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1 Introduction

Electron structure quantum Monte Carlo (QMC) refers to a number of Monte Carlo-based tech-
niques for electron structure calculations. In this lecture, we focus on real-space QMC where
the electronic Schrödinger equation in first quantized form is the starting point. Recently, a
number of Monte Carlo methods have evolved where the Schrödinger equation is treated in the
Fock space, i.e., in second quantized form. While this equation has a number of advantages, its
exact solution is defined by the finite basis set, and the physical solution is obtained only after
basis set extrapolation. The electronic Schrödinger equation

H Ψ = E Ψ , with H = T + Ven + Vee (1)

contains kinetic energy of the electrons T , Coulombic electron-nucleus (or electron-core) at-
traction Ven, and the electron-electron repulsion Vee.
There are two seemingly unrelated Monte Carlo methods for obtaining approximate solutions
for Eq. (1). The first option is the evaluation of the energy expectation value 〈H〉 = 〈Ψ |H|Ψ〉
for a trial wave function Ψ with Monte Carlo integration. The variational principle allows the
optimization of the trial wave function Ψ by minimizing 〈H〉 with respect to parameters of
the wave function. This method is usually called variational Monte Carlo (VMC). The wave
function depends on all electrons, and depends thus on the real coordinates r1, . . . rn of all n
electrons and, additionally, on the spin state of each electron. Note that the Monte Carlo-based
integration allows arbitrary forms for the trial wave function. Therefore, Ψ can deviate from the
standard Slater determinant form and, for instance, compact correlated wave functions can be
employed easily. The optimization of trial wave functions is the subject of this lecture.
The other option for solving the Schrödinger equation with Monte Carlo methods is a stochas-
tic projection method where the exact solution of Eq. (1) is projected out of a starting wave
function. These methods are known under the name projector Monte Carlo or diffusion Monte
Carlo (DMC) and are, due to the projection, in general more accurate than the VMC methods.
Surprisingly, the DMC and the VMC methods are closely related, and the optimized VMC trial
wave function can improve the DMC energies substantially as we demonstrate in section 4.
This lecture is organized as follows. The VMC and DMC methods are briefly described in the
next section before the wave function optimization techniques are discussed in detail in the sub-
sequent section. Selected applications demonstrating the optimization of trial wave functions
are given in the final section.

2 Real-space quantum Monte Carlo methods

2.1 Variational Monte Carlo

In this lecture, the following notation will be used: ri = (xi, yi, zi) denotes the cartesian coor-
dinates of electron i while the spin is indicated by the quantum number ms,i = ± 1

2
.

xi = (ri,ms,i) = (xi, yi, zi, ms,i) (2)



QMC optimization 4.3

collects all electron variables and R = (x1, . . . ,xn) all electrons of the (finite) system. With
this notation, the energy expectation of an unnormalized wave function Ψ(R) is given in real
space by

EVMC =
〈Ψ(R)|H |Ψ(R)〉
〈Ψ(R)|Ψ(R)〉

. (3)

This ratio can be rewritten as an integral over a probability density p(R) and the local energy
EL(R)

EVMC =

∫
EL(R) p(R) dτ, EL(R) =

HΨ(R)

Ψ(R)
, p(R) =

|Ψ(R)|2∫
|Ψ(R)|2 dR

(4)

where the integration extends over all space. Note that p(R) describes the probability density
of positions and spins of all electrons simultaneously.
A sample with the probability density p(R) can be obtained efficiently with the Metropolis-
Hastings algorithm [1, 2] without the necessity of calculating the normalization integral. The
integral in Eq. (4) can then be obtained simply as the sample mean of the local energy over a
large sample of p(R)

EVMC = lim
K→∞

1

K

K∑
k=1

EL(Rk) , with Rk ∼ p(R) (5)

where ∼ p means ’distributed according to the probability density p.’ It is important to note
that this energy evaluation requires only the ability to calculate the Laplacian of the trial wave
function with respect to all electrons but no integration other than the Monte Carlo integration
itself. This obviously allows substantial freedom in the choice of Ψ , and in particular the use
of correlation factors coupling the electron coordinates for optimal description of the electron-
electron interaction and correlation. Variational Monte Carlo refers to the energy calculation
using Monte Carlo integration and Metropolis-Hastings sampling of the probability density.
Further details can be found in several review articles, for instance in [3, 4] and in references
therein.

2.2 Diffusion Monte Carlo

The diffusion Monte Carlo method yields more accurate energies than the VMC method because
in DMC the exact ground state wave function is projected according to

lim
t→∞

e−Ht Ψ ∝ Ψ0 (6)

The projection of the ground state wave function is obtained after constructing the correspond-
ing Green function with a short-time approximation which leads to a stochastic process, called
drift-diffusion process,

Rk+1 = Rk + b(Rk)τ +∆Wτ , R0 ∼ p(R) (7)
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with a discretized time step τ = t/N and a drift vector b defined with the trial function Ψ

b(R) =
∇Ψ(R)

Ψ(R)
. (8)

∆Wτ denotes a normal variate with mean µ = 0 and variance σ2 = τ . The drift-diffusion
process implements the antisymmetry of the projected solution because the drift is directed
away from the nodes of the trial function Ψ and is, at the nodal surface, in fact a normal vector
of the surface.
The drift-diffusion process is coupled with a weighting process

wk+1 = wke
−
[
1
2

(
EL(Rk)+EL(Rk+1)

)
−Eref

]
τ
, w0 = 1 (9)

where a reference energy Eref is employed to stabilize the process. The weighted drift-diffusion
process is implemented by a sample of walkers which are propagated according to Eq. (7).
Each walker has a weight attached which changes in each step according to Eq. (9). Note that
a walker corresponds to the positions of all electrons simultaneously. The stochastic process is
therefore capable of describing the electron correlation in real space. It is usually stabilized by
a branching/killing process based on the walker weights. As in molecular dynamics, the exact
distribution is obtained in the limit of vanishing time step, but also in the long total time limit.
With the final distribution of weighted walkers the DMC energy is obtained as a weighted mean

