,β,δ − Vα,γ,δ,β)
〈
c†γcδ

〉
th
. (14)

The term involving V ‘looks like’ the Hartree-Fock potential V (HF )
α,β , however, whereas for the

true Hartree-Fock potential the thermal average has to be taken using the Hartree-Fock wave
functions and energies, the thermal average in (14) has to be taken using the fully interacting
eigenstates and energies. Keeping this subtle difference in mind we still call the third term the
Hartree-Fock potential V (HF )

α,β so that

G(z) → 1

z
+

t− µ+ V(HF )

~z2
+O

(
1

z3

)
. (15)
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As already mentioned the imaginary-time Green function can be expanded in Feynman dia-
grams and the self-energy Σ(iων) be introduced in the standard way see Figure 1. The self-
energy can be expanded in diagrams which have two ‘entry points’ an incoming and an outgo-
ing one. Following FW [6] we represent the Green function Gαβ and also the noninteracting
Green function G0

αβ by a directed line with an arrow running β → α (the reason is, that it is the
creation operator which has the index β, see (10)). In the Dyson equation the matrix indices
of the Green function and the self-energy must take the form of consecutive matrix products,
e.g., G0

δαΣαβG
0
βγ – otherwise the summation of the geometric series would not be possible. It

follows that the element Σαβ must have the label α on the outgoing entry and the label β on the
incoming one, see Figure 1. The diagrammatic expansion shows [5–7] that the Green function
obeys the Dyson equation (

iων −
1

~
(t− µ)−Σ(iων)

)
G(iων) = 1(

−∂τ −
1

~
(t− µ)

)
G(τ)−

∫ β~

0

Σ(τ − τ ′) G(τ ′) dτ ′ = δ(τ), (16)

where the second equation is the Fourier-transform of the first and FW (25.21) was used. The
inverse of the Green function thus is

G−1(z) = z − 1

~
(t− µ)−Σ(z)

On the other hand, from (15 ) we find

G−1(z)→ z − t− µ
~
− V(HF )

~
+O

(
1

z

)
⇒ Σ(z)→ V(HF )

~
+O

(
1

z

)
.

Accordingly, the quantity Σ̄ = Σ−V(HF ) vanishes as 1/z for large |z|.
Next, let v be any complex vector of length nα and consider

f(z) =
∑
α,β

v∗α Gα,β(z) vβ =
1

Z

∑
i,j

e−βKi + e−βKj

z + (Ki−Kj)/~
|〈j|c†v|i〉|2, (17)

where c†v =
∑
vαc
†
α and we have used (7). Putting z = x+ iy the imaginary part reads

If(z) = − y
Z

∑
i,j

e−βKi + e−βKj(
x+ (Ki−Kj)/~

)2
+ y2

|〈j|c†v|i〉|2.

This expression cannot be zero unless y = 0. It follows that for z away from the real axis all
eigenvalues of G(z) are different from zero [9], otherwise we might choose v to be either the
right- or left-hand eigenvector for eigenvalue 0 and obtain f(z) = 0 (note that for complex z
G(z) is not Hermitean which means that right- and left-hand eigenvectors will be different). In
fact, this is the very condition that G−1(z) does exist and it follows that for all complex z the
determinant of G(z) is different from zero. Using Cramer’s rule we find the elements of the
inverse Green function

G−1α,β(z) =
(−1)α+β det Mα,β(z)

det G(z)
,
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2C

C1

z

Fig. 2: Integration contours for the proof of the spectral representation of Σ. The dashed line
is the real z′ axis.

where Mα,β(z) is the respective minor of G(z), i.e., the matrix G(z) with row α and column β
discarded. Since for z away from the real axis all elements of G(z) are finite, see Eq. 10,
and the determinant of G(z) different from zero it follows that away from the real axis all
elements of G−1(z) are analytical functions of z. Starting from G−1(z)G(z) = 1, taking the
Hermitean conjugate and using [G(z)]+ = G(z∗) we find [G−1(z)]+ = G−1(z∗). Since both,
(G0)−1(z) = z − (t−µ)/~ and VHF , obey this relation, it follows that Σ̄(z) alone obeys this
relation as well, i.e., Σ̄(z∗) = Σ̄+(z). For real ω, we define the real matrices K(ω) and J(ω)

by

Σ̄(ω + i0+) = K(ω) + iJ(ω) ⇒ Σ̄(ω − i0+) = KT (ω)− iJT (ω). (18)

Next, we define

Σ̄(+)(z) =
1

2

(
Σ̄(z) + Σ̄T (z)

)
⇒ Σ̄(+)(ω ± i0+) = K(+)(ω)± iJ(+)(ω),

Σ̄(−)(z) =
i

2

(
Σ̄(z)− Σ̄T (z)

)
⇒ Σ̄(−)(ω ± i0+) = −J(−)(ω)± iK(−)(ω), (19)

where K(±) = 1
2
(K ±KT ) and J(±) = 1

2
(J ± JT ). Now consider the integration contours in

Figure 2 which consist of lines infinitesimally above and below the real axis and semicircles at
infinity. Since Σ̄ is analytic away from the real axis we have for z in the upper half-plane∮

C1

dz′
Σ̄(±)(z′)

z′ − z
= 0 ⇒

∫ ∞
−∞

dω
K(±)(ω)

ω − z
= i

∫ ∞
−∞

dω
J(±)(ω)

ω − z
.

The second equation follows, because the integrand is ∝ 1/z′2 for large |z′| so that the arc
does not contribute and infinitesimally below the real axis we can use (18). Next we can use
Cauchy’s theorem and write

Σ̄(±)(z) =
1

2πi

∮
C2

dz′
Σ̄(±)(z′)

z′ − z
⇒ Σ̄(±)(z) = ± 1

π

∫ ∞
−∞

dω
J(±)(ω)

ω − z
.
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Reverting (19) and recalling the definition of Σ̄ we finally arrive at the spectral representation
of the self-energy, as derived by Luttinger [10]

Σ(z) = V(HF ) +
1

π

∫ ∞
−∞

dω
σ(ω)

ω − z
(20)

with σ(ω) = J(+)(ω) + iJ(−)(ω), which shows that σ(ω) is Hermitean. It should be noted that
in deriving (20) we have made use only of the Dyson equation and certain rigorous analytical
properties of the Green function. This is therefore a completely rigorous result. It should also
be noted that we have shown that for any z off the real axis G−1(z) is well-defined. This shows
that there is a unique mapping G(z)→ Σ(z).
We have introduced the self-energy using the diagrammatic expansion of the Green function
but it can also be defined in another way. Using −~∂τ Ô = [Ô,K] and ∂τΘ(±τ) = ±δ(τ) we
find the equation of motion of the imaginary time Green function:

−~∂τGα,β(τ) = ~δα,β δ(τ) +
∑
ν

(tα,ν − µδα,ν)Gν,β(τ)−
∑
ν,κ,λ

Vα,ν,κ,λ
〈
T [(c†νcλcκ)(τ)c†β(0)]

〉
th

The time-ordered product in the last term can be written as G2(λτ, κτ, β0, ντ+) where

G2(λτ1, κτ2, βτ3, ντ4) = (−1)2
〈
T [cλ(τ1)cκ(τ2)c

†
ν(τ4)c

†
β(τ3)]

〉
th

is the two-particle imaginary time Green function (the factor of (−1)2 has to be replaced by
(−i)2 for the real-time Green function—it is always the square of the prefactor of the single-
particle Green function). Comparing with the Dyson equation (16) it is obvious that G2 and Σ
are related as

−
∑
ν,κ,λ

Vα,ν,κ,λG2(λτ, κτ, β0, ντ+) = ~
∫ ~β

0

dτ ′ Σα,γ(τ−τ ′)Gγ,β(τ ′) . (21)

Frequently an approximate Green function is found by expressing G2 as a functional of G. For
example, the Hartree-Fock approximation corresponds to replacing

G2(λτ1, κτ2, βτ3, ντ4) → G(λτ1, βτ3)G(κτ2, ντ4)−G(λτ1, ντ4)G(κτ2, βτ3) .

Inserting this into (21) one obtains

−
∑
ν,κ,λ

Vα,ν,κ,λG2(λτ, κτ, β0, ντ+) =
∑
ν,κ,λ

(Vα,ν,λ,κ − Vα,ν,κ,λ)〈c†νcκ〉Gλ,β(τ)

⇒ Σα,ν(τ) =
1

~
V (HF )
α,ν δ(τ)

which is what one would have expected for the self-energy in Hartree-Fock approximation.
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3 Proof of the theorem by Luttinger and Ward

3.1 Statement of the theorem

In the present section we consider a solid, described by an LCAO-like Hamiltonian. Then
we have α = (i, n, ν, σ) where i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom}
the number of atoms in the basis, ν ∈ {s, px, py, pz, dxy . . . } the type of orbital and σ the z-
component of spin. The number of all orbitals in the unit cell is norb. The Fourier transform of
the Fermion operators is

c†k,β =
1√
N

∑
i

eik·(Ri+rn) c†i,n,ν,σ,

where we have introduced the orbital index β = (n, ν, σ). Since this second compound index
always comes together with either a momentum k or a cell index i, no misunderstanding is
possible. The Hamiltonian now can be written as

H0 =
∑
k

∑
α,β

tα,β(k) c†k,α ck,β, (22)

H1 =
1

2

∑
k,k′,q

∑
α,β,γ,δ

Vα,β,δ,γ(k,k
′,q) c†k+q,α c

†
k′−q,β ck′,γ ck,δ. (23)

Equation (22) defines the 2norb × 2norb matrix t(k), whose eigenvalues En(k) give the nonin-
teracting band structure. This formulation allows H0 to describe magnetic systems or include
spin-orbit coupling.
The grand canonical potential Ω(T, µ) contains all thermodynamical information about a sys-
tem at fixed temperature T and chemical potential µ. It is defined as the logarithm of the grand
partition function

Ω = − 1

β
ln(Z) with Z =

∑
i

e−β(Ei−µNi),

where the sum is over all eigenstates of the system with energy Ei and particle number Ni.
The latter can indeed be evaluated for noninteracting particles and in this way one obtains for
example the grand canonical potential of noninteracting Bloch electrons

Ω = − 1

β

2norb∑
n=1

∑
k

ln
(
1 + e−β(En(k)−µ)

)
. (24)

As shown in textbooks of statistical mechanics, expression (24) allows to derive the complete
thermodynamics of metals. However, it is in general not possible to evaluate the grand partition
function for a system of interacting particles of macroscopic size.
Luttinger and Ward, however, derived a relation for the grand canonical potential of interacting
Fermions [1]. More precisely, they considered the following quantity

Ω′ = − lim
η→0+

1

β

∑
k,ν

eiωνη
(

ln det
(
−G−1(k, iων)

)
+Tr (G(k, iων) Σ(k, iων))

)
+Φ[G]. (25)
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Here
∑

ν denotes summation over the Fermionic Matsubara frequencies and Φ[G] is the so-
called Luttinger-Ward functional which is defined as a sum over closed, linked Feynman-
diagrams (the precise definition will be discussed below). The important point here is that a
closed Feynman diagram is simply a number, so that Φ[G] indeed assigns a (real) number to
each possible Green function G. As regards the logarithm of the determinant in (25) we re-
call that the determinant of a matrix is given by the product of its eigenvalues (the matrix need
not be Hermitean for this to be true) so that the logarithm of the determinant is the sum of the
logarithms of the (complex) eigenvalues of −G−1.
In the following we want to show that in fact Ω′ = Ω, the true grand canonical potential, and
thereby follow the original proof by Luttinger and Ward. The basic idea is to multiply the
interaction part of the Hamiltonian, (2), by a scale factor, H1 → λH1, then show Ω′ = Ω for
λ = 0, i.e., the noninteracting limit, and next show that ∂λΩ′ = ∂λΩ. Obviously, this proves
the identity of the two expressions for any λ.

3.2 The case λ = 0

In this limit Σ = 0 and Φ[G] = 0 (the latter property follows because all interaction lines in all
diagrams are zero) so that only the first term in (25) remains and

G−1(k, ω) = ω +
(
µ−t(k)

)
/~ ,

ln det
(
−G−1(k, ω)

)
=

2norb∑
n=1

ln
(
− ω −

(
µ−En(k)

)
/~
)
. (26)

We now replace the sum over Matsubara frequencies by a contour integration, which is a stan-
dard trick used in field theory (see, e.g., section 25 of FW) and obtain

− 1

β

∑
ν

eiωνη ln det(−G−1(k, iων) ) =
~

2πi

∮
C
dω f(ω) eωη ln det(−G−1(k, ω) ) (27)

where

f(ω) =
1

eβ~ω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Figure 3(a). Next we note that the integrals along the two clover-shaped contours
in Figure 3(b) are zero, provided the integrand is analytic in the interior of the two curves.
Since the Fermi function has all of its poles along the imaginary axis, which is outside of the
curves in Figure 3(b), we only need to consider possible singularities of ln det(−G−1(k, ω)).
In principle, the complex logarithm has a branch-cut along the negative real axis which could
be problematic. However, a quick glance at (26) shows, that as long as ω has a nonvanishing
imaginary part, the argument of the logarithm can never be purely real. Singularities of the
logarithm thus occur only on the real axis, which also is exterior to the contours in Figure 3(b).
The integral along the contours in Figure 3(b) therefore is indeed zero. Next, Jordan’s lemma
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(c)(b)(a)

Fig. 3: (a) Integration contour C used in (27). Since the integrals along the two contours in (b)
are zero and the contributions from the circular arcs vanish, the integral along the contour in
(a) is equal to that over the contour C ′ in (c).

can be invoked to establish that the integral along the large semicircles vanishes. Here the Fermi
function f(ω) guarantees that the contribution from the semicircle with Re(ω) > 0 vanishes,
whereas the factor eωη does the same for the semicircle with Re(ω) < 0. It follows that the
integral along the contour C in Figure 3a is equal to that along the contour C ′ in Figure 3c (note
the inverted direction of the curves in Figure 3c as compared to Figure 3b). Next, we insert

f(ω) = − 1

β~
d

dω
ln
(
1 + e−β~ω

)
(28)

and integrate by parts. Thereby the Fermi function and the factor eηω again make sure that the
contributions from Re(ω) = ±∞ vanish and we obtain

1

β

1

2πi

∮
C′
dω ln

(
1 + e−β~ω

) d

dω

(
eηω

2norb∑
n=1

ln
(
−ω +

(
µ−En(k)

)
/~
))

=
1

β

1

2πi

∮
C′
dω ln(1 + e−β~ω) eηω

2norb∑
n=1

~
~ω + µ− En(k)

+O(η) .

Now we substitute ~ω → z and use the theorem of residues (remembering that C ′ encircles
the poles of the Green function on the real axis in clockwise fashion) and after taking the limit
η → 0 obtain the expression (24), which completes the first step of the proof.

3.3 Calculation of ∂Ω/∂λ

To obtain the derivative of the true grand potentialΩ with respect to λ we start from the formula

λ
∂

∂λ
Ω(λ) = − 1

β
λ
∂

∂λ
ln
(

Tr
(
e−β(H0+λH1)−µN

))
=

1

Z
Tr
(
λH1 e

−β(H0+λH1)−µN
)

= 〈λH1〉λ

where 〈...〉λ denotes the thermal average calculated at interaction strength λ. The last quantity
thus is the expectation value of the interaction Hamiltonian for interaction strength λ. It can be
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computed by making use of the equation of motion of the Green function which is a procedure
found in many textbooks, see e.g. Equation (23.14) of FW. One has

〈λH1〉λ = −1

2
lim
τ→0−

∑
k

Tr

(
~
∂

∂τ
− µ+ t(k)

)
Gλ(k, τ),

where the subscript λ on the Green function implies that this is the exact Green function for
interaction strength λ. Next we recall the Dyson equation (16), which holds for any λ(

−∂τ +
µ

~
− 1

~
t(k)

)
G(k, τ)−

∫ β~

0

Σ(k, τ−τ ′) G(k, τ ′) dτ ′ = δ(τ).

Since δ(τ < 0) = 0 we have limτ→0− δ(τ) = 0 and obtain

λ
∂

∂λ
Ω(λ) =

~
2

lim
τ→0−

∑
k

∫ β~

0

dτ ′ Tr
(
Σλ(k, τ−τ ′)Gλ(k, τ

′)
)

=
1

2β

∑
k,ν

Tr Σλ(k, iων) Gλ(k, iων). (29)

3.4 Definition and properties of the Luttinger-Ward functional

As already mentioned Φ[G] is defined as a sum over infinitely many Feynman diagrams with
certain properties. The diagrams which contribute are closed, which means they have no ex-
ternal lines. They are moreover connected, which means that they cannot be decomposed into
sub-diagrams which are not connected by lines. And finally, only skeleton diagrams are taken
into account in the Luttinger-Ward functional. A skeleton diagram is a diagram where no Green
function line contains a self-energy insertion. In other words, it is impossible to draw a box
around any part of the diagram, so that only two Green function lines cross the box.
At this point we need to discuss an important property of the skeleton diagrams. Let us consider
a self-energy diagram. It contains one Green function line from the entry-point to the exit-point,
and a number of Green function loops. Starting from the entry-point we may follow the Green
function line and draw a circle around each self-energy insertion that we encounter until we
reach the exit point. This procedure will eliminate a number of loops, that means enclose them
in a self-energy insertion. Then, we continue along the first interaction line which is not elim-
inated until we reach a Fermion loop that is not yet eliminated. We follow the Green function
line along this loop and again draw a circle around each self-energy insertion. We proceed to
the next interaction line that has not yet been eliminated and so on. We end up with a diagram
in which all self-energy insertions are inside circles. Replacing the circles by straight lines,
we obviously obtain a skeleton-diagram for the self-energy. It is easy to see that the skeleton
diagram to which a given self-energy diagram is reduced is unique. All self-energy diagrams
thus can be grouped into classes such that all members of one class can be reduced to the same
skeleton diagram. Conversely, all members of one class can be obtained by starting out from
the skeleton-diagram and inserting the full Green function for each Green function line in the
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Fig. 4: Left: A diagram contributing to the Luttinger-Ward functional. Right: the elements of
the diagram.

diagram, which we write as

Σ(k, ω) =
∑
n

Σ(s,n)(k, ω). (30)

Here Σ(s,n) denotes the set of all nth order skeleton diagrams (i.e. diagrams with n interaction
lines) with the Green function lines replaced by the full Green function.
Having defined the diagrams contributing to Φ[G] each diagram is now translated into a mul-
tiple sum according to the standard Feynman rules for the imaginary-time Green function in
momentum space (see section 25 of FW). However, there is one crucial difference: whereas in
a standard Feynman diagram a Green function line corresponds to a factor G0(k, ω) (the non-
interacting Green function), in the Luttinger-Ward functional we replace G0(k, ω) → G(k, ω)

where G(k, ω) is the argument of the functional Φ[G]. As an example, the expression corre-
sponding to the diagram in Figure (4) is(
−1

β~2N

)2

(−1)2
∑
k,k′,q

∑
α,β,γ,δ

∑
α1,β1,γ1,δ1

∑
ν,ν′,µ

Vα,β,δ,γ(k,k
′,q)Vδ1,γ1,α1,β1(k+q,k′−q,−q)

×Gα1,α(k+q, iων+ωµ)Gδ,δ1(k, iων)Gβ1,β(k′−q, ων′−ωµ)Gγ,γ1(k
′, ων′). (31)

The Luttinger-Ward functional Φ[G] thus consists of an infinite sum of multiple sums which
involve the interaction matrix elements V of the Hamiltonian (23) and the function G for which
the functional is to be evaluated.
Let us briefly discuss the scaling with system size, N . By the Feynman rules an nth order dia-
gram has the prefactor (1/N)n. On the other hand, there are n interaction lines, and 2n Green
function lines, so that there are 3n momenta. The n interaction lines give rise to 2n momentum
conservation conditions, one for each end of a line. However, in a closed diagram one of these
momentum conservation conditions is fulfilled trivially so that there remain n+1 momenta to
be summed over (see the above example). Each sum runs over N momenta so that the total
diagram is of order N , as it has to be because Ω is an extensive quantity.
In addition to the factors originating from the Feynman rules, each diagram is multiplied by
−1/(βS) where the positive integer S is the symmetry factor of the diagram. A very de-
tailed discussion of these symmetry factors is given in section 2.3 of Negele-Orland [7]. The
definition is as follows: first, the diagram is drawn such that all interaction lines are in x-
direction. The n interaction lines of a diagram are labeled by integers i ∈ {1 . . . n} and the
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Fig. 5: Determination of the symmetry factor S for a diagram.

ends of each interaction line are labeled by R and L (for ‘right end’ and ‘left end’), see Figure
5(a). Any Green function line in the diagram now can be labeled by the ends of the inter-
action lines where it departs and where it ends: (i, S1) → (j, S2) with i, j ∈ {1 . . . n} and
S1, S2 ∈ {R,L}. Obviously, the diagram is characterized completely by the 2n ‘directed
quadruples’ (i, S1) → (j, S2). Then, we consider the following operations on the diagrams:
a) any permutation of the indices i, b) exchange of the labels R and L on an arbitrary number
of interaction lines, c) any combination of a permutation followed by label exchanges. Such an
operation obviously changes the quadruples which characterize the connectivity of the diagram:
[(i, S1) → (j, S2)] → [(i′, S ′1) → (j′, S ′2)]. The symmetry factor of a diagram then is the num-
ber of symmetry operations—including identity—where the new labels (i′, S ′1) → (j′, S ′2) are
a permutation of the old ones, (i, S1) → (j, S2) (Negele-Orland then call the transformed dia-
gram a deformation of the first one). As an example, consider the diagram in Figure 5(a). Label
exchange on, say, interaction line 2 leads to the diagram shown in 5(b) which, however, is not a
deformation of the original diagram. This can be seen by considering, e.g., the line connecting
the R-end of 1 and the R-end of 2. In 5(a) this line would have the label (2, R) → (1, R),
whereas it would be (1, R)→ (2, R) in 5(b). This means that the direction of momentum flow
along the line would be reversed. On the other hand, the permutation of the labels 1 and 3

followed by label exchange on interaction line 2 leads to the diagram 5(c) which indeed is a
deformation of the original diagram. In Figure 5(d) the Green function lines are numbered by
1 → 6 and Table 1 gives the quadruples corresponding to these lines in Figures 5(a) and 5(c).
Obviously the two sets of quadruples are a permutation of each other.

Line 5(a) 5(c)
1 (1,L)→(3,L) (3,L)→(1,L)
2 (3,L)→(1,L) (1,L)→(3,L)
3 (1,R)→(2,L) (3,R)→(2,R)
4 (2,R)→(1,R) (2,L)→(3,R)
5 (2,L)→(3,R) (2,R)→(1,R)
6 (3,R)→(2,R) (1,R)→(2,L)

Table 1: Quadruples describing the connectivity of the diagrams Figure 5a and Figure 5c. The
numbers of the Green function lines are given in Figure 5d.
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It turns out that this is the only symmetry operation which leaves the diagram invariant, so that,
taking into account the identity operation, the diagram has S = 2. Since a symmetry operation
corresponds to a permutation of the quadruples (i, S1) → (j, S2) which characterize the indi-
vidual Green function lines in a diagram it defines a mapping between these lines whereby each
line is mapped onto the one which gets its label. For example, from Table 1 one reads off the
corresponding mapping for the operation connecting 5a and 5c:

1 2 3 4 5 6
2 1 6 5 4 3

If two Green function lines i and j are mapped onto each other, the lines are equivalent in the
sense that the diagram could be deformed such that the deformed diagram is precisely the same
as the original one but line j now taking the place of line i and vice versa.
Let us now assume that a diagram has the symmetry factor S. This means that all Green function
lines can be grouped into disjunct classes such that the lines belonging to one class are mapped
onto each other by one of the S symmetry operations. For example, the diagram in 5 has the
classes (1, 2), (3, 6), and (4, 5). Since a diagram with n interaction lines has 2n Green function
lines the number of classes is 2n/S which will be of importance later on.
Next, we want to see the meaning of this definition. In fact, the Luttinger-Ward functional is
the generating functional of the self-energy, or, more precisely,

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων) . (32)

To see this, consider an infinitesimal change Gαβ(k, iων)→ Gαβ(k, iων) + δGαβ(k, iων) as in
Figure 6. The initial diagrams correspond to multiple sums over products of Green functions
where all internal frequencies, momenta, and orbital indices are summed over, subject to the
condition of energy/momentum conservation at each interaction vertex, see (31). The first order
change then also can be viewed as a sum of diagrams but with a single missing line—this
corresponds to the variation δG which has been factored out. Another way to state this is to
say that differentiating with respect to an element of G amounts to successively ‘open’ each
of the lines in the initial closed diagram and sum the remaining diagrams. These remaining
diagrams obviously ‘look like’ self-energy diagrams in that they have two entry points. We
now need to show, however, that the diagrams not only ‘look like’ possible contributions to
the skeleton diagram expansion of the self-energy, but that they come with exactly the right
numerical prefactors. At this point, the additional prefactors of −1/βS turn out to be crucial.
We first note that the momentum and frequency which flow into/out of the diagram are fixed
by the momentum and frequency of δG. As regards the orbital indices, we recall that Gαβ

corresponds to a directed line β → α. The resulting self-energy-like diagrams therefore all
have the matrix index α on their incoming entry and β on their outgoing entry, and comparing
with Figure 4 we see that this assignment of indices corresponds to Σβα. Moreover, all internal
momenta, frequencies, and matrix indices in the remaining diagrams are summed over—subject
to the condition of frequency and momentum conservation at the interaction lines—as would
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Fig. 6: Variation of G implies ‘opening’ the lines of a Feynman diagram.

be the case in the true self-energy diagrams. Second, the order n of a diagram—that means
the number of interaction lines—is not changed by opening a Green function line, so that the
prefactor −1/(β~2N)n of the closed diagram is also the correct prefactor for the resulting self-
energy diagram. Third, opening a Green function line reduces the number of closed Fermion
loops by 1 and the factor (−1) in (− 1

βS
) takes care of this. And, lastly, we need to discuss the

symmetry factor S. Let us consider a diagram with n interaction lines, which accordingly has
2n Green function lines and moreover assume that the diagram has the symmetry factor S. As
we saw above, the 2n Green function lines can be divided into classes of S members which are
mapped into each other by the symmetry operations and the number of these classes is 2n/S. A
symmetry operation maps a Green function line i onto an equivalent one j, so that it is possible
to deform the diagram such that it looks exactly the same as the original one, but with line j
in place of line i. This means, however, that ’opening’ the line i also gives exactly the same
self-energy diagram as opening line j. Accordingly, from the single closed diagram of degree
n with symmetry factor S we obtain 2n/S different skeleton diagrams for the self-energy, and
each is produced S times, see also Figure 7. This factor of S, however, precisely cancels the
prefactor 1/S. It follows, that each skeleton-diagram for the self-energy is produced with same
prefactor 1/β. Differentiating Φ[G] with respect to Gαbeta(k, iων) thus gives 1/β times the sum
of all skeleton diagrams for Σβα(k, iων), with the noninteracting Green function replaced by
the full one, and this is exactly Σβα(k, iων) itself, see (30), so that (32) is proved.

We have just seen, that all skeleton-diagrams for the self-energy can be obtained by differenti-
ating the Luttinger-Ward functional with respect to G, whereby the differentiation corresponds
to ‘opening’ one line in a closed diagram. We then may ask if this operation can be reversed,
namely if the Luttinger-Ward functional can be obtained by starting from the skeleton-diagram
expansion of the self-energy and ‘close’ the diagrams by ‘reconnecting’ the entry-points of the
self-energy by a Green function. More precisely, we consider

1

β

∑
ν,k

∑
α,β

Gα,β(k, iων) Σ
(s,n)
β,α (k, iων). (33)
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1

12

23

3

Fig. 7: The diagram on the left has n = 3 and S = 2 and accordingly 3 classes of symmetry-
equivalent Green function lines. The lines are labeled by the number of the classes, compare
Figure 5 and Table 1. Successively opening the lines of the diagram produces the three different
self-energy diagrams in the center column and each of them is produced S = 2 times. The right
column shows the diagrams redrawn to more look like self-energy diagrams.

We have seen that an nth order diagram contributing to Φ[G] with symmetry factor S produces
2n/S different skeleton-self-energy diagrams, and each of them S times and with a factor of
(−1), so that the remaining prefactor was 1/β. Upon closing the Fermion line again, according
to (33), each of these diagrams produces the original closed diagram (it is easy to see that for
each self-energy diagram there is exactly one closed diagram from which it can be obtained).
Since there are 2n/S self-energy diagrams originating from the original closed diagram the
latter is produced 2n/S times and thus has the additional prefactor−2n/Sβ (the factor of (−1)

is due to the additional Fermion loop in the closed diagram). In the expansion of Φ[G], however,
the diagram would have had the prefactor −1/Sβ, or, put another way, closing the sum of all
nth order skeleton diagrams for Σ, according to (33), produces the nth order contribution to
Φ[G] with an additional prefactor of 2n so that

Φ(n) =
1

2nβ

∑
ν,k

Tr G(k, iων) Σ(s,n)(k, iων). (34)
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Lastly, we give one more comment on the symmetry factors. Readers who wish to study the
original paper of Luttinger and Ward, which is highly recommended, will realize that no sym-
metry factors appear in this work. The reason is that LW carry out their derivation using what
Negele-Orland (NO) call ‘labeled Feynman diagrams’. For example, LW’s equation (17) cor-
responds precisely to NO’s equation (2.96). The derivation in the present notes, however, uses
what NO call ‘unlabeled Feynman diagrams’. The transition between these two types of dia-
grams and the emergence of the symmetry factors thereby is discussed in detail in section 2.3
of NO [7].

3.5 Calculation of ∂Ω̃/∂λ

We proceed to the final step of the proof and compute ∂Ω̃/∂λ. If we vary the interaction
strength λ, there are two places in the expression for Ω′, eqn. (25), where this makes it self felt.
Namely the self-energy Σ will change and moreover the interaction matrix elements V in the
Luttinger-Ward functional (see, e.g., eqn. (31)) which have a prefactor of λ will also contribute
to the variation. Let us first consider the variation of Σ and compute

∂Ω′

∂Σα,β(k, iων)
.

There are three terms in (25) and we consider them one after the other. The first two terms
involve a sum over momentum and frequency and obviously only those terms with momen-
tum k and frequency ων will contribute. Accordingly, in the following equations we omit the
arguments (k, iων) for brevity. Then we find by using the chain rule for differentiation

∂

∂Σα,β

(
− 1

β
ln det

(
−G−1

))
= − 1

β

∑
µ,ν

(
∂

∂(−G−1µ,ν)
ln det

(
−G−1

)) ∂(−G−1µ,ν)
∂Σα,β

= − 1

β

∑
µ,ν

(−Gν,µ) δµ,α δν,β

=
1

β
Gβ,α.

In going to the 2nd line we used the identity from Appendix B and the Dyson equation

−G−1 = −ω − µ+ Σ

from which it follows that
∂(−G−1µ,ν)
∂Σα,β

= δµ,α δν,β.

We proceed to the second term,

∂

∂Σα,β

(
− 1

β
Tr Σ G

)
=

∂

∂Σα,β

(
− 1

β

∑
µ,ν

Σν,µ Gµ,ν

)
= − 1

β

(
Gβ,α +

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

)
.
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Lastly we consider the Luttinger-Ward functional. Using again the chain rule we find

∂Φ[G]

∂Σα,β

=
∑
µ,ν

∂Φ[G]

∂Gµ,ν

∂Gµ,ν

∂Σα,β

=
1

β

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

.

Adding up the three terms we thus obtain the important result

∂Ω′

∂Σα,β(k, iων)
= 0 . (35)

In other words: the expression Ω′, which will be seen to be equal to the grand potential Ω in
a moment, is stationary with respect to variations of the self-energy! This is the stationarity
condition for Σ which is the basis of the VCA.
First, however, we have to complete the proof and evaluate λ ∂

∂λ
Ω′(λ). Since there is no variation

of Ω′ due to a variation of Σ, the only remaining source of variation are the interaction lines in
the Luttinger-Ward functional. Namely any nth order diagram has the prefactor of λn so that

λ
∂

∂λ
Φ(n) = n Φ(n)

Using (34) we thus obtain

λ
dΩ′

dλ
=
∑
n

n Φ(n) =
∑
n

1

2β

∑
ν,k

Tr Gλ(k, iων)Σ
(s,n)
λ (k, iων)

=
1

2β

∑
ν,k

Tr Gλ(k, iων)

(∑
n

Σ
(s,n)
λ (k, iων)

)

=
1

2β

∑
ν,k

Tr Gλ(k, iων) Σλ(k, iων).

Comparing with (29) we see that this is equal to λ ∂
∂λ
Ω(λ) which completes the proof.

Let us summarize the results which we have obtained:

1. The grand canonical potential Ω of an interacting Fermi system is given by (25).

2. The Luttinger-Ward functional is the generating functional of Σ(k, iων), see eqn. (32).

3. The Luttinger-Ward functional depends only on the interaction matrix elements Vαβδγ in
the Hamiltonian and the Green function G which is the argument of the functional.

4. Ω is stationary under variations of Σ(k, iων) see (35).

Looking at the above proof one might worry about the fact that it assumes a continuous evolu-
tion of the system with increasing interaction strength λ, whereas we are also interested, e.g.,
in Mott-insulators where we have reason to believe that a phase transition occurs as a function
of λ. However, Potthoff has recently given a nonperturbative proof of the theorem [12, 11] that
means all of the above properties of the grand potential, the Luttinger-Ward functional and the
self-energy remain valid in a strongly correlated electron system where a Feynman-diagram ex-
pansion of the Green function and the adiabatic continuity with the noninteracting system can
no longer be assumed valid.
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4 Conserving approximations

An important application of the Luttinger-Ward functional is the construction of conserving ap-
proximations. To discuss these, we will use a special form of the Hamiltonian for the remainder
of this section. We assume that the set of quantum numbers reduces to α = r that means we ne-
glect spin for simplicity. To follow the notation common in the literature we denote the electron
creation operator by Ψ †(r) instead of a†α. The Hamiltonian for a homogeneous system is

H =
~2

2m

∫
dr∇Ψ †(r) · ∇Ψ (r) +

1

2

∫
dr

∫
dr′ Ψ †(r)Ψ †(r′)V (r−r′)Ψ (r′)Ψ (r).

We assume that we can always perform a partial integration and drop the surface terms. In this
way the first term in H can be brought to either of the two forms − ~2

2m

∫
drΨ †(r)(∇2Ψ (r)) or

− ~2
2m

∫
dr(∇2Ψ †(r))Ψ (r). Since the system is homogeneous the electron density is n0, indepen-

dent of position. We now assume that the system is acted upon by a perturbation of the form
Hp =

∫
drU(r, t)n(r), i.e., a time dependent real potential U which couples to the electron

density n(r) = Ψ †(r)Ψ (r). Thereby we demand that
∫
drU(r, t) = 0 for all t because a con-

stant component would merely shift the zero of energy and not induce any response. As we
have seen—or rather: quoted from FW—in the first section, the change of the expectation value
of any operator A(r) to first order in U is given by

δ 〈A(r)〉(t) =
1

~

∫
dr′
∫ ∞
−∞

dt′GR
A,n(rt, r′t′)U(r′, t′),

GR
A,n(rt, r′t′) = −iΘ(t− t′)〈[A(r, t), n(r′, t′)]〉th.

Now we may choose A(r) to be the operator n(r) of electron density or the operator of electron
current j(r) = i~

2m

(
(∇Ψ †(r))Ψ (r) − Ψ †(r)∇Ψ (r)

)
. Assuming that in the unperturbed state of

the system there is no current and that the electron density is time independent, the induced
changes must fulfill certain conservation laws:

∂δn(r)

∂t
+∇ · δj(r) = 0,

d

dt

∫
drmδj(r) =

∫
dr
(
−∇U(r, t)

)
δn(r, t)

d

dt
〈H〉 =

∫
dr
(
−∇U(r, t)

)
· δj(r)

The first line is the continuity equation, the second line states that the total momentum of the
electron system changes according to Newton’s law and the third equation states that the change
of the total energy of the system is equal to the work done by the external force (in the sec-
ond equation we have used that by partial integration the right hand side can be converted to∫
drU(r)(∇n(r)) so that the constant component of n does not contribute). Since in general we

have to make some approximation to compute the retarded Green function, however, it is not
a priori clear that these equations are fulfilled. The imaginary time Green functions Gn,n and
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Gj,n can be expressed as limits of the two-particle Green function G2 and the self-energy also
is related to G2, so that approximating Σ by a functional of the Green function gives us also an
approximation for the response function. Building on the work of Luttinger and Ward, Baym
has given a prescription to construct approximations for Σ which guarantee that the resulting
response functions obey all conservation laws and we want to outline his ideas. To simplify the
notation we introduce the ‘compound coordinate’ x = (rτ) and it is understood that operators
such as n(x) which have x as an argument are imaginary-time Heisenberg operators. Moreover
we denote ∫

dx · · · =

∫ β~

0

dτ

∫
dr · · ·

We first generalize the definition of the imaginary-time single particle Green function

G(x, x′)[U ] = − 1

Z[U ]

〈
T

[
Ψ (x)Ψ †(x′) exp

{
1

~

∫
dx1 U(x1)n(x1)

}]〉
th

,

Z[U ] =

〈
T

[
exp

{
1

~

∫
dx1 U(x1)n(x1)

}]〉
th

. (36)

This modified Green function is a functional of the real and time dependent potential U(x) and
depends on τ and τ ′ separately. It is obvious that as U → 0 it reduces to the ordinary Green
function discussed so far. Moreover, using the cyclic property of the trace it can again be shown
that this Green function obeys the same boundary condition G(β~) = −G(0) as the ordinary
Green functions and thus has a Fourier expansion of the type (6). It should be stressed, that this
Green function is defined for imaginary times and has no direct physical interpretation.
We now consider the functional derivative of G with respect to U(x1). This is defined as the
change of G[U ] under an infinitesimal ‘δ-spike’, U(x) → U(x) + εδ(x−x1). One may also
think of the integrals in (36) as the limit of sums over grid points xi, the functional derivative
then is the limit of the derivative with respect to the value of U at the grid point closest to x1.
Using the fact that in the argument of the time-ordering operator T the operators H or n can be
commuted with each other and with both, Ψ and Ψ †, one finds

~
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [Ψ (x)Ψ †(x′)n(x1)]

〉
th

+G(x, x′)n0.

Taking now the limit x′ → x+ = rτ+ we find

lim
x′→x+

~
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [n(x)n(x1)]

〉
th

+ n2
0,

lim
x′→x+

~
i~
2m

(∇′−∇)
δG(x, x′)[U ]

δU(x1)
|U=0 = −

〈
T [j(x)n(x1)]

〉
th

+
〈
j(x)

〉
th
n0.

It should be noted that for U = 0 we have 〈j(x)〉th = 0 so that the second term in the second
equation could have been omitted. The extra terms involving n0 can be absorbed by re-defining
n(x)→ n(x)− n0, i.e., the operator of density fluctuations. We will assume that this has been
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done from now on. The above shows that the time-ordered Green function of the operators
A = n(r) or A = j(r) and B = n(r1) (which gives us the physical response function when
continued analytically to above the real axis) can be obtained by functional differentiation of
the modified Green function (36). In fact the only requirement is that A be quadratic in the field
operators or its derivatives, moreover n(r) can be replaced by any other operator. On the other
hand, the Green function involves the self-energy Σ, which we assume to be approximated as
a functional of the Green function itself: Σ = Σ[G]. The functional derivative—and hence
the response functions—therefore depend on the form of Σ[G]. The question then is if it is
possible to choose the functionalΣ = Σ[G] such, that the resulting response functions obey the
conservation laws. Baym has shown that the answer to this question is affirmative and in fact
the general prescription is to define an approximate Luttinger-Ward functional, which contains
only a subset of all possible diagrams and to then construct Σ according to (32):

Σα,β[G] =
1

KBT

δΦ[G]

δGβ,α

⇒ δΦ[G] = kBT
∑
α,β

Σα,β[G] δGβ,α. (37)

We show that a self-energy constructed in this way obeys the continuity equation: The equation
of motion obeyed by the modified Green function is (we suppress the [U ] on all quantities)(
−~ ∂

∂τ
+

~2∇2

2m
+ µ+ U(r, τ)

)
G(rτ, r′τ ′) = ~ δ(r−r′) δ(τ−τ ′) (38)

+

∫
dr1 V (r−r1)G2(rτ, r1τ, r

′τ ′, r1τ
+).

Here the modified G2 in the presence of U is defined in a completely analogous way as G,
see (36). We now assume that G2 is approximated as a functional of G and replace the approx-
imate G2 by an approximate Σ. Equation (38) then becomes(

−~ ∂
∂τ

+
~2∇2

2m
+ µ+ U(x)

)
G(x, x′) = ~ δ(x−x′) + ~

∫
dx1Σ(x, x1)G(x1, x

′). (39)

Next we form
∫
dx
∫
dx′G(x2, x) · · ·G−1(x′, x3) where · · · stands for either the right or left

side of (39). We use partial integration to convert, e.g.∫
dxG(x2, x)

(
−~∂τ +

~2∇2

2m

)
G(x, x′) =

∫
dx

[(
+~∂τ +

~2∇2

2m

)
G(x2, x)

]
G(x, x′)

(here the property G(β~) = −G(0) of the modified Green function is essential!) and exchange
x2 → x and x3 → x′ in the resulting equation. In this way we obtain(

+~
∂

∂τ ′
+

~2∇′2

2m
+ µ+ U(x′)

)
G(x, x′) = ~δ(x−x′) + ~

∫
dx1G(x, x1)Σ(x1, x

′). (40)

Now we consider the change (with a real function Γ (x))

G(x, x′)[U ]→ eiΓ (x) G(x, x′)[U ] e−iΓ (x
′).
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In other words, if we represent the Green function G(x, x′)[U ] by a directed line from x′→x

it is multiplied by e−iΓ (x′) for the initial point and by eiΓ (x) for the endpoint. In a closed dia-
gram, however, there is one incoming and one outgoing Green function line at every end of an
interaction line V (x−x′) so that the two factors cancel and the value of the diagram remains
unchanged whence δΦ = 0. The crucial point is, that this holds true for each closed diagram
individually, so that δΦ = 0 remains true also for an approximate Luttinger-Ward functional in
which only a subset of diagrams is kept. On the other hand, if we switch to an infinitesimal Γ we
have δΦ = ΣδG and for infinitesimal Γ we have δG(x, x′)[U ] = i(Γ (x)−Γ (x′))G(x, x′)[U ].
It follows that (with [U ] again omitted)

Σ δG = i

∫
dx dx1

(
Γ (x1)− Γ (x)

)
Σ(x, x1)G(x1, x) = 0 .

We now interchange integration variables x↔ x1 in the term containing Γ (x1) and find∫
dx dx1 Γ (x)

(
Σ(x, x1)G(x1, x)−Σ(x1, x)G(x, x1)

)
= 0

Since Γ (x) is infinitesimal but arbitrary the x1 integral must vanish:∫
dx1

(
Σ(x, x1)G(x1, x)−G(x, x1)Σ(x1, x)

)
= 0

We now subtract (39) from (40), let again x′ → x+:

lim
x′→x+

{(
~
∂

∂τ
+ ~

∂

∂τ ′

)
G(x, x′)[U ] +

~2

2m

(
∇′2 −∇2

)
G(x, x′)[U ]

}
= 0,

or, using ∇′2 −∇2 = (∇′ +∇)(∇′ −∇)

∂

∂τ
G(x, x+)[U ]− i∇ ·

[
lim
x′→x+

i~
2m

(∇′ −∇)G(x, x′)[U ]

]
= 0.

Since G(x, x+) = n(x) is the electron density, and the expression in square brackets is the
current density at j(x), the Green function obeys a kind of continuity equation. Now we take
the functional derivative of both sides with respect to U(x′) and let U → 0. This generates a
relation between time-ordered Green functions:

∂

∂τ
Gn,n(rτ, r′τ ′) = i∇ ·Gj,n(rτ, r′τ ′) ⇒ iωνGn,n(k, iων) = k ·Gj,n(k, iων),

and after performing the analytic continuation iων → ω + iε+ we obtain a relation between the
physical response functions

iωG(R)
n,n(k, ω)− ik ·G(R)

j,n (k, ω) = 0 ⇒ ∂

∂t
G(R)
n,n(r, t) +∇ ·G(R)

j,n (r, t) = 0.

The last relation between the response functions, however, does guarantee the validity of the
continuity equation for the fluctuations generated by an arbitrary perturbing potential.
Baym and Kadanaoff [3] have investigated under which conditions the momentum conservation
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Fig. 8: Approximate Luttinger-Ward functional for the GW approximation.

law and the energy conservation law are obeyed as well, and Baym [4] has shown that this is
always true for a self-energy derived from an approximate Luttinger-Ward functional according
to (37). These derivations are more involved, however, so we do not present them here. A
famous example of a conserving approximation is the GW-approximation [13]. This can be
derived from an approximate Luttinger-Ward functional which contains only ‘bubble-diagrams,’
see Figure 8. As discussed by Negele-Orland, the symmetry factor of a bubble-diagram with n
bubbles is 2n, which explains the prefactors. Another famous conserving approximation is the
fluctuation-exchange approximation (or FLEX) [14], which uses a Luttinger-Ward functional
comprising bubbles and ladders and has been frequently applied to the Hubbard model.

5 Conclusion

To summarize, Luttinger and Ward found an expression for the grand canonical potential of
interacting Fermi systems, whereby a key step was the introduction of the Luttinger-Ward func-
tional. This turned out to have additional significance in that it allows the construction of con-
serving approximations. One issue that we did not touch upon in these notes is the relation
to cluster methods which are widely used today. Potthoff has shown [12] that a wide vari-
ety of these cluster methods, such as Dynamical Mean-Field Theory or the Dynamical Cluster
Approximation can be derived by making use of the stationarity of Ω under variation of Σ,
equation (35). All of this shows that the Luttinger-Ward functional is a concept of central im-
portance in many-body theory.
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A A theorem on Fourier transforms

Let f(t) be some function and f(ω) its Fourier transform. Then the Fourier transform of the
function g(t) = −iΘ(±t)f(t) is

g(ω) = ± 1

2π

∫ ∞
−∞

dω′
f(ω′)

ω − ω′ ± i0+
.

