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9.2 Karen Hallberg

1 Introduction

The density matrix renormalization group (DMRG) has evolved to become one of the most re-
liable and versatile numerical methods in modern computational physics. It allows for a very
precise calculation of ground states and excitations of strongly correlated fermionic and bosonic
systems. After its original inception by S. White in 1992 [1, 2], when it was developed to solve
problems in low-dimensional quantum condensed matter, it has been extended to other fields as
well, and it is now being successfully used in quantum chemistry, statistical mechanics, quan-
tum information theory, nuclear and high-energy physics. It has been applied to a great variety
of systems and problems such as spin chains and ladders, fermionic and bosonic systems, dis-
ordered models, impurities, molecules, nanoscopic systems as well as 2D electrons in high
magnetic fields. And extensions to the method include two dimensional (2D) classical systems,
stochastic models, phonons, quantum chemistry, field theory, finite temperature and the calcula-
tion of dynamical and time-dependent properties. Some calculations have also been performed
in 2D quantum systems.
In this chapter we will introduce the basic formulation of the DMRG. We will also delve on the
extension of this method to calculate dynamical behavior and show how this was implemented
to enhance the performance of one of the most reliable methods to solve correlated matter,
dynamical mean-field theory (DMFT).
Among the several reviews, I recommend the basic textbook [3] and reviews such as [4–6]. For
newcomers to the field, it is advisable to visit the ALPS code library, containing state-of-the-
art methods for solving interacting quantum systems [8] and the website containing updated
information on the DMRG and publications [9].
The development DMRG has paved the way to the rich and promising world of tensor networks
(see the chapter by Miles Stoudenmire in this book). A comprehensive set of lectures is given
in [10]. There is a very useful library for tensor network calculations in [11].

2 Calculating ground states with the DMRG

When working with quantum systems one encounters the exponential problem, i.e., the total
number of states of the systems grows exponentially with system size. In non-interacting or
weakly interacting systems, one can make approximations and solve for one particle, assuming
that the result will depend very weakly on the number of particles. For more strongly interacting
systems, however, this is not possible and a many-body calculation is necessary. Let’s consider,
for example, a quantum spin chain with spins S = 1/2 in each of the N sites of the chain.
The total Hilbert space grows exponentially as 2N , and this is the size of the operators, in
particular of the Hamiltonian, to be diagonalized to solve the system. This means that the
problem becomes intractable very quickly (currently, using exact diagonalization one cannot
solve for more than around N = 30 sites).
The first successful renormalization of a correlated systems was done by K. Wilson when he
developed the Numerical Renormalization Group for the single impurity Anderson model [12].
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However, later attempts to apply real space renormalization techniques to quantum correlated
models led to poor results, as for example, the attempts to solve the 1D Hubbard model [13], for
which the system was separated into several blocks and only the lowest-lying energy levels were
kept for the new iterations. White and Noack [14] realized that one of the main problems with
these real space renormalizations was the separation of the basic blocks into separate entities,
so they tried solving the problem by including varying boundary conditions between them.
This basic idea led White to think about using the reduced density matrix defined in part of
the system as a new criterion to choose the relevant states. As we will show below, this idea
solved the block boundary problem and provided a straightforward way to discard non relevant
states. This led to the development of the DMRG, which proved to be one of the most accurate
numerical methods to solve interacting quantum problems.
The DMRG is based on a systematic truncation of the Hilbert space by keeping the most prob-
able states describing one or several wave functions. These wave functions will be called the
target states since they will be the ones we are aiming to describe in an accurate way (for ex-
ample, they could be the ground state, of some excited states). The truncations are done by
calculating the reduced density matrix in part of the system and keeping only its eigenvectors
with the highest eigenvalues. As we will show below, the eigenvalue is the weight of its cor-
responding eigenvector in the target wave function. So from here it is clear that this is a good
criterion to trim the Hilbert space.
We will start with the standard DMRG as it was originally developed by S. White [1, 2]. Since
then there have been other ways of implementing the same basic idea of using the information
provided by the density matrix to reduce the Hilbert space. These methods include the matrix
product state (MPS) representation [15]

2.1 Definitions and method

Before writing the algorithm explicitly we need to define some basic concepts. The method
is based on the partitioning the whole lattice into two parts, S being the system and E the
environment. This way, states |i〉 are part of S and states |j〉 form E. Any state of the whole
lattice |ψ〉 can be written as

|ψ〉 =
∑
i,j

ψij |i〉 |j〉 .

