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15.2 Nikolay Prokof’ev

1 Introduction

This contribution reviews the principles and key ideas behind the Diagrammatic Monte Carlo
method (DiagMC), as well as some technical details important for its efficient practical imple-
mentation. In short, DiagMC is a set of generic rules for unbiased sampling of the configuration
space that involves a varying number of continuous variables. Applications of the method in-
clude series of connected Feynman diagrams and non-linear integral equations, lattice- and
continuous-space path-integrals, continuous-time impurity-solvers, and any problem where the
answer can be formally represented by the sum of multi-dimensional integrals. Once the con-
figuration space to be simulated is defined, the DiagMC method will ensure that stochastic
sampling is performed without systematic bias, leaving statistical error bars as the only source
of uncertainty on the final answer.
Properties of large systems cannot be obtained by direct enumeration of the exponentially grow-
ing configuration/Hilbert space, or ν-space, for brevity. A variety of numerical schemes rely
on mathematical formulations instead, which, if solved, would reproduce the same statistical
predictions as the original model. Path integrals, high-temperature expansions, and Feynman
diagrams belong to this category of methods. I will focus on the Monte Carlo (MC) sampling
technique [1], which is, arguably, among the most powerful universal tools designed to deal
with large and complex ν-spaces, and explain in detail how it works in the space of connected
Feynman diagrams. While each implementation is model and representation specific, most rules
and considerations are generic.

2 Diagrammatic Monte Carlo

In the most abstract form one is interested in knowing some quantity Q(y) as a function of vari-
able y (in general, the multi-dimensional variable y may include both continuous and discrete
components) when the answer is expressed as a series of multi-dimensional integrals/sums

Q(y) =
∞∑
n=0

∑
T

∫
· · ·
∫
dx1 · · · dxnD(n,T;x1, . . . ,xn;y) , (1)

with D being some known function of its arguments. The “diagram order” n controls the num-
ber of “internal” integration/summation variables, {x1, . . . ,xn}, and the “topology” index T
labels different terms of the same order in the series. The most familiar physics example, as the
name of the technique suggests, would be Feynman diagrams for the many-body system illus-
trated in Fig. 1. Strict diagrammatic rules relate the graphical representation to the correspond-
ing mathematical expression for the function D: up to a phase factor, it is given by the product
of functions associated with the graph lines (often called propagators), D =

∏
lines Fline. For

example, in momentum-imaginary time representation for the system of electrons interacting
via the pairwise potential V (r), the dotted lines are associated with the Fourier transform, V (q),
of the interaction potential and the solid lines with the single-particle propagators G0(pi, τ).
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Fig. 1: Graphical representation of the diagrammatic expansion for the Green function of an
interacting many-body system.

There are well-established diagrammatic series for other quantities of interest such as self-
energies, polarization operators, pair-propagators, current-current and other correlation func-
tions, etc. Numerous alternative representations of quantum and classical models, such as path
integrals and impurity solvers, are mathematically identical to Eq. (1). Thus, regardless of the
origin of Eq. (1), it can be viewed as a mathematical expression for the answer in terms of a
series of multi-dimensional integrals. The real challenge is to evaluate it with high accuracy.
Let us denote the collection of all external and internal parameters that lead to a complete char-
acterization of the diagram as ν = (n,T;x1, . . . ,xn;y), and call it the “configuration space;” a
particular set of parameters has to be viewed as a point in {ν}. Accordingly, the modulus of Dν

will be called the configuration “weight.” Since, in general, the D-function is not sign-positive,
we will need to introduce also the configuration “phase,” ϕν = argDν (the diagram phase is
not necessarily equal to 0 or π).

2.1 Updates: general principles

The MC process of generating diagrams with probabilities proportional to their weight is based
on the conventional Markov-chain updating scheme [2–4] implemented directly in the space of
continuous variables. All updates are broadly classified as type-I and type-II. The number of
continuous variables is not changed in type-I updates that perform sampling of diagrams of the
same order n. Typical examples are shown in Fig. 2. They are based on the simplest possible
local modifications of the topology and line parameters allowed by the rules and conservation
laws. Their implementation is straightforward; e.g., for the update illustrated in Fig. 2(a) select
at random any pair of consecutive interaction vertices and exchange their places. An acceptance
ratio for the corresponding update, Rν→ν′ , is given by the ratio of the diagram weights,

Rν→ν′ = |Dν′/Dν | , (2)

which is easily calculated, since Dν is the product of Fline-functions and only three of them
change their values in this update. Changing internal or external variables, see Figs. 2(b) and
2(c), is also standard. For example, one may select at random some interaction vertex and
propose a new value for its time variable, τi → τ ′i , from the (arbitrary) normalized probability
density P (τ ′i). The acceptance ratio for this update is given by the ratio of probabilities for
suggesting the ν → ν ′ and ν ′ → ν moves times the ratio of the diagram weights

Rν→ν′ =

∣∣∣∣Dν′

Dν

∣∣∣∣ P (τi)dτ

P (τ ′i)dτ
=

∣∣∣∣Dν′

Dν

∣∣∣∣ P (τi)

P (τ ′i)
. (3)
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Fig. 2: Typical type-I updates in the configuration space of Feynman diagrams for polarons: (a)
changing the diagram topology by permuting the end-points of two dashed lines; (b) changing
the value of the internal variable τ2 to τ ′2; (c) changing the momentum transfer along the dashed
line from q1 to q′1.

The simplest implementation of this update would be to have non-zero P (τi) only on the time
interval determined by the times of the previous and following interaction vertexes (times τ3 and
τ4 in Fig. 2(b)). The probability distribution P (τ) should be optimized for the best acceptance
ratio without compromising one’s ability to use it for fast generation of random variables (more
details will be provided when we discuss the practical implementation of the technique for a
Fröhlich polaron).

Clearly, there are numerous other possibilities for type-I updates which are standard for MC
simulations of multidimensional integrals. For pedagogical reasons I will keep mentioning
differential measures when I first state the acceptance ratio in order to see explicitly how they
cancel out in the final answer.

