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13.2 James K. Freericks

1 Introduction

This chapter is all about Green functions. Many-body Green functions are a marvelous tool to
employ in quantum-mechanical calculations. They require a rather large set of mathematical
machinery to develop their theory and a sophisticated computational methodology to determine
them for anything but the simplest systems. But what do we really use them for? Essentially,
there are two main uses: the first is to compute the thermodynamic expectation value of c†c,
which allows us to determine all interesting single-particle expectation values, like the kinetic
energy, the momentum distribution, etc. The second use is to determine the many-body density
of states, which tells us how the quantum states are distributed in momentum and energy. In
large dimensions, Green functions can also be used to determine some two-particle correlation
functions like the optical conductivity, because the vertex corrections vanish. It seems like this
is a lot of work to end up with only a few concrete results. But that is the way it is. No one has
figured out any way to do this more efficiently. If you determine how to, fame and fortune are
likely to follow!

Before jumping into the full glory of the theory, we will give just a brief history. This is one that
focuses on where, in my opinion, the critical ideas originated. It is not intended to be exhaustive
or complete, and, of course, I may be wrong about where the different ideas came from. The
equilibrium theory for Green functions was developed primarily in the 1950s. The Lehmann
representation [1] was discovered in 1954. The Russian school developed much of the perturba-
tive approach to Green functions, which is summarized in the monograph of Abrikosov, Gorkov,
and Dzyaloshinski [2]. Joaquin Luttinger and John Ward developed a functional approach [3]
and Matsubara determined how to solve for thermal Green functions [4]. But the reference I
like the most for clarifying many-body Green functions both in and out of equilibrium is the
monograph by Leo Kadanoff and Gordon Baym [5]. Their approach is one we will follow, at
least in spirit, in this chapter. Of course, Keldysh’s perspective [6] was also important. Seri-
ous numerical calculations of Green functions (in real time and frequency) only began with the
development of dynamical mean-field theory in the 1990s [7]. The generalization to nonequi-
librium began only in the mid 2000’s [8–10], but it was heavily influenced by earlier work of
Uwe Brandt [11–13].

Now that we have set the stage for you as to where we are going, get ready for the ride. The
theory is beautiful, logical, abstract, and complex. Mastering it is a key in becoming a many-
body theorist. We begin in section 2 with a discussion of equilibrium Green functions focused
on the Lehmann representation. Section 3, generalizes and unifies the formalism to the contour-
ordered Green function. Section 4 introduces the self-energy and the equation of motion. Sec-
tion 5 illustrates how to include an external electric field. Section 6 introduces how one solves
these problems within the nonequilibrium dynamical mean-field theory approach. Numerics are
discussed in section 7, followed by examples in section 8. We conclude in section 9.
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2 Green functions in equilibrium and
the Lehmann representation

We begin with the definition of four Green functions in equilibrium: the retarded GR
ijσ(t), ad-

vanced GA
ijσ(t), lesser G<

ijσ(t) and greater G>
ijσ(t). These Green functions are time-dependent,

complex thermal expectation values weighted by the thermal density matrix exp(−βH)/Z ,
with Z = Tr exp(−βH) the partition function. They are defined in terms of the (anticommut-
ing) fermionic creation (annihilation) operators for an electron at site i with spin σ: c†iσ (ciσ).
Time dependence is handled in the Heisenberg picture, where the operators depend on time and
the states do not, given byO(t) = U †(t)OU(t). For a time-independent Hamiltonian, the time-
evolution operator U(t) is simple and expressed as U(t) = exp(−iHt), where we set ~ = 1.
The four Green functions then become

GR
ijσ(t) = −iθ(t) 1

Z
Tre−βH

{
ciσ(t), c†jσ(0)

}
+
, (1)

GA
ijσ(t) = iθ(−t) 1

Z
Tre−βH

{
ciσ(t), c†jσ(0)

}
+
, (2)

G<
ijσ(t) = i

1

Z
Tre−βHc†jσ(0)ciσ(t), (3)

G>
ijσ(t) = −i 1

Z
Tre−βHciσ(t)c†jσ(0). (4)

Here, θ(t) is the Heaviside unit step function, which vanishes for t < 0, is equal to 1 for
t > 0 while we choose it to be 1/2 for t = 0, and the symbol {·, ·}+ denotes the anticommuta-
tor. Note that the fermionic operators satisfy the canonical anticommutation relations, namely
{ciσ, c

†
jσ′}+ = δij δσσ′ . These Green functions can also be defined in momentum space, with

the obvious changes of the subscripts from real space to momentum space—the only signifi-
cant modification is that the Green functions will be diagonal in momentum for translationally
invariant systems—which is all we will study in this chapter.
These definitions may look like they come out of the blue, but the key point to realize is that
when t = 0, the lesser Green function provides precisely the expectation value we need to be
able to calculate any single-particle expectation value. We will see in a moment that the retarded
Green function also leads to the momentum-dependent spectral function and the density of
states. The best way to understand and make sense of these Green functions is with the Lehmann
representation [1]. This allows us to explicitly determine the Green functions as functions of
frequency via a Fourier transformation:

Gijσ(ω) =

∫ ∞
−∞

dt eiωtGijσ(t). (5)

The trick is to insert the resolution of unity (I =
∑

n |n〉〈n| where the |n〉 are the eigenstates of
H such thatH|n〉 = En|n〉) in between the creation and annihilation operators in the definitions
of the Green functions. We illustrate how this works explicitly for the retarded Green function,
where we have

GR
ijσ(t) = −iθ(t) 1

Z
∑
mn

[
〈m|e−βHciσ(t)|n〉〈n|c†jσ|m〉+ 〈m|e−βHcjσ|n〉〈n|ciσ(t)|n〉

]
. (6)
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We now use the fact that these states are eigenstates ofH and the Heisenberg representation for
the time dependent operators to find

GR
ijσ(t) = −iθ(t)

∑
mn

e−βEm

Z

[
ei(Em−En)t〈m|ciσ|n〉〈n|c

†
jσ|m〉+ e−i(Em−En)t〈m|c†jσ|n〉〈n|ciσ|m〉

]
.

