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17.2 Gerardo Ortiz

1 The many languages of nature

One of the most challenging and interesting phenomena in modern condensed matter physics is
the one emerging from competing interactions in strongly correlated systems. The multiplicity
of distinct and exotic quantum phases observed experimentally confronts us with new paradigms
that question our understanding of the fundamental organizing principles behind such emergent
phenomena [1]. The notion of symmetry has shaped our current conception of nature; however,
nature is also full of broken symmetries. Thus, understanding the idea of invariance and its
corresponding conservation laws is as fundamental as determining the causes that prevent such
harmony, and leads to more complex behavior. While group theory and geometry have been
fundamental to the physics of the Twentieth Century, only recently has topology become central
to the nascent field of topological quantum matter [2—4]. Our ultimate goal is to exploit and
extend tools borrowed from these fields of mathematics to unveil and master those underlying
organizing principles [5]. These principles may lead the way to designing new materials and
devices with specific functionalities and unprecedented technological applications.

On general grounds, the nature and degree of entanglement of the quantum state, characterizing
the various thermodynamic phases of matter, is at the core of such complex behavior [6]. For
instance, the last three decades have witnessed the discovery of fractional charges and skyrmion
excitations in quantum Hall liquids [7] (i.e., electrons confined to two space dimensions in the
presence of strong external magnetic fields). Another example of current interest is provided
by unconventional high-temperature superconductivity and its startling strange metallic behav-
ior [8]. From the theoretical viewpoint the hurdle is in the presence of non-linear couplings,
non-perturbative phenomena, and a panoply of competing quantum orders. These systems hap-
pen to be strongly correlated because no obvious small coupling constant exists, and conse-
quently exhibit high sensitivity to small parameter changes. The importance of developing a
methodology based on qualitatively new concepts going beyond traditional mean-field (MF)
and semi-classical approximations, that treats all possible competing orders on an equal footing
with no privileged fixed-point phenomenon, becomes manifest. Despite great advances, there
is a lack of a systematic and reliable methodology to study and predict the behavior of these
complex systems. It is the purpose of these lecture notes to present some steps in that direction.

Describing the structure and behavior of matter entails studying systems of interacting quantum
constituents (bosons, fermions, gauge fields, spins). In the quantum-mechanical description of
matter, each physical system is naturally associated with a language of operators (for exam-
ple, quantum spin-1/2 operators) and thus to an algebra realizing this language (e.g., the Pauli
spin algebra generated by a family of commuting quantum spin-1/2 operators). It is our point
of view that crucial to the successful understanding of the mechanisms driving complexity is
the realization of dictionaries (isomorphisms) connecting the different languages of nature and
therefore linking seemingly unrelated physical phenomena [9,10]. The existence of dictionaries
provides not only a common ground to explore complexity but leads naturally to the fundamen-
tal concept of universality, meaning that different physical systems show the same behavior. In
this way, there is a concept of physical equivalence hidden in these dictionaries.
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On the other hand, the notion of algebra and its homomorphisms have also been essential to un-
ravel hidden structures in theoretical physics: Internal symmetries which are hidden in a given
algebraic representation of a model become manifest in another representation. In 1928 Jordan
and Wigner [11] made a first step relating quantum spin S = 1/2 degrees of freedom to particles
with fermion statistics. A simple application of their contribution is the mapping between the
isotropic XY chain describing quantum magnets and the tight-binding spinless fermion model,
which can be exactly solved in one spatial dimension. From the group theoretical viewpoint, an
internal U (1) continuous symmetry (related to particle number conservation), for instance, is
evidenced in the fermion representation of the XY model which was hidden in the spin repre-
sentation. Overall, what Jordan and Wigner established was an isomorphism of x-algebras, i.e.,
an isomorphism between the Pauli and fermion algebras [12].

In this chapter we present a unifying algebraic framework for interacting quantum systems.
We show that exact algebraic and group theoretic methods are one of the most elegant and
promising approaches towards a complete understanding of quantum phases of matter and their
corresponding phase transitions. Can we connect the different (spin-particle-gauge) languages
of nature within a single algebraic framework? We will present a fundamental theorem which
connects operators generating different algebras (e.g., su(D) spin-particle connections), uni-
fying the different languages known so far in the quantum-mechanical description of matter.
We will illustrate the methodology with various examples borrowed from strongly correlated
physics, including quantum magnets and superfluids. Applications aim at:

e Illustrating connections between seemingly unrelated physical phenomena

e Unveiling hidden symmetries to identify new states of matter

e Identifying order parameters (OPs) in phase transitions [13, 14]

e Establishing exact (algebraic) solutions and developing better approximation schemes

e Explaining the use of languages in quantum simulations

The chapter has been written with the intention of providing the reader with the most fundamen-
tal concepts involved in our algebraic framework and how they apply to study complex phenom-
ena. Much more details and examples can be found in the original manuscripts [9, 10, 12, 15].

2 Algebraic approach to interacting quantum systems

The theory of operator algebras on Hilbert spaces was initiated by Murray and von Neu-
mann [16] as a tool to study unitary representations of groups, and as a framework for a re-
formulation of quantum mechanics. This area of research continued its development indepen-
dently in the realm of mathematical physics, and therefore knowledge of those investigations
remained bounded to specialists. For use of C* and W* algebras as a framework for quantum
statistical mechanics one can look at the books of Bratteli and Robinson [17]. For the purposes
of our presentation one only needs to have an elementary background in basic algebra [18], and
specially group theory [19], in particular, Lie algebras and groups.
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Relatlon between modes:
Transmutation of Statistics

Localzty &P | Non- localzty =

For each mode (local Hilbert space of dim D): Operator algebra

+

A set of generators of a complex Lie algebra Representation (dim D)

Dictionary:
[ Language A] ﬁ [ Language B ]
by = Dy

dim of the irreps of the algebra are equal

Fig. 1: Definition of a language and fundamental theorem [12, 9] behind the construction of
the dictionaries of nature. In the upper panel we show schematically what elements define a
language = A N\ I'4, where A is the algebra and I's a particular irrep. In the lower panel we
establish the criteria to build a dictionary, given two languages A and B. This criteria is based
upon Burnside’s theorem of algebra [18].

Here we are concerned with quantum lattice systems. A quantum lattice is identified with Z"=,
where N, is the total number of lattice sites (or modes). Associated to each lattice site i € Z"s
there is a Hilbert space H; of finite dimension D describing the “local” modes. The total Hilbert
space is H = ); H; (we will also consider its symmetric and antisymmetric subspaces). Since
we are mostly interested in zero temperature properties, a state of the system is simply a vector
|7) in H, and an observable is a self-adjoint operator O : H — H. The dynamical evolution
of the system is determined by its Hamiltonian /. The topology of the lattice, dictated by
the connectivity and range of the interactions in [, is an important element in establishing
complexity. In the case of quantum continuous systems we can still use the present formalism
after discretizing space. Going beyond this approach is outside the scope of these notes.

As mentioned above, each physical system is naturally associated with a language of operators,
and thus to an algebra realizing this language. Formally, a language is defined by an operator
algebra and a specific representation of the algebra. We use the following notation: language =
AN T4, where A is the operator algebra and 4 is a particular irreducible representation (irrep)
of the local algebra A; associated to A, of dimension dim I’y = D (see Fig. 1).

For the sake of clarity, let us choose the phenomenon of magnetism to illustrate the key ideas.
This is one of the most intriguing and not fully understood problems in condensed matter
physics where strong correlations between electrons (of electrostatic origin) are believed to
be the essence of the problem. To describe the phenomenon using a minimal model (i.e., a
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model that only includes the relevant degrees of freedom) distinct approaches can be advocated
depending upon the itineracy of the electrons that participate in the magnetic processes. In one
extreme (e.g., insulators) a description in terms of localized quantum spins is appropriate, while
in the other (e.g., metals) delocalization of the electrons is decisive and cannot be ignored. We
immediately identify the languages associated to each description: quantum spins (e.g., Pauli al-
gebra) and fermions (spin-1/2 Fermi algebra). Are these really different descriptions? Is there a
dictionary that may connect the two languages? Let’s assume that we decide to use the quantum
spins language. What other seemingly unrelated phenomena are connected to magnetism? Can
we relate phases of matter corresponding to dissimilar phenomena? Can an arbitrary physical
system be mapped, for instance, onto a pure magnetic system (an array of quantum spins)?

In the following we will answer these questions by examples. As mentioned above, a fundamen-
tal concept of universality, complementary to the one used in critical phenomena, emerges as a
consequence of unveiling the hidden unity in the quantum-mechanical description of matter.

3 Bosonic and hierarchical languages

A bosonic language is a set of operators grouped in subsets S; (associated to each mode) that
satisfy the conditions

e Each element b!' of S; (1 € [1, Ny]) belongs to the algebra of endomorphisms for the vector
space H; over the field of complex numbers C, b’ : H; — H;, and these elements are
linearly independent.

e The elements of S; generate a monoid [20] of linear transformations under the associative
product in the algebra which acts irreducibly on #; in the sense that the only subspaces
stabilized by .S; are H; and 0 (0 is the null vector).

o If b}’ and b} are elements of different subsets S; and Sj, then bi'by = O(b{’, by) = D(bY, b').

Combining the associative product O and the additive operations, we can define the non-
associative Lie product [ , |, which is called commutator

[bl', bY] = bl'bY — bY b (1)

irYj
Using this product the last condition can be reformulated

(64,67 =0, if i+ ] 2)

irYj

The set .S is not necessarily closed under the regular product (composition) or the Lie product
(commutator). If the set S; is closed under the Lie product

Ny
6, 6] =Y Aubl, Ay €C, 3)
w=1
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the elements of S; generate a Lie algebra &;. In addition, since each generator is represented by
an endomorphism of H; there is a particular representation /s of S; associated to the bosonic
language. The second condition for a bosonic language implies that /s is irreducible. The third
condition implies that the global Lie algebra associated to the complete set of generators is the
direct sum of local algebras S;, S = €; S;. Therefore, if the set S; is closed under the Lie
product, we can represent the bosonic language by the conjunction of the Lie algebra S, and the
irreducible representation I's: S A I's. The dimension of I's is equal to the dimension of the
local Hilbert space H;: dim/ls = D.

3.1 Languages and dictionaries: a fundamental theorem

The demonstration of the fundamental theorem of this section is a direct consequence of the
classical theorem of Burnside [18]

Burnside’s theorem. Let G be a monoid of linear transformations in a finite dimensional vector
space V over an algebraically closed field F' (in quantum mechanics, the complex numbers C),
that acts irreducibly on V in the sense that the only subspaces stabilized by GG are V and 0.
Then G contains a base for EndzV (ring of endomorphisms of V over F').

The following theorem shows that two languages are equivalent if they have in common the
dimension D of their local Hilbert space H;, and D is finite.

Fundamental Theorem [12, 9]: Given two bosonic languages having the same finite dimension
D of their local Hilbert spaces H;, the generators of one of them can be written as a polynomial
function of the generators of the other language and vice versa.

This theorem provides the necessary and sufficient conditions to connect two bosonic languages.
What is the unifying concept behind the construction of the dictionaries (isomorphisms) of
nature? When is it possible to build a dictionary between two arbitrary (bosonic, fermionic or
anyonic) languages? The answers lie in the application of the fundamental theorem together
with the transmutation of statistics [9] (see Fig. 1). This will be done in Section 4.

