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Université Paris-Sud, Bât. 510, Orsay 91405, France

Contents

1 Introduction 2
1.1 Strongly correlated systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Kondo model and Kondo problem . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Dynamical mean-field theory: a primer 6
2.1 Green functions in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The DMFT self-consistency equations . . . . . . . . . . . . . . . . . . . . . . 8
2.3 DMFT on the Bethe lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Quantum impurity problem solvers . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Long-range order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Mott-Hubbard transition in DMFT 16
3.1 V2O3 a strongly correlated material with a metal-insulator transition . . . . . . 17
3.2 The Mott-Hubbard transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Band-structure evolution across the metal-insulator transition . . . . . . . . . . 19
3.4 Coexistence of solutions and the first-order transition line . . . . . . . . . . . . 21
3.5 Endless directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Hands-on exercise (with IPT code): the Mott-Hubbard transition 29

E. Pavarini, E. Koch, and S. Zhang (eds.)
Many-Body Methods for Real Materials
Modeling and Simulation Vol. 9
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1 Introduction

The discovery of the high-temperature cuprate superconductors in the late 80’s triggered a
strong interest in the physics of transition-metal oxides. It was soon realized that understanding
these systems posed a significant theoretical challenge, namely, to describe electronic systems
where the independent-electron approximation fails. This became known as the problem of
strongly correlated electron systems, and to a large extent remains a challenge. Nevertheless,
some significant progress has been accomplished. In this lecture we shall be concerned with a
particularly successful approach, namely, dynamical mean-field theory (DMFT), which was de-
veloped in the 90’s and has allowed to gain new insights into the problem of strong correlations.
Specifically, it provided a significant advance in our understanding and description of one of the
classic problems in the field, the Mott metal-insulator transition. For a detailed account on how
DMFT was developed, the interested reader is referred to the review article [1]. The goal of the
present lecture is to introduce DMFT and its application to the problem of the Mott-Hubbard
transition in a pedagogical manner, putting emphasis on the new concepts that it brought to
light. The lecture is aimed at final-year undergraduates, beginning graduates, or anybody look-
ing for an accessible presentation to the concepts of DMFT, including experimentalists. The
lecture is supplemented with a computational code, which allows the interested reader to solve
the basic DMFT equations. We also propose a set of problems that will guide the reader in the
discovery of the physics of the Mott-Hubbard metal-insulator transition.
We shall begin by illustrating, from an experimental point of view, the manifestations of strong
correlation phenomena with special attention to that of the Mott transition. We shall then de-
scribe in simple terms the DMFT approach by drawing an analogy with the classic mean-field
theory of spin models. We then move on to consider the solution of the prototype model of
strongly correlated systems, the Hubbard model, which is a minimal model to capture the metal-
insulator transition. We shall discuss the transition as a function of interaction strength, temper-
ature, and doping in both, the paramagnetic and the antiferromagnetic phase. We shall describe
some basic experimental data on a material that is widely considered to exhibit an actual Mott
transition and discuss the connection to theoretical results of the Hubbard model within DMFT.

1.1 Strongly correlated systems

How do we know that we are dealing with a strongly correlated system? This question is impor-
tant, because the models and their solutions should illustrate precisely those aspects. There are a
few physical phenomena which we may consider to be key. The first that we can mention is the
presence of complex phase diagrams (Fig. 1). Ordinary materials, are either metals or insula-
tors, or even semiconductors if their gaps are small with respect to room temperature. Common
examples are gold, diamond (gap 5.5 eV), and silicon (gap 0.67 eV), respectively. They are
relatively easy to understand already by looking whether the outermost electronic orbital shell
is partially filled or not. In the case of carbon, the 2p orbital has two electrons and this permits
different structural arrangements that lift the orbital degeneracy. Thus if the degeneracy is fully
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Fig. 1: A complex phase diagram is characteristic of systems with strong electronic corre-
lations. Examples from manganites (A), cuprates (B), ruthenates (C), cobaltates (D), 2-d κ-
organics (E), and heavy fermions (F). From [2].

lifted, the 2p band is full as in diamond, but if not, it is metallic as in graphite. In the case of gold,
the outermost shell is the partially filled 6s1, which leads to a metallic structure. These simple
materials remain in their stable phase upon heating from low temperatures, without significant
changes in their electronic structure. Only at very large temperatures, well above room tem-
perature, the crystalline structure may eventually give up due to phonon excitations. Strongly
correlated systems are different. They exhibit dramatic changes in their electronic properties,
even at temperatures smaller than room temperature. Examples of these phenomena are the
metal insulator transition in V2O3 and in the family of nickelates XNiO3 (X= La, Sm, Pr, etc.)
the magneto-resistance of manganites La1−yXyMnO3 (X= Sr, Ca, etc.) and the superconductiv-
ity in cuprates such as La2−ySryCuO4, Bi2Sr2Ca1Cu2O8+y, YBa2Cu3O7−y, HgBa2Ca2Cu3O8,
among many others [2]. Iridates, such as Sr2IrO4 [3, 4] are currently receiving a great deal of
attention for their potential “topological” properties. And we may also mention more exotic
structures, such as the molecular crystals of “buckyballs” A3C60 (A= K, Rb, Cs, etc.) that may
exhibit superconductivity at∼ 35K [5,6]. These changes in their electronic transport properties
are also correlated with anomalous spectroscopic properties, which involve transfer of spectral
intensity that takes place over energy scales of the order of an eV. This becomes significant
when we realize that 1 eV ∼ 11 000 K. So the question is how, by heating up a material to
∼100 K, we may observe changes on energy scales 100 times larger.
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Fig. 2: Schematic phase diagram of transition-metal oxides as a function of the partial filling
of the 3d-orbital band and the intensity of Coulomb correlations. Mott insulators are found at
integer fillings of the d-shell. From [7].

The most amusing playground for strongly correlated physics, from the point of view of materi-
als, has been that of transition-metal oxides. In particular those transition metals that occupy the
third row of the periodic table, filling the 3d orbital shell. As a function of the filling we find a
large variety of oxide materials, which are expected to be metals from density-functional theory
(DFT) calculations, but are found to be insulators, as illustrated in the Fig. 2. Moreover, those
unexpected insulators lead to anomalous metallic states upon chemical doping. A survey of
those systems has been condensed into an excellent review by Imada, Fujimori, and Tokura [8].
A practical, but certainly non-rigorous definition of strongly correlated systems could be given:
They are those materials whose electronic state and band-structure fail to be described by DFT.