(7)
Next, we interchange m↔ n in the second term to give

GR
ijσ(t) = −iθ(t) 1

Z
∑
mn

(
e−βEm + e−βEn

)
ei(Em−En)t 〈m|ciσ|n〉〈n|c

†
jσ|m〉. (8)

It is now time to do the Fourier transform. We achieve this by shifting ω → ω + i0+ to make
the integrand vanish in the large-time limit, which finally results in

GR
ijσ(ω) =

1

Z
∑
mn

e−βEm + e−βEn

ω + Em − En + i0+
〈m|ciσ|n〉〈n|c

†
jσ|m〉. (9)

This is already of the form that we can discover some interesting things. If we recall the Dirac
relation 1

ω+i0+ = P
ω
− iπδ(ω) (with P denoting the principal value), we find the local density of

states via

Aiσ(ω) = − 1

π
ImGR

iiσ(ω) =
∑
mn

δ(ω + Em−En)
e−βEm + e−βEn

Z
∣∣〈m|ciσ|n〉∣∣2. (10)

This density of states satisfies a sum rule. In particular,∫ ∞
−∞

dω Aiσ(ω) =
1

Z
∑
n

e−βEn
(
ciσc

†
iσ + c†iσciσ

)
= 1, (11)

which follows from the anticommutation relation of the fermionic operators; note that you can
also see this directly by taking the limit t → 0+ in Eq. (1). This result holds in momentum
space too: the retarded Green function becomes

GR
kσ(t) = −iθ(t) 1

Z
Tre−βH

{
ckσ(t), c†kσ(t)

}
+

(12)

GR
kσ(ω) =

1

Z
∑
mn

e−βEm + e−βEn

ω + Em−En + i0+
〈m|ckσ|n〉〈n|c

†
kσ|m〉, (13)

with the operators being the momentum space operators, determined by a Fourier transform
from real space:

ckσ =
1

|Λ|
∑
j∈Λ

cjσe
−ik·Rj and c†kσ =

1

|Λ|
∑
j∈Λ

cjσe
ik·Rj (14)

Here, the lattice with periodic boundary conditions is denoted by Λ = {Ri} and |Λ| is the
number of lattice sites in the system. We usually do not use a bold font for the momentum
label in the subscript of the creation or annihilation operator; one should be able to figure out
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from the context whether we are working in real space or momentum space. The momentum-
space Green functions have a similarly defined spectral function Akσ(k, ω) = −ImGR

kσ(ω)/π,
which also satisfies a sum rule given by the integral over all frequency being equal to one. One
can easily show that the advanced Green function in frequency space is equal to the Hermitian
conjugate of the retarded Green function, because we need to shift ω → ω − i0+ to control the
integrand at the lower limit. Hence, we have GA

ijσ(ω) = GR
jiσ
∗
(ω).

We also sketch how the calculation works for the lesser and greater Green functions. Here,
we have to control the integrand at both endpoints of the integral. To do so, we split it at 0
and introduce the appropriate infinitesimal convergence factor in each piece. The rest of the
calculation proceeds as above and one finds that the two pieces have their imaginary parts add,
so we finally obtain

G<
ijσ(ω) = 2iπ

1

Z
∑
mn

δ(ω + Em−En) e−βEn 〈m|ciσ|n〉〈n|c
†
jσ|m〉. (15)

The greater Green function similarly becomes

G>
ijσ(ω) = −2iπ

1

Z
∑
mn

δ(ω + Em−En) e−βEm 〈m|ciσ|n〉〈n|c
†
jσ|m〉. (16)

Note that we can use the delta function to immediately infer an important identity, namely
that G<

ijσ(ω) = − exp(−βω)G>
ijσ(ω). Combining this result with the fact that ImGR

ijσ(ω) =

Im[G<
ijσ(ω)−G>

ijσ(ω)]/2, we finally learn that

G>
ijσ(ω) = −2if(ω) ImGR

ijσ(ω) and G<
ijσ(ω) = 2i[1− f(ω)] ImGR

ijσ(ω) (17)

with f(ω) = 1/
(
1+exp(−βω)

)
. This equilibrium relationship is sometimes called the fluctuation-

dissipation theorem.

3 Green functions out of equilibrium and the “contour”

Now we move on to nonequilibrium where the Hamiltonian is time-dependent H(t). The evo-
lution operator depends on two times and becomes U(t, t′) = Tt exp

[
−i
∫ t
t′
dt̄H(t̄)

]
. It sat-

isfies the semigroup property U(t, t′′)U(t′′, t′) = U(t, t′), with U(t, t) = I and i∂tU(t, t′) =

H(t)U(t, t′). The Green functions in nonequilibrium are defined by the same equations as be-
fore, namely Eqs. (1–4), except now they depend on two times, with t′ being the argument of
the c† operator. All of these Green functions require us to evaluate one of two matrix elements.
We examine one of them here and assume t > t′ for concreteness

1

Z
Tr e−βHciσ(t) c†jσ(t′) =

1

Z
Tr e−βHU †(t,−∞) ciσU(t,−∞)U †(t′,−∞) c†jσU(t′,−∞) (18)

=
1

Z
Tr e−βHU(−∞, t) ciσU(t, t′) c†jσU(t′,−∞) (19)

where we used the facts that U †(t1, t2) = U(t2, t1) and the semigroup property to show that
U(t,−∞)U †(t′,−∞) = U(t, t′). The time-evolution operators, including time evolution in
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−iβ

tmax

−∞
(a)

−∞

(b)
tmax −iβ−∞ −∞−∞

Fig. 1: (a) Kadanoff-Baym-Keldysh contour used in the construction of the contour-ordered
Green function. The contour starts at −∞, runs out to the maximum of t and t′, runs back
to −∞ and then runs parallel to the imaginary axis for a distance equal to β. (b) The con-
tour can be “stretched” into a straight line as indicated here, which is convenient for properly
implementing time-ordering along the contour.

the imaginary axis direction for the exp(−βH) term, can be seen to all live on the so-called
Kadanoff-Baym-Keldysh contour, which is shown in Fig. 1. Starting with time at −∞, we
evolve forward to t′, then apply c†, evolve forward to time t, apply the c operator, and then
evolve backwards in time to −∞. The lesser and greater Green functions are easily determined
in this fashion. The retarded or advanced Green functions can then be found by taking the
appropriate differences of greater and lesser functions with the convention that t > t′ for the
retarded case and t < t′ for the advanced case. Now that we have these Green functions, we
can generalize the definition of the Green function to allow both times to lie anywhere on the
contour. We take the time-ordered Green function, with the time-ordering taking place along
the contour, and we call it the contour-ordered Green function

Gc
ijσ(t, t′) =


−i 1

Z
Tre−βH ciσ(t)c†jσ(t′) for t >c t

′

i
1

Z
Tre−βH c†jσ(t′)ciσ(t) for t <c t

′

(20)

where the c subscript on the less-than or greater-than symbol is to denote whether one time is
ahead of or behind the other on the contour, regardless of the numerical values of t and t′. This
Green function is the workhorse of nonequilibrium many-body physics—we use it to calculate
anything that can be calculated with the single-particle Green functions.

