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2.2 Xinguo Ren

1 Introduction

The random phase approximation (RPA) is a fundamental concept that plays a central role in
many-body physics. The concept was developed by Bohm and Pines [1,2] in the early 1950’s in
an endeavor to describe the cohesive properties of the so-called jellium—interacting electrons
moving in a background of a uniform positive charge. Using a Hamiltonian formulation of in-
teracting many-electron system, Bohm and Pines were able to decouple the collective motion
of electrons—the plasma oscillations—from their individual motions, a procedure named as
RPA. It was soon recognized [3] that the original RPA formulation is equivalent to the infinite
summation of ring diagrams from the viewpoint of diagrammatic many-body perturbation the-
ory [4]. Since then, the RPA concept has gone beyond the realm of condensed matter physics
and significantly influenced all branches of physics.
Although the RPA concept can be applied to any interacting many-particle systems (for its
applications in nuclear physics, see, e.g., Ref. [5]), in this review we shall restrict ourselves
to electronic systems which are governed by Coulomb interactions. The next key step towards
applying RPA to real materials was the incorporation of RPA into the Kohn-Sham (KS) density-
functional theory (DFT) framework in 1970’s [6–8]. This formulation turned RPA into a first-
principles electronic-structure method, suitable for computing the ground-state energy of real
materials. Within the KS-DFT framework, RPA can be viewed as a fifth-rung approximation
to the exchange-correlation (XC) energy functional, according to a well-accepted classification
scheme of the XC functionals, known as Jacob’s ladder of DFT as proposed by Perdew [9].
However, the application of RPA to realistic systems was impeded by its high computational
cost and the lack of efficient algorithms at the time. The first application of RPA to small
molecules only appeared in early 2000’s, carried out by Furche [10] and in [11]. Since then,
RPA has been applied to a variety of systems including atoms [12,13], molecules [10,11,14–18],
solids [19–26], surfaces [27,28], interfaces [29,30], layered materials [31], and defects [32,33].
The consensus arising from these studies is that RPA is capable of describing the delicate energy
differences in complex chemical environments [27, 28, 24, 26], the correct asymptotic behavior
of van der Waals (vdW) complexes [34, 35] and layered materials [31, 36], and the correct
dissociation limit of closed-shell molecules [10, 11]. Evidence shows that RPA can provide
unprecedented accuracy compared to lower-rung density-functional approximations at tractable
computational cost. As such, RPA is expected to play an increasingly more important role in
computational materials science, with the rapid development of more efficient algorithms and
the availability of more powerful computing resources.
In a review paper [37] published in 2012, we discussed the history of the RPA concept, its
formulation as a first-principles method, and its applications in quantum chemistry and com-
putational materials science up to that time. These points were nicely summarized by David
Pines in his recent review paper titled as “Emergent behavior in strongly correlated electron
systems” [38]. In particular, Pines noted that,

Sixty-plus years later, the RPA continues to play a significant role in nuclear physics,
bosonic field-theory, the quarkgluon plasma, many-fermion solvable models, and
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especially in computational chemistry and materials science. A recent review by
Ren et al., to which the interested reader is referred, describes the impact of the
RPA in the theoretical chemistry and materials science community, cites some thirty
articles that indicate the renewed and widespread interest in the RPA during the pe-
riod 2001-2011, discusses how it enables one to derive the 1/r6 interaction between
spatially separated closed shell electron systems, and, shows, in some detail, how
the RPA enables one to go beyond density-functional theory in computing ground
state energies.

This highlights the far-reaching impact of the RPA in a variety of fields, in particular in compu-
tational chemistry and materials science. It is worthwhile to mention that several other, comple-
mentary RPA review papers also appeared around that time, where the theoretical foundation
and applications of RPA are discussed from different perspective. More recent account of RPA
of review character can be found in Ref. [39].
In this lecture, we first give an account of the theoretical foundation of RPA, highlighting its
unique role in electronic structure theory. Computational schemes beyond RPA are also briefly
discussed in this section. This is followed by a sketching of the key algorithm of implementing
RPA using the resolution-of-identity technique. We then present some prototypical applica-
tions illustrating the usefulness of RPA in computational materials science. Most recent efforts
devoted to further developing the theoretical and computational aspects of RPA as well as ex-
tending its capabilities are briefly mentioned and commented, before we conclude.

2 Theoretical foundation of RPA and beyond

RPA as a first-principles method can be derived from several theoretical frameworks. One con-
venient framework to derive RPA is the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) which offers a powerful mathematical device to construct the exact XC energy func-
tional via the density response functions of a series of partially interacting systems, connecting
the KS system and the true physical system. In this formulation, an approximation to the density
response function translates into a corresponding approximation to the XC energy functional.
However, this is not the only approach to formulate RPA. In fact, RPA can also be derived from
other theoretical perspectives, including coupled cluster theory [40, 41], the Green-function
based many-body perturbation theory [42, 37, 43], and time-dependent DFT [10]. Below we
focus on the ACFDT perspective.

2.1 Adiabatic connection approach to DFT

An interacting N -electron system is described by the following Hamiltonian

Ĥ = T̂ + V̂ext + V̂ee = −
N∑
i

∇2
i

2
+

N∑
i

vext(r̂i) +
1

2

N∑
i6=j

1

|r̂i − r̂j|
, (1)
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where T̂ , V̂ext, and V̂ee are, respectively, the kinetic energy, the external potential, and the
electron-electron Coulomb interaction operators. Hartree atomic units (~ = e = me = 1)
are used throughout this lecture note. Note that the operators T̂ and V̂ee are universal for any
N -electron systems, and a system is completely specified by the external potential,

vext(r) = −
∑
α

Zα
|Rα − r|

, (2)

with Zα and Rα being, respectively, the nuclear charges and positions of the atoms in the
system. The Hamiltonian in (1) cannot be solved for more than a few electrons. To deal with it,
it is customary to separate Ĥ into two parts,

Ĥ = Ĥ0 + Ĥ ′ (3)

where Ĥ0 is a mean-field (MF) Hamiltonian, describing a collection of noninteracting particles
subjecting to a self-consistently determined effective single-particle potential,

Ĥ0 =
N∑
i

(
−∇

2
i

2
+ vext(ri) + vMF

i

)
. (4)

Here the mean-field potential vMF is an average potential that one electron experiences due
to the presence of other electrons. Different underlying principles to determine vMF lead to
different self-consistency schemes. Suppose Φ0 is the ground-state wave function (a Slater
determinant) of Ĥ0, within Hartree-Fock theory, the effective single-particle potential vMF is
chosen such that the expectation value of 〈Φ0|Ĥ|Φ0〉 is minimized. On the other hand, within
KS-DFT, the effective vMF (now the KS potential vKS) is determined so that the electron density
of the KS system n(r) = 〈Φ0|n̂(r)|Φ0〉 reproduces the density n(r) of the true physical system.
Within the adiabatic connection (AC) approach to KS-DFT, one considers a continuous set of
fictitious Hamiltonians