Given this bipartition, any operator acting only on the system S can be calculated as

〈ψ|OS|ψ〉 =
∑
ij,i′j′

ψ∗i′j′ψij〈i′j′|OS|ij〉 =
∑
ij,i′

ψ∗i′jψij〈i′|OS|i〉 =
∑
ii′

OS
i′i

∑
j

ψijψ
∗
i′j︸ ︷︷ ︸

ρS
ii′

= Tr ρSOS.

Here we have straightforwardly defined the reduced density matrix ρS = TrE |ψ〉〈ψ| which is
defined in S and has the following properties:
• it is Hermitian: ρS† = ρS

• Tr ρS =
∑

αwα = 1

• it is positive-semidefinite (so all eigenvalues are wα ≥ 0)
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In the diagonal basis ρS =
∑

αwα|wα〉〈wα|, so the mean value of the operator on S is

〈ψ|OS |ψ〉 = TrS ρ
SOS =

∑
α

wα 〈wα|OS |wα〉 . (1)

When more than one target state is used, the density matrix is defined as

ρSii′ =
∑
l

pl
∑
j

ψl,ijψl,i′j , (2)

where pl defines the probability of finding the system in the target state |ψl〉 (not necessarily an
eigenstate of the Hamiltonian).
It can be easily shown [2] that the density matrix eigenvalues wα represent the probability of
the state |ψ〉 being in substate |wα〉. The density matrix leads directly to the optimal states in
the system as we demonstrate below.
We define again

|ψ〉 =
M,M ′∑
i,j=1

ψij|i〉|j〉 (3)

as a state of the S+E, having real coefficients for simplicity. Our aim is to obtain a variational
wave function |ψ̂〉 defined in an optimally reduced space, generated by the m vectors of S,
|α〉 =

∑m
i=1 uαi|i〉,

|ψ̂〉 =
m∑
α=1

M∑
j=1

aαj|α〉|j〉 (4)

such that the difference with the original wave function is minimal with respect to aαj∣∣|ψ〉 − |ψ̂〉∣∣2 = 1− 2
∑
αij

ψijaαjuαi +
∑
αj

a2αj . (5)

This condition leads to ∑
i

ψijuαi = aαj . (6)

Using the definition of the reduced density matrix for S

ρSii′ =
∑
j

ρij,i′j′ =
∑
j

〈j|〈i|ψ〉〈ψ|i′〉|j〉 =
∑
j

ψijψi′j , (7)

and placing (6) into Eq. (5) we obtain

1−
∑
αii′

uαiρ
S
ii′uαi′ = 1−

m∑
α=1

ωα , (8)

where uαi is the operator that changes basis from |i〉 to |α〉, and ωα are the density-matrix eigen-
values. The above expression is minimum for the largest eigenvalues of the density matrix ρS ,
which are all positive or zero and the last term corresponds to the discarded error.
So, summarizing, the best approximation to |ψ〉 is done by considering the highest eigenvalued
(most probable) eigenstates of ρS when trimming the basis states. This is the basic mechanism
of the DMRG.
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2.2 Quantum information analysis

It is useful to consider concepts from quantum information, such as the von Neumann entropy

SvN = −
∑
α

wα logwα = −Tr ρS log ρS . (9)

This quantum entropy gives a quantitative measure of the entanglement between S and E if
the target state |ψ〉 is a pure state. The larger the entropy, the larger the entanglement. If, for
example, ρS has only one eigenvalue w1 = 1, then there is only one eigenvector in each block
and |ψ〉 is a product state with no entanglement. If thewα decrease rapidly, then it is sufficient to
consider only the largest eigenvalues to have a reliable representation of the target state |ψ〉. The
worst case scenario happens when there is no information about the state and all wα have the
same value so SvN = N , the system size. SvN is the number of qubits (sites with two degrees
of freedom) one has to consider to describe the state, so one can estimate that the number of
states m one should keep without losing crucial information is m ∼ 2SvN . The DMRG works
best for low quantum entangled systems (it is particularly exact for product states).
This analysis gives us a good insight into the DMRG performance in different systems and
dimensions. By using geometric arguments in a d+1-dimensional field theory including a d−1-
dimensional hypersurface dividing the system in two, S+E, it is shown that the entropy resides
essentially at the surface and scales as the area of the hypersurface [16]

SvN(L) α (L/λ)d−1, (10)

were λ is an ultraviolet cutoff and L the linear dimension. In one dimension, d = 1, a more
detailed calculation for gap-less critical systems leads to a logarithmic scaling of the entropy,
SvN(L) = c/3 ln(L) + λ1, where c is the central charge of the underlying conformal field
theory. A saturated entropy for non critical, gapped systems is obtained [17–19] when the
system size exceeds the correlation length. In two dimensions SvN ∼ L, so one expects a
poorer performance of the DMRG.