Type-II updates change the diagram order n ↔ n+m (they form complementary pairs of up-
dates) and thus require that new variables be proposed from some (arbitrary) normalized prob-
ability density distribution W (ν;xn+1, . . . ,xn+m) when going from n to n+m, or erased from
the diagram when going from n + m to n. For example, to implement the transformation il-
lustrated in Fig. 3 we need to propose time positions τ3 and τ4 and the momentum transfer q2

for the new dashed line. In the reverse update, these variables need to be erased. The detailed
balance equation for a pair of updates which increase/decrease the diagram order by m reads

rn→n+m un→n+m |Dν |W (ν;xn+1, . . . ,xn+m)(dx)n+m = rn+m→n un+m→n |Dν′|(dx)n+m , (4)
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Fig. 3: Type-II updates that increase/decrease the diagram order by one.

where un→n+m and un+m→n are algorithm-specific probabilities of deciding which new dia-
gram elements will be added or removed (for specific details, see the Fröhlich polaron Section),
respectively, while rn→n+m and rn+m→n are the probabilities of accepting the update. An accep-
tance ratio, Rν→ν′ = rn→n+m/rn+m→n, to go from configuration ν of order n to configuration
ν ′ of order n+m is then

Rν→ν′ =
un→n+m
un+m→n

∣∣∣∣ Dν′

DνW (ν;xn+1, . . . ,xn+m)

∣∣∣∣ . (5)

As expected, all differential measures cancel in the acceptance ratio meaning that sampling of
the configuration space with arbitrary and ever changing number of continuous variables can
be done without encountering systematic errors. Note that the ratio of the diagram weights,
|Dν′/Dν |, is some model-specific function of ν and the new variables xn+1, . . . ,xn+m. The op-
timal choice ofW is then a compromise between the efficiency (and programming convenience)
of using it for seeding new variables and the largest (on average) acceptance ratio.
It is relatively straightforward to design a set of type-I and type-II updates that satisfies the
ergodicity requirement: given two arbitrary configurations ν and ν ′ contributing to the an-
swer, it should take the algorithm a finite number of updates with non-zero acceptance ratios
to transform one configuration into another. At this point I would like to stress that DiagMC
is fundamentally different from enumerating/listing all diagrams with orders n ≤ nmax and
then computing the corresponding multidimensional integrals for each diagram separately us-
ing classical MC methods. In DiagMC the diagram order, its topology, and all internal and
external variables are treated on equal footing and are sampled stochastically from the prob-
ability distribution Dν . From the DiagMC perspective, each diagram represents a point, not
an integral, in the configuration space ν, see Fig. 4, and each sampled point, no matter the dia-
gram order n, contributes equally to the statistics of the final result. For example, every diagram
shown in Fig. 1 (with all internal variables specified) contributes eiϕν to the statistics ofG(p, τ).
One may wonder where did all the integrals go and why do the configuration space points with
different differential measures contribute equally? Formally, this is what the detailed balance
equation (5) is telling us. The other way to answer the question is as follows. One may pre-
tend that all diagrams are of the same order(!) by interpreting unity factors in terms of the
normalization integrals for W -functions in Eq. (5)∫

· · ·
∫
dx1 · · · dxnDν × 1 =

∫
· · ·
∫
dx1 · · · dxn+mDν ×W (ν;xn+1, . . . ,xn+m). (6)
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Fig. 4: An illustration of the DiagMC process: all configuration parameters are treated in the
simulation protocol on an equal footing and are subject to local Markov-chain updates.

This point of view literally reduces type-II updates to type-I updates with the only caveat that
one is free to consider any normalized W function for performing this “match of dimensions.”
One last note. In DiagMC the autocorrelation time is almost never a problem. When the al-
gorithm takes the configuration to the lowest-order diagram (at this point nearly all variables
are erased), it can be de-correlated in O(1) updates. Given that most many body simulations
are done for expansion orders . 10, the autocorrelation times is measured in fractions of a
millisecond for local updating schemes.

2.2 Normalization

Statistics collected for Q(y), let us denote it as QMC(y), grows linearly with the simulation
time, and needs to be properly normalized to produce a physically meaningful result. Note that
Eq. (1) is not based on a ratio of two quantities and, thus, normalization is done differently from
the textbook example of the Ising model. Suppose that the lowest-order term in Eq. (1) for some
value y0 is known because it does not involve any integrals and reduces to the analytic expres-
sion for |Q(0)(y0)| = |D(0;y0)|. Stochastic sampling eventually brings the configuration to the
lowest order, and this is when we update the normalization counter, ZN = ZN + δn,0 δ(y−y0).
We also realize that full statistics is the sum of contributions collected from different orders,
QMC(y) = QMC(n = 0,y) + QMC(n > 0,y), and if we were to determine the lowest-order
contribution to the modulus of Q(y0) we would get ZN . This immediately tells us that the
properly normalized answer for the final result is

Q(y) =
∣∣Q(0)(y0)

∣∣ QMC(y)

ZN
. (7)

The entire protocol can be called “normalization to known result.”
If there is some doubt that statistics for a given point y0 is representative, one can generalize
the above idea by considering an integral, IN =

∫
|Q(0)(y)| dy, which is assumed to be known

either analytically or numerically (to any degree of accuracy). Each time the sampled diagram



Diagrammatic Monte Carlo 15.7

order is zero, we add unity to the normalization counter, ZN = ZN +δn,0, which is subsequently
used to obtain the final result as

Q(y) = IN
QMC(y)

ZN
. (8)

In most cases, the lowest-order contributions are indeed trivial and there is no problem with im-
plementing the normalization protocol. If none of the contributions to Q(y) is known, we can
still employ this protocol by adding a “fake diagram” with positive-definite weight, DF (y) δn,0,
and known normalization integral, IN =

∫
DF (y) dy, to the configuration space, and updating

the ZN counter each time this fake diagram is sampled. Equation (8) works for this setup with-
out any modifications with the understanding that the fake diagram is used for normalization
purposes only and is not contributing to QMC(y). It is also worth noting that normalization can
be always done to some positive-definite quantity; i.e., you will not face the sign-problem in the
denominator.

3 Fröhlich polaron

Let us now focus on the Fröhlich polaron model and see in detail how the DiagMC technique
can be used for obtaining the polaron Green function at zero temperature, see also [4]. The
model Hamiltonian H = He +Hph +He−ph contains three terms where

He =
∑
p

(
ε(p)−µ

)
a†pap , Hph =

∑
q

ω(q) b†qbq , He-ph =
∑
p,q

V (q)
(
b†q−b−q

)
a†p−qap ,

(9)

ε(p) =
p2

2M
, ω(q) = Ω , V (q) = i

√
23/2πΩ3/2α/M1/2q2 , (10)

with standard notations for creation and annihilation operators. The chemical potential, µ < 0,
is introduced here solely for the purpose of controlling the statistics at large times because
otherwise it would diverge. The coupling between electrons and optical phonons with energy Ω
can no longer be assumed weak when the dimensionless constant α > 1. The Fröhlich polaron
is the canonical model used to describe non-degenerate charge carriers in ionic semiconductors;
Figure 5 explains why lattice effects can be neglected and one may proceed with the continuum
description based on the parabolic dispersion relation, ε(p) = p2/2M , for the electron and a
dispersionless optical phonon, ω(p) = Ω = const.
Connected diagrams for the Green function in imaginary time representation,G(p, τ)=〈cp(τ)c†p〉,
are shown in Fig. 6. To convert the graphics into mathematical expressions (1) one has to use
the following “conversion” rules:

– A straight line with momentum pc between the time points τb and τa is associated with
the bare polaron propagator, G0 = e−(ε(pc)−µ)(τb−τa).

– An ark connecting two dots is associated with the product of the phonon propagator,
D= e−ω(pc)(τb−τa), the modulus of the coupling vertex squared, |V (pc)|2, and the momen-
tum space integration factor (2π)−3.



15.8 Nikolay Prokof’ev

E

( )p

( )p

0p pBZ



Fig. 5: Dispersion relations for electrons and phonons are such that their intersection and
important physics effects take place at momenta p ∼ p0 =

√
2MΩ, much smaller than the

Brillouin zone boundary.