1.2 Kondo model and Kondo problem

One of the oldest problems in strongly correlated materials, and certainly one of the, conceptu-
ally, most important, is that of the observed minimum of the resistivity in metals with magnetic
impurities, which led to the formulation of the Kondo model. The physical phenomenon con-
sists on the observation of a minimum in the resistivity of an ordinary metal with a small amount
of magnetic impurities, such as gold with Mn impurities, as schematically depicted in Fig. 3.
The problem was theoretically addressed by Kondo, who considered a Hamiltonian of an ordi-
nary metal of bandwidthW, interacting with an embedded single magnetic impurity with a spin
interaction J . Kondo showed that diagrammatic perturbation theory broke down at a low tem-
perature, where logarithmic divergences developed. This became the Kondo problem, which
led to very important developments. We may mention a wonderful paper by Anderson, known
as “Poor’s man scaling,” which was an important step in the right direction. Eventually, Wilson
invented the numerical renormalization group (NRG) in the 70’s, providing an exact numeri-
cal solution and a conceptual breakthrough. The problem was analytically solved by Andrei
and Tsvelik in the 80’s using the Bethe Ansatz, a highly technical mathematical methodology.
An important concept that emerged from the solution of the Kondo problem was that of the
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Fig. 3: Schematic illustration of the Kondo effect. Top: (left) The magnetic moment of an
impurity site emerges when the second electron is hindered to doubly-occupy a site below the
Fermi sea due to the interaction energy cost U (dotted energy level). The physical manifestation
of the Kondo effect are: (middle) a logarithmic increase of the resistivity at low T (red line), with
respect to the non-magnetic impurity scattering (black line); and (right) a sharp resonance in
the DOS at the Fermi energy (the Kondo peak). Bottom: Illustration of the (dynamic) screening
of the magnetic impurity by the conduction electrons forming a many-body singlet state.

Kondo resonance and the Kondo temperature. The former is a peak in the local density of
states (at the site of the magnetic impurity), which corresponds to a many-body state where the
metallic electrons dynamically screen the magnetic moment of the impurity, forming a singlet
state. This phenomenon occurs below the Kondo temperature, which is exponentially small:
TK ∼ We−W/J . The solution of this problem already illustrates the characteristics of strong
correlations we have mentioned before: There is a change in the electronic conduction (Kondo
minimum) and in the spectral properties (Kondo resonance), which all occur at a low temper-
ature (Kondo temperature) well below the bare energies scales of the model (W and J ∼ eV,
while TK∼10 K).

The Kondo model can be generalized into the single impurity Anderson model (SIAM), where
the magnetic impurity is represented by an atomic site with energy ε0 6 0 (beneath the surface
of the Fermi sea) and a local Coulomb repulsion U. For large values of U, the double occupa-
tion of the site is penalized so the orbital occupied by only one electron describes a magnetic
impurity. The atomic site is hybridized with the conduction band of the metallic host via an am-
plitude V. This permits the conduction electrons to briefly (doubly) occupy the impurity site,
screening its spin. Because of the high energetic cost U, one of the electrons of the impurity
returns to the metal, which may produce a “spin-flip” of the impurity spin. These processes
lead to the formation of a non-magnetic many-body state involving both the impurity and the
conduction electron degrees of freedom. Similarly as in the Kondo model, this occurs below a
low temperature scale. The relation between the two models is J ∼ V 2/U , for the case where
ε0 = 0 and U is large. An instructive problem to solve is to consider a minimal SIAM as a
two-site Hamiltonian problem, where one “impurity” site has energy ε0 and a correlation term
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Un0↑n0↓, the other “conduction band” site has energy zero, and they are hybridized by a hop-
ping amplitude V. The density of states (DOS) of the sites can be computed, along with all
interesting observables, such as the magnetic correlation functions and the magnetic moments,
with relatively small numerical effort, even at finite T. Already the DOS will show a strik-
ing temperature dependence, with transfers of spectral weight across large energy scales, the
emergence of a precursor of the Kondo peak, and the magnetic screening of the impurity spin.
As we shall see below, the importance of the Kondo and the SIAM is not only conceptual: they
form the very heart of the DMFT method.

2 Dynamical mean-field theory: a primer

The best way to introduce dynamical mean-field Theory (DMFT) is to draw an analogy with the
familiar mean-field theory of the Ising model, which is a text book case of statistical physics.
However, before doing that we need to give a brief introduction to Green functions (GF), since
these mathematical objects are central to the formulation of DMFT. Unlike the Ising spins, GF
are frequency (or time) dependent objects, hence the “dynamical” aspect of the DMFT. We
shall avoid mathematical rigor and focus just on the aspects of the GF that we need to carry on
the discussion. We shall avoid using vectors, also in the sake of keeping the notation light. The
meaning should be always clear from the context. There are excellent text books on the topic of
GFs, a classic one is that by G. Mahan [9].

2.1 Green functions in a nutshell

Physically, the GF are mathematical objects that characterize the propagation of particles through
the lattice. Therefore they have site and time coordinates, or equivalently, lattice momentum
and frequency (k, ω). In this case, the physical interpretation is that the GF describes the pro-
cess of adding (removing) a particle with energy ω > 0 (ω < 0) and momentum k. The GF
are complex functions that are defined on the whole complex plane G(k, z), with z ∈ C, where
ω=Re(z). They are analytic, so they are defined on both, the real and imaginary axis. In practice
we use both. The real frequency axis GF provide functions that can be compared with experi-
ments. For instance, the imaginary part of the local GF (i.e., at position x=0) as a function of
real frequency ω is the density of states (DOS) ρ(ω), which is measured by photoemission and
scanning tunneling spectroscopy experiments,

ρ(ω) = − 1

π
Im Gloc(ω) = −

1

π
Im
∑
k

G(k, ω). (1)

In contrast to the continuous variable ω, on the imaginary frequency axis the GF is defined on
a set of discrete frequencies, called (fermionic) Matsubara frequencies ωn=(2n+1)π/β, with
n∈Z and β ≡ 1/T is the inverse temperature. The interest of using GFs on the imaginary axis
is that they are often easier to compute than their real axis counterparts. There is an important
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price to pay, however, which is the need to analytically continue the G(k, iωn) to obtain the
G(k, ω) so comparisons can be made with experiments.
The simplest GF is that of a single orbital state, isolated, and of energy ε0,

G(ω) =
1

ω + ε0 − iη
. (2)

The imaginary part (i.e., the DOS) has a delta function from the simple pole at ε0. For a tight
binding Hamiltonian, with a band that disperses as εk, the GF becomes a function of k and ω

G(k, ω) =
1

ω − εk + iη
, (3)

whose imaginary part has delta-peaks at the poles of G(k, ω) that provide the electronic band
energy dispersion εk, while iη provides a small width to the peaks. It is called the spectral
function, A(k, ω)=−ImG(k, ω)/π and is, in principle, measured in ARPES experiments.
The lifetime of the excitations is given by the inverse of the frequency-width of the peaks ap-
pearing in the spectral functions A(k, ω). In a non-interacting system, as in a tight binding
Hamiltonian with dispersion εk, the single particle states are eigenstates and are stationary, so
they have an infinite lifetime. Accordingly, the poles of the GF become infinitely narrow delta-
peaks δ(k−k0, ω−εk0) in the spectral function.
Interactions, such as on-site Coulomb repulsion, that in the Hubbard model have the same
form, Un↑n↓, as in the SIAM affect the non-interacting band structure. They may change
the energy dispersion and can also change the lifetime of the excitations. In extreme cases,
they can qualitatively change the energy dispersion or “electronic structure.” We shall see a
concrete instance in the Mott-Hubbard metal-insulator transition. Mathematically, the effects
of the interactions is encoded in the calculation of another complex function that shares the
same analytic properties as the GF. It is called the self-energy Σ(k, ω). Thus solving the many-
body problem of an interacting model amounts to obtaining the self-energy. Let’s write down
the definitions for the concrete case of a Hubbard model (HM)

H = H0 + U
∑
i

ni↑ni↓ with H0 = −t
∑
〈i,j〉σ

c†iσcjσ , (4)

where 〈i, j〉 denote nearest neighbors sites and niσ = c†iσciσ. Thus, we have for the GF

G0(k, ω) =
1

ω − εk + iη
and G(k, ω) =

1

ω − εk −Σ(k, ω)
, (5)

where G0 is called the non-interacting GF. We see in the expression of the GF how the Σ
function can modify the electronic dispersion ofH0: ReΣ changes the energy of the excitations,
while ImΣ changes their lifetime τL = 1/ImΣ(ω=0).
Two more definitions will be useful. The notion of quasiparticle residue Z and renormalized
mass m∗. They both serve to parametrize the effect of interactions for the low energy band-
structure. We can write it as the sum of two contributions

G(k, ω) ≈ Z

ω−Z εk
+ (1−Z)Ginc(k, ω). (6)
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Fig. 4: One site from the lattice is embedded into an effective electronic bath. The bath is
self-consistently determined to best represent the lattice environment of the site. This single-site
quantum-impurity problem remains a non-trivial many-body problem.