2.3 Standard algorithm

Now we are ready to introduce the main algorithm in the standard implementation. As said, the
DMRG is based on a systematic truncation of the Hilbert space by keeping the most probable
states describing a target wave function (e.g. the ground state, or excited states). For this, it is
important to define the space in which the Hamiltonian operates (for example, real space, but a
description in momentum, orthonormal orbitals or energy space is also feasible). The elements
of this space (sites, momenta, orbitals, or energies) are ordered in a one-dimensional way and
then it is partitioned into two, not necessarily equal, parts. From now on we will call them sites
without loss of generality. In its classical formulation, one begins with a growing or “warm-up”
phase starting with a small system, e.g., with N0 sites, and then gradually increase its size to
N0+2, N0+4, ...) until the desired length N is reached.
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Based on Fig. 1 we define block [B] as a finite chain with l sites having an associated Hilbert
space with m states in which operators such as the block Hamiltonian HB, connecting, and
correlation operators are defined and expressed in matrix form. Except for the first iteration, the
basis in this block is not explicitly known due to previous basis rotations and reductions which
are non-unitary if there has been a reduction of states. An additional site with n states is defined
as [a]. For a general iteration our system S is formed by blocks [B] and [a]: S = [B] ⊗ [a].
Equivalently, the environment is E = [a′]⊗ [B′] (see Fig. 1).
To illustrate the general iteration let us consider the one-dimensional spin S = 1/2 Heisenberg
Hamiltonian

H =
∑
i

SiSi+1 = Szi S
z
i+1 +

1

2
(S+

i S
−
i+1 + S−i S

+
i+1). (11)

The general iteration runs as follows:

(i) Define the Hamiltonian HBB′ for the whole system [20] S+E = [Baa′B′]:

[HB1B2 ]ij;i′j′ = [HB1 ]ii′δjj′+[HB2 ]jj′δii′+[Sza]ii′ [S
z
a′ ]jj′+

1

2
[S+
a ]ii′ [S

−
a′ ]jj′+

1

2
[S−a ]ii′ [S

+
a′ ]jj′

(12)

(ii) Diagonalize HBB′ to obtain the ground state |ψ〉 or other states (target states) using the
Lanczos [21] or Davidson [22] algorithms.

(iii) Calculate the density matrix
ρSii′ =

∑
j

ψijψi′j (13)

on block S=[Ba] defined by states i, tracing over the bath E=[B′a′] defined by states j.

(iv) Diagonalize ρS and keep the m states with the largest eigenvalues. The truncation error
is 1−

∑m
α=1 ωα, which should be kept small, typically much less than 10−6.

(v) Rotate and change basis of all operators in [Ba] and simultaneously redefine [Ba]→ [B]:
for example HB = O†HBaO, where O is a rectangular matrix.

(vi) A new block [a] is added (one site in our case) and the iteration goes back to (i)

Once the desired length N is reached a higher accuracy can be obtained by sweeping to and
fro a couple of iterations along the chain without changing N. The block sizes change with the
internal variable l as [Baa′B′], N = l+1+1+l′ where l and l′ = N−l−2 are the number of
sites in B and B′ respectively. The density matrix is used to project onto the growing block and
stored operators from previous iterations are used for the shrinking block.
It saves time and memory to include symmetries in the DMRG algorithm. For example, for
a spin model like the one mentioned above, the total spin z projection Sz is conserved, which
is the sum of the spin projections of each constituting block. Total particle number is also a
common symmetry that can be easily implemented. When the total quantum number can be
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Fig. 1: Iterations of the classical DMRG. Left: warm up growth. Right: Finite-size sweeps.
Here system S and environment E are also defined, as well as the blocks used in the iterations.

obtained as an addition of quantum numbers of each block of the system, the density matrix is
block diagonal: if the global state |ψ〉 =

∑
i,j ψij |i〉 |j〉 has Np particles, ψij = ψij δNi+Nj ,Np ,

where Ni is the particle number of state |i〉, the reduced density matrix is

ρSii′ =
∑
j

ψijψ
∗
i′j =

∑
j

ψijψ
∗
i′jδNi+Nj ,NpδNi′+Nj ,Np =

∑
j

ψijψ
∗
i′jδNiNi′

,

which is block diagonal with a fixed particle number Ni. The eigenstates of ρS will then also
have a defined particle number and this means that the renormalization maintains the particle
number symmetry. Non abelian or non additive symmetries like SU(2) or total spin are more
difficult to implement, however possible in some cases.