Ĥ(λ) = −
N∑
i

∇2
i

2
+

N∑
i

vauxλ (r̂i) +
λ

2

N∑
i6=j

1

|r̂i − r̂j|
, (5)

which connects Ĥ0 at λ = 0 (with vauxλ=0 = vext + vKS) and Ĥ at λ = 1 (with vauxλ=1 = vext). The
Hamiltonian Ĥ(λ) for 0 < λ < 1 describes a collection of particles moving under the auxiliary
external potential vauxλ (r) and interacting with a scaled Coulomb interaction λ/|r − r′|. The
auxiliary potential vauxλ (r) (0 < λ < 1) is chosen such that the density of λ-scaled systems is
kept at the physical density, i.e., nλ(r) = n(r), along the AC path. Denoting the ground-state
wavefunction of Ĥ(λ) as |Ψλ〉,

Ĥ(λ)|Ψλ〉 = Eλ|Ψλ〉 , (6)

and adopting the normalization condition 〈Ψλ|Ψλ〉 = 1, the Hellmann-Feynman theorem implies
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that

dEλ
dλ

=
〈
Ψλ

∣∣∣∂Ĥλ

∂λ

∣∣∣Ψλ〉 = 〈Ψλ∣∣∣ N∑
i=1

∂vauxλ (r̂i)

∂λ
+

1

2

N∑
i6=j

1

|r̂i−r̂j|

∣∣∣Ψλ〉
=

∫
dr
〈
Ψλ

∣∣∣n̂(r)∂vauxλ (r)

∂λ

∣∣∣Ψλ〉+
1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)− n̂(r) δ(r−r′)|Ψλ〉
|r−r′|

(7)

=

∫
drn(r)

∂vauxλ (r)

∂λ
+

1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

(8)

To derive (7) and (8), we have used the expression for the density operator of the N -electron
systems

n̂(r) =
N∑
i=1

δ(r− r̂i) , (9)

and the condition 〈Ψλ|n̂(r)|Ψλ〉 = n(r). The ground-state energy of the interacting system can
then be obtained as

E = E0 +

∫ 1

0

dEλ
dλ

dλ

= E0 +

∫
drn(r)

(
vauxλ=1(r)− vauxλ=0(r)

)
+

∫ 1

0

dλ
1

2

∫∫
drdr′

〈Ψλ |n̂(r)n̂(r′)|Ψλ〉 − n(r) δ(r−r′)
|r−r′|

= E0 −
∫
drn(r) vKS(r) +

1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|

+

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r)δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

, (10)

where we have introduced the fluctuation of the density operator δn̂(r) = n̂(r)−n(r) and used
the fact that 〈Ψλ|δn̂(r)|Ψλ〉 = 0. Now the ground-state energy of the reference KS state (λ = 0)
E0 is given by

E0 = 〈Ψ0|Ĥ0|Ψ0〉 = 〈Φ0|Ĥ0|Φ0〉 = −
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉+∫ dr vext(r)n(r)+

∫
dr vKS(r)n(r) .

(11)
Combining (10) and (11), one arrives at the formal expression of the exact ground-state total
energy of N -electron systems,

E =−
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉+∫ dr vext(r)n(r) +
1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|

+

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r) δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

. (12)

In KS-DFT, the ground-state total energy for an interacting N -electron systems is an (implicit)
functional of the electron density n(r) and can be conveniently separated into four terms:

E[n] = Ts[ψn] + Eext[n] + EH[n] + Exc[n] , (13)
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where

Ts = −
N∑
n=1

〈
ψn

∣∣∣∇2

2

∣∣∣ψn〉 (14)

is the kinetic energy of the KS independent-particle system,

Eext[n] =

∫
dr vext(r)n(r) (15)

is the external potential energy due to the nuclei,

EH[n] =
1

2

∫∫
dr dr′

n(r)n(r′)

|r−r′|
(16)

is the classic Hartree energy, and Exc the exchange-correlation energy. Among the four terms
in Eq. (13), only Eext[n] and EH[n] are explicit functionals of n(r). The noninteracting kinetic
energy Ts is treated exactly in KS-DFT in terms of the single-particle KS orbitals ψn(r), which
themselves are a functional of n(r). All the many-body complexity is contained in the unknown
XC energy term, whose exact form is not an explicit functional of the electron density n(r), nor
the KS orbitals ψn(r). Comparing Eq. (13) to (12), one immediately obtains the formally exact
AC expression for the XC energy, in terms of the density-density correlation function,

Exc[n] =

∫ 1

0

dλ
1

2

∫∫
dr dr′

〈Ψλ |δn̂(r) δn̂(r′)|Ψλ〉 − n(r)δ(r−r′)
|r−r′|

. (17)

A central task of the DFT community is to develop accurate and tractable approximations to
Exc[n]. The success of KS-DFT lies in the fact that usefully accurate approximations can be
found, for which DFT calculations can be done at affordable cost. Widely used approximations
toExc[n] include local-density approximation (LDA) [44], generalized gradient approximations
(GGAs) [45–47], meta-GGA [48,49], and hybrid functional approximations [50,51]. These ap-
proximations belong to the first four rungs of the Jacob’s ladder [9]. Despite their enormous
success, these existing approximate functionals suffer from many-electron self-interaction er-
rors [52], or delocalization errors [53] due to which the localized electronic states tend to de-
localize over the system, leading to several severe consequences. Furthermore, the non-local
correlation effects between widely separated subsystems are not captured within these approx-
imations by constructions. These intrinsic deficiencies limit the possible accuracy that can be
achieved in practical calculations. Qualitative and sometimes quantitative failures have been
documented in a number of situations, among which the most prominent are van der Waals
(vdW) bonded systems [54], materials with strong correlations [55], certain surface adsorption
problems [56], and chemical reaction barrier heights [57].