0 +
p

+    …

+

+

+

+

Fig. 6: Green function diagrams obtained by expanding in the number of phonon lines.

Thus, for this problem all diagrams are sign-positive and the series are convergent for any value
of τ . Sign-positive series cannot be resummed; they are either meaningless or convergent. In
our case, there are (2n−1)!! diagrams of order n. On the other hand, the integration measure
of 2n time-ordered points is τ 2n/(2n)!, and this is sufficient to guarantee series convergence
for Fröhlich polarons. The rest is a straightforward implementation of the generic DiagMC
protocol. My set of updates is just one possible realization among many available.

3.1 Type-I updates

• Global τ update. The simplest update changing the global time variable τ is shown in
Fig. 7(a). The probability density for the new value is a simple exponential

P (τ ′) = Ee−E(τ ′−τlast) , E = p2/2M − µ , (11)

and the acceptance ratio is unity because Dν′/Dν = P (τ ′)/P (τ), see Eq. (3). [If r is a random
number uniformly distributed on the interval (0, 1), then τ ′ = τlast − E−1 ln(r) by the transfor-
mation method.] Strictly speaking, this is the only type-I update required for ergodicity! Below
I present several other type-I updates that can be added in order to (i) improve efficiency and
reduce autocorrelations, (ii) have an over-complete set of updates for meaningful tests of the
detailed balance, (iii) have fun.
• Internal τ update. Changing the time variable of the interaction vertex is equally easy, see
Fig. 7(b). The probability density for the new value of τ ′b is a simple exponential

P (τ ′b) =
Ee−E(τ ′b−τa)

1− e−E(τc−τa)
, E = (p2a − p2b)/2M ±Ω , (12)
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Fig. 7: Type-I updates changing the external (a) and internal (b) time variables:

and the acceptance ratio is unity for exactly the same reason as for the global τ update.
[τ ′b = τa − E−1 ln[1− r(1− e−E(τc−τa))] by the transformation method.]
• Rescaling all τ variables update. By introducing dimensionless time variables si = τi/τ ,
and paying attention that all propagators are exponential functions of time, we realize that the
diagram dependence on the global time τ is given by the Poisson distribution. If we were to use

P (τ ′) =
E(Eτ ′)2n

(2n)!
e−Eτ

′
, E =

2n+1∑
i=1

∆siEi − µ , (13)

where the sum is over all time intervals in the graph, and Ei is the energy associated with each
interval (counting both the polaron energy and the energy of all phonon lines covering it), to
propose new values of τ ′, we would always accept the update. Unfortunately, for this distri-
bution the transformation method cannot be used. However, for large Eτ and n, the Poisson
distribution is approaching the Gaussian. The idea then is to use

P (τ ′) =
E√
4πn

e−(Eτ
′−2n)2/4n , (14)

instead. [From now on I will stop mentioning the transformation method and how it is used
(sometimes with tricks) for well-know distributions.] Obviously, the update is rejected, when
the proposed τ ′ is negative—one should not be afraid of proposing unphysical values if this
leads to radical simplifications of the numerical procedure with only a minor loss of efficiency.
The acceptance ratio is given by

R = exp

(
2n ln

τ ′

τ
− E (τ ′−τ) +

(Eτ ′ − 2n)2 − (Eτ − 2n)2

4n

)
, (15)

and is close to unity (on average) for large diagram orders.
• Internal |q| update. To change the modulus of the phonon momentum (the direction is pre-
served) we select at random any of the phonon lines (probability of selecting a particular one is
1/n) and propose the new value for q from the Gaussian probability density

P (q′) =
1√

2πs2
e−(q

′−q0)2/2s2 , (16)

where q0 = 〈p〉 ·q/q, s2 = M/(τb−τa), and 〈p〉 = (τb−τa)−1
∫ τb
τa
dτ [p(τ) +q] is the “average”

electron momentum on the time interval (τa, τb) in the absence of the updated phonon propaga-
tor, see Fig. 8(a). This update is always accepted (provided q′ is non-negative) because P (q′) is
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Fig. 9: Type-I update changing the local diagram topology.

reproducing precisely the diagram weight for the Fröhlich polaron. Indeed,

1

2M

∫ τb

τa

dτ
[
(p(τ) + q− q′)2 − p2

]
= const. +

τb − τa
2M

(q′−q0)2 . (17)

• Internal q/q update. To change the phonon momentum direction while keeping its modulus
fixed, we select at random any of the phonon lines and propose the new value for q/q from the
uniform distribution for the azimuthal angle ϕ and exponential distribution for the cosine of the
polar angle θ

P (ϕ, θ) =
A sin(θ)

4π sinh(A)
eA cos(θ) , (18)

where A = (τb− τa)|〈p〉|q/M . Both angles are defined relative to the axis set by the vector 〈p〉
defined in the previous update, see also Fig. 8(b). This update is always accepted because (18)
reproduces the functional dependence of (17) on updated angles.

• Topology change. Here the idea is to select at random any nearest-neighbor (n.n.) pair of
vertices and swap their places, see Fig. 9. The momenta of phonon propagators remain fixed
except when the selected pair is connected by the phonon line, in which case it changes sign.
This proposal will change the momentum of the polaron line to p′ = p+qa−qb. The acceptance
ratio is directly related to the ratio of diagram weights

R = exp{−(τb − τa)[ε(p′)− ε(p)± ω(qa)± ω(qb)]} , (19)

where the proper ± option has to be chosen depending on whether the corresponding phonon
propagator is getting longer or shorter in time.
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3.2 Type-II updates. Data structure

The design of type-II updates, especially in view of Eq. (6), is as flexible. I will only describe
one of them following a particular strategy of selecting new variables. Formally, this type-II
update and the first update described in the previous subsection, constitute an ergodic set of MC
procedures capable of simulating the Green function dependence on time.
• Increase/decrease the diagram order by one. Type-II updates typically come in complemen-
tary pairs that satisfy the detailed balance condition within each pair. Let pn→n+1 and pn+1→n

be the probabilities to make a decision to apply one of these two updates. In the increase update
propose the following steps:

– Select one of the polaron propagators at random (corresponding probability: 1/(2n+1));
let the parameters of the selected interval be p1, τ1, τ2, see Fig. 10.

– propose the fist new time variable τ3 from the uniform probability density 1/∆τ , where
∆τ = τ2 − τ1.

– propose the momentum for the new phonon propagator from the probability distribution

sin(θ)

4π

1

p0(1 + q/p0)2
, (20)

where p0 =
√

2MΩ, see Fig. 5. It is uniform for the solid angle of q and has an easy to
handle power law for the modulus of q.