Note that in these lectures, we will work with the contour-ordered Green function itself, which
is a continuous matrix operator in time. In many other works, the Green function is further
decomposed into components where the times lie on the same or different branches of the real
contour (2× 2 matrix) [6] or of the two real and one imaginary branches of the contour (3× 3

matrix) [14]. In the 3 × 3 case, one has real, imaginary and mixed Green functions, the last
ones determining the so-called initial correlations. In the 2× 2 case, it is common to transform
the matrix to make it upper triangular, expressing the retarded, advanced and so-called Keldysh
Green functions. In general, I find that these decompositions and transformations make the
material more difficult than it actually is and it is best to defer using them until one has gained
some mastery of the basics. Here, we will work solely with the contour-ordered functions.
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4 The self-energy and the equation of motion

The next step in our analysis is to derive the equation of motion. We start from the definition
of the contour-ordered Green function in Eq. (20) and write it using a unit step function on the
contour, θc(t, t′), which is one for t ahead of t′ on the contour and zero for t behind t′. This theta
function can be used to impose the two conditions. Its derivative with respect to time becomes
a delta function on the contour ∂tθc(t, t′) = δc(t, t

′). The delta function on the contour satisfies∫
c

dt′ δ(t, t′)f(t′) = f(t), (21)

for any time t on the contour (including those on the imaginary spur). Now a simple derivative
of the Green function with respect to time yields the equation of motion (we find it convenient
to illustrate this in momentum space)

i
∂

∂t
Gc
kσ(t, t′) =

1

Z
Tr e−βH

{
ckσ(t), c†kσ(t)

}
+
δc(t, t

′) (22)

+ iθc(t, t
′)

1

Z
Tr e−βH

[
H(t), ckσ(t)

]
c†kσ(t′)

− iθc(t′, t)
1

Z
Tr e−βHc†kσ(t′)

[
H(t), ckσ(t)

]
!

= δc(t, t
′) +

(
εk(t)− µ

)
Gc
kσ(t, t′) +

∫
c

dt′′Σc(t, t
′′)Gc

kσ(t′′, t′). (23)

Here, we assumed that the Hamiltonian (in the Schrödinger picture) takes the form

Hs(t) =
∑
kσ

(
εk(t)− µ

)
c†kσckσ + V (t), (24)

where εk(t) is a time-dependent bandstructure and µ is the chemical potential. The symbol V (t)

is the potential energy operator of the Hamiltonian. The commutator of the potential with the
fermionic destruction operator is complicated—we introduce the contour-ordered self-energy
Σc to describe that cumbersome term—which can be viewed as the definition of the self-energy.
The self-energy appears in a convolution with the Green function (over the entire contour) in
Eq. (23). The equation of motion can be rearranged to look like∫

c

dt′′
((

i
∂

∂t
− εk(t) + µ

)
δc(t, t

′′) +Σc(t, t
′′)

)
Gc
kσ(t′′, t′) = δc(t, t

′). (25)

As we mentioned before, the Green functions are continuous matrix operators. Seen in that
light, it should be clear that the object inside the outer braces is the matrix inverse of the Green
function (since matrix multiplication, implied by the integration over the contour, has the matrix
defined by the braces multiplied by Gc equaling the identity matrix).
At this stage it may look like we are pulling the wool over your eyes. In some sense we are.
We have hidden the difficult question of how to evaluate the commutator of the potential with
the destruction operator, by simply introducing a self-energy which makes the complications
go away. This really would lead us nowhere if we did not have another means by which we can
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determine the self-energy. Fortunately we do, and it will be introduced below. You will have
to wait to see how that fits in. All of the challenge in many-body physics boils down to this
question of “how can we calculate the self-energy?”
Now is also a good time to discuss the issue of how do we work with these complicated ob-
jects? If you look carefully, you will see we are working with matrices. Admittedly they are
continuous matrix operator equations, but like any continuous object, we discretize them when
we want to work with them on a computer. And indeed, that is what we will do here when
we describe the DMFT algorithm below. We always extrapolate the discretization to zero to
recover the continuous matrix operator results. It is important to recognize these facts now, as it
will make your comfort level with the approach much higher as we develop the subject further.

5 Incorporating an external field and the issue of
gauge invariance

I always found it odd in dealing with fields in quantum mechanics to learn that we do not always
respect Maxwell’s equations. This should not come as a surprise to you, because Maxwell’s
equations are relativistically invariant, and quantum mechanics only becomes relativistically
invariant with a properly constructed relativistic quantum field theory. Nevertheless, we choose
to neglect even more aspects of Maxwell’s equations than just relativistic invariance. This
becomes necessary because the quantum problem cannot be solved unless we do this (and,
fortunately, the neglected terms are small).
The main issue we face is that we want the field to be spatially uniform but varying in time.
Maxwell says such fields do not exist, but we press on anyway. You see, a spatially uniform
field means that I still have translation invariance and that is needed to make the analysis simple
enough that it can be properly carried out. We justify this in part because optical wavelengths
are much larger than lattice spacings and because effects of magnetic fields are small due to the
extra 1/c factors multiplying them. Even with this simplification, properly understanding how
to introduce a large amplitude electric field is no easy task.
The field will be described via the Peierls’ substitution [15]. This is accomplished by shifting
k → k−eA(t), which becomes k+eEt, for a constant (dc) field. This seems like the right
thing to do, because it parallels the minimal substitution performed in single-particle quantum
mechanics when incorporating an electric field, but we have to remember that we are now
working with a system projected to the lowest lying s-orbital band, so it may not be obvious
that this remains the correct thing to do. Unfortunately, there is no rigorous proof that this result
is correct, but one can show that if we work in a single band (neglecting interband transitions)
and have inversion symmetry in the lattice, then the field generated by a scalar potential, and
the field generated by the equivalent vector potential will yield identical noninteracting Green
functions [16]. We then assume that adding interactions to the system does not change this
correspondence, so we have an approach that is exact for a single-band model. One should bear
in mind that there may be subtle issues with multiple bands and the question of how to precisely
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work with gauge-invariant objects in multiband models has not been completely resolved yet.
Fortunately, for model system calculations, working with a single band is often sufficient to
illustrate the nonequilibrium phenomena. This is what we do here.
It is now time to get concrete in describing the Hamiltonian we will be working with, which
is the spinless Falicov-Kimball model [17]. This model is nice to work with because it does
possess strongly correlated physics (Mott transition and order-disorder transitions), but it can
be solved exactly within DMFT in both equilibrium and nonequilibrium. Hence, it provides a
nice test case to illustrate the approach we take here. The Hamiltonian, in an electric field is

HS(t) =
∑
k

(
ε(k−eA(t))− µ

)
c†kck + Ef

∑
i

f †i fi + U
∑
i

c†icif
†
i fi , (26)

where we employed the Peierls’ substitution in the bandstructure. Here, the conduction elec-
trons (c) are spinless and do not interact with themselves. They interact instead with the local-
ized electrons (f ), when both electrons are situated on the same lattice site—Ef is the local site
energy of the f -electrons. Note that we use k for momentum and i for position inH. All of the
time dependence is in the kinetic-energy term, because the field does not couple to the localized
electrons (due to the fact that they do not hop). Hence, we have an effective single-band model
and the discussion above about the applicability of the Peierls’ substitution applies.
It is instructive at this stage to determine the noninteracting Green function exactly. We do
this by determining the Heisenberg creation and annihilation operators from which we form
the Green function. In the case where U = 0, one can immediately find that the destruction
operator (in the Heisenberg picture) becomes

ckσ(t) = e
i
t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ

ckσ e
−i

t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ

= e
−i

t∫
−∞
dt̄
(
ε(k−eA(t̄))−µ

)
ckσ .