2.2 RPA derived from the ACFDT framework

The construction of LDA, GGA, and meta-GGA functionals only incorporate local and semi-
local quantities, such as the electron density, density gradients, and the kinetic energy density.
For the construction of hybrid functionals, a non-local quantity—the reduced density matrix—is
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required. To go beyond these approximations, it is necessary to include additional information
in the functional construction. For this purpose, it is instrumental to invoke the zero-temperature
fluctuation-dissipation theorem [58], which relates the density-density correlation (fluctuations)
in Eq. (17) to the imaginary part of the density response function (dissipation) of the system

〈Ψλ|δn̂(r) δn̂(r′)|Ψλ〉 = −
1

2π

∫ ∞
−∞

dω Imχλ(r, r′, ω) . (18)

Here the density response function χλ(r, r′, ω) = δnλ(r, ω)/δv
ext(r′, ω) describes the variation

of the density of the partially interacting system at the spatial point r, up to linear order, due to a
change of the local external potential at r′. From Eqs. (17) and (18), we arrive at the renowned
ACFDT expression for the XC energy in DFT

Exc =
1

2

∫ 1

0

dλ

∫∫
dr dr′

1

|r−r′|

(
− 1

2π

∫ ∞
−∞

dω Imχλ(r, r′, ω)− δ(r−r′)n(r)
)

=
1

2

∫ 1

0

dλ

∫∫
dr dr′

1

|r−r′|

(
− 1

π

∫ ∞
0

dω χλ(r, r′, iω) − δ(r−r′)n(r)
)
. (19)

The fact that the above frequency integration can be performed along the imaginary axis orig-
inates from the analytical structure of χλ(r, r′, ω) and the fact that it becomes purely real on
the imaginary axis. Such a property simplifies the ground-state energy calculation within the
ACFDT framework considerably. The ACFDT expression in Eq. (19) transforms the problem
of computing the XC energy to the computation of the response functions of a continuous set
of fictitious systems along the AC path, which in practice has to be approximated as well.
The exact density response function χλ(r, r′, iω) is not known either. However, according to
linear-response time-dependent DFT (TDDFT), the interacting response function χλ for λ > 0

is linked to the noninteracting response function χ0 via the Dyson-like equation

χλ(r, r′, iω) = χ0(r, r′, iω) +

∫
dr1 dr2 χ

0(r, r1, iω)

[
λ

|r1−r2|
+ fλxc(r1, r2, iω)

]
χλ(r2, r

′, ω) ,

(20)
where

fxc(r1, r2, iω) =
δvxc(r1)

δn(r2, ω)
=

δ2Exc[n]

δn(r1)δn(r2, ω)
(21)

is the so-called fxc kernel, given by the functional derivative of the XC potential with respect to
the frequency-dependent density variation.
Obviously, the fxc kernel is a very complex quantity to deal with, and there are considerable
ongoing efforts to find better approximations for it [59]. In this context, the random phase ap-
proximation amounts to simply neglecting the fxc kernel, and the resultant interacting response
function is termed the RPA response function,

χλRPA(r, r
′, iω) = χ0(r, r′, iω) +

∫
dr1 dr2 χ

0(r, r1, iω)
λ

|r−r′|
χλRPA(r2, r

′, ω) . (22)

In physical terms, the RPA here corresponds to the linearized time-dependent Hartree approxi-
mation, by which the variation of the exchange-correlation potential due to an external pertur-
bation is neglected.
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In Eqs. (20) and (22), χ0(r, r1, iω) is the independent-particle response function of the KS
reference system (λ = 0) and is known explicitly in terms of the single-particle KS orbitals
ψn(r), orbital energies εn, and occupation factors fn

χ0(r, r′, iω) =
∑
mn

(fm − fn)ψ∗m(r)ψn(r)ψ∗n(r′)ψm(r′)
εm − εn − iω

. (23)

Based on Eqs. (19) and (22), the XC energy in RPA can be further decomposed into an exact
exchange (EX) term and a RPA correlation term,

ERPA
xc = EEX

x + ERPA
c , (24)

where

EEX
x =

1

2

∫∫
dr dr′

1

|r−r′|

(
− 1

π

∫ ∞
0

dω χ0(r, r′, iω)− δ(r−r′)n(r)
)

= −
∑
mn

fmfn

∫∫
dr dr′

ψ∗m(r)ψn(r)ψ
∗
m(r

′)ψn(r
′)

|r−r′|
(25)

and

ERPA
c = − 1

2π

∫∫
dr dr′

1

|r−r′|

∫ ∞
0

dω

(∫ 1

0

dλχλRPA(r, r
′, iω)− χ0(r, r

′, iω)

)
=

1

2π

∫ ∞
0

dω Tr
(
ln
(
1−χ0(iω)v

)
+ χ0(iω) v

)
, (26)

with v(r, r′) = 1/|r−r′|. Equation (25) defines the exact-exchange energy in the KS-DFT
context, which has the same expression as the Hartree-Fock exchange energy, but is extended
here to fractional occupation numbers and to be evaluated with KS orbitals. Furthermore, in the
second line of Eq. (26), for brevity the following convention

Tr [fg] =
∫∫

dr dr′ f(r, r′) g(r′, r) (27)

has been adopted.
So far, we have described how the RPA method is defined as an approximate XC energy func-
tional in the KS-DFT context, within the ACFDT framework. As mentioned above, RPA can
also be derived from the perspective of coupled cluster theory and the Green-function based
many-body perturbation theory. For instance, from the perspective of the ring coupled cluster
doubles (rCCD) theory, the RPA correlation energy can be obtained as,

ERPA
c =

1

2
Tr
(
BT rCCD) = 1

2

∑
ij,ab

Bia,jbT
rCCD
jb,ia , (28)

where T rCCD
jb,ia is the rCCD amplitude, to be determined by solving the so-called Riccati equa-

tion [41], and Bia,jb = 〈ij|ab〉 with 〈ij|ab〉 being two-electron Coulomb integrals,

〈ij|ab〉 =
∫∫

dr dr′
ψ∗i (r)ψa(r)ψ

∗
j (r
′)ψb(r

′)

|r−r′|
. (29)
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Here and below, we adopt the convention that i, j, k refer to occupied KS orbitals, a, b, c to
virtual (unoccupied) orbitals, and m, n to general ones. Due to limited space, here we will not
elaborate on the alternative formulations of RPA any further, and interested readers are referred
to Ref. [37] and the original references [41, 42] for more details.