The fundamental theorem establishes the existence of dictionaries connecting languages within
the same class. As a consequence, we can use any bosonic language in the class to describe a
given physical phenomena. The natural question which emerges from this result is: What is the
most appropriate language in a given class for describing our particular problem? There is no
generic answer to this question. Nonetheless, the following two corollaries give an important
hint for problems which are invariant under particular transformations, because they relate the
notion of language to the generators of symmetry groups.

e Corollary I: In each class of bosonic languages there is at least one which is the conjunction
of a Lie algebra S and an irreducible representation I's (S A I's), i.e., the generators of
the bosonic language are generators of the Lie algebra S; in the rep. ['s.

Consider the Lie algebra £; = u(1) @ su(2) (S = @, £;) whose generators are {I;, 5§, Sy, S7}.
The three basis elements S (linear and Hermitian operators) of the Lie algebra su(2) for each
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S.=8
D=25+1

S, =-S5

Fig. 2: Spin S representation of su(2) of dimensionality D = 25 + 1.

lattice site (mode) i (i = 1,--- , IN,) satisfy the equal-time commutation relations

[Sa Sb] :'L(Sl_j Each'c ) a7b7c:way7 2, (4)

ir™j i

with € the totally antisymmetric Levi-Civita symbol. Equivalently, in terms of the ladder oper-
ators SJ?—L = Sy +iS]
— z z Q=L + — z\2
(S, 8] =25F, [S;, S =£5, {S].5;} =2(S(S+1)—(5))%) , (5)
where D = 25 + 1 is the dimension of the irreducible representation 'Y’ (Fig. 2). The demon-

stration of corollary I shows that any bosonic problem with a local Hilbert space of dimension
D can be described with su(2)-spins of magnitude (representation) S = (D — 1) /2.

3.2 Hierarchical language

A given bosonic language will be called hierarchical if any local physical operator Oi: Hi — Hi,
can be written as a linear combination of the generators of the language

Nﬂ
O; =Y M\bl, N, €C (6)
pn=1

e Corollary II: In each class of bosonic languages there is at least one which is hierarchical,
and its generators are the identity and the generators of su(N=D) in the fundamental
representation.

Proof: The Lie algebra generated by the identity /; and the generators of su(N) is £; =
u(1) @ su(N). Since dimL; = N?, the generators of £; are also a base for EndgH; if
D = dzmHl = N.

A consequence of corollary II is that the generators of any language can be expressed as a
linear combination of generators of a hierarchical language (HL) in the same class. The most
trivial example is given by the class of bosonic languages with D = 2. The generators of any
language (any two level system) in the same class can be written as a linear combination of the
identity and the Pauli matrices. We will see later that corollary 1I is the key to get a hierarchical
classification of the possible broken symmetries of a given physical Hamiltonian.
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3.2.1 Example: different classes of bosonic particles

Canonical bosons with N different flavors « satisfy the standard canonical commutation rela-
tions

b, b=l bl]=0,
[1a JB] [1& JB} (7)

[big. bl] = 035 0ap . [Mias bls] = 635 Ga b,

The local Hilbert space is infinite dimensional. Consider now two additional examples that
illustrate in detail the contents of the fundamental theorem and the subsequent corollaries. The
first example corresponds to hard-core (HC) bosons with /V; different flavors .. Since they are
HC, only single occupancy is allowed, i.e., the eigenvalues of 7; = > 7, are either 0 or 1
((l_)iTOZ)2 =0, and 13, = l_)iTal_Jia is the number operator for the flavor « at the site i). The minimal
set S of operators that we can use to generate a bosonic language which is appropriate for HC
bosons is: S = {1, bfa, b} with 1 < o < Ny. It can be shown that this set satisfies the
three requirements for a bosonic language. The dimension of the local Hilbert space for these
endomorphisms is D = Ny + 1. Then by varying the total number of flavors we can generate
all possible values of D. Since each class of bosonic languages is characterized by the value
of D, these HC bosons provide an example of a bosonic language in each class. It is clear that
the set S] is not closed under the Lie product. Therefore, we cannot associate a Lie algebra to
this minimal bosonic language. However, if we increase the number of generators in the set S
by including bilinear forms of the type bl b.,, then the new set S; = {1, bl b bl D }, with

ia”ip? i’ Yie Yia? Yia 1,8

1 <, 8 < Ny, becomes closed under the Lie product

[1&7 _],8] [wﬂ Jﬁ] O
[bis: bla] = 03(Jap — 7is Gap — b, big) | ®)
[b;rabﬂ? bj'y] - 5ij 557 bia :

This means that the extended set S; is now a set of generators for a Lie algebra in a particular
representation. From the commutation relations (Eq. (8)) we can conclude that §; is the direct
sum of an u(1) algebra, generated by the identity 1;, and an su(N) (N = D = N;+1) algebra
generated by {b,, ;. bl.b;5}: Si = u(1) @ su(N). The representation I's is the fundamental
representation of su(N) (dim/l's = N). Therefore, the new language is a hierarchical one.

We will see in later sections that canonical fermions can be transformed continuously into
bosons which are HC in each flavor

b, b.s] = [b] ,bl,] =0,

Nla’ ~J/3) i’ ¥jp (9)
[Dras Dls] = 855 G5 (1 — 2710 , [t bls) = 635 0 D],

which implies {b } = 1. The Lie algebra generated by these bosonic operators is L =

i la

@D, su(2), i.e. each set {bl by, flia—1/2} generates an su(2) algebra.
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SU(2)  spinless SU(2) s = %
S = % Hard-core bosons S=1 Hard-core bosons
1
: b v 0
5o 1

Fig. 3: Local Hilbert spaces H,, for the spin and HC bosonic worlds, at site (mode) i: (a) S = =
(dimension D = 2), (b) S = 1 (dimension D = 3).

3.2.2 Example: Matsubara-Matsuda transformation and its generalization to S = 1

To explain the peculiar properties of liquid Helium II, Matsubara and Matsuda [21] introduced
a lattice model of atoms and holes. Think of a Helium-4 atom as a spinless HC boson (Ny = 1).
On each lattice site, one can accommodate at most one Helium atom ((l_)iT)2 = 0). Then, the
simplest model of a liquid one can think of is described by a Hamiltonian with a kinetic energy
term, with hopping amplitude ¢, and a nearest-neighbor density-density interaction of magnitude
V. The expression for the Hamiltonian in terms of the first language defined by the sets Sj is

where (i, j), refers to nearest-neighbors in an otherwise regular d-dimensional lattice. Since
EiT, creating an atom at lattice point i, and b;, annihilating an atom at lattice point i, are not
generators of a Lie algebra, the eventual global symmetries of H,,, remain hidden in this par-
ticular language. However, if we translate H,y, to the second SU(2)-spin language using the
dictionary provided by Matsubara and Matsuda [21]

_ 7 - z _ 7t
St =0, S =b, Sf=0bb—1=n—1 (11)

we can immediately unveil the hidden symmetries of H,,,. This dictionary maps single-site
(mode) states in the following way (see Fig. 3)

|—1) «—10) , | 1) «— 0] |0), (12)

where |0) is the vacuum of HC bosons. The well-known expression for H,y, in terms of the
su(2) generators (i.e., the equivalent spin Hamiltonian) is

ZJSZSZ+—(S+S + 578, (13)

The magnetic couplings, J, and .J,, are related to the original parameters, ¢ and V', by the
relations: J, = V and J; = 2t. It is clear from Eq. (13) that the original model has a global
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Longitudinal FM Planar FM Planar AF Longitudinal AF
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Fig. 4: Quantum phase diagram of the H,,, model Hamiltonian. Q stands for the AF wave
vector, and FM refers to the ferromagnetic phase.

SU(2) invariance if V' = 2t, i.e., it is in the isotropic Heisenberg point. The existence of
this SU (2)-symmetric point has a very important consequence for the quantum phase diagram
(Fig. 4) of the bosonic model of Eq. (10): If there is a charge density wave (CDW) instability
at that point, the SU(2) invariance implies that there is also a Bose-Einstein (BE) condensation
and vice versa. The order parameters (OPs) of both phases are different components of a unique
OP in the spin language, i.e., the staggered magnetization of the antiferromagnetic (AF) phase
(t > 0). The z-component of the staggered magnetization is mapped onto the CDW OP for the
bosonic gas, while the transverse component is equivalent to the OP for the BE condensation.
Only one of these two phases, which are coexisting at the SU(2) invariant point, is stable
when we depart from the symmetric point in any of both directions in parameter space (BE
condensation if V' < 2t and CDW if V' > 2t). In this very simple example we can see the
advantages of using a HL (su(2) in this case). In the first place, we can immediately recognize
the high symmetry points. Secondly, we can describe an eventual broken symmetry state at
those points in terms of a unified OP. If we were to use a non-HL to describe the same problem,
we would find coexistence of more than one phase at the high symmetry points. The OPs of
each of those phases are different components of the unified OP that we simply found with the
HL. These ideas are developed in more detail in Section 5.4.

One can generalize [12] this idea to the case of HC bosons with two flavors, i.e., Ny = 2,
that we can call spin ¢ =7, |, with the property that BLBL, = (. In this case, the dictionary
(isomorphic map) is given by (see Fig. 3, where 1(|) is represented by a blue(red) ball)

and single-site (mode) states map as
|-1) +— 5L|0> , |0) <—10), |1) <— l_)iTT|O>. (15)

We will utilize this dictionary in later sections.
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4 Transmutation of statistics: fermionic (anyonic) languages

We know that bosonic languages do not exhaust all possible languages of quantum mechanics.
We have seen that the notion of bosonic languages is closely related to the concept of Lie al-
gebras, since for each class of bosonic languages there is at least one language whose elements
are generators of a Lie algebra. However, the same cannot be done for fermions. This can
be easily seen by noticing that the condition for a bosonic language, Eq. (2), is not valid for
fermions. In addition, the main consequence of Eq. (2) for a bosonic language is that the global
Lie algebra is the direct sum of the local ones associated to each subset .S;. The generalization
of these concepts to fermionic languages can be done by introducing the notion of Lie super-
algebras (see for instance Ref. [19]), albeit we will not need this mathematical construct. The
fermionic languages are associated to Lie superalgebras in the same way the bosonic languages
are associated to Lie algebras. We will only consider the fermionic language generated by the
canonical creation and annihilation operators

{Cias Cjﬂ} = {C}Low C}ﬁ} =0,

(16)
{Ciar Clg} = 63 das ,

and other languages obtained by imposing particular local constraints on the canonical fermions.
These generators, together with the identity, generate the Heisenberg Lie superalgebra. In anal-
ogy to the bosonic languages (see Eq. (2)), the Lie product (in the superalgebra) of two elements
acting in different sites (different subsets S;,8; ) is zero. Thus, instead of having a direct sum
of local Lie algebras as in the bosonic case, we have a direct sum of local Lie superalgebras. In
the case of canonical fermions the local Lie superalgebras are Heisenberg superalgebras.

4.1 Local and non-local transmutation of statistics

We will start by considering multiflavor fermions ciTa (v € [1, N¢]) which satisfy the canonical
anticommutation relations (Eq. (16)). Other types of fermions, usually considered in physics,
can be derived from the canonical ones by imposing particular constraints.