To see this we Fourier back-transform g(ω):

1

2π

∫ ∞
−∞

dω e−iωt g(ω) = ± 1

4π2

∫ ∞
−∞

dω e−iωt
∫ ∞
−∞

dω′
f(ω′)

ω − ω′ ± i0+
(41)

We first perform the integral over ω and use the trick of closing the integration path by an
infinitely large semicircle and use the theorem of residues. We denote ω = ω1 + iω2 so that
e−iωt = eω2te−iω1t. For t > 0 (t < 0) we therefore have to close in the lower (upper) half-
plane to guarantee that the semicircle gives no contribution to the integral. Let us for simplicity
consider the upper sign in (41). Then, as a function of ω the integrand has a pole at ω = ω′−i0+

and if we close in the upper half-plane, the integration path does not enclose this pole so that
the ω-integral vanishes. This happens for t < 0 so that the result will be proportional to Θ(t). If
we close along the lower half-plane the integration path encloses the pole in clock-wise fashion
so we get −2πi times the residue:

−iΘ(t)
1

2π

∫ ∞
−∞

dω′ e−iω
′tf(ω′) = −iΘ(t)f(t),

which proves the theorem.
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B A theorem on determinants

Here we prove the identity
∂ ln(detA)

∂Aij
= A−1ji .

We use Laplace’s formula and expand det(A) in terms of minors

det(A) =
∑
l=1,n

(−1)i+l AilMil .

Since none of the minors Mil contains the element Aij , we find

∂ ln(detA)

∂Aij
=

(−1)i+jMij

det(A)

Next, the ith column of A−1 is the solution of the equation system

Ac = ei

where ei is the ith column of the unit matrix. This has all elements equal to zero, except for the
ith, which is one. We use Cramer’s rule and find for the jth element of the ith column

A−1ji =
det(Āj)

det(A)
,

where Āj is the matrix where the jth column has been replaced by ei. Now we use again
Laplace’s formula for det(Āj) and obtain

A−1ji =
(−1)i+jMij

det(A)

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
Then we find

∂ ln(detA)

∂α
=
∑
i,j

∂ ln(detA)

∂Aij

∂Aij
∂α

=
∑
i,j

A−1ji
∂Aij
∂α

= Tr

(
A−1

∂A

∂α

)
.
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13.2 James K. Freericks

1 Introduction

This chapter is all about Green functions. Many-body Green functions are a marvelous tool to
employ in quantum-mechanical calculations. They require a rather large set of mathematical
machinery to develop their theory and a sophisticated computational methodology to determine
them for anything but the simplest systems. But what do we really use them for? Essentially,
there are two main uses: the first is to compute the thermodynamic expectation value of c†c,
which allows us to determine all interesting single-particle expectation values, like the kinetic
energy, the momentum distribution, etc. The second use is to determine the many-body density
of states, which tells us how the quantum states are distributed in momentum and energy. In
large dimensions, Green functions can also be used to determine some two-particle correlation
functions like the optical conductivity, because the vertex corrections vanish. It seems like this
is a lot of work to end up with only a few concrete results. But that is the way it is. No one has
figured out any way to do this more efficiently. If you determine how to, fame and fortune are
likely to follow!

Before jumping into the full glory of the theory, we will give just a brief history. This is one that
focuses on where, in my opinion, the critical ideas originated. It is not intended to be exhaustive
or complete, and, of course, I may be wrong about where the different ideas came from. The
equilibrium theory for Green functions was developed primarily in the 1950s. The Lehmann
representation [1] was discovered in 1954. The Russian school developed much of the perturba-
tive approach to Green functions, which is summarized in the monograph of Abrikosov, Gorkov,
and Dzyaloshinski [2]. Joaquin Luttinger and John Ward developed a functional approach [3]
and Matsubara determined how to solve for thermal Green functions [4]. But the reference I
like the most for clarifying many-body Green functions both in and out of equilibrium is the
monograph by Leo Kadanoff and Gordon Baym [5]. Their approach is one we will follow, at
least in spirit, in this chapter. Of course, Keldysh’s perspective [6] was also important. Seri-
ous numerical calculations of Green functions (in real time and frequency) only began with the
development of dynamical mean-field theory in the 1990s [7]. The generalization to nonequi-
librium began only in the mid 2000’s [8–10], but it was heavily influenced by earlier work of
Uwe Brandt [11–13].

Now that we have set the stage for you as to where we are going, get ready for the ride. The
theory is beautiful, logical, abstract, and complex. Mastering it is a key in becoming a many-
body theorist. We begin in section 2 with a discussion of equilibrium Green functions focused
on the Lehmann representation. Section 3, generalizes and unifies the formalism to the contour-
ordered Green function. Section 4 introduces the self-energy and the equation of motion. Sec-
tion 5 illustrates how to include an external electric field. Section 6 introduces how one solves
these problems within the nonequilibrium dynamical mean-field theory approach. Numerics are
discussed in section 7, followed by examples in section 8. We conclude in section 9.
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2 Green functions in equilibrium and
the Lehmann representation

We begin with the definition of four Green functions in equilibrium: the retarded GR
ijσ(t), ad-

vanced GA
ijσ(t), lesser G<

ijσ(t) and greater G>
ijσ(t). These Green functions are time-dependent,

complex thermal expectation values weighted by the thermal density matrix exp(−βH)/Z ,
with Z = Tr exp(−βH) the partition function. They are defined in terms of the (anticommut-
ing) fermionic creation (annihilation) operators for an electron at site i with spin σ: c†iσ (ciσ).
Time dependence is handled in the Heisenberg picture, where the operators depend on time and
the states do not, given byO(t) = U †(t)OU(t). For a time-independent Hamiltonian, the time-
evolution operator U(t) is simple and expressed as U(t) = exp(−iHt), where we set ~ = 1.
The four Green functions then become

GR
ijσ(t) = −iθ(t) 1

Z
Tre−βH

{
ciσ(t), c†jσ(0)

}
+
, (1)

GA
ijσ(t) = iθ(−t) 1

Z
Tre−βH

{
ciσ(t), c†jσ(0)

}
+
, (2)

G<
ijσ(t) = i

1

Z
Tre−βHc†jσ(0)ciσ(t), (3)

G>
ijσ(t) = −i 1

Z
Tre−βHciσ(t)c†jσ(0). (4)

Here, θ(t) is the Heaviside unit step function, which vanishes for t < 0, is equal to 1 for
t > 0 while we choose it to be 1/2 for t = 0, and the symbol {·, ·}+ denotes the anticommuta-
tor. Note that the fermionic operators satisfy the canonical anticommutation relations, namely
{ciσ, c

†
jσ′}+ = δij δσσ′ . These Green functions can also be defined in momentum space, with

the obvious changes of the subscripts from real space to momentum space—the only signifi-
cant modification is that the Green functions will be diagonal in momentum for translationally
invariant systems—which is all we will study in this chapter.
These definitions may look like they come out of the blue, but the key point to realize is that
when t = 0, the lesser Green function provides precisely the expectation value we need to be
able to calculate any single-particle expectation value. We will see in a moment that the retarded
Green function also leads to the momentum-dependent spectral function and the density of
states. The best way to understand and make sense of these Green functions is with the Lehmann
representation [1]. This allows us to explicitly determine the Green functions as functions of
frequency via a Fourier transformation:

Gijσ(ω) =

∫ ∞
−∞

dt eiωtGijσ(t). (5)

The trick is to insert the resolution of unity (I =
∑

n |n〉〈n| where the |n〉 are the eigenstates of
H such thatH|n〉 = En|n〉) in between the creation and annihilation operators in the definitions
of the Green functions. We illustrate how this works explicitly for the retarded Green function,
where we have

GR
ijσ(t) = −iθ(t) 1

Z
∑
mn

[
〈m|e−βHciσ(t)|n〉〈n|c†jσ|m〉+ 〈m|e−βHcjσ|n〉〈n|ciσ(t)|n〉

]
. (6)



13.4 James K. Freericks

We now use the fact that these states are eigenstates ofH and the Heisenberg representation for
the time dependent operators to find

GR
ijσ(t) = −iθ(t)

∑
mn

e−βEm

Z

[
ei(Em−En)t〈m|ciσ|n〉〈n|c

†
jσ|m〉+ e−i(Em−En)t〈m|c†jσ|n〉〈n|ciσ|m〉

]
.

(7)
Next, we interchange m↔ n in the second term to give

GR
ijσ(t) = −iθ(t) 1

Z
∑
mn

(
e−βEm + e−βEn

)
ei(Em−En)t 〈m|ciσ|n〉〈n|c

†
jσ|m〉. (8)

It is now time to do the Fourier transform. We achieve this by shifting ω → ω + i0+ to make
the integrand vanish in the large-time limit, which finally results in

GR
ijσ(ω) =

1

Z
∑
mn

e−βEm + e−βEn

ω + Em − En + i0+
〈m|ciσ|n〉〈n|c

†
jσ|m〉. (9)

This is already of the form that we can discover some interesting things. If we recall the Dirac
relation 1

ω+i0+ = P
ω
− iπδ(ω) (with P denoting the principal value), we find the local density of

states via

Aiσ(ω) = − 1

π
ImGR

iiσ(ω) =
∑
mn

δ(ω + Em−En)
e−βEm + e−βEn

Z
∣∣〈m|ciσ|n〉∣∣2. (10)

This density of states satisfies a sum rule. In particular,∫ ∞
−∞

dω Aiσ(ω) =
1

Z
∑
n

e−βEn
(
ciσc

†
iσ + c†iσciσ

)
= 1, (11)

which follows from the anticommutation relation of the fermionic operators; note that you can
also see this directly by taking the limit t → 0+ in Eq. (1). This result holds in momentum
space too: the retarded Green function becomes

GR
kσ(t) = −iθ(t) 1

Z
Tre−βH

{
ckσ(t), c†kσ(t)

}
+

(12)

GR
kσ(ω) =

1

Z
∑
mn

e−βEm + e−βEn

ω + Em−En + i0+
〈m|ckσ|n〉〈n|c

†
kσ|m〉, (13)

with the operators being the momentum space operators, determined by a Fourier transform
from real space:

ckσ =
1

|Λ|
∑
j∈Λ

cjσe
−ik·Rj and c†kσ =

1

|Λ|
∑
j∈Λ

cjσe
ik·Rj (14)

Here, the lattice with periodic boundary conditions is denoted by Λ = {Ri} and |Λ| is the
number of lattice sites in the system. We usually do not use a bold font for the momentum
label in the subscript of the creation or annihilation operator; one should be able to figure out
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from the context whether we are working in real space or momentum space. The momentum-
space Green functions have a similarly defined spectral function Akσ(k, ω) = −ImGR

kσ(ω)/π,
which also satisfies a sum rule given by the integral over all frequency being equal to one. One
can easily show that the advanced Green function in frequency space is equal to the Hermitian
conjugate of the retarded Green function, because we need to shift ω → ω − i0+ to control the
integrand at the lower limit. Hence, we have GA

ijσ(ω) = GR
jiσ
∗
(ω).

We also sketch how the calculation works for the lesser and greater Green functions. Here,
we have to control the integrand at both endpoints of the integral. To do so, we split it at 0
and introduce the appropriate infinitesimal convergence factor in each piece. The rest of the
calculation proceeds as above and one finds that the two pieces have their imaginary parts add,
so we finally obtain

G<
ijσ(ω) = 2iπ

1

Z
∑
mn

δ(ω + Em−En) e−βEn 〈m|ciσ|n〉〈n|c
†
jσ|m〉. (15)

The greater Green function similarly becomes

G>
ijσ(ω) = −2iπ

1

Z
∑
mn

δ(ω + Em−En) e−βEm 〈m|ciσ|n〉〈n|c
†
jσ|m〉. (16)

Note that we can use the delta function to immediately infer an important identity, namely
that G<

ijσ(ω) = − exp(−βω)G>
ijσ(ω). Combining this result with the fact that ImGR

ijσ(ω) =

Im[G<
ijσ(ω)−G>

ijσ(ω)]/2, we finally learn that

G>
ijσ(ω) = −2if(ω) ImGR

ijσ(ω) and G<
ijσ(ω) = 2i[1− f(ω)] ImGR

ijσ(ω) (17)

with f(ω) = 1/
(
1+exp(−βω)

)
. This equilibrium relationship is sometimes called the fluctuation-

dissipation theorem.

3 Green functions out of equilibrium and the “contour”

Now we move on to nonequilibrium where the Hamiltonian is time-dependent H(t). The evo-
lution operator depends on two times and becomes U(t, t′) = Tt exp

[
−i
∫ t
t′
dt̄H(t̄)

]
. It sat-

isfies the semigroup property U(t, t′′)U(t′′, t′) = U(t, t′), with U(t, t) = I and i∂tU(t, t′) =

H(t)U(t, t′). The Green functions in nonequilibrium are defined by the same equations as be-
fore, namely Eqs. (1–4), except now they depend on two times, with t′ being the argument of
the c† operator. All of these Green functions require us to evaluate one of two matrix elements.
We examine one of them here and assume t > t′ for concreteness

1

Z
Tr e−βHciσ(t) c†jσ(t′) =

1

Z
Tr e−βHU †(t,−∞) ciσU(t,−∞)U †(t′,−∞) c†jσU(t′,−∞) (18)

=
1

Z
Tr e−βHU(−∞, t) ciσU(t, t′) c†jσU(t′,−∞) (19)

where we used the facts that U †(t1, t2) = U(t2, t1) and the semigroup property to show that
U(t,−∞)U †(t′,−∞) = U(t, t′). The time-evolution operators, including time evolution in
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−iβ

tmax

−∞
(a)

−∞

(b)
tmax −iβ−∞ −∞−∞

Fig. 1: (a) Kadanoff-Baym-Keldysh contour used in the construction of the contour-ordered
Green function. The contour starts at −∞, runs out to the maximum of t and t′, runs back
to −∞ and then runs parallel to the imaginary axis for a distance equal to β. (b) The con-
tour can be “stretched” into a straight line as indicated here, which is convenient for properly
implementing time-ordering along the contour.

the imaginary axis direction for the exp(−βH) term, can be seen to all live on the so-called
Kadanoff-Baym-Keldysh contour, which is shown in Fig. 1. Starting with time at −∞, we
evolve forward to t′, then apply c†, evolve forward to time t, apply the c operator, and then
evolve backwards in time to −∞. The lesser and greater Green functions are easily determined
in this fashion. The retarded or advanced Green functions can then be found by taking the
appropriate differences of greater and lesser functions with the convention that t > t′ for the
retarded case and t < t′ for the advanced case. Now that we have these Green functions, we
can generalize the definition of the Green function to allow both times to lie anywhere on the
contour. We take the time-ordered Green function, with the time-ordering taking place along
the contour, and we call it the contour-ordered Green function

Gc
ijσ(t, t′) =


−i 1

Z
Tre−βH ciσ(t)c†jσ(t′) for t >c t

′

i
1

Z
Tre−βH c†jσ(t′)ciσ(t) for t <c t

′

(20)

where the c subscript on the less-than or greater-than symbol is to denote whether one time is
ahead of or behind the other on the contour, regardless of the numerical values of t and t′. This
Green function is the workhorse of nonequilibrium many-body physics—we use it to calculate
anything that can be calculated with the single-particle Green functions.

Note that in these lectures, we will work with the contour-ordered Green function itself, which
is a continuous matrix operator in time. In many other works, the Green function is further
decomposed into components where the times lie on the same or different branches of the real
contour (2× 2 matrix) [6] or of the two real and one imaginary branches of the contour (3× 3

matrix) [14]. In the 3 × 3 case, one has real, imaginary and mixed Green functions, the last
ones determining the so-called initial correlations. In the 2× 2 case, it is common to transform
the matrix to make it upper triangular, expressing the retarded, advanced and so-called Keldysh
Green functions. In general, I find that these decompositions and transformations make the
material more difficult than it actually is and it is best to defer using them until one has gained
some mastery of the basics. Here, we will work solely with the contour-ordered functions.
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4 The self-energy and the equation of motion

The next step in our analysis is to derive the equation of motion. We start from the definition
of the contour-ordered Green function in Eq. (20) and write it using a unit step function on the
contour, θc(t, t′), which is one for t ahead of t′ on the contour and zero for t behind t′. This theta
function can be used to impose the two conditions. Its derivative with respect to time becomes
a delta function on the contour ∂tθc(t, t′) = δc(t, t

′). The delta function on the contour satisfies∫
c

dt′ δ(t, t′)f(t′) = f(t), (21)

for any time t on the contour (including those on the imaginary spur). Now a simple derivative
of the Green function with respect to time yields the equation of motion (we find it convenient
to illustrate this in momentum space)

i
∂

∂t
Gc
kσ(t, t′) =

1

Z
Tr e−βH

{
ckσ(t), c†kσ(t)

}
+
δc(t, t

′) (22)

+ iθc(t, t
′)

1

Z
Tr e−βH

[
H(t), ckσ(t)

]
c†kσ(t′)

− iθc(t′, t)
1

Z
Tr e−βHc†kσ(t′)

[
H(t), ckσ(t)

]
!

= δc(t, t
′) +

(
εk(t)− µ

)
Gc
kσ(t, t′) +

∫
c

dt′′Σc(t, t
′′)Gc

kσ(t′′, t′). (23)

Here, we assumed that the Hamiltonian (in the Schrödinger picture) takes the form

Hs(t) =
∑
kσ

(
εk(t)− µ

)
c†kσckσ + V (t), (24)

where εk(t) is a time-dependent bandstructure and µ is the chemical potential. The symbol V (t)

is the potential energy operator of the Hamiltonian. The commutator of the potential with the
fermionic destruction operator is complicated—we introduce the contour-ordered self-energy
Σc to describe that cumbersome term—which can be viewed as the definition of the self-energy.
The self-energy appears in a convolution with the Green function (over the entire contour) in
Eq. (23). The equation of motion can be rearranged to look like∫

c

dt′′
((

i
∂

∂t
− εk(t) + µ

)
δc(t, t

′′) +Σc(t, t
′′)

)
Gc
kσ(t′′, t′) = δc(t, t

′). (25)

As we mentioned before, the Green functions are continuous matrix operators. Seen in that
light, it should be clear that the object inside the outer braces is the matrix inverse of the Green
function (since matrix multiplication, implied by the integration over the contour, has the matrix
defined by the braces multiplied by Gc equaling the identity matrix).
At this stage it may look like we are pulling the wool over your eyes. In some sense we are.
We have hidden the difficult question of how to evaluate the commutator of the potential with
the destruction operator, by simply introducing a self-energy which makes the complications
go away. This really would lead us nowhere if we did not have another means by which we can
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determine the self-energy. Fortunately we do, and it will be introduced below. You will have
to wait to see how that fits in. All of the challenge in many-body physics boils down to this
question of “how can we calculate the self-energy?”
Now is also a good time to discuss the issue of how do we work with these complicated ob-
jects? If you look carefully, you will see we are working with matrices. Admittedly they are
continuous matrix operator equations, but like any continuous object, we discretize them when
we want to work with them on a computer. And indeed, that is what we will do here when
we describe the DMFT algorithm below. We always extrapolate the discretization to zero to
recover the continuous matrix operator results. It is important to recognize these facts now, as it
will make your comfort level with the approach much higher as we develop the subject further.

5 Incorporating an external field and the issue of
gauge invariance

I always found it odd in dealing with fields in quantum mechanics to learn that we do not always
respect Maxwell’s equations. This should not come as a surprise to you, because Maxwell’s
equations are relativistically invariant, and quantum mechanics only becomes relativistically
invariant with a properly constructed relativistic quantum field theory. Nevertheless, we choose
to neglect even more aspects of Maxwell’s equations than just relativistic invariance. This
becomes necessary because the quantum problem cannot be solved unless we do this (and,
fortunately, the neglected terms are small).
The main issue we face is that we want the field to be spatially uniform but varying in time.
Maxwell says such fields do not exist, but we press on anyway. You see, a spatially uniform
field means that I still have translation invariance and that is needed to make the analysis simple
enough that it can be properly carried out. We justify this in part because optical wavelengths
are much larger than lattice spacings and because effects of magnetic fields are small due to the
extra 1/c factors multiplying them. Even with this simplification, properly understanding how
to introduce a large amplitude electric field is no easy task.
The field will be described via the Peierls’ substitution [15]. This is accomplished by shifting
k → k−eA(t), which becomes k+eEt, for a constant (dc) field. This seems like the right
thing to do, because it parallels the minimal substitution performed in single-particle quantum
mechanics when incorporating an electric field, but we have to remember that we are now
working with a system projected to the lowest lying s-orbital band, so it may not be obvious
that this remains the correct thing to do. Unfortunately, there is no rigorous proof that this result
is correct, but one can show that if we work in a single band (neglecting interband transitions)
and have inversion symmetry in the lattice, then the field generated by a scalar potential, and
the field generated by the equivalent vector potential will yield identical noninteracting Green
functions [16]. We then assume that adding interactions to the system does not change this
correspondence, so we have an approach that is exact for a single-band model. One should bear
in mind that there may be subtle issues with multiple bands and the question of how to precisely
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work with gauge-invariant objects in multiband models has not been completely resolved yet.
Fortunately, for model system calculations, working with a single band is often sufficient to
illustrate the nonequilibrium phenomena. This is what we do here.
It is now time to get concrete in describing the Hamiltonian we will be working with, which
is the spinless Falicov-Kimball model [17]. This model is nice to work with because it does
possess strongly correlated physics (Mott transition and order-disorder transitions), but it can
be solved exactly within DMFT in both equilibrium and nonequilibrium. Hence, it provides a
nice test case to illustrate the approach we take here. The Hamiltonian, in an electric field is

HS(t) =
∑
k

(
ε(k−eA(t))− µ

)
c†kck + Ef

∑
i

f †i fi + U
∑
i

c†icif
†
i fi , (26)

where we employed the Peierls’ substitution in the bandstructure. Here, the conduction elec-
trons (c) are spinless and do not interact with themselves. They interact instead with the local-
ized electrons (f ), when both electrons are situated on the same lattice site—Ef is the local site
energy of the f -electrons. Note that we use k for momentum and i for position inH. All of the
time dependence is in the kinetic-energy term, because the field does not couple to the localized
electrons (due to the fact that they do not hop). Hence, we have an effective single-band model
and the discussion above about the applicability of the Peierls’ substitution applies.
It is instructive at this stage to determine the noninteracting Green function exactly. We do
this by determining the Heisenberg creation and annihilation operators from which we form
the Green function. In the case where U = 0, one can immediately find that the destruction
operator (in the Heisenberg picture) becomes

ckσ(t) = e
i
t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ

ckσ e
−i

t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ

= e
−i

t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
ckσ .

(27)
There is no need for time ordering here, because the Hamiltonian commutes with itself at dif-
ferent times. This simplification is what allows one to solve the problem easily. By taking the
Hermitian conjugate of Eq. (27), one can substitute in the definitions of the Green functions and
immediately find that

G<
kσ(t, t′) = i

1

Z
Tr e−βH e

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ = ie

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
〈nkσ〉, (28)

where 〈nkσ〉 = Tr e−βHc†kσckσ is the initial equilibrium momentum distribution. We similarly
find that the noninteracting retarded Green function in nonequilibrium is

GR
kσ(t.t′) = −iθ(t− t′) e

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
(29)

there is no equilibrium expectation value here because the anticommutator of the equal-time
fermionic operators is 1. To find the corresponding local Green functions, we simply sum these
expressions over all momenta.
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We next discuss the issue of gauge invariance. This issue is important, because we are required
to perform calculations in a specific gauge but any physically measurable quantity must be
gauge-invariant. So how does this come about? To begin, one should notice that the Peierls’
substitution guarantees that any quantity that is local, like the current, is gauge invariant, be-
cause the sum over all momenta includes every term, even if the momenta are shifted due to the
Peierls substitution. Momentum-dependent quantities, however, appear to depend directly on
the vector potential. To properly formulate a gauge-invariant theory requires us to go back and
formulate the problem (using a complete basis set, not a single-band downfolding) properly to
illustrate the gauge-invariant nature of the observables. No one has yet been able to do this for
a system with a nontrivial bandstructure. For a single-band model, we instead directly enforce
gauge invariance using the so-called gauge-invariant Green functions, introduced by Bertoncini
and Jauho [18]. These Green functions are constructed to be manifestly gauge invariant—the
change in the phase of the creation and destruction operators is chosen to precisely cancel the
change in the phase from the gauge transformation. We determine them in momentum space by
making a shift

k → k(t, t′) = k +

∫ 1
2

− 1
2

dλA

(
t+ t′

2
+ λ(t− t′)

)
. (30)

Note that one needs to be careful in evaluating this integral in the limit as t → t′. In this limit,
we find k → k+A(t). The explicit formula for the gauge-invariant Green function, which uses
a tilde to denote that it is gauge-invariant, is

G̃kσ(t, t′) = Gk(t,t′)σ(t, t′). (31)

The demonstration of the gauge-invariance is given in Ref. [18]. Note that the local Green
functions are always manifestly gauge-invariant because the map k → k(t, t′) is a “one-to-one
and onto” map for any fixed set of times.
We end this section with a discussion of the current operator and how it is related to gauge
invariance. The current operator is calculated in a straightforward way via the commutator of
the Hamiltonian with the charge polarization operator. We do not provide the details here, but
simply note that they can be found in most many-body physics textbooks. The end result is that

j =
∑
σ

∑
k

vk c
†
kσckσ. (32)

Here, we have introduced the band velocity which is given by vk = ∇εk. The gauge-invariant
form of the expectation value for the current is then

〈j〉 = −i
∑
σ

∑
k

vk G̃
<
kσ(t, t). (33)

We can re-express in terms of the original Green functions, by shifting k → k − A(t). This
yields the equivalent formula

〈j〉 = −i
∑
σ

∑
k

vk−A(t)G
<
kσ(t, t). (34)
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As you can easily see, these two results are identical by simply performing a uniform shift of the
momentum in the summation. Generically, this is how different expectation values behave—in
the gauge-invariant form, one evaluates them the same as in linear response, but uses the gauge-
invariant Green functions, while in the non-gauge-invariant form, one evaluates them in a form
similar to linear response, but appropriately shifts the momentum in the terms that multiply the
Green functions (which is a beyond-linear-response “correction”).

6 Nonequilibrium dynamical mean-field theory

The premise of dynamical mean-field theory (DMFT) is that the self-energy of an impurity in
an appropriately chosen time-dependent field is the same as the self-energy on the lattice. In
general, we know this cannot be true, because the lattice self-energy depends on momentum,
and hence is not local. But, if we choose the hopping matrix elements to scale like t = t∗/2

√
d

for a d-dimensional lattice, then one can rigorously show that in the limit d → ∞, the self-
energy does indeed become local [19]. So, in this limit, the DMFT assumption holds and it
provides another limiting case where one can exactly solve the many-body problem (the other
limit being that of d = 1, where one can use the Bethe ansatz).
The physical picture to keep in mind, for DMFT, is to think of looking at what happens just on
a single site of the lattice. As a function of time, we will see electrons hop onto and off of the
site. If we can adjust the time-dependent field for the impurity in such a way that it produces
the same behavior in time on the impurity, then the impurity site will look like the lattice. This
motivates the following iterative algorithm [20] to solve these models: (1) Begin with a guess
for the self-energy (Σ = 0 often works); (2) sum the momentum-dependent Green function
over all momenta to determine the local Green function

Gc
iiσ(t, t′) =

∑
k

((
Gc
kσ(U=0)

)−1 −Σ
)−1

t,t′
, (35)

with Gc
kσ(U=0) the noninteracting momentum-dependent contour-ordered Green function on

the lattice and the subscript denoting the t, t′ element of the matrix inverse); (3) Use Dyson’s
equation to determine the effective medium G0 via(

Gc
0σ

)−1

t,t′
=
(
Gc
iiσ

)−1

t,t′
+Σc(t, t′); (36)

(4) solve the impurity problem in the extracted effective medium (which determines the time
evolution on the impurity); (5) extract the self-energy for the impurity using an appropriately
modified Eq. (36); and (8) repeat steps (2–7) until the self-energy has converged to the desired
level of accuracy. The difference from the conventional iterative DMFT algorithm is that the
objects worked with are now continuous matrix operators in time rather than simple functions of
frequency. Sometimes this creates a roadblock for students to follow how the algorithm works,
but there is no reason why it should. Finally, we note that because each inverse of a Green
function here implies a matrix inversion, we will want to organize the calculation in such a way
as to minimize the inversions. This will be explained in more detail when we discuss numerical
implementations below.
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One of the simplifications in equilibrium DMFT is that the fact that the self-energy has no mo-
mentum dependence allows us to perform the summation over momentum via a single integral
over the noninteracting density of states. Things are not quite as simple for the nonequilibrium
case, as we now discuss. The bandstructure for a hypercubic lattice in d→∞ is given by

εk = − lim
d→∞

t∗√
d

d∑
i=1

cos(ki). (37)

The central limit theorem tells us that εk is distributed according to a Gaussian distribution via

ρ(ε) =
1√
πt∗

e−
ε2

t∗2 . (38)

In nonequilibrium, we have a second band energy to work with

ε̄k = − lim
d→∞

t∗√
d

d∑
i=1

sin(ki), (39)

because the Peierls substitution shifts cos(ki) → cos(ki) cos(Ai(t)) + sin(ki) sin(Ai(t)). The
joint density of states becomes the product of two Gaussians, given by

ρ(ε, ε̄) =
1

πt∗2
e−

ε2

t∗2
− ε̄2

t∗2 . (40)

This second band energy can be thought of as the projection of the band velocity onto the di-
rection of the electric field. Hence, the computation of the local Green function in step (2) is
complicated by requiring a two-dimensional rather than a one-dimensional integration. This
does make the numerics require significant additional resources, especially because the inte-
grands are matrix-valued.
The most challenging part of the algorithm is step (4)—solving the impurity problem in nonequi-
librium. Unfortunately, there are few techniques available to do this. Monte Carlo methods
suffer from the so-called phase problem, which might be able to be tamed using expansions
about a perturbative solution and restricting updates to be nearly local in time via the inchworm
algorithm [21]. The other choice is perturbation theory either in the interaction (which often
does not work so well, except for electron-phonon coupling) or the hybridization of the impu-
rity model (which works well at half filling). Here, we make a different choice, and choose a
simplified model that can be solved exactly, the so-called spinless Falicov-Kimball model [17]

H =
∑
ij

tijc
†
icj − µ

∑
i

c†ici + Ef
∑
i

f †i fi + U
∑
i

c†icif
†
i fi . (41)

This model involves the interaction of conduction electrons (c) and localized electrons (f ). The
conduction electrons can hop on the lattice (we usually take the hopping only between nearest
neighbors on a hypercubic lattice in the d → ∞ limit) and have a chemical potential µ. The
localized electrons have a site energy Ef . Both electrons interact with an on-site interaction U .
The Falicov-Kimball model describes a rich set of physics, but it should not be viewed as a
paradigm for all strongly correlated electrons. This is because it has some aspects that are not
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seen in more common models like the Hubbard model. For example, it is never a Fermi liquid
when U 6= 0, the conduction electron density of states is independent of temperature in the
normal state, and it is never a superconductor. But, it does display a lot of rich physics including
a Mott metal-insulator transition, ordered charge-density-wave phases at low temperature and
even phase separation when the densities of the two species are far enough apart. In addition, the
f -electron density of states does exhibit strong temperature dependence, as expected in strongly
correlated systems. It also displays orthogonality catastrophe behavior. The main interest in the
nonequilibrium context has focused on the fact that it has a Mott transition. The most important
aspect of the model is that it can be solved exactly within DMFT—both in equilibrium and in
nonequilibrium.
We will not go through the details of the equation of motion for the Green functions in the
Falicov-Kimball model to show how one can solve it. The procedure is most efficiently per-
formed using a path-integral formulation because the time-dependent field on the impurity can-
not be easily expressed in terms of a Hamiltonian (unless one introduces a bath for the impurity
which does this). Instead, one can employ functional methods to exactly compute the functional
derivative of the partition function with respect to the dynamical mean-field, which then is em-
ployed to extract the Green function. Then, because the f -electron number is conserved in the
model, we obtain the Green function of the impurity by summing over appropriately weighted
combinations of the solution with no f -electrons and with one f -electron. The end result is
that the impurity Green function for the Falicov-Kimball model in an effective medium is the
following:

Gc
0(t, t′) = (1− w1)Gc

0(t, t′) + w1

[
(Gc

0)−1 − UI
]−1

t,t′
. (42)

The symbol w1 = 〈f †f〉 is the filling of the localized electrons (per lattice site). Since the
f -electron number operator commutes with H, the localized electron number is a constant of
motion and does not change with time, even in the presence of large electric fields. Note that
we will work at half-filling where the electron densities for the conduction electrons and the
localized electrons are each equal to 1/2. This point corresponds to µ = U/2 and Ef = −U/2.
Details not presented here can be found in the original literature [8, 9].

7 Numerical strategies to calculate the Green function

Now we need to sort out just how we implement this algorithm. This discussion closely follows
Ref. [9]. As mentioned above, the challenge is that we are working with continuous matrix
operators, with integration over the contour corresponding to matrix multiplication of these op-
erators. Such objects cannot be directly put onto a computer. Instead, we have to first discretize
the problem, replacing the continuous operators by discrete matrices. There are a few subtle
points that are involved corresponding to the integration measure over the contour when we do
this, but we will precisely describe how we achieve this below. In order to recover the results for
the continuous matrix operators, we need to extrapolate the discretized results to the limit where
the discretization size goes to zero. This is done in the most mundane way possible—simply
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repeat the calculation for a number of different ∆t values and use Lagrange interpolation as an
extrapolation formula to the ∆t→ 0 limit. We finally check sum rules of the data to verify that
the extrapolation procedure worked properly. Details follow.
We first need to be concrete about how the discretization is performed. This involves Nt points
on the upper real branch (ranging from tmin to tmax −∆t), Nt points on the lower real branch
(ranging from tmax to tmin + ∆t), and 100 points along the imaginary axis (ranging from tmin
to tmin − iβ + 0.1i, with β = 10); hence ∆t = (tmax − tmin)/Nt. We often find that fixing
the number of points on the imaginary time branch rather than scaling them in the same fashion
as on the real axis does not cause any significant errors, but it allows the calculations to be
performed with fewer total number of points. The discrete time values on the contour become

tj =


−tmin + (j − 1)∆t for 1 ≤ j ≤ Nt

tmax − (j −Nt − 1)∆t for Nt+1 ≤ j ≤ 2Nt

tmin − 0.1i(j − 2Nt − 1) for 2Nt+1 ≤ j ≤ 2Nt+100

(43)

where we used the fact that the discretization along the imaginary axis is always fixed at ∆τ =

0.1 in our calculations (and we pick the initial temperature to be T = 0.1t∗ or β = 10). We
use a leftpoint rectangular integration rule for discretizing integrals over the contour, which is
implemented as follows: ∫

c

dtf(t) =
2Nt+100∑
i=1

Wif(ti), (44)

where the weights satisfy

Wj =


∆t for 1 ≤ j ≤ Nt

−∆t for Nt+1 ≤ j ≤ 2Nt

−0.1i for 2Nt+1 ≤ j ≤ 2Nt+100

(45)

The leftpoint integration rule evaluates the function at the “earliest” point (in the sense of time
ordering along the contour, see Fig. 1) in the time interval that has been discretized for the
quadrature rule (which is the left hand side of the interval when we are on the upper real branch
and right hand side when we are on the lower real time branch).
One of the important aspects of many-body Green functions is that they satisfy a boundary
condition. This is what determines whether the Green function is bosonic or fermionic. For ex-
ample, you should already be familiar with the fact that the thermal Green functions are antiperi-
odic on the imaginary time axis. The contour-ordered Green function also satisfies a boundary
condition where we identify the points tmin with tmin− iβ. One can show from the definition of
the contour-ordered Green function and the invariance of the trace with respect to the ordering
of operators that Gc

iiσ(tmin, t
′) = −Gc

iiσ(tmin − iβ, t′) and Gc
iiσ(t, tmin) = −Gc

iiσ(t, tmin − iβ).
The proof is identical to how it is done for the thermal Green functions. It involves cyclically
moving a creation operator from the left to the right and commuting the e−βH term through it
which employs the fact that a cyclic permutation of elements in the product of a trace does not
change the value of the trace.
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The delta function changes sign along the negative real time branch, and is imaginary along
the last branch of the contour in order to satisfy the property that

∫
c
dt′δc(t, t

′)f(t′) = f(t). In
addition, we find that the numerics work better if the definition of the delta function is done via
“point splitting” (when we calculate the inverse of a Green function) so that the delta function
does not lie on the diagonal, but rather on the first subdiagonal matrix (in the limit as ∆t → 0

it becomes a diagonal operator). Because we identify the times tmin and tmin − iβ, the point
splitting approach to the definition of the delta function allows us to incorporate the correct
boundary condition into the definition of the discretized delta function. Hence, we define the
discretized delta function in terms of the quadrature weights, in the following way

δc(ti, tj) =
1

Wi

δi,j+1, for integration over j, (46)

=
1

Wi−1

δi,j+1, for integration over i, (47)

where ti and tj are two points on the discretized contour as described in Eq. (43), and Wi are
the quadrature weights described in Eq. (45). We have a different formula for integration over
the first variable versus integration over the second variable because we are using the leftpoint
quadrature rule. Note that the formulas in Eqs. (46) and (47) hold only when i 6= 1. When i = 1,
the only nonzero matrix element for the discretized delta function is the 1, j = 2Nt+100 matrix
element, and it has a sign change due to the boundary condition that the Green function satisfies.
The discretization of the derivative of the delta function on the contour is more complex. It is
needed to determine the inverse of the Gc

0 for the impurity. The derivative is calculated by a
two-point discretization that involves the diagonal and the first subdiagonal. Since all we need
is the discrete representation of the operator

(
i∂ct + µ

)
δc(t, t

′), we summarize the discretization
of that operator as follows (

i∂t + µ
)
δc(tj, tk) = i

1

Wj

Mjk
1

Wk

, (48)

with the matrix Mjk satisfying

Mjk =



1 0 0 ... 1+i∆tµ
−1−i∆tµ 1 0 ... 0

0 −1−i∆tµ 1 0

. . .
0 −1+i∆tµ 1 0

0 −1+i∆tµ 1

. . .
−1−∆τµ 1

. . .
−1−∆τµ 1


, (49)

where ∆τ = 0.1. The top third of the matrix corresponds to the upper real branch, the middle
third to the lower real branch and the bottom third to the imaginary branch. Note that the
operator

(
i∂ct + µ

)
δc is the inverse operator of the Green function of a spinless electron with a

chemical potential µ. Hence the determinant of this operator must equal the partition function
of a spinless electron in a chemical potential µ, namely 1 + exp(βµ). This holds because
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detG−1
non = Znon for noninteracting electrons. Taking the determinant of the matrix Mjk (by

evaluating the minors along the top row) gives

detM = 1 + (−1)2Nt+Nτ−1(1 + i∆tµ)(−1− i∆tµ)Nt−1(−1 + i∆tµ)Nt(−1−∆τµ)Nτ ,

≈ 1 + (1 +∆τµ)Nτ +O(∆t2), (50)

which becomes 1+ exp(βµ) in the limit where ∆t,∆τ → 0 (Nτ is the number of discretization
points on the imaginary axis). This shows the importance of the upper right hand matrix element
of the operator, which is required to produce the correct boundary condition for the Green
function. It also provides a check on our algebra. In fact, we chose to point-split the delta
function when we defined its discretized matrix operator precisely to ensure that this identity
holds.
We also have to show how to discretize the continuous matrix operator multiplication and how to
find the discretized approximation to the continuous matrix operator inverse. As we mentioned
above, the continuous matrix operator is described by a number for each entry i and j in the
discretized contour. We have to recall that matrix multiplication corresponds to an integral over
the contour, so this operation is discretized with the integration weights Wk as follows∫

c

dt̄A(t, t̄)B(t̄, t′) =
∑
k

A(ti, tk)WkB(tk, tj). (51)

Thus we must multiply the columns (or the rows) of the discrete matrix by the corresponding
quadrature weight factors when we define the discretized matrix. This can be done either to the
matrix on the left (columns) or to the matrix on the right (rows). To calculate the inverse, we
recall the definition of the inverse for the continuous matrix operator∫

c

dt̄ A(t, t̄)A−1(t̄, t′) = δc(t, t
′), (52)

which becomes ∑
k

A(ti, tk)WkA
−1(tk, tj) =

1

Wi

δij (53)

in its discretized form. Note that we do not need to point-split the delta function here. Hence,
the inverse of the matrix is found by inverting the matrix WiA(ti, tj)Wj , or, in other words, we
must multiply the rows and the columns by the quadrature weights before using conventional
linear algebra inversion routines to find the discretized version of the continuous matrix operator
inverse. This concludes the technical details for how to discretize and work with continuous
matrix operators.
The next technical aspect we discuss is how to handle the calculation of the local Green function.
Since the local Green function is found from the following equation:

Gc
ii(t, t

′) =
1

πt∗2

∫
dε

∫
dε̄ e−

ε2

t∗2
− ε̄2

t∗2

[(
I−Gc,non

ε,ε̄ Σc
)−1

Gc,non
ε,ε̄

]
t,t′

(54)

with the noninteracting Green function discussed earlier and given by

Gc,non
ε,ε̄ (t, t′) = i

(
f(ε−µ)− θc(t, t′)

)
e−i

∫ t
t′ dt̄
(

cos(A(t̄))ε−sin(A(t̄))ε̄
)
. (55)
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Note that we must have A(t) = 0 before the field is turned on. Of course an optical pump pulse
also requires

∫∞
−∞A(t)dt = 0, because a traveling electromagnetic wave has no dc field com-

ponent. We did not compute the matrix inverse of the noninteracting Green function because
re-expressing the formula in the above fashion makes the computation more efficient (because
matrix multiplication requires less operations than a matrix inverse does).
This step is the most computationally demanding step because we are evaluating the double
integral of a matrix-valued function and we need to compute one matrix inverse for each inte-
grand. Fortunately, the computation for each (ε, ε̄) pair is independent of any other pair, so we
can do this in parallel with a master-slave algorithm. In the master-slave algorithm, one CPU
controls the computation, sending a different (ε, ε̄) pair to each slave to compute its contribu-
tion to the integral and then accumulating all results. The sending of the pairs to each slave
is simple. One has to carefully manage the sending of the results back to the master, because
the data is a large general complex matrix and they are all being received by one node. This is
precisely the situation where a communication bottleneck can occur.
In order to use as few integration points as possible, we employ Gaussian integration, because
the bare density of states for both the ε and the ε̄ integral is a Gaussian. We found it more
efficient to average the results with two consecutive numbers of points in the Gaussian inte-
gration (like 100 and 101) instead of just using 200 points (which would entail twice as much
computation).
The rest of the DMFT loop requires serial operations and is performed on the master to reduce
communications. One does have to pay attention to convergence. In metallic phases, and with
strong fields, the code will converge quickly But when the field is small or the interactions
large, one might not be able to achieve complete convergence. Often the data is still good,
nevertheless. One also should not make the convergence criterion too stringent. Usually 4
digits of accuracy is more than enough for these problems. In most cases, one will need to
iterate as many as 50-100 times for hard cases. But many results can be obtained with ten
iterations or less.
Finally, one has to repeat the calculations for different discretizations and extrapolate to the
∆t→ 0 limit. In order to use as much data as possible, it is best to first use a shape-preserving
Akima spline to put all data on the same time grid and then use Lagrange interpolation as an
extrapolation method to the ∆t → 0 limit. It is critical that one employs a shape-preserving
spline, otherwise it will ruin your results. In addition, we find that quadratic extrapolation
usually works best, but sometimes had to look at higher-order extrapolations. It is best to
extrapolate the data after the desired quantity has been determined as a function of t for all
times on the grid. For example, one would first determine the current by using the lesser Green
function and summing over all momenta for each time and then extrapolate the final current
values as a function of time instead of extrapolating the Green functions, since doing the latter
requires a two-dimensional Lagrange extrapolation and uses large amounts of memory.
Finally we mention that the accuracy can be tested by calculating spectral moment sum rules.
These are known exactly for the retarded Green function (through third-order). At half-filling
they simplify tremendously. We will explore how this works when we discuss some examples
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Fig. 2: Local lesser self-energy for the Falicov-Kimball model at half-filling, β = 1, and U = 1.
The timestep was∆t = 0.05 and the time range ran from−15 ≤ trel ≤ 15. The blue curve is the
exact result and the other colors are different methods for integration over the noninteracting
density of states. The inset shows a blow up of the region at large negative times, where the
different integration methods start to break down. This figure is adapted from Ref. [22].

in the next section. It is important to perform this test on all of your data. It is easy to do and
ensures the data is high quality.
We end this section with a discussion of other methods. Tran showed how one can halve the
dimension of the matrices by working with the retarded and lesser Green functions only [23], but
such an algorithm is harder to code and you need to solve for twice as many Green functions,
so it reduces the computational time by only a factor of two (it may allow for slightly larger
matrices to be handled as well). There is an alternative way to discretize and solve this problem
that integrates the Dyson equation in time in a causal fashion, producing the Green function
along the boundary of the matrix as time increases [24]. It is very efficient, but requires you to
be able to determine the self-energy in a causal fashion from your data at all earlier times. This
is always possible when perturbation theory is used to determine the self-energy. But, while
there should be a way to do this for the Falicov-Kimball model, an explicit method has not yet
been discovered. For the Hubbard model, we have no exact methods available.

8 Examples

We now illustrate how all of this machinery works. The idea is not to provide an exhaustive
review of the research work that has been completed, but rather to illustrate how these ideas
are concretely put into action. As such, we will pick and choose the examples more for their
didactic features than for their importance, or perhaps even their physical relevance.
To start, we focus on equilibrium. The DMFT for the Falicov-Kimball model was solved exactly
in equilibrium by Brandt and Mielsch [11, 12] and is summarized in a review [25]. We take
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Fig. 3: Local lesser self-energy for the Falicov-Kimball model at half-filling, β = 1 and U = 1.
Here, we Fourier transform the data from time to frequency. We use different time discretizations
for the different curves, while the density of states integration used N = 54 and 55 points for
Gaussian integration. The oscillations on the discrete calculations come from the oscillations
in time shown in Fig. 2. This figure is adapted from Ref. [22].

the exact result as a function of frequency and Fourier transform to time. Then we compare
that result with the result that comes out of the nonequilibrium formalism, to understand its
accuracy. In all of this work, we solve the Falicov-Kimball model on a hypercubic lattice at
half filling. In Fig. 2, we plot the (local) lesser self-energy Σ<(t). The calculation used a
fixed ∆t = 0.05 and has U = 0.5. The different curves are for various different integration
schemes over the noninteracting density of states. In one case, we average the N = 54 and
N = 55 Gaussian formulas. In another, we do the same, but with N = 100 and N = 101.
We also compare to a much denser trapezoidal formula with 1000 points. Additionally, we plot
the exact result. One can see the different integration schemes are quite close to each other for
times near zero, but they begin to deviate at large times. The inset focuses on large negative
time and one can quickly conclude that there is a maximum absolute value of time for which
the results are accurate for any integration scheme. Beyond that, the system starts to generate
increasing amplitude oscillations. The disagreement at short times from the exact result stems
from the fact that these calculations are at a fixed ∆t—no scaling to the ∆t → 0 limit were
taken. This gives a sense of the accuracies we can hope to attain with this approach.