2.3 Beyond-RPA computational schemes

Despite its appealing features, RPA does not go without shortcomings. The conventional wis-
dom is that RPA describes the long-range correlation very well, whereas it is not adequate for
short-range correlations. This issue has been well known for the homogeneous electron gas. For
real materials, RPA was found to underestimate the cohesive energies of both molecules [10,60]
and solids [21]. This stimulated much research interest and several beyond-RPA schemes have
been developed to fix this deficiency. Among these, two approaches are particularly noteworthy:
1) improving RPA by restoring the contribution of the fxc kernel within the ACFDT formal-
ism; 2) improving RPA from the perspective of diagrammatic many-body perturbation theory.
Successful beyond-RPA schemes of the first type include the truncated adiabatic LDA kernel
correction [61], and the more systematic construction of the XC kernel with respect to a series
expansion of the coupling constant λ within the ACFDT framework [62, 59].
The diagrammatic many-body expansion approach to correct RPA, on which we shall concen-
trate here, exploits the fact that RPA, in contrast with other density-functional approximations
(DFAs), has a clear diagrammatic representation—an infinite summation of the ring diagrams.
The question arises if there is a simple and systematic way to incorporate the missing diagrams
to arrive at an improved theory. The fermionic nature of electrons requires the many-electron
wavefunction to be antisymmetric, and the diagrammatic representation of the correlation en-
ergy contains graphs describing both direct processes and exchange processes. For example,
in the Møller-Plesset perturbation theory, both types of processes are included at each order,
which ensures the theory to be one-electron “self-correlation free”—the correlation energy for
one-electron system being zero. The famous second-order Møller-Plesset perturbation theory
(MP2), a widely used method in quantum chemistry, contains one direct term and one exchange
term, represented respectively by the leading diagram in the first two rows of Fig. 1. These
two terms cancel each other for one-electron systems. RPA is represented by the ring dia-
grams summed up to infinite order, as represented by the first-row diagrams in Fig. 1, where
only “direct” processes are accounted for.1 A simple way to include the exchange processes
and eliminate the self-correlation error is to antisymmetrize the two-electron Coulomb integrals
within the rCCD formulation of RPA [cf. Eq. (28)]. By doing so, a second-order screened ex-
change (SOSEX) term [63–65] is added, and the resultant RPA+SOSEX correlation energy is
given by

ERPA+SOSEX
c =

1

2

∑
ij,ab

(
〈ij|ab〉 − 〈ij|ba〉

)
T rCCD
ia,jb , (30)

1The RPA discussed here is often referred to as direct RPA in quantum chemistry literature. In some literature,
RPA in fact corresponds to the time-dependent Hartree-Fock theory, where the exchange terms are also included.
Nowadays, RPA with exchange included is usually referred to as RPAX or full RPA.
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+ + · · ·

+ + · · ·

+ + + · · ·

Fig. 1: Goldstone diagrams for rPT2. Diagrams in the three rows correspond to RPA, SOSEX,
and rSE, respectively. Dashed lines ending with a cross in the third row denote the matrix
element ∆vmn = 〈ψm|v̂HF−v̂MF|ψn〉. The rules to evaluate Goldstone diagrams can be found
in Ref. [66].

with the two terms in Eq. (30) corresponding to RPA and SOSEX correlation energies respec-
tively. The SOSEX contribution can be represented by the diagrams shown in the second row
of Fig. 1, where the leading term corresponds to the exchange contribution in MP2. The
RPA+SOSEX scheme has the interesting feature that it is one-electron self-correlation free,
and improves substantially the total energy [64, 65]. The underbinding problem of RPA for
chemically bonded molecules and solids is on average alleviated by the SOSEX correction.
As illustrated in Fig. 1, both RPA and SOSEX correlations can be interpreted as infinite-
order summations of selected types of diagrams, with the MP2 terms as the leading order.
This perspective is helpful for identifying important contributions that are still missing in the
RPA+SOSEX scheme. In fact, at the second-order, in addition to the direct and exchange terms,
there is yet another type of contribution, arising from the singles excitations (SE),

ESE
c =

occ∑
i

unocc∑
a

|〈Φ0|Ĥ ′|Φai 〉|2

E0 − E(0)
i,a

=
∑
ia

|〈ψi|v̂HF− v̂MF|ψa〉|2

εi − εa
=
∑
ia

∣∣〈ψi|f̂ |ψa〉∣∣2
εi − εa

, (31)

where v̂HF is the self-consistent Hartree-Fock potential, v̂MF is the mean-field potential, based
on which the reference state is generated, and f̂ = −∇2/2 + v̂ext + v̂HF is the single-particle
Hartree-Fock Hamiltonian (also known as the Fock matrix in the quantum chemistry literature).
Φ0 and Φai are the KS Slater determinant and the singly-excited configuration generated by
exciting one electron from an occupied state i to a virtual state a. A detailed derivation of
Eq. (31) can be found in the supplementary material of Ref. [17]. Obviously for a Hartree-Fock
reference where v̂MF = v̂HF, Eq. (31) becomes zero, a fact known as Brillouin theorem [66].
Therefore, this term is not present in standard MP2 theory based on the Hartree-Fock reference.
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In Ref [17], it was shown that adding the SE term of Eq. (31) to RPA significantly improves the
accuracy of vdW-bonded molecules, which the standard RPA scheme generally underbinds, and
the SOSEX correction does not improve much. Similar to the RPA and SOSEX case, one can
identify a sequence of single-excitation processes up to infinite order, as illustrated in the third
row in Fig. 1. Summing these single-excitation diagrams up to infinite order represents a renor-
malization of the 2nd-order SE, and is termed as renormalized singles excitations (rSE) [37,35].
Remarkably, this infinite summation ends up with a closed expression similar to Eq. (31) ,

ErSE
c =

∑
ia

|f̃ia|2

ε̃i − ε̃a
, (32)

where ε̃i and ε̃a are the eigenvalues obtained by diagonalizing separately the occupied-occupied
and virtual-virtual subblocks of the Fock matrix,∑

k

fikOkj = ε̃iOij∑
c

fac Ucb = ε̃a Uab ,
(33)

with fmn = 〈ψm|f̂ |ψn〉. Note that the matrix fmn is not diagonal since the ψn are the reference
KS orbitals and hence not the eigenfunctions of f̂ , which is the single-particle Hartree-Fock
Hamiltonian. Now f̃ia in the numerator of Eq. (32) are to the “transformed” off-diagonal block
of the Fock matrix

f̃ia =
∑
jb

O∗ij fjb Uba , (34)

where the eigenvectors obtained in (33) are used here as the transformation coefficients. The
physical origin of the SE corrections is that the commonly used KS references for RPA and
beyond-RPA calculations are not the optimal starting point. The SE corrections accounts for
the “orbital relaxation” effect, which leads to a lowering of the ground-state total energy.
Diagrammatically, RPA, SOSEX and rSE are three distinct infinite series of many-body terms,
in which the three leading terms correspond to the three terms in second-order many-body
perturbation theory. Summing them up, the resultant RPA+SOSEX+rSE scheme can be viewed
a renormalization of the normal second-order many-body perturbation theory. Therefore the
RPA+SOSEX+rSE scheme is also termed as “renormalized second-order perturbation theory”
or rPT2 in the literature.
Independent of the rPT2 scheme described above, Bates, and Furche developed a beyond-RPA
formalism termed as RPA renormalized many-body perturbation theory [67]. The essence of
this formalism is to express the correlation energy in terms of an integration over the polarization
propagator (closely related to the density response function) along the AC path. The correlation
energy can be improved by improving the polarization propagator based on a series expansion
in terms of the RPA polarization propagator multiplied with a four-point kernel. Benchmark
calculations [68] show that the approximate exchange kernel (AXK) scheme within this for-
malism performs better than RPA+SOSEX discussed above. However, the rSE contribution is
not included in the AXK scheme.
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3 Implementation of the RPA method