The canonical fermions can be transformed into bosons BiTa which are hard-core in each flavor
(the eigenvalues of n;, = l;iTal;ia are either 0 or 1, see Eq. (9)), i.e., two or more bosons of the
same flavor are not allowed on the same site, but two of different flavors are permitted. In pre-
vious sections we have shown that a physical theory for objects obeying commutation relations
(Lie brackets) can be formulated in terms of a bosonic language. By the present connection we
will be able to extend this statement to fermions (or anyons, in general) through a transmutation
of statistics. The local anticommutation relations are transmuted into anti-commutation rela-
tions (and vice versa) when the creation and annihilation operators are multiplied by the “local
transmutator” 7}1

o=l T (17)

where 73& = exp(im ) _4., Njp) is the “local transmutator,” and we are assuming a particular
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ordering for the flavor indices «.. From the expression for 7Ta it is clear that

~

To=1 Tl =Ta, (18)

Ja

In this way we have established a mapping between fermions and bosons which are operating
locally (on a given orbital or mode j)

Sy = {bl, by, ja—3} = S = {cl,. ¢jor Mja—2} (19)

_]O¢7 JON
So far, we have only transmuted the commutation relations between generators which belong
to the same site or subset ;. For commutation relations of two generators at different sites
we need to introduce a non-local operator Kj. For spinless fermions, in one spatial dimension,
Jordan and Wigner [11] introduced the so-called kink-operator

KM = exp (m 3 m), (20)

1<j

to establish a map between quantum S = 1/2 spins and spinless fermions
S =d K, S; =K' ¢;, Sf =ny—1, 1)

where K; = K jld for a one-dimensional lattice. The generalization of Kj to multiflavored
canonical fermions is straightforward

K = exp (m 3 ﬁla> . (22)
1<j,a

The complete transmutator for canonical fermions leTa is the product of the local and the non-

local components

_ it gttt gt gt

bJa7;aK b3 K- (23)
Similarly, one can extend this idea of transmutation of statistics to particles satisfying general
equal-time anyonic canonical commutation relations defined by an angle 6. To this end we need
to generalize the transmutators to any statistical angle 0 < 6 < 7. By replacing the phase 7 by

0, ICJTO[(H) transmutes the bosons (or fermions) into (Abelian) anyons
~T S e ol A gl
bjata( ) (6) - b_]oclc_]a<9) (24)

Like in the previous example, the local commutation relations are preserved (nj, = a;,a

jalja
~ N ~
Ny =, ! 21 Nja)

5 a1t at
[ajou aja] - [CLJa, Joc] =0 9 (25)
(@0 L] = 1 — 2ia -

ol a

In this particular case, since there is a hard-core condition a;,, Ja = 0, the operators also satisfy

the following local anticommutation relations

{a_]a7 Ja} {a’_]oﬂ Ja} _0

26
{a_]om Ja} = 1 ( )
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Thus, the local anticommutation relations are also preserved under statistical transmutation.
Clearly, Eq. (26) are the local anticommutation relations for canonical fermions. This is not
surprising since the multiflavored hard-core bosons defined by Eq. (9) can be transmuted into
canonical fermions (see Eq. (23)). For operators involving different indices we have to define
an index ordering. For (j, ) > (i, «)

27)

where [A, Bly = AB — exp[if] BA. Even though ICJ.Ta((‘)) is a non-local operator, it does not
introduce long-range interactions if the model has only nearest-neighbor-range terms. The only
consequence of changing the statistics of the particles is a change of the short-range interactions
in the original basis. Therefore, the concept of particle statistics in one dimension becomes
irrelevant since any physical system can be described with a bosonic language without changing
the short-range character of the interactions.

There is another type of HC anyon that is relevant for the generalized Jordan-Wigner transfor-
mations [12] of Sections 4.3 and 5.1. They are defined as

i gt ANl
- b_]oz7;a( ) ( ) - bja](:_]a(e) (28)
with
7] = exp (29 Z njﬁ) and Kj(f) = exp <i9 Z ﬁ17a>. (29)
ﬁ<a 1<j,a
Since the local commutation relations are preserved, we have (75, = aJa oo T Za 1 Mja)
R
[ajon aja] - [ajoﬂ aja] =0 ’ (30)
(@40 Gl] = 1 — jo — 1y -

Again, we need to define an index ordering for the deformed commutation relations involving
operators with different indices. For (j, 3) > (i, «)

(D

In closing this section we would like to emphasize that these lecture notes deals with Abelian
anyons only. The case of non-Abelian anyons is more subtle and beyond the scope of these
lecture notes. In general, it is not clear how to realize non-Abelian representations of the
braid group in terms of “Fock-space particles”. We only know examples in terms of Weyl
parafermions [22].



17.14 Gerardo Ortiz

4.1.1 Example: Spin-1/2 — anyon mapping
The simplest case of a spin-anyon mapping that one can imagine is realized in the case D = 2.
Consider the map (7i; = @}aj and 0 < 60 < 27)

So=Ki(0)a

» J\7 0

Sf = aj K;(0)

J

SF =nj—1 (32)

29

where the non-local statistical operator or transmutator () is given by

K;(0) = exp (iezm) =TI+ 1)) (33)

i<j i<j

since 73 = 7y (for any 6), and satisfy Kj(H)KjT(Q) = K;(G)KJ(G) = 1. In this way we trans-
formed the original localized spin S = 1/2 problem into an itinerant gas of (anyon) particles
obeying the operator algebra (fori < j)

[C_Liv _j]9 = [C_LL C_L‘er]9 =0,

@5, a]_g = 85(1 — (exp[—i6] + 1)) . [7;, a]] = ;] -

J

(34)

Each statistical angle 6 provides a different particle language and defines the exchange statistics
of the particles. The case § = 7 corresponds to canonical spinless fermions [11] while § = 0
represents HC bosons [21]. In all cases one can accommodate up to a single particle (p = 1)
per quantum state, (a})?“ = 0 (i.e, the particles are HC). In order to construct a dictionary one
also needs the inverse mapping

i =T (——+ " -1s) s
i<j }
a; = H <6+z92—|— 1 4 (et — 1) Siz> S; (35)
i<j
\ﬁJ = sz—i_%

4.2 Transmutation of statistics in higher dimensions

We propose the following general expression for Kj
K; = exp (z S w(Lj) m), (36)
1
where w(l, j) is a function to be determined by imposing the transmutation of statistics. This is
equivalent to the antisymmetric condition
i (L)

= —e“0D §f1#£3, w1, 1)=0. (37

One possible solution is based on a generalized Chern-Simons construction for a 2d lattice:
w(l,j) = a(l,j) (see Fig. 5). However, this is not the only possible solution. Another solution
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a(L,j)

J

Fig. 5: One of the possible ways of defining the statistical transmutator K. j2d in 2d. The dotted
line represents a fixed direction on the lattice.

in 2d is

w(Lj) = 71-(@(jl_l1)<1 - 511]1) + @<j2_12> 5llj1)7 (38)
with 1 = lye; +1se; and j = j1€1 + j2€5. The advantage of this solution is that its generalization
to higher dimensions is straightforward (1 = ) [,e,, and a€ [1,d]). For instance, in 3d we
have

w(l,J) = W(@(jl_llxl - 611j1) + @<j2_l2)511j1(1 - 612j2) + @(j3_l3)511j1 6l2j2)' (39)

4.3 Jordan-Wigner transformation for S = 1

Mathematically, the Jordan-Wigner transformation [11] involves the S = 1/2 irreducible repre-
sentation of the Lie group SU(2). In this section we generalize this transformation to S = 1. As
in the case of S = 1/2 HC bosons (Fig. 3) the dimension of the local Hilbert space is D = 3.
In this case, the particle Hilbert space corresponds to spin—% (two flavors) fermions with the
constraint of no double occupancy. This constraint can be taken into account by introducing the

=1
Hubbard operators ¢;,

= c}a(l—nj@) and ¢, = (1—nya) ¢, (@ = 1, —1; & = —a), which form
a subalgebra of the so-called double graded algebra Spl(1,2) [19]. From Fig. 3 one realizes that
57 is the difference between the occupation numbers of the two different fermion flavors. SJ.Jr
must be a linear combination of annihilation and creation operators since we need to annihilate
one fermion to go from 57 = —1 to the 5§ = 0 state and to create the other fermion to go from

S{ = 0to 57 = 1. To simplify notation we introduce the following composite operators
fl=ci+ep, fy=cy+c;. (40)

For spins on a lattice we again fermionize the spins and reproduce the correct spin algebra with
the following transformation

SH=v2 (5}1 K+ KjT Eji) ’ Sji =2 (KjT Cip + 5}1 Kj) S =My — i (41)

j
whose inverse manifests the nonlocal character of the mapping

ij = % exp <i7r Z(Sff) , [y = eXp ( — WZ (S7) ) - (42)

i<j i<j

Ay =Sifl, e=£S, ei=-5f. aﬁz—fj Si (43)

J
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where the string operators K; = exp(im > ; ;1) = [[;; ][, (1 — 2n4,) are the natural gener-
ahzatlons of the ones introduced before. The number operators are defined as n; = nj; + N1
(Nia = G, 1a) These f-operators have the remarkable property that

(L fy =4S 57}, (44)

which suggests an analogy between spin operators and “constrained” fermions.
The generalization to two-flavor (or s = 1/2) HC anyons is achieved by the isomorphic map

( ) + K.T (0) ay7)
V2 (Kl(0)a;, + a K;(0)) (45)

where the non-local transmutator (njo = @, jq,

K;(0) = exp (z’@ Z ﬁi> - H (1 + (explif] — 1) ﬁi> (46)

(N3a7538 = 0ap Njq) allows rotation of the statistics of the particles whose algebra is determined
by i <))

nj = ﬁjl + nﬁ)

[71(17 J,B] [a’Ioz? d},@]@ =0 ’
1 — G_ie ’Flja — ﬁj lfOé = 5, (47)

o at
(@0, G35] _g = 05 .
o 435 —ePala,  ifa#p,

In this case a more restrictive version of the Pauli exclusion principle applies where one can

accommodate no more than a single particle per site regardless of «, i.e., aJan 5 =0, Y(a, B).

4.3.1 Example: the one-dimensional fermionic Hubbard model

The Hubbard model [23] is the most popular model of a strongly interacting system in con-
densed matter physics. It contains a kinetic energy term represented by a hopping integral ¢
plus a local on-site Coulomb repulsion U. The single-band Hubbard Hamiltonian is (¢ =T, )

Ns—1

Hubb - Z JO’ ,]+10 +1g jo + UZ n.]T (ﬁ.li_%) ’ (48)

j=1

Let us introduce a new transformation that is not a generalized Jordan-Wigner mapping but that
works in the case of Hamiltonian H}¢,,. The map is defined by

( —
rf—d K
Sit = GG,

Z p— /\- —_——
Sjl = Njr—73;

. _ 49)
S+ = C}LJ,K.N’
\sz = ﬁj¢_§>
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1
Bond j BH. Site j 1
2

Fig. 6: Fermionic Hubbard chain maps onto a spin S = 1/2 ladder.

where the nonlocal operator Kj, is defined as
KJT = exp (iﬂ'(Z’fLu + Zﬁm)) s Kji = exp <Z'7TZ7A11¢> . (50)
1 1<j 1<j

Using this transformation, the one-dimensional Hubbard Hamiltonian becomes [9] (v = 1, 2)

No—1 Ns
Hibyy =2t > (85,87, +S5,5,,,) + U D 5755, (51)
Jjv j=1

which represents a two-leg ladder made out of two XY-chains coupled by an Ising interaction.
The beauty of this map is that the fermionic Hubbard model and its dynamics can, in principle,
be simulated with ultracold atoms in optical lattices or other quantum simulators.