EDMC =

∑N
k=1wkEL(Rk)∑N

k=1wk
(10)

with the weight wk of the kth walker with the coordinates Rk.
VMC and DMC are closely related as the drift-diffusion process Eq. (7) is usually employed
as proposed step in the Metropolis-Hastings algorithm. Both algorithms are Markov chains,
and after reaching the equilibrium distribution, the energy or other estimators are calculated as
’time’ and sample average where the time is not the physical time. Each step in the Markov
chain is referred to as Monte Carlo step. Furthermore, the VMC distribution p(R) is usually
the starting distribution for the DMC process as indicated in Eq (7). But the main connection
results from the trial function Ψ whose nodes, or more precisely nodal hypersurface, Ψ(R) = 0

is imposed on the DMC solution via the drift Eq. (8). The DMC algorithm described above is
known as fixed-node DMC and results in the long t and short τ limit in the exact ground state
energy of the Schrödinger equation with the nodes of the trial function Ψ as additional boundary
condition. Without this boundary condition, the stochastic process would converge toward the
mathematical ground state of H which is the nodeless bosonic solution. The error resulting
from the fixed node approximation is called fixed-node error.
The optimization of the VMC energy requires the minimization of the energy expectation value
Eq. (5) with respect to the parameters of Ψ . The optimization of the DMC energy would require
the variation of the nodes of Ψ . Unfortunately, no efficient method is known for the direct
optimization of the nodes and hence usually DMC energies are optimized indirectly via the
minimization of the VMC energy.
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3 Stochastic optimization of electronic wave functions

The basis of all stochastic optimizations is a large sample of electron configurations {Rk}, k =

1, . . . , K with a distribution of p(R) = |Ψ(R)|2/
∫
|Ψ(R)|2 dτ , see Eq. (4), obtained with the

Metropolis-Hastings algorithm. The calculation of the sample is costly due to the serial cor-
relation between successive Monte Carlo steps, and it can be attempted to do a fixed sample
optimization which is a deterministic minimization [5]. As can be expected, the resulting pa-
rameters are biased toward this sample, and in practice a small number of iterations with new,
independent samples of electron configurations is required.
The trial wave function Ψ(R,p) ≡ Ψ(p) and the local energy EL(R,p) ≡ EL(p) both depend
on all electron positions and a set of parameters collected in a parameter vector p. The VMC
energy as sample mean of the local energy depends on the parameters and is simply

Em(p) =
1

K

K∑
k=1

EL(Rk,p). (11)

As the parameter optimization proceeds from the initial parameters p0 to p the fixed sample
(∼ |Ψ(p0)|2) does no longer correspond to the distribution |Ψ(p)|2 of the modified wave func-
tion. The change in the distribution can be corrected with a weighted mean

Ewm(p) =

∑K
k=1wkEL(Rk,p)∑K

k=1wk
, wk =

|Ψ(Rk,p)|2

|Ψ(Rk,p0)|2
. (12)

The variance of the local energy

Vm(p) =
1

K

K∑
k=1

(
EL(Rk,p)− Em

)2 (13)

determines the standard error of the sample mean energy
√
Vm/
√
K. The more accurate the

wave function the smaller the local energy fluctuations and thus the variance. For any exact
eigenfunction of H the local energy is constant and thus the sample variance exactly zero. This
zero-variance property of the sample mean as energy estimator allows the determination of
energies with small statistical error bars with reasonable sample sizes provided that accurate
(i.e. low variance) wave functions are used. It is important for an efficient optimization to
construct similar estimators for instance for gradients with respect to parameters.
For the optimization, the gradients of the wave function and the local energy with respect to the
parameters are required. Here, we denote the parameter derivatives as follows

Ψi =
∂Ψ(p)

∂pi
, Ψij =

∂2Ψ(p)

∂pi∂pj
, EL,i =

∂EL(p)

∂pi
. (14)

Minimization of the VMC energy with respect to the parameters is desired similarly to the
Hartree-Fock or configuration interaction (CI) methods. Minimization of the variance is, in
principle, equivalent to energy minimization because only exact eigenfunctions of H have a
variance of zero. Variance minimization is substantially simpler and more efficient because the
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sample variance is a sum of squares, while the local energy is possibly not bounded from below.
In earlier QMC work the variance minimization was preferred while in more recent papers the
energy minimization dominates because of a higher accuracy of the results.

3.1 Variance and MAD minimization

The sample variance is often simplified with an estimate Eref of the mean energy (which is
easily available from a previous DFT calculation)

Vr(p) =
1

K

K∑
k=1

(
EL(Rk,p)− Eref

)2 (15)

The variance minimization is a nonlinear least-squares minimization problem that can be solved
with standard methods such as the Levenberg-Marquardt method. The minimization requires
the Jacobian, the derivativesEL,i(Rk) of the residualsEL(Rk,p)−Eref , and has been employed
for many years [6]. We have obtained best results with the standard code ’nl2sol’ for nonlinear
least squares problems [7]. The variance minimization is very stable and suitable even for initial
parameters that differ substantially from the optimal ones. It is therefore often used as a first
optimization step followed by an energy minimization. Nonlinear least-squares minimizations
require a number of iterations. If the fixed sample is used, the variance defined in Eq. (15)
ignores the change of the distribution |Ψ(p)|2 with the parameters which can be accounted for
by using a weighted mean as in Eq. (12)

Vwm(p) =

∑K
k=1wk(EL(Rk,p)− Eref)

2∑K
k=1wk

(16)

Unfortunately, the weighted variance tends to be unstable when the weights start to deviate
substantially from one. In this case, the effective sample size is substantially reduced. Investi-
gations have shown that the unweighted variance Eq. (13) or Eq. (15) leads to more stable and
efficient minimizations [8].
Alternatively, it is possible to optimize the mean absolute deviation (MAD) of the local energy

MADr(p) =
1

K

K∑
k=1

|EL(Rk,p)− Eref | (17)

Since a sum of positive elements is involved the MAD minimization is also stable and found to
be advantageous in some cases [9].