The quasiparticle residue is 0≤Z≤1, and represents the part of the DOS which remains with
a well defined energy dispersive structure. The excitations are modified as Zεk, which implies
that the electronic band becomes flatter, i.e., has a higher mass. If εk = −t cos(ka) ≈ k2/2m,
we see that Zεk gives an enhanced effective mass m∗ = m/Z > m. Since the DOS is normal-
ized to 1, the spectral weight which is not in the quasiparticle part at low energy has to appear a
higher energy. This contribution does not have a very well defined dispersion (due to short life-
times from a large ImΣ) and thus we have the factor 1−Z in front of the second contribution,
which we call incoherent Ginc.
We have gone fast on these definitions. There are excellent text books for the interested reader
to learn more details [9].

2.2 The DMFT self-consistency equations

We use the functional integral formalism to introduce the main DMFT equations. Again, there
are excellent text books on that formalism too [10]. The method is based on writing down the
action of a Hamiltonian model. We shall skip all the details of the formalism and simply write
down directly the most important expressions, which should be clear enough. For simplicity we
shall focus on the Hubbard model (HM) defined above in Eq. (4). The action of the HM reads

S =

∫ β

0

dτ

(∑
iσ

c†iσ ∂τ ciσ − t
∑
〈i,j〉σ

c†iσcjσ − µ
∑
iσ

niσ + U
∑
i

ni↑ni↓

)
. (7)

The model is defined on a given lattice. The next step is, as in standard mean-field theory, to
single out a site and try to replace the original lattice problem by an effective quantum impu-
rity problem (QIP) embedded in a medium that is determined so to best represent the original
environment of the site. This is pictorially represented in Fig. 4. More concretely, we split the
action into that of the single lattice site i = 0 at the “origin,” S0, the rest of the lattice, S(0), and
the coupling between them, ∆S: S = S0 +∆S + S(0)

S0 =

∫ β

0

dτ

(
c†0σ(∂τ − µ)c0σ +Un0↑n0↓

)
and ∆S =

∫ β

0

dτ

(
− t
∑
〈i,0〉σ

c†iσc0σ + c†0σciσ

)
. (8)
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By means of standard field-theory methods we integrate out the rest of the lattice and write the
full effective action on the lattice site at the origin alone as

Seff =

∫ β

0

dτ

(
c†0σ(∂τ − µ)c0σ −

∑
ijσ

t0i tj0 G
(0)
ij + ...+ U

∑
i

ni↑ni↓

)
. (9)

G
(0)
ij denotes the exact propagator of the lattice with the 0-site excluded and (...) stand for higher

order terms in the hopping t. Up to now there are no approximations, but the problem remains
too hard to deal with. DMFT corresponds to taking the limit of large dimensionality, large lattice
connectivity or large lattice coordination. An evident problem is that the number of neighbor
sites to 0 grows to infinity (i.e., the band-width would grow to∞). Metzner and Vollhardt [11]
realized that the reasonable way to cure this problem is by rescaling the hopping amplitude t→
t/
√
d, where d is the number of spatial dimensions. The simplest way to see this is noting that

the typical value of the kinetic energy for a random k vector isEkin =
∑d

i −t cos(ka) ∝ (
√
d t)2

(using the central limit theorem). A key consequence of this scaling is that the (...) in Eq. (9)
vanish (as they are higher order in t), which is a great simplification. Thus, we recognize from
Seff the quantum impurity problem that we were looking for

SQIP =
∑
nσ

c†0σ G−10 (iωn) c0σ + β Un0↑n0↓ , (10)

with the “non-interacting” GF of the QIP defined as

G−10 = iωn + µ− t2
∑
(ij)

G
(0)
ij (iωn), (11)

where (ij) denotes the sites neighboring 0 and we went from imaginary time τ to the Matsubara
frequency ωn representation. Notice that the G0 is the bare propagator of the QIP and should not
be confused with G0, which is the bare local propagator of the lattice. The last term represents
the environment of the impurity, which still needs to be determined. Its physical interpretation
is that an electron at the impurity site has an amplitude t to hop out to a neighbor site i, then it
propagates through the rest of the lattice from i to j with G(0)

ij , and returns from site j back to
the impurity site with a second hop t. The 0 index in G0 indicates that it is the non-interacting
GF of the impurity problem, but this object is, in general, different from the original lattice local
non-interacting GF.
G

(0)
ij is a fully interacting GF whose solution is, in principle, at least as hard as the original

problem. So we need to do something about it. Diagrammatically, we can write the cavity GF

G
(0)
ij = Gij −

Gi0G0j

G00

, (12)

where the second term subtracts from the first all the diagrams that go back to the origin, and its
denominator takes care of the double counting of local diagrams. Notice thatG(0) has now been
written in terms of the lattice GF. If we assume a k-independent self-energy we can express
the lattice GF in real space by summing over specifying the geometry of the lattice and Fourier
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transforming. Then, inserting Eq. (12) into (11) the sum over spatial indices can be performed
and one obtains the self-consistency equation [1]

G−10 (iωn)−Σ(iωn) =
∑
k

1

iωn + µ− εk −Σ(iωn)
= Gloc(iωn). (13)

This expression is valid for all lattices. For instance, on a hyper-cubic lattice, which is the
generalization of the square and cubic lattices to high dimensions, the integral over k can be
done as a sum over the hyper-cubic lattice single-particle energies ε

Gloc(iω) =

∫ +∞

−∞

1

iωn + µ− ε−Σ(iωn)
DOS(ε) dε , (14)

where

DOS(ε) =
e−ε

2/2t2

t
√
2π

(15)

is a Gaussian function (again using the central limit theorem).
A few comments are in order now. From Eq. (13) and (10) we see that Σ(iωn) is the self-
energy of the QIP. It is obtained as the solution of the many-body single-site problem, i.e., the
QIP, which depends on G0. Thus, we can write Σ = Σ[G0] so that the self-consistent nature
of Eq. (13) becomes evident. The key feature that links this equation to the original lattice
problem is that it can be shown that at the self-consistent point, the QIP self-energy Σ(iωn)

coincides with the exact self-energy of the lattice Σ(iωn) [1]. Crucially, in the limit of large
dimensionality or lattice connectivity and with the re-scaling of the hopping made above, the
lattice self-energy is k-independent, which validates the assumption made to obtain Eq.13 [1].
Hence, at the self-consistent point, we also recognize on the right hand side of Eq. (13) the local
GF of the lattice problem Gloc(iωn), which we set out to solve.
So the issue is now reduced to obtaining the self-energy, given the impurity G0. We see that
given a guess for G0, we solve the many-body QIP to obtain a guess for Σ. We input that into
the r.h.s. of Eq. (13) to obtain a guess for Gloc. Then, from Gloc + Σ we get a new guess for
G0. This has to be iterated until self-consistency is attained. Then the problem is solved as we
obtain the DMFT solution for the lattice GF as

G(k, iωn) =
1

iωn − εk −Σ(iωn)
. (16)

This equation, with a k-independent Σ is exact for lattices in infinite spatial dimensions or
infinite connectivity. However, the procedure may be adopted for lattices in any dimension and
that case the DMFT and the k-independence of Σ become an approximation, which is at the
root of the realistic DMFT approach for materials that we shall describe later.