In Fig. 3, we plot the Fourier transform of the time data as a function of frequency. The number
of Gaussian points used is N = 54, 55. The time steps are varied and one can see that they are
approaching the exact result. If we used Lagrange extrapolation here, we would get quite close
to the exact result, but we do not include that plot here because it would be too many lines close
to each other. The oscillations in the tail of the data in Fig. 2 is responsible for the oscillations
at negative frequency seen in the data. Those oscillations will remain even after scaling to the
∆→ 0 limit. One can clearly see how the extrapolation method works for this case.
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Fig. 4: Local lesser Green function for the Falicov-Kimball model at half-filling, β = 1 and
U = 1. The parameters are the same as in the previous figure. The main plot is the imaginary
part (which becomes symmetric for the exact result, and the inset is the real part, which becomes
antisymmetric. This figure is adapted from Ref. [22].

In Fig. 4, we do a similar plot in the time domain for the lesser Green function. Note that the
real part of the lesser Green function (inset) is an odd function when we are at half-filling due
to particle-hole symmetry. Similarly, the imaginary part in the main panel is even for the exact
result. One can clearly see how the extrapolation will work to approach the exact result if we
did the full extrapolation of this data.
Now that we have gotten our feet wet with the numerics, we are ready to discuss some physics.
At half-filling, there are enough conduction electrons to fill half of the sites of the lattice and
similarly for the localized electrons. In this case, if the repulsion between the two species
is large enough, they will avoid each other and the net effect is that the system becomes an
insulator because charge motion is frozen due to the high energy cost for double occupancy.
We can see this transition occur in Fig. 5, which is the local density of states at half-filling for
different U values. As U is increased we evolve from the initial result, which is Gaussian for
no interactions to results where a “hole” is dug into the density of states until if opens a gap at a
critical value of U called the Mott transition. Beyond this point, the system has a gap to charge
excitations.
Next, we illustrate how the density of states evolves in a transient fashion in time after a dc
field is turned on. In Fig. 6, we show a series of frames at different time snapshots that plot the
transient density of states (imaginary part of the local retarded Green function) as a function
of frequency. One can see that the system starts off in a near Gaussian density of states and
then develops features that are quite complex. The infinite-time limit is solved using Floquet
nonequilibrium DMFT theory [27–29]; unfortunately, we are not able to describe the details
for how that problem is solved. But there are a few important features to notice. Both before
the field is applied and long after it has been applied, the system has a positive semidefinite
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Fig. 5: Local density of states for the Falicov-Kimball model in equilibrium and at half-filling.
The calculations are in equilibrium, where the density of states is temperature independent in
the normal state. The curves are for different U. One can see as U increases we cross through
a Mott transition at U ≈

√
2.

density of states. This is the same as in equilibrium and it allows the density of states to be in-
terpreted probabilistically. But in the transient regime, it often becomes negative. Furthermore,
because the density of states is determined via a Fourier transformation, one cannot just say it
corresponds to a spectra at a specific average time. Instead it senses times near the average time
governed by how rapidly the Green function decays in the time domain.

There is a lot of physics in these figures. If there were no interactions, the system would
undergo Bloch oscillations, because the electrons are not scattering. The density of states then
is the Fourier transform of a periodic function, which leads to delta function peaks forming a
so-called Wannier-Stark ladder, with the separations given by the dc field E that is applied to
the system. When interactions are added in, the Wannier-Stark ladder is broadened, but also
split by the interaction U. This occurs because a delta function has a zero bandwidth and hence
is highly susceptible to the Mott transition, even for relatively small interactions.

Next, we move on to examining the transient current (Fig. 7). We use the same case we have
been examining throughout this brief summary—U = 0.5 and β = 0.1. Here the dc field is
E = 1. One can see the current starts of as a weakly damped Bloch oscillations (underdamped).
It dies off and remains quiescent for some time and then starts to recur at the longest times. The
characteristic Bloch oscillation occurs for both metals and insulators, but it is damped much
more rapidly in insulators because they interact more strongly. This is one of the common
observables measured in a nonequilibrium experiment. But it is not measured directly, because
oscilloscopes are not fast enough to see them.

Finally, we show how the sum rules hold and illustrate why it is important to scale results to the
∆t→ 0 limit. We pick a case which is challenging to calculate,E = 1 and U = 2. This is in the
Mott insulating phase, where the numerics are much more difficult to manage. We primarily use
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Fig. 6: Transient local density of states for the Falicov-Kimball model in a dc electric field with
U = 0.5, β = 0.1 and E = 1 at half-filling. The different panels are labelled by the average
time of the spectra. One can see that quite quickly after the dc field is turned on, the retarded
Green function approaches the steady state. These results are adapted from [26].

the sum rules to indicate whether the calculations are accurate enough that they can be trusted.
As shown in Fig. 8, we can see that the raw data can be quite bad, but the final scaled result ends
up being accurate to 5% or less! Note how the results are worse on the equilibrium side (to the
left) than on the nonequilibrium side (to the right) and they approach the exact results on the
nonequilibrium side. Hence, these calculations are most accurate in moderate to large fields.
This ends our short representative tour of some numerical results that can be calculated with
this nonequilibrium DMFT approach.
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Fig. 7: Transient current for E = 1, U = 0.5 and β = 0.1. These results use ∆t = 0.1 and are
not scaled. Notice how they start off as a Bloch oscillation, but are damped by the scattering
due to the interaction U . They die off and then start to have a recurrence at the longest times
simulated. At the earliest times the current is nonzero simply because we have not scaled the
data. Scaling is needed to achieve a vanishing current before the field is turned on. These
results are adapted from Ref. [9].

Fig. 8: Sum rules for the local retarded Green function for E = 1 and U = 2. Here, we
illustrate how one can use sum rules to verify the scaling to ∆t→ 0 has been done accurately.
The zeroth moment sum rule equals 1 and the second moment sum rule equals −(1/2 + U2/4).
We plot the raw data versus time, the exact result, and the extrapolated result. One can see that
even if the raw data was off by a huge amount, the final extrapolated data works extremely well.
These results are adapted from Ref. [30].
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9 Conclusions

These lecture notes have been somewhat brief due to the page constraints of this contribution
(and the time constraints of its author). Nevertheless, I have tried to present enough informa-
tion here that you can follow the logic, reasoning, and even develop the formalism for yourself
if you want to engage in these types of calculations. The field of nonequilibrium many-body
physics is wide open. There are new and interesting experiments performed every day and the
theory to describe them still needs further development. We do have a number of successes.
The approach can be used for optical conductivity [10, 31], time-resolved angle-resolved pho-
toemission [32], Raman scattering [33], x-ray photoemission spectroscopy and x-ray absorption
spectroscopy [34], and resonant inelastic x-ray scattering [35]. The challenge is always about
how far out in time can a simulation go. If you have a good idea for a nonequilibrium solver
for a Hubbard impurity, I encourage you to give it a try. We really need it. I also hope you will
enjoy working with many-body Green functions in the future. They are truly wonderful!
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linear response of ‘smart’ materials to an electric field,
in D.E. Post (ed.): Proceedings of the HPCMP Users Group Conference, Nashville, TN,
June 28–30, 2005 (IEEE Computer Society, Los Alamitos, CA, 2005) pp. 25–34



13.26 James K. Freericks

[23] M.-T. Tran, Phys. Rev. B 78, 125103 (2008)

[24] G. Stefanucci and R. van Leeuwen: Nonequilibrium many-body physics of
quantum systems: A modern introduction (Cambridge University Press, 2013)

[25] J.K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)
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1 Introduction

The nanometer size, the perfect reproducibility and, at the same time, the huge variety of chem-
ical compounds make molecular electronics an attractive bottom up approach to the quest of
circuit miniaturization [1, 2]. A single-molecule junction (SMJ) is the archetypal device: ide-
ally it only consists of a molecule contacted to metallic electrodes. Despite their deceptive
simplicity, such devices explore a whole range of complex phenomena. Their electronic trans-
port characteristics carry the fingerprints of the contacted molecule, primarily its correlated
electronic structure, but also its mechanical excitations, spin dynamics, the response to external
stimuli, as illumination, electrostatic gating, mechanical stress, or temperature gradient [3].
Here we will concentrate on the signatures of electronic correlation. Firstly, we can classify the
effects of electronic correlation in extrinsic and intrinsic. Both of them stem from the interplay
of electron-electron interaction on the molecule and the coupling to the electrodes. Extrinsic
effects, though, (e.g. the Kondo [4–6], Yu-Shiba-Rusinov resonances [6–8], and many-body in-
terference [9–12]) rely, for their appearance, on a specific property of the lead or of its coupling
to the molecule. Intrinsic correlation phenomena, instead, arise directly from the entangled
nature of the molecular eigenstates. The coupling to the leads is here only a tool to probe the
electronic correlation and translate it into a specific transport signal. Examples of such effects
are the excitonic dynamics [13], the equilibrium and non-equilibrium spin crossover [14–17],
the magnetic anisotropy in single-molecule magnets [18–20], the charge dependent tunneling
barrier modification [21] or the apparent orbital inversion discussed below [22]. Intrinsic corre-
lation effects can only be captured within a many-body description of the molecular electronic
structure. The latter is theoretically understood, in absence of major structural relaxations, as
the complete set of eigenstates and eigenvalues of the Hamiltonian

Ĥmol =
∑
i

εin̂i +
1

2

∑
ijkl

∑
σσ′

Vijkl d̂
†
iσd̂
†
jσ′ d̂kσ′ d̂lσ , (1)

where the first term includes the (single particle) molecular orbital energies εi with the cor-
respondent occupation operator n̂i and the second describes the electron-electron interaction
among the electrons. In its elementary form, the state of the molecule is given by the occupa-
tion of molecular orbitals according to the Pauli exclusion principle, thus neglecting electron-
electron interaction. In the ground state all levels up to the highest occupied molecular level
(HOMO) are filled, leaving empty the higher energy ones starting with the lowest unoccupied
molecular level (LUMO). Transitions from an occupied to an empty level, or the addition (re-
moval) of electrons, account for all electronic excitations. Such a description neglects correla-
tions and assumes the electrons to be independent, thus giving many-body wave functions in the
form of single Slater determinants. The simplest model able to describe the extrinsic correlated
transport phenomena is the Anderson impurity model, in which the impurity Hamiltonian is of
the form of Eq. (1) with a single orbital and the four associated eigenstates are the uncorrelated
single Slater determinants

|0〉 = |∅〉, |↑ 〉 = d̂†↑ |∅〉, |↓ 〉 = d̂†↓ |∅〉, |2〉 = d̂†↑d̂
†
↓ |∅〉.
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For more complex systems with a finite spatial extension different approximation schemes can
be applied. In general, the long range, slow varying contribution of the Coulomb interaction
can be incorporated within a mean-field approach, giving rise to occupation dependent shifts in
the orbital energies and changes in the orbital shapes (orbital mixing). The short range, rapidly
decaying contribution is instead responsible for exchange and correlation effects which can only
be captured within a multi Slater-determinant description. A strong coupling to the metallic
electrodes typically justifies (due to the hybridization and efficient metallic screening) a single-
particle approach with independent electrons and mean field treatment. In the weak-coupling
regime, electronic correlations become relevant as soon as the single-particle level splitting
εi − εj is comparable to the exchange Vijij or pair hopping Viijj energies. The discussion of
intrinsic correlation phenomena arising in this regime is the main focus of these lecture.

2 Spectroscopy and topography with atomic contact control

A crucial role in a SMJ is played by the contacts. Different anchoring groups have been adopted
to connect the molecule to the electrodes, ranging from thiol, to amine, or even fullerenes [23].
Also the direct contact of conjugated molecules with platinum electrodes have been investi-
gated [24]. Correspondingly, a variety of mechanical stability and electronic coupling strengths
have been reported. The common denominators and the technological challenge remains,
though, the strong dependence of the transport characteristics on the precise contact config-
uration, down to the atomic scale.
As such, this strong contact dependence could undermine the reproducibility of the experimen-
tal results. Mainly, two approaches have been taken to overcome this problem, with completely
opposite perspectives. On the one hand the break-junction technique averages over the con-
tact fluctuations. Its goal is to identify the molecular fingerprints as persistent patterns in a
statistical average of thousands of current traces [25–27]. On the contrary, ultra-high-vacuum
low-temperature scanning tunneling microscopy minimizes the contact fluctuations. With this
technique, also in combination with atomic force microscopy (AFM), one can achieve the most
detailed characterization of both the tip [28] and the substrate electrodes. Even the position and
orientation of the molecule with respect to the underlying crystal structure can be repeatedly
monitored during the experiment.
Ideally, intrinsic electronic correlations are fully accessible only if both the spectrum and the
eigenstates of a molecule are investigated within the same experiment. Scanning tunneling
microscopy (STM) gives such a possibility [21, 22, 29–34] as one records the current by vary-
ing both the bias voltage and the tip position. Similarly to other electronic transport experi-
ments [16, 18, 19, 35], the excitation spectrum is obtained by means of tunneling spectroscopy,
i.e., by analyzing the peaks of the differential conductance. The current measured as a function
of tip position gives, instead, access to the eigenstates. More precisely, the transitions between
molecular many-body eigenstates are visualized, i.e., the quasiparticle wave function [36–39]

φ(r ; N,E,E ′) = 〈N,E|ψ̂(r)|N+1, E ′〉, (2)
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where N is the particle number on the molecule before the transition connecting states with
energies E and E ′, while ψ̂(r) is the electronic field operator. The quasiparticle wave function
plays also an important role in the Liouville approach to transport theory which we will present
in Sec. 3. If we express the field operator ψ̂(r) in terms of the complete set of the molecular
orbitals (i.e., the eigenfunctions of the single-particle Hamiltonian), ψ̂(r) =

∑
i ψi(r) d̂i, we see

that the quasi-particle wave function coincides, for uncorrelated systems, with the molecular
orbital, while deviations from this picture are expected as far as correlation steps in.
Particularly interesting to this extend, have been the realization of an STM with a thin insu-
lating layer (a few monolayers) interposed between the molecule and the underlying metallic
substrate. This technique, pioneered in the group of prof. G. Meyer [29], allows to select a single
many-body transition and to visualize the corresponding quasiparticle wave function [22, 33].
The partial decoupling of the molecule from the metallic substrate enhances the intrinsic prop-
erties of the molecule. Recently, the concept has been further developed and measurements
on insulators have been realized. The read-out of the electronic transitions is performed in the
context of non contact atomic force microscopy [40].

3 Liouville approach to correlated transport

The problem of calculating the transport characteristics for a strongly interacting system cou-
pled to leads still lacks a unifying solution able to cope with non-equilibrium boundary con-
ditions in all transport regimes, despite great efforts to fill this gap [41–45]. Non-equilibrium
Green’s functions [46] remain the method of choice for systems with strong tunneling coupling
to the leads, the interaction on the system been treated perturbatively. In the opposite limit, Li-
ouville approaches [47] are the natural choice when the goal is the exact treatment of the strong
correlated system, at the prize of a perturbative treatment of the tunneling coupling.

3.1 General transport theory

We briefly review here the second approach, which takes its name from the Liouville-von Neu-
mann equation for the density matrix

˙̂ρ = − i
~

[
Ĥ, ρ̂

]
≡ Lρ̂ , (3)

where ρ̂ is the density operator, L the Liouville superoperator and Ĥ the total Hamiltonian for
the nanojunction. The latter can be split into the three components

Ĥ = Ĥmol + Ĥleads + Ĥtun , (4)

where the Ĥmol describes the (strongly interacting) molecule, Ĥleads the (non interacting) leads
and Ĥtun takes care of the tunneling coupling which transfers electrons between the leads and
the molecule. Within this formal separation one envisages the purpose of the Liouville ap-
proach to derive, from the exact but intractable Eq. (3), an effective equation for the reduced
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density operator ρ̂red ≡ Trleads ρ̂, which describes only the evolution of the molecule, although
in presence of the leads.
The molecule and the leads are taken as initially independent ρ̂(0) = ρ̂mol(0) ⊗ ρ̂leads with the
left and right lead in local thermal equilibrium

ρ̂leads =
1

ZG,L
e−β(ĤL−µLN̂L) ⊗ 1

ZG,R
e−β(ĤR−µRN̂R), µL − µR = eVbias, (5)

where Ĥleads = ĤL+ĤR, N̂η is the particle number operator of lead η = L,Rwith electrochem-
ical potential µη, ZG,η is the grand canonical partition function, and Vbias is the potential drop
across the junction. Entanglement between the molecule and the leads is induced by the tunnel-
ing dynamics. We concentrate, though, only on its influence onto the separable component of
the density operator P ρ̂(t) = ρ̂red(t)⊗ ρ̂leads. The latter fulfills the following integro-differential
equation of motion

P ˙̂ρ(t) = LmolP ˙̂ρ(t) +

∫ t

0

K(t−s)P ρ̂(s) ds (6)

with the propagator kernel given by

K(t−s) = PLtune
(Lmol+Lleads+QLtunQ)(t−s)LtunP , (7)

where we have introduced the projector operatorQ = 1−P and the Liouvillean superoperators
Li = − i

~ [Ĥi, •] for each component of the Hamiltonian. See Appendix A for a derivation
of Eq. (6) and (7). The latter are still exact and indicate, through the time dependent kernel,
the emergence of memory in the molecular dynamics due to the coupling to the leads. This
contribution, dissipative in the limit of large leads, adds to the time local coherent evolution of
the isolated molecule represented by Lmol. Differently from the Pauli master equation obtained
by further approximations, Eq. (6), also called quantum master equation or Generalized Master
Equation (GME) keeps coherences among molecular states essential, for example to capture
interference effects even in the weak coupling limit [9, 11, 12, 48, 49].
The goal of a transport theory is the calculation of the electrical current through the system. The
latter is formally derived starting from its definition of variation of the average particle number
in the lead, Iη(t) = ed〈N̂η〉

dt
with η = L,R, and reads

Iη(t) = Tr

[∫ t

0

KIη(t−s)P ρ̂(s) ds
]
, (8)

where the trace is taken over the molecule and the leads Fock spaces. Moreover, the current
kernel is written

KIη(t−s) = P Îηe (Lmol+Lleads+QLtunQ)(t−s)LtunP , (9)

where Îη is the time derivative of the number operator of lead η in the Heisenberg picture
calculated at the initial time. From the expressions above it is clear how the formalism is ready
to incorporate transient time dependent phenomena which arise due to the non-equilibrium
condition induced by the leads. With some more effort even time dependent Hamiltonians
can be included, but this goes beyond the scope of this lecture. We will analyze instead the
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stationary limit (DC current) associated to a time independent bias voltage across the single-
molecule junction. Due to the convolutive form of the kernels in Eq. (7) and (9) is it useful to
go into the Laplace space. The stationary reduced density matrix is obtained, thanks to the final
value theorem, as the solution of the equation[

Lmol + K̃(0)
]
P ρ̂(t→∞) = 0 , (10)

where, by definition of the Laplace transform, K̃(0) = limλ→0+
∫∞

0
e−λtK(t)dt. The stationary

current thus reads
Iη(t→∞) = Tr

[
K̃Iη(0)P ρ̂(t→∞)

]
. (11)

An explicit expression of the propagator and the current kernels depends on the specific form of
the Hamiltonian. At this point it is useful to note that a systematic expansion of Eq. (7) and (9) in
powers of the tunneling Liouvillean Ltun yields a consistent perturbation theory to be handled
order by order within a diagrammatic approach [50]. Non perturbative effects like (energy
dependent) level broadening due to quantum fluctuations, negative tunneling magnetoresistance
[51, 52], and even precursors of the Kondo physics [42, 53, 54] have been obtained by infinite
resummations of certain classes of diagrams.

3.2 Second-order perturbation

We consider here the second-order perturbation in the tunneling Hamiltonian which, as can be
seen from Eq. (6), is the lowest non vanishing order in the propagator kernel. To fix the ideas,
let us consider the following leads and tunneling Hamiltonians

Ĥleads =
∑
ηkσ

εηkσ ĉ
†
ηkσ ĉηkσ , (12)

with the momentum k and the spin σ of the quasi free electron in the lead η and

Ĥtun =
∑
ηkσnp

p tpηkσn d̂
p
nσ ĉ

p̄
ηkσ , (13)

where p = ± with the convention ĉ+ = ĉ† and ĉ− = ĉ and analogously for the operators d̂nσ
associated to the molecular orbital n with spin σ. The tunneling amplitudes tpηkσn, being pro-
portional to the overlap of the lead and the molecule wave functions, keep track of the geometry
of the contact. For them we define t+ = (t−)∗. Once the tunneling and the leads Hamiltonian
are defined, we can calculate explicitly the action of the projection operators P in Eq. (7) and
obtain the expression of the second-order kernel

K̃(2)(0) = − i

2π

∑
α1α2

∑
pησ

∑
nm

∫
α1α2 Γ

p
nm(ε, ησ)Dp̄nσα2

f
(pα1)
η (ε)

pε− i~Lmol + i0+
Dpmσα1

dε . (14)

The superoperatorsDp̄nσα describe the action of a creation (annihilation) operator of the molecule
when acting from the left (α = +1) or from the right (α = −1), i.e.,

Dpnσ+ ρ̂ ≡ d̂pnσ ρ̂, Dpnσ− ρ̂ ≡ ρ̂ d̂pnσ .
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The second-order kernel accounts for tunneling events in which only one lead at a time is
involved. The direction of the tunneling event (to or from the lead maintained in local ther-
mal equilibrium) is reflected in the Fermi distribution function, f+

η (ε) = 1/(1+eβ(ε−µη)) and
f−η (ε) = 1−f+

η (ε). Finally, the geometry of the contact is included in the single-particle rate-
matrix Γ p(ε, ησ) which reads

Γ p
nm(ε, ησ) =

2π

~
∑
k

tp̄ηkσnt
p
ηkσm δ(ε−εηkσ). (15)

By tracing Eq. (6) over the leads degrees of freedom and projecting on the (correlated) many-
body eigenstates of Ĥmol we obtain a set of equation for the populations and coherences of the
reduced density matrix, i.e., its diagonal and off-diagonal elements, respectively. The kernel
K̃(2)(0) and eventually also the current through the system is thus expressed in terms of many-
body rates. For example,

Rησ
NE→N+1E′ =

∑
nm

〈NE|dnσ|N+1E ′〉Γ+
nm(E

′−E, ησ)〈N+1E ′|d†mσ|N E〉f+(E ′−E−µη)

(16)
is the rate of change of the population of the state with N particles and energy E due to tran-
sitions towards the state with N+1 particles and energy E ′. For an STM set up with an s-
symmetry tip, according to Chen’s derivative rule [55], the tunneling amplitude is proportional
to the molecular orbital at the tip position. The many-body rate in Eq. (16) is proportional to the
modulus square of the quasi-particle wave function given in Eq. (2). Since the tip transitions
are, typically, the bottle-neck of the electronic dynamics, the spatial dependence of the current
will thus resemble the quasi-particle wave function. The latter reduces to the molecular orbital
in absence of intrinsic correlations. Admixtures of p or d symmetry components of the tip wave-
function enhance the corrugation in the imaging of the molecular states by introducing compo-
nents of the current proportional to higher derivatives of the quasiparticle wave function [56].
Coherences in the density matrix become relevant only in presence of quasi-degenerate many-
body levels (∆E < ~Γ ) and for tunneling matrices associated to the leads which cannot be
simultaneously diagonalized, i.e., in the absence of independent transport channels. It is under
these conditions that many-body interference dominates the transport, leading to the formation
of coherent trapping and dark states [12]. Under such conditions, the kernel K̃(2) is also respon-
sible of an effective internal dynamics, which is not described in terms of tunneling, but rather
as a Lamb shift correction which adds to the molecule Hamiltonian [10, 48, 57, 58].
Summarizing, the most general equation of motion for the reduced density matrix, written up
to second-order perturbation in the tunneling to the leads, reads

˙̂ρred = − i
~
[Ĥmol+Ĥ

(2)
LS , ρ̂red] + L(2)

tun ρ̂red . (17)

Eq. (17) represents the starting point for the study of the intrinsic correlated transport phenom-
ena presented in the next section.
The calculation of the spectrum and the many-body eigenstates of the molecular Hamiltonian is
addressed within a mixed approach which aims, as much as possible, to combine the accuracy of
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the ab-initio methods with the simplicity of the model. As a first step, a set of molecular orbitals
is extracted from a tight binding model (or a DFT calculation). A limited set of N frontier
orbitals is subsequently chosen for setting up a fully interacting Hamiltonian Eq. (1) which
is diagonalized numerically in the complete 4N dimensional Fock space. In this correlated
many-body basis we evaluate the GME for the reduced density matrix, Eq.(17), and discuss the
transport phenomena which characterize the different single-molecule junctions.

4 Examples of intrinsic correlated transport phenomena

4.1 Dynamical spin crossover

As a first example of a correlated phenomenon we consider the spin crossover induced on a
metal-organic molecule under non-equilibrium conditions. Spin-crossover metal-organic com-
pounds play a prominent role [14–16, 19, 59] in the emergent field of molecular spintronics.
Spin crossover is the transition between metastable spin states under the influence of external
stimuli [60]. The many-body exchange interaction of the d-electrons on the metal center, in
combination with the crystal field generated by the surrounding ligand, determines their spin
state. In three-terminal devices, the gate electrode used to tune the charge also governs the
associated spin state [16, 19, 59]. Metal-organic molecules have also come in the focus of
STM experiments [14, 15, 32]. More generally, the role itself of many-body effects in STM
single-molecule junctions is receiving increasing attention, both theoretically [33, 37–39, 57]
and experimentally [14, 15, 21, 33].
In this section we demonstrate the appearance of a non-equilibrium high-spin state in CuPc
on an insulating substrate caused by many-body correlations. We illustrate that, for a given
substrate work-function, it is possible to control the effective ground state of the molecule by
varying the tip position or the bias voltage across the junction. The only requirements for this
genuine many-body effect are an asymmetry between tip and substrate tunneling rates, which
is naturally inherent to STM setups, and an energetic proximity of an excited neutral state of
the molecule to its anionic ground state. As discussed below, the experimental set-up is similar
to that of Ref. [21], but with a slightly larger work-function for the substrate. Control over the
work-function can be achieved by choosing different materials or crystallographic orientation
for the substrate, with effects analogous to a discrete gating of the molecule. Several approaches
to gate an STM junction have been also recently investigated [61–63].
Many-body Hamiltonian and spectrum of CuPc: To properly describe the many-body electronic
structure of CuPc is by itself a nontrivial task, since the relatively large size of the molecule
makes it impossible to diagonalize exactly a many-body Hamiltonian written in a local, atomic
basis as done for smaller molecules [9,64,65]. STM transport experiments on single-molecules,
however, are restricted to an energy window involving only the low-lying states of the molecule
in its neutral, cationic and anionic configuration, with the equilibrium configuration at zero bias
set by the work-function φ0 of the substrate [21]. This allows one to use a restricted basis of
frontier orbitals to construct the many-body Hamiltonian [20, 66]. For example, for a copper
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Fig. 1: (a) Frontier orbitals used for the many-body calculation, in their complex represen-
tation. The color code shows the phase of the wavefunctions. (b), (c) Full and low-energy
cutout, respectively, of the many-body spectrum of CuPc at chemical potential µ= − 4.65 eV.
(d) Scheme of the lowest-lying many-body states. From [17].

substrate as in [21] is φ0 = 4.65 eV, and CuPc in equilibrium is in its neutral ground state.
Thus, in the following we only retain four frontier orbitals of CuPc, the SOMO (S), the HOMO
(H) and the two degenerate LUMO (L±) orbitals, see Fig. 1(a). In equilibrium, the molecule
containsN0 = 3 frontier electrons. In this basis, all matrix elements of the Coulomb interaction
are retained. Hence, besides Hubbard-like density-density interaction terms, our model also
includes exchange and pair hopping terms, which ultimately are important for the structure and
spin configuration of the molecular excited states.
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The Hamiltonian of CuPc in the basis of the four single-particle frontier orbitals reads

Ĥmol =
∑
i

ε̃i n̂i +
1

2

∑
ijkl

∑
σσ′

Vijkl d̂
†
iσd̂
†
jσ′ d̂kσ′ d̂lσ, (18)

where i = S,H,L± and σ is the spin degree of freedom. The energies ε̃i = εi + ∆i contain
the single-particle molecular energies εi obtained from diagonalizing the single-particle Hamil-
tonian Ĥ0 of CuPc, εS = −12.0 eV, εH = −11.7 eV, and εL± = −10.7 eV. The parameters
∆i account for crystal-field corrections and the ionic background of the molecule, since the
atomic onsite energies in Ĥ0 come from Hartree-Fock calculations for isolated atoms [67].
The ∆i are free parameters of the theory. Isolated CuPc has D4h symmetry; the four molec-
ular orbitals |iσ〉 that make up the basis of Eq. (18) transform like its b1g (S), a1u (H) and eu
(L±) representations. As a consequence, they acquire distinct phases φi when rotated by 90 de-
grees around the main symmetry axis of the molecule, as illustrated in Fig. 1(a). This yields an
easy rule to determine the nonvanishing Coulomb matrix elements Vijkl in Eq. (18): Vijkl 6= 0

if φi + φj − φk − φl = 0 mod 2π, i.e., non-vanishing contributions are only possible if the
phases of the corresponding molecular orbitals add up to multiples of 2π. These considerations
remain true in the presence of a homogenous substrate, which reduces the symmetry to C4v.
For a detailed discussion concerning the parametrization of Eq. (18) we refer to the supple-
mental material of [17]. Exact numerical diagonalization of Ĥmol finally yields the many-body
eigenenergies ENm and eigenstates |Nm〉 of the molecule, labeled by particle number N and
state index m.
Since the molecule is in contact with the substrate and is able to exchange electrons, it is neces-
sary to consider a grand canonical ensemble Ĥmol − µN̂ , where µ is the chemical potential of
the substrate, which is given by its negative work-function, µ = −φ0. Moreover, the presence
of the leads renormalizes the Hamiltonian Ĥ0 due to image-charge effects [65, 68]. We model
these effects with an effective Hamiltonian Ĥmol−env = −δic(N̂−N0)

2, with N̂ the particle-
number operator on the system and δic obtained from electrostatic considerations. To fit our
spectrum to the experiment of Swart et al. [21], which was taken on a copper substrate Cu(100)
(φ0 = 4.65 eV) on a trilayer of NaCl, we used a constant shift ∆i = ∆ = 1.83 eV, a dielec-
tric constant εmol = 2.2 in the evaluation of the matrix elements Vijkl, and an image-charge
renormalization δic = 0.32 eV.
Figures 1(b), (c) show the cationic, neutral, and anionic subblocks of the many particle spectrum
and their degeneracies. A schematic depiction of these states is shown in Fig. 1(d). As the actual
states are linear combinations of several Slater determinants, only dominant contributions are
shown. The neutral groundstate has a doublet structure (with total spin S = 1

2
) coming from the

doubly filled HOMO and the unpaired spin in the SOMO. The cationic and anionic groundstates
have triplet structures (S = 1). The former has a singly filled HOMO, the latter a singly filled
LUMO orbital which form spin triplets (and singlets, S = 0, for the first excited states) with
the singly filled SOMO. Importantly, the orbital degeneracy of the LUMO makes up for an
additional twofold multiplicity of the anionic ground and first excited states. The first excited
state of the neutral molecule is found to be also a doublet (S = 1

2
) with additional twofold
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orbital degeneracy. Finally, the second excited state shows a spin quadruplet structure (S = 3
2
)

together with twofold orbital degeneracy.
Transport dynamics and spin crossover: The full system is characterized by the Hamilto-
nian Ĥ = Ĥmol + Ĥmol−env + ĤS + ĤT + Ĥtun, where ĤS and ĤT are describing non-
interacting electronic reservoirs for substrate (S) and tip (T). The tunneling Hamiltonian is
Ĥtun =

∑
ηkiσ tηki ĉ

†
ηkσd̂iσ + h.c., where ĉ†ηkσ creates an electron in lead η with spin σ and

momentum k. The tunneling matrix elements tηki are obtained analogously to Ref. [57].
The dynamics is calculated via a generalized master equation for the reduced density opera-
tor ρred = TrS,T (ρ), see Refs. [9, 57]. In particular, we are interested in the state ρ∞red solving
the stationary equation L[ρred] = 0, where L is the Liouvillian superoperator.
In analogy to Ref. [69] we included a phenomenological relaxation term Lrel in the Liouvillian1

Lrel [ρ̂] = −
1

τ

(
ρ̂−

∑
Nm

ρth,N
mm |Nm〉 〈Nm|

∑
n

ρNnn

)
. (19)

It is proportional to the deviation of the reduced density matrix from the thermal one, ρth, which
is given by the Boltzmann distribution ρth,N

mm ∼ exp
(
−ENm

kBT

)
with

∑
m ρ

th,N
mm = 1. Since Lrel

describes relaxation processes which conserve the particle number on the molecule, it does
not contribute directly to the current. The relaxation factor 1/τ is taken of the same order of
magnitude as the tip tunneling rate. The stationary current through the system is evaluated from

〈ÎS + ÎT〉 =
d

dt
〈N̂〉 = Trmol

(
N̂L[ρ̂∞red]

)
≡ 0 . (20)

The Liouvillian L = Lrel +
∑

η Lη decomposes into the relaxation term and sub-Liouvillians
for each lead. Sorting the occurring terms in Eq. (20) into substrate and tip contributions yields
the current operator of the respective lead η as Îη = N̂Lη.
Results of our transport calculations are presented in Fig. 2. In panels (a,d,g) we show constant
height current maps, constant current STM images in (b,e,h) and in (c,f,i) maps of the expecta-

tion value of the total spin of the molecule depending on tip position, SrT =
√
〈Ŝ2〉rT+

1
4
− 1

2

where 〈Ŝ2〉rT = Trmol

(
Ŝ2ρ̂∞red(rT)

)
. The constant height and spin maps are each taken at a tip-

molecule distance of 5 Å. The upper three panels (a,b,c) are for a work-function of φ0 = 4.65 eV
and a bias voltage of Vb = −2.72 V. At this position the cationic resonance is occuring. Since
the difference between neutral and cationic groundstate is the occupation of the HOMO (see
Fig. 1(d)), tunneling occurs via this orbital, and the current maps (a,b) resemble its structure.
With the same work function, φ0 = 4.65 eV, the anionic resonance is taking place at the posi-
tive bias Vb = 0.81 V, see Fig. 2(d,e). For equivalent reasons as in the former case, tunneling is
happening via the LUMO and the spatial dependence of the current resembles the topography
of this orbital. Panels (g,h,i) instead are recorded at φ0 = 5.2 eV, again at the anionic resonance
which is now shifted to Vb = 1.74 V due to the larger work-function. Panel (g) is puzzling. De-
spite being an anionic resonance, it closely resembles the HOMO, cf. panels (a),(b). A closer

1Differently from Ref. [69] we have included in Eq. (19) also the coherences. Lrel accounts thus also for
dephasing. For simplicity, we assume the same phenomenological rate for dephasing and dissipation.
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Fig. 2: (Constant height current maps (a,d,g), constant current maps (b,e,h) and maps of the
system’s total spin S (c,f,i). Constant height and spin maps are taken at a tip-molecule distance
of 5 Å, constant current maps at currents I = 0.5, 0.75, and 1.0 pA for panels (c), (f), and (i),
respectively. From [17].

inspection reveals also a likeness to the LUMO (see panel (d)) but with additional diagonal
nodal planes, matching the nodal plane structure of the HOMO. When observing the constant
current map in panel (h), and comparing it with panels (b) and (e), this statement becomes more
evident. This anomalous topography can not be explained by single orbital tunneling.
Panels (c), (f) and (i) reveal the tip-position dependent expectation value of the total spin. At
the standard anionic transition, panel (f), the spin remains essentially constant. At the standard
cationic transition, panel (c), the rather homogeneous enhancement of the molecular spin is due
to small populations of a large number of excited states, made accessible by the large resonance
bias (Vres = −2.7 V). The anomalous anionic transition, panel (i), shows the largest variation of
the molecular spin, concentrated at the positions of the anomalous current suppression, compare
panels (g) and (d). To explain the unconventional properties shown in Fig. 2, we examine bias
traces taken at different tip positions and values of the work-function. Figure 3(a) shows a shift
of the anionic resonant peak in the dI

dV
for the anomalous case. The value Vres at which the peak

is expected is given by

Vres(φ0) =
1

αT|e|
(EN0+1,0 − EN0,0 − δic + φ0) , (21)
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Fig. 3: (a) Differential conductance and (b) total spin curves taken at different tip positions and
work-functions around the bias Vres(φ0) of the anionic resonance. The inset in (b) shows the
change of the spin for the standard case in magnification. (c) Populations of the density matrix
around Vres(φ0). Left panel: standard case, φ0 = 4.65 eV. Middle (right) panel: anomalous
case, φ0 = 5.2 eV, with tip near the center (outer on the ligand). From [17].

where αT is the fraction of bias drop between tip and molecule, and EN,0 is the energy of the
N -particle ground state. The shift of the resonance to lower biases seen in Fig. 3(a) suggests
the appearance of a population inversion from the neutral ground state to an excited state. Tran-
sitions from the latter to the anionic ground state open in fact at much lower biases. Also the
evolution of the spin of the molecule shown in Fig. 3(b) reinforces this proposition. In the
anomalous case, the change of the system from a low to a high spin state, as well as the satu-
ration of the spin, can be clearly seen. This contrasts with the normal anionic transition, where
only a marginal change is observable. In Fig. 3(c) we show the evolution of the eigenvalues
of the stationary density matrix ρ∞red, i.e., the populations of the physical basis [9], around the
anionic resonance Vres(φ0), depending on work-function and tip position. In the standard case
(left panel of Fig. 3(c)), the ground state of the system is always the neutral ground state. For the
anomalous case (middle and right panels of Fig. 3) however, the picture changes dramatically,
as there is a remarkable depopulation of the neutral ground state in favor of different excited
states, depending on the position of the tip.
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Fig. 4: Simplified sketch of the tunneling processes at the anionic resonance for the standard
(φ0 = 4.65 eV) and the anomalous (φ0 = 5.2 eV) case. In the latter, population inversion takes
place. The colors of the arrows denote tip positions where the corresponding transition acts as
a bottleneck: Orange (blue) stands for the center (the outer ligand) of CuPc. From [17].

We focus now on the mechanism yielding the population inversion with associated spin crossover.
In the standard case, at sufficiently high bias, the transition from the neutral to the anionic
groundstate is opening, and tunneling of an electron into the LUMO brings the molecule into
the anionic ground state. By consecutive tunneling to the substrate, the system goes back into
its neutral ground state, see Fig. 4 for a simple sketch. Since the tunneling rates to the substrate
are much larger than their tip counterparts, the system stays essentially in the neutral ground
state with spin S = 1

2
. Also in the anomalous case an initial tunneling event brings the molecule

into the anionic ground state. However, from there, due to finite temperature and proximity of
the many-body eigenenergies, the system has a finite probability to go into a neutral excited
state by releasing an electron to the substrate. The position of the tip and the structure of these
excited states themselves then determine the stationary state: The molecule can only return to
its neutral ground state by successive transitions to the anionic ground state via the tip, and from
there to the neutral ground state via the substrate. However, the former process acts as a bottle-
neck and depends on the tip position. Leaving the first excited state (S = 1

2
) requires tunneling

into the SOMO, while leaving the second excited state (S = 3
2
) would require tunneling into

the HOMO. Additionally, near the center of the molecule the HOMO is vanishing, whereas
on the outer ligand part the SOMO has little to no amplitude. Therefore, tunneling into these
orbitals at the respective positions is strongly suppressed and the system ultimately ends up in
the corresponding neutral excited states.

In synthesis, for an experimentally accessible substrate work-function of φ0 = 5.2 eV, we pre-
dict the appearance, in proximity to the anionic resonance, of a population inversion between
the neutral ground and excited states of CuPc. Depending on the tip position, the molecule is
triggered into a low-spin (S=1/2) to high-spin (S=3/2) transition which is mediated by this
population inversion. This inversion is experimentally observable via dramatic changes in the
topographical properties of constant height and constant current STM images, compared to a
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standard LUMO-mediated anionic transition. Direct observation of the spin crossover might be
accessible using spin-polarized scanning probe microscopy techniques. [70] The effect is also
robust against moderate charge conserving relaxation processes. The quantitative accuracy of
the spectroscopic and topographical results presented here is limited by the adopted semiem-
pirical model. The spin crossover with the associated anomalous topography of the anionic
resonance depends, however, on qualitative properties of the many-body spectrum and of the
molecular orbitals. Thus, despite our focus on CuPc, they should be observable also in other
molecules with comparable frontier orbital structure.

4.2 Apparent orbital reversal

In general, Coulomb charging energies strongly depend on the localization of electrons and
hence on the spatial extent of the orbitals they occupy. Therefore the orbital sequence of a given
molecule can reverse upon electron attachment or removal, if some of the frontier orbitals are
strongly localized while others are not, like in phthalocyanines [30, 71–74]. Coulomb inter-
action may also lead to much more complex manifestations such as quantum entanglement of
delocalized molecular orbitals.
Here we show, that the energy spacing of the frontier orbitals in a single-molecular wire of
individual dicyanovinyl-substituted quinquethiophene (DCV5T) can be engineered to achieve
near-degeneracy of the two lowest lying unoccupied molecular orbitals, leading to a strongly-
entangled ground state of DCV5T2−. These orbitals are the lowest two of a set of particle-in-
a-box-like states and differ only by one additional nodal plane across the center of the wire.
Hence, according to the fundamental oscillation theorem of Sturm-Liouville theory their se-
quence has to be set with increasing number of nodal planes, which is one of the basic princi-
ples of quantum mechanics [75, 76]. This is evidenced and visualized from scanning tunneling
microscopy (STM) and spectroscopy (STS) of DCV5T on ultrathin insulating films. Upon low-
ering the substrate’s work function, the molecule becomes charged, leading to a reversal of the
sequence of the two orbitals. The fundamental oscillation theorem seems strikingly violated
since the state with one more nodal plane appears lower in energy. This contradiction can be
solved, though, by considering intramolecular correlation leading to a strong entanglement in
the ground state of DCV5T2−.
We refer to experiments carried out in the group of J. Repp, with a home-built combined
STM/atomic force microscopy (AFM) using a qPlus sensor [77] operated in ultra-high vac-
uum. Bias voltages are applied to the sample. All AFM data, dI/dV spectra and maps, were
acquired in constant-height mode. Calculations of the orbitals and effective single-particle elec-
tronic structure were performed within the density functional theory (DFT) as implemented in
the SIESTA code [78] and are based on the generalized gradient approximation (GGA-PBE).
The many-body eigenstates are determined from a diagonalization of the many-body model
Hamiltonian Hmol, similar to the one introduced in Eq. (1). Based on these, STM-image and
spectra simulations were performed within a Liouville approach for the density matrix ρ, as
presented in section 3.
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Control of the level spacing: The molecular structure of DCV5T, shown in Fig. 5a, consists
of a quinquethiophene (5T) backbone and a dicyanovinyl (DCV) moiety at each end. The de-
localized electronic system of polythiophene and oligo-thiophene enables conductance of this
material [79–81]. The lowest unoccupied orbital of each of the thiophene rings couples elec-
tronically to its neighbors and forms a set of particle-in-a-box-like states [82,83]. The LUMO to
LUMO+1 level spacing of the quinquethiophene (5T) backbone is approx. 0.7 eV [82], which is
in good agreement with the energy difference calculated for free 5T based on DFT, as shown in
Fig. 5a, left. This DFT-based calculation also confirms the nature of the LUMO and LUMO+1
orbitals, both deriving from the single thiophene’s LUMOs and essentially differing only by one
additional nodal plane across the center of the molecule. To enable the emergence of correlation
and thus level reordering, we have to bring these two states closer to each other. This is achieved
by substituting dicyanovinyl moieties with larger electron affinity at each end of the molecular
wire. As the orbital density of the higher lying particle-in-a-box-like state, namely LUMO+1,
has more weight at the ends of the molecule, it is more affected by this substitution than the
lowest state, the LUMO. This is evidenced by corresponding calculations of DCV5T, for which
the LUMO to LUMO+1 energy difference is reduced by more than a factor of two, see Fig. 5a,
left. The increased size of DCV5T may also contribute to the reduced level spacing. For the rest
of this section, we concentrate on the LUMO and LUMO+1 orbitals only. To avoid confusion,
we refrain from labeling the orbitals according to their sequence but instead according to their
symmetry with respect to the mirror plane perpendicular to the molecular axis, as symmetric (S)
and antisymmetric (AS). Hence, the former LUMO and the LUMO+1 are the S and AS states,
respectively.

Apparent orbital reversal: To study the energetic alignment of the orbitals as well as their dis-
tribution in real space, ultrathin NaCl insulating films were employed to electronically decouple
the molecules from the conductive substrate [29]. It has been shown that in these systems the
work function can be changed by using different surface orientations of the underlying metal
support [21, 29, 84]. Importantly, this does not affect the (100)-terminated surface orientation
of the NaCl film, such that the local chemical environment of the molecule remains the same,
except for the change of the work function.

However, in the present case, this alone has a dramatic effect on the electronic structure of the
molecular wires as is evidenced in Fig. 5b. There, the STM images are shown for voltages
corresponding to the respective lowest lying molecular resonances at positive sample voltage
for DCV5T adsorbed on NaCl/Cu(111) (top panel) and NaCl/Cu(311) (bottom panel). They
both show a hot-dog like appearance of the orbital density, in which a central lobe is hidden
inside outer lobes, as was discussed, for example, in [13, 82]. However, whereas the orbital
density of DCV5T/NaCl/Cu(311) shows a clear depression at the center of the molecule, in-
dicating a nodal plane, DCV5T/NaCl/Cu(111) does not. Apparently, the energetically lowest
lying state is not the same for the two cases, but S for DCV5T/NaCl/Cu(111) and AS in the case
of DCV5T/NaCl/Cu(311). In contrast, STM images, acquired at voltages well below the first
resonance, reflect the geometry of the molecule in both cases as wire-like protrusion (see insets
of Fig. 5b).
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Fig. 5: (a) Molecular structure and density-functional theory based calculations of the elec-
tronic structure of 5T and DCV5T. The panel depicts the molecular structure, the calculated
orbitals and energies for the LUMO, LUMO+1 and LUMO+2 as indicated. The orbitals are
depicted as contours of constant probability density. The LUMO and LUMO+1 orbitals derive
from the thiophene subunit’s LUMO. They are the lowest two of a set of particle-in-a-box-like
states and differ only by one additional nodal plane. Whereas the LUMO to LUMO+1 energy
difference is approx. 0.7 eV for 5T, this difference is drastically reduced for DCV5T. The basic
principle of level engineering is illustrated for a one-dimensional quantum box. (b) STM images
of the first DCV5T electronic resonance on NaCl/Cu(111) (top) and NaCl/Cu(311) (bottom).
The inset shows an STM image at a voltage below the first molecular resonance. From [22].