4.3.2 Example: su(N) spin-particle mappings
The fundamental (quark) representation of su(/N') can be mapped onto an algebra of constrained
fermions (E;ra = a}a(Q = 7)) or HC bosons (l_)JTa = &JTQ(G = 0)) with Ny = N—1 flavors

S = ajatyy — das/N

Ja™]

al/s I 0 o\ O\t —
S O(J) = ajaKj7 Soﬂ(J)—(K‘)Tajﬁ

N; Ny Ny
SVG) = =D M == 80, (52)
a=1 a=1

where 1 < «, 8 < Ny runs over the set of particle flavors, and d}a = d}a Hgi (1 — nyp).
SPL(§) (0 <y, By < Ny) are the components of the SU(N)-spin (i.e., there are N2—1 linear
independent components). It is easy to verify that these are generators of an su(/V) Lie algebra
satisfying the commutation relations

(S (3), SPH)] = Gy S (G) = Gy S7G)- 53

For instance, for V = 3 we have (o« = 1, 2)

SG) =|a,K! np-%  aha, |- (54)
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We can immediately see that the 2 x 2 block matrix S*’(j) (1 < «,3 < 2) contains the
generators of su(2). In general, from the commutation relations (53), we can verify that if
S151(j) are generators of su(N), then S*?(j) are the generators of the subalgebra su(N—1).
This will be useful in Section 5.4.

5 Some applications

We have so far developed an algebraic framework for interacting quantum systems that will
allow us to study complex phenomena characterized by the coexistence and competition of
various broken symmetry states [3-5]. We have also proved a theorem that allowed us to con-
nect all possible languages used in the quantum description of matter. Connecting the various
languages through isomorphic mappings enables us to relate seemingly different physical phe-
nomena, unveil hidden symmetries (i.e., uncover the accidental degeneracies of the original
physical system), and, in some limiting cases, obtain the exact spectrum of the problem (or of
a set of orthogonal subspaces). The ultimate goal is to use that framework to explore those
unconventional complex states of matter from a unified perspective.

5.1 Generalized Jordan-Wigner transformations

In a similar fashion, one could continue for higher spin S irreps and would find that HC particles
have N; = 25 flavors (we call these generalized Jordan-Wigner particles) [12]. Of course, this
is not the only way to proceed. For example, for half-odd integer cases where 25 4+ 1 = 2V a
simple transformation in terms of standard canonical multiflavor fermions is possible [12,9].
We next generalize the JW spin-fermion mapping to any irreducible representation .S [12]. Our
mappings are valid for regular lattices in any spatial dimension d and particle statistics. These
generalized JW mappings constitute a quantum version of the well-known classical spin-lattice-
gas transformations. The significance of these transformations is that they help us understand
various aspects of the same physical system by transforming intricate interaction terms in one
representation into simpler ones in the other. Problems which seem intractable can even be ex-
actly solved after the mapping. In other cases, new and better approximations can, in principle,
be realized since fundamental symmetries which are hidden in one representation are manifest
in the other. From a physical viewpoint, what our spin-particle transformations achieve is an
exact connection between models of localized quantum spins S to models of itinerant particles
with (25 = Ny) color degrees of freedom or “effective” spin s = S —%.

We will consider now a type of fermions which naturally emerges from the strong coupling limit
of models for interacting electrons. If the short range component of the Coulomb repulsion is
much larger than the kinetic energy, the repulsion can be effectively replaced by a constraint
of no double occupancy. This perturbative approach is usually implemented by a canonical
transformation, which leads to an effective Hamiltonian acting on the subspace of states with no
double occupancy. The fermionic subalgebra used to describe this effective model is generated
by the so-called constrained fermions. Therefore, the constrained fermions are obtained by
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Flavors Fy S* Flavors Fy
2
S S —_— S
B [ — S—1 _ 51
S =2 S—2 —_—— 52
it
Y 1 1
0 2 2
. L » 3 e
: 2 2
S22 F 542 P 542
S+ 1 —— —-S+1 —_— 511
S _5 )
v
Integer S Half-odd Integer S

Fig. 7: Constrained fermion states per site for integer and half-odd integer spin S. There are
28 flavors and the corresponding 25 + 1 values of S* are shown in the middle column.

imposing to the canonical fermions a local constraint of no more than one particle per orbital (or
site). This constraint may be incorporated into the fermionic algebra by defining the following
creation and annihilation operators for the constrained fields

ad, = J]0 - ). e =] (1= ) ¢, (55)

TEFy TEFy

where F,, is the set of flavors, with ) = % or 1 depending upon the spin character of the irre-
ducible representation. It is easy to check that the particles generated by this fermionic algebra
satisfy the constraint of single occupancy, i.e., the eigenvalues of n; = Zivil n;, are either O or
1. The most well-known context where these fermions appear in condensed matter physics is
the strong coupling limit of the Hubbard model, which leads to the ¢-J Hamiltonian [23]. The
set of commutation relations those constrained fermions satisfy is

{Eia’éja’} = { Cigy € }_ O

1+ n5, —n; ifo =0,
{G,.c,} = &y v (56)

=l : !
CirCir ifo#0o'.

Notice that HT#U ( —nyr) = 1+ nj, — ny with number operators satisfying 75,750 = 0go Mjo-

The explicit form of the generalization is
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Half-odd integer spin S: 0 € 1 = {-S +1,...,5}

+ o -
Sj = M CGa Kjt Z Nlo Cio+1550 -

06]"1
Sji = 73 K_] CS+1+ ZWU o Ciot1 5

ceF1

2

o#£S

Sio= =S+ (S+0)m,,
0’6]:1
g K T s = 57
Jo T+ S
7=—5 TGJ'—%

Integer spin S: 0 € F; = {-S,...,—1,1,...,S}

_ _t . R
ocF
o#—1,58

S;o= o (K e+ Ky + Y o Gy o

occF
: _
S; = g o Mo

o£—1,5
oceF

_ z

S
oo | SOTIT- o ifo>0,
ET _ KT Hn_l TEF (58)
o T — Sz
: S s [T e <o,

T
TEF1

with 7, = /(S —0)(S+ 0+ 1) (see Fig. 7). [A bar in a subindex means the negative of
that number (e.g., @ = —o).] These mappings enforce the condition on the Casimir operator
sz = S(S + 1). The generalized JW spin-fermion mapping can be easily extended to include a
spin-anyon mapping simply by using the anyonic particles generated by EL}U and a;, [9].

5.2 Connecting seemingly unrelated phenomena: Haldane gap systems

Generically, half-odd integer spin chains have a qualitatively different excitation spectrum than
integer spin chains. The Lieb, Schultz, Mattis, and Affleck theorem [24] establishes that the
half-odd integer AF bilinear nearest-neighbors Heisenberg chain is gapless if the ground state
(GS) is non-degenerate. The same model with integer spins is conjectured to have a Haldane
gap [25]. To understand the origin of the Haldane gap we analyze the S = 1 XXZ Hamiltonian
chain (an overall omitted constant ./ > 0 determines the energy scale)

Hy Z S5 851 + A (S S5+ 57SE) ZHZ +Hj (59)

J
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It is easy to show that the constrained fermion version of this Hamiltonian is a (S = 1/2) t-J,
model [26] plus particle non-conserving terms which break the U (1) symmetry (o =7, )

Heow =Y (5 = 1) (Rgaay — Mjyn) + A <5}05j+1a + s + H-C-> . (60)
J Jo

The charge spectrum of the (S = 1/2) t-J, model is gapless but the spin spectrum is gapped
due to the explicitly broken SU(2) symmetry (Luther-Emery liquid) [26]. Therefore, the spec-
trum of the S = 1 Hamiltonian associated with the ¢-.J, model, with t = —A and J, = 4,
(which has only spin excitations) is gapless. Hence the term which explicitly breaks U (1) must
be responsible for the opening of the Haldane gap. We can prove this by considering the per-
turbative effect that the pairing interaction ja(é}Ué} 15 +H.c.) has on the ¢-.J, Hamiltonian.
To linear order in 7 (> 0), Eq. (60) maps onto the (S = 1/2) XYZ model with 7, = 2(n + A),
Jy, = —2(n — A), and J, = —1. To prove this statement we need to explain first how the
lowest energy subspace of the ¢-J, Hamiltonian can be mapped onto a spinless -1 model (the
complete demonstration is presented in Ref. [26]).
The ¢-.J, Hamiltonian represents a hole-doped Ising model

Hig=Hy +T=05 55, -t (a}aajﬂg + H.c.) . 61)
Jj jo

Consider the set of parent states with A/ holes and Ny — M = N; + N quantum particles,
|Po(Nyt, Nty )), defined as

|Po(Nt, Nyy)) = [T -+ - 00 000 ) (62)
Ns—M M

where Ny (IVy)) is the number of ferro (antiferro)-magnetic links (N + N4y = Ny — M — 1).
These states are eigenstates of the magnetic part of H;__, H .. with energy Ey (N, Npy) =
J, (N4t — Ny )/4, and z-component of the total spin (Ny — N|)/2.

From a given parent state one can generate a subspace of the Hilbert space, M (N, Ny, Nt)),
by applying the hopping operators ij = c}acj 1o THe. (g=1,---,N,—1)to the parent state
and its descendants

|1 (Npp, Nbp)) = Tvy—aro |Po(Nyr, Nyy)) (63)
or, in general,
|Pn(Nip, Npy)) = Ty |Pm( N, Npy)) - (64)

The dimension D of the subspace M (Ny, Ny, Nyy) is (]]\(4) Moreover, these different sub-
spaces are orthogonal and not mixed by the Hamiltonian H;_ ;..

We want to show now that, for a given number of holes M, the subspace generated by the Néel
parent state, M (N3, 0, N+ ) = M, contains the GS. To this end, one has to note that the matrix
elements (B, (Nyp, Nyy)|T|Pm(Nyp, Ny, )) are the same for the different subspaces M. Nonethe-

less, the magnetic matrix elements (®,(Nyy, Noy)|[Ho. [P N, Npy)) = Gom A(Niy, Nyy) are



17.22 Gerardo Ortiz

different for the different subspaces, with A(0, N}) < A(Nay, Npy) , Ny = N+ N5, [Notice
that, for a generic state of a given subspace, Ny + N3 < N, — M — 1 with the equality sat-
isfied by the parent state only, where Nty = Ny and Ny = N, .] Therefore, the Hamiltonian
matrices H 2 (of dimension D x D) in each subspace M, consists of identical off-diagonal
matrix elements (HAL = HM

n,m?’

n # m) and different diagonal ones. These Hermitian matri-
ces can be ordered according to the increasing value of the energy F,; of their parent states,
which is equivalent (for fixed /N4 and M) to ordering by the increasing number of ferromagnetic
(FM) links N4q, HM = HV. For any Ny < N{T, HY = gV 4 B, where B is a positive
semidefinite matrix. Then, the monotonicity theorem tells us that

where Ejy(Ny) are the eigenvalues of HV' arranged in increasing order. Therefore, we con-
clude that the lowest eigenvalue of H,;_;, must be in M, and is F; (0).