2.3 DMFT on the Bethe lattice

Another illuminating light can be cast on the DMFT self-consistency condition by considering
the Bethe lattice. There are two main features that make this lattice a very popular choice for
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Fig. 5: The Bethe lattice (for connectivity d = 3). The red line indicates the “cavity” propaga-
tor. When the origin (0) is taken out, the electrons have to leave and return to the origin via the
same neighbor site (i), rendering the cavity propagator site-diagonal, cf. Eq. (12).

DMFT studies. The first one is that the DOS(ω) is a semi-circle, which has a finite band-width
and band-edges similar to 3D cubic lattices. The second is that the self-consistency equations
are easier to derive. The Bethe lattice of coordination z is a “branching tree”, where from each
node emanates a number z of branches. In Fig. 13 we show the case z=3. In this type of
lattice the cavity G

(0)
ij is easy to obtain. In the left panel of the figure we depict with a red

line a propagation from site i to j, both nearest neighbors of the 0-site. The cavity propagator
has to be obtained with the 0-site removed. The right panel shows that when we do that, an
electron that has hopped from 0 to i can only return back to 0 hopping from i. In other words,
G

(0)
ij = G

(0)
ii δij . Now, if we consider the limit of large lattice coordination, z → ∞, we see

from the right panel of Fig. 5 that the G(0)
ii is identical to Gii, which by definition is Gloc. Thus,

from the cavity Eq. (12)

G
(0)
ij = G

(0)
ii δij = Gii δij = Gloc δij . (17)

Replacing into Eq. (11), we can perform the sum to get

G−10 = iωn + µ− t2Gloc(iωn), (18)

where we used that the hopping is rescaled, as mentioned before, by t → t/
√
z. The self-

consistency equation for the Bethe lattice has a very compact and intuitive form, and avoids the
need of the ε integral of the hyper-cubic case.
From the point of view of the QIP problem we observe that the quantum impurity is embedded
in a medium that is nothing but t2 times the local GF. The problem is dealt with similarly as
before: given a guess for the G0, the many-body problem of the 0-site is solved. An interacting
GF for the impurity is obtained and a new guess for G0 is simply computed from Eq. (18).
The iteration proceeds until convergence is attained and at that point, as before, the Gloc(iωn)

becomes the local GF of the original lattice problem.
To show that the self-consistency condition obeys the general form of Eq. (13), we first compute
the local non-interacting Bethe lattice DOS(ε). Since U=0, we have Gloc=G0. Thus, replac-
ing into Eq. (18) and solving the quadratic equation, we can get the Gloc(iωn) and from the
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imaginary part of the analytic continuation to the real-frequency axis

DOS(ε) =
2

πD2

√
1−

( ε
D

)2
for |ε| < D , (19)

where we introduced the half-bandwidth D = 2t. Inserting this DOS(ε) into the general
Eq. (14) and using the Dyson equation for the quantum impurity, G−1loc = G−10 − Σ, one re-
derives the Bethe lattice self-consistency condition Eq. (18).
Experience has shown that for simple model Hamiltonians there are no qualitative differences
in the DMFT solutions of different lattices, therefore, the simplicity of the Bethe lattice often
justifies the choice.
An important feature of the solution is that the lattice self-energy Σ, which coincides with that
of the QIP at self-consistency, does not depend on momentum. This is evidently not a charac-
teristic of a Σ in general, so we may ask if this makes sense. Or, in other words, when should
we expect Σ to be independent, or weakly dependent, of the momentum? The answer is for
physical problems where the stronger interactions are local and when the lattice coordination is
large. In fact, the latter follows from a mathematical statement, which is that the DMFT solution
becomes exact in the limit of large spatial dimensions [11, 1]. In practice, one may then expect
that for cubic, bcc, and fcc lattices with coordinations 6, 8, and 12 � 1, the approach should
be reliable. On the other hand, in regard to locality of interactions, we may expect them to
dominate the physics when the orbitals are small with respect to the interatomic distances of the
material (or more simply to the lattice spacing). This is the case for two types of materials, such
as the 3d transition-metal oxides and the heavy fermions. Among the first we have the strongly
correlated materials that we listed in the Introduction (Sec. 1). Heavy fermions are typically
inter-metallic compounds, such as CeCu6, CeAl3, UBe13, and UPt3, that have an ordinary metal
and one with active f -electrons, such as the actinides.
How about the case for a material that has a relatively low coordination but does have strong
local interactions? That is the case of an important class of materials, the high-Tc cuprate and
the iron-based superconductors. Both these systems have layered structures. The answer may
depend on the person that this question is asked to. But more fairly, one should say that the
relevance of DMFT may depend on the type of physical question that one is asking. We shall
see some examples later on that shall illustrate this point.
We can summarize the DMFT method and its self-consistent nature by drawing an analogy with
the familiar mean-field theory of an Ising model. This is schematically shown in Fig. 6. On the
left panel we have the main DMFT ingredients: a lattice model and Hamiltonian; the mapping
to the quantum impurity problem and the effective action of the single-site of the lattice; the
restoration of the spatial translation invariance of the lattice by enforcing a self-consistency
constraint; and the requirement for a rescaling of the original hopping parameter so that all
terms in the model remain of finite energy when one takes the limit of high dimensionality.
As we can see in the right panel of the figure, all those ingredients have a counterpart in the
Ising model MFT. One can observe that in the latter the local magnetization m (or heff) is an
a priori unknown that needs to be determined, similarly as the G0. Another feature is that the
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Fig. 6: Analogy between Hubbard model DFMT and Ising model MFT. We highlight the similar
role of the “origin” site 0 and the a priori unknown “cavity” or “Weiss field” function G−10 and
the mean magnetization m. Also, both methods become exact in the limit of large dimensions
(or connectivity z) after the required “rescaling” of the hopping in DMFT and the magnetic
interaction in the MFT. Notice that in the Hubbard model the super-exchange J ∼ 4t2/U also
becomes rescaled by 1/z.

numerical difficulty to solve the model is dramatically reduced by mapping to a single site.
Solving a single Ising-spin is trivial, however, solving the QIP still remains a difficult many-
body problem. A variety of techniques have been developed over the years to obtain reliable
numerical solutions.