3 Calculating dynamical quantities with the DMRG

The density matrix renormalization group can also be used to calculate dynamical properties
(mainly at zero temperature) of low-dimensional systems, which are useful to interpret ex-
perimental results from, for example, nuclear magnetic resonance (NMR), neutron scattering,
optical absorption and photoemission, among others.
The main current approaches for the calculation of spectral functions include the Lanczos
method [23–26], the correction vector technique (CV) [24, 27, 28], Fourier transformation of
time-dependent excitations [29–32] and Chebyshev polynomials [33, 34].
In this lecture we will focus on the two first ones: the Lanczos dynamics gives complete in-
formation of the whole excitation spectrum at the expense of less accuracy for large systems,
specially at high energies, while the CV focuses on particular energy values and gives more pre-
cise information, being numerically much more expensive, unless the program is parallelized,
so several energy values are calculated simultaneously.
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We define the following dynamical correlation function at T = 0

CA(t−t′) = 〈ψ0|A†(t)A(t′)|ψ0〉, (14)

where A† is the Hermitian conjugate of the operator A (other operators are also feasible with
slight changes in the formulation), A(t) is the Heisenberg representation of A, and |ψ0〉 is the
ground state of the system. Its Fourier transform can be written in the Lehmann representation

CA(ω) =
∑
n

∣∣〈ψn|A|ψ0〉
∣∣2 δ(ω − (En−E0)

)
= − 1

π
lim
η→0+

Im GA(ω + iη + E0) , (15)

where the sum is taken over all the eigenstates |ψn〉 of the Hamiltonian H with energy En, E0

is the ground state energy, and the Green function is defined as

GA(z) = 〈ψ0|A†(z−H)−1A|ψ0〉, (16)

where z = w+ iη and η is a small shift towards imaginary frequencies, or, equivalently, a finite
Lorentzian width of the delta poles.

3.1 Lanczos dynamics

In the Lanczos formalism the function GA can be written in the form of a continued fraction:

GA(z) =
〈ψ0|A†A|ψ0〉

z − a0 − b21

z−a1−
b22

z−...

, (17)

where the coefficients an and bn can be obtained using the recursion equation [35]

|fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉 (18)

with

|f0〉 = A|ψ0〉 , an =
〈fn|H|fn〉
〈fn|fn〉

, b2n =
〈fn|fn〉
〈fn−1|fn−1〉

, and b0 = 0 . (19)

As for finite systems the Green functionGA(z) has a finite number of poles, only a finite number
of coefficients (typically less than a few hundreds) an and bn has to be obtained.
For the implementation in the DMRG, one has to take into account several target states using
Eq. (2) in order to have a good description of the excitations, for example, the ground state |ψ0〉
and the first few |fn〉 with n = 0, 1... and |f0〉 = A|ψ0〉.

3.2 Correction vector dynamics

This method leads to a more precise determination of the spectral functions since it focuses on
one particular energy w at a time (or z = w+iη if a finite shift is needed). This is achieved by
using a correction vector (related to the operator A that can depend on momentum q).
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From the Green function Eq. (16), the (complex) correction vector |x(z)〉 can be defined as

|x(z)〉 = 1

z −H
A|ψ0〉 (20)

so the Green function can be calculated as G(z) = 〈ψ0|A†|x(z)〉. Writing the correction vector
in its real and imaginary parts |x(z)〉 = |xr(z)〉+ i|xi(z)〉, we obtain(

(H − w)2 + η2
)
|xi(z)〉 = −ηA|ψ0〉

|xr(z)〉 = 1

η
(w −H)|xi(z)〉 . (21)

The first equation is solved, for example, using the conjugate gradient method. Here the follow-
ing target states are kept in the DMRG iterations: the ground state |ψ0〉, the first Lanczos vector
A|ψ0〉 and the correction vector |x(z)〉. The results lead to reliable excitations for an energy
range surrounding this particular point [24].
In [28] a variational formulation of the correction vector technique has been used. From
Eq. (21), the following equation is minimized with respect to |X〉

WA,η(ω,X) = 〈X|(H − w)2 + η2|X〉+ η〈ψ0|A|X〉+ η〈X|A|ψ0〉. (22)

For any η 6= 0 and finite ω this function has a well defined minimum for the quantum state
which is the solution of Eq. (21), i.e., |xi(z)〉.