The next step consists in showing that, within the GS subspace M, the Hamiltonian H; ;.
maps into an attractive spinless fermion model. If one makes the following identification

|T¢T¢/...oooo...>_>|.......oooo...>7 (66)
-N;:M M Ns—M M

i.e., any spin particle (c independently of the value of o) maps into a single spinless fermion

.]U’

(d;r) in M,, it is straightforward to realize that all matrix elements of H° are identical to the
matrix elements of

Hy=—t>»  (dld;;, + He.) ZanJH (67)
Jj

in the corresponding new basis, with 7; = de

The addition of the pairing term 7 Z ( Gio G +1U + H.c. ) to the ¢-J, Hamiltonian has two dif-
ferent effects in the lowest energy subspace M. The process where the pair of up and down
particles created preserves the Néel ordering of the spins can be mapped into the creation of
two spinless particles in the effective spinless model. The other possible process creates at least
one FM link in the parent state and connects M, with the subspace containing one FM link,
N3 = 1, (the lowest spin excitation) M. This means that the subspaces M are no longer
invariant under the application of the Hamiltonian. However this second process contributes to
second order in 7 (n?/A,) due to the existence of a spin gap between the GSs of M, and M.
Therefore to first order in 1, M| is still an invariant subspace and the reduced Hamiltonian is a
spinless model with a pairing (superconducting) term

H0+nz (did], | + dyd;,, ). (68)

For arbitrary values of .J., t, and hole density v, H|, is equivalent (via the traditional Jordan-
Wigner transformation) to the spin-1/2 XYZ chain Hamiltonian (up to an irrelevant constant)

Hy =" (To 583y + Ty s¥stoy + T (5555 +57)) (69)

J
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and J, = 2(n—1), J, = —2(n+t), and J. = —2=. In the language of our original Hamiltonian
Hyy,, Eq. (60), 7, = 2(n+ A), J, = —2(n — A), and J, = —1. From exact solution of this
model [27], it is seen that the system is critical only when n = 0 while for n # 0 a gap to all
excitations opens.

It is important to note that the GS of the ¢-J, model,
order as the valence-bond-solid (Haldane state) [28, 26, 3], i.e., the correlation function [29]
(W3S exp(im Zi;’:ll S)S7 W) = —(¥g|ngn;s.|¥5) has a power law decay as a function
of distance r to a constant value at the ¢-J, point. This means that the superconducting term

wY), has the same topological long-range

in Hyy,, although it is opening a gap (Haldane gap), does not change the topological order
characterizing the GS. Therefore, the GS is in the same Haldane phase for 0 < n < A. In
the particle language, the Haldane gap is a superconducting gap. Since each hole (S* = 0
state in the spin language) is an anti-phase boundary (soliton) for the Néel ordering, the AF
correlation function is short ranged for the GS of the ¢-.J, model. As demonstrated above, these
solitonic excitations are massless at the ¢-J, point, but become massive (gapped) as soon as
the superconducting term is turned on (n # 0). As the superconducting term is derived from
the transverse part of the Heisenberg interaction, it will not restore the AF ordering along the
z direction. In this way it is easy to understand why the spin-spin correlation function, of the
S = 1 AF Heisenberg chain is short ranged: (S; - S;j.,) ~ e~"/¢ with ¢ the correlation length.

5.3 Unveiling hidden symmetries and exactly-solvable points

We next illustrate the power of these transformations by showing exact solutions to lattice mod-
els previously unsolved by standard techniques [15]. The key is the existence of a general
set of SU(N) spin-particle transformations, fundamental to understanding the order hidden in
complex behavior. More simply put, through the generalized spin-particle transformations, fea-
tures that are subtle and hard to identify in one representation (hidden symmetries) can become
prominent and easy to analyze in another (explicit symmetries). Indeed, these mappings con-
nect seemingly unrelated physical phenomena, establishing equivalence relations among them.
In the hierarchical group, all elements of the operator basis are symmetry generators. This
allows one to study the coexistence and competition of phases, like ferromagnetism and BE
condensation [15], with the corresponding OPs derived from the subgroup generators embed-
ded in the largest global symmetry group of the problem.

Consider the SU(2)-invariant model Hamiltonian

Hy=Jv2Y (cos¢S;-Sj+sing (S;-8))°), (70)
(i)

where J > 0 and summation is over bonds (i, j) of a regular d-dimensional hypercubic lattice
with Vg sites and coordination z. A spin S = 1 operator S; is associated with lattice site i and
locally satisfies the su(2) Lie algebra. The case H; = H, =575 which as we will see displays
a global SU(3) symmetry, can be conveniently written in a (s = %) HC boson representation
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Fig. 8: Coexistence of FM and BE condensation. The correlation function ®+(ij) = ;5 is
expressed in the thermodynamic limit. The inset schematically displays the SU(3) OP living in
an eight-dimensional space with projections onto the SU(2) (FM) and U (1) (BE) axes.

(MjoNjor = 0pe'Njs), Eq. (14), as an extended ¢-J like Hamiltonian,

o ng+n;  3_ _
H = —J;): (bj(,bj(, + H.c.> — 2J<Z;si ;- QJ; (1 - = Zninj) L(71)
ij),o 1) LJ

with s; = 10l 4sb;5 an s = § operator (o denoting Pauli matrices), and 7; = bl,b;, + bl by,

This last form in turn can be rewritten as

Hy = —2J Y P.(i,j), (72)
(i3

where P,(i,j) = P2(i, j) is the projector onto the symmetric subspace (S = 0, 2) corresponding
to the bond (i, j) which indicates that if one finds a state that is symmetric under the permutation
of nearest neighbors r; and r;j, then that state is the GS.

For a system of A/ HC bosons the GS is

(N, S2)) = (b )" (59,0 [0) (73)
N = N; + N, < N,) with an energy Fy = —JN,z and a total S, = N¢5N¢
is the k = 0 component of b, i.e., b, = T 2 e bl,. The quasihole and quasiparticle

. The operator l;;r)o

excited states are

(N, S.)) = 5k0|%(/\f, S.)) quasihole,

) (74)
LN, S.)) = b, [W(N, S.))  quasiparticle,

with the excitation energy of each being wi = Jz(1 Y e — 1) where the sum runs over the
vectors e, which connect a given site to its z nearest neighbors. In the |k| — 0 limit, wi — 0.
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Clearly the GS in Eq. (73) is a FM BE condensate with any partial spin polarization, and the
form of the result is independent of the spatial dimensionality of the lattice. We note that dif-
ferent values of S, correspond to the different orientations of the magnetization M associated
to the broken SU(2) spin rotational symmetry of the GS. We also note that the degeneracy of
states with different number of particles AV indicates a broken U(1) charge symmetry (conser-
vation of the number of particles) associated to the BE condensate. A signature of BE conden-
sation is the existence of off-diagonal long-range order (ODLRO) in the correlation function
Dy (ij) = <510_ng,>. When N; and N| are both of order Ny, there are two eigenvectors with
eigenvalues of order /N and the condensate is thus a mixture.

We can easily compute the magnetization M and phase coherence of these various (non-
normalized) degenerate GSs for a given density p = % For example, in the fully polar-
ized case, N = N;, M = (S§) = p, and the ODLRO @4(ij) = % (r; # r;), where
¢ = 1/Nj;. Similarly, the two-particle correlation function (AIAJ.> = (Pﬁ(ij)%, where
AiT = BiTTl_)iT &1 Therefore the exact GS has two spontaneously broken continuous symmetries
(see Fig. 8).

The exact solution defines the features of the phase diagram that our proposed framework must
qualitatively admit. We will see below that both OPs (magnetization and phase), as promised,
are embedded in an SU (3) order parameter. We remark that the phase coexistence in the boson
representation maps back to a S = 1 FM phase coexisting with another spin phase. To see this
consider the state | (N, 0)) for which (S7) = (SF) = (SY) = 0, which implies that it is a
singlet state in the S = 1 representation. We will show below that this other phase has a pure
spin-nematic ordering.

5.4 Identifying order parameters

The theory of phase transitions starts with Landau’s pioneering work in 1937 [13,14]. One of his
achievements was the realization of the fundamental relation between spontaneous symmetry
breaking and the OP that measures this violation, thus giving simple prescriptions to describe
order in terms of irreducible representations of the symmetry group involved. Another was
the development of a phenomenological scheme to study the behavior of systems near a phase
transition. Landau’s theory has been successfully applied to study phase transitions where ther-
mal fluctuations are most relevant. The field of quantum phase transitions studies the changes
that can occur in the macroscopic properties of matter at zero temperature due to changes in
the parameters characterizing the system. While one generally knows what to do if the OP
is known, Landau’s postulate gives no procedure for finding it. In this section we describe a
simple algebraic framework for identifying OPs.

We have seen that the local OP acquires its simplest form when it is expressed in terms of the
HL. In addition, the generators of this language exhaust all possible local OPs which may re-
sult from the solution of the problem under consideration. In other words, any local OP can
be written as a linear combination of generators of the HL. Consider the bilinear-biquadratic
S = 1 model of Eq. (70). The parameter ¢ sets the relative strength between the bilinear and bi-
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quadratic terms. As shown below, there are four isolated values of ¢ = {r/4,7/2,57 /4,37 /2}
for which H is SU(3) invariant. The only symmetry which is present for any value of ¢ is the
global SU(2) invariance since H,, is a function of the scalar products S; - S;.

The Hamiltonian H, has been the subject of several studies in the last two decades [30-35],
nevertheless, the complete characterization of the different phases is not completely solved. A
semiclassical treatment for d > 1 [30] indicates that there are four different phases: the usual
FM (1/2 < ¢ < 5m/4) and AF (37/2 < ¢ < m/4) phases are separated on both sides by
collinear- (57 /4 < ¢ < 37/2) and orthogonal-nematic (7/4 < ¢ < 7/2) orderings. We will
show below that the collinear- and orthogonal-nematic phases obtained with the semiclassical
approximation are replaced by uniform- and staggered-nematic orderings, respectively.

As we have seen in previous section, the SU(3) spins in the fundamental representation and
the S = 1 SU(2) spins are two equivalent languages. In addition, we have shown in Sections
4.3.2 and 4.3 that the SU (3) spins and the S = 1 SU(2) spins can be respectively mapped onto
s = 1/2 HC bosons. We will use now these transformations to map the spin one Hamiltonian
H, onto its SU(3) spin version. For pedagogical reasons, it is convenient to use the s = 1/2
HC bosons as an intermediate language.