3.2 Energy minimization

Energy minimization is preferable to variance minimization when the goal is to calculate en-
ergy differences. As mentioned above, energy minimization requires more computational effort
meaning substantially larger samples than variance minimization. Due to the stochastic nature
of QMC most codes use specifically optimized routines based on standard methods. The main
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variants for energy optimization are Newton-like methods, the linear method, and the stochas-
tic reconfiguration method. The methods require different derivatives and matrix elements and
differ in efficiency. For the stochastic optimization of wave functions the number of iterations
to reach a convergence threshold is only one aspect of the efficiency, another being the compu-
tational effort for each step.
The computational effort for each optimization step depends on the variance of the estimators
for the required gradient or matrix elements. In many cases, different estimators can be con-
structed that have the same limit but show different variances. Substantial work has been done
in the past in finding low variance estimators, in particular estimators whose variance vanishes
as the trial wave function approaches the exact eigenfunction of H .
In this section, we follow the notation used by Toulouse and Umrigar who gave an excellent
account of energy minimization methods including a discussion of earlier work [10]. The ex-
pectation value over p(R) is denoted

〈A〉 =
∫
A(R) p(R) dR, p(R) =

|Ψ(R)|2∫
|Ψ(R)|2 dR

, (18)

and the corresponding estimator is the sample mean

〈A〉 = lim
K→∞

1

K

K∑
k=1

A(Rk), Rk ∼ p(R). (19)

3.2.1 Newton methods

When expanding EVMC(p) around p0 with p = p0 +∆p in a Taylor series up to second order,
the Newton method is obtained leading to the parameter vector change

∆p = −h−1g (20)

with the gradient and Hessian matrix of the VMC energy

gi =
∂EVMC

∂pi
, hij =

∂2EVMC

∂pi∂pj
(21)

It is numerically more stable to solve the linear system h∆p = −g rather than inverting the
estimator of the Hessian matrix. The Newton method has been first used for energy optimization
in VMC by Lin et al. [11] and later improved by Umrigar and Filippi [12] and Sorella [13].
Newton methods are known for their limited convergence radius. One common stabilization
technique is the adaptive addition of a positive constant to the diagonal of the Hessian matrix
h which has the effect of switching smoothly with growing constant to steepest descent. For
details see reference [10] and references therein.
The greatest challenge for the use of the Newton method for energy minimization is the con-
struction of low variance estimators for the gradient and the Hessian matrix. For the gradient of
the VMC energy we first observe that

∂EVMC

∂pi
=
∂〈EL〉
∂pi

6= 〈EL,i〉 (22)
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because of the dependence of the distribution p(R) = p(R,p) on the parameters. An estimator
of the gradient can be derived as follows

∂

∂pi
〈EL〉 =

∂

∂pi

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∂
∂pi
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

− 〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

∂
∂pi
〈Ψ |Ψ〉
〈Ψ |Ψ〉

=
〈Ψi|H|Ψ〉
〈Ψ |Ψ〉

+
〈Ψ |H|Ψi〉
〈Ψ |Ψ〉

− 2〈EL〉
〈Ψi|Ψ〉
〈Ψ |Ψ〉

=

〈
Ψi
Ψ
EL

〉
+

〈
HΨi
Ψ

〉
− 2〈EL〉

〈
Ψi
Ψ

〉
(23)

Comparing

EL,i =
HΨi
Ψ
− EL

Ψi
Ψ
⇒ 〈EL,i〉 =

〈
HΨi
Ψ

〉
−
〈
Ψi
Ψ
EL

〉
(24)

one obtains
∂

∂pi
〈EL〉 = 2

[〈
Ψi
Ψ
EL

〉
−
〈
Ψi
Ψ

〉
〈EL〉

]
+ 〈EL,i〉 (25)

The last term vanishes due to Hermicity of H

〈EL,i〉 =
〈
HΨi
Ψ

〉
−
〈
Ψi
Ψ

HΨ

Ψ

〉
=
〈Ψ |H|Ψi〉
〈Ψ |Ψ〉

− 〈Ψi|H|Ψ〉
〈Ψ |Ψ〉

= 0 (26)

and we obtain finally [11]

∂EVMC

∂pi
= 2

[〈
Ψi(R)

Ψ(R)
EL(R)

〉
−
〈
Ψi(R)

Ψ(R)

〉
〈EL(R)〉

]
. (27)

Note that this estimator of the parameter derivative of the VMC energy does not depend on
the parameter derivative of the local energy! The wave function derivative Ψi arises only in a
ratio with the wave function Ψ itself. Normalization constants, which are expensive to calculate
in QMC, therefore cancel. Furthermore, this estimator has the zero-variance property because
the two terms in the difference become identical as the local energy becomes a constant for the
exact eigenfunction ofH . The difference is calculated with correlated sampling, using the same
sample for both terms such that fluctuations of Ψk(R)/Ψ(R) cancel substantially. Additionally,
the estimator has the form of a covariance, and it has been observed that the fluctuations of the
covariance 〈xy〉−〈x〉〈y〉 are much smaller than fluctuations of either x or y [12].
In the light of this result, a number of different estimators for the Hessian matrix h have been
proposed and employed that are based on the ratios Ψi/Ψ , Ψij/Ψ and the covariance form. For
the Hessian matrix, no estimator without the parameter derivative of the local energy EL,i is
known. The estimators are a bit lengthy and not reproduced here. For a discussion of the
various estimators of the Hessian matrix see reference [10].
The implementation of Newton-type methods requires therefore implementations of the follow-
ing three terms for every type of trial wave function

EL,i(R),
Ψi(R)

Ψ(R)
,

Ψij(R)

Ψ(R)
(28)
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Below, we discuss the computational effort for these terms for some common wave function
and Hamiltonian types.