In most practical RPA calculations, the evaluation of the RPA XC energy ERPA
xc as given in

Eqs. (24-26) is done employing the KS orbitals and orbital energies generated by a preceding
KS-DFT calculation under certain lower-rung approximations. The GGA of Perdew, Burke,
and Ernzerhof (PBE) is often used in the preceding KS-DFT calculation, and the RPA cal-
culation based on a PBE reference is often denoted as “RPA@PBE.” In standard RPA@PBE
calculations, the ground-state total energy is given by

ERPA@PBE = EPBE − EPBE
xc + ERPA@PBE

xc

= TPBE
s + EPBE

ext + EPBE
H + EEX@PBE

x + ERPA@PBE
c

= 〈ΦPBE|Ĥ|ΦPBE〉+ ERPA@PBE
c (35)

where TPBE
s ,EPBE

ext ,EPBE
H , andEPBE

xc are, respectively, the noninteracting kinetic energy, the ex-
ternal potential energy, the Hartree energy, and the XC energy obtained from the self-consistent
PBE calculation. The RPA@PBE total energy defined in (35) is obtained by subtracting the
PBE XC energy from the PBE total energy, and then adding on top the RPA XC energy, evalu-
ated using PBE orbitals and orbital energies. Equation (35) indicates that the RPA total energy
can be seen as the sum of the Hartree-Fock energy evaluated with respect to the PBE reference
and the RPA@PBE correlation energy.
Now it is clear that the key in RPA calculations is to evaluate the exact-exchange energy plus
the RPA correlation energy. The algorithm for evaluating the exact-exchange energy in the
present context is exactly the same as the Hartree-Fock exchange energy evaluation, which is
routinely done in quantum chemistry calculations [69,70]. The Hartree-Fock exchange is also a
key component of hybrid density-functionals, which are available in increasingly more software
that can deal with periodic systems [71,72]. Here we shall not discuss the implementation of the
Hartree-Fock exchange, but rather focus on the implementation of the RPA correlation energy
part. To develop efficient algorithms to evaluate Eq. (26), the key is to realize that both χ0 and v
are non-local operators in space. Their real-space forms χ0(r, r′, iω) and v(r, r′) can be seen as
basis representations of the corresponding operator χ0 and v in terms of real-space grid points.
Under such a discretization, χ0 and v become matrices of dimension as large as the number of
real space grid points. This is not an efficient representation since the number of grid points is
rather large, especially in all-electron calculations. To deal with this problem, one can introduce
an auxiliary basis set {Pµ(r)} to represent χ0 and v, namely,

χ0(r, r′, iω) =
Naux∑
µ,ν

Pµ(r)χ
0
µν(iω)Pν(r

′), (36)

and

Vµν =

∫∫
dr dr′

Pµ(r)Pν(r
′)

|r−r′|
(37)

where Naux is the number of auxiliary basis functions. To find the matrix form χ0
µ,ν(iω), one
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needs to expand the products of KS orbitals in terms of Pµ(r),

ψ∗m(r)ψn(r) =
∑
µ

Cµ
mnPµ(r) , (38)

where Cµ
mn is the expansion coefficients. Inserting the expansion (38) into (23), and comparing

to (36), one arrives at

χ0
µν(iω) =

∑
m,n

(fm − fn)Cµ
mnC

ν∗
mn

εm − εn − iω
. (39)

Thus, within the auxiliary basis representation, χ0 and v become Naux×Naux matrices. Since
Naux is typically much smaller than the number of real-space grid points, or the number of
pair products of KS orbitals, the χ0 matrix in (39) and the V matrix in (38) can be seen as
compressed representation of their operators, with the trace of their product unchanged,

Trχ0(iω) v =

∫∫
χ0(r, r′, iω) v(r′, r) dr dr′ =

∑
µν

χ0
µν(iω)Vµν . (40)

Based on this observation, one may conclude that the computed RPA correlation energy is
independent of the basis representation of the χ0 and v operators. Thus one may equivalently
interpret Eq. (26) as matrix algebra with χ0 and v represented within the auxiliary basis as given
by (39) and (37). Using Tr lnA = ln detA (with detA being the determinant of the matrix A),
one obtains the final working expression for evaluating the RPA correlation energy,

ERPA
c =

1

2π

∫ ∞
0

dω ln
(
det(1−χ0(iω) v) + χ0(iω) v

)
=

1

2π

∫ ∞
0

dω ln (det(1−Π(iω)) +Π(iω)) . (41)

In Eq. (41), we have introduced an intermediate quantity Π(iω) = V 1/2 χ0(iω)V 1/2 and used
the property Tr(V 1/2 χ0 V 1/2) = Tr(χ0 V ). The frequency integration in Eq. (41) can be done
relatively easily, since the integrand is rather smooth and peaked at low frequency values. A
modified Gauss-Legendre grid, which transforms a standard Gauss-Legendre grid in the range
[−1, 1] to [0,∞],

x̃i = x0
1 + xi
1− xi

, w̃i = wi
2x0

(1− xi)2
(42)

works rather well for most systems. In (42), (xi, wi) are the abscissas and weights of the grid
points generated from the Gauss-Legendre quadrature formula in an integration range [−1, 1],
whereas (x̃i, w̃i) are abscissas and weights of the transformed grid. Usually a few tens of fre-
quency grid points are sufficient to get highly accurate results, except for systems with vanishing
gaps, where considerably more grid points have to be used. Alternative frequency grids have
been developed for evaluating the RPA correlation energies [73,33], which have been shown to
work well for small gap systems.
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The implementation scheme described above is known as the resolution-of-identity (RI) ap-
proach to RPA [73, 74]. From the above discussion, one may see that once the matrix forms
of χ0 and v within the auxiliary basis are determined, the rest of the RPA calculation is rather
straightforward. The key steps in RPA calculations are thus: 1) Generate the auxiliary basis
functions {Pµ(r)}; 2) Determine the triple coefficients Cµ

m,n; and 3) Construct the χ0
µ,ν matrix

using (39). The choice of auxiliary basis functions {Pµ(r)} depends on the underlying one-
electron basis functions used in the KS-DFT calculations. Our own RPA implementation was
done in the FHI-aims code [75, 74] which employs atom-centered numeric orbitals (NAOs) as
basis functions