In Section 4.3.2, we introduced a spin-particle transformation connecting SU(N) spins and
multiflavored HC bosons (JW particles, in general). In particular, the fundamental (quark)
representations of su(/N') were mapped onto an algebra of HC bosons with Ny = N — 1 flavors
(see Eq. (52)). For N = 3 the HC bosons have two flavors (o« =T, ]) which can be associated to
an internal spin s = 1/2 degree of freedom. A compact way of writing the SU(3) spin in terms
of HC bosons is

-y by by

win

S =1\ o, ap-% bLyy, |- (75)

bbby a3
In the same way we wrote in Eq. (75) the generators of SU(3) in the fundamental represen-
tation, we can write down the corresponding expressions for the generators in the conjugate

representation
2_ = Al Al
) 3 ny o by R b_jT
R
—by byby i3

When the S=1 operators are replaced by the corresponding functions of SU(3) generators in the
fundamental and the conjugate representations, it turns out that /, up to an irrelevant constant,
is a linear combination of the FM and the AF SU(3) Heisenberg models (0 < oy, 31 < 2)

Hy = JV2Y (cosg S¥A(0) S () + (sing — cos ) SMH S (j)) . (77)
(1.4
Repeated Greek superindices are summed and the site index i runs over one of the two sublat-

tices. This expression for [ illustrates the very important result that any nonlinear interaction
in the original representation is simply a bilinear term in the new representation when mapped
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onto the highest rank algebra [15]. In particular, as mentioned above, there are certain special
points in parameter space where the Hamiltonian is highly symmetric. For example, for ¢ = 7
and %, H, is explicitly invariant under uniform SU (3) transformations on the spins [36], while
for ¢ = 7, 37“, Hy is explicitly invariant under staggered conjugate rotations of the two sublat-
tices. These symmetries are hard to identify in the original spin representation but are manifest
in the SU(3) representation.

In the following we will concentrate on the determination of the quantum phase diagram of
H for spatial dimensions d > 1 to avoid the strong effects of quantum fluctuations which can
restore the continuous symmetry when d = 1. In the previous section we have analyzed the

high symmetry point ¢ = %. We found that the GS has a non-zero OP

S=3 83, (78)
Jj

associated to a broken continuous SU (3) symmetry. This order parameter is the uniform SU(3)
magnetization and corresponds to the coexistence of a FM and a uniform spin-nematic ordering
(see Table 1). This indicates that ¢ = % is a quantum phase transition point separating a FM
phase from a uniform spin-nematic one. Let us consider now the related point ¢ = 7 which
differs in an overall sign from the previous case. This sign changes the interaction from FM to
AF. Therefore, for this new high symmetry point we expect to get a GS characterized by the
staggered order parameter

Sst =Y _exp(iQ-j) 8(j). (79)

J

where Q) is the AF wave vector. It is clear from the left column of Table 1, that this staggered
SU(3) OP corresponds to the coexistence of the staggered SU(2) magnetization

Mst = Y _exp(iQ-j) S;, (80)
J

and the staggered nematic OP

Nor = exp(iQ-j) Nj . (81)
J

Nj is the symmetric and traceless component of the tensor obtained from the tensorial product
of two vectors S;. Hence, ¢ = 7 is a transition point separating the usual AF ordering from a
staggered spin-nematic phase characterized by the OP of Eq. (81).

We will consider now the other two high-symmetry points, ¢ = 7, 37 For ¢ = 37“ the SU(3)
symmetry is generated by the staggered operator

Se =Y _8G)+>_83), (82)
jeA jeB

where A and B denote the two different sublattices of a hypercubic lattice. In this case, we
have a FM interaction between S(i) and S(j), and then S, is the OP characterizing the broken
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Table 1: Generators of OPs and its relations for three different languages AN y. Each column
represents a language, in this case dim I'y = D = 3. M stands for magnetism, SN spin-nematic,
BE Bose-Einstein condensation, and CDW charge-density wave. su(3)A FR is the hierarchical
language with FR meaning fundamental representation.

u2)ANS =1 HC bosons A a« =2 | su(3) AFR
ST — \%(801 +820 +802 _|_$10) §% = %(812 +S21)
M SY — f (801 —|—820 802 _810) M — %(812 821)
9% — Sll —822 §% = %(811 822) Saﬁ
(57)2 = % %(312 + 8§21 4 500y 1’4 — Slo a8 e
(Sz)2 _ % _ §oo b’r = §20 [0’2}
BE _ _
(5797} =% s by = fre=o
{S.L Sz} — 801 S20 _ g02 +810) b, =802
{sv,57} = %211-(301 —80+8% -8 | cpw {ﬁ: 2 _ g

SU(3) symmetry of the GS. It is interesting to note that when the SU(3) OP S, is reduced
with respect to the SU(2) group, the two coexisting OPs are the staggered magnetization (see
Eq. (80)) and the uniform nematic OP

N=>"Nj.
J

(83)

In other words, if we apply an SU(3) rotation generated by S, to the staggered magnetization

we get the uniform nematic order parameter, and vice versa, the uniform nematic OP is rotated

into the staggered magnetization. This can be immediately seen by writing down the compo-

nents of the local SU (2) magnetization and the nematic OP as a function of the local generators

of su(3) in the conjugate representation S(j)

- \_/_%(301 +320 +302 +310) 7
SY = E(S‘Ol _I_SQO _ S~02 _ 5*10) 7
Sz = 322 _ 311 7
\2 2 1 312 321 G00 2\2 2
(5 =5 = 7+ +8T), () -3 =
{9°,8Y} = (8" -8,
1 - ~ ~ ~
{SI,SZ} _ E(‘5*01 - 820 o 802 +810> ’
-1 - ~ ~ ~
{Syysz} — (801 . 820 —|—SO2 . 810) ]

V2i

G00
-S ,

(84)
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Fig. 9: Quantum phase diagram of the bilinear-biquadratic S = 1 model for d > 2.

Comparing these expressions to the ones in Table 1, we see that when we change from S(j) to

S(j), there is a change in sign for the three components associated to the magnetization, while

the five components corresponding to the nematic parameter remain the same. Then, it is clear

that S, describes the coexistence of a staggered magnetization and a uniform nematic ordering.
3T

Therefore, the conclusion is that ¢ = < separates an ordinary AF phase from the uniform

nematic ordering.

The last high symmetry point to be considered is ¢ = 7. In this case the coupling between S(i)
and S (j) turns out to be positive, i.e., AF, and therefore we expect to get a broken continuous
symmetry characterized by the OP

S.=) _8G)-> 83). (85)

jeA jeB

From the considerations above, it is clear that S_ describes the coexistence of ferromagnetism

(uniform magnetization) and staggered nematic order. Hence, ¢ = T is a transition point
g gg 2 |y

separating these two phases.

) Global SU(3) OP | OP 1 | OP2
5m/4 (FM-UN) S§=Y"5(j) M N
7/4 (AF-SN) SSTZJ e IS (j) Mst Nst
37/2 (AF-UN) S+—Zc;(j) + ZS’(J') Mgt N
7/2 (FM-SN) || S_ —Ji:zsg) —ié(j) M Nst

Table 2: Order parameters describing the different phases of the bilinear-biquadratic S = 1
Heisenberg model for d > 1. ¢ indicates the phase boundary where the two phases in paren-
theses coexist.
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In this way, by identifying the high-symmetry points of H4 we have determined the quantum
phase diagram of this model (see Fig. 9). In addition to the transition points, we have obtained
explicit expressions for the OPs associated to each phase for any d > 1; they are summarized in
Table 2. We can also predict from this analysis that the four transition points (high-symmetry
points) correspond to first-order quantum phase transitions. In each phase, the corresponding
OP has a finite value and they coexist pairwise at the high-symmetry points. However, as soon
as we depart from this point in one or the other direction in ¢, the SU(3) symmetry is removed
and one of the OPs goes discontinuously to zero. In other words, the states with pure magnetic
(FM or AF) and nematic orderings belong to different representations of SU (2) (the remaining
symmetry) so only one of them remains as the GS when the SU (3) symmetry is lifted.

In closing this section let us summarize the main steps to follow in order to obtain and classify
the local OPs.

e Identify the group Gy = SU(D) associated to the HL whose fundamental representation
has the same dimension D as the local Hilbert space of the problem. The generators of
this language exhaust all possible local OPs.

e Identify the group of global symmetries of the Hamiltonian G which are direct products
of local transformations.

e Given that G C Gy, one can classify the generators of Gy, in the fundamental represen-
tation according to the irreps of G. Each irrep leads to a different broken symmetry OP.

e Key: existence of a general set of SU(D) transformations.

5.5 Hierarchical mean-field theories

In this section we are interested in using our algebraic framework to develop new approxima-
tion schemes whenever exact solutions are not available. In previous sections we outlined a
framework to identify OPs based upon isomorphic mappings to a HL defined by the set of op-
erators which in the fundamental representation (of dimension D) has the largest number of
symmetry generators of the group. Any local operator can be expressed as a linear combination
of the generators of the HL.. The building of the HL depends upon the dimension D of the local
Hilbert space, #;, modeling the physical phenomena. For instance, if one is modeling a doped
AF insulator with a ¢-J Hamiltonian [23], then D = 3 (i.e., there are three possible states per
site) and a HL is generated by a basis of the Lie algebra su(3) in the fundamental represen-
tation [15]. As explained and proved in Refs. [15, 9], there is always a HL associated to each
physical problem. These ideas complement Landau’s concept of an OP providing a mechanism
to reveal them, something that is outside the groundwork of his theory. Indeed, Landau’s theory
does not say what the OPs should be in a general situation.

As mentioned above, these isomorphic mappings not only unveil hidden symmetries of the orig-
inal physical system but also manifestly establish equivalences between seemingly unrelated
physical phenomena. Nonetheless, this is not sufficient to determine the exact phase diagram of
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the problem: One has to resort to either numerical simulations with their well-known limitations
or, as will be shown in here, to a guided approximation which at least preserves the qualitative
nature of the possible thermodynamic states. A key observation in this regard is the fact that
typical model Hamiltonian operators written in the HL become quadratic in the symmetry gen-
erators of the hierarchical group, and this result is independent of the group of symmetries of
the Hamiltonian. This suggests a simple approximation, based upon group theoretical grounds,
which deals with competing orders on an equal footing and will be termed hierarchical mean-
field theory (HMFT) [37,38]. In a sense, that will become clear below, HMFT constitutes the
optimum MF or saddle-point solution that approximates the energy and correlation functions of
the original problem. The HMFT is distinctly suitable when the various phases displayed by
a system are the result of competing interactions and non-linear couplings of their constituents
matter fields.

Since the su(N) languages provide a complete set of HLs [9], any model Hamiltonian can be
written in a similar fashion once we identify the appropriate HL and apply the corresponding
SW mapping in the fundamental representation (the ordering operators will, of course, have a
different meaning and algebraic expressions). The key point is that the Hamiltonian operator in
the HL becomes quadratic in the symmetry generators of the hierarchical group (SU(3) in the
present case).

The idea behind any MF approximation is to disentangle interaction terms into quadratic ones
replacing some of the elementary mode operators by their mean value. The crux of our HMFT
is that the approximation is done in the HL where all possible local OPs are treated on an equal
footing and the number of operators replaced by their mean value is minimized since the Hamil-
tonian is quadratic in the symmetry generators. In this way, the information required is minimal.
In mathematical terms, given OO = (O})O;; + OL(O;) — (O})(Oy) + (Of — (O})) (O —
(Oij)), for an arbitrary bond-operator O;, the approximation amounts to neglecting the latter
fluctuations, i.e., O%Oij R~ <(9i§>(9ij + OiTj(Oij> - (OD (Oj)- An important result is that all local
OPs are treated equally and, moreover, symmetries of the original Hamiltonian related to the
OPs are not broken explicitly in certain limits. In a sense, this is the best MF approximation
that can be performed, i.e., the best non-interacting Hamiltonian that approximates the energy
and correlation functions of the original problem.