2.4 Quantum impurity problem solvers

An important technical point that we should mention is the practical solution of the QIP, which
remains a non-trivial many-body problem [12]. From the start we should say that despite almost
30 years of work, where a variety of methods have been proposed [13], there is no single ideal
one. We shall briefly comment on the most important techniques. We recall that the goal is to
solve an arbitrary single-impurity Anderson model (SIAM), where the interacting atomic site is
hybridized to an environment, or “bath” that is specified by a DOS(ω). In the standard SIAM
the bath represents a metal, but in the present case the bath is a function that evolves under the
iterative procedure. For a Bethe lattice it coincides with the local GF as we discussed above.
The main techniques are the following:
Quantum Monte Carlo: This is a finite temperature method that is performed on the imagi-
nary time axis, so it produces solutions to the model on the Matsubara frequency axis. This
has the drawback that it requires the additional step of analytic continuation, which presents
significant technical problems regarding the reliability and the precision of the spectra. This
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can be mitigated improving the accuracy of the MC calculation. It is perhaps the most power-
ful method. It was originally implemented via a Trotter expansion of the action and a discrete
Hubbard-Stratonovich transformation [14,1]. More recently, a continuous time formulation was
developed, based on a statistical sum of diagrams [15]. Its main advantages are that it is numer-
ically exact (in the statistical sense), that its scaling to multi-orbital models is not bad, and that
is easily parallelizable. Among its main drawbacks are the need of analytic continuation that we
mentioned, the increased numerical cost to lower the simulation temperature, and the so called
“minus sign” problem that prevents the solution of certain multi-orbital problems, especially in
the case of cluster methods.
Exact Diagonalization: In this method one adopts a bath of non-interacting fictitious atoms
that are coupled to the impurity site. The bath is thus defined by the atomic energies and
the coupling amplitudes. Given a set of values for these parameters, a SIAM Hamiltonian is
exactly diagonalized by standard techniques and the GF is obtained. The solution is used, via
the self-consistency equation (Eq. (13) and 18) to compute the new bath, which is fit to obtain
a new set of parameters for the fictitious atoms [1]. The main advantages of this method is
that it can be formulated at zero or finite temperature, that it does not pose the problem of
analytic continuation, and that its accuracy can be systematically improved. Its drawbacks are
that it is numerically costly, especially for multi-orbital models and going to finite temperatures
(requires full diagonalization of the Hamiltonian). This is due to the poor scaling of the size
of the Hilbert space, which severely limits the number of sites in the bath, typically to about
10, which makes the pole structure of the GF quite discrete. This problem can be overcome by
representing the bath with a linear chain and using the DMRG method for the solution [16,17].
One can implement baths with up to 100 atoms. However, the scaling to multi-orbital models
is still poor. We may also mention the solution of the SIAM using Wilson’s NRG method [18].
This approach also allows to implement large atomic baths and provides excellent accuracy at
low frequency and zero temperature. Its main shortcoming is, as for DMFT-DMRG, the poor
scaling for multi-orbital models moreover it is not particularly advantageous for the study of
insulating states.
Iterative Perturbation Theory: The IPT method has both, remarkable advantages and limita-
tions. It is based on a perturbative evaluation to the second order in U/t of the self-energy.
The method is very simple and fast. It provided extremely valuable insights on the Mott tran-
sition. Its value relies on a fortunate fact, namely, it provides an asymptotically correct solu-
tion in the large coupling limit. This is by no means obvious and, apparently, it just works
by a lucky stroke. Perturbation theory is by construction good at small coupling, and by no
means should be expected to work at large U/t. However, it is not hard to demonstrate it. It
is most simply done in the case of a Bethe lattice. We just need to know that, for 0 < τ < β,
1
β

∑
n e
−iωnτ 1

iωn
= −1

2
, if ωn is a fermionic Matsubara frequency. From Eq. (18) in the atomic

limit (t = 0), we see that at half filling G0(iωn) = 1
iωn

. Thus, for 0 < τ < β, we have
G0(τ) = −1

2
and G0(−τ) = 1

2
. The 2nd order diagram of Σ(iωn) therefore takes the value

Σ(2)(iωn) = −U2

∫ β

0

dτeiωmτ [G0(τ)]2G0(−τ) =
(
U

2

)2 ∫ β

0

dτeiωmτG0(τ) =
U2

4

1

iωn
. (20)
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Using this result and Eq. (14) and (19), we obtain for the Gloc in the large-U limit

Gloc(iωn) ≈
2

iωn − (U/2)2/iωn +

√
(iωn − (U/2)2/iωn)

2 −D2

(21)

and from its imaginary part on the real axis we get the DOS

DOS(ω) ≈ 2

πD2

√(
ω − (U/2)2/ω

)2 −D2 with
∣∣ω − (U/2)2/ω

∣∣ < D (22)

which corresponds to two bands of width ≈ D, split by a gap ≈ U, where we recall D = 2t

is the half-bandwidth of the original non-interacting lattice model, so this solution correctly
captures the “atomic” limit of D � U .
How do we know that it works in between where U ∼ D? It is because the IPT solution can be
benchmarked with the two exact methods that we described before. Comparisons have shown
that, quite remarkably, the IPT solution reproduces most of the physical features of the Mott-
Hubbard transition at both zero and finite temperature, including the first-order metal-insulator
transition that ends in a finite temperature critical point [19, 1]. The surprise gets even bigger:
Besides the Hubbard model, the second-order “recipe” for Σ also qualitatively works for the
solution of the periodic Anderson model [20] and for the dimer Hubbard model [21]. Unfor-
tunately, the IPT only works at the particle-hole symmetric point. Upon doping the systems,
pathological behavior occurs, such as negative compressibility.
In Sec. 4 we provide a link to the IPT source code and propose simple exercises to guide the
“hands-on” discovery of the Mott-Hubbard transition.

2.5 Long-range order

DMFT can also be used to explore simple types of magnetic (charge, position, orbital, etc.)
long-range ordering, such as ferromagnetic and Néel (i.e. checkerboard) order. In the first case,
the equations remain the same, one just needs to consider that the bath may be different for
spin up and down. In the case of Néel order, one has to explicitly take into account the two
sub-lattices, say A and B. In that case the self-consistency equations read

GA0σ(iωn) =
1

iωn + µ− t2GB
σ (iωn)

GB0σ(iωn) =
1

iωn + µ− t2GA
σ (iωn)

(23)

and using the symmetry properties of Néel order between sub-lattices, we get just one equation

G0σ(iωn) =
1

iωn + µ− t2G−σ(iωn)
. (24)

Note that Gσ(iωn) is equal to −G∗−σ(iωn) in the particle-hole symmetric case, but in general it
is not.
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3 The Mott-Hubbard transition in DMFT

Before describing the solution of the Hubbard model within DMFT and its relation to the Mott
transition, we shall describe some experimental background to motivate this study. The Mott
transition is a central problem of strongly correlated systems, and has been occupying a center
stage since the discovery of the high Tc cuprate superconductors in the 80’s [22], followed
by the manganites in the 90’s [2], and so on [8]. The interest has been essentially non-stop,
with the most recent instance being the fascinating discovery of superconductivity in twisted
bi-layer graphene [23]. Once again, this validates the notion that we already discussed in the
introduction, namely, that interesting physics always emerges close to a Mott transition. Hence,
the relevance of this physical concept.