3.2.2 Linear method

If the wave function depends linearly on the parameters as in CI or Jastrow-CI wave functions,
the parameters are obtained non-iteratively by diagonalization of the Hamiltonian matrix. This
approach can be extended to nonlinear parameters by expanding the wave function to first order
in the parameters

Ψ (1)(p) = Ψ (1)(p0 +∆p) = Ψ(p0) +

np∑
i=1

∆piΨi(p0) (29)

The idea is now to consider Ψi = Ψi(p0), i = 0, . . . , np, with Ψ0 ≡ Ψ(p0) and the number
of parameters np as a basis and obtain the energy minimum by solving the matrix eigenvalue
problem

H∆p = ES∆p (30)

with the Hamilton Hij = 〈Ψi|H|Ψj〉 and overlap matrices Sij = 〈Ψi|Ψj〉. Note that ∆p0 = 1

in Eq. (29) which defines the normalization of the resulting eigenvector corresponding to the
intermediate normalization in standard quantum chemistry. In the case of linear parameters the
CI method is recovered. In the case of nonlinear parameters the linear expansion is repeated
iteratively until convergence.
Nightingale and Melik-Alaverdian demonstrated that it is advantageous and, in fact, leads to
a zero-variance property if the finite sample estimators of the Hamiltonian matrix elements do
not make use of the Hermicity of the Hamiltonian [14, 10]. This results for finite samples in
unsymmetric Hamiltonian matrices in the eigenvalue problem and in parameter changes with
substantially reduced variances.
In practice, the dependence of the normalization constant of the wave function on the parameter
change is accounted for. The normalized wavefunction

Ψ̃0(p) =
1√

〈Ψ(p)|Ψ(p)〉
Ψ(p) (31)

results in the parameter derivatives

Ψ̃i(p) =
1√

〈Ψ(p)|Ψ(p)〉

(
Ψi(p)−

〈
Ψi(p)

Ψ0(p)

〉
Ψ(p)

)
(32)

with
〈Ψ(p)|Ψi(p)〉
〈Ψ(p)|Ψ(p)〉

=

〈
Ψi(p)

Ψ0(p)

〉
. (33)

The first order expansion now reads

Ψ̃ (1)(p0 +∆p) = Ψ̃0(p0) +

np∑
i=1

∆piΨ̃i(p0) . (34)
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The finite sample estimators for the matrices are constructed as follows. H00 is simply the
current sample mean of the local energy H00 = 〈EL〉. The Hi0 elements have the estimator

Hi0 = 〈Ψ̃i|H|Ψ̃0〉 =
∫

Ψ̃i(R)

Ψ̃0(R)
EL(R) p(R) dR =

〈
Ψi
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉
〈EL〉 (35)

with
Ψ̃i

Ψ̃0

=
Ψi
Ψ0

−
〈
Ψi
Ψ0

〉
. (36)

For the H0i elements we obtain with Eq. (32) and without making use of Hermicity

H0i = 〈Ψ̃0|H|Ψ̃i〉 =
〈(

1

Ψ0

HΨi −
〈
Ψi
Ψ0

〉
EL

)〉
= 〈EL,i〉+

〈
Ψi
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉
〈EL〉 (37)

using

EL,i =
1

Ψ0

(
∂HΨ0

∂pi
− EL

∂Ψ0

∂pi

)
. (38)

Analogously, one can derive for the remaining matrix elements Hij with i, j > 0 [10]

Hij =

〈
Ψi
Ψ0

Ψj
Ψ0

EL

〉
−
〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

EL

〉
−
〈
Ψj
Ψ0

〉〈
Ψi
Ψ0

EL

〉
+

〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

〉
〈EL〉+

〈
Ψi
Ψ0

EL,j

〉
−
〈
Ψi
Ψ0

〉
〈EL,j〉 (39)

and for the overlap matrix

Sij =

〈
Ψi
Ψ0

Ψj
Ψ0

〉
−
〈
Ψi
Ψ0

〉〈
Ψj
Ψ0

〉
, S00 = 1 . (40)

Note that the estimator for the Hamilton matrix of the linear method requires the local energy
derivatives EL,i like the estimator for the Hessian matrix of the Newton method.
In practice, after the generalized “almost symmetric” eigenvalue problem in Eq. (30) has been
solved, the correct right eigenvector has to be identified. For finite samples the correct eigen-
vector may not correspond to the lowest eigenvalue as spurious solutions may occur. Since the
eigenvectors are orthogonal it is not difficult to identify the physical solution. A reliable way
is a very short VMC calculation with new parameters arising from all eigenvectors of a few
lowest eigenvalues. Alternatively, the overlap of the new wavefunction with the previous can
be estimated, see [10, 15] for further discussions. For a large number of parameters the linear
method becomes restricted by the necessity to store the Hamilton and overlap matrices. Zhao
and Neuscammam have recently presented a blocked linear method that has been shown to be a
very good approximation to the original linear method while requiring substantially less mem-
ory which is particularly important for the parallel implementation [16]. The linear method,
in one of its variants, turns out to be the most efficient energy minimization method in most
applications.
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3.2.3 Stochastic reconfiguration, energy fluctuation potential, and perturbative
optimization methods

Both the linear method and the Newton method require the calculation of the local energy
parameter derivative EL,i which is computational expensive if pseudo potentials are used. A
possibly cheaper energy optimization method is the stochastic reconfiguration method [17] and
its variants, the energy fluctuation potential method [18] (EFP) and the perturbative optimiza-
tion method [10]. The stochastic reconfiguration method is based on the expansion of the DMC
propagator to first order exp(−tH) ≈ 1−Ht applied to the trial wave function Ψ and projected
into the space of derivative functions Ψi including Ψ0 ≡ Ψ .

〈Ψi|1− tH|Ψ〉 =
np∑
j=0

αj〈Ψi|Ψj〉 (41)

The terms of this linear equation can be sampled analogously to the linear method, and the
resulting parameter changes are ∆pi = αi/α0. For the related EFP method we refer to Ref. [18]
and references therein. In this paper, Scemama and Filippi also derived an efficient perturbative
EFP method that we present here in the notation by Toulouse and Umrigar used so far who
discuss the various optimization methods in some detail [10]. The formula for the perturbative
method is

∆pi = −
1

∆εi

np∑
j=1

(S−1)ijHj0 (42)

with
∆εi =

Hii

Sii
−H00 . (43)