We study now a simple model which displays coexistence and competition between antifer-
romagnetism and BE condensation (superfluidity). The model represents a gas of interacting
spin-1/2 HC bosons with Hamiltonian (¢ > 0)

H= tz <B§al_)ja + H.C.) + JZ(Si - S — ﬁlj“) + Vzﬁiﬁj - ﬂZﬁJ ) (86)
(i) (iLJ) J

(Lj),o

where s; = %Z_)JTQEWEJ- g is an s = 3 operator (¢ denoting Pauli matrices). Notice that H is an
extended ¢-.J-like model of HC bosons instead of constrained fermions. These HC bosons could
represent three-state atoms, like the ones used in trapped BE condensates (BECs), in an optical

lattice potential. For the sake of simplicity we will only consider the AF, J > 0, case.
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In the HL, H represents a Heisenberg-like Hamiltonian [12] in the presence of an external
magnetic field y' (Jo, 5, = J,0, With 0 < o, 51 < 2)

H=Y Jop, S ([H)S" (j) — i 2800 (87)
(i.J)

with Joo =V — J/2, Joo = Joo = t, Ju1 = Jio = Jop = J/2, and pi' = £(2V —J/2) — pu. This
HL furnishes the natural framework to analyze the symmetries of the Hamiltonian /7. There
is always an SU(2) spin symmetry generated by S —82%2, §'2 and §*'. When ¢/ = 0 and
V' = 2t, there are five additional generators of symmetries related to the charge degrees of
freedom. Moreover, if J = V' = 2¢ there is full SU(3) symmetry. For i/ # 0, the only charge
symmetry that remains is a U (1) symmetry generated by S% (conservation of the total charge).
In this way the HL, leading to a unique OP from which all possible embedded orderings are
derived, provides a unified description of the possible thermodynamic states of the system. Yet,
it remains to establish the orderings that survive as a result of tuning the parameters of the
Hamiltonian or external variables such as temperature and particle filling.

For arbitrary values of the parameters .J/t and V/t we do not know a priori how to determine
exactly the phase diagram of H (we know that for J =V = 2t = 2?’] < 0, we can find the
exact GS and lowest energy states [15]). The resulting Hamiltonian (V' = 2t with no loss of
generality) is up to irrelevant constant terms

H=-Y" ( AfA;+t> Bl MJ> — uznjo , (88)
J

(i.J) o=T{

where 1 = zt — ji and the ordering operators

Al = vfbl — ] o]

vl et (89)
Bl =l pl — plp!
oij io”jo i0”jo

which transform as singlets with respect to the generators of SU(2) spin and charge symmetries,
T Ql12(21) 12(21) _ (Rt 10(20) 10(20)

respectively: [Aj;, S (i) + SV ()] =0 = (B S ) (i) +S10C0 (5)].

The resulting MF Hamiltonian reads

~ JA
H__Z< 2 <AT +A +tBZ Bz'lj—i_BO'l_])) _,u;njO"i_)\jZanja (90)

(i) o=T{

keRBZ o=l =11

where the sum of momenta Kk is performed over the reduced Brillouin zone (RBZ) with AF
ordering wave vector Q, with A4, = —2JAw, Agp = —4tBx, with v = %de“"g (5 are
nearest-neighbor vectors). Note that when B = 0, the SU(2) spin and U(1), §°°, symme-
tries are conserved; the opposite case A = 0 preserves S'0O1 4 §20002) gpd S 4 S22 — SO0
symmetries. In Eq. (91) we have only considered homogeneous solutions.
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Fig. 10: Order fields A and B as a function of the density pq for different values of J/t and
inverse temperature 3 = 10 (in units of t ). The filled circle on the density axis indicates a
quantum critical point.
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Generalization of these ideas to include clusters of many elementary degrees of freedom, e.g.,
quantum spins, can be found in [38]. In practice, we tile the original many-body lattice system
into clusters preserving most of the symmetries of the Hamiltonian and represent each many-
body state by the action of a composite operator over the vacuum of a new enlarged Fock space.
The mapping that relates the original set of operators and the new composite ones is canonical
if a physical constraint is implemented. As a consequence, the Hamiltonian of study can be
exactly re-expressed in the new language of composite operators and treated by standard many-
body techniques, with the advantage that the intra-cluster quantum correlations are computed
exactly while the inter-cluster are dealt with in a MF way. The HMFT approach has been
implemented successfully in a variety of frustrated strongly correlated system [39—43].

5.6 Quantum simulations

A new challenge in information theory and computer science has recently emerged as the re-
sult of exploiting the fundamental laws of quantum mechanics. This new set of ideas comprise
what is known as “Theory of Quantum Computation and Quantum Information” and has as a
major objective to process information in a way that exceeds the capabilities of classical in-
formation [44]. The device that performs the manipulation of information is named quantum
computer and the standard unit of information is the qubit (i.e., a two-level system). The close
relationship between information processing and the physical phenomena leading to it is per-
haps the most remarkable aspect of this new paradigm. Since information can be represented in
many different physical forms, and easily converted from one form to another without changing
its meaning, quantum information represents a new abstract archetype for information process-
ing independent of the precise implementation of the quantum computer, only requiring at least
one physical representation to be useful.
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A key fundamental concept in information theory is the realization [45, 46] that a model of
computation is intimately connected to a physical system through a closed operator algebra. In
other words, each physical system is associated to a certain language (e.g., spin S = 1/2) and
thus to an algebra realizing it (e.g., Pauli algebra), and that particular algebra may become a
possible model of computation. An immediate consequence is that an arbitrary physical system
can be simulated by another physical system (e.g., a quantum computer) whenever there exists
an isomorphic mapping between the different operator algebras representing the systems [45].
Simple examples are provided in Refs. [45], [46], and [47], where it is shown how to simulate a
1d impurity Anderson model using a quantum computer based on an array of spins S=1/2 [48].
It is very clear the power that our fundamental theorem has by providing the formal connec-
tions (isomorphisms) between the different languages of nature. Therefore, the implications for
quantum information and computation are rather obvious, namely that one can identify quan-
tum resources and define convenient models of computation, or imitate an arbitrary quantum
phenomena with a given quantum computer given the appropriate dictionaries to translate na-
ture’s language to the machine language. In this way, one can recognize the subject of quantum
simulations as one of those areas where the concepts of language and dictionaries developed in
the present lecture are of particular relevance.

Physical phenomena can be simulated or imitated by a quantum network [45,47,49] with the
help of a quantum computer. Imitation is realized through a quantum algorithm which consists
of a quantum network with a means to repeat blocks of instructions. A quantum network is
defined by a sequence of universal gates (unitary operations), applied to the system for the pur-
pose of information processing, and measurements in a fixed temporal order. The measurement
operation is mostly needed to classically access information about the state of the system. Every
matrix which represents a reversible operation on quantum states can be expressed as a product
of the one and two-qubit gates, and the minimum set needed to represent any such matrices is
called a universal set of gates.

When trying to simulate a problem using quantum information processing, an important issue
is to determine how many physical resources are needed for the solution. The main resources
are quantum space, the number of qubits needed, and quantum time, the number of quantum
gates required. The accounting of algorithmic resources forms the foundations of quantum
complexity theory. One of the objectives in quantum information theory is to accomplish im-
itation efficiently, i.e, with polynomial complexity, and the hope is that quantum imitation is
more efficient (i.e., needs less resources) than classical imitation. There are examples that sup-
port such hope (e.g., fermion simulations with polynomially bounded statistical errors [45,47]),
although there is no general proof that indicates the superiority of quantum over classical im-
itations, regarding efficiency. Indeed, there is, so far, no efficient quantum algorithm that can
determine the GS (or, in general, the spectrum) of a given Hermitian operator [47], despite oc-
casional claims. It is known that the ability to resolve this question leads to efficient algorithms
for NP-hard problems like the traveling salesman conundrum.

A very important observation, in connection with the notion of efficiency, is a corollary of our
fundamental theorem: Given two languages, the generators of one of them can be written as a
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polynomial function, with polynomial complexity in the number of modes or resources, of the
generators of the other and vice versa. This result implies that the important algorithmic step
of translation from the language of the system to be imitated to the machine language does not
change the complexity of the quantum space and time.

Certainly, a general purpose quantum computer is not the only device that allows simulation
of physical phenomena in nature (with its many languages). Imitation can also be achieved
in a conceptually different manner using a quantum simulator. The main distinction is the
lack of universality of the latter. An example of a quantum simulator is an optical lattice [50]
which is specifically designed to imitate a given physical Hamiltonian and where there is limited
quantum control. The possibility of control and tunability of the interactions of the elementary
constituents offers the potential to design new states of matter. This is of particular relevance
in strongly correlated matter where these quantum simulators furnish the benchmark to test
theories and approximations. Again, the importance of the languages and dictionaries developed
in this manuscript is clear and concrete.

6 Concluding remarks

The development of exact algebraic methods is one of the most elegant and promising tools to-
wards the complete understanding of quantum phases of matter and their corresponding phase
transitions. We presented an algebraic framework aimed at uncovering the order behind the
potential multiplicity of complex phases in interacting quantum systems, a paradigm at the
frontiers of condensed matter physics. We argued that symmetry, and topology (not so much
explained in this lecture notes), are key guiding principles behind such complex emergent be-
havior. Emphasis has been made in developing a systematic mathematical structure that allows
one to attack these problems within a single unifying approach.

A key result, from which all other results follow, is the proof of a fundamental theorem that
permits to connect the various operator languages used in the description of the properties of
physical systems. This theorem together with the notion of transmutation of statistics provides
the tools necessary to unify the quantum description of matter. To formalize this unification we
needed to rigorously define the concepts of language and dictionary (isomorphism): To model
a particular physical phenomena we commonly identify the main degrees of freedom of the
problem and associate to them certain operators. One can furnish the resulting set of operators
(that we call language) with an algebraic structure and ask whether two different languages have
something in common. The fundamental theorem tells us that two languages can be connected
whenever the dimension of their local Hilbert spaces are equal. We expanded the notion of local
Hilbert space to embrace different Hilbert space decompositions (we saw, for instance, how to
map the Hilbert space of a bond to a site). The resulting one-to-one language mappings we
named dictionaries (a traditional example of which is the Jordan-Wigner mapping).

In the course of the presentation we showed, through example, many different dictionaries re-
lating diverse operator languages. In this way we defined universality of behavior as an equiv-
alence relation between seemingly different physical phenomena which share exactly the same
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underlying mathematical structure as a result of one-to-one language mappings (for example,
the spin nematic order and Bose-FEinstein condensation of flavored hard-core bosons). If it is
the whole system Hamiltonian that maps onto another in a different language (like the example
we described above), the universality applies to all length and time scales. However, some-
times only particular invariant subspaces of the original Hamiltonian map onto another system
Hamiltonian. In this case, universality is only manifested at certain energy scales. The ¢-J,
chain model provides a beautiful example of the latter situation: the low-energy manifold of
states maps onto an XXZ model Hamiltonian, which can be exactly solved using the Bethe
ansatz [26] (the ¢-J, model is quasi-exactly solvable). Out of the many languages one can use
to describe a given physical problem there is a class, we named hierarchical language, which has
the advantage that any local operator can be expressed as a linear combination of its generators.
In this way, hierarchical languages provide the tools necessary to classify order parameters.