We hence assume that the molecules are neutral on NaCl/Cu(111) and that the S state cor-
responds to the LUMO. According to the literature, changing the copper surface orientation
from Cu(111) to Cu(311) results in a lowering of the work function by approximately 1 eV
[29, 85, 86]. Hence, one may expect that the former LUMO, initially located 0.7 eV above the
Fermi level EF in the case of NaCl/Cu(111) will shift to below the Fermi level [21, 30] for
NaCl/Cu(311) such that the molecule becomes permanently charged.

To obtain a systematic understanding of the level alignment of the S and AS states of the
molecule on both substrates, differential conductance (dI/dV ) spectra and dI/dV -maps on
DCV5T molecules have been acquired. Typical spectra measured at the center and the side
of the molecule are shown in Figs. 6a and b on NaCl/Cu(111) and NaCl/Cu(311), respectively.
DCV5T exhibits two dI/dV resonances at positive bias but none at negative voltages down to
−2.5 V. According to the dI/dV maps and consistent with the different intensities in the spectra
acquired on and off center of the molecule, the S state at ' 0.7 V is lower in energy than the
AS state occurring at ' 1.1 V. The energy difference of ' 0.4 eV is in rough agreement to our
calculations (see Fig. 5a). As discussed above, in the case of NaCl/Cu(311), DCV5T exhibits
the AS state as the lowest resonance at positive bias voltages, this time at ' 0.9 V. This is
additionally evidenced by the constant-current STM image and the corresponding dI/dV map
in Fig. 6b. The S state is now located at higher voltages, namely at ' 1.3 V, as seen in the
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Fig. 6: dI/dV spectra (top panels), constant-current STM images (center panels) and
dI/dV maps (bottom panels) on the individual molecule DCV5T on NaCl/Cu(111) (a) and
NaCl/Cu(311) (b) respectively. The resonances are labelled with S and AS, referring to the
symmetric and antisymmetric states, respectively. dI/dV spectra were recorded on (black) and
off (red) the center of the molecule as indicated by dots in the STM images. The spatial distri-
bution of orbitals gives rise to the different intensities at different tip positions as depicted in
the inset. To not miss any small dI/dV signals in the low-bias range, a corresponding spectrum
(grey) was measured with the tip being ' 2 Å closer to the surface compared to the other two
(red and black). All spectra were slightly low-pass filtered. The negative differential conduc-
tance beyond the AS peak (black curve) can be attributed to the increase in the tunneling barrier
height with increasing bias voltage [29]. The images are resized to have the same size and scale,
whereby the area of measured data is indicated with white dashed rectangles. Constant current
images I = 2.4 pA; bias voltage as indicated. Scale bar 1 nm. From [22].

spectrum and the dI/dV map. Obviously, the two states are reversed in their sequence. In this
case, at negative bias voltages, a peak in dI/dV indicates an occupied state in equilibrium, in
stark contrast to DCV5T/NaCl/Cu(111) but in agreement with the assumption of the molecule
being negatively charged. The constant-current image acquired at −0.7 V, corresponding to the
first peak at negative bias, seems to be a superposition of both the S and AS states.

The experimentally observed reversal of the orbital sequence is in striking disagreement with
the fundamental oscillation theorem. To understand this apparent orbital reversal we go be-
yond the single-particle picture and invoke the role of electronic correlations. In the double-
barrier tunneling junction geometry employed here, the resonances in dI/dV are associated
with a temporary change of electron number on the molecule. In this terms the two peaks of
DCV5T/NaCl/Cu(111) at positive bias are DCV5T↔DCV5T− transitions (see Fig. 7), and, in
the same spirit, the ones of DCV5T/NaCl/Cu(311) at positive and at negative bias should be
interpreted as DCV5T2− ↔DCV5T3− and DCV5T2− ↔DCV5T− transitions, respectively.
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Many-body Hamiltonian and entangled ground state: Both the topographical and the spectro-
scopic data presented so far suggest that the electronic transport through DCV5T involves, in
the present bias and work-function ranges, only the symmetric (S) and the antisymmetric (AS)
orbitals. We concentrate on them and freeze the occupation of the other lower (higher) energy
orbitals to 2 (0). In terms of these S and AS frontier orbitals we write the minimal interacting
Hamiltonian for the isolated molecule

Hmol = εSn̂S + εASn̂AS +
U

2
N̂(N̂ − 1)

+ J

(∑
σσ′

d̂†ASσd̂
†
Sσ′ d̂ASσ′ d̂Sσ + d̂†AS↑d̂

†
AS↓d̂S↓d̂S↑ + d̂†S↑d̂

†
S↓d̂AS↓d̂AS↑

)
,

(22)

where d̂†S(AS)σ creates an electron with spin σ in the symmetric (antisymmetric) orbital, n̂i counts

the number of electrons in the orbital with i = S,AS and N̂ represents the total number of
electrons occupying the two frontier orbitals. The interaction parameters U = 1.4 eV and
J = 0.75 eV are obtained from the DFT orbitals by direct calculation of the associated Coulomb
integrals and assuming a dielectric constant εr = 2 which accounts for the screening introduced
by the underlying frozen orbitals [66, 17]. As expected from their similar (de-)localization,
the Coulomb integrals of the S and AS states are almost identical.2 Besides a constant in-
teraction charging energy U, the model defined in Eq. (22) contains exchange interaction and
pair-hopping terms, both proportional to J , which are responsible for the electronic correla-
tion. The electrostatic interaction with the substrate is known to stabilize charges on atoms and
molecules [87, 65, 84] due to image charge and polaron formation. We account for this stabi-
lization with the additional Hamiltonian Hmol−env = −δN̂2. The orbital energies εS = −3.1 eV
and εAS = −2.8 eV as well as the image-charge renormalization δ = 0.43 eV are obtained from
the experimental resonances of the neutral molecule and previous experimental results on other
molecules as detailed in the supplemental material of [22].
Many-body interaction manifests itself most strikingly for the ground state DCV5T2−, which
will therefore be discussed at first. Consider the two many-body states, in which the two extra
electrons both occupy either the S or the AS state: They differ in energy by the energy 2∆,
where ∆ = εAS − εS is the single-particle level spacing between the S and the AS state. These
two many-body states interact via pair-hopping of strength J , leading to a level repulsion. As
long as ∆� J , this effect is negligible. In DCV5T, though, the single-particle level spacing ∆
is small compared to the pair-hopping J , leading to an entangled ground state of DCV5T2− as

|2, 0〉 = cos θ d̂†S↑d̂
†
S↓|0, 0〉+ sin θ d̂†AS↑d̂

†
AS↓|0, 0〉, (23)

with |N,m〉 the mth excited N particle state of DCV5T and θ = arctan(J/∆)/2. Note that
here, as J/∆ ≈ 2.6, this state shows more than 30% contribution from both constituent states,
is strongly entangled, and therefore it can not be approximated by a single Slater determinant.
The first excited state of DCV5T2− is a triplet with one electron in the S and one in the AS
orbital at about 54meV above the ground state, as shown in Fig. 7.

2For the Coulomb integrals we obtain US-S = 1.37 eV, UAS-AS = 1.43 eV, US-AS = 1.37 eV.
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Fig. 7: Scheme of the many-body transitions associated to the measured resonances. In the
green framed panel the transition between the neutral and the singly charged DCV5T− are il-
lustrated (DCV5T/NaCl(Cu(111)). In the blue framed panel the transitions involving DCV5T−,
DCV5T2− and DCV5T3− are analyzed (DCV5T/NaCl(Cu(311)). The electronic structure asso-
ciated to the different many-body states is explicitly given in the gray labels. In the insets, the
many-body spectra of the molecule on the two corresponding substrates are plotted. From [22].

The level repulsion in DCV5T2− mentioned above leads to a significant reduction of the ground
state energy by roughly 0.5 eV. This effect enhances the stability of the doubly charged
molecule to the disadvantage of DCV5T−, which has just a single extra electron and therefore
does not feature many-body effects. Quantitatively, this is captured by the addition energies
Eadd
N = EN+1,0−2EN,0+EN−1,0 being a measure of the stability of the N particle ground state.

Within the framework of the many-body theory, as sketched in Fig. 7, the apparent orbital re-
versal between Fig. 6a and Fig. 6b is naturally explained. To this end, as mentioned above,
tunneling events in the STM experiments have to be considered as transitions between the
many-body states of different charges N (see arrows in Fig. 7). The spatial fingerprints of the
transitions and hence their appearance in STM images is given by the orbital occupation differ-
ence between the two many-body states and is indicated by the labels S and AS in Fig. 7. When
on NaCl(2ML)/Cu(111), the DCV5T molecule is in its neutral ground state, see green panel
in Fig. 7. A sufficiently large positive sample bias triggers transitions to the singly charged
DCV5T−: The S and AS transitions subsequently become energetically available in the ex-
pected order of the corresponding single-particle states. A fast tunneling of the extra electron to
the substrate restores the initial condition enabling a steady-state current.

When on NaCl(2ML)/Cu(311) the molecule is doubly charged and in the entangled ground
state described by Eq. (23), see Fig. 7. At sufficiently high positive sample bias the transitions
to DCV5T3− are opening, enabling electron tunneling from the tip to the molecule. The topog-
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Fig. 8: Theoretical simulations of dI/dV spectra (top), constant-current STM images (cen-
ter) and dI/dV maps (bottom) on the individual molecule DCV5T on NaCl/Cu(111) (a) and
NaCl/Cu(311) (b) respectively. dI/dV spectra were recorded on (black) and off (red) center of
the molecule as indicated by dots in the constant-current STM images. From [22].

raphy of these transitions is again obtained by comparing the 2- and the 3- (excess) electron
states of DCV5T (cf. Fig. 7). The transition to the 3-particle ground state occurs by the popu-
lation of the AS state and involves the first component of the entangled 2-electron ground state
only. The second component cannot contribute to this transition, which is bound to involve only
a single electron tunneling event. Correspondingly, at a larger bias the first excited 3-particle
state becomes accessible, via a transition involving the second component of the 2-particle
ground state only. This transition has a characteristic S state topography. Hence, although the
electronic structure of the 3-electron states does follow the Aufbau principle, the entanglement
of the 2-particle ground state leads to the apparent reversal of the orbital sequence.

In addition to the many-body spectrum we calculated the full dynamics of subsequent tunneling
processes for all relevant situations, resulting in the calculated dI/dV characteristics, constant
current maps and constant height dI/dV maps for a DCV5T single-molecule junction presented
in Fig. 8. A qualitative agreement with the experimental results of Fig. 6 can be observed both
for the relative strength of the spectral peaks and the dI/dV maps. The above discussed apparent
orbital reversal is fully consistent with the calculations.

The experimental data of DCV5T on the Cu(311) substrate at negative bias also show a non-
standard feature. The dI/dV map at resonance resembles a superposition of the S and AS
orbital, see Fig. 6b. The effect is also reproduced in the theoretical simulations presented in
Fig. 8. This can be rationalized in terms of a non-equilibrium dynamics associated to a pop-
ulation inversion predicted for Cu-Phthalocyanine [17]. The transition between the 2- and the
1-particle ground states has the topography of an S orbital. Its close vicinity to the ground state
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implies that also the 2-particle first excited state should participate in transport. Moreover, the
transition which connects the latter to the 1-particle ground state vanishes if the tip is in the
vicinity of the molecular center, thus producing a nodal plane in the dI/dV topography and a
large population of the 2-particle excited state. Though, this non-equilibrium induced popula-
tion inversion is in competition with relaxation processes which conserve the molecular charge.
This experiment indirectly proves that, although not negligible, this relaxation is by far not the
fastest process for STM on thin insulating films: in the opposite case the nodal plane at the
negative bias resonance would not have been observed.
In conclusion, we showed that a reduction of the single-particle level spacing of two frontier or-
bitals enables the manifestation of strong electron-correlation effects in single molecules. Here,
the single-particle level spacing engineered by dicyanovinyl-substitution is leading to an appar-
ent reversal of orbital sequence and a strongly-entangled ground state of DCV5T2−. The many
body description of the electronic transport is capable of reconciling the experimental obser-
vations of the orbital reversal with the fundamental oscillation theorem of quantum mechanics
and shows how to achieve quantum entanglement of frontier orbitals in molecules.

5 Conclusions

The transport characteristics of correlated single-molecule junctions show a fascinating spec-
trum of different phenomena stemming from the interplay between the electron-electron cor-
relation on the molecule and the tunneling coupling to the electrodes. A crucial role is played
by the contacts. The control over their conformation down to atomic scale precision is of-
ten required to achieve quantitative reproducibility of the single current voltage characteristics.
Scanning tunneling microscopy can achieve these standards and, with its unique capability of
combining spectroscopy and topography, has proven a valuable tool to investigate correlation
phenomena in single-molecule junctions. We classified the latter in extrinsic and intrinsic and
concentrated on the second class, which originate directly from the entangled nature of the
molecular many-body states. After introducing the Liouville approach to the transport problem,
we have applied it to two examples of intrinsic correlation phenomena: the non-equilibrium
spin crossover and the apparent orbital reversal. The transport characteristics were calculated
for relatively simple models, based on a very small number of frontier orbitals, for which the
full interaction Hamiltonian has been taken into account. In both cases, the topographical and
spectral fingerprints of the correlation have been identified and criteria have been given to de-
fine the class of molecules in which similar phenomena can occur. We think that the study of
correlation effects in single-molecule junctions is an open research fields with many challenges.
Theoretically a unified approach to the transport problem is still lacking, while experimentally
the advantages of different experimental techniques should be combined to the reach a better
control of the molecular many-body states and to study the signatures of their complex and
fascinating dynamics.
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A Derivation of the generalized master equation

The starting point is the Liouville-von Neumann equation Eq. (3), which we project on the
separable and non-separable components via the operators P and Q = 1− P , respectivelyP ˙̂ρ = PLP ρ̂+ PLQρ̂

Q ˙̂ρ = QLP ρ̂+QLQρ̂
(24)

We formally solve the second equation with the help of the propagator: GQ(t, s) = eQL(t−s)

GQ(0, t)Q ˙̂ρ− GQ(0, t)QLQρ̂ =
d

dt
[GQ(0, t)Qρ̂] = GQ(0, t)QLP ρ̂,

which, by integration implies

GQ(0, t)Q ˙̂ρ−Qρ̂(0) =
∫ t

0

GQ(0, s)QLP ρ̂(s) ds

and, by multiplication on the left by GQ(t, 0)

Qρ̂(t) = GQ(t, 0)Qρ̂(0) +
∫ t

0

GQ(t, s)QLP ρ̂(s) ds. (25)

We now insert (25) into the first of Eq. (24) taking a separable initial condition ρ̂(0) = ρ̂mol(0)⊗
ρ̂leads, which implies Qρ̂(0) = 0. Further, the following relations follow from the definition of
P and the fact that the tunneling Hamiltonian does not conserve the lead particle number

PLtunP = 0, [P ,Lmol] = [P ,Lleads] = PLleads = 0 . (26)

With all these observations, we can write the closed integro-differential equation for P ρ̂

P ˙̂ρ(t) = LmolP ρ̂(t) +
∫ t

0

PLGQ(t, s)QLP ρ̂(s) ds, (27)

from which we can already identify (remember that P2 = P) a propagator kernel of the form

K(t−s) = PLeQL(t−s)QLP .

We further manipulate the expression above with the idea of better emphasizing the perturbative
expansion in Ltun. By expanding the exponential, we obtain

PLeQLtQLP =
∞∑
n=0

1

n!
PLQ (QLQ)nQLP tn

On the other hand, with the help of the relations among Liouvillian and projectors (26) one
easily obtains

PLQ = PLtun, QLP = LtunP , QLQ = Q(Lmol + Lleads +QLtunQ).

Since it also clear, from the definition of Q that [Q,QLtunQ] = 0 we can write

K(t) =
∞∑
n=0

1

n!
PLtunQ(Lmol + Lleads +QLtunQ)n tn LtunP (28)

where, according to Eq. (26), the first Q projector from the left can be omitted and, by resum-
ming the series, one obtains to the desired result of Eq. (7).
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Adv. Funct. Mater. 21, 897 (2011)

[82] J. Repp, P. Liljeroth, and G. Meyer, Nat. Phys. 6, 975 (2010)

[83] D.A. Kislitsyn, B.N. Taber, C.F. Gervasi, L. Zhang, S.C.B. Mannsfeld, J.S. Prell,
A. Briseno, and G.V. Nazin, Phys. Chem. Chem. Phys. 18, 4842 (2016)

[84] F.E. Olsson, S. Paavilainen, M. Persson, J. Repp, and G. Meyer,
Phys. Rev. Lett. 98, 176803 (2007)

[85] P.O. Gartland, S. Berge, and B. Slagsvold, Phys. Rev. Lett. 28, 738 (1972)

[86] F.E. Olsson, M. Persson, J. Repp, and G. Meyer, Phys. Rev. B 71, 075419 (2005)

[87] K. Kaasbjerg and K. Flensberg, Nano Lett. 8, 3809 (2008)





15 Diagrammatic Monte Carlo

Nikolay Prokof’ev
University of Massachusetts
666 North Pleasant Street, Amherst, MA 01003, USA

Contents

1 Introduction 2

2 Diagrammatic Monte Carlo 2
2.1 Updates: general principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1 Introduction

This contribution reviews the principles and key ideas behind the Diagrammatic Monte Carlo
method (DiagMC), as well as some technical details important for its efficient practical imple-
mentation. In short, DiagMC is a set of generic rules for unbiased sampling of the configuration
space that involves a varying number of continuous variables. Applications of the method in-
clude series of connected Feynman diagrams and non-linear integral equations, lattice- and
continuous-space path-integrals, continuous-time impurity-solvers, and any problem where the
answer can be formally represented by the sum of multi-dimensional integrals. Once the con-
figuration space to be simulated is defined, the DiagMC method will ensure that stochastic
sampling is performed without systematic bias, leaving statistical error bars as the only source
of uncertainty on the final answer.
Properties of large systems cannot be obtained by direct enumeration of the exponentially grow-
ing configuration/Hilbert space, or ν-space, for brevity. A variety of numerical schemes rely
on mathematical formulations instead, which, if solved, would reproduce the same statistical
predictions as the original model. Path integrals, high-temperature expansions, and Feynman
diagrams belong to this category of methods. I will focus on the Monte Carlo (MC) sampling
technique [1], which is, arguably, among the most powerful universal tools designed to deal
with large and complex ν-spaces, and explain in detail how it works in the space of connected
Feynman diagrams. While each implementation is model and representation specific, most rules
and considerations are generic.

2 Diagrammatic Monte Carlo

In the most abstract form one is interested in knowing some quantity Q(y) as a function of vari-
able y (in general, the multi-dimensional variable y may include both continuous and discrete
components) when the answer is expressed as a series of multi-dimensional integrals/sums

Q(y) =
∞∑
n=0

∑
T

∫
· · ·
∫
dx1 · · · dxnD(n,T;x1, . . . ,xn;y) , (1)

with D being some known function of its arguments. The “diagram order” n controls the num-
ber of “internal” integration/summation variables, {x1, . . . ,xn}, and the “topology” index T
labels different terms of the same order in the series. The most familiar physics example, as the
name of the technique suggests, would be Feynman diagrams for the many-body system illus-
trated in Fig. 1. Strict diagrammatic rules relate the graphical representation to the correspond-
ing mathematical expression for the function D: up to a phase factor, it is given by the product
of functions associated with the graph lines (often called propagators), D =

∏
lines Fline. For

example, in momentum-imaginary time representation for the system of electrons interacting
via the pairwise potential V (r), the dotted lines are associated with the Fourier transform, V (q),
of the interaction potential and the solid lines with the single-particle propagators G0(pi, τ).



Diagrammatic Monte Carlo 15.3

( , )G p  



0 

p


0 1

0q 

k


0 21
p q 




q

p p p p


0

p


1
1p q

 
2 1p q q 

  

1q


0

p q
 


p
q


2q


2p q
  p




k q
 

k


q


3 2 4  1 2
p


3 4

Fig. 1: Graphical representation of the diagrammatic expansion for the Green function of an
interacting many-body system.

There are well-established diagrammatic series for other quantities of interest such as self-
energies, polarization operators, pair-propagators, current-current and other correlation func-
tions, etc. Numerous alternative representations of quantum and classical models, such as path
integrals and impurity solvers, are mathematically identical to Eq. (1). Thus, regardless of the
origin of Eq. (1), it can be viewed as a mathematical expression for the answer in terms of a
series of multi-dimensional integrals. The real challenge is to evaluate it with high accuracy.
Let us denote the collection of all external and internal parameters that lead to a complete char-
acterization of the diagram as ν = (n,T;x1, . . . ,xn;y), and call it the “configuration space;” a
particular set of parameters has to be viewed as a point in {ν}. Accordingly, the modulus of Dν

will be called the configuration “weight.” Since, in general, the D-function is not sign-positive,
we will need to introduce also the configuration “phase,” ϕν = argDν (the diagram phase is
not necessarily equal to 0 or π).

2.1 Updates: general principles

The MC process of generating diagrams with probabilities proportional to their weight is based
on the conventional Markov-chain updating scheme [2–4] implemented directly in the space of
continuous variables. All updates are broadly classified as type-I and type-II. The number of
continuous variables is not changed in type-I updates that perform sampling of diagrams of the
same order n. Typical examples are shown in Fig. 2. They are based on the simplest possible
local modifications of the topology and line parameters allowed by the rules and conservation
laws. Their implementation is straightforward; e.g., for the update illustrated in Fig. 2(a) select
at random any pair of consecutive interaction vertices and exchange their places. An acceptance
ratio for the corresponding update, Rν→ν′ , is given by the ratio of the diagram weights,

Rν→ν′ = |Dν′/Dν | , (2)

which is easily calculated, since Dν is the product of Fline-functions and only three of them
change their values in this update. Changing internal or external variables, see Figs. 2(b) and
2(c), is also standard. For example, one may select at random some interaction vertex and
propose a new value for its time variable, τi → τ ′i , from the (arbitrary) normalized probability
density P (τ ′i). The acceptance ratio for this update is given by the ratio of probabilities for
suggesting the ν → ν ′ and ν ′ → ν moves times the ratio of the diagram weights

Rν→ν′ =

∣∣∣∣Dν′

Dν

∣∣∣∣ P (τi)dτ

P (τ ′i)dτ
=

∣∣∣∣Dν′

Dν

∣∣∣∣ P (τi)

P (τ ′i)
. (3)
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Fig. 2: Typical type-I updates in the configuration space of Feynman diagrams for polarons: (a)
changing the diagram topology by permuting the end-points of two dashed lines; (b) changing
the value of the internal variable τ2 to τ ′2; (c) changing the momentum transfer along the dashed
line from q1 to q′1.

The simplest implementation of this update would be to have non-zero P (τi) only on the time
interval determined by the times of the previous and following interaction vertexes (times τ3 and
τ4 in Fig. 2(b)). The probability distribution P (τ) should be optimized for the best acceptance
ratio without compromising one’s ability to use it for fast generation of random variables (more
details will be provided when we discuss the practical implementation of the technique for a
Fröhlich polaron).

Clearly, there are numerous other possibilities for type-I updates which are standard for MC
simulations of multidimensional integrals. For pedagogical reasons I will keep mentioning
differential measures when I first state the acceptance ratio in order to see explicitly how they
cancel out in the final answer.

Type-II updates change the diagram order n ↔ n+m (they form complementary pairs of up-
dates) and thus require that new variables be proposed from some (arbitrary) normalized prob-
ability density distribution W (ν;xn+1, . . . ,xn+m) when going from n to n+m, or erased from
the diagram when going from n + m to n. For example, to implement the transformation il-
lustrated in Fig. 3 we need to propose time positions τ3 and τ4 and the momentum transfer q2

for the new dashed line. In the reverse update, these variables need to be erased. The detailed
balance equation for a pair of updates which increase/decrease the diagram order by m reads

rn→n+m un→n+m |Dν |W (ν;xn+1, . . . ,xn+m)(dx)n+m = rn+m→n un+m→n |Dν′|(dx)n+m , (4)
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Fig. 3: Type-II updates that increase/decrease the diagram order by one.

where un→n+m and un+m→n are algorithm-specific probabilities of deciding which new dia-
gram elements will be added or removed (for specific details, see the Fröhlich polaron Section),
respectively, while rn→n+m and rn+m→n are the probabilities of accepting the update. An accep-
tance ratio, Rν→ν′ = rn→n+m/rn+m→n, to go from configuration ν of order n to configuration
ν ′ of order n+m is then

Rν→ν′ =
un→n+m
un+m→n

∣∣∣∣ Dν′

DνW (ν;xn+1, . . . ,xn+m)

∣∣∣∣ . (5)

As expected, all differential measures cancel in the acceptance ratio meaning that sampling of
the configuration space with arbitrary and ever changing number of continuous variables can
be done without encountering systematic errors. Note that the ratio of the diagram weights,
|Dν′/Dν |, is some model-specific function of ν and the new variables xn+1, . . . ,xn+m. The op-
timal choice ofW is then a compromise between the efficiency (and programming convenience)
of using it for seeding new variables and the largest (on average) acceptance ratio.
It is relatively straightforward to design a set of type-I and type-II updates that satisfies the
ergodicity requirement: given two arbitrary configurations ν and ν ′ contributing to the an-
swer, it should take the algorithm a finite number of updates with non-zero acceptance ratios
to transform one configuration into another. At this point I would like to stress that DiagMC
is fundamentally different from enumerating/listing all diagrams with orders n ≤ nmax and
then computing the corresponding multidimensional integrals for each diagram separately us-
ing classical MC methods. In DiagMC the diagram order, its topology, and all internal and
external variables are treated on equal footing and are sampled stochastically from the prob-
ability distribution Dν . From the DiagMC perspective, each diagram represents a point, not
an integral, in the configuration space ν, see Fig. 4, and each sampled point, no matter the dia-
gram order n, contributes equally to the statistics of the final result. For example, every diagram
shown in Fig. 1 (with all internal variables specified) contributes eiϕν to the statistics ofG(p, τ).
One may wonder where did all the integrals go and why do the configuration space points with
different differential measures contribute equally? Formally, this is what the detailed balance
equation (5) is telling us. The other way to answer the question is as follows. One may pre-
tend that all diagrams are of the same order(!) by interpreting unity factors in terms of the
normalization integrals for W -functions in Eq. (5)∫

· · ·
∫
dx1 · · · dxnDν × 1 =

∫
· · ·
∫
dx1 · · · dxn+mDν ×W (ν;xn+1, . . . ,xn+m). (6)
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Fig. 4: An illustration of the DiagMC process: all configuration parameters are treated in the
simulation protocol on an equal footing and are subject to local Markov-chain updates.

This point of view literally reduces type-II updates to type-I updates with the only caveat that
one is free to consider any normalized W function for performing this “match of dimensions.”
One last note. In DiagMC the autocorrelation time is almost never a problem. When the al-
gorithm takes the configuration to the lowest-order diagram (at this point nearly all variables
are erased), it can be de-correlated in O(1) updates. Given that most many body simulations
are done for expansion orders . 10, the autocorrelation times is measured in fractions of a
millisecond for local updating schemes.

2.2 Normalization

Statistics collected for Q(y), let us denote it as QMC(y), grows linearly with the simulation
time, and needs to be properly normalized to produce a physically meaningful result. Note that
Eq. (1) is not based on a ratio of two quantities and, thus, normalization is done differently from
the textbook example of the Ising model. Suppose that the lowest-order term in Eq. (1) for some
value y0 is known because it does not involve any integrals and reduces to the analytic expres-
sion for |Q(0)(y0)| = |D(0;y0)|. Stochastic sampling eventually brings the configuration to the
lowest order, and this is when we update the normalization counter, ZN = ZN + δn,0 δ(y−y0).
We also realize that full statistics is the sum of contributions collected from different orders,
QMC(y) = QMC(n = 0,y) + QMC(n > 0,y), and if we were to determine the lowest-order
contribution to the modulus of Q(y0) we would get ZN . This immediately tells us that the
properly normalized answer for the final result is

Q(y) =
∣∣Q(0)(y0)

∣∣ QMC(y)

ZN
. (7)

The entire protocol can be called “normalization to known result.”
If there is some doubt that statistics for a given point y0 is representative, one can generalize
the above idea by considering an integral, IN =

∫
|Q(0)(y)| dy, which is assumed to be known

either analytically or numerically (to any degree of accuracy). Each time the sampled diagram
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order is zero, we add unity to the normalization counter, ZN = ZN +δn,0, which is subsequently
used to obtain the final result as

Q(y) = IN
QMC(y)

ZN
. (8)

In most cases, the lowest-order contributions are indeed trivial and there is no problem with im-
plementing the normalization protocol. If none of the contributions to Q(y) is known, we can
still employ this protocol by adding a “fake diagram” with positive-definite weight, DF (y) δn,0,
and known normalization integral, IN =

∫
DF (y) dy, to the configuration space, and updating

the ZN counter each time this fake diagram is sampled. Equation (8) works for this setup with-
out any modifications with the understanding that the fake diagram is used for normalization
purposes only and is not contributing to QMC(y). It is also worth noting that normalization can
be always done to some positive-definite quantity; i.e., you will not face the sign-problem in the
denominator.

3 Fröhlich polaron

Let us now focus on the Fröhlich polaron model and see in detail how the DiagMC technique
can be used for obtaining the polaron Green function at zero temperature, see also [4]. The
model Hamiltonian H = He +Hph +He−ph contains three terms where

He =
∑
p

(
ε(p)−µ

)
a†pap , Hph =

∑
q

ω(q) b†qbq , He-ph =
∑
p,q

V (q)
(
b†q−b−q

)
a†p−qap ,

(9)

ε(p) =
p2

2M
, ω(q) = Ω , V (q) = i

√
23/2πΩ3/2α/M1/2q2 , (10)

with standard notations for creation and annihilation operators. The chemical potential, µ < 0,
is introduced here solely for the purpose of controlling the statistics at large times because
otherwise it would diverge. The coupling between electrons and optical phonons with energy Ω
can no longer be assumed weak when the dimensionless constant α > 1. The Fröhlich polaron
is the canonical model used to describe non-degenerate charge carriers in ionic semiconductors;
Figure 5 explains why lattice effects can be neglected and one may proceed with the continuum
description based on the parabolic dispersion relation, ε(p) = p2/2M , for the electron and a
dispersionless optical phonon, ω(p) = Ω = const.
Connected diagrams for the Green function in imaginary time representation,G(p, τ)=〈cp(τ)c†p〉,
are shown in Fig. 6. To convert the graphics into mathematical expressions (1) one has to use
the following “conversion” rules:

– A straight line with momentum pc between the time points τb and τa is associated with
the bare polaron propagator, G0 = e−(ε(pc)−µ)(τb−τa).

– An ark connecting two dots is associated with the product of the phonon propagator,
D= e−ω(pc)(τb−τa), the modulus of the coupling vertex squared, |V (pc)|2, and the momen-
tum space integration factor (2π)−3.
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Fig. 6: Green function diagrams obtained by expanding in the number of phonon lines.

Thus, for this problem all diagrams are sign-positive and the series are convergent for any value
of τ . Sign-positive series cannot be resummed; they are either meaningless or convergent. In
our case, there are (2n−1)!! diagrams of order n. On the other hand, the integration measure
of 2n time-ordered points is τ 2n/(2n)!, and this is sufficient to guarantee series convergence
for Fröhlich polarons. The rest is a straightforward implementation of the generic DiagMC
protocol. My set of updates is just one possible realization among many available.

3.1 Type-I updates

• Global τ update. The simplest update changing the global time variable τ is shown in
Fig. 7(a). The probability density for the new value is a simple exponential

P (τ ′) = Ee−E(τ ′−τlast) , E = p2/2M − µ , (11)

and the acceptance ratio is unity because Dν′/Dν = P (τ ′)/P (τ), see Eq. (3). [If r is a random
number uniformly distributed on the interval (0, 1), then τ ′ = τlast − E−1 ln(r) by the transfor-
mation method.] Strictly speaking, this is the only type-I update required for ergodicity! Below
I present several other type-I updates that can be added in order to (i) improve efficiency and
reduce autocorrelations, (ii) have an over-complete set of updates for meaningful tests of the
detailed balance, (iii) have fun.
• Internal τ update. Changing the time variable of the interaction vertex is equally easy, see
Fig. 7(b). The probability density for the new value of τ ′b is a simple exponential

P (τ ′b) =
Ee−E(τ ′b−τa)

1− e−E(τc−τa)
, E = (p2a − p2b)/2M ±Ω , (12)
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Fig. 7: Type-I updates changing the external (a) and internal (b) time variables:

and the acceptance ratio is unity for exactly the same reason as for the global τ update.
[τ ′b = τa − E−1 ln[1− r(1− e−E(τc−τa))] by the transformation method.]
• Rescaling all τ variables update. By introducing dimensionless time variables si = τi/τ ,
and paying attention that all propagators are exponential functions of time, we realize that the
diagram dependence on the global time τ is given by the Poisson distribution. If we were to use

P (τ ′) =
E(Eτ ′)2n

(2n)!
e−Eτ

′
, E =

2n+1∑
i=1

∆siEi − µ , (13)

where the sum is over all time intervals in the graph, and Ei is the energy associated with each
interval (counting both the polaron energy and the energy of all phonon lines covering it), to
propose new values of τ ′, we would always accept the update. Unfortunately, for this distri-
bution the transformation method cannot be used. However, for large Eτ and n, the Poisson
distribution is approaching the Gaussian. The idea then is to use

P (τ ′) =
E√
4πn

e−(Eτ
′−2n)2/4n , (14)

instead. [From now on I will stop mentioning the transformation method and how it is used
(sometimes with tricks) for well-know distributions.] Obviously, the update is rejected, when
the proposed τ ′ is negative—one should not be afraid of proposing unphysical values if this
leads to radical simplifications of the numerical procedure with only a minor loss of efficiency.
The acceptance ratio is given by

R = exp

(
2n ln

τ ′

τ
− E (τ ′−τ) +

(Eτ ′ − 2n)2 − (Eτ − 2n)2

4n

)
, (15)

and is close to unity (on average) for large diagram orders.
• Internal |q| update. To change the modulus of the phonon momentum (the direction is pre-
served) we select at random any of the phonon lines (probability of selecting a particular one is
1/n) and propose the new value for q from the Gaussian probability density

P (q′) =
1√

2πs2
e−(q

′−q0)2/2s2 , (16)

where q0 = 〈p〉 ·q/q, s2 = M/(τb−τa), and 〈p〉 = (τb−τa)−1
∫ τb
τa
dτ [p(τ) +q] is the “average”

electron momentum on the time interval (τa, τb) in the absence of the updated phonon propaga-
tor, see Fig. 8(a). This update is always accepted (provided q′ is non-negative) because P (q′) is
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Fig. 9: Type-I update changing the local diagram topology.

reproducing precisely the diagram weight for the Fröhlich polaron. Indeed,

1

2M

∫ τb

τa

dτ
[
(p(τ) + q− q′)2 − p2

]
= const. +

τb − τa
2M

(q′−q0)2 . (17)

• Internal q/q update. To change the phonon momentum direction while keeping its modulus
fixed, we select at random any of the phonon lines and propose the new value for q/q from the
uniform distribution for the azimuthal angle ϕ and exponential distribution for the cosine of the
polar angle θ

P (ϕ, θ) =
A sin(θ)

4π sinh(A)
eA cos(θ) , (18)

where A = (τb− τa)|〈p〉|q/M . Both angles are defined relative to the axis set by the vector 〈p〉
defined in the previous update, see also Fig. 8(b). This update is always accepted because (18)
reproduces the functional dependence of (17) on updated angles.

• Topology change. Here the idea is to select at random any nearest-neighbor (n.n.) pair of
vertices and swap their places, see Fig. 9. The momenta of phonon propagators remain fixed
except when the selected pair is connected by the phonon line, in which case it changes sign.
This proposal will change the momentum of the polaron line to p′ = p+qa−qb. The acceptance
ratio is directly related to the ratio of diagram weights

R = exp{−(τb − τa)[ε(p′)− ε(p)± ω(qa)± ω(qb)]} , (19)

where the proper ± option has to be chosen depending on whether the corresponding phonon
propagator is getting longer or shorter in time.
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3.2 Type-II updates. Data structure

The design of type-II updates, especially in view of Eq. (6), is as flexible. I will only describe
one of them following a particular strategy of selecting new variables. Formally, this type-II
update and the first update described in the previous subsection, constitute an ergodic set of MC
procedures capable of simulating the Green function dependence on time.
• Increase/decrease the diagram order by one. Type-II updates typically come in complemen-
tary pairs that satisfy the detailed balance condition within each pair. Let pn→n+1 and pn+1→n

be the probabilities to make a decision to apply one of these two updates. In the increase update
propose the following steps:

– Select one of the polaron propagators at random (corresponding probability: 1/(2n+1));
let the parameters of the selected interval be p1, τ1, τ2, see Fig. 10.

– propose the fist new time variable τ3 from the uniform probability density 1/∆τ , where
∆τ = τ2 − τ1.

– propose the momentum for the new phonon propagator from the probability distribution

sin(θ)

4π

1

p0(1 + q/p0)2
, (20)

where p0 =
√

2MΩ, see Fig. 5. It is uniform for the solid angle of q and has an easy to
handle power law for the modulus of q.

– propose the new time variable τ4 > τ3 from the distribution

Ω(1 + q/p0)
2 e−Ω(1+q/p0)2(τ4−τ3) . (21)

As usual, the update is rejected if τ4 > τ . This distribution is not a perfect match to the ratio of
the diagram weights in the proposed setup∣∣∣∣Dν′

Dν

∣∣∣∣ = |V (q)|2 e−∆E(τ4−τ3) q
2 sin(θ)

(2π)3
∝ e−∆E(τ4−τ3) sin(θ) , (22)

where the energy change on the updated interval is given by∆E = Ω+[q2−2q · 〈p〉]/2M , and
〈p〉 = (τ4−τ3)−1

∫ τ4
τ3
dτp(τ). However, it is “good enough” in terms of the average acceptance

ratio.
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The decrease update is conceptually very simple: Select any of the existing phonon propagators
(probability is 1/n, where n is the current diagram order), and propose to remove it. We are all
set to formulate the detailed balance equation

rn→n+1|Dν |
pn→n+1

2n+ 1

Ω sin(θ)

4π∆τp0
e−Ω(1+q/p0)2(τ4−τ3) = rn+1→n|Dν′ |

pn+1→n

n+ 1
(23)

and its solution for the increase update

Rn→n+1 =
pn+1→n

pn→n+1

2n+ 1

n+ 1

2αΩ∆τ

π
e[qp0+q·〈p〉](τ4−τ3)/M . (24)

Notice that the second ratio contains (n+1), the number of phonon propagators in the proposed
configuration, in the denominator. The solution of the same detailed balance equation for the
decrease update acceptance ratio reads:

Rn→n−1 =
pn−1→n
pn→n−1

2n− 1

n

π

2αΩ∆τ
e−[qp0+q·〈p〉](τ4−τ3)/M . (25)

Again, one has to be careful in formulating it in terms of the current, order n, and proposed,
order n−1, configuration parameters. In particular, ∆τ is the duration of the polaron interval
where the removed polaron propagator starts after the corresponding phonon propagator is re-
moved (it may be the case that both τ3 and τ4 are smaller than τ2 in Fig. 10). Also, the average
polaron momentum 〈p〉 needs to be computed for the proposed configuration.
• As far as normalization is conserved, the easiest way would be to normalize to the known
integral of the bare Green function

IN =

∫ ∞
0

dτe−(p
2/2M−µ)τ =

1

p2/2M − µ
. (26)

• At this point it is worth saying a couple of words about the data structure because recovering
the necessary information for performing updates is often crucial for the efficiency of the algo-
rithm. Most updates are designed to modify the diagram structure and its parameters locally (in
terms of graph connections); i.e., only a few parameters and propagators are involved in each
update. [This requirement does not apply to DiagMC algorithms based on exact summation of
all diagram topologies that are discussed in the next Section.] Correspondingly, the data struc-
ture should be implemented in such a way that updates can be completed after performing O(1)

operations in the limit of (n, τ)→∞. Here is one possible structure:

1. Every polaron propagator (or “interval”) in the diagram has a unique label ` > 0.

2. This label is used to retrieve information about the propagator momentum, as well as its
initial, and final times, using p(`, 1:3), τi(`), and τf (`) arrays, respectively. One can in-
troduce additional arrays, if necessary, and update the corresponding information; e.g.,
Nph(`) returns the number of phonon propagators covering the ` interval (number of
phonons in the virtual state at time ∈

(
τi(`), τf (`)

)
.
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3. All labels are linked pairwise in two ways. Arrays prev(`) and next(`), see Fig. 11,
allow one to get labels of intervals immediately preceding and following `. Obviously,
next(prev(`)) = `, and prev(next(`)) = `. An array ph(`) establishes a link between
the left ends of the intervals connected by the phonon propagator. Again, ph(ph(`)) = `.
It is easy to see that any local (around `) information about the graph properties can be
quickly recovered without knowing the global structure. An ordered array 1, 2, 3, . . .,
2n+1 of labels cannot be used because if some label ` is removed from the middle of the
list (see also text below), all labels with values > ` must be updated, in violation of the
“locality” principle.

4. In a long simulation run new/existing intervals will be created/erased trillions of times.
It is thus not practical to never use the same label twice. There is, however, a simple
programming trick that allows one to use the same set of labels forever, and manage it
withO(1) operations. At any moment it is known which n+1 labels are “locked” because
they are already utilized for linking the graph intervals and which ones are “open” for
labeling new elements. This is achieved with the help of the ind(`) and lb(i) arrays. By
definition, labels lb(1), lb(2), ... lb(last = 2n + 1) are “locked” and labels lb(> 2n + 1)

are “open,” while ind(lb(i)) = i establishes a connection between the graph labels and
an ordered array of indexes, see an illustration in Fig. 12. When a new interval is added
to the diagram it is given a label lb(last + 1) and the variable last is increased by one.
When some interval and its label ` are removed, one first determines its index i = ind(`).
If i = last, the value of last is decreased by one; otherwise, it is necessary to swap an
association between indexes i and last and labels ` and lb(last), and only then decrease
the value of last by one.
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3.3 Illustrative results: polaron Green function

One can employ DiagMC for in-depth studies of polaron properties, including direct access
to every coefficient (by modulus) in the Lehmann expansion of the exact wave function with
momentum p

|Ψp〉 = cpa
†
p|0〉+

∑
q

cp,qb
†
qa
†
p−q|0〉+

∑
q1q2

cp,q1,q2b
†
q1
b†q2
a†p−q1−q2

|0〉+ . . . (27)

With this one can determine the probability of finding an electron along with a given number of
phonons in the polaron cloud [4]. Here I will only review how one computes the Green function
and extracts the polaron Z-factor, Zp = |cp|2, and energy from its asymptotic expression

Gp(τ →∞)→ Zp e
−(Ep−µ)τ . (28)

The simplest way of collecting statistics for Gp(τ) would be to split the entire τ axis into small
bins ∆i = τi− τi−1 and update bin counters for an integral of the function over the bin size (for
brevity I will suppress the momentum index)

I(i) =

∫ τi

τi−1

dτ G(τ) , (29)

I
(i)
MC = I

(i)
MC + 1 , if τ ∈ (τi, τi−1) . (30)

For small bins, an estimate for the Green function at point τ̄i = (τi + τi−1)/2 can be made as

G(τ̄i) ≈
IN
ZN

I
(i)
MC

∆i

. (31)

While integrals (29) are free of systematic errors, the most straightforward final step (31) does
involve a finite bin size error.
There are several ways for eliminating this systematic error. The bin hierarchy method [5, 6]
takes the limit of very small bins and overcomes the problem of large statistical noise for small
bins by restoring the entire function G(τ) using splines with self-adaptive nodes. This protocol
is rather technical to reproduce here but it is very efficient and ensures that the systematic errors
are always smaller than the statistical ones.
One may also keep the bin sizes fixed, but collect several integrals over bins to improve the
accuracy of restoring G(τ). Any smooth function on a given interval can be expanded as

G(τ) =
∞∑
j=1

α
(i)
j e

(i)
j (τ) , if τ ∈ (τi, τi−1) , (32)

where {e(i)j (τ)} is an ortho-normal basis (ONB) on the interval (τi, τi−1). It may be Legendre
polynomials, but any other ONB with an inner product defined as

〈f |g〉 =

∫ τi

τi−1

dτ w(i)(τ)f(τ)g(τ) , (33)
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can be used instead. In practice, the series is truncated at some finite order Ni, that is deter-
mined to provide an accurate description of G(τ) with unmeasurable (within statistical errors)
systematic bias. To account for divergencies in G(τ) one may need to use singular basis func-
tions and w > 0 weights. For example, if G(τ → 0) ∝ 1/τ 1/2, the first basis function in the
set may be e1(τ) = Aa/τ

1/2. In this case, the w(τ) is required to ensure that the normalization
integral for e1 is finite, and w(τ) = τ 1/2 will do the job. It is also possible to consider infinite
size bins; if the leading asymptotic decay is of power-law type G(τ → ∞) ∝ 1/τa, the ONB
on the time interval (τh,∞) may be constructed from the set of functions ej ∝ 1/τa+bj with
b1 = 0 and bj>1 > 0 to account for the dominant term and several subleading corrections.
According to the theory of Hilbert spaces, the coefficients of expansion are determined by the
integrals

α
(i)
j =

∫ τi

τi−1

dτ w(i)(τ)e
(i)
j (τ)G(τ) , (34)

with unbiased MC estimators

α
(i)
j,MC = α

(i)
j,MC + w(i)(τ)e

(i)
j (τ) , if τ ∈ (τi, τi−1). (35)

After appropriate normalization of statistics, one obtains the Green function from

G(τ) =
IN
ZN

Ni∑
j=1

α
(i)
j,MC e

(i)
j (τ). (36)

Obviously, the conventional procedure described by Eqs. (29)-(31) is nothing but the special
case when there is only one constant basis function.
Finally, one can use the reweighing method for an unbiased estimate of the function at a spec-
ified set of points τ̄i. For each point one decides on the interval (τi, τi−1) that will be used to
collect statistics for G(τ̄i); there are no formal restrictions on the sizes and locations of these
intervals or their overlaps for different points. An optimal choice would be to have τ̄i roughly
in the middle of the interval, and the interval width ∆i to be small enough to avoid multi-scale
variations of G within the interval. For any simulated point than falls within the interval, a
factor Dν(τ̄i)/Dν(τ) accounts for the difference between the G(τ̄i) and G(τ) functions. Thus

G(τ̄i)∆i =

∫ τi

τi−1

dτ G(τ)
Dν(τ̄i)

Dν(τ)
, (37)

implying that an unbiased estimator for G(τ̄) is given by

GMC(τ̄i) = GMC(τ̄i) +
Dν(τ̄i)

Dν(τ)∆i

, if τ ∈ (τi, τi−1) . (38)

The normalization of statistics using IN/ZN does not change.
Once the data for G(τ) are collected they are analyzed according to Eq. (28), see left panel in
Fig. 13. The dependence of the quasiparticle residue on the coupling constant is shown in the
right panel of Fig. 13. It is not unusual to have statistical errors for this problem at the level of
10−6 in relative units. Many more results and direct MC estimators for polaron properties can
be found in Ref. [4].
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Fig. 13: Left panel: Fröhlich polaron Green function at zero momentum for α = 1 (we use
units such that M = 1 and Ω = 1) and its asymptotic single exponential behavior. Right panel:
Quasiparticle residue at p = 0 as a function of the coupling constant.