– propose the new time variable τ4 > τ3 from the distribution

Ω(1 + q/p0)
2 e−Ω(1+q/p0)2(τ4−τ3) . (21)

As usual, the update is rejected if τ4 > τ . This distribution is not a perfect match to the ratio of
the diagram weights in the proposed setup∣∣∣∣Dν′

Dν

∣∣∣∣ = |V (q)|2 e−∆E(τ4−τ3) q
2 sin(θ)

(2π)3
∝ e−∆E(τ4−τ3) sin(θ) , (22)

where the energy change on the updated interval is given by∆E = Ω+[q2−2q · 〈p〉]/2M , and
〈p〉 = (τ4−τ3)−1

∫ τ4
τ3
dτp(τ). However, it is “good enough” in terms of the average acceptance

ratio.
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The decrease update is conceptually very simple: Select any of the existing phonon propagators
(probability is 1/n, where n is the current diagram order), and propose to remove it. We are all
set to formulate the detailed balance equation

rn→n+1|Dν |
pn→n+1

2n+ 1

Ω sin(θ)

4π∆τp0
e−Ω(1+q/p0)2(τ4−τ3) = rn+1→n|Dν′ |

pn+1→n

n+ 1
(23)

and its solution for the increase update

Rn→n+1 =
pn+1→n

pn→n+1

2n+ 1

n+ 1

2αΩ∆τ

π
e[qp0+q·〈p〉](τ4−τ3)/M . (24)

Notice that the second ratio contains (n+1), the number of phonon propagators in the proposed
configuration, in the denominator. The solution of the same detailed balance equation for the
decrease update acceptance ratio reads:

Rn→n−1 =
pn−1→n
pn→n−1

2n− 1

n

π

2αΩ∆τ
e−[qp0+q·〈p〉](τ4−τ3)/M . (25)

Again, one has to be careful in formulating it in terms of the current, order n, and proposed,
order n−1, configuration parameters. In particular, ∆τ is the duration of the polaron interval
where the removed polaron propagator starts after the corresponding phonon propagator is re-
moved (it may be the case that both τ3 and τ4 are smaller than τ2 in Fig. 10). Also, the average
polaron momentum 〈p〉 needs to be computed for the proposed configuration.
• As far as normalization is conserved, the easiest way would be to normalize to the known
integral of the bare Green function

IN =

∫ ∞
0

dτe−(p
2/2M−µ)τ =

1

p2/2M − µ
. (26)

• At this point it is worth saying a couple of words about the data structure because recovering
the necessary information for performing updates is often crucial for the efficiency of the algo-
rithm. Most updates are designed to modify the diagram structure and its parameters locally (in
terms of graph connections); i.e., only a few parameters and propagators are involved in each
update. [This requirement does not apply to DiagMC algorithms based on exact summation of
all diagram topologies that are discussed in the next Section.] Correspondingly, the data struc-
ture should be implemented in such a way that updates can be completed after performing O(1)

operations in the limit of (n, τ)→∞. Here is one possible structure:

1. Every polaron propagator (or “interval”) in the diagram has a unique label ` > 0.

2. This label is used to retrieve information about the propagator momentum, as well as its
initial, and final times, using p(`, 1:3), τi(`), and τf (`) arrays, respectively. One can in-
troduce additional arrays, if necessary, and update the corresponding information; e.g.,
Nph(`) returns the number of phonon propagators covering the ` interval (number of
phonons in the virtual state at time ∈

(
τi(`), τf (`)

)
.
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Fig. 11: Data structure for efficient implementation of local updates.
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locked open
Fig. 12: Efficient management of a finite set of labels.

3. All labels are linked pairwise in two ways. Arrays prev(`) and next(`), see Fig. 11,
allow one to get labels of intervals immediately preceding and following `. Obviously,
next(prev(`)) = `, and prev(next(`)) = `. An array ph(`) establishes a link between
the left ends of the intervals connected by the phonon propagator. Again, ph(ph(`)) = `.
It is easy to see that any local (around `) information about the graph properties can be
quickly recovered without knowing the global structure. An ordered array 1, 2, 3, . . .,
2n+1 of labels cannot be used because if some label ` is removed from the middle of the
list (see also text below), all labels with values > ` must be updated, in violation of the
“locality” principle.

4. In a long simulation run new/existing intervals will be created/erased trillions of times.
It is thus not practical to never use the same label twice. There is, however, a simple
programming trick that allows one to use the same set of labels forever, and manage it
withO(1) operations. At any moment it is known which n+1 labels are “locked” because
they are already utilized for linking the graph intervals and which ones are “open” for
labeling new elements. This is achieved with the help of the ind(`) and lb(i) arrays. By
definition, labels lb(1), lb(2), ... lb(last = 2n + 1) are “locked” and labels lb(> 2n + 1)

are “open,” while ind(lb(i)) = i establishes a connection between the graph labels and
an ordered array of indexes, see an illustration in Fig. 12. When a new interval is added
to the diagram it is given a label lb(last + 1) and the variable last is increased by one.
When some interval and its label ` are removed, one first determines its index i = ind(`).
If i = last, the value of last is decreased by one; otherwise, it is necessary to swap an
association between indexes i and last and labels ` and lb(last), and only then decrease
the value of last by one.
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3.3 Illustrative results: polaron Green function

One can employ DiagMC for in-depth studies of polaron properties, including direct access
to every coefficient (by modulus) in the Lehmann expansion of the exact wave function with
momentum p

|Ψp〉 = cpa
†
p|0〉+

∑
q

cp,qb
†
qa
†
p−q|0〉+

∑
q1q2

cp,q1,q2b
†
q1
b†q2
a†p−q1−q2

|0〉+ . . . (27)

With this one can determine the probability of finding an electron along with a given number of
phonons in the polaron cloud [4]. Here I will only review how one computes the Green function
and extracts the polaron Z-factor, Zp = |cp|2, and energy from its asymptotic expression

Gp(τ →∞)→ Zp e
−(Ep−µ)τ . (28)

The simplest way of collecting statistics for Gp(τ) would be to split the entire τ axis into small
bins ∆i = τi− τi−1 and update bin counters for an integral of the function over the bin size (for
brevity I will suppress the momentum index)

I(i) =

∫ τi

τi−1

dτ G(τ) , (29)

I
(i)
MC = I

(i)
MC + 1 , if τ ∈ (τi, τi−1) . (30)

For small bins, an estimate for the Green function at point τ̄i = (τi + τi−1)/2 can be made as

G(τ̄i) ≈
IN
ZN

I
(i)
MC

∆i

. (31)

While integrals (29) are free of systematic errors, the most straightforward final step (31) does
involve a finite bin size error.
There are several ways for eliminating this systematic error. The bin hierarchy method [5, 6]
takes the limit of very small bins and overcomes the problem of large statistical noise for small
bins by restoring the entire function G(τ) using splines with self-adaptive nodes. This protocol
is rather technical to reproduce here but it is very efficient and ensures that the systematic errors
are always smaller than the statistical ones.
One may also keep the bin sizes fixed, but collect several integrals over bins to improve the
accuracy of restoring G(τ). Any smooth function on a given interval can be expanded as

G(τ) =
∞∑
j=1

α
(i)
j e

(i)
j (τ) , if τ ∈ (τi, τi−1) , (32)

where {e(i)j (τ)} is an ortho-normal basis (ONB) on the interval (τi, τi−1). It may be Legendre
polynomials, but any other ONB with an inner product defined as