φi(r) = uk(r)Ylm(θ, φ) , (43)

where uk(r) is a numerically tabulated radial function and Ylm(θ, φ) is a spherical harmonic.
Our auxiliary basis functions are also constructed as a numerical radial function multiplied by
spherical harmonics

Pµ(r) = ξs(r)Ylm(θ, φ) (44)

but the radial function ξs(r) has a different shape from uk(r). In fact, they are generated in order
to best represent the product of the one-electron orbitals φiφj . Details on how the auxiliary basis
functions are constructed can be found in Refs. [74, 76].
Once the auxiliary basis functions {Pµ(r)} are constructed, we can start to determine the triple
expansion coefficients Cµ

m,n. For any finite auxiliary basis set, the expansion in (38) is an
approximation, incurring an error δρmn(r) =

∑
µC

µ
mnPµ(r) − ψ∗m(r)ψn(r). The accuracy of

this approximation will not only depend on the quality and size of the auxiliary basis, but also
on the expansion coefficients Cµ

m,n. In the RI approach with Coulomb metric [77], instead of
minimizing the norm of the error (δρmn|δρmn), one minimizes the self Coulomb repulsion of
this error (δρmn|v|δρmn), leading to the following expression for Cµ

m,n,

Cµ
m,n =

∑
ν

(mn|v|ν)V −1νµ , (45)

where

(mn|v|ν) =
∫∫

dr dr′
ψ∗m(r)ψn(r)Pν(r

′)

|r−r′|
, (46)

and V −1 is the inverted Coulomb matrix. This conventional (global) RI approach works ex-
tremely well for small molecules. For big molecules and periodic systems, one may switch to
a localized variant of the RI approach [76]. With enhanced auxiliary basis functions, the local-
ized RI approach has been shown to be sufficiently accurate in practical calculations [76], and
is instrumental for periodic systems [72].
A final key step is to build the χ0 matrix in (39). Since the number of auxiliary basis functions
Naux scales linearly with the number of one-electron basis functions, the computational cost
of Eq. (39) scales as O(N4) with respect to the size of the system, and represents the com-
putational bottleneck of RPA calculations. In recent years, lower-scaling algorithms have also
been developed [33, 78], which holds promise for extending the applicability of RPA to large
systems.
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4 The performance of RPA-based methods and
prototypical applications

The revived interest in RPA in recent years comes not only from its appealing concept, but also
from its remarkable performance in practical applications. First of all, RPA can describe vdW
interactions in a seamless way. The reason behind this capability has already been clearly ex-
plained by Dobson in the early days [79], and the performance of RPA has been demonstrated
later for rare-gas crystals [19] and rare-gas dimers [17]. For lower-rung density-functional ap-
proximations (DFAs) ranging from LDA to hybrid functionals, the long-range vdW interactions
are not captured, and ad hoc corrections have to be added in order to describe systems where
vdW interactions play an important role. Furthermore, it seems that RPA is able to describe
the delicate energy differences in complex bonding situations, including molecules adsorbed
on surfaces [27, 28], the isostructural phase transition [24] and the relative stability of different
polymorphs of crystals [26], the binding and ex-foliation energies of layered compounds [36],
and the formation energy of defects [33]. Finally, RPA yields accurate chemical reaction barrier
heights [37], which is crucial for reliably estimating the rate of chemical reactions.

4.1 Van der Waals interactions

Van der Waals (vdW) interactions arise from the coupling between spontaneous quantum charge
fluctuations separated in space. For two well-separated, spherically-symmetric charge-neutral
systems, the interaction energy goes like

∆E ∼ C6

R6
for R→∞ (47)

where C6 is the dispersion coefficient and R is the separation between the two systems. Dobson
showed that the interaction energy between two subsystems A and B obtained by RPA exactly
follows the asymptotic behavior given by (47), with the RPA C6 coefficients given by

CRPA
6 =

3

π

∫
dω αRPA

A (iω)αRPA
B (iω) (48)

where αRPA
A (iω) is the RPA polarizability of the subsystem A, which can be obtained by inte-

grating over the microscopic RPA response function as,

αRPA
A (iω) =

1

3

3∑
i=1

∫∫
dr dr′ ri χ

RPA(r, r′, iω) r′i (49)

with r1,2,3 = x, y, z.
In Fig. 2, the binding energy curves of Ar2 obtained using PBE and RPA-based methods are
presented. MP2 is the simplest post-Hartree-Fock quantum chemistry approach capable of de-
scribing vdW interactions, and hence also included here for comparison. The reference curve
is given by the Tang-Toennies potential model, with model parameters determined from exper-
iment. PBE underestimates the bonding strength of Ar2 considerably, and this is appreciably
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Fig. 2: Binding energy curves for Ar2 obtained using PBE, MP2, and RPA-based methods.
All RPA-based methods use PBE orbitals as input. Calculations are done using the FHI-aims
code [75, 74]. The “Accurate” reference curve is given by the Tang-Toennies potential model
for Ar2 [80]. The inset is a zoom-in of the asymptotic behavior at large separations.

improved by RPA. More importantly, at large separations, the PBE binding energy decays
rapidly (in fact exponentially) to the energy zero, but the RPA curve displays a correct C6/R

6

asymptotic behavior. Compared to the reference result, however, the RPA still shows a sub-
stantial underbinding behavior, in contrast to the MP2 curve which shows too strong binding of
Ar2. The underbinding issue of RPA for vdW dimers arises from the too strong Pauli repulsion,
which is in turn due to the Hartree-Fock part of the RPA total energy, obtained with the semi-
local GGA orbitals. This issue can be fixed by the single-excitations corrections [17], and in
particular its renormalized version [35]. As shown in Fig. 2, the RPA+rSE scheme brings the
binding energy curve of Ar2 in close agreement with the reference one. The SOSEX correction,
however, does not have a noticeable effect here. Thus the final rPT2 binding energy curve is
almost on top of the RPA+rSE one. The performance of RPA-based methods for other rare-gas
dimers can be found in Ref. [35].

A widely used benchmark set for weak interactions is the S22 test set designed by Jurečka et
al., [82]. This test set collects 22 molecular dimers, among which 7 dimers are of hydrogen bind-
ing type, 8 of pure vdW (also called “dispersion”) bonding, and another 7 of mixed type. Fig-
ure 3(a) shows the structures of water dimer, adenine-thymine dimer, and water-benzene dimer,
representing respectively the three bonding types. Because of its good representativity and the
availability of accurate reference interaction energies obtained using the CCSD(T) method [81],
S22 has been widely used for benchmarking the performance of or training the parameters for
computational schemes that aim at describing weak interactions. The performance of RPA and
some of the RPA-related methods has been benchmarked for this test set [15, 18, 17, 83].
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Fig. 3: (a) Structures of water dimer, adenine-thymine dimer, and water-benzene dimer. C, O,
N, and H atoms are represented by grey, red, blue, and white balls. (b) MAEs (in meV) for
the S22 test set given by PBE, MP2, RPA, RPA+rSE, RPA+SOSEX, and rPT2 methods. The
CCSD(T) results of Takatani et al. [81] are used here as the reference.