(27)
There is no need for time ordering here, because the Hamiltonian commutes with itself at dif-
ferent times. This simplification is what allows one to solve the problem easily. By taking the
Hermitian conjugate of Eq. (27), one can substitute in the definitions of the Green functions and
immediately find that

G<
kσ(t, t′) = i

1

Z
Tr e−βH e

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
c†kσckσ = ie

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
〈nkσ〉, (28)

where 〈nkσ〉 = Tr e−βHc†kσckσ is the initial equilibrium momentum distribution. We similarly
find that the noninteracting retarded Green function in nonequilibrium is

GR
kσ(t.t′) = −iθ(t− t′) e

−i
t∫
t′
dt̄
(
ε(k−eA(t̄))−µ

)
(29)

there is no equilibrium expectation value here because the anticommutator of the equal-time
fermionic operators is 1. To find the corresponding local Green functions, we simply sum these
expressions over all momenta.
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We next discuss the issue of gauge invariance. This issue is important, because we are required
to perform calculations in a specific gauge but any physically measurable quantity must be
gauge-invariant. So how does this come about? To begin, one should notice that the Peierls’
substitution guarantees that any quantity that is local, like the current, is gauge invariant, be-
cause the sum over all momenta includes every term, even if the momenta are shifted due to the
Peierls substitution. Momentum-dependent quantities, however, appear to depend directly on
the vector potential. To properly formulate a gauge-invariant theory requires us to go back and
formulate the problem (using a complete basis set, not a single-band downfolding) properly to
illustrate the gauge-invariant nature of the observables. No one has yet been able to do this for
a system with a nontrivial bandstructure. For a single-band model, we instead directly enforce
gauge invariance using the so-called gauge-invariant Green functions, introduced by Bertoncini
and Jauho [18]. These Green functions are constructed to be manifestly gauge invariant—the
change in the phase of the creation and destruction operators is chosen to precisely cancel the
change in the phase from the gauge transformation. We determine them in momentum space by
making a shift

k → k(t, t′) = k +

∫ 1
2

− 1
2

dλA

(
t+ t′

2
+ λ(t− t′)

)
. (30)

Note that one needs to be careful in evaluating this integral in the limit as t → t′. In this limit,
we find k → k+A(t). The explicit formula for the gauge-invariant Green function, which uses
a tilde to denote that it is gauge-invariant, is

G̃kσ(t, t′) = Gk(t,t′)σ(t, t′). (31)

The demonstration of the gauge-invariance is given in Ref. [18]. Note that the local Green
functions are always manifestly gauge-invariant because the map k → k(t, t′) is a “one-to-one
and onto” map for any fixed set of times.
We end this section with a discussion of the current operator and how it is related to gauge
invariance. The current operator is calculated in a straightforward way via the commutator of
the Hamiltonian with the charge polarization operator. We do not provide the details here, but
simply note that they can be found in most many-body physics textbooks. The end result is that

j =
∑
σ

∑
k

vk c
†
kσckσ. (32)

Here, we have introduced the band velocity which is given by vk = ∇εk. The gauge-invariant
form of the expectation value for the current is then

〈j〉 = −i
∑
σ

∑
k

vk G̃
<
kσ(t, t). (33)

We can re-express in terms of the original Green functions, by shifting k → k − A(t). This
yields the equivalent formula

〈j〉 = −i
∑
σ

∑
k

vk−A(t)G
<
kσ(t, t). (34)
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As you can easily see, these two results are identical by simply performing a uniform shift of the
momentum in the summation. Generically, this is how different expectation values behave—in
the gauge-invariant form, one evaluates them the same as in linear response, but uses the gauge-
invariant Green functions, while in the non-gauge-invariant form, one evaluates them in a form
similar to linear response, but appropriately shifts the momentum in the terms that multiply the
Green functions (which is a beyond-linear-response “correction”).

6 Nonequilibrium dynamical mean-field theory

The premise of dynamical mean-field theory (DMFT) is that the self-energy of an impurity in
an appropriately chosen time-dependent field is the same as the self-energy on the lattice. In
general, we know this cannot be true, because the lattice self-energy depends on momentum,
and hence is not local. But, if we choose the hopping matrix elements to scale like t = t∗/2

√
d

for a d-dimensional lattice, then one can rigorously show that in the limit d → ∞, the self-
energy does indeed become local [19]. So, in this limit, the DMFT assumption holds and it
provides another limiting case where one can exactly solve the many-body problem (the other
limit being that of d = 1, where one can use the Bethe ansatz).
The physical picture to keep in mind, for DMFT, is to think of looking at what happens just on
a single site of the lattice. As a function of time, we will see electrons hop onto and off of the
site. If we can adjust the time-dependent field for the impurity in such a way that it produces
the same behavior in time on the impurity, then the impurity site will look like the lattice. This
motivates the following iterative algorithm [20] to solve these models: (1) Begin with a guess
for the self-energy (Σ = 0 often works); (2) sum the momentum-dependent Green function
over all momenta to determine the local Green function

Gc
iiσ(t, t′) =

∑
k

((
Gc
kσ(U=0)

)−1 −Σ
)−1

t,t′
, (35)

with Gc
kσ(U=0) the noninteracting momentum-dependent contour-ordered Green function on

the lattice and the subscript denoting the t, t′ element of the matrix inverse); (3) Use Dyson’s
equation to determine the effective medium G0 via(

Gc
0σ

)−1

t,t′
=
(
Gc
iiσ

)−1

t,t′
+Σc(t, t′); (36)