4 Fermionic sign blessing I

DiagMC for a generic interacting fermionic system follows the same rules. Clearly, the dia-
grams themselves are different, see Fig. 1, the differences in the interaction Hamiltonian. Also,
the diagrams are no longer sign-positive. Even in the absence of gauge fields, the diagram sign
may change for the following reasons: (i) for repulsive interactions and expansion in the in-
teraction potential the diagram sign contains (−U)n, (ii) fermionic propagators are subject to
anti-periodic boundary conditions, G(τ<0) = −G(τ+β), (iii) the diagram sign contains (−1)L

where L is the number of fermionic loops in a given topology. This raises two important ques-
tions: “Are the diagrammatic series convergent and under what conditions?” and “What is the
role of the fermionic sign?” In what follows, I will explain that the two questions are closely
related. The bottom line is that the DiagMC technique works and can be made very efficient
thanks to the fermionic sign; i.e., it is a “blessing,” not a problem.

4.1 Convergence of diagrammatic series for fermions

Dyson’s argument for perturbative expansions in the coupling constant states that the conver-
gence radius of the series is zero for continuous-space systems, no matter whether for bosons or
fermions. Indeed, if it were finite, system properties would be analytic functions of the coupling
constant near the origin. However, when the sign of the interaction is flipped from repulsion to
attraction, continuous space systems collapse to a point (infinite density state) because even for
fermions the kinetic energy increase ∝ n5/3 cannot overcome the potential energy gain −|g|n2.
To understand how this physical intuition is reflected in the mathematical structure of the series,
notice that the number of different topologies for diagrams of order n� 1 is proportional to n!.
Since n! always beats the power law dependence on the coupling constant gn, there is also a
formal reason for suspecting that the convergence radius might be zero.
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It appears then that Dyson’s argument makes the entire diagrammatic approach for many body
systems nearly useless in the strongly correlated regime. This is where the Pauli principle and
the fermionic sign come to rescue. To begin with, the collapse argument does not apply to
lattice systems, such as the famous single-band tight-biding Hubbard model. At best, one can
place two, not more, fermions with opposite spins on the site and the system cannot collapse
to infinite density. Thus, we expect that finite temperature properties of the Hubbard model are
analytic functions of the coupling constant U in the limit of U → 0 and this is confirmed by
exact mathematical considerations. Likewise, Dyson’s argument can be refuted for continuous
space fermions with high momentum cutoff that acts similarly to the Brillouin zone boundary.
Extrapolating converged calculations to the infinite cutoff limit may be a well-defined proce-
dure. Finally, the diagrammatic technique admits an infinite number of alternative formulations
when certain geometric series of the original diagrams are accounted for right from the be-
ginning are incorporated self-consistently into the new “expansion point;” typical examples
include mean-field and dynamic mean-field theories, ladder summations, screening, and solu-
tions for the low-order skeleton set. The new expansion is no longer in terms of the coupling
constant, and the original Dyson argument does not apply directly. Self-consistent mean-field
and skeleton set solutions, on top of which the new expansion is made, can easily a incorporate
non-analytic dependence on the bare coupling constant, as, e.g., in the famous BCS solution.
Going back to the mathematical structure of the diagrammatic expansion, we realize that the
only possibility for the series to converge, despite factorial scaling of the number of allowed
topologies, is to have massive cancellations between the diagrams within the same order. This is
“sign blessing I:” the DiagMC method relies on the fermionic sign because this is the necessary
condition for having series with nice properties. In what follows I will discuss simple illustrative
examples demonstrating how resummation techniques allow one to extract accurate answers
from divergent sign-alternating series. [If series converge, it is time to publish the solution.]

4.2 Resummation techniques

One way to deal with divergent sign-alternating series, Q =
∑∞

n=1 dn, outside their finite con-
vergent radius is as follows. Introduce a smooth function, f(n, ε), that satisfies two conditions:
for ε → 0 and finite n it approaches unity, f(n, 0) = 1; for n → ∞ and finite ε it goes to zero
faster than an exponential function, f(n→∞, ε)an → 0 for any a > 1. The resummed series

Qε =
∞∑
n=1

dn f(n, ε) , (39)

is guaranteed to converge because f(n, ε) suppresses the geometrical divergence of the original
series, while in the limit of ε→ 0 the original and resummed series coincide. By extrapolating
Qε to ε = 0 one effectively performs an analytic continuation of the sign-alternating series
outside of its convergence radius, see Fig. 14(a). The f(n, ε) function is up to you to design,
because apart from the conditions specified it is rather arbitrary; different choices for f provide
a good estimate for the error introduced by extrapolation from finite values of ε to zero.
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Fig. 14: (a) Resummation of divergent series for ln(1+x) with x = 2 using f(n, ε) = e−εn
2

(cir-
cles) and f(n, ε) = e−εn

3/2
(triangles). Extrapolation to ε = 0 was performed using parabolic

fits. Partial sums
∑[ε]

1 (−x)n+1/n are shown by open squares. The value ln 3 is marked by the
diamond on the vertical axis. (b) Moving a simple-pole and increasing the convergence radius
using conformal mapping.

The above protocol is blind to specific properties of the series and may require knowledge of
many terms in the series for reliable extrapolation, especially for less “aggressive” f -functions.
More efficient methods exist when the reason for reaching the convergence radius is known
better. Suppose that the series behaves as dn = γnx

n with γn = (−1)n and M = 10 terms
are known. The goal is get an answer for x = 3, well outside of the radius of convergence.
From available information one can roughly estimate the convergence radius, and produce con-
stant phase lines y(x) for the complex function Q(z = x + iy) =

∑M
n γnz

n to establish that
a simple pole is located close to the real axis, say at z0 ≈ −1.05. Next, one performs a con-
formal mapping w = z/(z − z0), or z = −wz0/(1 − w) and constructs the Taylor series for
Qw(w) =

∑M
n σnw

n. The final answer is given by Qw(x/(x − z0)); with extraordinary accu-
racy it reproduces 1/(1 + x) = 0.25. Under conformal mapping the singularities are moved
away from the origin of the expansion and the point of interest ends up well within the radius
of convergence, see the illustration in Fig. 14(b).

Similarly, it is possible to handle poles of higher order or several poles, but high accuracy rests
on the number of known terms in the series. A slightly different version of the method is known
as extrapolation by Padé approximants. One assumes that the function behind the series is given
by the ratio of two polynomials, Q(z) = Pk(z)/Pm(z), with k +m ≤M . For each (k,m) pair
the polynomials are determined by matching the coefficients of the Taylor series for the ratio to
γn. The final answer is determined by examining how Pk(x)/Pm(x) depends on (k,m) when
we increase the order of polynomials.

Conformal mappings can be also used to improve the convergence properties of series by mov-
ing branch cuts away from the origin. The ratio of polynomials can be replaced by the ratio
of hypergeometric functions to achieve efficient extrapolation in cases when the convergence
radius is limited by the branch cuts [7]. The mathematical and physical literature on the topic
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Fig. 15: Illustration of the shifted action trick. It amounts to changing the origin of expansion
and introducing a different expansion parameter.

is vast, and many methods carry names of famous mathematicians. The bottom line is that
divergent series outside their radius of convergence are almost as valuable for extracting the
required information as convergent series, provided enough terms in the series are known and
singularities are reasonably well understood.
To conclude this subsection, I would like to mention that series with convergence radius zero
(e.g., when branch cuts originate from the center of expansion) are also subject to efficient
resummation methods that guarantee that the final answer is unique in the limit. The analysis
starts with establishing the asymptotic behavior of the Taylor series coefficients γn for large n
by employing the method developed by Lipatov [8]. Since all singularities are encoded in γn→∞
(any finite number of terms is just a polynomial), the corresponding information should be used
for designing the optimal resummation method and guaranteeing that it performs the unique
analytic continuation for the physical parameters of the problem. A beautiful example of such
an analysis can be found in Ref. [9].

4.3 Shifted action

Yet another way of manipulating series convergence is shifting the expansion point, as illus-
trated in Fig. 15. Of course, it can not be done by solving exactly an interacting problem for
some value of the coupling constant, say g1, and then expanding in g−g1 (but this protocol may
be tried numerically if g1 is inside the convergence radius). However, it is relatively “cheap” to
expand on top of the mean-field solution or solutions based on a limited subset of diagrams, such
as ladders, random phase approximation, and self-consistent skeleton graphs, as well as any set
of dressed propagators. The new expansion still provides an exact solutions to the problem. The
tool goes under the name of “shifted action.”
I will explain how shifted action works by considering the case of the Green function. Further
generalizations are mentioned in Ref. [10]; in brief, the shifted action protocol can be applied at
the level of any multi-point correlation function (with the help of Stratonovich-Hubbard trans-
formations). Let the original interacting problem be described by the action (in terms of the
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Grassmann field ψ)
S[ψ] = 〈ψ|G−10 |ψ〉+ gSint[ψ] , (40)

where G0 is the bare fermion propagator, and g is the coupling constant. [For brevity, I will use
vector-space notations to suppress space, time, spin, etc., indices and integrals/sums over them,
and loosely call the corresponding kernels “functions.”] Instead of expanding e−S in powers of
g, one can introduce an auxiliary action

S
(N )
ξ [ψ] = 〈ψ|G̃−1N + ξΛ1 + . . .+ ξNΛN |ψ〉+ ξgSint[ψ] (41)

with auxiliary expansion parameter ξ. Despite the fact that the first term is harmonic, we will
treat G̃N as a new “shifted” bare propagator and expand e−S

(N )
ξ in powers of ξ using all ξ-

dependent terms. For the two actions to represent the same physical system at ξ = 1 we
demand that

G̃−1N +
N∑
n=1

Λn = G−10 . (42)

Given that the final answer for the Green function can be expressed in terms of the proper
self-energy Σ as

G−1 = G−10 −Σ = G̃−1N −

[
Σ −

N∑
n=1

Λn

]
, (43)

the {Λn} functions act as counter-terms with respect to the n-th order proper self-energy dia-
grams generated by the interaction term gSint[ψ]. There are no restrictions on the number of
counter terms or their functional dependence; this freedom can be used to optimize the conver-
gence of the series for ξ = 1. Even a simple self-energy shift such as Λ1 = µ1, equivalent to
a change in the chemical potential, can help to solve the problem by moving the ξ = 1 point
inside the radius of convergence [11].
Of special practical interest is the case when the counter-term Λn is exactly the n-th order con-
tribution to the self-energy coming from Sint. The resulting expansion—standard for effective-
field theories—is then identical to the semi-skeleton series based on Dyson summation of infi-
nite sets of irreducible diagrams associated with the firstN orders of the perturbative expansion
of the original action (40). For example, if this protocol is followed forN = 1, then the expan-
sion will be done on top of the self-consistent Hartree-Fock solution. If shifted action is applied
to the screening channel as well, by selecting the N = 1 skeleton set to define counter-terms
one is setting the expansion on top of the self-consisted GW -approximation. Next, one can
account for the leading vertex corrections, etc. In view of the exact cancellation of all contribu-
tions up to order N , the expansion starts at order n = N + 1 and only then the counter-terms
Λn enter the diagrammatic expansion explicitly. To find G̃N and all counter terms for a given
G0 one has to perform the so-called “bold” DiagMC simulation, or BDMC. This leads to the
numeric protocol consisting of two independent parts:

• Part I is the BDMC simulation of the truncated order-N skeleton sum with the goal of
solving for G̃N and {Λn[G̃N ]} satisfying Eq. (42);

• Part II is the DiagMC simulation of higher-order terms using G̃N as the bare propagator.
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5 Fermionic sign blessing II

Apart from the massive cancellation of contributions from diagrams of the same order, the
fermionic sign is also key for having efficient algorithms to account for all possible topologies.
Indeed, consider the case of density-density interparticle interactions. If diagrams are formu-
lated in the real-space, imaginary-time representation (to eliminate restrictions imposed by the
energy-momentum conservation laws) then the sum over all possible graph topologies, both
connected and disconnected, has the form of a determinant for each spin component

det
∣∣Gσ(ri, τi; rj, τj)

∣∣ . (44)

Thus, n! terms can be summed in O(n3) number of operations. As I will discuss below, it
takes much longer to compute contributions from connected diagrams, but it is still possible
to do it much faster than in n! operations, see [12]. Ultimately, this observation allows one to
say that DiagMC for convergent series or series subject to resummation, generically solves the
computational complexity problem for interacting fermions.

5.1 Sum or sample?

So far we discussed the original MC approach to sampling the configuration space of connected
Feynman diagrams. As illustrated in Fig. 4, one option is to sample various topologies within a
given order. However, knowing that the sum of all topologies features massive cancellations of
contributions, this is not necessarily the best strategy. To make the point, consider the problem
of determining an answer for a large sum of sign-alternating terms

A = Z−1
M∑
i=1

ci , Z =
M∑
i=1

|ci| . (45)

In M operations one can know the answer with machine precision by performing the sum. If
the sum is sampled from the probability distribution pi = |ci|/Z, the error bar on the result after
M operations will be (assuming that the algorithm is perfect in eliminating the autocorrelation
time problem)

σA =
√

(1−A2)/M . (46)

Since we assume in this discussion that |A| � 1, the answer to the dilemma of what is the
best method of dealing with (45) is clear: for |A| � M−1/2 one is better off by doing the sum;
otherwise, the answer will be known with good accuracy faster by sampling.
Enumerating terms and performing the sum over all topologies for high-order graphs is certainly
possible for n ≤ 10. At the same time, for convergent series, it is expected that the average sign
is factorially small. It is thus plausible that in many cases problem (1) has to be reformulated as

Q(y) =
∞∑
n=0

∫
· · ·
∫
dx1 · · · dxn D̄(n;x1, . . . ,xn;y) , (47)

D̄(n;x1, . . . ,xn;y) =
∑
T

D(n,T;x1, . . . ,xn;y) . (48)
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Fig. 16: By connecting all outgoing arrows to incoming ones with the same spin index, one
obtains a Feynman diagram for the partition function. Free energy density diagrams must form
a connected graph.

5.2 Determinant method for connected diagrams

An efficient method for computing D̄ for expansions in the coupling constant was developed by
Rossi in Ref. [12]. It rests on the simple observation that the sum of all connected topologies
can be obtained from the sum of all topologies by subtracting disconnected ones. To be spe-
cific, consider the fermionic Hubbard model and Feynman diagrams for the free energy density.
Given space-time positions of interaction vertexes X1, . . . Xn, where Xi = (ri, τi), all topolo-
gies are generated by establishing pairwise associations between the incoming and outgoing
arrows with the same spin index, as in Fig. 16. Apart from the global factor (−U)n, the dia-
gram contribution is given by the product of all Green functions and the sign rule based on the
number of fermionic loops. According to this rule, each time one swaps the destination points
for two propagators the number of loops changes by ±1 and this leads to an additional factor
of −1. Thus, the sum over all possible topologies forms a determinant (44).
Let us introduce a short-hand notation for the collection of all vertex coordinates, V = {Xi},
any proper subset of coordinates, S ( V, the sum over all topologies (determinant) for a
given set of coordinates, det(V ), and the sum over all connected topologies, C(V ). Then, by
subtracting from det(V ) all disconnected cases, we obtain C(V )

C(V ) = det(V )−
∑
S(V

C(S) det(V \S) . (49)

This is a set of recursive equations for connected contributions after similar equations are written
for subsets of V. Its coefficients are based on determinants and the cost of computing all of them
scales as n3 2n, where 2n comes from the combinatorial number of possible proper subsets,∑n−1

m=1 n!/m!(n −m)!. The number of arithmetic operations required to solve these recursive
equations is ∝ 3n—in the large n limit this is the main computational cost.
In this scheme, the effort is exponential in the diagram order and this is certainly an enormous
improvement compared to the (n!)2 scaling of the total number of connected graphs. After sum-
mation over {Xi} one should not forget to divide the n-th order contribution by n! to account
for the indistinguishability of the vertices. One can use this scheme (or its generalizations) to
compute connected diagrams for any correlation function [12], proper self-energy [13, 14], and
even semi-skeleton series; in the latter case, however, the computational cost will increase to
roughly 6n.
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One final remark. When the cost of computing the diagram weight is minimal, as for Fröhlich
polarons, local updates changing a couple of variables with large acceptance ratio are preferred
because of their efficiency and simplicity. However, when getting the diagram weight is compu-
tationally very costly, there is nothing wrong in spending at least as much CPU time on design-
ing efficient global updates changing all diagram variables. The gain in reduced autocorrelation
time may more than overcompensate the loss in the acceptance ratio. This is where machine
learning techniques hold a great promise for further improving the efficiency of DiagMC simu-
lations. By learning typical model-dependent statistical properties of connected Feynman dia-
grams with n multi-dimensional coordinates, such as “gyration radius,” “dipole,” “quadrupole,”
and “multi-pole” correlations, as well as asymptotic laws for moving one or more vertices well
outside of the gyration radius, global updates can achieve large enough acceptance ratios. I am
not aware of systematic work done in this direction for connected Feynman diagrams.

5.3 Computational complexity problem for interacting fermions
and its solution

To begin with, interacting fermions do not suffer from the sign problem, as any experimentalist
measuring their properties is certainly aware of. It is a problem for some, but not all, theoretical
methods used to simulate their properties. In general, sign-alternation of contributions simu-
lated by MC methods is neither sufficient nor necessary to state that the problem is intractable.
For precise quantitative discussion, one needs to define the “computational complexity prob-
lem” (CCP). The most relevant practical question to answer is “How easily can one increase the
accuracy of the computed thermodynamic-limit answer?” This leads to the following definition
of the CCP that can be applied to any numerical scheme. Let Q be the intensive quantity of
interest in the thermodynamic limit.
A numerical scheme has a CCP if the computational time t required to obtain Q with error ε
diverges faster than any polynomial function of ε−1→∞. The CCP is considered to be solved if

t(ε) = O(ε−a). (50)

I discuss only unbiased methods, for which the difference between the computed and exact
values can be made arbitrary small. For methods containing an unknown systematic bias, the
accuracy cannot be increased indefinitely (but it may be very small).
I will skip the discussion of how methods that suffer from the sign-problem also generically
have CCP in dimensions d ≥ 2, see Ref. [15] for details. On the contrary, for convergent
(or subject to resummation) diagrammatic series, the CCP is solved by DiagMC. Indeed, for
convergent series the accuracy of truncated sums QN =

∑N
n=0 dn is improved exponentially

fast with the largest diagram order accounted for, |Q − QN | ∝ QαN , with 0 < α < 1. Thus,
given some small value of ε, the required accuracy is reached by simulating diagrams up to order
Nε ∼ ln(ε)/ ln(α). For the determinant scheme described above the simulation time required
to compute all diagrams up to order Nε is an exponential function of Nε, leading to an estimate

t(ε) = t(Nε) ∝ bNε = εln(b)/ ln(α) −→ CCP solved . (51)



15.24 Nikolay Prokof’ev

(a) (b)

Fr
ee

 e
ne

rg
y

Fig. 17: (a) Free energy density for the fermionic Hubbard model as a function of truncation
order, at T/t = 0.125, U/t = 2, and n = 0.87500(2) (reproduced from Ref. [12]). (b) Density
of the unitary fermi gas (λ is the thermal wavelength) vs. maximal diagram order at T/µ = 0.5
(or T/TF = 0.2). The bold diagrammatic series is resummed by three variants of the conformal-
Borel transformation (see Ref. [9]).

Apart from the cost of the solving recursive equations for connected contributions, the value of
b may also include the cost of performing an integral over the space-time variables.

5.4 Illustrative results: Hubbard model and unitary Fermi-gas

It is rare to see sign-free path integral simulations for bosons to be performed with accuracy bet-
ter than 5 significant digits even for finite size systems. The remarkable plot in Fig. 17(a) proves
that for convergent series one can reach an accuracy of 6 significant digits for a generic inter-
acting fermionic system. In this example, the determinant method for connected diagrams was
used to simulate the fermionic Hubbard model away from half-filling at density n = 0.87500(2)

and relatively low temperature T/t = 0.125, where t is the n.n. hopping amplitude. Better con-
vergence was achieved through the Hartree diagram shift of the chemical potential (the conver-
gence radius in the on-site coupling U was estimated to be about 5.1 t). The selected parameter
set corresponds to the Fermi liquid regime; for larger values of U and on approach to half-
filling the situation is much worse and further work is required to improve the performance
of DiagMC. Nevertheless, a number of interesting results concerning the nature of magnetic
correlations and the pseudogap regime were already obtained.
Fig. 17(b) shows another remarkable outcome of the BDMC simulations done for the unitary
fermi gas. This system features a number of universal properties and is relevant for understand-
ing properties of ultra-cold atomic gases and dilute neutron matter. Microscopically, imagine
that fermions interact via a short-range attractive potential of radius R and strength U0 that is
fine tuned to the threshold of having a shallow bound state. For two-body collisions at zero
energy this situation corresponds to a large s-wave scattering length, as � R. Next, consider
a many-body system at finite density, n = k3F/3π

2, where kF is the Fermi momentum, in the
so-call “zero-range” limit, kFR → 0 when the interparticle distance vastly exceeds the poten-
tial radius. In this limit system properties become universal in the sense that all microscopic
potentials with the same kFas parameter should be considered equivalent to each other. If kFas
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Fig. 18: (a) Bare pair propagator Γ (0) based on the summation of ladder diagrams in terms
of the zero-range potential g δ(r) (dots) and non-interacting Green functions (thin lines). (b)
An order n skeleton diagram consists of n fully dressed pair propagators and Green functions
(bold lines) connecting them.

is finite, one talks about resonant fermions; this is the canonical model for discussing the BCS-
BEC crossover within the superfluid fermionic state.
The unitary fermi gas corresponds to kFas = ∞. At low temperature T < TF it is a strongly
interacting system (every spin-up fermion is “contemplating” to form a bound state with every
other spin-down fermion) without small parameters to justify a perturbative or mean-field treat-
ment because the only meaningful length (energy) scale in the problem is kF (TF ). Its solution
by the DiagMC method involves nearly all the tricks mentioned in this contribution:

(i) To eliminate ultra-violet divergences and to take the zero-range limit analytically, one has
to the perform summation of the ladder diagrams prior to the DiagMC simulation and
formulate the expansion in the number of pair propagators, see Fig. 18(a).

(ii) To reduce the number of sampled topologies, the simulation is performed for proper
self energies Σ[G,Γ ] and Π[G,Γ ] within the self-consistent skeleton formulation, see
Fig. 18(b). The self-consistent loop is closed by Dyson equations:

1/G = 1/G(0) −Σ[G,Γ ] , 1/Γ = 1/Γ (0) −Π[G,Γ ] .

(iii) Asymptotic properties of Γ and G in the limit of short time and distance should be taken
care of using exact analytic relations, see Ref. [16] for details.

(iv) Since the resulting series have zero convergence radius, one has to study the nature the
of non-analytic behavior at the origin of the expansion by employing Lipatov’s technique
and construct the appropriate conformal Borel resummation method, see Ref. [9].

The amount of analytic and numeric work may seem daunting, but it can hardly be avoided:
the goal is to produce results with guaranteed accuracy bounds. Currently, theoretical error
bars are smaller than the most precise experimental data [17] for the equation of state at low
temperature right above the transition point to the superfluid state, see Fig. 17(b). At high
temperature, T > TF , the BDMC results are far more accurate than experimental data and
provide the most stringent test for high-order virial expansion coefficients.
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6 Conclusions

This contribution reviewed key principles of DiagMC, as well as some of the recent develop-
ments for interacting fermionic (or fermionized) systems that radically improve the efficiency of
simulations for high orders of expansion. The number of successful applications is already very
large and covers both lattice and continuous-space systems, short- and long-range interaction
potentials, effective field theories, interacting topological insulators, frustrated quantum mag-
nets, Bose and Fermi polarons, continuous-time impurity solvers, lattice- and continuous-space
path integrals, point-contact dynamics, etc.
There are no known fundamental restrictions on the applicability of the method. However, its
efficiency strongly depends on the convergence properties of the series and a deep theoreti-
cal/mathematical understanding of the singularities that control this convergence. Gaining such
analytic understanding is, arguably, the most important and urgent direction for future work.
Numerically, the field will expand in terms of applications to cover models with gauge fields,
spin-orbit coupling, and more complex forms of interaction potentials. Codes have to be de-
veloped and tested for a variety of effective field theories, shifted action protocols, multi-point
correlation functions, and, ultimately, for material science applications.
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The Stochastic Series Expansion (SSE) technique is a quantum Monte Carlo (QMC) method
that is especially efficient for many quantum spin systems and boson models. It was the first
generic method free from the discretization errors affecting previous path integral based ap-
proaches. These lecture notes will serve only as a brief overview of the SSE method, and
readers who would like to implement it for some specific model are recommended to consult
some of the cited references for more details.
In the introductory section, the representation of quantum statistical mechanics by the power
series expansion of e−βH will be compared with the likely more familiar path integrals in dis-
crete and continuous imaginary time. Extensions of the SSE approach to ground state projection
and quantum annealing in imaginary time will also be briefly discussed. The later sections will
introduce efficient sampling schemes (loop and cluster updates) that have been developed for
many classes of models. A summary of generic forms of estimators for important observables
will be given. Some recent applications will also be reviewed.

1 Overview of stochastic series expansion methods

1.1 Path integrals and series expansions

The most obvious way to construct a Monte Carlo (MC) simulation scheme for a lattice Hamil-
tonian H is to start from the path integral formulation of quantum statistical mechanics, where
e−βH is written as a product of imaginary-time evolution operators e−∆τH with a small “time
slice,” ∆τ = β/L, for some large number L of slices [1, 2]. The partition function Z =

Tr{e−βH} can then be written as

ZPI =
∑
{α}

〈α0|e−∆τH |αL−1〉 · · · 〈α2|e−∆τH |α1〉〈α1|e−∆τH |α0〉, (1)

where the sum is over L complete sets of states in a suitably chosen basis. Because the time
step ∆τ of the slices is small, the matrix elements can be computed to some approximation
with a total error of order ∆p

τ , where p depends on the approximation used, e.g., p = 2 with
the lowest-order split-operator (Suzuki-Trotter) decomposition of the exponential operators,
e−∆τ (HA+HB) ≈ e−∆τHAe−∆τHB (for generic non-commuting terms HA and HB). Several vari-
ants of such path-integral based QMC methods, often called world line (WL) methods, were
developed in the 1970s and 1980s [3, 4].
There was also an earlier proposal by Handscomb, dating back to the early 1960s [5], to in-
stead start from the power series expansion of e−βH . Handscomb made the observation that the
Heisenberg exchange interaction between two S = 1/2 spins, Hij = Si · Sj , is a permutation
operator, and that traces of strings of these operators for different spin pairs can be easily eval-
uated analytically. In the case of a ferromagnetic coupling (i.e., with a negative sign in front of
Si · Sj), the minus sign in the exponential is canceled. The powers of the Hamiltonian can be
further decomposed into strings of two-body (bond) operators, Hbn · · ·Hb2Hb1 , with all com-
binations of the operators Hb = Hi(b),j(b), b ∈ {1, . . . , Nb} on a finite lattice in any number of
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space dimensions D (where Nb = DL for nearest-neighbor interactions on a D-dimensional
simple cubic lattice). Denoting a string of n operator indices b1, b2, . . . , bn by Sn, the partition
function is then

ZH =
∞∑
n=0

βn

n!

∑
Sn

Tr{Hbn · · ·Hb2Hb1}, (2)

where the traces of the strings of permutation operators are positive definite. With a simple
scheme to evaluate the traces in terms of permutation cycles, the operator strings can be sampled
using a Metropolis MC method and various thermodynamic expectation values can be evaluated
[5, 6]. Among these expectation values, the total internal energy is particularly important as it
takes the simple form E = 〈H〉 = −〈n〉/β, which shows that the mean number of operators n
in the expansion during the sampling process (which includes updates increasing and decreasing
the string length n) scales as βN , N being the total number of spins. Thus, the expansion is
convergent (as is also guaranteed since H on a finite lattice has a bounded energy spectrum)
and there is in practice a “fuzzy bound” on the expansion order n, proportional to βN , that will
never be exceeded during the sampling process. Both the computer storage requirement and the
processor time for completing a full MC updating sweep then also scale as βN .
It is illustrative to compare Handscomb’s expansion with the simple power series for the ex-
ponential of a positive number x, ex =

∑
m x

m/m! =
∑

mW (m), which is always conver-
gent and where the mean of the distribution P (m) = W (m)e−x (i.e., the Poisson distribu-
tion) is 〈m〉 = x. In light of this fact, the distribution of expansion orders in the case of
Tr{e−βH} can be easily understood in the limit β → ∞, where e−βE0 (E0 being the ground
state energy) is the only surviving contribution to the trace and β|E0| therefore corresponds to
x above; 〈n〉 = β|E0|. At any temperature, the fluctuations of n are related to the heat capacity;
C = 〈n2〉 − 〈n〉2 − 〈n〉 [5]. Therefore, the variance of the distribution at T = 0 is also exactly
the same as for the Poisson distribution; 〈n2〉 − 〈n〉2 = 〈n〉.
Handscomb’s method is certainly elegant, but in its original formulation it was very limited in
applicability, as there is only a small number of models for which the traces can be computed
analytically [7]. The expansion is also normally not positive definite. The problem of mixed
positive and negative terms (i.e., an incarnation of the QMC sign problem) appears already for
the antiferromagnetic Heisenberg interaction, and it took some time until it was realized that
this sign problem was easily solvable for bipartite lattices by simply adding a suitable constant
to the interaction [8]. The traces can then still be computed and the strings can be sampled in
a way similar to the original formulation. However, in practice the modified method did not
perform as well as the path-integral based methods that had been developed by then for the
Heisenberg antiferromagnet and many other models. Though some further applications were
reported [9], Handscomb’s method was essentially abandoned, as it became clear that it was not
possible in general to compute traces of operator strings efficiently, and, in the cases where the
traces can be evaluated, the existing sampling schemes were also often inefficient.
The dismissal of the idea of starting from the series expansion was premature. It is not clear
why it was not realized earlier that it is not necessary to compute the traces analytically—
they also can be sampled in a chosen basis along with the operator strings [10, 11]. The sam-
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pling weight in the extended space comprising states and operator strings has matrix elements
〈α|Hbn · · ·Hb2Hb1|α〉 in place of the full traces in Eq. (2);

ZSSE =
∞∑
n=0

βn

n!

∑
Sn

∑
α

〈α|Hbn · · ·Hb2Hb1|α〉. (3)

Here the Hamiltonian has been defined as H = −
∑

bHb, so that no negative signs appear
explicitly. Of course the string of operators can still produce negative signs, and the class of
models for which this can be avoided is, as always, limited, but includes many important sys-
tems worthy of study (some recent examples will be discussed in Sec. 4). It can be noted here
that sign problems originating from the diagonal part of the interaction can always be avoided by
adding suitable constants to some of theHb operators. Signs appearing with off-diagonal opera-
tions (either explicitly from negative prefactors of someHb or due to fermion anti-commutation)
are in general difficult to avoid [12], except in special cases, e.g., the aforementioned bipartite
antiferromagnets, where the number of minus signs in the product is always even.
Methods based on sampling the traces in Eq. (3) were first developed for general-S Heisenberg
models [10] and 1D Hubbard-type models [11] almost 30 years after the advent of Handscomb’s
original method, and the extended series scheme eventually became known as the SSE. Over
the years, many further improvements of these algorithms have been made—some inspired by
developments within other methods and some proposed first within the SSE scheme and later
adopted into other techniques. The SSE method was the first broadly applicable exact QMC
scheme (i.e., not affected by any systematical errors such as those from time discretization) and
it was also the forerunner and inspiration to later algorithms based on other series expansions,
in particular, the perturbation series leading to the continuous-time worm algorithm [13].
The SSE method can in principle be used for any model written in a discrete basis, though in
practice sign problems restrict applications to the same classes of models as the WL methods.
Models that have been successfully studied include many spin Hamiltonians, boson models, and
1D fermion systems (see Sec. 4). Both the WL and SSE approaches normally have insurmount-
able sign problems for fermions in higher dimensions (unlike, in some cases, auxiliary-field
fermion determinant methods [14, 15]). Models with controllable sign problems accessible to
SSE include certain frustrated impurities in antiferromagnets, where the signs arise only locally
at the impurity and the bulk operators do not involve any signs [16].
The sampled basis in SSE simulations is typically the z components Szi for spin systems or the
site occupation numbers ni = a†iai for particle models. More complicated states can also be
used, e.g., the basis of singlets and triplets on spin dimers has been used to solve certain sign
problems [17,18]. The primary advantage of SSE over discrete-time WL methods for sign-free
models is the absence of time-discretization error—the discrete dimension corresponding to the
location in the SSE operator string constitutes a faithful representation of continuous imaginary
time [11, 19], as we will discuss below. Compared to more recently developed continuous-time
WL methods [20,13], the discreteness of the SSE representation often allows for more efficient
sampling schemes. For many models (especially spin systems), the SSE outperforms all other
known QMC methods. Typically the SSE method is also easier to implement.
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1.2 Continuous time in the power-series representation

Before discussing how to sample the SSE configuration space (in Sec. 2) and compute expec-
tation values of interest (in Sec. 3), it is useful to consider some formal relationships between
path integrals and the series representation of statistical mechanics. At the same time we will
introduce some concepts that will be useful later in algorithm definitions and implementations.
We can insert complete sets of states between all the operators in Eq. (3) to write the SSE
partition function in the form

ZSSE =
∞∑
n=0

βn

n!

∑
Sn

∑
{α}

〈α0|Hbn|αn−1〉 · · · 〈α2|Hb2|α1〉〈α1|Hb1|α0〉, (4)

where one can see a similarity with the path integral in Eq. (1). The inserted states (except for
|α0〉) are redundant in the SSE method, however, because the operators Hb should be defined
such that, for every possible combination of operator Hb and basis state |α〉, the state Hb|α〉 is
proportional to a single basis state; Hb|α〉 = hbα|α′〉, |α′〉 ∈ {|α〉} (and hbα is the trivial matrix
element 〈α′|Hb|α〉). Then the operator string itself uniquely defines how the state |α0〉 in Eq. (4)
is propagated through a series of basis states (similar to a path in the WL formulation) and
eventually arrives back to the same state |α0〉 for an operator string contributing to the partition
function (with the periodicity reflecting the original trace operation). Clearly the vast majority
of the strings violate the periodicity condition and for those we have 〈α0|Hbn · · ·Hb1 |α0〉 =
0. The strings should therefore be sampled so that the periodic “time” boundary condition is
always maintained in any attempted update.
To ensure the “no-branching” condition Hb|α〉 ∝ |α′〉, the diagonal and off-diagonal parts of all
the terms in H have to be separated. The index b then does not just refer to sites or bonds (or
larger units of sites for interactions involving more than two sites) but enumerates separately
the diagonal and off-diagonal terms. This is sometimes accomplished (formally and in actual
program implementations) by introducing an additional index, so that H1,b refers to, say, the
diagonal part andH2,b is the off-diagonal part of the interaction on bond b. In some cases the off-
diagonal operators have to be formally split up further , e.g., in the case of S > 1/2 Heisenberg
spin systems the off-diagonal part of the interaction, Sxi S

x
j + Syi S

y
j = 1

2
(S+

i S
−
j + S−i S

+
j ) has

to be regarded as two different operators, 1
2
S+
i S
−
j and 1

2
S−i S

+
j . In contrast, for S = 1/2 the

sum of the two terms can be considered as a single operator, since only one of them can give a
non-zero result when acting on a basis state.
With the no-branching condition ensured, for a given operator string Sn, a propagated state
|α(p)〉 is defined in the SSE method as the state obtained when the first p operators have acted
on the ket state |α0〉 = |α(0)〉 in Eq. (4),

|α(p)〉 = r

p∏
i=1

Hbi|α0〉, (5)

where r formally is a normalization constant (which does not have to be computed in practice).
In the sum over complete sets of states in Eq. (4), there is now a single contributing component
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for each p, namely, |αp〉 = |α(p)〉, and the operator string uniquely defines the path of states
evolving from |α0〉.
The propagated states also have a simple relationship to imaginary-time evolution in path inte-
grals, where starting from some state |φ(0)〉 at imaginary time τ = 0 we have the evolved state
|φ(τ)〉 = re−τH |φ(0)〉, where again we formally have a normalization constant r because of
the non-unitary evolution. For an SSE string of length n, we roughly have the correspondence
(p/n)β ≈ τ (which becomes increasingly accurate with increasing n).
The precise relationship between the discrete index p and the continuous time variable τ can be
seen in the SSE expression for a time dependent correlation function of some operators A and
B. With the a time dependent operator given by B(τ) = eτHBe−τH , by series expanding the
thermal expectation value 〈B(τ)A(0)〉 we obtain

〈B(τ)A(0)〉 = 1

Z

∑
α

∑
m,p

(τ − β)m(−τ)p

m!p!
〈α|HmBHpA|α〉, (6)

which can also be expanded into a summation over operator strings as we did in the partition
function above. We defer until later the question of what types of operators can be considered in
correlation functions in practice (but note that diagonal operators can always be treated easily).
Here we just consider the general formal relationship between the index p in Eq. (6) and the
time difference time τ . We can see that the expansion of e−τH in powers Hp is independent of
the expansion of e−(β−τ)H in powers Hm, and to estimate the distribution P (p) roughly we can
just replace Hp by 〈H〉p. Then we again have a Poisson distribution with mean 〈p〉 = τ |〈H〉|,
which also equals (τ/β)〈n〉, where n is the total expansion power of a given term; n = m+ p.
Stated differently, propagation by p operators in SSE corresponds roughly to a displacement
τ = (p/n)β in imaginary time, as already mentioned at the end of the preceding paragraph.
Eq. (6) shows more precisely that the relationship between any given τ involves summation
over a sharply peaked distribution of states propagated by powers Hp of the Hamiltonian.
The similarity between the series approach and the path integral becomes even more obvious if
the exponentials in Eq. (1) are expanded to linear order, e−∆τH ≈ 1−∆τH;

ZPI ≈
∑
{α}

〈α0|1−∆τH|αL−1〉 · · · 〈α2|1−∆τH|α1〉〈α1|1−∆τH|α0〉, (7)

where the total error arising from all slices is of order ∆τ , worse than the ∆2
τ error when the

Trotter decomposition is used. We will in the end take the limit ∆τ → 0 and the treatment
becomes exact. Next we again write H as a sum over its individual terms Hb with a minus
sign taken out in front, H = −

∑
bHb. Furthermore, we can introduce a new name for the unit

operators 1 in the matrix elements, defining H0 = 1. Then, similar to the SSE formalism, we
can write the path integral as a sum over index sequences SL = bL, . . . , b2, b1 but now with the
new index b = 0 also allowed and with the number L of indices fixed;

ZPI =
∑
{α}

∑
SL

∆n
τ 〈α0|HbL|αL−1〉 · · · 〈α2|Hb2|α1〉〈α1|Hb1 |α0〉, (8)
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where n is the number of elements in SL that are not equal to 0 (i.e., the number of times actual
terms of H appear in a given operator product).
In the case of the SSE partition function (4), there is an explicit sum over expansion orders
n that does not appear in the path integral expression (8), but since we know that the series
expansion is convergent we can introduce a cut-off, nmax =M , and for expansion orders lower
than M we can use “fill-in” unit operators, defining H0 = 1 as above. If we further consider
all possible ways of distributing n Hamiltonian terms within a product of M operators out of
which M − n are unit operators, the SSE partition function becomes

ZSSE =
∑
{α}

∑
SM

βn(M − n)!
M !

〈α0|HbM |αM−1〉 · · · 〈α2|Hb2|α1〉〈α1|Hb1 |α0〉, (9)

where we have divided the weight by in Eq. (4) by the combinatorial factor M !/[n!(M − n)!]
to compensate for overcounting of identical contributions with different locations of the unit
operators. Note again that n is the number of non-0 elements in the operator-index string, and a
summation over n in Eq. (9) is implicit in the summation over all fixed-length sequences.
For a given common string length M = L, we now see that the path integral and SSE partition
functions in Eqs. (8) and (9) involve exactly the same configuration space, but the weighting
of the configurations is slightly different. However, the weights become identical in the limit
where ∆τ → 0 is taken in the path integral, since ∆n = βn/Ln and for M → ∞ we have
βn(M − n)!/M ! → βn/Mn in the SSE weight. Thus, we conclude that the two approaches
are really identical if the limit M = L → ∞ is taken. An important difference is that the SSE
approach is in practice exact (i.e., the truncation error is exponentially small and not detectable
in practice) already for some M of order βN , while the path integral, in the approximation used
above, is affected by an error of order β/L. An exceedingly large number of slices L would
have to be used for the error to become completely negligible. In a sense, the SSE method
automatically finds the optimal number of slices for given N and β.
Of course, the path integral approach as described above should not be used in an actual WL
algorithm, because simple approximants of e−∆τH with smaller errors are available, i.e., the
Trotter decomposition. The reason for using the linear approximation here was simply to obtain
the most direct relationship between the SSE and path-integral forms of Z. In the case of the
SSE, while it is not necessary to introduce the fill-in operators H0 = 1 [11], in practice it
is actually convenient and efficient to use this device to achieve a fixed length of the index
sequence. The cut-off M can be easily adjusted automatically during the equilibration part of
a simulation, in such a way that the number n of Hamiltonian operators always stays below M

by a safe margin, as will be further discussed when updating schemes are described in Sec. 2.
The more recently developed continuous-time WL methods can be formally obtained by taking
the limit ∆τ → 0 in Eq. (1). This is equivalent to the form (8) of the partition function, where
the events correspond to the operatorsHbi . However, in this case it is better to keep the diagonal
operators in the exponential form instead of expanding them to linear order, and then the paths of
events dictated by the off-diagonal operators formally correspond to the perturbation expansion
in the interaction representation [13,19]. In a computer program, only the “events”—where and
how the paths change—need to be stored [20, 13].
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To see the equivalence with the perturbation series more clearly, we can divide the H into its
diagonal part H0 in the chosen basis and an off-diagonal part V . As an example, for a generic
Heisenberg spin system we could chooseH0 =

∑
ij JijS

z
i S

z
j and V =

∑
ij Jij(S

+
i S
−
j +S

−
i S

+
j ).

Then, by considering V as a perturbation to H0 (though eventually there will be no restriction
on the strengths of the two terms) and carrying out the perturbation series to all orders we obtain
the partition function as an integral in continuous imaginary time

ZCT =
∞∑
n=0

(−1)n
∫ β

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτnTr{e−βH0V (τn) · · ·V (τ2)V (τ1)}, (10)

where the time-evolved operator in the interaction representation is V (τ) = eτH0V e−τH0 . Like
in the SSE method, we can now sample the trace in the chosen basis and write the product
V (τn) · · ·V (τ2)V (τ1) as a string of time evolved operators Vb (now only including off-diagonal
terms). When inserting complete sets of states between all the operators and summing over
diagonal terms for the trace, the exponentials just become numbers, and the weight of a given
configuration (a state |α0〉 acted on with an operator string) for a given set of times τ1, . . . , τn can
be easily computed. The integrals over time can also be sampled in an MC procedure in which
all the degrees of freedom are updated together efficiently [20, 13]. The relationships between
the SSE and continuous time formulation have been discussed in more detail in Ref. [19].
Like the SSE method, the perturbation expansion converges with a mean string length of order
βN , regardless of the relative strengths of H0 and V . When H0 dominates the energy the pref-
actor will be smaller in the perturbation expansion, which then is more economical. When H0

is not very dominant (which is common with quantum spin models, where the diagonal and off-
diagonal energies are often similar in magnitude) the SSE approach has an advantage owing to
the fact that it is formulated in a completely discrete representation, while in the continuous-time
formulation floating-point numbers (the imaginary time points) have to be processed. Recently,
the SSE scheme was also further developed for systems where H0 dominates [21] (which often
correspond to a nearly classical statistical system), essentially by integrating out all the diagonal
terms from the SSE operator strings. This approach may be as efficient as the continuous-time
WL approaches (or even more efficient in some cases) when there is a large imbalance in the
strengths of the diagonal and off-diagonal terms. The original SSE approach should still be
better (because of the simplicity of the algorithm) when the terms are similar in strength.

1.3 Stochastic series expansion for ground states

In order to study the ground state of a system, one can take the limit T → 0 within one of the
methods discussed above. In practice, this means T � ∆, where ∆ is the smallest finite-size
excitation gap of the system. For systems with gaps closing as 1/L (where from now on L will
refer to the linear size of the lattice), the ground state can be routinely reached on systems with
thousands, in many cases even tens of thousands, of spins or bosons.
Ground states can also be studied using “projector methods,” where, instead of tracing over a
complete basis, the imaginary-time evolution operator e−βH propagates some initial state |Ψ(0)〉
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(often called “trial state,” though this term can be misleading, since the final result should
be independent of the choice of initial state) that overlaps with the ground state; |Ψ(β)〉 =

e−βH |Ψ(0)〉. By expanding in energy eigenstates, one can readily confirm that |Ψ(β)〉 ap-
proaches the ground state for sufficiently large β (up to a normalization factor).
In this case, the MC sampling is of terms contributing to the normalization 〈Ψ(β)|Ψ(β)〉. The
numerator of an expectation value,

〈A〉 = 〈Ψ(β)|A|Ψ(β)〉
〈Ψ(β)|Ψ(β)〉

, (11)

is similarly expressed to obtain estimators to be averaged in the MC process. Here one can
proceed as in the path integral approach, by introducing a discrete slicing ∆τ = β/L of e−βH

or taking the limit ∆τ = 0 as in the continuous time formulation. This type of method is known
generically as the path integral ground state (PIGS) approach; for a review see Ref. [22]. One
can also proceed with the ground state expectation value (11) as in the SSE method by series
expansion and sampling strings of operators. In either case, the main difference from the T > 0

methods is the boundary condition in the time direction—at T > 0 we have periodic boundaries,
reflecting the trace operation, while in the ground state approach the boundary condition is
dictated by the starting state |Ψ(0)〉. This state is normally chosen such that the time boundary
condition is convenient for the updating process used in the MC sampling [23], and it can also
sometimes be optimized in some way, so that it already is a good approximation to the ground
state. Note that the projection procedure is variational, so that 〈H〉 always approaches the true
ground state energy monotonically from above.
Instead of projecting out the ground state with e−βH , a high power (−H)m of the Hamiltonian
can also be used (where the negative sign is just included for convenience as the ground state
energy is normally negative). For sufficiently large m, (−H)m|Ψ(0)〉 approaches the eigenstate
whose eigenvalue is the largest in magnitude, i.e., either the ground state of H or of −H .
Convergence to the ground state of H can be ensured by adding a suitable constant to H .
We can now ask, what is the more efficient approach, using e−βH or (−H)m? Proceeding as
we did above when discussing the distribution of expansion orders in the SSE, we see that
the power m required to reach the ground state is related to the β value required with the
exponential operators as m ≈ β|E0|, where E0 is the total ground state energy (which has been
discussed in detail in Ref. [24]). As in the SSE method, (−H)m is expanded out into strings
of the terms of the Hamiltonian, and these are sampled along with the starting state. There is
no major difference between the two approaches, as the summation over n required with the
series expansion is accomplished essentially for free when using the fixed string-length SSE
approach, Eq. (9). The sampling of the operator strings does not differ significantly between
the two approaches.
The ground state projector method is particularly useful when starting states |Ψ(0)〉 can be
used that are tailored to the sampling method used for the operator sequences. For Heisen-
berg quantum spin models, good variational starting states can be written in the valence-bond
basis [25, 26], i.e., the overcomplete basis of singlet pairs, and these are ideally matched with
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loop-algorithm sampling schemes [23]. The valence-bond states have total spin Stot = 0 and
momentum 0, which is the ground state sector for the models where the approach is suitable.
Fixing these quantum numbers from the outset can help to reduce the projection time β (or
power m)
We will not discuss further any specifics of ground-state projector methods, but just note again
that the differences with respect to T > 0 methods are very minor, and typically it is very easy
to change a program from one case to the other.