The Mott transition is a metal-insulator transition (MIT), and the concept goes well before
the cuprates, to an argument made by Mott in the 40’s [24]. He argued that by considering
the dependence of the kinetic and potential energy as a function of the electron density in a
solid, one should expect a discontinuous phase transition. In simplest terms the argument is
that Ekin ∼ k2F/m ∼ 1/a2 ∼ n2/3, while the Epot ∼ e2/a ∼ n1/3, so that at low n the Epot

dominates, while at large n the kinetic energy does. Hence, as a function of the density, a first
order transition should occur between an insulator and a metal. While this argument advances
the notion of competition of electronic delocalization versus Coulomb repulsion, which are the
ingredients of the Hubbard model, Mott’s argument does not immediately apply. What came
to be known as the Mott-Hubbard MIT is a phenomenon that occurs at “half-filling,” that is,
when a band has an occupation of one electron per site (remember that a band has room for
two electrons due to the spin), thus, at electronic density n = 1. If a band is half-filled, it is
partially filled and should have plenty of states just above the Fermi energy. So it should be a
metal. Thus, the Mott insulator state is an insulator state that is realized in a half-filled band due
to strong Coulomb interactions. Intuitively, if Coulomb repulsion dominates, it will cost a lot
of energy to bring two electrons onto the same atomic site. Hence if n = 1, the best one can do
is to avoid the double occupation of any site, which can be achieved by localizing each electron
onto a respective atomic site. They would then be locked in their positions, since to move they
would have to jump to a neighboring site and that is too costly. Thus, we may think of the Mott
state as a global Coulomb blockade.

We should also emphasize that the notion of a Mott transition does not involve a change in the
symmetry, such as antiferromagnetic ordering or a lattice dimerization. These two phenomena,
associated to the names of Slater and Peierls, can open a gap in the band but do not require
strong interactions. Thus, we call them weak-coupling mechanisms, since they emerge from
perturbation theory, such as Hartree-Fock. In Fig. 7 we schematically illustrate this point. The
ordering effectively doubles the unit cell, thus halving the Brillouin zone (BZ) and doubling the
bands that open a gap at the border of the BZ [25].



DMFT and Mott transition 10.17

x x x x x x6 6 6
? ? ?

� -
2a

x x x x x x
�-
a

x x xx x x
� -

2a

Fig. 7: Schematic representation of the weak-coupling gap opening from the effective lattice
parameter doubling 2a due to magnetic (left) or lattice (right) symmetry breaking. These mech-
anisms are associated to Slater and Peierls respectively.

3.1 V2O3 a strongly correlated material with a metal-insulator transition

Now we can ask ourselves the question, is the Mott transition realized in nature? Or, is it just
an idealized concept? The answer is yes, to both. The Mott transition that we just described
is obviously a very idealized and simplified situation: exact half-filling, no change in the sym-
metry, no disorder, no temperature effect, etc. etc. Yet, and quite remarkably, there seems to
be a realization of the Mott-transition concept in the compound V2O3. In Fig. 8 we show the
phase diagram of this famous compound. We observe three phases, an antiferromagnetic insu-
lator (AFI) at low temperature, and two paramagnetic phases at intermediate temperatures, one
insulator (PMI) and one metallic (PMM) that are separated by a first-order line, which ends in a
critical point (CP). The important feature is that the MIT occurs with no change in lattice sym-
metry. It can be driven by temperature or by pressure (hydrostatic or chemical). The small Cr
and Ti substitution is considered to slightly change the lattice spacing, hence the bandwidth, but
not the number of carriers. In fact, the no change in the lattice symmetry is easily understood
from the fact that if one starts, say in the PMI next to the first-order line, and then heats-up
the system just above the CP, then applies pressure just past the CP, and cool down again, one
arrives to the qualitatively different PMM phase, all through a continuous and smooth process.
This feature shows that the MIT in V2O3 is qualitatively similar to the familiar liquid-vapor
transition in water.

The study of the MIT in V2O3 continues to be a matter of strong scientific interest, attention and
debates with many interesting findings that continuously challenge our physical understanding
of this compound. Among the most recent and exciting discoveries is that strong electric pulsing
may collapse the Mott insulating state and that the phenomenon may be exploited to implement
artificial neurons [26–28]. From a conceptual point of view understanding this new and un-
expected neuromorphic functionality [29] poses a significant challenge, namely to describe the
Mott transition out-of-equilibrium. This is a topic of great current interest [30], which is also
motivated by the fast development of so called “pump-probe” experiments.

After this brief introduction to the Mott phenomenon and its relevance, we now move on to
describe the Mott-Hubbard transition within DMFT.
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Fig. 8: Left: Phase diagram of V2O3. Negative and positive chemical pressure can be applied
with a few % of Cr and Ti substitution. The blue line indicates the first-order line between the
metal and the insulator within the paramagnetic phase. The orange square indicates the second-
order critical end-point. Center: Resistivity of V2O3 across the meta-insulator transitions.
Right: A similar first-order line and critical end-point are present in the familiar water-vapor
phase transition.

3.2 The Mott-Hubbard transition

As mentioned before, the Mott insulator is realized at half-filling, i.e., one electron per site
in a mono-atomic lattice. From experiments, we observe that the transition can be driven by
changing the bandwidth, i.e., applying pressure, and by heating. Thus, in the framework of a
Hubbard model, which can be considered as a minimal model to capture the physics, one may
explore the behavior at half-filling and as a function of the ratio of interaction to bandwidth
(U/W ), temperature (T ), and doping (δ) away from half-filling, i.e., δ = n− 1. For simplicity,
we shall consider the case of a Bethe lattice with a semicircular DOS. We shall adopt as unit of
energy of the problem the half-bandwidth D = W/2 that we set equal to one, unless indicated.
As we discussed before, to study the Mott transition as observed in Cr-doped V2O3, we need
to restrict ourselves to paramagnetic (PM) states. However, the solution of the Hubbard model
on a bipartite lattice, such as Bethe or the (hyper-)cubic, has strong “Néel nesting” that favors
an AFI state at low T . Thus, we shall ignore for the moment antiferromagnetic solutions and
only be concerned with paramagnetic ones, and we shall explore whether Coulomb repulsion
can lead to the break down of a metallic state in the half-filled band of a tight-binding model.
In Fig. 9 we show the beginning of the answer to this question within DMFT. We show the
evolution of the DOS of a half-filled tight-binding model on a Bethe lattice at T = 0 as the
interaction U is increased.
The main feature of the solution is the existence of a MIT as a function of increasing interaction
strength U. We observe that the DOS(ω = 0) is finite at low U, but becomes zero when a
insulating gap opens at large U. We can look at the nature of this evolution in more detail. We
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Fig. 9: DOS(ω) of the HM at T = 0 for increasing values of U. The quasiparticle peak narrows
as U increases until it collapses at the critical value Uc2. From [31].

observe that there is a peak developing at low frequency which becomes increasingly narrow.
This is called the quasi-particle peak and its origin can be connected to the Kondo physics we
discussed in the introduction. The narrowing of the peak corresponds to an increase of the
effective mass as the MIT is approached. A detailed numerical study shows that the effective
mass goes as m∗ ∼ 1/Z ∼ (Uc2 − U), where Z is the quasiparticle residue, i.e., the spectral
intensity of the peak, that we defined before, and Uc2 ≈ 3D is the critical value of the interaction
where the MIT occurs. The other feature that we observe is the growth of two large peaks with
the spectral weight that is lost from the central peak (i.e. 1−Z) at frequencies ±U/2. After the
transition only these two peaks are left and are separated by a charge gap ∆ ≈ U−2D. They
are called the Hubbard bands.