(4) solve the impurity problem in the extracted effective medium (which determines the time
evolution on the impurity); (5) extract the self-energy for the impurity using an appropriately
modified Eq. (36); and (8) repeat steps (2–7) until the self-energy has converged to the desired
level of accuracy. The difference from the conventional iterative DMFT algorithm is that the
objects worked with are now continuous matrix operators in time rather than simple functions of
frequency. Sometimes this creates a roadblock for students to follow how the algorithm works,
but there is no reason why it should. Finally, we note that because each inverse of a Green
function here implies a matrix inversion, we will want to organize the calculation in such a way
as to minimize the inversions. This will be explained in more detail when we discuss numerical
implementations below.
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One of the simplifications in equilibrium DMFT is that the fact that the self-energy has no mo-
mentum dependence allows us to perform the summation over momentum via a single integral
over the noninteracting density of states. Things are not quite as simple for the nonequilibrium
case, as we now discuss. The bandstructure for a hypercubic lattice in d→∞ is given by

εk = − lim
d→∞

t∗√
d

d∑
i=1

cos(ki). (37)

The central limit theorem tells us that εk is distributed according to a Gaussian distribution via

ρ(ε) =
1√
πt∗

e−
ε2

t∗2 . (38)

In nonequilibrium, we have a second band energy to work with

ε̄k = − lim
d→∞

t∗√
d

d∑
i=1

sin(ki), (39)

because the Peierls substitution shifts cos(ki) → cos(ki) cos(Ai(t)) + sin(ki) sin(Ai(t)). The
joint density of states becomes the product of two Gaussians, given by

ρ(ε, ε̄) =
1

πt∗2
e−

ε2

t∗2
− ε̄2

t∗2 . (40)

This second band energy can be thought of as the projection of the band velocity onto the di-
rection of the electric field. Hence, the computation of the local Green function in step (2) is
complicated by requiring a two-dimensional rather than a one-dimensional integration. This
does make the numerics require significant additional resources, especially because the inte-
grands are matrix-valued.
The most challenging part of the algorithm is step (4)—solving the impurity problem in nonequi-
librium. Unfortunately, there are few techniques available to do this. Monte Carlo methods
suffer from the so-called phase problem, which might be able to be tamed using expansions
about a perturbative solution and restricting updates to be nearly local in time via the inchworm
algorithm [21]. The other choice is perturbation theory either in the interaction (which often
does not work so well, except for electron-phonon coupling) or the hybridization of the impu-
rity model (which works well at half filling). Here, we make a different choice, and choose a
simplified model that can be solved exactly, the so-called spinless Falicov-Kimball model [17]

H =
∑
ij

tijc
†
icj − µ

∑
i

c†ici + Ef
∑
i

f †i fi + U
∑
i

c†icif
†
i fi . (41)

This model involves the interaction of conduction electrons (c) and localized electrons (f ). The
conduction electrons can hop on the lattice (we usually take the hopping only between nearest
neighbors on a hypercubic lattice in the d → ∞ limit) and have a chemical potential µ. The
localized electrons have a site energy Ef . Both electrons interact with an on-site interaction U .
The Falicov-Kimball model describes a rich set of physics, but it should not be viewed as a
paradigm for all strongly correlated electrons. This is because it has some aspects that are not
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seen in more common models like the Hubbard model. For example, it is never a Fermi liquid
when U 6= 0, the conduction electron density of states is independent of temperature in the
normal state, and it is never a superconductor. But, it does display a lot of rich physics including
a Mott metal-insulator transition, ordered charge-density-wave phases at low temperature and
even phase separation when the densities of the two species are far enough apart. In addition, the
f -electron density of states does exhibit strong temperature dependence, as expected in strongly
correlated systems. It also displays orthogonality catastrophe behavior. The main interest in the
nonequilibrium context has focused on the fact that it has a Mott transition. The most important
aspect of the model is that it can be solved exactly within DMFT—both in equilibrium and in
nonequilibrium.
We will not go through the details of the equation of motion for the Green functions in the
Falicov-Kimball model to show how one can solve it. The procedure is most efficiently per-
formed using a path-integral formulation because the time-dependent field on the impurity can-
not be easily expressed in terms of a Hamiltonian (unless one introduces a bath for the impurity
which does this). Instead, one can employ functional methods to exactly compute the functional
derivative of the partition function with respect to the dynamical mean-field, which then is em-
ployed to extract the Green function. Then, because the f -electron number is conserved in the
model, we obtain the Green function of the impurity by summing over appropriately weighted
combinations of the solution with no f -electrons and with one f -electron. The end result is
that the impurity Green function for the Falicov-Kimball model in an effective medium is the
following:

Gc
0(t, t′) = (1− w1)Gc

0(t, t′) + w1

[
(Gc

0)−1 − UI
]−1

t,t′
. (42)

The symbol w1 = 〈f †f〉 is the filling of the localized electrons (per lattice site). Since the
f -electron number operator commutes with H, the localized electron number is a constant of
motion and does not change with time, even in the presence of large electric fields. Note that
we will work at half-filling where the electron densities for the conduction electrons and the
localized electrons are each equal to 1/2. This point corresponds to µ = U/2 and Ef = −U/2.
Details not presented here can be found in the original literature [8, 9].

7 Numerical strategies to calculate the Green function

Now we need to sort out just how we implement this algorithm. This discussion closely follows
Ref. [9]. As mentioned above, the challenge is that we are working with continuous matrix
operators, with integration over the contour corresponding to matrix multiplication of these op-
erators. Such objects cannot be directly put onto a computer. Instead, we have to first discretize
the problem, replacing the continuous operators by discrete matrices. There are a few subtle
points that are involved corresponding to the integration measure over the contour when we do
this, but we will precisely describe how we achieve this below. In order to recover the results for
the continuous matrix operators, we need to extrapolate the discretized results to the limit where
the discretization size goes to zero. This is done in the most mundane way possible—simply
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repeat the calculation for a number of different ∆t values and use Lagrange interpolation as an
extrapolation formula to the ∆t→ 0 limit. We finally check sum rules of the data to verify that
the extrapolation procedure worked properly. Details follow.
We first need to be concrete about how the discretization is performed. This involves Nt points
on the upper real branch (ranging from tmin to tmax −∆t), Nt points on the lower real branch
(ranging from tmax to tmin + ∆t), and 100 points along the imaginary axis (ranging from tmin
to tmin − iβ + 0.1i, with β = 10); hence ∆t = (tmax − tmin)/Nt. We often find that fixing
the number of points on the imaginary time branch rather than scaling them in the same fashion
as on the real axis does not cause any significant errors, but it allows the calculations to be
performed with fewer total number of points. The discrete time values on the contour become

tj =


−tmin + (j − 1)∆t for 1 ≤ j ≤ Nt

tmax − (j −Nt − 1)∆t for Nt+1 ≤ j ≤ 2Nt

tmin − 0.1i(j − 2Nt − 1) for 2Nt+1 ≤ j ≤ 2Nt+100

(43)

where we used the fact that the discretization along the imaginary axis is always fixed at ∆τ =