1.4 Quantum annealing with generalized stochastic series expansion

In projector QMC calculations, results obtained from a projected state |Ψ(β)〉 at first sight have
no obvious use if the projection “time” β is not sufficiently large for achieving convergence to
the ground state. However, when considering e−βH as a time evolution operator in imaginary
time, i.e., with time t = −iβ in U(t) = e−itH , the projection corresponds to a quantum quench
from the initial state |Ψ(0)〉 where at t = 0 the Hamiltonian is suddenly changed from the one
which has |Ψ(0)〉 as its ground state to whatever H is considered in the simulation. Though
imaginary and real time evolutions are quite different, one can sometimes extract real-time
dynamic information from such imaginary-time quenches [27].
Real-time quantum dynamical calculations are in general very difficult, with any existing method,
and it is interesting to ask what information may be gleaned from imaginary time evolution,
where, for sign free models, QMC calculations can be carried out for various out-of-equilibrium
situations. The aforementioned quantum quench in imaginary time is an extreme case of a more
general setup where the Hamiltonian has some time dependence; H = H(τ) in imaginary time.
The time evolution operator, starting at τ = 0, is then

U(τ) = T exp

(
−
∫ τ

0

dτ ′H(τ ′)

)
, (12)

where T indicates time-ordering, and one may consider expectation values

〈A(τ)〉 = 〈Ψ(0)|U(τ)AU(τ)|Ψ(0)〉
〈Ψ(0)|U(τ)U(τ)|Ψ(0)〉

. (13)

Here one can again proceed with a time-slicing approach or apply a series expansion. Using the
latter, the time evolution operator can be written as

U(τ) =
∞∑
n=0

(−1)n
∫ β

τn−1

dτn · · ·
∫ β

τ1

dτ2

∫ β

0

dτ1H(τn) · · ·H(τ2)H(τ1), (14)

and one can proceed as in the several other cases discussed above and expand further into strings
of terms of the Hamiltonian. Now, however, the Hamiltonian depends on imaginary time and
the string is always time ordered. One can sample the strings and the initial state |Ψ(0)〉 with
schemes very similar to the SSE method, and the integrals can be taken into account by sampling
sequences of ordered time points [28].
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There is also an alternative approach based on a product of HamiltoniansH(τm) · · ·H(τ2)H(τ1)

for a fixed number of operatorsm, with a fixed spacing between the time points and no integrals
over time [29]. This results in a dynamics slightly different from the Schrödinger dynamics in
imaginary time, but for scaling purposes, e.g., when investigating dynamical quantum-criticality
(i.e., the dependence on observables on the rate at which the Hamiltonian is changed in time
close to a critical point), the two approaches both give correct results. It should be noted that
these approaches really probe Hamiltonian quantum dynamics, and not the stochastic dynam-
ics of the QMC sampling methods (as is the case with the other methods often referred to as
“simulated quantum annealing” [30]) [31, 32].

2 Sampling algorithms and expectation values

We consider two classes of important S = 1/2 quantum spin models to illustrate SSE sampling
schemes. First, the Heisenberg antiferromagnet defined by

H = J
∑
〈ij〉

Si · Sj = J
∑
〈ij〉

[Szi S
z
j +

1
2
(S+

i S
−
j + S−i S

+
j )], (15)

where 〈ij〉 refers to the nearest-neighbor site pairs on an arbitrary bipartite (to avoid sign prob-
lems) lattice. Second, we consider the transverse-field Ising model (which will hereafter be
referred to as just the Ising model), which is often defined with Pauli matrices,

H = −
∑
ij

Jijσ
z
i σ

z
j − h

∑
i

(σ+
i + σ−i ). (16)

Here the Hamiltonian is written with a generic Ising coupling Jij with no restriction on the
range of the interactions, and we will consider both short-range and long-range cases. The
SSE method can also be used with long-range interactions in the Heisenberg case, though with
the limitation that there can be no frustration in order to maintain positive-definite sampling
weights. With anisotropic Heisenberg interactions, which we will consider later, the diagonal
part can also be frustrated. It is sometimes better to study the Ising model in a rotated basis, or,
equivalently, to use the same σz basis as above but with the Hamiltonian written as

H = −
∑
ij

Jijσ
x
i σ

x
j − h

∑
i

σzi , (17)

where σxi = σ+
i + σ−i . Whichever version is better depends on details of the system (e.g.,

whether the interactions are frustrated, if disorder is present, etc.) and what physical observables
are to be calculated (noting that diagonal observables are often easier to access, as we will see in
Sec. 3). We will here only discuss implementations of algorithms with the version in Eq. (16).

2.1 Configuration representations and diagonal updates

As discussed in Sec. 1.1, a configuration in the SSE algorithm comprises a state |α0〉 and an
index sequence SM = b1, b2, . . . , bM , the latter referring to a product of operators (and we



16.12 Anders W. Sandvik

will use the terms “operators” and “indices” interchangeably). Here we take the expression
of the partition function in Eq. (9), where the index sequence is of a fixed length M (which
can be determined in a self-consistent way by the program during the equilibration part of a
simulation). Removing the redundant complete sets of states we have

ZSSE =
∑
SM

βn(M − n)!
M !

∑
{α}

〈α|HbM · · ·Hb2Hb1|α〉, (18)

where in the products of M operators there are n terms of the Hamiltonian along with M − n
randomly distributed unit operators represented by the index b = 0. The number n changes in
updates that are called diagonal updates, because they involve replacing a unit operator H0 by
a diagonal term of H (which we simply refer to as an operator insertion), whence n → n + 1,
or vice versa (an operator removal), in which case n → n − 1. The generic way to carry out a
sequence of diagonal updates is to go through the elements in SM one-by-one and to attempt a
replacement of the index whenever it does not correspond to an off-diagonal operator.
Off-diagonal operators cannot be updated individually while maintaining the periodicity con-
straint |α(M)〉 = |α(0)〉 for the propagated states defined according to Eq. (5). How to carry
out updates with the off-diagonal operator will be discussed in detail in the next section, but
here we note that the general strategy is to replace some number of diagonal operators by off-
diagonal ones, or vice versa, without changing the lattice location of the operator. With some
models, the original Hamiltonian contains operators that make this possible, e.g., in the case of
the Heisenberg interaction there are diagonal and off-diagonal operators on each bond, while
in other cases certain constant diagonal operators have to be added just for the purpose of en-
abling the necessary operator replacements. The operator replacements also imply changes in
the states, and normally the SSE algorithm is ergodic even if no other explicit state updates are
included (though at high temperatures it can be useful to also carry out additional updates only
on the stored state |α〉, keeping the operator string unchanged).
To carry out an update at position p in the sequence requires the propagated state |α(p−1)〉 =
|α(p)〉 on which the diagonal operator Hbp acts. The operator-index string is examined for each
p = 1, . . . ,M , and diagonal updates are attempted where possible. Whenever an off-diagonal
operator is encountered at a position p, the stored propagated state is advanced; |α(p)〉 =

Hbp|α(p−1)〉. If an encountered index bp = 0, one out of a number Nd of diagonal oper-
ators can be chosen at random and inserted with a Metropolis acceptance probability, which
depends on the matrix element 〈α(p)|Hb′p|α(p)〉, where b′p is the new generated diagonal index.
If the current index bp 6= 0, a replacement with b′p = 0 is attempted, and the acceptance proba-
bility then depends on the current matrix element 〈α(p)|Hbp|α(p)〉. These updates change the
expansion power n by +1 and −1, respectively, and this change also enters in the acceptance
probability due to the factor (M − n)! in the configuration weigh in Eq. (18). Importantly,
to maintain detailed balance, the acceptance probabilities must also compensate for the inher-
ent imbalance stemming from the fact that there are Nd ways of tentatively replacing an index
bp = 0 by a non-zero index (some of which may correspond to vanishing matrix elements, but
that is irrelevant at this stage) when the number of Hamiltonian terms n is increased by one,
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while for removing an operator there is only one way of replacing bp 6= 0 by 0.
With all the relevant factors and imbalance taken into account, the following are the correct
generic acceptance probabilities for a single-operator diagonal update with the SSE partition
function (18):

P (0→ bp) =
βNd〈α(p)|Hbp|α(p)〉

M − n
, (19a)

P (bp → 0) =
M − n+ 1

βNd〈α(p)|Hbp|α(p)〉
, (19b)

where n is the number of Hamiltonian operators in SM before the update is carried out. The
matrix elements are trivial, and often some fraction of them vanish.
As an alternative to Metropolis-type updates as described above, one can carry out the diag-
onal updates according to a heat-bath scheme, where the relative probabilities of all diagonal
operators, including the fill-in unit operators, are considered and a choice is made among them
according to their relative probabilities (instead of choosing them with equal probability in the
scheme above, irrespective of the values of the matrix elements). In many cases it would take
too long to compute these relative probabilities for each new state |α(p)〉, but for sufficiently
simple models it is possible to avoid this step, at the cost of some rejected attempts, as will be
discussed below in the context of systems with long-range interactions.
Let us now be more specific and discuss how to represent the SSE configurations for the Heisen-
berg and Ising models. Illustrations are provided in Fig. 1. We denote the spins in the stored
state by σi, i = 1, 2, . . . , N , and in a computer implementation they can be stored as inte-
gers, σi = ±1. In both cases, to define the terms Hb appearing in the operator products it is
convenient to regard the subscript b as formally representing two indices (which can still for ef-
ficiency be packed back into a single integer in a program), but in slightly different ways for the
two models considered. In both cases we use the notation H0,0 = 1 for the fill-in unit operators.
For the antiferromagnetic Heisenberg model (15) we set J = 1 and define the following diago-
nal and off-diagonal operators:

H1,b =
1
4
− Szi Szj , H2,b =

1
2
(S+

i S
−
j + S−i S

+
j ). (20)

Then H = −
∑

b[H1,b − H2,b] + Nb/4, where Nb is the total number of interacting spin pairs,
e.g., Nb = DN for N spins on a D-dimensional simple cubic lattice with periodic boundary
conditions. Here a constant 1/4 has been included in the diagonal operators, and they can
therefore act with a non-zero outcome only on two antiparallel spins. There is then a useful (as
we will see) similarity with the off-diagonal terms, which also can only act on antiparallel spins.
The non-zero matrix elements of the Hamiltonian terms H1,b and H2,b are all 1/2. The weight
of an allowed SSE configuration in Eq. (18) is therefore W (SM) = (β/2)n(M − n)!, where
the unimportant overall factor 1/M ! has been omitted and there are never any minus signs (for
bipartite interactions) because the number of off-diagonal operators in the string has to be even.
Note that there is no explicit dependence of the weight on the state |α〉 in Eq. (18), but the state
imposes constraints on the operator string as only operations on antiparallel spins are allowed.
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Fig. 1: Graphical representations of SSE configurations for (a) the Heisenberg model and (b)
the Ising model, in both cases for a system of four spins and with the SSE cutoff M = 8. Up and
down spins correspond to solid and open circles. All the propagated states |α(0)〉, . . . , |α(M)〉,
with |α(M)〉 = |α(0)〉, are shown along with the operators Hbp . The number of Hamiltonian
terms for both systems is n = 6, and the two cases of empty slots between propagated states
correspond to fill-in unit operators H0,0 at these locations. In (a) the solid and open bars
represent, respectively, off-diagonal and diagonal parts of the Heisenberg exchange operators.
In (b) the ferromagnetic Ising interactions are likewise represented by open bars, and the off-
diagonal single-spin flip operators are represented by short solid bars. The short open bars
correspond to the constant site-indexed operators.

An example of a very small Heisenberg SSE configuration is shown in Fig. 1(a). Note again
that the mean number of operators is ∝ βN , and in large-scale simulations the number can be
up to many millions.
In the diagonal update, if an encountered index pair at the current location p is bp = [0, 0], a
bond index b is generated at random among all the choices. If the spins at the sites i(b), j(b)
connected by bond b are antiparallel in the currently stored state |α(p)〉, i.e., σi 6= σj , then
the operator H1,b is allowed and the index pair is set to bp = [1, b] with probability given by
(19a), where the matrix element equals 1/2. If the two spins are parallel nothing is changed and
the process moves to the next position, p → p + 1. Each time an off-diagonal operator [2, b] is
encountered, in which case no diagonal update can be carried out, the stored state is propagated;
σi → −σi and σj → −σj .
For the Ising model (16), where the Ising interactions Jij are of arbitrary range, we define the
following operators [33]:

Hi,j = |Jij| − Jijσzi σzj (i 6= j), Hi,i = h, Hi,0 = h(σ+
i + σ−i ). (21)

Here the constant site-indexed operators Hi,i serve as an example of how trivial diagonal terms
can be added to the Hamiltonian for the purpose of carrying out off-diagonal updates—as we
will see in the next section, updates will be based on replacements Hii ↔ Hi,0. In the diagonal
updates, the trivial constants will be inserted and removed along with the Ising operators Hi,j

(i, j 6= 0, i 6= j). In the Ising operators, the presence of the constant |Jij| implies that only an
operation on a parallel pair of spins (for a ferromagnetic coupling Jij) or an antiparallel pair (for
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antiferromagnetic coupling) is allowed. This choice of the added constant is again motivated
by its convenience for constructing the off-diagonal (cluster) update, as we will see further
below. The example of an SSE Ising configuration in Fig. 1(b) only includes nearest-neighbor
ferromagnetic interactions.
For a D-dimensional simple cubic lattice and only nearest-neighbor interactions J included,
there are now Nd = (D + 1)N diagonal operators, of which DN are Ising terms and N are
the constant operators Hi,i. When these are all generated with equal probability in attempts
to insert operators, with the Metropolis acceptance probability given by Eq. (19a), there is an
inherent inefficiency if h and J are very different. For example, if J = 1 and h � 1, most of
the attempted h-operator insertions will be rejected.
The rejection problem becomes worse with long-range interactions, e.g., if Jij decays with the
separation rij as a power law, |Jij| ∝ r−αij . Then there are N(N−1)/2 + N = N(N+1)/2

diagonal operators to generate at random, and those with very small Jij will be rejected almost
always. This problem can be overcome easily by generating the diagonal Hamiltonian terms
along with the fill-in operators H00 using a heat-bath method [33]. Instead of treating operator
insertions and removals as different types of updates, these are now combined and carried out
at all positions p at which the current operator Hbp is not off-diagonal. The method needs a
precomputed table of integrated relative probabilities Pij of all the different diagonal operators,
where it is tentatively assumed that all operators are allowed. The probabilities are calculated
from Eq. (18) and the definitions in (21), and, for efficiency, mapped into a single-index ordered
table Pk, k = 1, . . . , N(N + 1)/2. In each diagonal update, a random number r ∈ [0, 1) is
generated and the corresponding operator is identified in the table, using the bisection method
to search in the ordered table for the corresponding probability window Pk−1 ≤ r < Pk, thus
finding the correct operator indices i(k), j(k) in ∝ ln(N) operations. A new Ising operator has
to be rejected if the spins σi, σj are incompatible with the sign of the interaction Jij .
A very useful aspect of this approach is that it renders an algorithm with processing time scaling
as N ln(N) for long-range interactions, instead of the naively expected N2 scaling; details are
described in Ref. [33]. This efficient method for the diagonal updates can also be used for
the Heisenberg model with long-range interactions, and for many other cases as well. Even
with short-range interactions, the heat-bath approach may be slightly more efficient than the
Metropolis update, though the difference in efficiency is likely minimal in most cases.
The probability of finding a 0-element (fill-in operator) and attempting an operator insertion in
the string clearly depends on how the cutoff M of the series expansion is chosen. The cutoff
naturally should be high enough for the contributions from terms with n > M to be completely
negligible, so that the truncation of the series expansion is no approximation in practice. In
an SSE simulation this can be ensured by always requiring M to be significantly larger than
the largest n that has been reached so far during the equilibration part of the simulation (with
any adjustments done after each completed sweep of diagonal update during equilibration). In
practice, M exceeding the maximum n by 30-50% is a suitable choice; clearly sufficient for
causing no systematical error and also enough to allow a large number of operator insertion
attempts. Normally M (and 〈n〉) converges very quickly at the initial stages of a simulation.
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2.2 Loop and cluster updates

In classical MC simulations of spin models, cluster updates [34,35] have played a major role in
reaching system sizes sufficiently large for reliable finite-size scaling studies. These methods
also have generalizations for some quantum spin models [36–38, 20, 39, 40, 33], including the
Heisenberg and Ising systems discussed here. Within the SSE approach, the loop and cluster
updates are carried out in the operator string, which at this stage is regarded as a network of
connected vertices comprising the operators and their associated “incoming” and “outgoing”
states (i.e., the information needed to compute the weight of the operator string). The general
strategy is to update a set of vertices (which are connected to each other to form a loop or a
cluster) but maintain their lattice locations (which dictate their connectivity). The connectiv-
ity is changed only as a consequence of the diagonal updates. The off-diagonal updates also
can change the stored state |α0〉, since the loops or clusters can span across the periodic time
boundary represented by the stored state.

2.2.1 Linked vertex list

The loop or cluster updates are carried out in the linked vertex list, which after a full sweep of
updates is mapped back into the simple operator-index string and state |α〉 (or, in some cases,
it is better to do this mapping-back continually during each loop or cluster flipping procedure).
A vertex comprises the spin states before and after an operator has acted, and these states are
associated with the legs of the vertex, e.g., for a two-body interactions there are four legs for
each vertex; two before and two after the operator has acted on the two spins. Thus, the vertex
is associated with a matrix element of the form 〈σi(p), σj(p)|Hbp|σi(p−1), σj(p−1)〉, where i
and j are the sites involved in the interaction termHbp . The way the legs of different vertices are
linked to each other corresponds directly to the segments of unchanged spins between operators
in the “time” direction in Fig. 1. These lines of spins are redundant when representing the
changes that can be made in a configuration by changing the type of some of the operators
(e.g., diagonal to off-diagonal or vice versa) and making associated changes in the spin state
(represented by the changes at the vertex legs). In a computer program, these lines of constant
spins are represented by bidirectional links connecting the relevant vertices, enabling direct
jumps between any of the connected vertex legs without regard for the intermediate irrelevant
spins. The linked list can be constructed according to a simple and efficient scheme discussed
in detail in Ref. [41].

2.2.2 Loop and cluster construction

Some relevant vertices are illustrated in Fig. 2, along with lines indicating how the legs of
vertices can be affected by a loop or cluster flip. The general idea is to change the spin state at
one vertex leg and then move either to another leg of the same vertex or follow a link to another
vertex, until the process closes. The allowed processes depend on the Hamiltonian. In the
simplest cases, the deterministic loops for Heisenberg models and Ising cluster updates, there
is a unique way to move at each step. The entire system can then be divided into a unique set
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(a) (b) (c)

Fig. 2: Examples of the elementary vertex processes by which loop and cluster updates are
carried out for Heisenberg and Ising models. The green line segments represent parts of a loop
or cluster. The spins and operators on a given vertex correspond to the state before the loop [in
(a)] or cluster [in (c) and (d)] has been flipped, and the adjacent vertex shows the state after
the loop or cluster has been flipped.

(a) (b)

Fig. 3: Examples of entire loop (a) and cluster (b) updates based on the elementary processes
shown in Fig. 2. The pairs of configurations correspond to the states before and after the loop
or cluster (indicated by green lines) has been flipped. Note that in (b) the cluster spans across
the periodic time boundary. In cases where the loop and cluster algorithms are efficient, the
vertex weight (matrix element) is the same before and after the flip.

of loops or clusters, each of which can be flipped (i.e., changing the spin states at the affected
vertex legs) without affecting the configuration weight. Each loop or cluster can then be flipped
independently with probability 1/2, as in the classical Swendsen-Wang algorithm.

The condition that the loop or cluster flip must not change the configuration weight is the main
restriction of this type of update, and is very similar to the limitation of classical cluster updates,
e.g., the Swendsen-Wang cluster update for the Ising model [34] does not work in the presence
of an external magnetic field. In the next section we will discuss more complicated directed
loop updates, which partially overcome this limitation.

We will not discuss the details of the SSE loop [39, 41] and cluster updates [33] here, but refer
to the literature. We just note that the loop update, also called operator-loop update within
the SSE framework to emphasize that everything is formulated with a network of connected
vertices (operators), corresponds to moving along a one-dimensional, non-branching path in
the network of vertices. At some point, this process necessarily will lead back to the vertex leg
at which the process started, at which point the loop is completed and a new one can be started.
An example of a loop is shown in Fig. 3(a). Normally these loops are constructed one-by-one,
with the random decision of whether or not to flip the loop made before each new loop is started,
and in each case the traversed vertex legs are flagged as visited, so that each new loop can be
started from a not previously visited leg until all legs have been visited.
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The cluster update for the Ising model differs from the Heisenberg loop update in the important
sense of being branching. Since each two-body vertex must have all four legs in the same spin
state, because of the choice of the added constant in the Ising operators Hij in Eq. (21), once
one of those spins has been flipped the other three must be flipped as well to “heal” the vertex.
The cluster therefore can branch out each time a two-body vertex is encountered. However,
no branches extend out from vertex legs that have been previously visited, and eventually the
cluster therefore does not grow further, and all defective vertices generated in the process have
been healed. Branches that point to a single-site operator also terminate, because by flipping
the type of single-site vertex from Hi,0 to Hi,i, or vice versa, the propagating defect is healed
and no further changes need to be made at that branch. Fig. 3(b) shows one example, which in
this small configuration involves a single two-body operator and four one-body operators. In
general, the branching-out can propagate to a very large number of vertices.
In a program implementation, the successive branching-out is handled by adding new branches
to a stack, from which branches to follow are picked one-by-one until the stack is empty (the
cluster is completed). By starting each new cluster from a vertex leg not previously visited,
the entire system will eventually be subdivided into clusters (each of which was flipped by
probability 1/2), as in the Swendsen-Wang algorithm.

2.2.3 Directed-loop updates

The loop update described above can be generalized to Heisenberg systems with anisotropic
interactions and uniform magnetic fields, i.e., pair interactions of the form

Hij = Jij[∆ijS
z
i S

z
j +

1
2
(S+

i S
−
j + S−i S

+
j ) + hiS

z
i + hjS

z
j ], (22)

to which a suitable negative constant may have to be added in order to avoid a sign problem
originating from the diagonal terms. In the directed-loop algorithm [42], the one-dimensional
path through the vertex list is no longer unique, in contrast to the deterministic loop update,
but a choice on how to continue the path has to be made at each vertex. A set of equations,
called the directed-loop equations relate the possible vertex weights to the probabilities of the
different paths through a vertex, and by solving these equations a process maintaining detailed
balance is ensured.
The paths through the system taken in the directed-loop algorithm are similar to those in the
continuous-time worm algorithm [13], but the probabilities are different. The directed loops
often lead to a much more efficient evolution of the configuration. The directed loops can
also be directly formulated within the continuous-time framework [42], and implementations of
continuous- and discrete-time WL methods now often rely on the directed loop ideas [43].

2.2.4 Sweeping cluster update

A very interesting recent development of efficient updates within the SSE approach is the
sweeping cluster update developed for highly constrained models such as the quantum dimer
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model [44]. It is somewhat similar to an earlier multibranch cluster update developed in or-
der to enhance the performance of a loop algorithm for a bosonic model with a constrained
ring-exchange interaction [45], but is more directly tailored to strict geometric restrictions.
Simulation results for the square-lattice quantum dimer model indicate that this is a promis-
ing approach, overcoming at least some of the rather severe limitations of previous methods for
this important class of models.

2.2.5 Extended-cell approach

In the original SSE formulation discussed in Sec. 1.1, the terms Hb are defined as they appear
in the Hamiltonian, e.g., they are the single-site operators such as S+

i + S−i or two-body terms
such as S+

i S
−
j + S−i S

+
j . A greater degree of freedom can be given to loop and cluster updates

by enlarging the cell on which the operators and vertices are defined [46]. For instance, one can
define an off-diagonal operator on three sites as (S+

i S
−
j + S−i S

+
j )Ik, where Ik is a unit operator

with a site index. This allows the off-diagonal part to move during an update, e.g., a vertex with
the mentioned operator can be updated (within some scheme involving more than one operator)
to (S+

i S
−
k +S−i S

+
k )Ij , This trick has proved to be very helpful for speeding up SSE simulations

of systems where the diagonal interactions are highly frustrated [47–50].

2.2.6 Loop and cluster updates at T = 0

As we saw in Sec. 1.3, the T > 0 SSE algorithm can be very easily modified for ground-state
projection, with the only essential difference being the change from periodic time boundary
conditions to boundary conditions dictated by the trial state. How this change affects the loop
and cluster algorithms depends on the type of trial state used.

In the case of spin-isotropic Heisenberg models, a particularly good choice of trial state is
one written in the valence-bond basis, i.e., the overcomplete basis of singlet pairs, with the
two members of each singlet occupying different sublattices on a bipartite lattice [23]. The
valence bonds then serve as segments of loops touching the trial state, and there is no weight
change, as before, when flipping a loop. The valence-bond trial state can also in many cases
be variationally optimized, for improved convergence [25,26]. Typically the valence-bond trial
state is a superposition of valence-bond coverings, and the simulation involves a simple update
for reconfiguring the bonds.

A convenient type of trial state to use in combination with the Ising cluster update is the fer-
romagnetic product state in the x spin direction, i.e., |Ψ(0)〉 =

∏
(↑i + ↓i), where ↑ and ↓

correspond to σzi = ±1. This state corresponds to a completely open time boundary condition,
where cluster branches simply terminate at the trial state, and boundary clusters can be flipped
as any other cluster without any change to the configuration weight. At the opposite extreme, it
may sometimes be useful to use a fully polarized ferromagnetic state as the trial state [29], in
which case any cluster touching the boundary cannot be flipped at all.
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3 Estimators for expectation values

Expectation values suitable for estimation with MC simulation are normally written in the form

〈A〉 =
∑

C ACPC∑
PC

, (23)

where {C} is some configuration space, PC is the probability (or relative probability) of con-
figuration C, and AC is the estimator of the quantity A. In the QMC algorithms discussed in
the preceding sections the sum of weights or probabilities in the denominator is the partition
function at T > 0 and the wave-function norm in T = 0 projector methods. When importance-
sampling the configurations, so that their probability of being generated equals PC , the simu-
lation result for 〈A〉 is the mean value 〈AC〉, with a statistical error computed using some data
binning technique. Here we discuss the form of the estimator AC for some important classes of
physical observables.
We should first note that, in classical MC simulations, AC is normally just a trivial function of
the sampled degrees of freedom, and that is also the case with SSE and WL methods when the
operator A is diagonal in the basis used. However, for off-diagonal operators the situation is
more complicated, as then the configurations C contributing to 〈A〉 are not necessarily the same
as those that contribute to the sampled normalization in Eq. (23). We will here first discuss
diagonal operators and then briefly touch on the topic of off-diagonal correlation functions.

3.1 Diagonal correlations and susceptibilities

Equal-time expectation values, e.g., two-point or multi-point correlation functions, of diagonal
operators in the basis used are normally trivial, and for improved statistics they can be averaged
over the SSE propagation index p;

〈A〉 =

〈
1

n

n−1∑
p=0

A(p)

〉
, (24)

where A(p) = 〈α(p)|A|α(p)〉 is the value of A computed in propagated state p in a given SSE
configuration. Here when defining the propagated state |α(p)〉 as in Eq. (5) we have implicitly
disregarded the fill-in unit operators H0 in the formulation of the method with a fixed string
length M . It is also correct to include the unit operators and average over M propagated states.
In many cases it is too time consuming to average over all states, and since the propagated states
are highly correlated there is also no loss of statistics in practice to average over a small fraction
of the states, e.g., only including every N th or so state in Eq. (24). Similarly, spatial averaging
may be carried out fully or partially to improve the statistics.
We are often interested in correlation functions in Fourier space of a periodic system, e.g., with
the transformed diagonal spin operator

Szq =
1√
N

∑
r

e−q·rSzr . (25)
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The real part of the correlation function (often called the structure factor) is S(q) = 〈Sz−qSzq 〉
and the imaginary part vanishes by symmetry. If all or many values of the wave-vector q are
needed, the most efficient way is often to evaluate (25) using the Fast Fourier Transformation
method (see, for example, Ref. [51]). However, if only a small number of values are needed it
can be better to use the basic summation formula just for those cases.
Time dependent (in imaginary time) correlations can also be calculated, and by numerical ana-
lytic continuation they can provide real-frequency dynamic spectral functions of experimental
interest, e.g., the dynamic spin structure factor measured in inelastic neutron scattering (see
Ref. [52] for a recent discussion of analytic continuation and spectral functions). The way
imaginary time is treated within the SSE method was already considered in Eq. (6); a fixed
value τ of imaginary time corresponds to a summation over separations p between propagated
states. Because the weights of the different separations follow a very narrow distribution, only a
small fraction of them has to be summed over in practice, and one can use a precomputed table
of safe lower and upper bounds on the separations for the different τ values considered.
Alternatively, time dependent quantities can be more easily calculated if the SSE is formulated
in combination with time slicing, where first the exponential operator is written as (e−∆H)m,
with ∆ = β/m, and the factors are series expanded individually with equal cutoffs M∆. This
is no approximation, since the slicing does not involve any separation of non-commuting op-
erators. The operator string consists of m segments, i = 1, . . . ,m, containing ni Hamiltonian
terms. Therefore, in the diagonal updates, β and n in Eqs. (19a) and (19b) are replaced by
∆ and ni, with i corresponding to the segment in which an update is carried out. The off-
diagonal updates are not affected at all by the slicing, since they do not change the numbers ni.
Time-dependent correlations of diagonal operators can now be evaluated easily by just consid-
ering the propagated states at the boundaries between slices, which correspond to sharp time
displacements in multiples of ∆.
An interesting aspect of the SSE method is that rather simple estimators for static susceptibilities
can be constructed. Such susceptibilities are in general given by Kubo integrals of the form

χAB =

∫ β

0

dτ〈A(τ)B(0)〉, (26)

where hAA can be regarded as a perturbation added to the Hamiltonian (the number hA being a
corresponding field strength) and 〈B〉 is the linear response of the operator B to this perturba-
tion; 〈B〉 = hAχAB. If A and B commute with H , then χAB = β〈AB〉, an important example
of which is the uniform magnetic susceptibility of a system in which the magnetization M is
conserved; then A = B = M and χu = β〈M2〉 as in a classical system. In the more common
case whereA andB do not commute, e.g., if they are individual spins at different sites; A = Szi ,
B = Szj , the integral over the time dependent correlation function has to be evaluated. Within
SSE, the integral can be computed for each individual SSE configuration, with the result [10,11]

χAB =

〈
β

n(n+1)

[(
n−1∑
p=0

A(p)

)(
n−1∑
p=0

B(p)

)
+

n−1∑
p=0

A(p)B(p)

]〉
, (27)
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where A(p) and B(p) are the eigenvalues of the respective diagonal operators computed in
propagated state p. Often these susceptibilities are also needed in Fourier space, but it can
still be better to do the computations in real space (depending again on how many points in
momentum space are needed, etc.) and only take the Fourier transform as the last step on the
final averaged real-space susceptibilities.

3.2 Off-diagonal observables

We have already encountered two estimators for off-diagonal observables in the SSE method;
the total energy and heat capacity

E = 〈H〉 = −〈n〉
β
, C =

dE(T )

dT
= 〈n2〉+ 〈n〉2 − 〈n〉, (28)

which depend only on the number n of Hamiltonian terms in the sampled operator sequences.
These expressions are exactly the same as those in Handscomb’s method. Note that the internal
energy E contains any constants that have been added to H for the sampling scheme.
For any operatorHb in the Hamiltonian, diagonal or off-diagonal, its expectation value is simply
given by

〈Hb〉 = −
〈nb〉
β
, (29)

where nb is the number of instances of the index b in the sampled sequences SM . Thus, the
energy estimator in Eq. (28) corresponds to summing over all b. The simplicity of off-diagonal
observables that can be related to the terms in the Hamiltonian also carries over to correlation
functions [19];

〈HaHb〉 =
(n−1)〈nab〉

β2
, (30)

where nab is the number of times the indices a and b appear next to each other in Sn, where Sn
is the sequence obtained from SM when all zero indices are disregarded. This result can also be
generalized to time dependent correlations.
Kubo integrals of the form (26) also have their direct SSE estimators. ForA = HA andB = HB

(terms in the Hamiltonian corresponding to the operators Hb in the formalism above), after
integrating over time for each SSE configuration we have [11]

χAB = β−1
(
〈nAnB〉 − δAB〈nA〉

)
, (31)

which is very easy to evaluate. Two important off-diagonal quantities of this type can be men-
tioned (see the cited references for details):
The spin stiffness is the second-order energy (or free energy at T > 0) response to a boundary
twist imposed on the spins, or, alternatively, to a continuous twist field analogous to a vector
potential. The spin stiffness is also analogous to the superfluid stiffness of a boson system. The
stiffness (spin or superfluid) has an interesting estimator related to fluctuations of winding num-
bers [53], essentially the currents circulating around a periodic system. The SSE estimator for
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the stiffness is similar to Eq. (31), involving the counting of off-diagonal operators transporting
spin (or charge) to “left” or “right” [54].

Recently, a simple algorithm for computing the fidelity susceptibility was proposed [55] (likely
more efficient than a different method proposed earlier [56]). This observable, which quantifies
at what rate a state changes when some parameter is varied, plays an important role in quantum
information theory and is also useful in studies of quantum phase transitions. The estimator
for the fidelity susceptibility is similar to a correlator of the form (31), with nA and nB corre-
sponding to operators related to the infinitesimally varied coupling constant. These operators
are counted in different halves of the time-periodic SSE configurations.

Two other SSE-accessible information-theory inspired quantities can also be mentioned; the
entanglement entropy [57] and the mutual information [58], both in their Rennyi versions. They
are evaluated using a so-called swap operator, or a modified space-time lattice corresponding to
a ratio of two different partition functions.

To evaluate general off-diagonal correlation functions, which cannot be expressed simply with
the terms of the Hamiltonian, one has to go outside the space of the terms contributing to the
partition function (or wave function norm in T = 0 approach). An efficient scheme was first
devised within the worm algorithm [13], and a simple generalization to the SSE framework is
also known [59]. We will not discuss details here, but just note that in the context of loop,
directed-loop, or worm algorithms, the loop or worm building process involves two point de-
fects that can be associated with the raising or lowering operators, S+

i and S−j (or creation and
destruction operators in particle models). Space-time correlation functions involving these op-
erators, e.g., 〈S+

i (τ)S
−
j (0)〉 are therefore directly related to the probability distribution of the

separation between the defects.

4 Recent applications

MC simulations have played, and continue to play, an important role in studies of phase tran-
sitions in classical statistical physics. In a similar way, QMC simulations of quantum lattice
models are now helping to push the boundaries of knowledge in the field of quantum many-
body physics, uncovering various quantum states and elucidating the nature of various quan-
tum phase transitions (i.e., transitions between different types of ground states and associated
scaling behaviors at T > 0) using sign free “designer Hamiltonians” [60]. Some selected ap-
plications of SSE methods to different classes of quantum-critical models will be very briefly
reviewed in Sec. 4.1, as a guide to recent works and mainly reflecting the author’s own interests.
Works aimed at extracting dynamic spectral functions from imaginary-time correlations, using
numerical analytic continuation methods, will be discussed in Sec. 4.2. Finally, SSE works on
disorder (randomness) effects are reviewed in Sec. 4.3. The emphasis is on SSE applications,
and references to works using other methods are therefore very incomplete.
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4.1 Quantum phases and criticality in spin systems

One of the first successes of WL-type QMC simulations in quantum magnetism was the con-
vincing demonstration of long-range order at T = 0 in the 2D S = 1/2 Heisenberg antiferro-
magnet [61] (the currently most precise results were obtained with the SSE [54] and valence-
bond projector [23] methods). Following this important result (of which there is still no rigor-
ous analytical proof), the focus shifted to ways in which the long-range order can be destroyed
by perturbing the Heisenberg model in various ways. Many studies were devoted to statically
dimerized 2D Heisenberg models, e.g., the SSE studies in Refs. [62–65], where there is a pattern
of nearest-neighbor couplings of two strengths, J1 (inter-dimer) and J2 (intra-dimer), such that
each spin belongs uniquely to a dimer. As a function of the ratio g = J2/J1, there is then a loss
of antiferromagnetic order at T = 0 when g reaches a critical value gc. The physical mechanism
of this transition is that the density of singlets on the dimer increases with g, and eventually the
ground state becomes close to a product state of dimer singlets. The transition is continuous
and belongs to the 3D O(3) universality class, with the third dimension corresponding to imag-
inary time. In some cases, confirming this universality was challenging [64], because of, as it
turns out [65], effects of competing scaling corrections. The T = 0 quantum-critical point is
associated with a so-called quantum-critical fan extending out in the (T, g) plane from gc and
which is associated with various scaling laws of physical quantities [66]. SSE and other QMC
studies have, among other things, established the range of validity of these asymptotic scaling
behaviors, and also tested the applicability of various approximate analytical calculations [24],
e.g., the 1/N expansion, where N is the number of spin components.

The O(3) transition driven by dimerization can be realized experimentally in the 3D spin-dimer
system TlCuCl3 under pressure [67] and this has motivated SSE simulations of this phase transi-
tion also in 3D generalizations of the 2D Heisenberg systems discussed above. In a 3D Heisen-
berg system antiferromagnetic long-range order can survive also at T > 0 (which is excluded
by the Mermin-Wagner theorem in 2D). An empirical universal scaling form of the critical tem-
perature was found in Ref. [68] and further studied in Ref. [69]. Multiplicative logarithmic
corrections at the T = 0 and T > 0 phase transitions have also been studied in detail [70]

In the statically dimerized 2D and 3D systems, the paramagnetic phase is a unique quantum
state with no spontaneous symmetry breaking—the singlets simply form, with some fluctua-
tions, at the dimers imposed by the Hamiltonian itself. A more interesting case is where also
the paramagnetic state breaks additional symmetries spontaneously. It was discovered by SSE
simulations that a certain planar [XY, or U(1) symmetric] S = 1/2 spin model could go through
a transition from XY magnetized to spontaneously dimerized in what appeared to be a contin-
uous quantum phase transition [71]. Shortly thereafter, a theory was proposed for a new type
of quantum phase transition, beyond the Landau-Ginzburg-Wilson (LGW) paradigm, between
2D quantum antiferromagnetic and spontaneously dimerized states (also called valence-bond-
solids, VBSs). In this theory of deconfined quantum critical points [72], the two different order
parameters arise out of the same objects—spinons and gauge fields—instead of being described
by separate fields corresponding to the two order parameters. This theory stimulated many fur-



Stochastic Series Expansion 16.25

ther works on various 2D quantum antiferromagnets with VBS transitions, and these studies
have uncovered a rich variety of phenomena beyond the original DQCP proposal.

Traditionally, VBS states were discussed in the context of frustrated Heisenberg models, such as
the model with first J1 and second J2 neighbor interactions on the square lattice. These models
have sign problems and are not accessible to QMC simulations. Another class of models, was
proposed to study the DQCP phenomenon with QMC without sign problems—the J-Q model,
in which the Heisenberg exchange is supplemented by a multi-spin interaction built out of
S = 1/2 singlet operators Pij = 1/4−Si·Sj [73]. This interaction by itself,−JPij , is equivalent
to the antiferromagnetic Heisenberg exchange. Products of two or more of the singlet projectors
make up the competing Q interaction, e.g., terms of the form −QPijPkl with the involved sites
i, j, k, l suitably arranged on plaquettes (without breaking the symmetry of the square lattice).

When the ratio Q/J is large, the correlated singlets favored by the multi-spin interactions cause
many of these models to undergo quantum phase transitions into four-fold degenerate columnar
VBS states. This phase transition can be investigated in detail only with QMC simulations.
SSE studies have established what seems like a continuous transition [73–78], similar to the
proposed DQCP but with anomalous scaling corrections that so far only have a phenomenolog-
ical explanation [79]. It has also been proposed that the transition is actually weakly first-order,
with the true DQCP only existing outside the space that can be reached with lattice models (e.g.,
in a fractal dimension or on the complex plane) [80]. Though the ultimate nature of the phase
transition is still unsettled, it is already clear that the length scale associated with the transition
is very large, and the DQCP phenomenology applies.

By perturbing the J-Q model sufficiently so that the Q terms form a checker-board pattern,
the VBS state can be modified from a four-fold columnar to a two-fold degenerate plaquette-
singlet state. The transition from the antiferromagnet into the plaquette-singlet state is clearly
first-order according to T > 0 SSE and T = 0 projector QMC studies [81]. However, the
transition point is associated with an unexpected higher symmetry, combining the O(3) mag-
netic order parameter and the scalar Z2 plaquette order parameter into an O(4) vector. A sim-
ilar phenomenon with emergent SO(5) symmetry has been studied with SSE simulations in a
spin-1 J-Q model [82]. The plaquette-singlet state is of relevance in the frustrated 2D magnet
SrCu2(BO3)2 [83], and SSE simulations aimed at explaining the phase transitions driven by
high pressure in this system have been reported very recently [84].

Building on the idea of the J-Q model, Kaul and collaborators have constructed several other
classes of sign-free “designer Hamiltonians” [85–89]. The original J-Q models and these
extended variants provide unique opportunities to further explore many interesting quantum
phases and quantum phase transitions.

Highly frustrated Ising interactions, supplemented with various off-diagonal terms, can also
be studied with SSE simulations (though the sampling is more challenging [49] and system
sizes as large as those for Heisenberg and J-Q interactions can not be reached). The focus of
these studies is typically to explore different incarnations of Z2 quantum spin liquids and their
quantum phase transitions [90–92].
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4.2 Dynamic response of quantum magnets

To connect numerical simulations of lattice models to experiments, dynamic response functions
are the most useful, e.g., in quantum magnets the dynamic spin structure factor S(q, ω) can
be measured directly in inelastic neutron scattering experiments, and the low-energy structure
factor is accessed, e.g., in NMR experiments. In QMC calculations, dynamic spectral functions
can only be accessed in the form of imaginary-time dependent correlation functions, and these
have to be analytically continued to the real time (or frequency) domain using some numerical
scheme [93]. Analytic continuation in its own right is an interesting and challenging technical
problem subject to ongoing research activities; see Ref. [94,52] for a recent example of methods
developed by the author and collaborators. While all numerical analytical continuation method
have natural limitations in the frequency resolution that can be achieved, due to the statistical
noise in the QMC data (even when the noise level is exceedingly small), important spectral
features can be resolved, and sometimes it is possible to compare with experiments in a very
detailed manner [52, 95].
While the static properties of the 2D Heisenberg model have been well understood for some
time, there has been a long-standing unresolved mystery in the dynamic response: At and close
to the equivalent wave-vectors q = (π, 0) and (0, π), the excitation energy is reduced and
the spectral line shape of S(q, ω) is anomalously broadened. The anomalies cannot be easily
explained within spin-wave theory. In recent work based on SSE and analytic continuation, it
was found that the phenomenon is a precursor to a DQCP that can be reached by adding other
interactions [52]. Spectral functions at the DQCP of the J-Q model have also been studied and
are in excellent agreement with a field-theory treatment based on the so-called π-flux state [96].
The simpler dimerized Heisenberg models with O(3) transitions also have interesting dynamical
response functions. In particular, the amplitude model (also often called the Higgs mode) of
near-critical systems (on the ordered side of the phase transition) have been studied in 2D [97]
and 3D [98, 99] and compared with experimental results for TlCuCl3 [67].
In highly frustrated quantum Ising systems, spectral functions can give important insights into
the nature of exotic excitations. Recent SSE-studied examples include the identification of sep-
arate photon and spinon modes in a quantum spin-ice system [100] and a two-spinon continuum
in a kagome-lattice model [92].

4.3 Disordered systems

Randomness (quenched disorder) can fundamentally affect quantum states and quantum phase
transitions. Many SSE studies have been devoted to the effects of random couplings in the or-
dered Heisenberg antiferromagnet [101] and at the O(3) transition in the dimerized Heisenberg
systems mentioned above in Sec. 4.1 [102–104]. A still open issue is why the Harris criterion
for the relevance or irrelevance of disorder appears to be violated in some cases [105]. Systems
with dilution have also been frequently studied [106, 107], and interesting excitations with a
very low energy scale, that was not anticipated, have been found at the percolation point on the
2D square lattice [108].
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Very recently, effects of various types of disorder at the DQCP in the J-Q model have been
investigated [109], and it was found that the VBS state is replaced by a critical phase similar
to the random singlet state that is well known in random S = 1/2 Heisenberg chains (and
which have also been studied with SSE simulations [110,111]). SSE simulations have also been
applied to the Bose-Hubbard model with site randomness [112], where interesting differences
were found between weak and strong disorder.
Disordered frustrated Ising models, which often have spin-glass phases, are of interest in the
field of optimization with quantum annealing. Excitation gaps have been extracted from imagi-
nary-time correlations computed with the SSE method [113], and the generalized SSE method
for imaginary-time quantum annealing has also been used to study the dynamics of the quantum
phase transition between a paramagnet and a quantum spin glass [32]. Recent further develop-
ments of the SSE algorithm for highly anisotropic (near-classical) frustrated Ising models were
specifically aimed at quantum annealing applications [21].
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1 The many languages of nature

One of the most challenging and interesting phenomena in modern condensed matter physics is
the one emerging from competing interactions in strongly correlated systems. The multiplicity
of distinct and exotic quantum phases observed experimentally confronts us with new paradigms
that question our understanding of the fundamental organizing principles behind such emergent
phenomena [1]. The notion of symmetry has shaped our current conception of nature; however,
nature is also full of broken symmetries. Thus, understanding the idea of invariance and its
corresponding conservation laws is as fundamental as determining the causes that prevent such
harmony, and leads to more complex behavior. While group theory and geometry have been
fundamental to the physics of the Twentieth Century, only recently has topology become central
to the nascent field of topological quantum matter [2–4]. Our ultimate goal is to exploit and
extend tools borrowed from these fields of mathematics to unveil and master those underlying
organizing principles [5]. These principles may lead the way to designing new materials and
devices with specific functionalities and unprecedented technological applications.