4 Using the DMRG as the impurity solver
for dynamical mean-field theory

Among the most interesting physical phenomena observed in strongly correlated materials, we
can mention high-temperature superconductivity, magnetism, ferroelectricity, and the metal-
insulator transition. In spite of the enormous efforts devoted to understanding these phenomena,
little progress has been achieved, and this is due to the highly complex character involving the
strong correlations mainly of localized electrons. These strong correlations are not correctly
treated in methods designed for weakly correlated materials such as density-functional theory
(DFT) [36] for which the local density approximation (LDA) [37] and other generalizations are
used. Thus, non-perturbative numerical methods are the only reliable approach.
To this end, more than twenty years ago, dynamical mean-field theory (DMFT) was developed
[38,39] (see also the chapter by Eva Pavarini). By using it together with LDA it has allowed for
band structure calculations of a large variety of correlated materials (see reviews [40, 41]) for
which DMFT accounts mainly for local interactions [42, 43].
DMFT consists of a mapping of the correlated system to an effective interacting quantum im-
purity problem which has to be solved in a self-consistent way. This is the most computation-
ally expensive step within DMFT and determines its success. Since its development, several
impurity solvers have been used, like the iterative perturbation theory (IPT) [44, 45], exact di-
agonalization (ED) [46,47], the Hirsch-Fye quantum Monte Carlo (HFQMC) [48], the continu-
ous time quantum Monte Carlo (CTQMC) [49–53], non-crossing approximations (NCA) [54],
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the numerical renormalization group (NRG) [12, 55–57], the rotationally invariant slave-boson
mean-field theory (RISB) [58–60] and quantum chemistry-based techniques [61]. However,
they all suffer from limitations, for example, the sign problem and the difficulty in reaching
low temperatures in the QMC-based algorithms, the difficulty of the NCA in obtaining a re-
liable solution for the metallic state, the limitation to few lattice sites of the ED, far from the
thermodynamic limit, and the reduced high-energy resolution of the NRG technique.
More recently, to overcome some of these difficulties, an impurity solver based on the DMRG
technique was proposed [62–66]. With this method one can obtain the density of states directly
on the real frequency axis (or with a very small imaginary offset). This, together with the
avoidance of the fermionic sign, is the major advantage given by using the DMRG as compared
to QMC impurity solvers. More still, no a priori approximations are made and the method
provides equally reliable solutions for both gapless and gapped phases. The DMRG impurity-
solver provides accurate estimates for the distribution of spectral intensities of high frequency
features such as the structure of the Hubbard bands, which is of main relevance for the analysis
of x-ray photoemission and optical conductivity experiments, among others.
Subsequent related techniques have been proposed, such as using different methods to obtain
the dynamical properties within the DMRG [67, 65], or the time-evolution DMRG algorithm
(time evolving block decimation, TEBD) [68] for the one- and two-orbital models [69]. Other
developments include the kernel polynomial method (Chebyshev expansion for Green func-
tions) [70, 34, 71], a pole decomposition technique within the correction-vector method for the
dynamics [72], the block Lanczos approach [73], the application to non-equilibrium DMFT us-
ing MPS [74], and other bath geometries [75]. In this work the authors explore other geometries
for the impurity bath, showing an increased efficiency for the star environment. In [76], it was
shown that the convergence of the DMFT iterative loops on the imaginary energy axis implies a
great reduction of computational costs because, mainly, the imaginary-time evolution does not
create entanglement. However, the price to be paid is a reduced resolution on the real-frequency
axis.