In Fig. 3(b) the mean absolute errors (MAE) of PBE, MP2, and RPA-based methods are pre-
sented for the three subsets separately and for the entire S22 set. Both PBE and the correlated
methods can describe the hydrogen bonding well, since this type of bonding is dominated by
the electrostatic interactions, which has already been captured by the semi-local functionals to
a large extent. The error of the standard RPA method is still appreciable (MAE > 1 kcal/mol ≈
43 meV) arising from its general underbinding behavior. This can again be corrected by rSE,
or by SOSEX terms. However, adding the two types of corrections together, the rPT2 scheme
tends to overbind the hydrogen-bonded molecules, and hence the MAE increases again. For
dispersion and mixed bondings, RPA performs better, and the MAE can be further reduced by
rSE and SOSEX corrections. The MP2 method, on the other hand, yields a relatively large
MAE for dispersion-bonded molecules, owing to its well-known overbinding problem for this
type of interaction. This benchmark test indicates that the RPA+rSE scheme is a suitable ap-
proach recommendable for describing weak interactions. The advantage of this scheme is that
it does not noticeably increase the computational cost, compared to the standard RPA scheme.
In addition to vdW complexes, RPA and its variants have also been applied to chemically
bonded molecules and crystalline solids. Interested readers may look into the literature for
further details [21, 84, 37, 35].
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4.2 Surface adsorption

An accurate description of atoms and molecules interacting with surfaces is the key to under-
stand important physical and chemical processes such as heterocatalysis, molecular electronics,
and corrosion. Molecules adsorbed on metal surfaces represent a particularly difficult situation,
since quantitatively accurate results can only be obtained if the approach is able to describe si-
multaneously the chemical bonding, vdW interactions, metallic screening, and charge transfer
processes. The issue is best illustrated by the “CO adsorption puzzle,” where LDA and several
popular GGAs predict the wrong adsorption site for the CO molecule adsorbed on several no-
ble/transition metal surfaces at low coverages [56]. For CO adsorbed on the Cu(111) or Pt(111)
surfaces, LDA and popular GGAs erroneously favor the highly-coordinated hollow site (see,
e.g., Fig. 4(a)), whereas experiments clearly show that the singly-coordinated on-top site is the
energetically most stable site [85,86]. This posed a severe challenge to the first-principles mod-
eling of molecular adsorption problems and represents a key test example for the RPA-based
methods.

In Ref. [27], the performance of the RPA method for CO adsorbed on Cu(111) was investigated.
The computed RPA adsorption energies for both the on-top and fcc (face centered cubic) hollow
sites are presented in Fig. 4(b), together with the results from LDA, AM05 [87], PBE, and the
hybrid PBE0 functional [88]. Figure 4 reveals what happens in the CO adsorption puzzle when
climbing the Jacob’s ladder in DFT [9] —going from the first two rungs (LDA and GGAs) to the
fourth (hybrid functionals), and finally to the 5th-rung RPA functional. It can be seen that, along
the way, the adsorption energies on both sites are reduced, but the magnitude of the reduction
is bigger for the fcc hollow site. The correct energy ordering is already restored at the PBE0
level, but the adsorption energy difference between the two sites is vanishingly small. RPA
not only predicts the correct adsorption site, but also produces a reasonable adsorption energy
difference of 0.22 eV, consistent with experiments. The effect of the starting reference state on
the calculated RPA results has also been checked. In Ref. [27], in addition to the commonly
used scheme RPA@PBE, RPA calculations were also done on top of the hybrid functional
PBE0. Figure 4 indicates that the small difference between RPA@PBE and RPA@PBE0 results
is insignificant for understanding the “CO adsorption puzzle.”

Schimka et al. extended the RPA benchmark studies of the CO adsorption problem to more
surfaces [28], and found that RPA is the only approach that gives both good adsorption energies
and surface energies. GGAs and hybrid functionals at most yield either good surface energies, or
adsorption energies, but not both. Following these works, RPA has subsequently been applied to
the adsorption of small alkanes in Na-exchanged chabazite [89], benzene on the Si(001) surface
[90], graphene on the Ni(111) surface [29, 30] and the Cu(111) and Co(0001) surfaces [30].
In all these studies, RPA was demonstrated to be able to capture the delicate balance between
chemical and dispersion interactions, and yields quantitatively reliable results.

We expect RPA to become an increasingly more important approach in surface science, with
increasing computer power and more efficient implementations.
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Fig. 4: (a): Schematic of CO adsorbed on the Cu(111) surface, with the on-top and hollow
adsorption sites illustrated. (b): Adsorption energies for CO sitting on the on-top and fcc
hollow sites as obtained using LDA, AM05, PBE, PBE0, and RPA. RPA results are presented
for both PBE and PBE0 references. Calculations were done with the FHI-aims code. Adopted
from Ref. [37].

4.3 Structural phase transitions

The f -electron materials, which contain rare-earth or actinide elements, pose a great challenge
to first-principles approaches. A prominent example of an f -electron system is the Ce metal,
which has an intriguing iso-structural α-γ phase transition, accompanied by a drastic volume
collapse (as large as 15% at ambient pressure and zero temperature). The two phases are char-
acterized by distinct spectroscopic and magnetic properties. Various theoretical approaches,
including LDA plus dynamical mean-field theory (LDA+DMFT) have been employed to study
this system [91, 92]. DFT within its local and semilocal approximations is unable to describe
the two phases of Ce. In fact, due to the strong delocalization error in these functionals, the lo-
calized nature of the f -electrons in the γ phase cannot be properly described; only the α phase
is described with some confidence within LDA/GGAs, although not at a quantitative level.
It was shown by Casadei et al. [24,25] that, remarkably, hybrid functionals like PBE0 and HSE
can yield two self-consistent solutions, with distinct lattice constants, cohesive energies, elec-
tronic band structures, local magnetic moments, and different degrees of f -electron localization.
These two solutions can be reasonably associated with the phases of the Ce metal. However,
the energetic ordering of the α-like and γ-like phases produced by PBE0 is not consistent with
the experimental situation where the α phase is energetically more stable at low temperature
and ambient pressure. Adding RPA corrections on top of the PBE cohesive energies for the two
solutions, the energy ordering is reversed, and the α-like solution becomes energetically more
stable. The transition pressure of the two phases given by the Gibbs construction is consistent
with the experimental value.
The capability of RPA to capture the delicate energy difference between competing phases or
polymorphs has also been demonstrated for Iron disulfide (FeS2), a potentially interesting sys-
tem for photovoltaic and photoelectrochemical applications. This material turns out to be rather
challenging, since popular conventional density-functional approximations fail to produce the
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Fig. 5: Calculated PBE0 and RPA@PBE0 [RPA denoted here as exact-exchange plus RPA
correlation (EX+cRPA)] cohesive energy (Ecoh) as a function of the lattice constant a0 for
the two electronic states based on self-consistent PBE0 solutions. The correction of RPA with
respect to the PBE0 cohesive energies was done for a 19-atom fcc-cerium cluster. The dashed
line illustrates the Gibbs construction for the transition pressure from the α to the γ phase. The
arrows on the energy axes indicates the experimental cohesive energy of the α phase. Adapted
from Ref. [24].