On general grounds, the nature and degree of entanglement of the quantum state, characterizing
the various thermodynamic phases of matter, is at the core of such complex behavior [6]. For
instance, the last three decades have witnessed the discovery of fractional charges and skyrmion
excitations in quantum Hall liquids [7] (i.e., electrons confined to two space dimensions in the
presence of strong external magnetic fields). Another example of current interest is provided
by unconventional high-temperature superconductivity and its startling strange metallic behav-
ior [8]. From the theoretical viewpoint the hurdle is in the presence of non-linear couplings,
non-perturbative phenomena, and a panoply of competing quantum orders. These systems hap-
pen to be strongly correlated because no obvious small coupling constant exists, and conse-
quently exhibit high sensitivity to small parameter changes. The importance of developing a
methodology based on qualitatively new concepts going beyond traditional mean-field (MF)
and semi-classical approximations, that treats all possible competing orders on an equal footing
with no privileged fixed-point phenomenon, becomes manifest. Despite great advances, there
is a lack of a systematic and reliable methodology to study and predict the behavior of these
complex systems. It is the purpose of these lecture notes to present some steps in that direction.

Describing the structure and behavior of matter entails studying systems of interacting quantum
constituents (bosons, fermions, gauge fields, spins). In the quantum-mechanical description of
matter, each physical system is naturally associated with a language of operators (for exam-
ple, quantum spin-1/2 operators) and thus to an algebra realizing this language (e.g., the Pauli
spin algebra generated by a family of commuting quantum spin-1/2 operators). It is our point
of view that crucial to the successful understanding of the mechanisms driving complexity is
the realization of dictionaries (isomorphisms) connecting the different languages of nature and
therefore linking seemingly unrelated physical phenomena [9,10]. The existence of dictionaries
provides not only a common ground to explore complexity but leads naturally to the fundamen-
tal concept of universality, meaning that different physical systems show the same behavior. In
this way, there is a concept of physical equivalence hidden in these dictionaries.
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On the other hand, the notion of algebra and its homomorphisms have also been essential to un-
ravel hidden structures in theoretical physics: Internal symmetries which are hidden in a given
algebraic representation of a model become manifest in another representation. In 1928 Jordan
and Wigner [11] made a first step relating quantum spin S = 1/2 degrees of freedom to particles
with fermion statistics. A simple application of their contribution is the mapping between the
isotropic XY chain describing quantum magnets and the tight-binding spinless fermion model,
which can be exactly solved in one spatial dimension. From the group theoretical viewpoint, an
internal U(1) continuous symmetry (related to particle number conservation), for instance, is
evidenced in the fermion representation of the XY model which was hidden in the spin repre-
sentation. Overall, what Jordan and Wigner established was an isomorphism of ∗-algebras, i.e.,
an isomorphism between the Pauli and fermion algebras [12].
In this chapter we present a unifying algebraic framework for interacting quantum systems.
We show that exact algebraic and group theoretic methods are one of the most elegant and
promising approaches towards a complete understanding of quantum phases of matter and their
corresponding phase transitions. Can we connect the different (spin-particle-gauge) languages
of nature within a single algebraic framework? We will present a fundamental theorem which
connects operators generating different algebras (e.g., su(D) spin-particle connections), uni-
fying the different languages known so far in the quantum-mechanical description of matter.
We will illustrate the methodology with various examples borrowed from strongly correlated
physics, including quantum magnets and superfluids. Applications aim at:

• Illustrating connections between seemingly unrelated physical phenomena

• Unveiling hidden symmetries to identify new states of matter

• Identifying order parameters (OPs) in phase transitions [13, 14]

• Establishing exact (algebraic) solutions and developing better approximation schemes

• Explaining the use of languages in quantum simulations

The chapter has been written with the intention of providing the reader with the most fundamen-
tal concepts involved in our algebraic framework and how they apply to study complex phenom-
ena. Much more details and examples can be found in the original manuscripts [9, 10, 12, 15].

2 Algebraic approach to interacting quantum systems

The theory of operator algebras on Hilbert spaces was initiated by Murray and von Neu-
mann [16] as a tool to study unitary representations of groups, and as a framework for a re-
formulation of quantum mechanics. This area of research continued its development indepen-
dently in the realm of mathematical physics, and therefore knowledge of those investigations
remained bounded to specialists. For use of C∗ and W ∗ algebras as a framework for quantum
statistical mechanics one can look at the books of Bratteli and Robinson [17]. For the purposes
of our presentation one only needs to have an elementary background in basic algebra [18], and
specially group theory [19], in particular, Lie algebras and groups.
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=
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Fig. 1: Definition of a language and fundamental theorem [12, 9] behind the construction of
the dictionaries of nature. In the upper panel we show schematically what elements define a
language = A ∧ ΓA, where A is the algebra and ΓA a particular irrep. In the lower panel we
establish the criteria to build a dictionary, given two languages A and B. This criteria is based
upon Burnside’s theorem of algebra [18].

Here we are concerned with quantum lattice systems. A quantum lattice is identified with ZNs ,
where Ns is the total number of lattice sites (or modes). Associated to each lattice site i ∈ ZNs
there is a Hilbert spaceHj of finite dimensionD describing the “local” modes. The total Hilbert
space isH =

⊗
iHi (we will also consider its symmetric and antisymmetric subspaces). Since

we are mostly interested in zero temperature properties, a state of the system is simply a vector
|Ψ〉 in H, and an observable is a self-adjoint operator O : H → H. The dynamical evolution
of the system is determined by its Hamiltonian H . The topology of the lattice, dictated by
the connectivity and range of the interactions in H, is an important element in establishing
complexity. In the case of quantum continuous systems we can still use the present formalism
after discretizing space. Going beyond this approach is outside the scope of these notes.

As mentioned above, each physical system is naturally associated with a language of operators,
and thus to an algebra realizing this language. Formally, a language is defined by an operator
algebra and a specific representation of the algebra. We use the following notation: language =
A∧ΓA, whereA is the operator algebra and ΓA is a particular irreducible representation (irrep)
of the local algebra Aj associated to A, of dimension dim ΓA = D (see Fig. 1).

For the sake of clarity, let us choose the phenomenon of magnetism to illustrate the key ideas.
This is one of the most intriguing and not fully understood problems in condensed matter
physics where strong correlations between electrons (of electrostatic origin) are believed to
be the essence of the problem. To describe the phenomenon using a minimal model (i.e., a
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model that only includes the relevant degrees of freedom) distinct approaches can be advocated
depending upon the itineracy of the electrons that participate in the magnetic processes. In one
extreme (e.g., insulators) a description in terms of localized quantum spins is appropriate, while
in the other (e.g., metals) delocalization of the electrons is decisive and cannot be ignored. We
immediately identify the languages associated to each description: quantum spins (e.g., Pauli al-
gebra) and fermions (spin-1/2 Fermi algebra). Are these really different descriptions? Is there a
dictionary that may connect the two languages? Let’s assume that we decide to use the quantum
spins language. What other seemingly unrelated phenomena are connected to magnetism? Can
we relate phases of matter corresponding to dissimilar phenomena? Can an arbitrary physical
system be mapped, for instance, onto a pure magnetic system (an array of quantum spins)?
In the following we will answer these questions by examples. As mentioned above, a fundamen-
tal concept of universality, complementary to the one used in critical phenomena, emerges as a
consequence of unveiling the hidden unity in the quantum-mechanical description of matter.

3 Bosonic and hierarchical languages

A bosonic language is a set of operators grouped in subsets Si (associated to each mode) that
satisfy the conditions

• Each element bµi of Si (µ ∈ [1, Ng]) belongs to the algebra of endomorphisms for the vector
space Hi over the field of complex numbers C, bµi : Hi → Hi, and these elements are
linearly independent.

• The elements of Si generate a monoid [20] of linear transformations under the associative
product in the algebra which acts irreducibly on Hi in the sense that the only subspaces
stabilized by Si areHi and 0 (0 is the null vector).

• If bµi and bνj are elements of different subsets Si and Sj, then bµi b
ν
j = 2(bµi , b

ν
j ) = 2(bνj , b

µ
i ).

Combining the associative product 2 and the additive operations, we can define the non-
associative Lie product [ , ], which is called commutator

[bµi , b
ν
j ] = bµi b

ν
j − bνj b

µ
i . (1)

Using this product the last condition can be reformulated

[bµi , b
ν
j ] = 0 , if i 6= j. (2)

The set Si is not necessarily closed under the regular product (composition) or the Lie product
(commutator). If the set Si is closed under the Lie product

[bµi , b
ν
i ] =

Ng∑
µ′=1

λµ′ b
µ′

i , λµ′ ∈ C, (3)
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the elements of Si generate a Lie algebra Si. In addition, since each generator is represented by
an endomorphism of Hi there is a particular representation ΓS of Si associated to the bosonic
language. The second condition for a bosonic language implies that ΓS is irreducible. The third
condition implies that the global Lie algebra associated to the complete set of generators is the
direct sum of local algebras Si, S =

⊕
i Si. Therefore, if the set Si is closed under the Lie

product, we can represent the bosonic language by the conjunction of the Lie algebra S, and the
irreducible representation ΓS : S ∧ ΓS . The dimension of ΓS is equal to the dimension of the
local Hilbert spaceHi: dimΓS = D.

3.1 Languages and dictionaries: a fundamental theorem

The demonstration of the fundamental theorem of this section is a direct consequence of the
classical theorem of Burnside [18]
Burnside’s theorem. Let G be a monoid of linear transformations in a finite dimensional vector
space V over an algebraically closed field F (in quantum mechanics, the complex numbers C),
that acts irreducibly on V in the sense that the only subspaces stabilized by G are V and 0.
Then G contains a base for EndFV (ring of endomorphisms of V over F ).
The following theorem shows that two languages are equivalent if they have in common the
dimension D of their local Hilbert spaceHi, and D is finite.
Fundamental Theorem [12, 9]: Given two bosonic languages having the same finite dimension
D of their local Hilbert spacesHi, the generators of one of them can be written as a polynomial
function of the generators of the other language and vice versa.
This theorem provides the necessary and sufficient conditions to connect two bosonic languages.
What is the unifying concept behind the construction of the dictionaries (isomorphisms) of
nature? When is it possible to build a dictionary between two arbitrary (bosonic, fermionic or
anyonic) languages? The answers lie in the application of the fundamental theorem together
with the transmutation of statistics [9] (see Fig. 1). This will be done in Section 4.
The fundamental theorem establishes the existence of dictionaries connecting languages within
the same class. As a consequence, we can use any bosonic language in the class to describe a
given physical phenomena. The natural question which emerges from this result is: What is the
most appropriate language in a given class for describing our particular problem? There is no
generic answer to this question. Nonetheless, the following two corollaries give an important
hint for problems which are invariant under particular transformations, because they relate the
notion of language to the generators of symmetry groups.

• Corollary I: In each class of bosonic languages there is at least one which is the conjunction
of a Lie algebra S and an irreducible representation ΓS (S ∧ ΓS), i.e., the generators of
the bosonic language are generators of the Lie algebra Si in the rep. ΓS .

Consider the Lie algebraLi = u(1)
⊕

su(2) (S =
⊕

i Li) whose generators are {Ii, Sxi , Syi , Szi }.
The three basis elements Sαi (linear and Hermitian operators) of the Lie algebra su(2) for each
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Fig. 2: Spin S representation of su(2) of dimensionality D = 2S + 1.

lattice site (mode) i (i = 1, · · · , Ns) satisfy the equal-time commutation relations[
Sai , S

b
j

]
= iδij εabc S

c
i , a, b, c = x, y, z, (4)

with ε the totally antisymmetric Levi-Civita symbol. Equivalently, in terms of the ladder oper-
ators S±j = Sxj ± iSyj[

S+
j , S

−
j

]
= 2Szj ,

[
Szj , S

±
j

]
= ±S±j ,

{
S+
j , S

−
j

}
= 2

(
S(S + 1)− (Szj )2

)
, (5)

where D = 2S + 1 is the dimension of the irreducible representation ΓD
S (Fig. 2). The demon-

stration of corollary I shows that any bosonic problem with a local Hilbert space of dimension
D can be described with su(2)-spins of magnitude (representation) S = (D − 1)/2.

3.2 Hierarchical language

A given bosonic language will be called hierarchical if any local physical operator Ôi :Hi→Hi,
can be written as a linear combination of the generators of the language

Ôi =

Ng∑
µ=1

λµb
µ
i , λµ ∈ C. (6)

• Corollary II: In each class of bosonic languages there is at least one which is hierarchical,
and its generators are the identity and the generators of su(N=D) in the fundamental
representation.

Proof: The Lie algebra generated by the identity Ii and the generators of su(N) is Li =

u(1)
⊕

su(N). Since dimLi = N2, the generators of Li are also a base for EndCHi if
D = dimHi = N .

A consequence of corollary II is that the generators of any language can be expressed as a
linear combination of generators of a hierarchical language (HL) in the same class. The most
trivial example is given by the class of bosonic languages with D = 2. The generators of any
language (any two level system) in the same class can be written as a linear combination of the
identity and the Pauli matrices. We will see later that corollary II is the key to get a hierarchical
classification of the possible broken symmetries of a given physical Hamiltonian.
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3.2.1 Example: different classes of bosonic particles

Canonical bosons with Nf different flavors α satisfy the standard canonical commutation rela-
tions [biα, bjβ] = [b†iα, b

†
jβ] = 0 ,

[biβ, b
†
jα] = δij δαβ , [niα, b

†
jβ] = δij δαβ b

†
iα.

(7)

The local Hilbert space is infinite dimensional. Consider now two additional examples that
illustrate in detail the contents of the fundamental theorem and the subsequent corollaries. The
first example corresponds to hard-core (HC) bosons with Nf different flavors α. Since they are
HC, only single occupancy is allowed, i.e., the eigenvalues of n̄i =

∑
α n̄iα are either 0 or 1

((b̄†iα)2 = 0, and n̄iα = b̄†iαb̄iα is the number operator for the flavor α at the site i). The minimal
set S ′i of operators that we can use to generate a bosonic language which is appropriate for HC
bosons is: S ′i = {1i, b̄

†
iα, b̄iα} with 1 ≤ α ≤ Nf . It can be shown that this set satisfies the

three requirements for a bosonic language. The dimension of the local Hilbert space for these
endomorphisms is D = Nf + 1. Then by varying the total number of flavors we can generate
all possible values of D. Since each class of bosonic languages is characterized by the value
of D, these HC bosons provide an example of a bosonic language in each class. It is clear that
the set S ′i is not closed under the Lie product. Therefore, we cannot associate a Lie algebra to
this minimal bosonic language. However, if we increase the number of generators in the set S ′i
by including bilinear forms of the type b̄†iαb̄iβ , then the new set Si = {1i, b̄

†
iα, b̄iα, b̄

†
iαb̄iβ}, with

1 ≤ α, β ≤ Nf , becomes closed under the Lie product
[b̄iα, b̄jβ] = [b̄†iα, b̄

†
jβ] = 0 ,

[b̄iβ, b̄
†
jα] = δij(δαβ − n̄i δαβ − b̄†iα b̄iβ) ,

[b̄†iαb̄iβ, b̄
†
jγ] = δij δβγ b̄

†
iα .

(8)

This means that the extended set Si is now a set of generators for a Lie algebra in a particular
representation. From the commutation relations (Eq. (8)) we can conclude that Si is the direct
sum of an u(1) algebra, generated by the identity 1i, and an su(N) (N = D = Nf+1) algebra
generated by {b̄†iα, b̄iα, b̄†iαb̄iβ}: Si = u(1)

⊕
su(N). The representation ΓS is the fundamental

representation of su(N) (dimΓS = N ). Therefore, the new language is a hierarchical one.
We will see in later sections that canonical fermions can be transformed continuously into
bosons which are HC in each flavor[b̃iα, b̃jβ] = [b̃†iα, b̃

†
jβ] = 0 ,

[b̃iα, b̃
†
jβ] = δij δαβ(1− 2ñα) , [ñiα, b̃

†
jβ] = δij δαβ b̃

†
iα ,

(9)

which implies {b̃iα, b̃†iα} = 1. The Lie algebra generated by these bosonic operators is L =⊕
α,i su(2), i.e. each set {b̃†iα, b̃iα, ñiα−1/2} generates an su(2) algebra.
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Fig. 3: Local Hilbert spacesHi, for the spin and HC bosonic worlds, at site (mode) i: (a) S = 1
2

(dimension D = 2), (b) S = 1 (dimension D = 3).

3.2.2 Example: Matsubara-Matsuda transformation and its generalization to S = 1

To explain the peculiar properties of liquid Helium II, Matsubara and Matsuda [21] introduced
a lattice model of atoms and holes. Think of a Helium-4 atom as a spinless HC boson (Nf = 1).
On each lattice site, one can accommodate at most one Helium atom ((b̄†i )

2 = 0). Then, the
simplest model of a liquid one can think of is described by a Hamiltonian with a kinetic energy
term, with hopping amplitude t, and a nearest-neighbor density-density interaction of magnitude
V. The expression for the Hamiltonian in terms of the first language defined by the sets Si is

Hxxz = t
∑
〈i,j〉

(b̄†i b̄j + b̄†j b̄i) + V
∑
〈i,j〉

(
n̄i−1

2

) (
n̄j−1

2

)
, (10)

where 〈i, j〉, refers to nearest-neighbors in an otherwise regular d-dimensional lattice. Since
b̄†i , creating an atom at lattice point i, and b̄i, annihilating an atom at lattice point i, are not
generators of a Lie algebra, the eventual global symmetries of Hxxz remain hidden in this par-
ticular language. However, if we translate Hxxz to the second SU(2)-spin language using the
dictionary provided by Matsubara and Matsuda [21]

S+
i = b̄†i , S

−
i = b̄i , S

z
i = b̄†i b̄i−1

2
= n̄i−1

2
, (11)

we can immediately unveil the hidden symmetries of Hxxz. This dictionary maps single-site
(mode) states in the following way (see Fig. 3)

|−1
2
〉 ←→ |0〉 , | 1

2
〉 ←→ b̄†i |0〉, (12)

where |0〉 is the vacuum of HC bosons. The well-known expression for Hxxz in terms of the
su(2) generators (i.e., the equivalent spin Hamiltonian) is

Hxxz =
∑
〈i,j〉

JzS
z
i S

z
j +

J⊥
2

(S+
i S
−
j + S−i S

+
j ). (13)

The magnetic couplings, Jz and J⊥, are related to the original parameters, t and V , by the
relations: Jz = V and J⊥ = 2t. It is clear from Eq. (13) that the original model has a global



17.10 Gerardo Ortiz

φ φ

1-1 0 Jz/J   , V/2t
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BEC at k = 0

Planar AF

BEC at k = Q

Longitudinal AF

CDW at k = Q

Fig. 4: Quantum phase diagram of the Hxxz model Hamiltonian. Q stands for the AF wave
vector, and FM refers to the ferromagnetic phase.

SU(2) invariance if V = 2t, i.e., it is in the isotropic Heisenberg point. The existence of
this SU(2)-symmetric point has a very important consequence for the quantum phase diagram
(Fig. 4) of the bosonic model of Eq. (10): If there is a charge density wave (CDW) instability
at that point, the SU(2) invariance implies that there is also a Bose-Einstein (BE) condensation
and vice versa. The order parameters (OPs) of both phases are different components of a unique
OP in the spin language, i.e., the staggered magnetization of the antiferromagnetic (AF) phase
(t > 0). The z-component of the staggered magnetization is mapped onto the CDW OP for the
bosonic gas, while the transverse component is equivalent to the OP for the BE condensation.
Only one of these two phases, which are coexisting at the SU(2) invariant point, is stable
when we depart from the symmetric point in any of both directions in parameter space (BE
condensation if V < 2t and CDW if V > 2t). In this very simple example we can see the
advantages of using a HL (su(2) in this case). In the first place, we can immediately recognize
the high symmetry points. Secondly, we can describe an eventual broken symmetry state at
those points in terms of a unified OP. If we were to use a non-HL to describe the same problem,
we would find coexistence of more than one phase at the high symmetry points. The OPs of
each of those phases are different components of the unified OP that we simply found with the
HL. These ideas are developed in more detail in Section 5.4.
One can generalize [12] this idea to the case of HC bosons with two flavors, i.e., Nf = 2,
that we can call spin σ =↑, ↓, with the property that b̄†iσ b̄

†
iσ′ = 0. In this case, the dictionary

(isomorphic map) is given by (see Fig. 3, where ↑(↓) is represented by a blue(red) ball)

S+
i =
√

2 (b̄†i↑ + b̄i↓) , S
−
i =
√

2 (b̄i↑ + b̄†i↓) , S
z
i = n̄i↑ − n̄i↓, (14)

and single-site (mode) states map as

|−1〉 ←→ b̄†i↓|0〉 , |0〉 ←→ |0〉 , |1〉 ←→ b̄†i↑|0〉. (15)

We will utilize this dictionary in later sections.
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4 Transmutation of statistics: fermionic (anyonic) languages

We know that bosonic languages do not exhaust all possible languages of quantum mechanics.
We have seen that the notion of bosonic languages is closely related to the concept of Lie al-
gebras, since for each class of bosonic languages there is at least one language whose elements
are generators of a Lie algebra. However, the same cannot be done for fermions. This can
be easily seen by noticing that the condition for a bosonic language, Eq. (2), is not valid for
fermions. In addition, the main consequence of Eq. (2) for a bosonic language is that the global
Lie algebra is the direct sum of the local ones associated to each subset Si. The generalization
of these concepts to fermionic languages can be done by introducing the notion of Lie super-
algebras (see for instance Ref. [19]), albeit we will not need this mathematical construct. The
fermionic languages are associated to Lie superalgebras in the same way the bosonic languages
are associated to Lie algebras. We will only consider the fermionic language generated by the
canonical creation and annihilation operators{ciα, cjβ} = {c†iα, c†jβ} = 0 ,

{ciα, c†jβ} = δij δαβ ,
(16)

and other languages obtained by imposing particular local constraints on the canonical fermions.
These generators, together with the identity, generate the Heisenberg Lie superalgebra. In anal-
ogy to the bosonic languages (see Eq. (2)), the Lie product (in the superalgebra) of two elements
acting in different sites (different subsets Si,Sj ) is zero. Thus, instead of having a direct sum
of local Lie algebras as in the bosonic case, we have a direct sum of local Lie superalgebras. In
the case of canonical fermions the local Lie superalgebras are Heisenberg superalgebras.

4.1 Local and non-local transmutation of statistics

We will start by considering multiflavor fermions c†iα (α ∈ [1, Nf ]) which satisfy the canonical
anticommutation relations (Eq. (16)). Other types of fermions, usually considered in physics,
can be derived from the canonical ones by imposing particular constraints.
The canonical fermions can be transformed into bosons b̃†iα which are hard-core in each flavor
(the eigenvalues of ñiα = b̃†iαb̃iα are either 0 or 1, see Eq. (9)), i.e., two or more bosons of the
same flavor are not allowed on the same site, but two of different flavors are permitted. In pre-
vious sections we have shown that a physical theory for objects obeying commutation relations
(Lie brackets) can be formulated in terms of a bosonic language. By the present connection we
will be able to extend this statement to fermions (or anyons, in general) through a transmutation
of statistics. The local anticommutation relations are transmuted into anti-commutation rela-
tions (and vice versa) when the creation and annihilation operators are multiplied by the “local
transmutator” T̂ †jα

c†jα = b̃†jαT̂ †jα , (17)

where T̂jα = exp(iπ
∑

β<α ñjβ) is the “local transmutator,” and we are assuming a particular
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ordering for the flavor indices α. From the expression for T̂jα it is clear that

T̂ 2
jα = I, T̂ †jα = T̂jα . (18)

In this way we have established a mapping between fermions and bosons which are operating
locally (on a given orbital or mode j)

Sj = {b̃†jα, b̃jα, ñjα−1
2
} ←→ Ŝj = {c†jα, cjα, n̂jα−1

2
} (19)

So far, we have only transmuted the commutation relations between generators which belong
to the same site or subset Si. For commutation relations of two generators at different sites
we need to introduce a non-local operator Kj. For spinless fermions, in one spatial dimension,
Jordan and Wigner [11] introduced the so-called kink-operator

K1d
j = exp

(
iπ
∑
l<j

n̂l

)
, (20)

to establish a map between quantum S = 1/2 spins and spinless fermions

S+
j = c†j Kj , S

−
j = Kj

† cj , S
z
j = n̂j−1

2
, (21)

where Kj = K1d
j for a one-dimensional lattice. The generalization of Kj to multiflavored

canonical fermions is straightforward

Kj = exp
(
iπ
∑
l<j,α

n̂lα

)
. (22)

The complete transmutator for canonical fermions K†jα is the product of the local and the non-
local components

c†jα = b̃†jαT̂ †jαK†j = b̃†jαK†jα. (23)

Similarly, one can extend this idea of transmutation of statistics to particles satisfying general
equal-time anyonic canonical commutation relations defined by an angle θ. To this end we need
to generalize the transmutators to any statistical angle 0 ≤ θ ≤ π. By replacing the phase π by
θ, K†jα(θ) transmutes the bosons (or fermions) into (Abelian) anyons

ã†jα = b̃†jαT̂ †jα(θ)K†j (θ) = b̃†jαK†jα(θ) . (24)

Like in the previous example, the local commutation relations are preserved (ñjα = ã†jαãjα,

ñj =
∑Nf

α=1 ñjα) [ãjα, ãjα] = [ã†jα, ã
†
jα] = 0 ,

[ãjα, ã
†
jα] = 1− 2ñjα .

(25)

In this particular case, since there is a hard-core condition ã†jαã
†
jα = 0, the operators also satisfy

the following local anticommutation relations{ãjα, ãjα} = {ã†jα, ã†jα} = 0 ,

{ãjα, ã†jα} = 1 .
(26)
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Thus, the local anticommutation relations are also preserved under statistical transmutation.
Clearly, Eq. (26) are the local anticommutation relations for canonical fermions. This is not
surprising since the multiflavored hard-core bosons defined by Eq. (9) can be transmuted into
canonical fermions (see Eq. (23)). For operators involving different indices we have to define
an index ordering. For (j, β) > (i, α)[ãiα, ãjβ]θ = [ã†iα, ã

†
jβ]θ = 0 ,

[ã†jβ, ãiα]θ = 0,
(27)

where [A,B]θ = AB − exp[iθ]BA. Even though K†jα(θ) is a non-local operator, it does not
introduce long-range interactions if the model has only nearest-neighbor-range terms. The only
consequence of changing the statistics of the particles is a change of the short-range interactions
in the original basis. Therefore, the concept of particle statistics in one dimension becomes
irrelevant since any physical system can be described with a bosonic language without changing
the short-range character of the interactions.
There is another type of HC anyon that is relevant for the generalized Jordan-Wigner transfor-
mations [12] of Sections 4.3 and 5.1. They are defined as

ā†jα = b̄†jαT̂ †jα(θ)K†j (θ) = b̄†jαK†jα(θ) , (28)

with

T̂jα(θ) = exp
(
iθ
∑
β<α

n̄jβ

)
and Kj(θ) = exp

(
iθ
∑
l<j,α

n̄l,α

)
. (29)

Since the local commutation relations are preserved, we have (n̄jα = ā†jαājα, n̄j =
∑Nf

α=1 n̄jα)[ājα, ājα] = [ā†jα, ā
†
jα] = 0 ,

[ājα, ā
†
jα] = 1− n̄jα − n̄j .

(30)

Again, we need to define an index ordering for the deformed commutation relations involving
operators with different indices. For (j, β) > (i, α)[āiα, ājβ]θ = [ā†iα, ā

†
jβ]θ = 0 ,

[ā†jβ, āiα]θ = 0 .
(31)

In closing this section we would like to emphasize that these lecture notes deals with Abelian
anyons only. The case of non-Abelian anyons is more subtle and beyond the scope of these
lecture notes. In general, it is not clear how to realize non-Abelian representations of the
braid group in terms of “Fock-space particles”. We only know examples in terms of Weyl
parafermions [22].
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4.1.1 Example: Spin-1/2 – anyon mapping

The simplest case of a spin-anyon mapping that one can imagine is realized in the case D = 2.
Consider the map (n̄j = ā†j āj and 0 ≤ θ < 2π)

S+
j = ā†j Kj(θ) , S

−
j = K†j (θ) āj , S

z
j = n̄j−1

2
, (32)

where the non-local statistical operator or transmutator Kj(θ) is given by

Kj(θ) = exp
(
iθ
∑
i<j

n̄i

)
=
∏
i<j

(
1 + (eiθ − 1) n̄i

)
(33)

since n̄2
j = n̄j (for any θ), and satisfy Kj(θ)K

†
j (θ) = K†j (θ)Kj(θ) = 1l. In this way we trans-

formed the original localized spin S = 1/2 problem into an itinerant gas of (anyon) particles
obeying the operator algebra (for i ≤ j)[āi, āj]θ = [ā†i , ā

†
j ]θ = 0 ,

[āi, ā
†
j ]−θ = δij(1− (exp[−iθ] + 1)n̄j) , [n̄i, ā

†
j ] = δij ā

†
j .

(34)

Each statistical angle θ provides a different particle language and defines the exchange statistics
of the particles. The case θ = π corresponds to canonical spinless fermions [11] while θ = 0

represents HC bosons [21]. In all cases one can accommodate up to a single particle (p = 1)
per quantum state, (ā†j)

p+1 = 0 (i.e, the particles are HC). In order to construct a dictionary one
also needs the inverse mapping

ā†j =
∏
i<j

(e−iθ + 1

2
+ (e−iθ − 1) Szi

)
S+
j

āj =
∏
i<j

(e+iθ + 1

2
+ (e+iθ − 1) Szi

)
S−j

n̄j = Szj +1
2

(35)

4.2 Transmutation of statistics in higher dimensions

We propose the following general expression for Kj

Kj = exp
(
i
∑
l

ω(l, j) n̄l

)
, (36)

where ω(l, j) is a function to be determined by imposing the transmutation of statistics. This is
equivalent to the antisymmetric condition

eiω(l,j) = −eiω(j,l), if l 6= j , ω(l, l) = 0. (37)

One possible solution is based on a generalized Chern-Simons construction for a 2d lattice:
ω(l, j) = a(l, j) (see Fig. 5). However, this is not the only possible solution. Another solution
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Fig. 5: One of the possible ways of defining the statistical transmutator K2d
j in 2d. The dotted

line represents a fixed direction on the lattice.

in 2d is
ω(l, j) = π

(
Θ(j1−l1)(1− δl1j1) +Θ(j2−l2) δl1j1

)
, (38)

with l = l1e1 + l2e2 and j = j1e1 +j2e2. The advantage of this solution is that its generalization
to higher dimensions is straightforward (l =

∑
a laea, and a∈ [1, d]). For instance, in 3d we

have

ω(l, j) = π
(
Θ(j1−l1)(1− δl1j1) +Θ(j2−l2)δl1j1(1− δl2j2) +Θ(j3−l3)δl1j1 δl2j2

)
. (39)

4.3 Jordan-Wigner transformation for S = 1

Mathematically, the Jordan-Wigner transformation [11] involves the S = 1/2 irreducible repre-
sentation of the Lie group SU(2). In this section we generalize this transformation to S = 1. As
in the case of S = 1/2 HC bosons (Fig. 3) the dimension of the local Hilbert space is D = 3.
In this case, the particle Hilbert space corresponds to spin-1

2
(two flavors) fermions with the

constraint of no double occupancy. This constraint can be taken into account by introducing the
Hubbard operators c̄†jα = c†jα(1−njᾱ) and c̄jα = (1−njᾱ) cjα (α = 1,−1; ᾱ = −α), which form
a subalgebra of the so-called double graded algebra Spl(1,2) [19]. From Fig. 3 one realizes that
Szj is the difference between the occupation numbers of the two different fermion flavors. S+

j

must be a linear combination of annihilation and creation operators since we need to annihilate
one fermion to go from Szj = −1 to the Szj = 0 state and to create the other fermion to go from
Szj = 0 to Szj = 1. To simplify notation we introduce the following composite operators

f †j = c̄†j1 + c̄j1̄ , fj = c̄j1 + c̄†
j1̄
. (40)

For spins on a lattice we again fermionize the spins and reproduce the correct spin algebra with
the following transformation

S+
j =
√

2 (c̄†j1 Kj +K†j c̄j1̄) , S−j =
√

2 (K†j c̄j1 + c̄†
j1̄
Kj) , S

z
j = n̄j1 − n̄j1̄ , (41)

whose inverse manifests the nonlocal character of the mapping

f †j =
1√
2

exp
(
iπ
∑
i<j

(Szi )2
)
S+
j , fj =

1√
2

exp
(
− iπ

∑
i<j

(Szi )2
)
S−j , (42)

c̄†j1 = Szj f
†
j , c̄j1 = fj S

z
j , c̄

†
j1̄

= −Szj fj , c̄j1̄ = −f †j Szj , (43)
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where the string operators Kj = exp(iπ
∑

i<j n̄i) =
∏

i<j

∏
α(1 − 2n̄iα) are the natural gener-

alizations of the ones introduced before. The number operators are defined as n̄i = n̄i1 + n̄i1̄

(n̄iα = c̄†iαc̄iα). These f -operators have the remarkable property that

{f †j , fj} = {S+
j , S

−
j } , (44)

which suggests an analogy between spin operators and “constrained” fermions.
The generalization to two-flavor (or s = 1/2) HC anyons is achieved by the isomorphic map

S+
j =
√

2
(
ā†j1 Kj(θ) +K†j (θ) āj1̄

)
S−j =

√
2
(
K†j (θ) āj1 + ā†

j1̄
Kj(θ)

)
Szj = n̄j1 − n̄j1̄

(45)

where the non-local transmutator (n̄jα = ā†jαājα, n̄j = n̄j1 + nj1̄)

Kj(θ) = exp
(
iθ
∑
i<j

n̄i

)
=
∏
i<j

(
1 + (exp[iθ]− 1) n̄i

)
(46)

(n̄jαn̄jβ = δαβ n̄jα) allows rotation of the statistics of the particles whose algebra is determined
by (i ≤ j) 

[āiα, ājβ]θ = [ā†iα, ā
†
jβ]θ = 0 ,

[āiα, ā
†
jβ]−θ = δij

1− e−iθ n̄jα − n̄j if α = β,

−e−iθ ā†jβājα if α 6= β,

(47)

In this case a more restrictive version of the Pauli exclusion principle applies where one can
accommodate no more than a single particle per site regardless of α, i.e., ā†jαā

†
jβ = 0, ∀(α, β).

4.3.1 Example: the one-dimensional fermionic Hubbard model

The Hubbard model [23] is the most popular model of a strongly interacting system in con-
densed matter physics. It contains a kinetic energy term represented by a hopping integral t
plus a local on-site Coulomb repulsion U. The single-band Hubbard Hamiltonian is (σ =↑, ↓)

H1d
Hubb = t

Ns−1∑
j,σ

(c†jσcj+1σ + c†j+1σcjσ) + U

Ns∑
j=1

(
n̂j↑−1

2

) (
n̂j↓−1

2

)
, (48)

Let us introduce a new transformation that is not a generalized Jordan-Wigner mapping but that
works in the case of Hamiltonian H1d

Hubb. The map is defined by
S+
j1 = c†j↑K̄j↑,

Szj1 = n̂j↑−1
2
,

S+
j2 = c†j↓K̄j↓,

Szj2 = n̂j↓−1
2
,

(49)
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Fig. 6: Fermionic Hubbard chain maps onto a spin S = 1/2 ladder.

where the nonlocal operator K̄jσ is defined as

K̄j↑ = exp
(
iπ(
∑
l

n̂l↓ +
∑
l<j

n̂l↑)
)
, K̄j↓ = exp

(
iπ
∑
l<j

n̂l↓

)
. (50)

Using this transformation, the one-dimensional Hubbard Hamiltonian becomes [9] (ν = 1, 2)

H1d
Hubb = 2t

Ns−1∑
j,ν

(SxjνS
x
j+1ν + SyjνS

y
j+1ν) + U

Ns∑
j=1

Szj1S
z
j2 , (51)

which represents a two-leg ladder made out of two XY-chains coupled by an Ising interaction.
The beauty of this map is that the fermionic Hubbard model and its dynamics can, in principle,
be simulated with ultracold atoms in optical lattices or other quantum simulators.

4.3.2 Example: su(N) spin-particle mappings

The fundamental (quark) representation of su(N) can be mapped onto an algebra of constrained
fermions (c̄†jα = ā†jα(θ = π)) or HC bosons (b̄†jα = ā†jα(θ = 0)) with Nf = N−1 flavors

Sαβ(j) = ā†jαājβ − δαβ/N

Sα0(j) = ā†jαK
θ
j , S0β(j) = (Kθ

j )†ājβ

S00(j) =
Nf

N
−

Nf∑
α=1

n̄jα = −
Nf∑
α=1

Sαα(j) , (52)

where 1 ≤ α, β ≤ Nf runs over the set of particle flavors, and ā†jα = ã†jα
∏Nf

β=1(1 − ñjβ).
Sα1β1(j) (0 ≤ α1, β1 ≤ Nf ) are the components of the SU(N)-spin (i.e., there are N2−1 linear
independent components). It is easy to verify that these are generators of an su(N) Lie algebra
satisfying the commutation relations

[Sα1α′
1(j),Sβ1β′

1(j)] = δα′
1β1
Sα1β′

1(j)− δα1β′
1
Sβ1α′

1(j). (53)

For instance, for N = 3 we have (α = 1, 2)

S(j) =


2
3
−n̄j (Kθ

j )†āj1 (Kθ
j )†āj2

ā†j1K
θ
j n̄j1−1

3
ā†j1āj2

ā†j2K
θ
j ā†j2āj1 n̄j2−1

3

 . (54)
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We can immediately see that the 2 × 2 block matrix Sαβ(j) (1 ≤ α, β ≤ 2) contains the
generators of su(2). In general, from the commutation relations (53), we can verify that if
Sα1β1(j) are generators of su(N), then Sαβ(j) are the generators of the subalgebra su(N−1).
This will be useful in Section 5.4.

5 Some applications

We have so far developed an algebraic framework for interacting quantum systems that will
allow us to study complex phenomena characterized by the coexistence and competition of
various broken symmetry states [3-5]. We have also proved a theorem that allowed us to con-
nect all possible languages used in the quantum description of matter. Connecting the various
languages through isomorphic mappings enables us to relate seemingly different physical phe-
nomena, unveil hidden symmetries (i.e., uncover the accidental degeneracies of the original
physical system), and, in some limiting cases, obtain the exact spectrum of the problem (or of
a set of orthogonal subspaces). The ultimate goal is to use that framework to explore those
unconventional complex states of matter from a unified perspective.

5.1 Generalized Jordan-Wigner transformations

In a similar fashion, one could continue for higher spin S irreps and would find that HC particles
have Nf = 2S flavors (we call these generalized Jordan-Wigner particles) [12]. Of course, this
is not the only way to proceed. For example, for half-odd integer cases where 2S + 1 = 2N̄f a
simple transformation in terms of standard canonical multiflavor fermions is possible [12, 9].
We next generalize the JW spin-fermion mapping to any irreducible representation S [12]. Our
mappings are valid for regular lattices in any spatial dimension d and particle statistics. These
generalized JW mappings constitute a quantum version of the well-known classical spin-lattice-
gas transformations. The significance of these transformations is that they help us understand
various aspects of the same physical system by transforming intricate interaction terms in one
representation into simpler ones in the other. Problems which seem intractable can even be ex-
actly solved after the mapping. In other cases, new and better approximations can, in principle,
be realized since fundamental symmetries which are hidden in one representation are manifest
in the other. From a physical viewpoint, what our spin-particle transformations achieve is an
exact connection between models of localized quantum spins S to models of itinerant particles
with (2S = Nf ) color degrees of freedom or “effective” spin s = S−1

2
.

We will consider now a type of fermions which naturally emerges from the strong coupling limit
of models for interacting electrons. If the short range component of the Coulomb repulsion is
much larger than the kinetic energy, the repulsion can be effectively replaced by a constraint
of no double occupancy. This perturbative approach is usually implemented by a canonical
transformation, which leads to an effective Hamiltonian acting on the subspace of states with no
double occupancy. The fermionic subalgebra used to describe this effective model is generated
by the so-called constrained fermions. Therefore, the constrained fermions are obtained by
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Fig. 7: Constrained fermion states per site for integer and half-odd integer spin S. There are
2S flavors and the corresponding 2S + 1 values of Sz are shown in the middle column.

imposing to the canonical fermions a local constraint of no more than one particle per orbital (or
site). This constraint may be incorporated into the fermionic algebra by defining the following
creation and annihilation operators for the constrained fields

c̄†jσ = c†jσ
∏
τ∈Fη

(1− n̂jτ ) , c̄jσ =
∏
τ∈Fη

(1− n̂jτ ) cjσ , (55)

where Fη is the set of flavors, with η = 1
2

or 1 depending upon the spin character of the irre-
ducible representation. It is easy to check that the particles generated by this fermionic algebra
satisfy the constraint of single occupancy, i.e., the eigenvalues of n̄j =

∑Nf
σ=1 n̄jσ are either 0 or

1. The most well-known context where these fermions appear in condensed matter physics is
the strong coupling limit of the Hubbard model, which leads to the t-J Hamiltonian [23]. The
set of commutation relations those constrained fermions satisfy is

{c̄iσ, c̄jσ′} = {c̄†iσ, c̄†jσ′} = 0 ,

{c̄iσ, c̄†jσ′} = δij

1 + n̄jσ − n̄j if σ = σ′,

c̄†jσ′ c̄jσ if σ 6= σ′.
(56)

Notice that
∏τ 6=σ

τ∈Fη(1− n̄jτ ) = 1 + n̄jσ − n̄j with number operators satisfying n̄jσn̄jσ′ = δσσ′n̄jσ.

The explicit form of the generalization is
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Half-odd integer spin S: σ ∈ F1
2
= {−S + 1, . . . , S}

S+
j = ηS̄ c̄

†
jS̄+1

Kj +
∑
σ∈F 1

2
σ 6=S

ησ c̄
†
jσ+1c̄jσ ,

S−j = ηS̄ K
†
j c̄jS̄+1 +

∑
σ∈F 1

2
σ 6=S

ησ c̄
†
jσ c̄jσ+1 ,

Szj = −S +
∑
σ∈F 1

2

(S + σ) n̄jσ ,

c̄†jσ = K†j

σ−1∏
τ=−S

η−1
τ

(
S+
j

)σ+S
∏
τ∈F 1

2

τ − Szj
τ + S

. (57)

Integer spin S: σ ∈ F1 = {−S, . . . ,−1, 1, . . . , S}

S+
j = η0 (c̄†j1 Kj +K†j c̄j1̄) +

∑
σ∈F1
σ 6=−1,S

ησ c̄
†
jσ+1c̄jσ ,

S−j = η0 (K†j c̄j1 + c̄†
j1̄
Kj) +

∑
σ∈F1
σ 6=−1,S

ησ c̄
†
jσ c̄jσ+1 ,

Szj =
∑
σ∈F1

σ n̄jσ ,

c̄†jσ = K†j

|σ|−1∏
τ=0

η−1
τ


(
S+
j

)σ ∏
τ∈F1

τ − Szj
τ

if σ > 0 ,

(
S−j
)σ ∏

τ∈F1

τ − Szj
τ

if σ < 0 ,
(58)

with ησ =
√

(S − σ)(S + σ + 1) (see Fig. 7). [A bar in a subindex means the negative of
that number (e.g., σ̄ = −σ).] These mappings enforce the condition on the Casimir operator
S2
j = S(S + 1). The generalized JW spin-fermion mapping can be easily extended to include a

spin-anyon mapping simply by using the anyonic particles generated by ā†jσ and ājσ [9].

5.2 Connecting seemingly unrelated phenomena: Haldane gap systems

Generically, half-odd integer spin chains have a qualitatively different excitation spectrum than
integer spin chains. The Lieb, Schultz, Mattis, and Affleck theorem [24] establishes that the
half-odd integer AF bilinear nearest-neighbors Heisenberg chain is gapless if the ground state
(GS) is non-degenerate. The same model with integer spins is conjectured to have a Haldane
gap [25]. To understand the origin of the Haldane gap we analyze the S = 1 XXZ Hamiltonian
chain (an overall omitted constant J > 0 determines the energy scale)

Hxxz =
∑
j

Szj S
z
j+1 +∆

(
Sxj S

x
j+1 + Syj S

y
j+1

)
=
∑
j

Hz
j +Hxx

j . (59)
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It is easy to show that the constrained fermion version of this Hamiltonian is a (S = 1/2) t-Jz
model [26] plus particle non-conserving terms which break the U(1) symmetry (σ =↑, ↓)

Hxxz =
∑
j

(n̄j↑ − n̄j↓)(n̄j+1↑ − n̄j+1↓) +∆
∑
jσ

(
c̄†jσ c̄j+1σ + c̄†jσ c̄

†
j+1σ̄ + H.c.

)
. (60)

The charge spectrum of the (S = 1/2) t-Jz model is gapless but the spin spectrum is gapped
due to the explicitly broken SU(2) symmetry (Luther-Emery liquid) [26]. Therefore, the spec-
trum of the S = 1 Hamiltonian associated with the t-Jz model, with t = −∆ and Jz = 4,
(which has only spin excitations) is gapless. Hence the term which explicitly breaks U(1) must
be responsible for the opening of the Haldane gap. We can prove this by considering the per-
turbative effect that the pairing interaction η

∑
jσ(c̄†jσ c̄

†
j+1σ̄ + H.c.) has on the t-Jz Hamiltonian.

To linear order in η (> 0), Eq. (60) maps onto the (S = 1/2) XYZ model with Jx = 2(η +∆),
Jy = −2(η − ∆), and Jz = −1. To prove this statement we need to explain first how the
lowest energy subspace of the t-Jz Hamiltonian can be mapped onto a spinless t-V model (the
complete demonstration is presented in Ref. [26]).
The t-Jz Hamiltonian represents a hole-doped Ising model

Ht−Jz = ĤJz + T̂ = Jz
∑
j

Szj S
z
j+1 − t

∑
jσ

(
c̄†jσ c̄j+1σ + H.c.