4.1 Implementation for multi-site and multi-orbital problems

Generalizations of the original DMFT can be considered for these cases, which lead to matrix
formulations of the DMFT equations (for details see [66], where the operators are defined within
the cell which contains Nc orbitals or sites and which is the effective “impurity” to be solved).
For the general formulation let us consider a Hamiltonian which is the sum of a non-interacting
term plus local interactions: H = H0 + V where V =

∑
i Vi and i is the site or cell index

(i.e., the cluster containing Nc sites or orbitals). We define the local operators of H0 as h0i =∑
IJ tIJ c

†
iIσciJσ, where c†iIσ creates an electron in cell i and local “orbital” I = 1, 2, ..., Nc with

spin σ = ↑, ↓. We also define the local coefficients T = (tIJ).
The main approximation of DMFT is to neglect the self-energy between different cells i and j
in the lattice, i.e. to consider only the local self-energy, Σij(ω) ≈ Σcell(ω) δij , neglecting spatial
correlations to a certain degree, albeit with a good treatment of the local dynamical correlations.



DMRG 9.11

Fig. 2: Schematic representation of Hamiltonian (24) corresponding to the impurity problem
for the one, two, and four-site cellular DMFT. See text for details [66].

If we define the non-interacting Green function matrix as G0(ω 1−T ), the local Green function
within the DMFT is now given by [77]

G(ω) = G0 (ω 1− T −Σ(ω)) , (23)

which defines the self-consistency condition for the Nc×Nc matrices G and Σ. The lattice
problem can now be mapped onto an auxiliary impurity problem that has the same local mag-
nitudes G(ω) and Σ(ω). This impurity problem should be determined iteratively. Note that
G0, T , and Σ are Nc×Nc matrices for the spin-symmetric solution, and 2Nc×2Nc matrices
in the general case. Spatial correlations or the momentum dependence of Σ can be obtain by
periodization [78].
The “impurity” Hamiltonian reads

Himp = h00 + V0 +Hb , (24)

where the non-interacting part Hb represents the bath

Hb =
∑
IJqσ

λIJq b
†
IqσbJqσ +

∑
IJq

υIJq

[
b†Iqσc0Jσ +H.c.

]
, (25)

and b†Iqσ corresponds to the creation operator for the bath-site q, associated to the “orbital” I
and spin σ. In Fig. 2 we show a scheme of this effective impurity. Here the circles (squares)
represent the non-interacting (interacting impurity) sites. The red lines correspond to the λIJq
parameters between bath sites q related to impurities I and J (they are the only hybridization
between the baths related to different impurities). The blue lines are the υIJq with I 6= J while
the black lines are the υIIq . In the bottom scheme we omit some obvious connections for clarity.
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The self-consistent iterations of the DMFT can be summarized as follows:

(i) Start with Σ(ω) = 0 ,

(ii) Calculate the Green function

G(ω) = G0 (ω − T −Σ(ω)) , (26)

(iii) Obtain the hybridization

Γ (ω) = ω 1− T −Σ(ω)− [G(ω)]−1 , (27)

(iv) Find a Hamiltonian representation Himp with hybridization Γ̃ (ω) to approximate Γ (ω).
The hybridization Γ̃ (ω) is characterized by the parameters Υq =

(
υIJq
)

and Λq =
(
λIJq
)

of Hb through
Γ̃ (ω) =

∑
q

Υq · [ω 1− Λq]−1 · Υq. (28)

(v) Calculate the impurity Green matrix Gimp(ω) of the Hamiltonian Himp using DMRG,

(vi) Obtain the self-energy

Σ(ω) = ω 1− T − [Gimp(ω)]
−1 − Γ̃ (ω) . (29)

Return to (ii) until convergence.

Step (iv) requires fitting for Υq and Λq (for details see [66]).
As mentioned above, our problem is completely defined through the parameters Vi, G0, and T.
Notice that G0 and T are typically well known one-particle quantities for a given lattice prob-
lem. Some particular cases are given below. For example, for the Hubbard model, when con-
sidering the single-site, one-orbital DMFT, the defining matrices are Vi=Uni↑ni↓, T=−µ and

G0(ω−T ) =

 1
N

∑
k [ω − ε(k)]

−1 Square lattice

2
[
ω +
√
ω2 − 1

]−1
Bethe lattice

where ε(k) = −2t (cos kx+cos ky)− 4t′ cos kx cos ky, with k=(kx, ky) the Fourier space of the
square lattice withN sites, N→∞, and t ( t′) the (next-)nearest-neighbor hopping integral [79].
For the 2- or 4-site cluster Hubbard model (called the cellular DMFT [80]), Nc = 2 or Nc = 4,
respectively, and the main matrices are

Vi = U

NC∑
I=1

niI↑niI↓ , T =



 −µ t

t −µ

 c2-DMFT


−µ t t t′

t −µ t′ t

t t′ −µ t

t′ t t −µ

 c4-DMFT

and
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G0(ω1− T ) =
Nc

N

∑
k̃

[
ω 1− ε̃(k̃)

]−1
.