3.3 Band-structure evolution across the metal-insulator transition

It is interesting to go back to the lattice to observe what is the nature of the electronic states
that conform these peaks. In the case of a Bethe lattice the notion of momentum space is not
obvious, so instead of labelling the single-particle states by their momentum quantum number
we shall use their single particle energy ε. So the dispersion relation of the interacting energies
that is usually denoted by E = E(k) with k ∈ BZ becomes E = E(ε) with ε ∈ [−D,D]. So,
Eq. (16) becomes

G(ε, iωn) =
1

iωn − ε−Σ(iωn)
(25)

In the non-interacting case U = 0 and Σ = 0. Then, the GF has poles at ε and the non-
interacting dispersion is simply linear with E(ε) = ε and ε ∈ [−D,D]. One intuitive way to
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Fig. 10: Top: DOS of the HM at T = 0 for the Mott insulator U > Uc2 (left) and the correlated
metal U < Uc2 (right). Middle: A(ε, ω) for increasing values of ε ∈ [−D,D]. Bottom: Idem in
a color intensity plot (the label k plays an analogous role as ε denoting the quantum number of
the non-interacting single-particle states (see text).

think of this band structure is that it is qualitatively similar to that of a 1D tight binding model,
i.e., a linearized − cos(k). Thus, the state ε = −D, with E(−D) = −D is the bottom of the
band, i.e., often the Γ -point; the state ε = +D with E(+D) = +D is the top of the band and
the edge of the BZ; and the state ε = 0 with E(0) = 0 is the Fermi energy. From Eq. (25) we
clearly see that the self-energy function encodes the interaction effects, as it modifies the pole
structure of the non-interacting GF and also broadens the poles giving a finite lifetime to the
electronic states. In Fig. 10 we show the spectral functions A(ε, ω) = −ImG(ε, ω)/π of the
interacting model for the strongly correlated metal and for the insulator. The ω < 0 spectral
functions are measured in ARPES photoemission experiments.

We observe various features which are worth pointing out. In the case of the metal we observe
that the pole structure at low energy remains a collection of sharp resonances with a linear
dispersion. This indicates that the metallic states are well defined quasi-particle states (i.e.,
have long life-times) and that their mass is enhanced by the effect of interactions. The effec-
tive mass is larger because the band is flatter, as it disperses linearly between [−ZD,+ZD],
where we recall that the quasiparticle residue Z < 1. Thus, heavy mass aside, the states are
qualitatively similar to Bloch waves and we call these states coherent. We also observe the
Hubbard bands developing at higher frequency. While they show dispersive features, the nature
of the propagation that they describe is very different. The electronic states are broad in energy,
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which indicates that the excitations are rather short-lived and the propagation of the electrons
is incoherent. In other words, they describe rather localized particle-like states that are qualita-
tively different from momentum eigenstates. This correlated metallic state is perhaps the most
profound physical insight that emerged from DMFT. We see that the solution of the Hubbard
model within DMFT is a concrete realization of a quantum many-body electronic state which
simultaneously shares both, wave-like and particle-like features [32].
The Mott-Hubbard insulator has only incoherent Hubbard bands with a dispersion that resem-
bles the non-interacting dispersion, but split by the Coulomb repulsion U , thus approximately
follows E(ε) = ±U

2
ε. We note that the lifetime has a non-trivial variation across the BZ, with a

more quasiparticle-like character at the bottom and top of the lower and upper Hubbard bands
respectively, and becomes more incoherent close to the gap edges.

3.4 Coexistence of solutions and the first-order transition line

Another remarkable feature of the MIT is the coexistence of solutions. In Fig. 9 we showed the
evolution of the DOS(ω) as the interaction U is increased, which displays a MIT at a critical
value Uc2. However, this is not the only transition. If one starts from the insulator at large U
and reduces the interaction one observes that the two Hubbard bands get closer and the gap
∆ ≈ U − 2D shrinks. The remarkable feature is that this insulating solution continues to exist
for U < Uc2. The solution eventually breaks down at a value Uc1 ≈ 2D, where the gap closes.
Thus, for U ∈ [Uc1, Uc2] two qualitatively different solutions one metallic the other insulating
coexist. This feature can be considered analogous to the coexistence of solutions in the MFT of
the ferromagnetic Ising model, with all-up and all-down.
There are many consequences that follow from this feature. If keeping the occupation fixed
at n = 1, at particle-hole symmetry, and increasing the temperature, the solutions will not
disappear. They smoothly evolve, giving rise to a coexistence region in the U -T plane. The
evolution of the two solutions with increasing T is qualitatively different.
The metallic one has a low frequency quasiparticle peak. Its width can be related to the Kondo
energy scale of the associated impurity problem. This sets a dynamically generated new low-
energy scale in the system, much smaller that D (i.e. t) and U. As T is increased, the Kondo
resonance can no longer be sustained and the dynamical singlet state that the impurity forms
with the bath is broken. The energy scale of the quasiparticle peak is ∼ (Uc2 − U), thus we
may expect that the correlated metallic solution will break down along a line Uc2(TMIT ), with
TMIT being proportional to (Uc2(0) − U). This expectation is indeed realized as shown in
Fig. 11. Near Uc2 there is a significant magnetic moment due to the penalizing effect of U on
the probability of double occupation. Moreover, above the line Uc2(T ), the temperature is too
large for the moment to be Kondo screened and we are left with an incoherent collection of
disordered magnetic moments at each lattice site.
On the other hand, as T is increased in the insulating solution, the gap may get thermally filled
without any significant effect. Thus we may expect that the coexistence region in the U -T plane
has a triangular shape, which is actually the case as shown in Fig. 11. The figure also indicates
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Fig. 11: Phase diagram in the U -T plane. The dotted lines show the region where the param-
agnetic metallic and insulating solutions coexist. The red dotted line is Uc2(T ) and the green
dotted line is Uc1(T ). The blue line denotes the first-order transition where the free energies of
the two solutions cross. The orange square denotes the finite-T critical end-point.

the line where the free energies of the two solutions cross, which denotes a first order metal-
insulator transition in this model. The fact that the metal is more stable at low T, due to the
additional energy gain of the Kondo state, implies also that the physical transition is from a
metal to an insulator upon heating. This is qualitatively the case in the MIT within the param-
agnetic phase of V2O3 that we discussed before. We should perhaps remark here that there is
another vanadate, VO2, that also displays a transition driven by temperature between two para-
magnetic states. However, in that case and contrary to V2O3, the transition is from an insulator
to a metal upon heating. Thus the two transitions are qualitatively different. Nevertheless, one
may also understand the transition in VO2 as a Mott transition with a two-site quantum impu-
rity, where the insulating ground-state wins as the two moments screen each other into a local
singlet. Such an insulator-metal transition has been discussed recently [33, 21, 34].