)
. (61)

Consider the set of parent states with M holes and Ns − M = N↑ + N↓ quantum particles,
|Φ0(N↑↑, N↑↓)〉, defined as

|Φ0(N↑↑, N↑↓)〉 = |↑↑↓↑↓ · · ·︸ ︷︷ ︸
Ns−M

◦◦ ◦ ◦ ◦ · · ·︸ ︷︷ ︸
M

〉 , (62)

where N↑↑ (N↑↓) is the number of ferro (antiferro)-magnetic links (N↑↑ +N↑↓ = Ns −M − 1).
These states are eigenstates of the magnetic part of Ht−Jz , ĤJz , with energy EM(N↑↑, N↑↓) =

Jz(N↑↑ −N↑↓)/4, and z-component of the total spin (N↑ −N↓)/2.
From a given parent state one can generate a subspace of the Hilbert space,M(N↑, N↑↑, N↑↓),
by applying the hopping operators T̂j,σ = c†jσcj+1σ + H.c. (j = 1, · · · , Ns−1) to the parent state
and its descendants

|Φ1(N↑↑, N↑↓)〉 = T̂Ns−M,σ |Φ0(N↑↑, N↑↓)〉 (63)

or, in general,

|Φn(N↑↑, N↑↓)〉 = T̂j,σ |Φm(N↑↑, N↑↓)〉 . (64)

The dimension D of the subspace M(N↑, N↑↑, N↑↓) is
(
Ns
M

)
. Moreover, these different sub-

spaces are orthogonal and not mixed by the Hamiltonian Ht−Jz .
We want to show now that, for a given number of holes M , the subspace generated by the Néel
parent state,M(N↑, 0, N↑↓) ≡M0, contains the GS. To this end, one has to note that the matrix
elements 〈Φn(N↑↑, N↑↓)|T̂ |Φm(N↑↑, N↑↓)〉 are the same for the different subspacesM. Nonethe-
less, the magnetic matrix elements 〈Φn(N↑↑, N↑↓)|ĤJz |Φm(N↑↑, N↑↓)〉 = δnm A(N↑↑,N↑↓) are
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different for the different subspaces, with A(0,N↑↓) ≤ A(N̄↑↑, N̄↑↓) ,N↑↓ = N̄↑↑+N̄↑↓. [Notice
that, for a generic state of a given subspace, N↑↑ + N↑↓ ≤ Ns −M − 1 with the equality sat-
isfied by the parent state only, where N↑↑ = N↑↑ and N↑↓ = N↑↓.] Therefore, the Hamiltonian
matrices H M

n,m (of dimension D × D) in each subspaceM, consists of identical off-diagonal
matrix elements (HMn,m = HM′

n,m, n 6= m) and different diagonal ones. These Hermitian matri-
ces can be ordered according to the increasing value of the energy EM of their parent states,
which is equivalent (for fixedNs andM ) to ordering by the increasing number of ferromagnetic
(FM) links N↑↑, HM ≡ HN↑↑ . For any N↑↑ < N ′↑↑, HN ′

↑↑ = HN↑↑ + B, where B is a positive
semidefinite matrix. Then, the monotonicity theorem tells us that

Ek(N↑↑) ≤ Ek(N
′
↑↑) ∀ k = 1, · · · ,D , (65)

where Ek(N↑↑) are the eigenvalues of HN↑↑ arranged in increasing order. Therefore, we con-
clude that the lowest eigenvalue of Ht−Jz must be inM0 and is E1(0).
The next step consists in showing that, within the GS subspace M0, the Hamiltonian Ht−Jz

maps into an attractive spinless fermion model. If one makes the following identification

|↑↓↑↓ · · ·︸ ︷︷ ︸
Ns−M

◦◦ ◦ ◦ · · ·︸ ︷︷ ︸
M

〉 → |• • • • · · ·︸ ︷︷ ︸
Ns−M

◦◦ ◦ ◦ · · ·︸ ︷︷ ︸
M

〉 , (66)

i.e., any spin particle (c̄†jσ, independently of the value of σ) maps into a single spinless fermion
(d†j ) in M0, it is straightforward to realize that all matrix elements of H0 are identical to the
matrix elements of

H0 = −t
∑
j

(
d†jdj+1 + H.c.

)
− Jz

4

∑
j

n̂jn̂j+1 (67)

in the corresponding new basis, with n̂j = d†jdj.
The addition of the pairing term η

∑
jσ

(
c̄†jσ c̄

†
j+1σ̄ + H.c.

)
to the t-Jz Hamiltonian has two dif-

ferent effects in the lowest energy subspaceM0. The process where the pair of up and down
particles created preserves the Néel ordering of the spins can be mapped into the creation of
two spinless particles in the effective spinless model. The other possible process creates at least
one FM link in the parent state and connects M0 with the subspace containing one FM link,
N↑↑ = 1, (the lowest spin excitation) M1. This means that the subspaces M are no longer
invariant under the application of the Hamiltonian. However this second process contributes to
second order in η (η2/∆s) due to the existence of a spin gap between the GSs ofM0 andM1.
Therefore to first order in η,M0 is still an invariant subspace and the reduced Hamiltonian is a
spinless model with a pairing (superconducting) term

H ′0 = H0 + η
∑
j

(
d†jd
†
j+1 + djdj+1

)
. (68)

For arbitrary values of Jz, t, and hole density ν, H ′0 is equivalent (via the traditional Jordan-
Wigner transformation) to the spin-1/2 XYZ chain Hamiltonian (up to an irrelevant constant)

H ′0 =
∑
j

(
Jx sxj sxj+1 + Jy syj syj+1 + Jz (szj s

z
j+1 + szj )

)
, (69)
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and Jx = 2(η−t), Jy = −2(η+t), and Jz = −Jz
4

. In the language of our original Hamiltonian
Hxxz, Eq. (60), Jx = 2(η + ∆), Jy = −2(η − ∆), and Jz = −1. From exact solution of this
model [27], it is seen that the system is critical only when η = 0 while for η 6= 0 a gap to all
excitations opens.

It is important to note that the GS of the t-Jz model, |Ψ 0
0 〉, has the same topological long-range

order as the valence-bond-solid (Haldane state) [28, 26, 3], i.e., the correlation function [29]
〈Ψ 0

0 |Szj exp(iπ
∑j+r−1

i=j+1 S
z
i )Szj+r|Ψ 0

0 〉 = −〈Ψ 0
0 |njnj+r|Ψ 0

0 〉 has a power law decay as a function
of distance r to a constant value at the t-Jz point. This means that the superconducting term
in Hxxz, although it is opening a gap (Haldane gap), does not change the topological order
characterizing the GS. Therefore, the GS is in the same Haldane phase for 0 ≤ η ≤ ∆. In
the particle language, the Haldane gap is a superconducting gap. Since each hole (Sz = 0

state in the spin language) is an anti-phase boundary (soliton) for the Néel ordering, the AF
correlation function is short ranged for the GS of the t-Jz model. As demonstrated above, these
solitonic excitations are massless at the t-Jz point, but become massive (gapped) as soon as
the superconducting term is turned on (η 6= 0). As the superconducting term is derived from
the transverse part of the Heisenberg interaction, it will not restore the AF ordering along the
z direction. In this way it is easy to understand why the spin-spin correlation function, of the
S = 1 AF Heisenberg chain is short ranged: 〈Sj · Sj+r〉 ∼ e−r/ξ with ξ the correlation length.

5.3 Unveiling hidden symmetries and exactly-solvable points

We next illustrate the power of these transformations by showing exact solutions to lattice mod-
els previously unsolved by standard techniques [15]. The key is the existence of a general
set of SU(N) spin-particle transformations, fundamental to understanding the order hidden in
complex behavior. More simply put, through the generalized spin-particle transformations, fea-
tures that are subtle and hard to identify in one representation (hidden symmetries) can become
prominent and easy to analyze in another (explicit symmetries). Indeed, these mappings con-
nect seemingly unrelated physical phenomena, establishing equivalence relations among them.
In the hierarchical group, all elements of the operator basis are symmetry generators. This
allows one to study the coexistence and competition of phases, like ferromagnetism and BE
condensation [15], with the corresponding OPs derived from the subgroup generators embed-
ded in the largest global symmetry group of the problem.

Consider the SU(2)-invariant model Hamiltonian

Hφ = J
√

2
∑
〈i,j〉

(
cosφ Si · Sj + sinφ (Si · Sj)

2) , (70)

where J > 0 and summation is over bonds 〈i, j〉 of a regular d-dimensional hypercubic lattice
with Ns sites and coordination z. A spin S = 1 operator Si is associated with lattice site i and
locally satisfies the su(2) Lie algebra. The case H1 = Hφ= 5π

4
, which as we will see displays

a global SU(3) symmetry, can be conveniently written in a (s = 1
2
) HC boson representation
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Fig. 8: Coexistence of FM and BE condensation. The correlation function Φ↑↑(ij) = Φij is
expressed in the thermodynamic limit. The inset schematically displays the SU(3) OP living in
an eight-dimensional space with projections onto the SU(2) (FM) and U(1) (BE) axes.

(n̄jσn̄jσ′ = δσσ′n̄jσ), Eq. (14), as an extended t-J like Hamiltonian,

H1 = −J
∑
〈i,j〉,σ

(
b̄†iσ b̄jσ + H.c.

)
− 2J

∑
〈i,j〉

si · sj − 2J
∑
〈i,j〉

(
1− n̄i + n̄j

2
+

3

4
n̄in̄j

)
,(71)

with sj = 1
2
b̄†jασαβ b̄jβ an s = 1

2
operator (σ denoting Pauli matrices), and n̄j = b̄†j↑b̄j↑ + b̄†j↓b̄j↓.

This last form in turn can be rewritten as

H1 = −2J
∑
〈i,j〉

Ps(i, j) , (72)

where Ps(i, j) = P 2
s (i, j) is the projector onto the symmetric subspace (S = 0, 2) corresponding

to the bond 〈i, j〉which indicates that if one finds a state that is symmetric under the permutation
of nearest neighbors ri and rj, then that state is the GS.
For a system of N HC bosons the GS is

|Ψ0(N , Sz)〉 = (b̂†0↑)
N↑(b̂†0↓)

N↓|0〉 , (73)

(N = N↑ +N↓ ≤ Ns) with an energy E0 = −JNsz and a total Sz =
N↑−N↓

2
. The operator b̂†0σ

is the k = 0 component of b̄†jσ, i.e., b̂†kσ = 1√
Ns

∑
j e
ik·rj b̄†jσ. The quasihole and quasiparticle

excited states are |Ψhk (N , Sz)〉 = b̂kσ|Ψ0(N , Sz)〉 quasihole,

|Ψ pk(N , Sz)〉 = b̂†kσ|Ψ0(N , Sz)〉 quasiparticle,
(74)

with the excitation energy of each being ωk = Jz(1
z

∑
ν e

ik·eν − 1) where the sum runs over the
vectors eν which connect a given site to its z nearest neighbors. In the |k| → 0 limit, ωk → 0.
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Clearly the GS in Eq. (73) is a FM BE condensate with any partial spin polarization, and the
form of the result is independent of the spatial dimensionality of the lattice. We note that dif-
ferent values of Sz correspond to the different orientations of the magnetizationM associated
to the broken SU(2) spin rotational symmetry of the GS. We also note that the degeneracy of
states with different number of particles N indicates a broken U(1) charge symmetry (conser-
vation of the number of particles) associated to the BE condensate. A signature of BE conden-
sation is the existence of off-diagonal long-range order (ODLRO) in the correlation function
Φσσ′(ij) = 〈b̄†iσ b̄jσ′〉. When N↑ and N↓ are both of order Ns, there are two eigenvectors with
eigenvalues of order Ns and the condensate is thus a mixture.
We can easily compute the magnetization M and phase coherence of these various (non-
normalized) degenerate GSs for a given density ρ = N

Ns
. For example, in the fully polar-

ized case, N = N↑, M = 〈Szj 〉 = ρ, and the ODLRO Φ↑↑(ij) = ρ(1−ρ)
1−ε (ri 6= rj), where

ε = 1/Ns. Similarly, the two-particle correlation function 〈∆†i∆j〉 = Φ↑↑(ij)
(ρ−ε)(1−ρ−ε)
(1−2ε)(1−3ε)

, where

∆†i = b̄†i↑b̄
†
i+δ↑. Therefore the exact GS has two spontaneously broken continuous symmetries

(see Fig. 8).
The exact solution defines the features of the phase diagram that our proposed framework must
qualitatively admit. We will see below that both OPs (magnetization and phase), as promised,
are embedded in an SU(3) order parameter. We remark that the phase coexistence in the boson
representation maps back to a S = 1 FM phase coexisting with another spin phase. To see this
consider the state |Ψ0(N , 0)〉 for which 〈Szi 〉 = 〈Sxi 〉 = 〈Syi 〉 = 0, which implies that it is a
singlet state in the S = 1 representation. We will show below that this other phase has a pure
spin-nematic ordering.

5.4 Identifying order parameters

The theory of phase transitions starts with Landau’s pioneering work in 1937 [13,14]. One of his
achievements was the realization of the fundamental relation between spontaneous symmetry
breaking and the OP that measures this violation, thus giving simple prescriptions to describe
order in terms of irreducible representations of the symmetry group involved. Another was
the development of a phenomenological scheme to study the behavior of systems near a phase
transition. Landau’s theory has been successfully applied to study phase transitions where ther-
mal fluctuations are most relevant. The field of quantum phase transitions studies the changes
that can occur in the macroscopic properties of matter at zero temperature due to changes in
the parameters characterizing the system. While one generally knows what to do if the OP
is known, Landau’s postulate gives no procedure for finding it. In this section we describe a
simple algebraic framework for identifying OPs.
We have seen that the local OP acquires its simplest form when it is expressed in terms of the
HL. In addition, the generators of this language exhaust all possible local OPs which may re-
sult from the solution of the problem under consideration. In other words, any local OP can
be written as a linear combination of generators of the HL. Consider the bilinear-biquadratic
S = 1 model of Eq. (70). The parameter φ sets the relative strength between the bilinear and bi-
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quadratic terms. As shown below, there are four isolated values of φ = {π/4, π/2, 5π/4, 3π/2}
for which Hφ is SU(3) invariant. The only symmetry which is present for any value of φ is the
global SU(2) invariance since Hφ is a function of the scalar products Si · Sj.
The Hamiltonian Hφ has been the subject of several studies in the last two decades [30–35],
nevertheless, the complete characterization of the different phases is not completely solved. A
semiclassical treatment for d > 1 [30] indicates that there are four different phases: the usual
FM (π/2 < φ < 5π/4) and AF (3π/2 < φ < π/4) phases are separated on both sides by
collinear- (5π/4 < φ < 3π/2) and orthogonal-nematic (π/4 < φ < π/2) orderings. We will
show below that the collinear- and orthogonal-nematic phases obtained with the semiclassical
approximation are replaced by uniform- and staggered-nematic orderings, respectively.
As we have seen in previous section, the SU(3) spins in the fundamental representation and
the S = 1 SU(2) spins are two equivalent languages. In addition, we have shown in Sections
4.3.2 and 4.3 that the SU(3) spins and the S = 1 SU(2) spins can be respectively mapped onto
s = 1/2 HC bosons. We will use now these transformations to map the spin one Hamiltonian
Hφ onto its SU(3) spin version. For pedagogical reasons, it is convenient to use the s = 1/2

HC bosons as an intermediate language.
In Section 4.3.2, we introduced a spin-particle transformation connecting SU(N) spins and
multiflavored HC bosons (JW particles, in general). In particular, the fundamental (quark)
representations of su(N) were mapped onto an algebra of HC bosons with Nf = N − 1 flavors
(see Eq. (52)). For N = 3 the HC bosons have two flavors (α =↑, ↓) which can be associated to
an internal spin s = 1/2 degree of freedom. A compact way of writing the SU(3) spin in terms
of HC bosons is

S(j) =


2
3
−n̄j b̄j↑ b̄j↓

b̄†j↑ n̄j↑−1
3

b̄†j↑b̄j↓

b̄†j↓ b̄†j↓b̄j↑ n̄j↓−1
3

 . (75)

In the same way we wrote in Eq. (75) the generators of SU(3) in the fundamental represen-
tation, we can write down the corresponding expressions for the generators in the conjugate
representation

S̃(j) =


2
3
−n̄j −b̄†j↓ −b̄†j↑
−b̄j↓ n̄j↓−1

3
b̄†j↑b̄j↓

−b̄j↑ b̄†j↓b̄j↑ n̄j↑−1
3

 . (76)

When the S=1 operators are replaced by the corresponding functions of SU(3) generators in the
fundamental and the conjugate representations, it turns out that Hφ, up to an irrelevant constant,
is a linear combination of the FM and the AF SU(3) Heisenberg models (0 ≤ α1, β1 ≤ 2)

Hφ = J
√

2
∑
〈i,j〉

(
cosφ Sα1β1(i)Sβ1α1(j) + (sinφ− cosφ) Sα1β1(i)S̃β1α1(j)

)
. (77)

Repeated Greek superindices are summed and the site index i runs over one of the two sublat-
tices. This expression for Hφ illustrates the very important result that any nonlinear interaction
in the original representation is simply a bilinear term in the new representation when mapped
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onto the highest rank algebra [15]. In particular, as mentioned above, there are certain special
points in parameter space where the Hamiltonian is highly symmetric. For example, for φ = π

4

and 5π
4

, Hφ is explicitly invariant under uniform SU(3) transformations on the spins [36], while
for φ = π

2
, 3π

2
, Hφ is explicitly invariant under staggered conjugate rotations of the two sublat-

tices. These symmetries are hard to identify in the original spin representation but are manifest
in the SU(3) representation.
In the following we will concentrate on the determination of the quantum phase diagram of
Hφ for spatial dimensions d > 1 to avoid the strong effects of quantum fluctuations which can
restore the continuous symmetry when d = 1. In the previous section we have analyzed the
high symmetry point φ = 5π

4
. We found that the GS has a non-zero OP

S =
∑
j

S(j) , (78)

associated to a broken continuous SU(3) symmetry. This order parameter is the uniform SU(3)

magnetization and corresponds to the coexistence of a FM and a uniform spin-nematic ordering
(see Table 1). This indicates that φ = 5π

4
is a quantum phase transition point separating a FM

phase from a uniform spin-nematic one. Let us consider now the related point φ = π
4

which
differs in an overall sign from the previous case. This sign changes the interaction from FM to
AF. Therefore, for this new high symmetry point we expect to get a GS characterized by the
staggered order parameter

SST =
∑
j

exp(iQ · j) S(j) , (79)

where Q is the AF wave vector. It is clear from the left column of Table 1, that this staggered
SU(3) OP corresponds to the coexistence of the staggered SU(2) magnetization

MST =
∑
j

exp(iQ · j) Sj , (80)

and the staggered nematic OP

NST =
∑
j

exp(iQ · j) Nj . (81)

Nj is the symmetric and traceless component of the tensor obtained from the tensorial product
of two vectors Sj. Hence, φ = π

4
is a transition point separating the usual AF ordering from a

staggered spin-nematic phase characterized by the OP of Eq. (81).
We will consider now the other two high-symmetry points, φ = π

2
, 3π

2
. For φ = 3π

2
, the SU(3)

symmetry is generated by the staggered operator

S+ =
∑
j∈A

S(j) +
∑
j∈B

S̃(j), (82)

where A and B denote the two different sublattices of a hypercubic lattice. In this case, we
have a FM interaction between S(i) and S̃(j), and then S+ is the OP characterizing the broken
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Table 1: Generators of OPs and its relations for three different languagesA∧ΓA. Each column
represents a language, in this case dim ΓA = D = 3. M stands for magnetism, SN spin-nematic,
BE Bose-Einstein condensation, and CDW charge-density wave. su(3)∧ FR is the hierarchical
language with FR meaning fundamental representation.

su(2) ∧ S = 1 HC bosons ∧ α = 2 su(3) ∧ FR

M


Sx = 1√

2
(S01 + S20 + S02 + S10)

Sy = −1√
2i

(S01 + S20 − S02 − S10)

Sz = S11 − S22

SN



(Sx)2 = 2
3 + 1

2 (S12 + S21 + S00)

(Sz)2 = 2
3 − S00

{Sx, Sy} = i(S21 − S12)

{Sx, Sz} = 1√
2
(S01 − S20 − S02 + S10)

{Sy, Sz} = −1√
2i

(S01 − S20 + S02 − S10)

M


sx = 1

2 (S12 + S21)

sy = 1
2i (S12 − S21)

sz = 1
2 (S11 − S22)

BE



b̄†↑ = S10

b̄†↓ = S20

b̄↑ = S01

b̄↓ = S02

CDW
{
n̄ = 2

3 − S00

Sαβ

α, β ∈
[0, 2]

TrS = 0

SU(3) symmetry of the GS. It is interesting to note that when the SU(3) OP S+ is reduced
with respect to the SU(2) group, the two coexisting OPs are the staggered magnetization (see
Eq. (80)) and the uniform nematic OP

N =
∑
j

Nj . (83)

In other words, if we apply an SU(3) rotation generated by S+ to the staggered magnetization
we get the uniform nematic order parameter, and vice versa, the uniform nematic OP is rotated
into the staggered magnetization. This can be immediately seen by writing down the compo-
nents of the local SU(2) magnetization and the nematic OP as a function of the local generators
of su(3) in the conjugate representation S̃(j)

Sx =
−1√

2
(S̃01 + S̃20 + S̃02 + S̃10) ,

Sy =
1√
2i

(S̃01 + S̃20 − S̃02 − S̃10) ,

Sz = S̃22 − S̃11 ,

(Sx)2 − 2

3
=

1

2
(S̃12 + S̃21 + S̃00) , (Sz)2 − 2

3
= −S̃00 ,

{Sx, Sy} = i(S̃21 − S̃12) ,

{Sx, Sz} =
1√
2

(S̃01 − S̃20 − S̃02 + S̃10) ,

{Sy, Sz} =
−1√

2i
(S̃01 − S̃20 + S̃02 − S̃10) . (84)
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Fig. 9: Quantum phase diagram of the bilinear-biquadratic S = 1 model for d ≥ 2.

Comparing these expressions to the ones in Table 1, we see that when we change from S(j) to
S̃(j), there is a change in sign for the three components associated to the magnetization, while
the five components corresponding to the nematic parameter remain the same. Then, it is clear
that S+ describes the coexistence of a staggered magnetization and a uniform nematic ordering.
Therefore, the conclusion is that φ = 3π

2
separates an ordinary AF phase from the uniform

nematic ordering.
The last high symmetry point to be considered is φ = π

2
. In this case the coupling between S(i)

and S̃(j) turns out to be positive, i.e., AF, and therefore we expect to get a broken continuous
symmetry characterized by the OP

S− =
∑
j∈A

S(j)−
∑
j∈B

S̃(j) . (85)

From the considerations above, it is clear that S− describes the coexistence of ferromagnetism
(uniform magnetization) and staggered nematic order. Hence, φ = π

2
is a transition point

separating these two phases.

φ Global SU(3) OP OP 1 OP 2
5π/4 (FM-UN) S=

∑
j

S(j) M N

π/4 (AF-SN) SST =
∑
j

eiQ·jS(j) MST NST

3π/2 (AF-UN) S+ =
∑
j∈A

S(j) +
∑
j∈B

S̃(j) MST N

π/2 (FM-SN) S−=
∑
j∈A

S(j)−
∑
j∈B

S̃(j) M NST

Table 2: Order parameters describing the different phases of the bilinear-biquadratic S = 1
Heisenberg model for d > 1. φ indicates the phase boundary where the two phases in paren-
theses coexist.
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In this way, by identifying the high-symmetry points of Hφ we have determined the quantum
phase diagram of this model (see Fig. 9). In addition to the transition points, we have obtained
explicit expressions for the OPs associated to each phase for any d > 1; they are summarized in
Table 2. We can also predict from this analysis that the four transition points (high-symmetry
points) correspond to first-order quantum phase transitions. In each phase, the corresponding
OP has a finite value and they coexist pairwise at the high-symmetry points. However, as soon
as we depart from this point in one or the other direction in φ, the SU(3) symmetry is removed
and one of the OPs goes discontinuously to zero. In other words, the states with pure magnetic
(FM or AF) and nematic orderings belong to different representations of SU(2) (the remaining
symmetry) so only one of them remains as the GS when the SU(3) symmetry is lifted.
In closing this section let us summarize the main steps to follow in order to obtain and classify
the local OPs.

• Identify the group GHL = SU(D) associated to the HL whose fundamental representation
has the same dimension D as the local Hilbert space of the problem. The generators of
this language exhaust all possible local OPs.

• Identify the group of global symmetries of the Hamiltonian G which are direct products
of local transformations.

• Given that G ⊆ GHL, one can classify the generators of GHL in the fundamental represen-
tation according to the irreps of G. Each irrep leads to a different broken symmetry OP.

• Key: existence of a general set of SU(D) transformations.

5.5 Hierarchical mean-field theories

In this section we are interested in using our algebraic framework to develop new approxima-
tion schemes whenever exact solutions are not available. In previous sections we outlined a
framework to identify OPs based upon isomorphic mappings to a HL defined by the set of op-
erators which in the fundamental representation (of dimension D) has the largest number of
symmetry generators of the group. Any local operator can be expressed as a linear combination
of the generators of the HL. The building of the HL depends upon the dimension D of the local
Hilbert space, Hj, modeling the physical phenomena. For instance, if one is modeling a doped
AF insulator with a t-J Hamiltonian [23], then D = 3 (i.e., there are three possible states per
site) and a HL is generated by a basis of the Lie algebra su(3) in the fundamental represen-
tation [15]. As explained and proved in Refs. [15, 9], there is always a HL associated to each
physical problem. These ideas complement Landau’s concept of an OP providing a mechanism
to reveal them, something that is outside the groundwork of his theory. Indeed, Landau’s theory
does not say what the OPs should be in a general situation.
As mentioned above, these isomorphic mappings not only unveil hidden symmetries of the orig-
inal physical system but also manifestly establish equivalences between seemingly unrelated
physical phenomena. Nonetheless, this is not sufficient to determine the exact phase diagram of
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the problem: One has to resort to either numerical simulations with their well-known limitations
or, as will be shown in here, to a guided approximation which at least preserves the qualitative
nature of the possible thermodynamic states. A key observation in this regard is the fact that
typical model Hamiltonian operators written in the HL become quadratic in the symmetry gen-
erators of the hierarchical group, and this result is independent of the group of symmetries of
the Hamiltonian. This suggests a simple approximation, based upon group theoretical grounds,
which deals with competing orders on an equal footing and will be termed hierarchical mean-
field theory (HMFT) [37, 38]. In a sense, that will become clear below, HMFT constitutes the
optimum MF or saddle-point solution that approximates the energy and correlation functions of
the original problem. The HMFT is distinctly suitable when the various phases displayed by
a system are the result of competing interactions and non-linear couplings of their constituents
matter fields.
Since the su(N) languages provide a complete set of HLs [9], any model Hamiltonian can be
written in a similar fashion once we identify the appropriate HL and apply the corresponding
SW mapping in the fundamental representation (the ordering operators will, of course, have a
different meaning and algebraic expressions). The key point is that the Hamiltonian operator in
the HL becomes quadratic in the symmetry generators of the hierarchical group (SU(3) in the
present case).
The idea behind any MF approximation is to disentangle interaction terms into quadratic ones
replacing some of the elementary mode operators by their mean value. The crux of our HMFT
is that the approximation is done in the HL where all possible local OPs are treated on an equal
footing and the number of operators replaced by their mean value is minimized since the Hamil-
tonian is quadratic in the symmetry generators. In this way, the information required is minimal.
In mathematical terms, given O†ijOij = 〈O†ij〉Oij +O†ij〈Oij〉 − 〈O†ij〉〈Oij〉 + (O†ij − 〈O†ij〉)(Oij −
〈Oij〉), for an arbitrary bond-operator Oij, the approximation amounts to neglecting the latter
fluctuations, i.e., O†ijOij ≈ 〈O†ij〉Oij +O†ij〈Oij〉− 〈O†ij〉〈Oij〉. An important result is that all local
OPs are treated equally and, moreover, symmetries of the original Hamiltonian related to the
OPs are not broken explicitly in certain limits. In a sense, this is the best MF approximation
that can be performed, i.e., the best non-interacting Hamiltonian that approximates the energy
and correlation functions of the original problem.
We study now a simple model which displays coexistence and competition between antifer-
romagnetism and BE condensation (superfluidity). The model represents a gas of interacting
spin-1/2 HC bosons with Hamiltonian (t > 0)

H = t
∑
〈i,j〉,σ

(
b̄†iσ b̄jσ + H.c.

)
+ J

∑
〈i,j〉

(si · sj −
n̄in̄j

4
) + V

∑
〈i,j〉

n̄in̄j − µ̄
∑

j

n̄j , (86)

where sj = 1
2
b̄†jα~σαβ b̄jβ is an s = 1

2
operator (~σ denoting Pauli matrices). Notice that H is an

extended t-J-like model of HC bosons instead of constrained fermions. These HC bosons could
represent three-state atoms, like the ones used in trapped BE condensates (BECs), in an optical
lattice potential. For the sake of simplicity we will only consider the AF, J > 0, case.
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In the HL, H represents a Heisenberg-like Hamiltonian [12] in the presence of an external
magnetic field µ′ (Jα1β1 = Jβ1α1 with 0 ≤ α1, β1 ≤ 2)

H =
∑
〈i,j〉

Jα1β1Sα1β1(i)Sβ1α1(j)− µ′
∑

j

S00(j) , (87)

with J00 = V − J/2, J01 = J02 = t, J11 = J12 = J22 = J/2, and µ′ = z
3
(2V−J/2)− µ̄. This

HL furnishes the natural framework to analyze the symmetries of the Hamiltonian H . There
is always an SU(2) spin symmetry generated by S11−S22, S12, and S21. When µ′ = 0 and
V = 2t, there are five additional generators of symmetries related to the charge degrees of
freedom. Moreover, if J = V = 2t there is full SU(3) symmetry. For µ′ 6= 0, the only charge
symmetry that remains is a U(1) symmetry generated by S00 (conservation of the total charge).
In this way the HL, leading to a unique OP from which all possible embedded orderings are
derived, provides a unified description of the possible thermodynamic states of the system. Yet,
it remains to establish the orderings that survive as a result of tuning the parameters of the
Hamiltonian or external variables such as temperature and particle filling.
For arbitrary values of the parameters J/t and V/t we do not know a priori how to determine
exactly the phase diagram of H (we know that for J = V = 2t = 2µ̄

z
< 0, we can find the

exact GS and lowest energy states [15]). The resulting Hamiltonian (V = 2t with no loss of
generality) is up to irrelevant constant terms

H = −
∑
〈i,j〉

(
J

2
A†ijAij + t

∑
σ=↑,↓

B†σijBσij

)
− µ

∑
j

nj0 , (88)

where µ = zt− µ̄ and the ordering operators A†ij = b†i↑b
†
j↓ − b†i↓b†j↑

B†σij = b†iσb
†
j0 − b†i0b†jσ

(89)

which transform as singlets with respect to the generators of SU(2) spin and charge symmetries,
respectively: [A†ij,S12(21)(i) + S12(21)(j)] = 0 = [B†↑(↓)ij,S10(20)(i)+S10(20)(j)].
The resulting MF Hamiltonian reads

H̃ = −
∑
〈i,j〉

(
JA

2
(A†ij + Aij) + tB

∑
σ=↑,↓

(B†σij +Bσij)

)
− µ

∑
j

nj0 + λ
∑
j,α

njα (90)

=
∑

k∈RBZ

(
ΛA b

†
k↑b
†
−k+Q↓ + ΛB

∑
σ=↑,↓

b†kσb
†
−k+Q0 + H.c. + (λ−µ)nk0 + λ

∑
σ=↑,↓

nkσ

)
, (91)

where the sum of momenta k is performed over the reduced Brillouin zone (RBZ) with AF
ordering wave vector Q, with ΛA = −2JAγk, ΛB = −4tBγk, with γk = 1

z

∑
~δ e

ik·~δ (~δ are
nearest-neighbor vectors). Note that when B = 0, the SU(2) spin and U(1), S00, symme-
tries are conserved; the opposite case A = 0 preserves S10(01) + S20(02) and S11 + S22 − S00

symmetries. In Eq. (91) we have only considered homogeneous solutions.
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Fig. 10: Order fields A and B as a function of the density ρ0 for different values of J/t and
inverse temperature β = 10 (in units of t−1). The filled circle on the density axis indicates a
quantum critical point.

Generalization of these ideas to include clusters of many elementary degrees of freedom, e.g.,
quantum spins, can be found in [38]. In practice, we tile the original many-body lattice system
into clusters preserving most of the symmetries of the Hamiltonian and represent each many-
body state by the action of a composite operator over the vacuum of a new enlarged Fock space.
The mapping that relates the original set of operators and the new composite ones is canonical
if a physical constraint is implemented. As a consequence, the Hamiltonian of study can be
exactly re-expressed in the new language of composite operators and treated by standard many-
body techniques, with the advantage that the intra-cluster quantum correlations are computed
exactly while the inter-cluster are dealt with in a MF way. The HMFT approach has been
implemented successfully in a variety of frustrated strongly correlated system [39–43].

5.6 Quantum simulations

A new challenge in information theory and computer science has recently emerged as the re-
sult of exploiting the fundamental laws of quantum mechanics. This new set of ideas comprise
what is known as “Theory of Quantum Computation and Quantum Information” and has as a
major objective to process information in a way that exceeds the capabilities of classical in-
formation [44]. The device that performs the manipulation of information is named quantum
computer and the standard unit of information is the qubit (i.e., a two-level system). The close
relationship between information processing and the physical phenomena leading to it is per-
haps the most remarkable aspect of this new paradigm. Since information can be represented in
many different physical forms, and easily converted from one form to another without changing
its meaning, quantum information represents a new abstract archetype for information process-
ing independent of the precise implementation of the quantum computer, only requiring at least
one physical representation to be useful.
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A key fundamental concept in information theory is the realization [45, 46] that a model of
computation is intimately connected to a physical system through a closed operator algebra. In
other words, each physical system is associated to a certain language (e.g., spin S = 1/2) and
thus to an algebra realizing it (e.g., Pauli algebra), and that particular algebra may become a
possible model of computation. An immediate consequence is that an arbitrary physical system
can be simulated by another physical system (e.g., a quantum computer) whenever there exists
an isomorphic mapping between the different operator algebras representing the systems [45].
Simple examples are provided in Refs. [45], [46], and [47], where it is shown how to simulate a
1d impurity Anderson model using a quantum computer based on an array of spins S=1/2 [48].
It is very clear the power that our fundamental theorem has by providing the formal connec-
tions (isomorphisms) between the different languages of nature. Therefore, the implications for
quantum information and computation are rather obvious, namely that one can identify quan-
tum resources and define convenient models of computation, or imitate an arbitrary quantum
phenomena with a given quantum computer given the appropriate dictionaries to translate na-
ture’s language to the machine language. In this way, one can recognize the subject of quantum
simulations as one of those areas where the concepts of language and dictionaries developed in
the present lecture are of particular relevance.
Physical phenomena can be simulated or imitated by a quantum network [45, 47, 49] with the
help of a quantum computer. Imitation is realized through a quantum algorithm which consists
of a quantum network with a means to repeat blocks of instructions. A quantum network is
defined by a sequence of universal gates (unitary operations), applied to the system for the pur-
pose of information processing, and measurements in a fixed temporal order. The measurement
operation is mostly needed to classically access information about the state of the system. Every
matrix which represents a reversible operation on quantum states can be expressed as a product
of the one and two-qubit gates, and the minimum set needed to represent any such matrices is
called a universal set of gates.
When trying to simulate a problem using quantum information processing, an important issue
is to determine how many physical resources are needed for the solution. The main resources
are quantum space, the number of qubits needed, and quantum time, the number of quantum
gates required. The accounting of algorithmic resources forms the foundations of quantum
complexity theory. One of the objectives in quantum information theory is to accomplish im-
itation efficiently, i.e, with polynomial complexity, and the hope is that quantum imitation is
more efficient (i.e., needs less resources) than classical imitation. There are examples that sup-
port such hope (e.g., fermion simulations with polynomially bounded statistical errors [45,47]),
although there is no general proof that indicates the superiority of quantum over classical im-
itations, regarding efficiency. Indeed, there is, so far, no efficient quantum algorithm that can
determine the GS (or, in general, the spectrum) of a given Hermitian operator [47], despite oc-
casional claims. It is known that the ability to resolve this question leads to efficient algorithms
for NP-hard problems like the traveling salesman conundrum.
A very important observation, in connection with the notion of efficiency, is a corollary of our
fundamental theorem: Given two languages, the generators of one of them can be written as a
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polynomial function, with polynomial complexity in the number of modes or resources, of the
generators of the other and vice versa. This result implies that the important algorithmic step
of translation from the language of the system to be imitated to the machine language does not
change the complexity of the quantum space and time.
Certainly, a general purpose quantum computer is not the only device that allows simulation
of physical phenomena in nature (with its many languages). Imitation can also be achieved
in a conceptually different manner using a quantum simulator. The main distinction is the
lack of universality of the latter. An example of a quantum simulator is an optical lattice [50]
which is specifically designed to imitate a given physical Hamiltonian and where there is limited
quantum control. The possibility of control and tunability of the interactions of the elementary
constituents offers the potential to design new states of matter. This is of particular relevance
in strongly correlated matter where these quantum simulators furnish the benchmark to test
theories and approximations. Again, the importance of the languages and dictionaries developed
in this manuscript is clear and concrete.

6 Concluding remarks

The development of exact algebraic methods is one of the most elegant and promising tools to-
wards the complete understanding of quantum phases of matter and their corresponding phase
transitions. We presented an algebraic framework aimed at uncovering the order behind the
potential multiplicity of complex phases in interacting quantum systems, a paradigm at the
frontiers of condensed matter physics. We argued that symmetry, and topology (not so much
explained in this lecture notes), are key guiding principles behind such complex emergent be-
havior. Emphasis has been made in developing a systematic mathematical structure that allows
one to attack these problems within a single unifying approach.
A key result, from which all other results follow, is the proof of a fundamental theorem that
permits to connect the various operator languages used in the description of the properties of
physical systems. This theorem together with the notion of transmutation of statistics provides
the tools necessary to unify the quantum description of matter. To formalize this unification we
needed to rigorously define the concepts of language and dictionary (isomorphism): To model
a particular physical phenomena we commonly identify the main degrees of freedom of the
problem and associate to them certain operators. One can furnish the resulting set of operators
(that we call language) with an algebraic structure and ask whether two different languages have
something in common. The fundamental theorem tells us that two languages can be connected
whenever the dimension of their local Hilbert spaces are equal. We expanded the notion of local
Hilbert space to embrace different Hilbert space decompositions (we saw, for instance, how to
map the Hilbert space of a bond to a site). The resulting one-to-one language mappings we
named dictionaries (a traditional example of which is the Jordan-Wigner mapping).
In the course of the presentation we showed, through example, many different dictionaries re-
lating diverse operator languages. In this way we defined universality of behavior as an equiv-
alence relation between seemingly different physical phenomena which share exactly the same
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underlying mathematical structure as a result of one-to-one language mappings (for example,
the spin nematic order and Bose-Einstein condensation of flavored hard-core bosons). If it is
the whole system Hamiltonian that maps onto another in a different language (like the example
we described above), the universality applies to all length and time scales. However, some-
times only particular invariant subspaces of the original Hamiltonian map onto another system
Hamiltonian. In this case, universality is only manifested at certain energy scales. The t-Jz
chain model provides a beautiful example of the latter situation: the low-energy manifold of
states maps onto an XXZ model Hamiltonian, which can be exactly solved using the Bethe
ansatz [26] (the t-Jz model is quasi-exactly solvable). Out of the many languages one can use
to describe a given physical problem there is a class, we named hierarchical language, which has
the advantage that any local operator can be expressed as a linear combination of its generators.
In this way, hierarchical languages provide the tools necessary to classify order parameters.

There are several reasons why our algebraic framework constitutes a powerful method to unveil
complex phenomena in interacting quantum systems. Most importantly: To connect seemingly
unrelated physical phenomena (e.g., models for high-temperature superconductors or heavy-
fermion systems and quantum spin theories); to identify general symmetry principles behind
complex phase diagrams; to unveil hidden symmetries (and associated order parameters) to
explore new states of matter with internal orders not contemplated before; to obtain exact solu-
tions of relevant physical models that display complex ordering at certain points in Hamiltonian
space; and to find new approximations which do not privilege any of the competing interactions.
For instance, in the hierarchical mean-field theory approach, we approximated the dynamics
(and thermodynamics) treating all possible local order parameters on an equal footing. One
may say that this procedure follows the guiding principles of maximum symmetry and minimum
information. This allowed us to obtain in a simple manner the phase diagram of a problem ex-
hibiting coexistence and competition between antiferromagnetism and superfluidity. Combined
with an analysis of fluctuations (to analyze the stability of the mean-field) one now has a simple
machinery to design phase diagrams.

Several important concepts have been left out of this lecture notes. For instance, the notion
of emergent symmetry [9], i.e., the fact that new symmetries not realized in the Hamiltonian
describing the system can emerge at low energies [51]. There is one concept, in particular,
that deserves special attention. This is the notion of a duality transformation. Dualities ap-
pear in nearly all disciplines of physics and play a central role in statistical mechanics and field
theory [52,53]. When available, these mathematical transformations provide an elegant and ef-
ficient way to obtain information about models that need not be exactly solvable. Most notably,
dualities may be used to determine features of phase diagrams such as boundaries between
phases, and the exact location of some critical/multicritical points. Historically, dualities were
introduced in classical statistical mechanics by Kramers and Wannier [54] as a relation between
the partition function of one system at high temperature (or weak coupling) to the partition func-
tion of another (dual) system at low temperatures (or strong coupling). This relation allowed
for a determination of the exact critical temperature of the two-dimensional Ising model on a
square lattice before the exact solution of the model was available. Later on, it was noticed that,
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due to the connection between quantum theories in d space dimensions and classical statistical
systems in d + 1 dimensions, dualities can provide relations between quantum theories in the
strong coupling and weak coupling regimes [52]. Our work is motivated by a quest to realize a
simple unifying framework for the detection and treatment of dualities.
An algebraic approach to dualities and self-dualities for systems of arbitrary spatial dimen-
sionality d has been developed in Refs. [55, 10]. This theory of dualities is based on the notion
of bond algebras [56, 10]. It deals with classical and quantum dualities in a unified fashion
explaining the precise connection between quantum dualities and the low temperature (strong-
coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Eu-
clidean) path integrals) [57]. Its range of applications includes discrete lattice, continuum field,
and gauge theories. Dualities are revealed to be local, structure-preserving mappings between
model-specific bond algebras that can be implemented as unitary transformations, or partial
isometries if gauge symmetries are involved. This characterization permits to search systemati-
cally for dualities and self-dualities in quantum models of arbitrary system size, dimensionality
and complexity, and any classical model admitting a transfer matrix or operator representation.
In particular, special dualities like exact dimensional reduction, emergent, and gauge-reducing
dualities that solve gauge constraints can be easily understood in terms of mappings of bond al-
gebras. The transformations are, in general, quite non-local in the mapped degrees of freedom.
Non-local transformations like dual variables and Jordan-Wigner dictionaries are algorithmi-
cally derived from the local mappings of bond algebras. This permits to establish a precise
connection between quantum dual and classical disorder variables. Our bond-algebraic ap-
proach goes beyond the standard (Fourier transformation) approach to classical dualities (see,
e.g., Appendix 1 of Ref. [10]), and could help resolve the long-standing problem of non-Abelian
duality transformations [58]. Several interesting examples and applications, including location
of phase boundaries, spectral behavior and, notably, how bond-algebraic dualities help con-
strain and realize fermionization in an arbitrary number of spatial dimensions, can be found in
Refs. [10] and [59] .



17.38 Gerardo Ortiz

References

[1] P.W. Anderson, Science 177, 393 (1972)

[2] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen:
Quantum Information Meets Quantum Matter (Springer, New York, 2019)

[3] Z. Nussinov and G. Ortiz, Ann. Phys. (NY) 324, 977 (2009)

[4] Z. Nussinov and G. Ortiz, Proc. Nat. Ac. Sc. 106, 16944 (2009)

[5] P.W. Anderson: Basic Notions of Condensed Matter Physics
(Addison-Wesley, Redwood City, 1992)

[6] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola,
Phys. Rev. Lett. 92, 107902 (2004)

[7] J.K. Jain: Composite Fermions (Cambridge University Press, 2007)

[8] J. Zaanen, SciPost Physics 6, 061 (2019)

[9] C.D. Batista and G. Ortiz, Adv. in Phys. 53, 1 (2004)

[10] E. Cobanera, G. Ortiz, and Z. Nussinov, Adv. in Phys. 60, 679 (2011)

[11] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928)

[12] C.D. Batista and G. Ortiz, Phys. Rev. Lett. 86, 1082 (2001)

[13] L.D. Landau and E.M. Lifshitz: Statistical Physics
(Butterworth-Heinemann, Oxford, 1980)

[14] H. Nishimori and G. Ortiz: Elements of Phase Transitions and Critical Phenomena
(Oxford University Press, 2011)

[15] C.D. Batista, G. Ortiz, and J.E. Gubernatis, Phys. Rev. B 65, 180402 (2002)

[16] F.J. Murray and J. von Neumann, Ann. Math. 37, 116 (1936)

[17] O. Bratteli and D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics
Vols. I and II (Springer, New York, 1987-97)

[18] N. Jacobson: Basic Algebra I (W.H. Freeman and Company, New York, 1985), and
Basic Algebra II (W.H. Freeman and Company, New York, 1989)

[19] J.F. Cornwell: Group Theory in Physics (Academic Press, San Diego, 1997)



Algebraic Methods 17.39

[20] A monoid is a triple (M,2,1) in which M is a non-empty set, 2 is an associative product
in M, and 1 is an element of M such that 2(1, a) = a = 2(a,1) for all a ∈ M. In
this way we see that the concept of monoid generalizes the notion of group; a group is a
monoid all of whose elements are invertible. A monoid can also be defined as a semigroup
(M,2) with an element that is the unit for 2, i.e., 1.

[21] T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956)

[22] E. Cobanera and G. Ortiz, Phys. Rev. A 89, 012328 (2014);
Erratum, Phys. Rev. A 91, 059901 (2015)

[23] A. Auerbach: Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

[24] E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. 16, 407 (1961);
I. Affleck and E.H. Lieb, Lett. Math. Phys. 12, 57 (1986)

[25] F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)

[26] C.D. Batista and G. Ortiz, Phys. Rev. Lett. 85, 4755 (2000)

[27] R.J. Baxter: Exactly Solved Models in Statistical Mechanics
(Academic Press, London, 1990)

[28] I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

[29] M. Den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989)

[30] N. Papanicolau, Phys. Lett. A 116, 89 (1986); Nucl. Phys. 305, 367 (1988)
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