There are several reasons why our algebraic framework constitutes a powerful method to unveil
complex phenomena in interacting quantum systems. Most importantly: To connect seemingly
unrelated physical phenomena (e.g., models for high-temperature superconductors or heavy-
fermion systems and quantum spin theories); to identify general symmetry principles behind
complex phase diagrams; to unveil hidden symmetries (and associated order parameters) to
explore new states of matter with internal orders not contemplated before; to obtain exact solu-
tions of relevant physical models that display complex ordering at certain points in Hamiltonian
space; and to find new approximations which do not privilege any of the competing interactions.
For instance, in the hierarchical mean-field theory approach, we approximated the dynamics
(and thermodynamics) treating all possible local order parameters on an equal footing. One
may say that this procedure follows the guiding principles of maximum symmetry and minimum
information. This allowed us to obtain in a simple manner the phase diagram of a problem ex-
hibiting coexistence and competition between antiferromagnetism and superfluidity. Combined
with an analysis of fluctuations (to analyze the stability of the mean-field) one now has a simple
machinery to design phase diagrams.

Several important concepts have been left out of this lecture notes. For instance, the notion
of emergent symmetry [9], i.e., the fact that new symmetries not realized in the Hamiltonian
describing the system can emerge at low energies [51]. There is one concept, in particular,
that deserves special attention. This is the notion of a duality transformation. Dualities ap-
pear in nearly all disciplines of physics and play a central role in statistical mechanics and field
theory [52,53]. When available, these mathematical transformations provide an elegant and ef-
ficient way to obtain information about models that need not be exactly solvable. Most notably,
dualities may be used to determine features of phase diagrams such as boundaries between
phases, and the exact location of some critical/multicritical points. Historically, dualities were
introduced in classical statistical mechanics by Kramers and Wannier [54] as a relation between
the partition function of one system at high temperature (or weak coupling) to the partition func-
tion of another (dual) system at low temperatures (or strong coupling). This relation allowed
for a determination of the exact critical temperature of the two-dimensional Ising model on a
square lattice before the exact solution of the model was available. Later on, it was noticed that,
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due to the connection between quantum theories in d space dimensions and classical statistical
systems in d + 1 dimensions, dualities can provide relations between quantum theories in the
strong coupling and weak coupling regimes [52]. Our work is motivated by a quest to realize a
simple unifying framework for the detection and treatment of dualities.

An algebraic approach to dualities and self-dualities for systems of arbitrary spatial dimen-
sionality d has been developed in Refs. [55, 10]. This theory of dualities is based on the notion
of bond algebras [56, 10]. It deals with classical and quantum dualities in a unified fashion
explaining the precise connection between quantum dualities and the low temperature (strong-
coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Eu-
clidean) path integrals) [57]. Its range of applications includes discrete lattice, continuum field,
and gauge theories. Dualities are revealed to be local, structure-preserving mappings between
model-specific bond algebras that can be implemented as unitary transformations, or partial
isometries if gauge symmetries are involved. This characterization permits to search systemati-
cally for dualities and self-dualities in quantum models of arbitrary system size, dimensionality
and complexity, and any classical model admitting a transfer matrix or operator representation.
In particular, special dualities like exact dimensional reduction, emergent, and gauge-reducing
dualities that solve gauge constraints can be easily understood in terms of mappings of bond al-
gebras. The transformations are, in general, quite non-local in the mapped degrees of freedom.
Non-local transformations like dual variables and Jordan-Wigner dictionaries are algorithmi-
cally derived from the local mappings of bond algebras. This permits to establish a precise
connection between quantum dual and classical disorder variables. Our bond-algebraic ap-
proach goes beyond the standard (Fourier transformation) approach to classical dualities (see,
e.g., Appendix 1 of Ref. [10]), and could help resolve the long-standing problem of non-Abelian
duality transformations [58]. Several interesting examples and applications, including location
of phase boundaries, spectral behavior and, notably, how bond-algebraic dualities help con-
strain and realize fermionization in an arbitrary number of spatial dimensions, can be found in
Refs. [10] and [59] .



17.38 Gerardo Ortiz

References
[1] P.W. Anderson, Science 177, 393 (1972)

[2] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen:
Quantum Information Meets Quantum Matter (Springer, New York, 2019)

[3] Z. Nussinov and G. Ortiz, Ann. Phys. (NY) 324, 977 (2009)
[4] Z. Nussinov and G. Ortiz, Proc. Nat. Ac. Sc. 106, 16944 (2009)

[5] P.W. Anderson: Basic Notions of Condensed Matter Physics
(Addison-Wesley, Redwood City, 1992)

[6] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola,
Phys. Rev. Lett. 92, 107902 (2004)

[7] J.K. Jain: Composite Fermions (Cambridge University Press, 2007)
[8] J. Zaanen, SciPost Physics 6, 061 (2019)
[9] C.D. Batista and G. Ortiz, Adv. in Phys. 53, 1 (2004)
[10] E. Cobanera, G. Ortiz, and Z. Nussinov, Adv. in Phys. 60, 679 (2011)
[11] P.Jordan and E. Wigner, Z. Phys. 47, 631 (1928)
[12] C.D. Batista and G. Ortiz, Phys. Rev. Lett. 86, 1082 (2001)

[13] L.D. Landau and E.M. Lifshitz: Statistical Physics
(Butterworth-Heinemann, Oxford, 1980)

[14] H. Nishimori and G. Ortiz: Elements of Phase Transitions and Critical Phenomena
(Oxford University Press, 2011)

[15] C.D. Batista, G. Ortiz, and J.E. Gubernatis, Phys. Rev. B 65, 180402 (2002)
[16] EJ. Murray and J. von Neumann, Ann. Math. 37, 116 (1936)

[17] O. Bratteli and D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics
Vols. I and II (Springer, New York, 1987-97)

[18] N. Jacobson: Basic Algebra I (W.H. Freeman and Company, New York, 1985), and
Basic Algebra Il (W.H. Freeman and Company, New York, 1989)

[19] J.E. Cornwell: Group Theory in Physics (Academic Press, San Diego, 1997)



Algebraic Methods 17.39

[20] A monoid is a triple (9%, O, 1) in which 91 is a non-empty set, O is an associative product
in 9, and 1 is an element of 9 such that d(1,a) = a = O(a,1) forall a € M. In
this way we see that the concept of monoid generalizes the notion of group; a group is a
monoid all of whose elements are invertible. A monoid can also be defined as a semigroup
(91, O) with an element that is the unit for O, i.e., 1.

[21] T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956)

[22] E. Cobanera and G. Ortiz, Phys. Rev. A 89, 012328 (2014);
Erratum, Phys. Rev. A 91, 059901 (2015)

[23] A. Auerbach: Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

[24] E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. 16, 407 (1961);
I. Affleck and E.H. Lieb, Lett. Math. Phys. 12, 57 (1986)

[25] E.D.M. Haldane, Phys. Lett. A 93, 464 (1983)
[26] C.D. Batista and G. Ortiz, Phys. Rev. Lett. 85, 4755 (2000)

[27] R.J. Baxter: Exactly Solved Models in Statistical Mechanics
(Academic Press, London, 1990)

[28] I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys. Rev. Lett. §9, 799 (1987)
[29] M. Den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989)

[30] N. Papanicolau, Phys. Lett. A 116, 89 (1986); Nucl. Phys. 305, 367 (1988)

[31] J. S6lyom, Phys. Rev. B 36, 8642 (1987)

[32] J.B. Parkinson, J. Phys. C 21, 3793 (1988)

[33] M.N. Barber and M.T. Batchelor, Phys. Rev. B 40, 4621 (1989)

[34] A. Klumper, Europhys Lett. 9, 815 (1989); J. Phys. A 23, 809 (1990)

[35] G. Fath and J. S6lyom, Phys. Rev. B 51, 3620 (1995)

[36] C.K. Lai, J. Math. Phys. 15, 1675 (1974); B. Sutherland, Phys. Rev. B 12, 3795 (1975)
[37] G. Ortiz and C.D. Batista, Phys. Rev. B 67, 134301 (2003)

[38] L. Isaev, G. Ortiz, and J. Dukelsky, Phys. Rev. B 79, 024409 (2009)

[39] L. Isaev, G. Ortiz, and J. Dukelsky, Phys. Rev. Lett 103, 177201 (2009)

[40] L. Isaev, G. Ortiz, and J. Dukelsky, J. Phys.: Condens. Matter 22, 016006 (2010)

[41] L. Isaev and G. Ortiz, Phys. Rev. B 86, 100402(R) (2012)



17.40 Gerardo Ortiz

[42] D. Huerga, J. Dukelsky, N. Laflorencie, and G. Ortiz, Phys. Rev. B 89, 094401 (2014)
[43] D. Huerga, S. Capponi, J. Dukelsky, and G. Ortiz, Phys. Rev. B 94, 165124 (2016)

[44] See for example M.A. Nielsen and I.L. Chuang: Quantum Computation and Information
(Cambridge University Press, 2000)

[45] G. Ortiz, J.E. Gubernatis, R. Laflamme, and E. Knill, Phys. Rev. A 64, 22319 (2001)
[46] G. Ortiz, E. Knill, and J.E. Gubernatis, Nucl. Phys. B 106, 151 (2002)

[47] R. Somma, G. Ortiz, J.E. Gubernatis, R. Laflamme, and E. Knill,
Phys. Rev. A 65, 42323 (2002)

[48] C. Negreverne, R. Somma, G. Ortiz, E. Knill, and R. Laflamme,
Phys. Rev. A 71, 032344 (2005)

[49] R. Somma, G. Ortiz, E. Knill, and J.E. Gubernatis, Int. J. of Quant. Inf. 1, 189 (2003)
[50] M. Greiner et al., Nature 415, 39 (2002)

[51] G. Ortiz, E. Cobanera, Z. Nussinov, Nucl. Phys. B 854, 780 (2012)

[52] R. Savit, Rev. Mod. Phys. 52, 453 (1980)

[53] E. Witten, Phys. Today 50, 28 (1997)

[54] H.A. Kramers and G.H. Wannier, Phys. Rev. 60, 252 (1941)

[55] E. Cobanera, G. Ortiz, and Z. Nussinov, Phys. Rev. Lett. 104, 020402 (2010)

[56] Z. Nussinov and G. Ortiz, Phys. Rev. B 79, 214440 (2009)

[57] Z. Nussinov, G. Ortiz, and M.-S. Vaezi, Nucl. Phys. B 892, 132 (2015)

[58] E. Cobanera, G. Ortiz, and E. Knill, Nucl. Phys. B 877, 574 (2013)

[59] Z. Nussinov, G. Ortiz, and E. Cobanera, Phys. Rev. B 86, 085415 (2012)



	The many languages of nature
	Algebraic approach to interacting quantum systems
	Bosonic and hierarchical languages
	Languages and dictionaries: a fundamental theorem
	Hierarchical language

	Transmutation of statistics: fermionic (anyonic) languages
	Local and non-local transmutation of statistics
	Transmutation of statistics in higher dimensions
	Jordan-Wigner transformation for S=1

	Some applications
	Generalized Jordan-Wigner transformations
	Connecting seemingly unrelated phenomena: Haldane gap systems
	Unveiling hidden symmetries and exactly-solvable points
	Identifying order parameters
	Hierarchical mean-field theories
	Quantum simulations

	Concluding remarks