〈f |g〉 =

∫ τi

τi−1

dτ w(i)(τ)f(τ)g(τ) , (33)
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can be used instead. In practice, the series is truncated at some finite order Ni, that is deter-
mined to provide an accurate description of G(τ) with unmeasurable (within statistical errors)
systematic bias. To account for divergencies in G(τ) one may need to use singular basis func-
tions and w > 0 weights. For example, if G(τ → 0) ∝ 1/τ 1/2, the first basis function in the
set may be e1(τ) = Aa/τ

1/2. In this case, the w(τ) is required to ensure that the normalization
integral for e1 is finite, and w(τ) = τ 1/2 will do the job. It is also possible to consider infinite
size bins; if the leading asymptotic decay is of power-law type G(τ → ∞) ∝ 1/τa, the ONB
on the time interval (τh,∞) may be constructed from the set of functions ej ∝ 1/τa+bj with
b1 = 0 and bj>1 > 0 to account for the dominant term and several subleading corrections.
According to the theory of Hilbert spaces, the coefficients of expansion are determined by the
integrals

α
(i)
j =

∫ τi

τi−1

dτ w(i)(τ)e
(i)
j (τ)G(τ) , (34)

with unbiased MC estimators

α
(i)
j,MC = α

(i)
j,MC + w(i)(τ)e

(i)
j (τ) , if τ ∈ (τi, τi−1). (35)

After appropriate normalization of statistics, one obtains the Green function from

G(τ) =
IN
ZN

Ni∑
j=1

α
(i)
j,MC e

(i)
j (τ). (36)

Obviously, the conventional procedure described by Eqs. (29)-(31) is nothing but the special
case when there is only one constant basis function.
Finally, one can use the reweighing method for an unbiased estimate of the function at a spec-
ified set of points τ̄i. For each point one decides on the interval (τi, τi−1) that will be used to
collect statistics for G(τ̄i); there are no formal restrictions on the sizes and locations of these
intervals or their overlaps for different points. An optimal choice would be to have τ̄i roughly
in the middle of the interval, and the interval width ∆i to be small enough to avoid multi-scale
variations of G within the interval. For any simulated point than falls within the interval, a
factor Dν(τ̄i)/Dν(τ) accounts for the difference between the G(τ̄i) and G(τ) functions. Thus

G(τ̄i)∆i =

∫ τi

τi−1

dτ G(τ)
Dν(τ̄i)

Dν(τ)
, (37)

implying that an unbiased estimator for G(τ̄) is given by

GMC(τ̄i) = GMC(τ̄i) +
Dν(τ̄i)

Dν(τ)∆i

, if τ ∈ (τi, τi−1) . (38)

The normalization of statistics using IN/ZN does not change.
Once the data for G(τ) are collected they are analyzed according to Eq. (28), see left panel in
Fig. 13. The dependence of the quasiparticle residue on the coupling constant is shown in the
right panel of Fig. 13. It is not unusual to have statistical errors for this problem at the level of
10−6 in relative units. Many more results and direct MC estimators for polaron properties can
be found in Ref. [4].
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Fig. 13: Left panel: Fröhlich polaron Green function at zero momentum for α = 1 (we use
units such that M = 1 and Ω = 1) and its asymptotic single exponential behavior. Right panel:
Quasiparticle residue at p = 0 as a function of the coupling constant.

4 Fermionic sign blessing I

DiagMC for a generic interacting fermionic system follows the same rules. Clearly, the dia-
grams themselves are different, see Fig. 1, the differences in the interaction Hamiltonian. Also,
the diagrams are no longer sign-positive. Even in the absence of gauge fields, the diagram sign
may change for the following reasons: (i) for repulsive interactions and expansion in the in-
teraction potential the diagram sign contains (−U)n, (ii) fermionic propagators are subject to
anti-periodic boundary conditions, G(τ<0) = −G(τ+β), (iii) the diagram sign contains (−1)L

where L is the number of fermionic loops in a given topology. This raises two important ques-
tions: “Are the diagrammatic series convergent and under what conditions?” and “What is the
role of the fermionic sign?” In what follows, I will explain that the two questions are closely
related. The bottom line is that the DiagMC technique works and can be made very efficient
thanks to the fermionic sign; i.e., it is a “blessing,” not a problem.

4.1 Convergence of diagrammatic series for fermions

Dyson’s argument for perturbative expansions in the coupling constant states that the conver-
gence radius of the series is zero for continuous-space systems, no matter whether for bosons or
fermions. Indeed, if it were finite, system properties would be analytic functions of the coupling
constant near the origin. However, when the sign of the interaction is flipped from repulsion to
attraction, continuous space systems collapse to a point (infinite density state) because even for
fermions the kinetic energy increase ∝ n5/3 cannot overcome the potential energy gain −|g|n2.
To understand how this physical intuition is reflected in the mathematical structure of the series,
notice that the number of different topologies for diagrams of order n� 1 is proportional to n!.
Since n! always beats the power law dependence on the coupling constant gn, there is also a
formal reason for suspecting that the convergence radius might be zero.
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It appears then that Dyson’s argument makes the entire diagrammatic approach for many body
systems nearly useless in the strongly correlated regime. This is where the Pauli principle and
the fermionic sign come to rescue. To begin with, the collapse argument does not apply to
lattice systems, such as the famous single-band tight-biding Hubbard model. At best, one can
place two, not more, fermions with opposite spins on the site and the system cannot collapse
to infinite density. Thus, we expect that finite temperature properties of the Hubbard model are
analytic functions of the coupling constant U in the limit of U → 0 and this is confirmed by
exact mathematical considerations. Likewise, Dyson’s argument can be refuted for continuous
space fermions with high momentum cutoff that acts similarly to the Brillouin zone boundary.
Extrapolating converged calculations to the infinite cutoff limit may be a well-defined proce-
dure. Finally, the diagrammatic technique admits an infinite number of alternative formulations
when certain geometric series of the original diagrams are accounted for right from the be-
ginning are incorporated self-consistently into the new “expansion point;” typical examples
include mean-field and dynamic mean-field theories, ladder summations, screening, and solu-
tions for the low-order skeleton set. The new expansion is no longer in terms of the coupling
constant, and the original Dyson argument does not apply directly. Self-consistent mean-field
and skeleton set solutions, on top of which the new expansion is made, can easily a incorporate
non-analytic dependence on the bare coupling constant, as, e.g., in the famous BCS solution.
Going back to the mathematical structure of the diagrammatic expansion, we realize that the
only possibility for the series to converge, despite factorial scaling of the number of allowed
topologies, is to have massive cancellations between the diagrams within the same order. This is
“sign blessing I:” the DiagMC method relies on the fermionic sign because this is the necessary
condition for having series with nice properties. In what follows I will discuss simple illustrative
examples demonstrating how resummation techniques allow one to extract accurate answers
from divergent sign-alternating series. [If series converge, it is time to publish the solution.]