0.1 in our calculations (and we pick the initial temperature to be T = 0.1t∗ or β = 10). We
use a leftpoint rectangular integration rule for discretizing integrals over the contour, which is
implemented as follows: ∫

c

dtf(t) =
2Nt+100∑
i=1

Wif(ti), (44)

where the weights satisfy

Wj =


∆t for 1 ≤ j ≤ Nt

−∆t for Nt+1 ≤ j ≤ 2Nt

−0.1i for 2Nt+1 ≤ j ≤ 2Nt+100

(45)

The leftpoint integration rule evaluates the function at the “earliest” point (in the sense of time
ordering along the contour, see Fig. 1) in the time interval that has been discretized for the
quadrature rule (which is the left hand side of the interval when we are on the upper real branch
and right hand side when we are on the lower real time branch).
One of the important aspects of many-body Green functions is that they satisfy a boundary
condition. This is what determines whether the Green function is bosonic or fermionic. For ex-
ample, you should already be familiar with the fact that the thermal Green functions are antiperi-
odic on the imaginary time axis. The contour-ordered Green function also satisfies a boundary
condition where we identify the points tmin with tmin− iβ. One can show from the definition of
the contour-ordered Green function and the invariance of the trace with respect to the ordering
of operators that Gc

iiσ(tmin, t
′) = −Gc

iiσ(tmin − iβ, t′) and Gc
iiσ(t, tmin) = −Gc

iiσ(t, tmin − iβ).
The proof is identical to how it is done for the thermal Green functions. It involves cyclically
moving a creation operator from the left to the right and commuting the e−βH term through it
which employs the fact that a cyclic permutation of elements in the product of a trace does not
change the value of the trace.
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The delta function changes sign along the negative real time branch, and is imaginary along
the last branch of the contour in order to satisfy the property that

∫
c
dt′δc(t, t

′)f(t′) = f(t). In
addition, we find that the numerics work better if the definition of the delta function is done via
“point splitting” (when we calculate the inverse of a Green function) so that the delta function
does not lie on the diagonal, but rather on the first subdiagonal matrix (in the limit as ∆t → 0

it becomes a diagonal operator). Because we identify the times tmin and tmin − iβ, the point
splitting approach to the definition of the delta function allows us to incorporate the correct
boundary condition into the definition of the discretized delta function. Hence, we define the
discretized delta function in terms of the quadrature weights, in the following way

δc(ti, tj) =
1

Wi

δi,j+1, for integration over j, (46)

=
1

Wi−1

δi,j+1, for integration over i, (47)

where ti and tj are two points on the discretized contour as described in Eq. (43), and Wi are
the quadrature weights described in Eq. (45). We have a different formula for integration over
the first variable versus integration over the second variable because we are using the leftpoint
quadrature rule. Note that the formulas in Eqs. (46) and (47) hold only when i 6= 1. When i = 1,
the only nonzero matrix element for the discretized delta function is the 1, j = 2Nt+100 matrix
element, and it has a sign change due to the boundary condition that the Green function satisfies.
The discretization of the derivative of the delta function on the contour is more complex. It is
needed to determine the inverse of the Gc

0 for the impurity. The derivative is calculated by a
two-point discretization that involves the diagonal and the first subdiagonal. Since all we need
is the discrete representation of the operator

(
i∂ct + µ

)
δc(t, t

′), we summarize the discretization
of that operator as follows (

i∂t + µ
)
δc(tj, tk) = i

1

Wj

Mjk
1

Wk

, (48)

with the matrix Mjk satisfying

Mjk =



1 0 0 ... 1+i∆tµ
−1−i∆tµ 1 0 ... 0

0 −1−i∆tµ 1 0

. . .
0 −1+i∆tµ 1 0

0 −1+i∆tµ 1

. . .
−1−∆τµ 1

. . .
−1−∆τµ 1


, (49)

where ∆τ = 0.1. The top third of the matrix corresponds to the upper real branch, the middle
third to the lower real branch and the bottom third to the imaginary branch. Note that the
operator

(
i∂ct + µ

)
δc is the inverse operator of the Green function of a spinless electron with a

chemical potential µ. Hence the determinant of this operator must equal the partition function
of a spinless electron in a chemical potential µ, namely 1 + exp(βµ). This holds because
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detG−1
non = Znon for noninteracting electrons. Taking the determinant of the matrix Mjk (by

evaluating the minors along the top row) gives

detM = 1 + (−1)2Nt+Nτ−1(1 + i∆tµ)(−1− i∆tµ)Nt−1(−1 + i∆tµ)Nt(−1−∆τµ)Nτ ,

≈ 1 + (1 +∆τµ)Nτ +O(∆t2), (50)

which becomes 1+ exp(βµ) in the limit where ∆t,∆τ → 0 (Nτ is the number of discretization
points on the imaginary axis). This shows the importance of the upper right hand matrix element
of the operator, which is required to produce the correct boundary condition for the Green
function. It also provides a check on our algebra. In fact, we chose to point-split the delta
function when we defined its discretized matrix operator precisely to ensure that this identity
holds.
We also have to show how to discretize the continuous matrix operator multiplication and how to
find the discretized approximation to the continuous matrix operator inverse. As we mentioned
above, the continuous matrix operator is described by a number for each entry i and j in the
discretized contour. We have to recall that matrix multiplication corresponds to an integral over
the contour, so this operation is discretized with the integration weights Wk as follows∫

c

dt̄A(t, t̄)B(t̄, t′) =
∑
k

A(ti, tk)WkB(tk, tj). (51)

Thus we must multiply the columns (or the rows) of the discrete matrix by the corresponding
quadrature weight factors when we define the discretized matrix. This can be done either to the
matrix on the left (columns) or to the matrix on the right (rows). To calculate the inverse, we
recall the definition of the inverse for the continuous matrix operator∫

c

dt̄ A(t, t̄)A−1(t̄, t′) = δc(t, t
′), (52)

which becomes ∑
k

A(ti, tk)WkA
−1(tk, tj) =

1

Wi

δij (53)

in its discretized form. Note that we do not need to point-split the delta function here. Hence,
the inverse of the matrix is found by inverting the matrix WiA(ti, tj)Wj , or, in other words, we
must multiply the rows and the columns by the quadrature weights before using conventional
linear algebra inversion routines to find the discretized version of the continuous matrix operator
inverse. This concludes the technical details for how to discretize and work with continuous
matrix operators.
The next technical aspect we discuss is how to handle the calculation of the local Green function.
Since the local Green function is found from the following equation:

Gc
ii(t, t

′) =
1

πt∗2

∫
dε

∫
dε̄ e−

ε2

t∗2
− ε̄2

t∗2

[(
I−Gc,non

ε,ε̄ Σc
)−1

Gc,non
ε,ε̄

]
t,t′

(54)

with the noninteracting Green function discussed earlier and given by

Gc,non
ε,ε̄ (t, t′) = i

(
f(ε−µ)− θc(t, t′)