relative stability of its two polymorphs: pyrite and marcasite, with the latter artificially stabi-
lized. It was demonstrated by Zhang et al. [26] that RPA, regardless of its reference state, can
correctly restore the energy ordering of the two polymorphs of FeS2. These authors further
reveal that the fact that RPA tends to stabilize the pyrite polymorph is due to its smaller KS
band gap, resulting in a large RPA correlation energy as compared to the marcasite polymorph.
This observation is consistent with the case of the Ce metal [24], where the more metallic α-
phase is stabilized within the RPA. Another successful application of this kind is that the tiny
energy difference between the two allotropes of carbon, graphite and diamond, can be reliably
described by RPA, with the correct prediction that graphite is energetically slightly lower than
diamond [31]. More systematic benchmark studies of the performance of RPA and several
beyond-RPA methods for predicting the transition pressure of structural phase transitions of a
set of bulk materials have recently been reported in Ref. [93].

Other types of materials science problems to which RPA has been applied include layered com-
pounds [94, 36] and defect systems [32, 33]. We shall not elaborate on these types of appli-
cations here due to limited space, and interested readers may look into the original literature
for details. In summary, there is ample evidence that RPA-based methods perform well in cap-
turing delicate energy differences in materials, and fix some of the qualitative failures of more
conventional approaches.
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5 Recent developments

The field of RPA-based methodology development and applications represents a rapidly evolv-
ing branch of computational electronic structure theory. Notable progress has been achieved in
several directions within the last few years, which we would like to briefly recapitulate here.

1. RPA force calculations. Analytical gradients of the RPA total energy with respect to the
atomic positions have been computed within both the atomic orbital basis [95–97,78] and
plane-wave basis [98] frameworks. This allows to compute interatomic forces and relax
structures at the RPA level, which is a long-sought goal of the electronic-structure com-
munity. Moreover, it is now possible to calculate vibrational frequencies [96] and phonon
spectra based on the RPA force constant [98], and even molecular dynamics simulations
can be carried out based on the RPA forces [98]. These advancements greatly enhanced
the capability of RPA in computational chemistry and materials science.

2. Low-scaling RPA implementations. Another noteworthy development is several low-
scaling—ranging from linear scaling to cubic scaling—algorithms for RPA calculations
have been designed and implemented [99, 100, 33, 101–103]. This paves the way for
applying RPA to large-sized and complex materials that were inaccessible in the past.

3. Particle-particle RPA. The above-discussed RPA is represented by ring diagrams and
called particle-hole RPA (phRPA) in the literature. In addition to phRPA, another type
of RPA, consisting of an infinite summation of ladder diagrams, has also been discussed
in the nuclear physics literature [5]. This type of RPA is referred to as particle-particle
RPA and has recently been brought to the attention of electronic structure community
[104–107]. Benchmark calculations show that ppPRA carries interesting features that are
not present in phRPA. Attempts for combining the two types of RPA in one framework
have been made both in a range-separated manner [108] and globally [109]. However,
it seems that merging the two RPA channels into one united theory is a highly nontrivial
task [109].

4. Self-consistent RPA in a generalized Kohn-Sham framework. As mentioned before, the
majority of practical RPA calculations are done in a post-processing fashion, using or-
bitals and orbital energies generated from a preceding DFA calculation. The importance
of the rSE contribution indicates that commonly used semi-local DFAs are not optimal
starting points for RPA calculations. Thus running RPA calculations in a self-consistent
way is highly desirable. However, for orbital-dependent functionals like RPA, the cri-
terion for “self-consistency” is not uniquely defined. The optimized effective potential
(OEP) RPA [110–112] is a well-defined procedure, but the obtained results for binding
energies are not better than perturbative RPA. Most recently, self-consistent RPA schemes
are developed by Jin et al. within a generalized OEP framework [113] and by Voora et
al. within a generalized KS framework [114]. The two schemes differ in details, but the
rSE contribution is captured in both schemes. Initial results obtained from these schemes
look very promising and there is much to explore along this direction.
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5. More beyond-RPA schemes to improve the accuracy. In addition to the beyond-RPA
schemes already discussed in Sec. 2.3, one most recent development by Zhang and Xu
[115] is to introduce a spin-pair distinctive algorithm in the ACFDT context, whereby
the contributions of same-spin and opposite-spin pairs to the correlation energy are sepa-
rated. By scaling the contributions for two types of spin pairs differently, one can achieve
a simultaneous attenuation of both self-interaction errors and static correlation errors.
Similar to the power series approximation of Görling and coauthors [62,59], the spin-pair
distinctive formalism of Zhang and Xu [115] is particularly successful in dealing with
systems with multi-reference characters.

6 Summary

In this lecture, we discussed the basic concept, the theoretical formulation, the implementation
algorithm, the prototypical applications, and the recent development of RPA-based methods.
We expect that RPA and its variants will have an ever-increasing impact on computational ma-
terials science, and become the mainstream methods in the near future. Since this is an actively
developing field, and the number of papers is quickly growing, it is well possible some impor-
tant developments are not covered in our discussion. The purpose of this manuscript is to inform
the readers about the overall status of this field, and stimulate more work on the development
and application of RPA-type methodology.
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J. Chem. Phys. 132, 094103 (2010); Erratum: ibid. 133, 179902 (2010)

[66] A. Szabo and N.S. Ostlund: Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989)

[67] J.E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013)

[68] G.P. Chen, M.M. Agee, and F. Furche, J. Chem. Theory Comput. 14, 5701 (2018)

[69] M.J. Frisch et al.: Gaussian 09W Revision D.01. Gaussian Inc. Wallingford CT 2009

[70] TURBOMOLE V7.3 2018, a development of University of Karlsruhe and Forschungszen-
trum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.



2.26 Xinguo Ren

[71] J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. Ángyán,
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