4.2 Resummation techniques

One way to deal with divergent sign-alternating series, Q =
∑∞

n=1 dn, outside their finite con-
vergent radius is as follows. Introduce a smooth function, f(n, ε), that satisfies two conditions:
for ε → 0 and finite n it approaches unity, f(n, 0) = 1; for n → ∞ and finite ε it goes to zero
faster than an exponential function, f(n→∞, ε)an → 0 for any a > 1. The resummed series

Qε =
∞∑
n=1

dn f(n, ε) , (39)

is guaranteed to converge because f(n, ε) suppresses the geometrical divergence of the original
series, while in the limit of ε→ 0 the original and resummed series coincide. By extrapolating
Qε to ε = 0 one effectively performs an analytic continuation of the sign-alternating series
outside of its convergence radius, see Fig. 14(a). The f(n, ε) function is up to you to design,
because apart from the conditions specified it is rather arbitrary; different choices for f provide
a good estimate for the error introduced by extrapolation from finite values of ε to zero.
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Fig. 14: (a) Resummation of divergent series for ln(1+x) with x = 2 using f(n, ε) = e−εn
2

(cir-
cles) and f(n, ε) = e−εn

3/2
(triangles). Extrapolation to ε = 0 was performed using parabolic

fits. Partial sums
∑[ε]

1 (−x)n+1/n are shown by open squares. The value ln 3 is marked by the
diamond on the vertical axis. (b) Moving a simple-pole and increasing the convergence radius
using conformal mapping.

The above protocol is blind to specific properties of the series and may require knowledge of
many terms in the series for reliable extrapolation, especially for less “aggressive” f -functions.
More efficient methods exist when the reason for reaching the convergence radius is known
better. Suppose that the series behaves as dn = γnx

n with γn = (−1)n and M = 10 terms
are known. The goal is get an answer for x = 3, well outside of the radius of convergence.
From available information one can roughly estimate the convergence radius, and produce con-
stant phase lines y(x) for the complex function Q(z = x + iy) =

∑M
n γnz

n to establish that
a simple pole is located close to the real axis, say at z0 ≈ −1.05. Next, one performs a con-
formal mapping w = z/(z − z0), or z = −wz0/(1 − w) and constructs the Taylor series for
Qw(w) =

∑M
n σnw

n. The final answer is given by Qw(x/(x − z0)); with extraordinary accu-
racy it reproduces 1/(1 + x) = 0.25. Under conformal mapping the singularities are moved
away from the origin of the expansion and the point of interest ends up well within the radius
of convergence, see the illustration in Fig. 14(b).

Similarly, it is possible to handle poles of higher order or several poles, but high accuracy rests
on the number of known terms in the series. A slightly different version of the method is known
as extrapolation by Padé approximants. One assumes that the function behind the series is given
by the ratio of two polynomials, Q(z) = Pk(z)/Pm(z), with k +m ≤M . For each (k,m) pair
the polynomials are determined by matching the coefficients of the Taylor series for the ratio to
γn. The final answer is determined by examining how Pk(x)/Pm(x) depends on (k,m) when
we increase the order of polynomials.

Conformal mappings can be also used to improve the convergence properties of series by mov-
ing branch cuts away from the origin. The ratio of polynomials can be replaced by the ratio
of hypergeometric functions to achieve efficient extrapolation in cases when the convergence
radius is limited by the branch cuts [7]. The mathematical and physical literature on the topic
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Fig. 15: Illustration of the shifted action trick. It amounts to changing the origin of expansion
and introducing a different expansion parameter.

is vast, and many methods carry names of famous mathematicians. The bottom line is that
divergent series outside their radius of convergence are almost as valuable for extracting the
required information as convergent series, provided enough terms in the series are known and
singularities are reasonably well understood.
To conclude this subsection, I would like to mention that series with convergence radius zero
(e.g., when branch cuts originate from the center of expansion) are also subject to efficient
resummation methods that guarantee that the final answer is unique in the limit. The analysis
starts with establishing the asymptotic behavior of the Taylor series coefficients γn for large n
by employing the method developed by Lipatov [8]. Since all singularities are encoded in γn→∞
(any finite number of terms is just a polynomial), the corresponding information should be used
for designing the optimal resummation method and guaranteeing that it performs the unique
analytic continuation for the physical parameters of the problem. A beautiful example of such
an analysis can be found in Ref. [9].

4.3 Shifted action

Yet another way of manipulating series convergence is shifting the expansion point, as illus-
trated in Fig. 15. Of course, it can not be done by solving exactly an interacting problem for
some value of the coupling constant, say g1, and then expanding in g−g1 (but this protocol may
be tried numerically if g1 is inside the convergence radius). However, it is relatively “cheap” to
expand on top of the mean-field solution or solutions based on a limited subset of diagrams, such
as ladders, random phase approximation, and self-consistent skeleton graphs, as well as any set
of dressed propagators. The new expansion still provides an exact solutions to the problem. The
tool goes under the name of “shifted action.”
I will explain how shifted action works by considering the case of the Green function. Further
generalizations are mentioned in Ref. [10]; in brief, the shifted action protocol can be applied at
the level of any multi-point correlation function (with the help of Stratonovich-Hubbard trans-
formations). Let the original interacting problem be described by the action (in terms of the
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Grassmann field ψ)
S[ψ] = 〈ψ|G−10 |ψ〉+ gSint[ψ] , (40)

where G0 is the bare fermion propagator, and g is the coupling constant. [For brevity, I will use
vector-space notations to suppress space, time, spin, etc., indices and integrals/sums over them,
and loosely call the corresponding kernels “functions.”] Instead of expanding e−S in powers of
g, one can introduce an auxiliary action

S
(N )
ξ [ψ] = 〈ψ|G̃−1N + ξΛ1 + . . .+ ξNΛN |ψ〉+ ξgSint[ψ] (41)

with auxiliary expansion parameter ξ. Despite the fact that the first term is harmonic, we will
treat G̃N as a new “shifted” bare propagator and expand e−S

(N )
ξ in powers of ξ using all ξ-

dependent terms. For the two actions to represent the same physical system at ξ = 1 we
demand that

G̃−1N +
N∑
n=1

Λn = G−10 . (42)

Given that the final answer for the Green function can be expressed in terms of the proper
self-energy Σ as

G−1 = G−10 −Σ = G̃−1N −

[
Σ −

N∑
n=1

Λn

]
, (43)

the {Λn} functions act as counter-terms with respect to the n-th order proper self-energy dia-
grams generated by the interaction term gSint[ψ]. There are no restrictions on the number of
counter terms or their functional dependence; this freedom can be used to optimize the conver-
gence of the series for ξ = 1. Even a simple self-energy shift such as Λ1 = µ1, equivalent to
a change in the chemical potential, can help to solve the problem by moving the ξ = 1 point
inside the radius of convergence [11].
Of special practical interest is the case when the counter-term Λn is exactly the n-th order con-
tribution to the self-energy coming from Sint. The resulting expansion—standard for effective-
field theories—is then identical to the semi-skeleton series based on Dyson summation of infi-
nite sets of irreducible diagrams associated with the firstN orders of the perturbative expansion
of the original action (40). For example, if this protocol is followed forN = 1, then the expan-
sion will be done on top of the self-consistent Hartree-Fock solution. If shifted action is applied
to the screening channel as well, by selecting the N = 1 skeleton set to define counter-terms
one is setting the expansion on top of the self-consisted GW -approximation. Next, one can
account for the leading vertex corrections, etc. In view of the exact cancellation of all contribu-
tions up to order N , the expansion starts at order n = N + 1 and only then the counter-terms
Λn enter the diagrammatic expansion explicitly. To find G̃N and all counter terms for a given
G0 one has to perform the so-called “bold” DiagMC simulation, or BDMC. This leads to the
numeric protocol consisting of two independent parts:

• Part I is the BDMC simulation of the truncated order-N skeleton sum with the goal of
solving for G̃N and {Λn[G̃N ]} satisfying Eq. (42);

• Part II is the DiagMC simulation of higher-order terms using G̃N as the bare propagator.
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5 Fermionic sign blessing II

Apart from the massive cancellation of contributions from diagrams of the same order, the
fermionic sign is also key for having efficient algorithms to account for all possible topologies.
Indeed, consider the case of density-density interparticle interactions. If diagrams are formu-
lated in the real-space, imaginary-time representation (to eliminate restrictions imposed by the
energy-momentum conservation laws) then the sum over all possible graph topologies, both
connected and disconnected, has the form of a determinant for each spin component

det
∣∣Gσ(ri, τi; rj, τj)

∣∣ . (44)

Thus, n! terms can be summed in O(n3) number of operations. As I will discuss below, it
takes much longer to compute contributions from connected diagrams, but it is still possible
to do it much faster than in n! operations, see [12]. Ultimately, this observation allows one to
say that DiagMC for convergent series or series subject to resummation, generically solves the
computational complexity problem for interacting fermions.

5.1 Sum or sample?

So far we discussed the original MC approach to sampling the configuration space of connected
Feynman diagrams. As illustrated in Fig. 4, one option is to sample various topologies within a
given order. However, knowing that the sum of all topologies features massive cancellations of
contributions, this is not necessarily the best strategy. To make the point, consider the problem
of determining an answer for a large sum of sign-alternating terms

A = Z−1
M∑
i=1

ci , Z =
M∑
i=1

|ci| . (45)

In M operations one can know the answer with machine precision by performing the sum. If
the sum is sampled from the probability distribution pi = |ci|/Z, the error bar on the result after
M operations will be (assuming that the algorithm is perfect in eliminating the autocorrelation
time problem)

σA =
√

(1−A2)/M . (46)

Since we assume in this discussion that |A| � 1, the answer to the dilemma of what is the
best method of dealing with (45) is clear: for |A| � M−1/2 one is better off by doing the sum;
otherwise, the answer will be known with good accuracy faster by sampling.
Enumerating terms and performing the sum over all topologies for high-order graphs is certainly
possible for n ≤ 10. At the same time, for convergent series, it is expected that the average sign
is factorially small. It is thus plausible that in many cases problem (1) has to be reformulated as

Q(y) =
∞∑
n=0

∫
· · ·
∫
dx1 · · · dxn D̄(n;x1, . . . ,xn;y) , (47)

D̄(n;x1, . . . ,xn;y) =
∑
T

D(n,T;x1, . . . ,xn;y) . (48)
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Fig. 16: By connecting all outgoing arrows to incoming ones with the same spin index, one
obtains a Feynman diagram for the partition function. Free energy density diagrams must form
a connected graph.

5.2 Determinant method for connected diagrams

An efficient method for computing D̄ for expansions in the coupling constant was developed by
Rossi in Ref. [12]. It rests on the simple observation that the sum of all connected topologies
can be obtained from the sum of all topologies by subtracting disconnected ones. To be spe-
cific, consider the fermionic Hubbard model and Feynman diagrams for the free energy density.
Given space-time positions of interaction vertexes X1, . . . Xn, where Xi = (ri, τi), all topolo-
gies are generated by establishing pairwise associations between the incoming and outgoing
arrows with the same spin index, as in Fig. 16. Apart from the global factor (−U)n, the dia-
gram contribution is given by the product of all Green functions and the sign rule based on the
number of fermionic loops. According to this rule, each time one swaps the destination points
for two propagators the number of loops changes by ±1 and this leads to an additional factor
of −1. Thus, the sum over all possible topologies forms a determinant (44).
Let us introduce a short-hand notation for the collection of all vertex coordinates, V = {Xi},
any proper subset of coordinates, S ( V, the sum over all topologies (determinant) for a
given set of coordinates, det(V ), and the sum over all connected topologies, C(V ). Then, by
subtracting from det(V ) all disconnected cases, we obtain C(V )

C(V ) = det(V )−
∑
S(V

C(S) det(V \S) . (49)

This is a set of recursive equations for connected contributions after similar equations are written
for subsets of V. Its coefficients are based on determinants and the cost of computing all of them
scales as n3 2n, where 2n comes from the combinatorial number of possible proper subsets,∑n−1

m=1 n!/m!(n −m)!. The number of arithmetic operations required to solve these recursive
equations is ∝ 3n—in the large n limit this is the main computational cost.
In this scheme, the effort is exponential in the diagram order and this is certainly an enormous
improvement compared to the (n!)2 scaling of the total number of connected graphs. After sum-
mation over {Xi} one should not forget to divide the n-th order contribution by n! to account
for the indistinguishability of the vertices. One can use this scheme (or its generalizations) to
compute connected diagrams for any correlation function [12], proper self-energy [13, 14], and
even semi-skeleton series; in the latter case, however, the computational cost will increase to
roughly 6n.
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One final remark. When the cost of computing the diagram weight is minimal, as for Fröhlich
polarons, local updates changing a couple of variables with large acceptance ratio are preferred
because of their efficiency and simplicity. However, when getting the diagram weight is compu-
tationally very costly, there is nothing wrong in spending at least as much CPU time on design-
ing efficient global updates changing all diagram variables. The gain in reduced autocorrelation
time may more than overcompensate the loss in the acceptance ratio. This is where machine
learning techniques hold a great promise for further improving the efficiency of DiagMC simu-
lations. By learning typical model-dependent statistical properties of connected Feynman dia-
grams with n multi-dimensional coordinates, such as “gyration radius,” “dipole,” “quadrupole,”
and “multi-pole” correlations, as well as asymptotic laws for moving one or more vertices well
outside of the gyration radius, global updates can achieve large enough acceptance ratios. I am
not aware of systematic work done in this direction for connected Feynman diagrams.