By comparison of Eq. (35) and (27), Hj0 is identified as half the gradient g of the VMC energy.
Hence, Eq. (42) has the form of a Newton step with the inverse overlap matrix as approximative
Hessian. In practice, ∆p is obtained from the corresponding linear equation. The main differ-
ence to the expressions obtained from Eq. (41) lies in the factor 1/∆εi replacing the scalar t in
the stochastic reconfiguration method. This adds flexibility to the method and leads to improved
convergence [18]. The local energy derivative EL,i is required for the denominator ∆εi but not
for Hj0. If EL,i is expensive to calculate one may replace ∆εi by a constant ∆ε as is done
in the stochastic reconfiguration method [17, 10]. A less drastic approximation that we have
successfully applied is a more approximative calculation of ∆εi only in the first iteration step
and with a small sample. The convergence of the three variants are demonstrated in Figure 1 for
the orbital optimization in C2 with a full valence CAS and Jastrow wave function and Burkatzki
pseudo potentials to remove the core electrons [19, 20]. It can be seen that the calculation of
all ∆εi only in the first step with a small sample does not lead to a diminished accuracy or
slower convergence while the convergence is substantially slower if all ∆εi are replaced by a
constant [21].
In Figure 2, a comparison of all three optimization techniques is shown for the MO optimization
of C2 in a full valence CAS wave function with a polarized triple zeta STO basis and a Jastrow
factor. In this example, all three methods converge extremely fast and lead to a significant
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Fig. 1: Orbital optimization in C2 with full valence CAS and Jastrow using ECPs with the
perturbative method with full ∆ε calculation, calculation of ∆ε only in the first iteration, and
only in the first iteration with a small sample [21].

drop in energy. While the linear method converges usually very quickly for all parameters the
perturbative method does not work well for Jastrow parameters [10].
The stochastic reconfiguration method was computationally accelerated by Neuscamman et al.
who observed that the overlap matrix 〈Ψi|Ψj〉 does not have to be built explicitly if stochastic
estimators for matrix-vector products are used [22]. The replacement of explicit matrices by
matrix-vector products is widely employed in numerical methods, often allowing to increase
the dimension of systems substantially. The authors show that the calculation of matrix-vector
products is only possible when the conjugate-gradient method is used to solve the linear equa-
tion Eq. (41). The accelerated stochastic reconfiguration method allowed the optimization of
more than hundred thousand parameters in an massively parallel implementation.

3.3 Terms required for parameter optimization

The implementation of the energy and variance minimization requires parameter derivatives
of the wave function and the local energy. We discuss here a few important aspects of these
parameter derivatives with the restriction to the commonly used Slater-Jastrow wave functions

Ψ(c,κ,q) = Φ(c,κ) eU(q) (44)

with a Jastrow correlation function U with parameter vector q and, in general, a linear combi-
nation of Slater determinants Φd composed of orthogonal molecular orbitals (MO) depending
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Fig. 2: Comparison of the linear method with the Newton and the perturbative method for the
MO optimization in the C2 molecule [21].

on parameters κ

Φ(c,κ) =

ndet∑
d=1

cd Φ
(d)(κ) . (45)

In the following, we stick to the above notation and indicate derivatives with respect to param-
eter pi with subscript i. In the given formulae, the parameter derivatives arise only in the ratio
Ψi/Ψ which is then given here. For Jastrow parameters we obtain

Ψi
Ψ

=
1

Ψ

∂ Ψ(c,κ,q)

∂qi
=
∂U

∂qi
=: Ui (46)

and for the CI parameters ci

Ψi
Ψ

=
1

Ψ

∂ Ψ(c,κ,q)

∂ci
=
Φ(i)

Φ
. (47)

The derivatives with respect to the MO parameters are somewhat more involved. We obtain

Ψi
Ψ

=
1

Ψ

∂Ψ(c,κ,q)

∂κi
=

1

Φ

ndet∑
d=1

cd Φ
(d)
i (48)

where the derivative of a Slater determinant Φ(d)
i = ∂Φ(d)/∂κi is required.

All Slater determinants are formed by a set of orthogonal MOs which form, as column vectors
corresponding to a basis set, a matrix Φ. The discussion here is restricted to real orbitals. Each
orbital rotation x̂ij acts on this matrix by mixing MO i and j with the angle xij

x̂ijΦ = cosxijΦ+ sin xij

(
â†i âj − â

†
j âi

)
Φ. (49)
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It is sufficient to calculate derivatives for the current set of orbitals corresponding to xij = 0.
Taking the derivative with respect to the rotation angle at xij = 0 results in

∂

∂xij
x̂ijΦ

∣∣∣∣
xij=0

=
(
â†i âj − â

†
j âi

)
Φ.

With the singlet excitation operator as defined in standard second quantized quantum chemistry
[23]

Ê−ij = â†i âj − â
†
j âi

we obtain for all Slater determinants Φ(d) built from this set of MOs

∂

∂xij
x̂ijΦ

(d)

∣∣∣∣
xij=0

= Ê−ijΦ
(d). (50)

Note that the operator Ê−ij has to be applied for each spin orbital. Hence, the derivative of a
Slater determinant with respect to an orbital rotation angle (at zero angle) is obtained simply as
the value of the corresponding singly excited determinant.
The orbitals are usually partitioned in the inactive, active, and virtual orbitals where inactive or-
bitals are occupied in all determinants, active orbitals are occupied in some of the determinants,
and virtual orbitals are not occupied in any determinant. Orbital rotations between two inac-
tive and between two virtual orbitals do not change the Slater determinant except for possibly
a sign change. In complete active space (CAS) wave functions, active-active rotations are also
invariant.
The MO parameters κ are therefore built from the set of non-invariant orbital rotations xij form-
ing a real antisymmetric matrix X. The general treatment of orbital rotations makes use of the
fact that exponentials of antisymmetric (or skew symmetric) matrices are unitary. Multiplica-
tion of the current set of MOs Φ by U = exp(X) results in the new set of MOs. The unitary
matrix U can be obtained with [23]

U = W cos τWT +Wτ−1 sin τWTX (51)

where W and −τ 2 are the eigenvectors and eigenvalues of the symmetric matrix X2, respec-
tively. For more details on the MO optimization see Ref. [10] and references given therein.