)
e−i

∫ t
t′ dt̄
(

cos(A(t̄))ε−sin(A(t̄))ε̄
)
. (55)
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Note that we must have A(t) = 0 before the field is turned on. Of course an optical pump pulse
also requires

∫∞
−∞A(t)dt = 0, because a traveling electromagnetic wave has no dc field com-

ponent. We did not compute the matrix inverse of the noninteracting Green function because
re-expressing the formula in the above fashion makes the computation more efficient (because
matrix multiplication requires less operations than a matrix inverse does).
This step is the most computationally demanding step because we are evaluating the double
integral of a matrix-valued function and we need to compute one matrix inverse for each inte-
grand. Fortunately, the computation for each (ε, ε̄) pair is independent of any other pair, so we
can do this in parallel with a master-slave algorithm. In the master-slave algorithm, one CPU
controls the computation, sending a different (ε, ε̄) pair to each slave to compute its contribu-
tion to the integral and then accumulating all results. The sending of the pairs to each slave
is simple. One has to carefully manage the sending of the results back to the master, because
the data is a large general complex matrix and they are all being received by one node. This is
precisely the situation where a communication bottleneck can occur.
In order to use as few integration points as possible, we employ Gaussian integration, because
the bare density of states for both the ε and the ε̄ integral is a Gaussian. We found it more
efficient to average the results with two consecutive numbers of points in the Gaussian inte-
gration (like 100 and 101) instead of just using 200 points (which would entail twice as much
computation).
The rest of the DMFT loop requires serial operations and is performed on the master to reduce
communications. One does have to pay attention to convergence. In metallic phases, and with
strong fields, the code will converge quickly But when the field is small or the interactions
large, one might not be able to achieve complete convergence. Often the data is still good,
nevertheless. One also should not make the convergence criterion too stringent. Usually 4
digits of accuracy is more than enough for these problems. In most cases, one will need to
iterate as many as 50-100 times for hard cases. But many results can be obtained with ten
iterations or less.
Finally, one has to repeat the calculations for different discretizations and extrapolate to the
∆t→ 0 limit. In order to use as much data as possible, it is best to first use a shape-preserving
Akima spline to put all data on the same time grid and then use Lagrange interpolation as an
extrapolation method to the ∆t → 0 limit. It is critical that one employs a shape-preserving
spline, otherwise it will ruin your results. In addition, we find that quadratic extrapolation
usually works best, but sometimes had to look at higher-order extrapolations. It is best to
extrapolate the data after the desired quantity has been determined as a function of t for all
times on the grid. For example, one would first determine the current by using the lesser Green
function and summing over all momenta for each time and then extrapolate the final current
values as a function of time instead of extrapolating the Green functions, since doing the latter
requires a two-dimensional Lagrange extrapolation and uses large amounts of memory.
Finally we mention that the accuracy can be tested by calculating spectral moment sum rules.
These are known exactly for the retarded Green function (through third-order). At half-filling
they simplify tremendously. We will explore how this works when we discuss some examples
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Fig. 2: Local lesser self-energy for the Falicov-Kimball model at half-filling, β = 1, and U = 1.
The timestep was∆t = 0.05 and the time range ran from−15 ≤ trel ≤ 15. The blue curve is the
exact result and the other colors are different methods for integration over the noninteracting
density of states. The inset shows a blow up of the region at large negative times, where the
different integration methods start to break down. This figure is adapted from Ref. [22].

in the next section. It is important to perform this test on all of your data. It is easy to do and
ensures the data is high quality.
We end this section with a discussion of other methods. Tran showed how one can halve the
dimension of the matrices by working with the retarded and lesser Green functions only [23], but
such an algorithm is harder to code and you need to solve for twice as many Green functions,
so it reduces the computational time by only a factor of two (it may allow for slightly larger
matrices to be handled as well). There is an alternative way to discretize and solve this problem
that integrates the Dyson equation in time in a causal fashion, producing the Green function
along the boundary of the matrix as time increases [24]. It is very efficient, but requires you to
be able to determine the self-energy in a causal fashion from your data at all earlier times. This
is always possible when perturbation theory is used to determine the self-energy. But, while
there should be a way to do this for the Falicov-Kimball model, an explicit method has not yet
been discovered. For the Hubbard model, we have no exact methods available.

8 Examples

We now illustrate how all of this machinery works. The idea is not to provide an exhaustive
review of the research work that has been completed, but rather to illustrate how these ideas
are concretely put into action. As such, we will pick and choose the examples more for their
didactic features than for their importance, or perhaps even their physical relevance.
To start, we focus on equilibrium. The DMFT for the Falicov-Kimball model was solved exactly
in equilibrium by Brandt and Mielsch [11, 12] and is summarized in a review [25]. We take
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Fig. 3: Local lesser self-energy for the Falicov-Kimball model at half-filling, β = 1 and U = 1.
Here, we Fourier transform the data from time to frequency. We use different time discretizations
for the different curves, while the density of states integration used N = 54 and 55 points for
Gaussian integration. The oscillations on the discrete calculations come from the oscillations
in time shown in Fig. 2. This figure is adapted from Ref. [22].

the exact result as a function of frequency and Fourier transform to time. Then we compare
that result with the result that comes out of the nonequilibrium formalism, to understand its
accuracy. In all of this work, we solve the Falicov-Kimball model on a hypercubic lattice at
half filling. In Fig. 2, we plot the (local) lesser self-energy Σ<(t). The calculation used a
fixed ∆t = 0.05 and has U = 0.5. The different curves are for various different integration
schemes over the noninteracting density of states. In one case, we average the N = 54 and
N = 55 Gaussian formulas. In another, we do the same, but with N = 100 and N = 101.
We also compare to a much denser trapezoidal formula with 1000 points. Additionally, we plot
the exact result. One can see the different integration schemes are quite close to each other for
times near zero, but they begin to deviate at large times. The inset focuses on large negative
time and one can quickly conclude that there is a maximum absolute value of time for which
the results are accurate for any integration scheme. Beyond that, the system starts to generate
increasing amplitude oscillations. The disagreement at short times from the exact result stems
from the fact that these calculations are at a fixed ∆t—no scaling to the ∆t → 0 limit were
taken. This gives a sense of the accuracies we can hope to attain with this approach.