5.3 Computational complexity problem for interacting fermions
and its solution

To begin with, interacting fermions do not suffer from the sign problem, as any experimentalist
measuring their properties is certainly aware of. It is a problem for some, but not all, theoretical
methods used to simulate their properties. In general, sign-alternation of contributions simu-
lated by MC methods is neither sufficient nor necessary to state that the problem is intractable.
For precise quantitative discussion, one needs to define the “computational complexity prob-
lem” (CCP). The most relevant practical question to answer is “How easily can one increase the
accuracy of the computed thermodynamic-limit answer?” This leads to the following definition
of the CCP that can be applied to any numerical scheme. Let Q be the intensive quantity of
interest in the thermodynamic limit.
A numerical scheme has a CCP if the computational time t required to obtain Q with error ε
diverges faster than any polynomial function of ε−1→∞. The CCP is considered to be solved if

t(ε) = O(ε−a). (50)

I discuss only unbiased methods, for which the difference between the computed and exact
values can be made arbitrary small. For methods containing an unknown systematic bias, the
accuracy cannot be increased indefinitely (but it may be very small).
I will skip the discussion of how methods that suffer from the sign-problem also generically
have CCP in dimensions d ≥ 2, see Ref. [15] for details. On the contrary, for convergent
(or subject to resummation) diagrammatic series, the CCP is solved by DiagMC. Indeed, for
convergent series the accuracy of truncated sums QN =

∑N
n=0 dn is improved exponentially

fast with the largest diagram order accounted for, |Q − QN | ∝ QαN , with 0 < α < 1. Thus,
given some small value of ε, the required accuracy is reached by simulating diagrams up to order
Nε ∼ ln(ε)/ ln(α). For the determinant scheme described above the simulation time required
to compute all diagrams up to order Nε is an exponential function of Nε, leading to an estimate

t(ε) = t(Nε) ∝ bNε = εln(b)/ ln(α) −→ CCP solved . (51)
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Fig. 17: (a) Free energy density for the fermionic Hubbard model as a function of truncation
order, at T/t = 0.125, U/t = 2, and n = 0.87500(2) (reproduced from Ref. [12]). (b) Density
of the unitary fermi gas (λ is the thermal wavelength) vs. maximal diagram order at T/µ = 0.5
(or T/TF = 0.2). The bold diagrammatic series is resummed by three variants of the conformal-
Borel transformation (see Ref. [9]).

Apart from the cost of the solving recursive equations for connected contributions, the value of
b may also include the cost of performing an integral over the space-time variables.

5.4 Illustrative results: Hubbard model and unitary Fermi-gas

It is rare to see sign-free path integral simulations for bosons to be performed with accuracy bet-
ter than 5 significant digits even for finite size systems. The remarkable plot in Fig. 17(a) proves
that for convergent series one can reach an accuracy of 6 significant digits for a generic inter-
acting fermionic system. In this example, the determinant method for connected diagrams was
used to simulate the fermionic Hubbard model away from half-filling at density n = 0.87500(2)

and relatively low temperature T/t = 0.125, where t is the n.n. hopping amplitude. Better con-
vergence was achieved through the Hartree diagram shift of the chemical potential (the conver-
gence radius in the on-site coupling U was estimated to be about 5.1 t). The selected parameter
set corresponds to the Fermi liquid regime; for larger values of U and on approach to half-
filling the situation is much worse and further work is required to improve the performance
of DiagMC. Nevertheless, a number of interesting results concerning the nature of magnetic
correlations and the pseudogap regime were already obtained.
Fig. 17(b) shows another remarkable outcome of the BDMC simulations done for the unitary
fermi gas. This system features a number of universal properties and is relevant for understand-
ing properties of ultra-cold atomic gases and dilute neutron matter. Microscopically, imagine
that fermions interact via a short-range attractive potential of radius R and strength U0 that is
fine tuned to the threshold of having a shallow bound state. For two-body collisions at zero
energy this situation corresponds to a large s-wave scattering length, as � R. Next, consider
a many-body system at finite density, n = k3F/3π

2, where kF is the Fermi momentum, in the
so-call “zero-range” limit, kFR → 0 when the interparticle distance vastly exceeds the poten-
tial radius. In this limit system properties become universal in the sense that all microscopic
potentials with the same kFas parameter should be considered equivalent to each other. If kFas
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Fig. 18: (a) Bare pair propagator Γ (0) based on the summation of ladder diagrams in terms
of the zero-range potential g δ(r) (dots) and non-interacting Green functions (thin lines). (b)
An order n skeleton diagram consists of n fully dressed pair propagators and Green functions
(bold lines) connecting them.

is finite, one talks about resonant fermions; this is the canonical model for discussing the BCS-
BEC crossover within the superfluid fermionic state.
The unitary fermi gas corresponds to kFas = ∞. At low temperature T < TF it is a strongly
interacting system (every spin-up fermion is “contemplating” to form a bound state with every
other spin-down fermion) without small parameters to justify a perturbative or mean-field treat-
ment because the only meaningful length (energy) scale in the problem is kF (TF ). Its solution
by the DiagMC method involves nearly all the tricks mentioned in this contribution:

(i) To eliminate ultra-violet divergences and to take the zero-range limit analytically, one has
to the perform summation of the ladder diagrams prior to the DiagMC simulation and
formulate the expansion in the number of pair propagators, see Fig. 18(a).

(ii) To reduce the number of sampled topologies, the simulation is performed for proper
self energies Σ[G,Γ ] and Π[G,Γ ] within the self-consistent skeleton formulation, see
Fig. 18(b). The self-consistent loop is closed by Dyson equations:

1/G = 1/G(0) −Σ[G,Γ ] , 1/Γ = 1/Γ (0) −Π[G,Γ ] .

(iii) Asymptotic properties of Γ and G in the limit of short time and distance should be taken
care of using exact analytic relations, see Ref. [16] for details.

(iv) Since the resulting series have zero convergence radius, one has to study the nature the
of non-analytic behavior at the origin of the expansion by employing Lipatov’s technique
and construct the appropriate conformal Borel resummation method, see Ref. [9].

The amount of analytic and numeric work may seem daunting, but it can hardly be avoided:
the goal is to produce results with guaranteed accuracy bounds. Currently, theoretical error
bars are smaller than the most precise experimental data [17] for the equation of state at low
temperature right above the transition point to the superfluid state, see Fig. 17(b). At high
temperature, T > TF , the BDMC results are far more accurate than experimental data and
provide the most stringent test for high-order virial expansion coefficients.
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6 Conclusions

This contribution reviewed key principles of DiagMC, as well as some of the recent develop-
ments for interacting fermionic (or fermionized) systems that radically improve the efficiency of
simulations for high orders of expansion. The number of successful applications is already very
large and covers both lattice and continuous-space systems, short- and long-range interaction
potentials, effective field theories, interacting topological insulators, frustrated quantum mag-
nets, Bose and Fermi polarons, continuous-time impurity solvers, lattice- and continuous-space
path integrals, point-contact dynamics, etc.
There are no known fundamental restrictions on the applicability of the method. However, its
efficiency strongly depends on the convergence properties of the series and a deep theoreti-
cal/mathematical understanding of the singularities that control this convergence. Gaining such
analytic understanding is, arguably, the most important and urgent direction for future work.
Numerically, the field will expand in terms of applications to cover models with gauge fields,
spin-orbit coupling, and more complex forms of interaction potentials. Codes have to be de-
veloped and tested for a variety of effective field theories, shifted action protocols, multi-point
correlation functions, and, ultimately, for material science applications.
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