3.3.1 Gradient of the local energy EL

For variance minimization as well as for some of the energy minimization methods, the param-
eter derivative of the local energy EL is required. We obtain straightforwardly for H = T + V

EL,i :=
∂EL
∂pi

=
HΨi
Ψ
− EL

Ψi
Ψ

= −1

2

∇2Ψi
Ψ

+
1

2

∇2Ψ

Ψ

Ψi
Ψ

+
∂V

∂pi
(52)

where the last term, the parameter derivative of the potential V , vanishes unless a localized
pseudo potential is used. Note that the Laplacians ∇2Ψ and ∇2Ψi refer to second derivatives
with respect to all electron positions, but not to parameter derivatives. The Laplacian of the
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wave function derivative ∇2Ψi is the new term in Eq. (52). Based on the Laplacian of the
wave function ∇2Ψ which is required already for the local energy evaluation, the parameter
derivatives can be established for Jastrow, CI, and MO parameters similarly to the formulae
given above.
More interesting is the common case of the presence of a nonlocal pseudo potential V̂nl in
addition to a local potential Vloc. In this case we obtain for the local energy

EL = −1

2

∇2Ψ

Ψ
+ Vloc + Vnl, Vnl =

V̂nlΨ

Ψ
(53)

with the localized nonlocal pseudo potential Vnl.
The parameter derivative becomes

EL,i = −
1

2

∇2Ψi
Ψ

+
1

2

∇2Ψ

Ψ

Ψi
Ψ

+
∂Vnl
∂pi

(54)

and EL,i differs from the case without pseudo potential only by the last term

∂Vnl
∂pi

=
V̂nlΨi
Ψ
− V̂nlΨ

Ψ

Ψi
Ψ

=
V̂nlΨi
Ψ
− Vnl

Ψi
Ψ

(55)

The localized pseudo potential is usually calculated numerically on a spherical Lebedev grid
[24]. The parameter derivatives V̂nlΨi/Ψ can be calculated analogously. In spite of efficient
update formulae the numerical integration has to be done for all electrons within a cut off radius.
This is a computationally expensive step, and more so the calculation of the parameter derivative
vector. The Lebedev integration is particularly costly for the MO optimization which is based
on singlet excitations Ê−ijΦ

(d) according to Eq. (50) because a large number of determinants is
constructed, all of which require an evaluation at the Lebedev grid points. This step is the reason
why the energy minimization for MO parameters is computationally especially expensive with
methods requiringEL,i and why the perturbative method is the most efficient choice in this case,
provided that∆εi in Eq. (43) is calculated only approximately with a small sample and possibly
only once.

4 Examples of wave function optimizations

In this section, simultaneous and alternating parameter optimizations are discussed before some
examples of trial wave function optimizations are presented. In particular, it will be shown that
the VMC energy minimization can lead to substantial and systematic improvements of the nodal
surface and thus to more accurate DMC energies. Single- as well as multi-reference approaches
are employed. The Jastrow, CI, and MO parameters are both partially and fully optimized in
order to assess the effect on the variational energy. Results are given for atomic species, main
group, and transition metal dimers. Dissociation energies and spectroscopic constants are pre-
sented. The BFD pseudo potentials by Burkatzki, Filippi, and Dolg [19, 20] which are specifi-
cally designed for QMC are used with the corresponding triple zeta basis set in all calculations.
The Jastrow factors in the examples below contain two-electron and two-electron-nucleus terms
as described in [29].
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the linear method [21].
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Fig. 4: Comparison of simultaneous and alternating optimization of Jastrow, MO, and CI pa-
rameters in C2 with pseudo potentials using the linear method [21].

4.1 Simultaneous and alternating parameter optimizations

Not all optimization methods work equally well for all kinds of parameters. For instance, the
linear method is expected to obtain the optimal CI parameters in one step as discussed above.
On the other hand, the linear method is computationally more expensive than the perturba-
tive method for the optimization of MO parameters when pseudo potentials are employed. It
would therefore desirable to optimize different kinds of parameters alternatingly with possibly
different methods. Alternating optimization instead of simultaneous optimization can lead to
substantially slower convergence if the parameters are strongly coupled. As an example, we
show in Figure 3 the comparison of simultaneous and groupwise alternating optimization of
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Jastrow, MO, and CI parameters in C2 with an all electron full valence CAS wave function with
Jastrow factor using the linear method. The slow convergence of the alternating optimizations
in comparison to the very fast convergence in the simultaneous case is very obvious. On the
other hand, Figure 4 demonstrates that alternating optimization can be very efficient. In this ex-
ample, the same C2 molecule is treated, the only difference being the use of pseudo potentials.
In general, it has been observed that slow convergence is found in alternating optimizations for
all electron calculations while the alternating optimization is efficient when pseudo potentials
are used [21].

4.2 Atomic species
4.2.1 Nickel spectrum

The energy gaps between different atomic states is a quantity that can be experimentally deter-
mined in a very accurate way, therefore the opportunity to verify the accuracy of the employed
method presents itself. The ground state of Nickel, as well as two excited states, are evaluated.
Ni is assigned a ground state of 3F with an occupation of 3d84s2. The first excited state is a 3D
state with an occupation of 3d94s1 which is energetically close to the ground state. The third
considered state is of 1S symmetry with a 3d10 occupation.
The VMC and the zero time-step extrapolated DMC energies can be found in Table 1. The
calculations were performed with HF and CAS orbitals. All parameters are optimized with
respect to the energy using the linear method except for the MO parameters that are optimized
with the perturbative method using a small sample only for ∆εi.

Table 1: Ni VMC and DMC energies in Eh for three states at various optimization levels, using
different starting orbitals and BFD-VTZ/sm666.

State Wave Function Ansatz Optimization level VMC energy DMC energy

3F

HF
Jas -170.0563(4) -170.1146(5)

Jas+MO -170.0645(4) -170.1185(5)

[10,6]-CAS
Jas+CI -170.0554(4) -170.1151(5)

Jas+MO+CI -170.0636(4) -170.1212(5)

3D

HF
Jas -170.0565(4) -170.1152(5)

Jas+MO -170.0641(4) -170.1189(5)

[10,6]-CAS
Jas -170.0558(4) -170.1152(5)

Jas+MOa -170.0656(4) -170.1199(5)

1S

HF
Jas -169.9964(4) -170.0500(5)

Jas+MO -169.9972(3) -170.0506(5)

[10,6]-CAS
Jas+CI -169.9991(4) -170.0525(6)

Jas+MO+CI -170.0006(4) -170.0532(5)
a Only one CSF is obtained.
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Table 2: DMC energy gaps in Eh between the ground state and two excited states of Ni at
various optimization levels, using different starting orbitals and BFD-VTZ/sm666. The experi-
mental values are taken from the NIST Atomic Spectra Database [25].