Here, T is the non-interacting intracluster matrix and ε̃(k̃) is the intercluster hopping on the
superlattice Fourier space k̃, which is connected to the one-site lattice through

ε̃(k̃)IJ =
1

Nc

∑
K

exp
[
i(K+ k̃) ·RIJ

]
ε(K+ k̃) (30)

with K the intracluster Fourier-space vectors, see Eq. (23) of [81]. The above implementation
is done in a real space clustering, the so-called cellular DMFT (CDMFT). An alternative and
complementary cluster approach is the Dynamical Cluster Approximation (DCA). For a detailed
analysis between the two see [82].

4.1.1 Example: application to the two-orbital Hubbard model

As an application of this method, we studied the non-hybridized two-orbital Hubbard model
with different band widths

H =
∑
〈ij〉ασ

tαc
†
iασcjασ + U

∑
iα

niα↑niα↓ +
∑
iσσ′

U12ni1σni2σ′ , (31)

where 〈ij〉 are nearest-neighbor sites on a Bethe lattice, c†iασ creates an electron at site i in
orbital α = 1, 2 with spin σ, and niα = niα↑ + niα↓. U (U12) is the intra(inter)-orbital Coulomb
repulsion between electrons. The nearest neighbor hoppings are t1 ≥ t2, for bands 1 and 2,
respectively. We set t1 = 0.5 which defines the unit of energy and we define ∆ = U − U12.
We solved this Hamiltonian at half filling (electron-hole symmetric) using the DMFT with
the improved impurity solver based on the DMRG described above, which allowed us to ob-
tain the detailed DOS directly on the real axis directly (or with a very small imaginary offset
0.01<η<0.2), zero temperature and system sizes of L = 40 - 60 sites. Here we show that,
thanks to this combined method, we can observe a rich structure in the DOS which had not
been seen before with more approximate techniques. We find that a finite density of states at the
Fermi energy in one band is correlated with the emergence of well defined quasiparticle states
at excited energies ∆ = U − U12 in the other band. We have identified these excitations as
inter-band holon-doublon bound states [83] (see Fig. (3)).
In summary, the DMFT+DMRG solver produces reliable results for non-local self energies at
arbitrary dopings, hybridizations, and interactions, at any energy scale. It also allows for the
calculation of large effective “impurities” to study multi-band interacting models and multi-
site or multi-momenta clusters. In addition, it also gives reliable results for the case of real
impurity problems, such as adsorbed atoms, cold atoms, and interacting nanoscopic systems
like quantum dot arrays among others.
This method paves the way towards the inclusion of additional improvements such as symme-
tries, finite temperature, and more realistic systems by taking into account configurations given
by ab-initio methods.
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Fig. 3: Orbital-discriminated DOS for the half-filled two-orbital Hubbard model, (31), for
U = 2.3, ∆ = 0.2 where we observe the existence of in-gap quasiparticle peaks [83].

5 Conclusions

The DMRG has become one of the most reliable techniques to calculate ground states and dy-
namical properties of correlated systems. In this lecture we have presented the basic DMRG
formalism and given a justification of its performance from a quantum information perspective.
This enables the understanding of more recent techniques based on matrix product states and
tensor networks. In addition to the calculation of ground state and dynamical properties of mod-
els for correlated systems (mainly in low dimensions), we gave an example of how the DMRG
can be used to solve the most complex part of the now well established DMFT, i.e, the impurity
solver, for the calculation of electronic properties of more realistic models for materials. This
technique uses the correction vector to obtain precise Green functions on the real frequency axis
directly thus avoiding ill-posed analytic continuation methods from the Matsubara frequencies
and fermionic sign problems present in quantum Monte Carlo-based techniques, allowing also
for zero temperature calculations. By using a self-consistent bath with low entanglement, it
produces precise spectral functions.
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[75] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, and H.G. Everts,
Phys. Rev. X 7, 031013 (2017)

[76] F.A. Wolf, A. Go, I.P. McCulloch, A.J. Millis, U. Schollwöck,
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