In Fig. 3, we plot the Fourier transform of the time data as a function of frequency. The number
of Gaussian points used is N = 54, 55. The time steps are varied and one can see that they are
approaching the exact result. If we used Lagrange extrapolation here, we would get quite close
to the exact result, but we do not include that plot here because it would be too many lines close
to each other. The oscillations in the tail of the data in Fig. 2 is responsible for the oscillations
at negative frequency seen in the data. Those oscillations will remain even after scaling to the
∆→ 0 limit. One can clearly see how the extrapolation method works for this case.
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Fig. 4: Local lesser Green function for the Falicov-Kimball model at half-filling, β = 1 and
U = 1. The parameters are the same as in the previous figure. The main plot is the imaginary
part (which becomes symmetric for the exact result, and the inset is the real part, which becomes
antisymmetric. This figure is adapted from Ref. [22].

In Fig. 4, we do a similar plot in the time domain for the lesser Green function. Note that the
real part of the lesser Green function (inset) is an odd function when we are at half-filling due
to particle-hole symmetry. Similarly, the imaginary part in the main panel is even for the exact
result. One can clearly see how the extrapolation will work to approach the exact result if we
did the full extrapolation of this data.
Now that we have gotten our feet wet with the numerics, we are ready to discuss some physics.
At half-filling, there are enough conduction electrons to fill half of the sites of the lattice and
similarly for the localized electrons. In this case, if the repulsion between the two species
is large enough, they will avoid each other and the net effect is that the system becomes an
insulator because charge motion is frozen due to the high energy cost for double occupancy.
We can see this transition occur in Fig. 5, which is the local density of states at half-filling for
different U values. As U is increased we evolve from the initial result, which is Gaussian for
no interactions to results where a “hole” is dug into the density of states until if opens a gap at a
critical value of U called the Mott transition. Beyond this point, the system has a gap to charge
excitations.
Next, we illustrate how the density of states evolves in a transient fashion in time after a dc
field is turned on. In Fig. 6, we show a series of frames at different time snapshots that plot the
transient density of states (imaginary part of the local retarded Green function) as a function
of frequency. One can see that the system starts off in a near Gaussian density of states and
then develops features that are quite complex. The infinite-time limit is solved using Floquet
nonequilibrium DMFT theory [27–29]; unfortunately, we are not able to describe the details
for how that problem is solved. But there are a few important features to notice. Both before
the field is applied and long after it has been applied, the system has a positive semidefinite
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Fig. 5: Local density of states for the Falicov-Kimball model in equilibrium and at half-filling.
The calculations are in equilibrium, where the density of states is temperature independent in
the normal state. The curves are for different U. One can see as U increases we cross through
a Mott transition at U ≈

√
2.

density of states. This is the same as in equilibrium and it allows the density of states to be in-
terpreted probabilistically. But in the transient regime, it often becomes negative. Furthermore,
because the density of states is determined via a Fourier transformation, one cannot just say it
corresponds to a spectra at a specific average time. Instead it senses times near the average time
governed by how rapidly the Green function decays in the time domain.

There is a lot of physics in these figures. If there were no interactions, the system would
undergo Bloch oscillations, because the electrons are not scattering. The density of states then
is the Fourier transform of a periodic function, which leads to delta function peaks forming a
so-called Wannier-Stark ladder, with the separations given by the dc field E that is applied to
the system. When interactions are added in, the Wannier-Stark ladder is broadened, but also
split by the interaction U. This occurs because a delta function has a zero bandwidth and hence
is highly susceptible to the Mott transition, even for relatively small interactions.

Next, we move on to examining the transient current (Fig. 7). We use the same case we have
been examining throughout this brief summary—U = 0.5 and β = 0.1. Here the dc field is
E = 1. One can see the current starts of as a weakly damped Bloch oscillations (underdamped).
It dies off and remains quiescent for some time and then starts to recur at the longest times. The
characteristic Bloch oscillation occurs for both metals and insulators, but it is damped much
more rapidly in insulators because they interact more strongly. This is one of the common
observables measured in a nonequilibrium experiment. But it is not measured directly, because
oscilloscopes are not fast enough to see them.

Finally, we show how the sum rules hold and illustrate why it is important to scale results to the
∆t→ 0 limit. We pick a case which is challenging to calculate,E = 1 and U = 2. This is in the
Mott insulating phase, where the numerics are much more difficult to manage. We primarily use
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Fig. 6: Transient local density of states for the Falicov-Kimball model in a dc electric field with
U = 0.5, β = 0.1 and E = 1 at half-filling. The different panels are labelled by the average
time of the spectra. One can see that quite quickly after the dc field is turned on, the retarded
Green function approaches the steady state. These results are adapted from [26].

the sum rules to indicate whether the calculations are accurate enough that they can be trusted.
As shown in Fig. 8, we can see that the raw data can be quite bad, but the final scaled result ends
up being accurate to 5% or less! Note how the results are worse on the equilibrium side (to the
left) than on the nonequilibrium side (to the right) and they approach the exact results on the
nonequilibrium side. Hence, these calculations are most accurate in moderate to large fields.
This ends our short representative tour of some numerical results that can be calculated with
this nonequilibrium DMFT approach.
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Fig. 7: Transient current for E = 1, U = 0.5 and β = 0.1. These results use ∆t = 0.1 and are
not scaled. Notice how they start off as a Bloch oscillation, but are damped by the scattering
due to the interaction U . They die off and then start to have a recurrence at the longest times
simulated. At the earliest times the current is nonzero simply because we have not scaled the
data. Scaling is needed to achieve a vanishing current before the field is turned on. These
results are adapted from Ref. [9].

Fig. 8: Sum rules for the local retarded Green function for E = 1 and U = 2. Here, we
illustrate how one can use sum rules to verify the scaling to ∆t→ 0 has been done accurately.
The zeroth moment sum rule equals 1 and the second moment sum rule equals −(1/2 + U2/4).
We plot the raw data versus time, the exact result, and the extrapolated result. One can see that
even if the raw data was off by a huge amount, the final extrapolated data works extremely well.
These results are adapted from Ref. [30].
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9 Conclusions

These lecture notes have been somewhat brief due to the page constraints of this contribution
(and the time constraints of its author). Nevertheless, I have tried to present enough informa-
tion here that you can follow the logic, reasoning, and even develop the formalism for yourself
if you want to engage in these types of calculations. The field of nonequilibrium many-body
physics is wide open. There are new and interesting experiments performed every day and the
theory to describe them still needs further development. We do have a number of successes.
The approach can be used for optical conductivity [10, 31], time-resolved angle-resolved pho-
toemission [32], Raman scattering [33], x-ray photoemission spectroscopy and x-ray absorption
spectroscopy [34], and resonant inelastic x-ray scattering [35]. The challenge is always about
how far out in time can a simulation go. If you have a good idea for a nonequilibrium solver
for a Hubbard impurity, I encourage you to give it a try. We really need it. I also hope you will
enjoy working with many-body Green functions in the future. They are truly wonderful!
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