Transition Method Optimization level ∆E

3F - 3D

HF
Jas -0.016(19)

Jas+MO -0.011(19)

CAS
Jas -0.003(19)

Jas+MO 0.035(19)

NIST 0.02539

3F - 1S

HF
Jas 1.759(21)

Jas+MO 1.848(21)

CAS
Jas+CI 1.703(21)

Jas+MO+CI 1.850(21)

NIST 1.82614

The MO optimization leads to an improvement of the energy, regardless of choice of initial
orbitals. The lowering is however only significant for the 3F and the 3D state. Table 1 shows
that the correct ground state of Ni cannot be reproduced at the VMC level. Even after MO
optimization, the 3D state exhibits a lower energy than 3F. This may be rectified by choosing
a more accurate Jastrow correlation function. For the Ni 3F state, the HF trial wave function
yields slightly lower VMC energies than the CAS one. This can be traced back to a loss of
symmetry of the HF trial wave function compared to the CAS one. The higher flexibility of the
former leads to a lowering of the energy. As for the DMC results, the MO optimization again
leads to lower energies which can be explained by the improved nodal surface of the guide
functions. The correct ground state can only be portrayed by the CAS guide function at the
highest optimization level.

The excitation energies for the different transitions are shown in Table 2. The energy gap is
severely underestimated by the HF guide function as well as by the CAS guide function without
orbital optimization. The negative energy gaps mirror the fact that these approaches cannot
portray the correct ground state for Nickel. One can thus deduce that the single determinant
ansatz is not suitable to describe the states of the Ni atom and that the optimization of the
orbital parameters is essential. The energy gap, derived from the NIST database, can however
be reproduced by the CAS guide function where the orbitals are optimized in the presence of a
Jastrow correlation function.
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Table 3: C2 VMC and DMC energies in Eh at various optimization levels (Jas = Jastrow only),
using different starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz Orbitals Optimization level VMC energy DMC energy

[8,8]-CAS
CAS Jas -11.0680(2) -11.0886(2)
CAS Jas+CI -11.0779(3) -11.0925(3)
opt Jas+MO+CI -11.0792(2) -11.0934(2)

Table 4: C2 MR-DMC dissociation energies in eV at various optimization levels, using different
starting orbitals and BFD-VTZ/SM-9t. The data are taken from Ref. [21].

Ansatz Orbitals Optimization level D0

CAS
CAS Jas 6.351(9)
CAS Jas+CI 6.368(9)
opt Jas+MO+CI 6.378(7)

exp. 6.30(2) [27]

4.3 Main group compounds
4.3.1 Carbon dimer C2

The carbon dimer C2 is the benchmark compound for static correlation at equilibrium bond dis-
tance, the small number of electrons making it easily feasible for multi-reference calculations.
The VMC and time-step extrapolated DMC energies are given in Table 3. In contrast to the
other calculations, the nine-term SM-9t Jastrow as suggested by Schmidt and Moskowitz [26] is
employed for the C2 calculations. The Jas+CI optimization improves both the VMC and DMC
energies considerably. By further optimizing the molecular orbital parameters, a lowering of the
energies can be observed, it is however less significant. The close DMC energies at the Jas+CI
optimization level and for the fully optimized guide function indicate that the nodes must be
similar.
Table 4 shows the computed MR-DMC dissociation energies at different optimization levels.
The given dissociation energies D0 are corrected for zero point energy, the core-valence cor-
relation contribution, and spin-orbit contributions. All multi-reference dissociation energies
presented here agree well with experiment, which is rather surprising since the absolute DMC
energies differ significantly from one another.

4.4 Transition-metal compounds
4.4.1 Absolute energies

In this section, the VMC and DMC energies of ZnO and the effect that the parameter opti-
mization has on them are evaluated. The VMC and the time-step extrapolated DMC energies
are presented in Table 5. The non-optimized parameters are taken from the respective ab initio
calculations.
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Table 5: ZnO VMC and DMC energies in Eh at various optimization levels (Jas = Jastrow
only), using different starting orbitals and BFD-VTZ/sm666. The data are taken from ref. [28]

Ansatz Orbitals Optimization level VMC energy DMC energy

Single det
HF Jas -242.8836(3) -242.9931(5)

B3LYP Jas -242.8944(3) -243.0022(5)
opt Jas+MO -242.9013(3) -243.0065(6)

[16,9]-CAS
CAS Jas -242.8971(3) -242.9950(5)
CAS Jas+CI -242.9047(3) -243.0023(6)
opt Jas+MO+CI -242.9176(3) -243.0111(5)

Table 5 shows a systematic lowering of the VMC energies when moving from HF over B3LYP
KS to CAS orbitals. By only optimizing the Jastrow parameters, similar energies are obtained
for the single- and multi-determinant trial wave functions. This shows how crucial the opti-
mization of the antisymmetric part of the wave function is. The vast lowering in VMC energy
due to the optimization of the molecular orbitals in the presence of a Jastrow correlation factor
shows the substantial impact that the coupling between dynamic and static correlation has on
the energies calculated with HF and CAS orbitals. For the B3LYP KS orbitals on the other hand,
the MO optimization only has a small effect on the energy of the trial wave function because
DFT is able to partly capture this coupling.
The MO optimization significantly improves the nodal surface of the CAS guide function. The
improvement is less substantial for the KS guide function which indicates that the nodal surface
was already almost optimal for this approach before the optimization. Only the fully optimized
guide function is able to yield a DMC energy that is lower than the one calculated for the single-
determinant approach with optimized orbitals. This emphasizes the impact that the dynamic
correlation has on the quality of the nodal surface. If the molecular orbitals are not optimized,
the Jastrow optimization does not change the nodal surface, due to its totally symmetric nature.

4.4.2 Dissociation energies

As example for accurate calculations of dissociation energies of small transition metal com-
pounds we discuss the diatomics FeH, FeO, FeS, and ZnO. For all these molecules accurate
experimental dissociation energies are known, while calculated dissociation energies even for
accurate methods deviate substantially from the experimental data. We can demonstrate that
the nodal surface obtained by VMC energy minimization of Jastrow, CI, and MO parameters in
multireference Slater-Jastrow wave functions does lead to accurate dissociation energies with
the DMC method. Only the VMC energy minimization for the molecule FeH is discussed here
in detail as a typical example for an accurate transition metal wave function. The wave func-
tion is constructed from a [9,7]-CAS, built from the 3d and 4s orbitals on Fe and 1s on H,
and the sm666 Jastrow factor from Ref. [29]. This results in 69 Jastrow parameters, 159 MO
parameters, and 29 CI parameters. The energy minimization steps are shown in Figure 5 after
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Fig. 5: VMC energy minimization of the diatomic FeH using alternating optimization of Jas-
trow, CI, and MO parameters using the linear method for Jastrow and CI, and the perturbative
method for the MO parameters. The first two steps shown in grey refer to preoptimization of the
Jastrow and MO parameters.

an initial variance optimization of the Jastrow parameters. The Jastrow and MO parameters are
preoptimized with the linear and the perturbative method, respectively (shown in grey). Then
the Jastrow, MO, and CI parameters are groupwise alternatingly optimized yielding a smooth
and fast convergence.

The dissociation energies of several transition metal compounds at various optimization levels
are illustrated in Table 6. The data for ZnO, FeH, and FeO are taken from Ref. [28], while the
ones for FeS are presented in Ref. [21]. First of all, a systematic lowering of the deviation from
the experimental dissociation energies can observed for all compounds for the different ansätze
and optimization levels. The dissociation energies of ZnO and FeO follow similar trends. The
single-determinant guide function with optimized orbitals yields more accurate dissociation
energies than the CAS nodes at the Jas+CI optimization level. The optimization of the CAS
orbitals in the presence of a Jastrow correlation function substantially improves the dissociation
energy. For both compounds, an excellent agreement with the experiment is obtained.

For FeH, the single-determinant DMC nodes fail to reproduce the dissociation energy of Schultz
and Armentrout [30]. The optimization of the KS orbitals does not change the dissociation en-
ergy which implies that the nodal surface was already almost optimal for the single-determinant
approach before the optimization. Both the CI and MO optimization significantly improve the
dissociation energy of the CAS guide function. The MR-DMC dissociation energy computed
for the fully optimized guide function agrees well with the experimental one.

Moving towards a multi-reference guide function is also necessary for the FeS system. The
single-determinant approach underestimates the experimental dissociation energy, while the
fully optimized MR-DMC ansatz is able to reproduce it.
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Table 6: DMC dissociation energies in eV for several transition metal dimers at various op-
timization levels, using different starting orbitals and BFD-VTZ/sm666. The energies are cor-
rected for core-valence correlation and spin-orbit effects.

Compound Ansatz Orbitals Optimization level D0

ZnO

Single det
HF Jas 1.201(19)

B3LYP Jas 1.449(19)
opt Jas+MO 1.566(21)

CAS
CAS Jas 1.253(19)
CAS Jas+CI 1.451(21)
opt Jas+MO+CI 1.691(19)

exp. 1.61(4) [31]

FeO

Single det
HF Jas 2.885(20)

B3LYP Jas 3.688(20)
opt Jas+MO 3.826(20)

CAS
CAS Jas 3.266(20)
CAS Jas+CI 3.761(20)
opt Jas+MO+CI 4.112(20)

exp. 4.18(1) [32, 33]

FeH

Single det
HF Jas 0.814(17)

B3LYP Jas 1.020(17)
opt Jas+MO 1.020(17)

CAS
CAS Jas 1.099(17)
CAS Jas+CI 1.369(17)
opt Jas+MO+CI 1.791(17)

exp. 1.63(8) [30]

FeS
Single det opt Jas+MO 2.914(15)

CAS opt Jas+MO+CI 3.159(15)

exp. 3.31(15) [34]

4.4.3 Spectroscopic constants

The evaluation of quantities, such as the equilibrium bond distance, the harmonic frequency,
and the anharmonicity allows an assessment of the accuracy of the employed method. Those
spectroscopic constants are presented in Table 7 for different compounds. The data for the
oxides and for FeH are taken from Ref. [28], the ones of FeS from Ref. [35].

The potential energy curves were computed for the fully optimized MR-DMC guide functions
at a fixed time-step and then fitted to a Morse function, from which the spectroscopic constants
could be deduced.
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Table 7: Spectroscopic constants for the different transition metal compounds. The equilibrium
bond distance is given in Å, the harmonic frequency and the anharmonicity in cm−1.

System Investigators Method re ωe ωexe

ZnO
This work MR-DMC 1.709 746(8) 4.4(1)

Zack et al. [37] Direct-absorption methods 1.7047(2) 738 4.88
Fancher et al. [38] Photoelectron spectrum 805(40)

FeO
This work MR-DMC 1.623 866(79) 4.7(7)

Allen et al.a 1.619
Drechsler et al. [39] anion-ZEKE 882 4

FeH
This work MR-DMC 1.567 1842(27) 38.9(9)

Philips et al. [40] Near IR spectrum 1826.86 31.96
Dulick et al. [41] 1831.8(19) 34.9(9)

FeS
This work MR-DMC 2.031(7) 499(11) 2.53(11)

Takano et al. [36] Microwave spectrum 2.017
Wang et al. [42] Fluorescence spectroscopy 518(5) 1.7(2)

a derived from Allen et al. [43]

The MR-DMC bond distances of ZnO and FeO agree well with the experimental ones. The
computed equilibrium bond distance of FeS is slightly larger than the one from Takano et al.
[36]. The harmonic frequencies as well as the anharmonicities are in good agreement with
the experiment for the four dimers. All in all, we showed that MR-DMC can yield promising
results for the compounds evaluated here, provided that all sets of parameters of the trial wave
functions are optimized. In particular, the difficult energy minimization of the MO parameters
does lead to substantially improved accuracy of the VMC and DMC results.
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