3.5 Endless directions

We have described the core of the Mott transition physics that was unveiled by the introduction
of the DMFT approach formulated as a mapping of the (infinite-dimensional) lattice problem
onto a self-consistent quantum impurity [35–37,31]. From that starting point an endless number
of problems and extensions have been explored and continue to be developed. We shall briefly
mention some of them here.

3.5.1 Doping driven Mott transition

In this lecture we have investigated the MIT at half-filling keeping one electron per site. The
system is at particle-hole (p-h) symmetry, hence the DOS(ω) are always even functions. In
this situation we have seen that if the interaction U is strong enough and the temperature T
low enough the system is in a Mott insulator state. We can destabilize this insulator state by
doping the system, i.e., by changing the particle occupation by δ. This can be done by changing
the chemical potential away from the p-h symmetry at µ = U/2. In the simple single band
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Fig. 12: Left: Paramagnetic DOS(ω) of a lightly hole-dope Hubbard model at U = 3.125,
T = 0.1, and increasing δ = 0.003, 0.0076, 0.0114, 0.022, 0.038, and 0.055, from top to
bottom. Top right: Detail of the evolution of the quasiparticle peak in the previous results.
Bottom right: Phase diagram as a function of δ and T for U > Uc2. From [38].

Hubbard model that we consider it is equivalent to dope particles or holes, the resulting GFs
are related by the change ω → −ω. The effect of doping is to create a correlated metallic state.
It shares several features of the n = 1 correlated metal that we have already described. It has
a narrow quasiparticle peak at ω = 0 that is flanked by the two Hubbard bands. The spectral
intensity of the quasiparticle peak is in this case controlled by the doping, with Z ≈ 1/δ.
Thus the renormalized bandwidth is ∼ δD. This is again a small energy scale and increasing
the temperature will destroy the quasiparticle peak. The way this takes place is qualitatively
different from the p-h symmetric case. As shown in Fig. 12 one observes that the quasiparticle
peak becomes very asymmetric with respect to the origin. This signals a departure from the
Fermi liquid state and is associated to the notion of resilient quasiparticles and of bad metal
states [38]. In a bad metal state the system has spectral weight at the Fermi energy but the
quasiparticles have very short lifetimes or, equivalently, very large scattering rates that lead
to a resistivity in excess of the Ioffe-Regel limit. In other words the mean-free path becomes
shorter than the lattice spacing. This feature is often observed in strongly correlated systems
including the metallic phase of the vanadates that we mentioned before and the high-Tc cuprate
superconductors.

By a continuity argument one should also expect that the coexistence region of solutions must
extend into the non p-h symmetric case for µ 6= U/2. This feature has been investigated in [39]
where the main consequence was the finding of a divergence in the electronic compressibil-
ity. This electronic anomaly can be considered as a precursor for charge density waves, phase
separation, and lattice structural changes [40].
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Fig. 13: Phase diagram of the 2-orbital degenerate band Hubbard model. See Fig. 2 for com-
parison. From [43].

3.5.2 Mott-Hubbard transition in the presence of long-range order

So far we have been mostly concerned with the paramagnetic state. In Sec. 2.5 we described
how DMFT can be extended to consider phases with LRO, such as Néel antiferromagnetism.
In fact, the lowest energy solution of the Hubbard model at half-filling and T = 0 in bipartite
lattices, such as Bethe or the hyper-cubic, is an antiferromagnetic insulator (AFI). This state is
the most stable below an ordering temperature TN , which depends on the value of U. At small
U the AFI state can be considered as a Slater AF, with a TN and a gap ∆ that are both small,
and grow exponentially with U. This state is rather well captured by Hartree-Fock MFT. In
contrast, at high values of U, the electrons are Mott localized and the AFI should be considered
as a Heisenberg AF where the ordering follows from the super-exchange interaction J = 4t2/U.
In this case, the gap is large and ∼ U , while the TN ∼ J, so it decreases with increasing U.
This situation is realized in high-Tc superconductors, which have a large gap ∼ eV and a TN
one or two orders of magnitude smaller.

An interesting issue is to explore the behavior of the model when one dopes away from the
half-filled AF Mott insulator. Despite a significant amount of work done in DMFT, there are
few studies that consider this question in the Hubbard model and the detailed evolution remains
rather poorly known [38]. From those studies the physical picture that emerges is that of a
heavy-mass renormalized quasiparticle band at low frequencies, which is split in two due to
the effective doubling of the lattice periodicity. These coherent bands are flanked by Hubbard
bands, which are separated by an energy ∼ U and have different spectral intensities for the up
and down spin projections. Interestingly, these features are qualitatively similar to those ob-
tained in solutions of Cluster DMFT calculations, which unlike “standard” DMFT incorporate
spatial spin fluctuations [41, 42].
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Fig. 14: Schematic representation of the embedding of a dimer (cluster) in the DHM. This
model can be considered the simplest instance of CDMFT.

3.5.3 Multi-orbital models

DMFT can be naturally extended to consider atomic sites with multiple orbitals that lead to
multiple bands. This was initially done for the simplest case of two orbitals with identical
hopping amplitudes that leads to two degenerate bands [43]. In Fig. 13 we show the phase
diagram in the U -n plane. The interesting feature is that for an N -orbital Hubbard model, Mott
transitions are found for fractional dopings n/2N with n = 1, ..., 2N−1, which extends the
notion of half-filling to the multi-orbital case. The intuitive way to think about this is that Mott
states are found when there is an integer filling of electrons at a lattice site. The energy to add
an extra electron to the lattice, would be the Coulomb charging energy ∼ U . Interestingly, the
correlated metal and insulator states are qualitatively similar to those at half-filling, presenting
Hubbard bands and heavy quasiparticle bands. Moreover, Mott transitions also have regions of
coexistence and therefore the MITs have first order character.
One novelty that the multi-orbital models incorporate is the Hund interaction. This is respon-
sible for the FM alignment of electrons occupying the same atomic site, creating large local
magnetic moments as in the colossal magnetoresistive manganites [2]. The large magnetic
moment is more difficult to screen, leading to a decrease of the Kondo temperature of the asso-
ciated impurity model. This has as a consequence the emergence of correlated metallic states
with low coherence temperatures and bad metallic features [44, 45]. These systems are known
as Hund’s metals and their study is relevant for correlated materials like the iron based super-
conductors [46].

3.5.4 Cluster DMFT

Since DMFT is exact in the limit of∞-d, where the lattice problem is mapped to a single impu-
rity by taking one site and embedding it in a self-consistent environment, a natural extension is
to consider the embedding of a small portion of the lattice, or a cluster. Such approaches go by
the name of cluster-DMFT (CDMFT) [47] and dynamical cluster approximation (DCA) [48].
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In the first case one defines a cluster of atoms in real space and embeds it in an effective self-
consistent medium, pretty much as we have described before (Sec. 2.2). This is schematically
illustrated for the case of a lattice of dimers in Fig. 14. The dimer Hubbard model (DHM)
can be exactly solved within CDMFT method [49,33], and has recently been considered for the
interpretation of experiments in VO2. However, when applied to general lattices there are certain
technical difficulties to restore translational invariance and different approximate schemes have
been proposed.
The DCA method is formulated in reciprocal space. It is based on computing a coarse grained
self-energy of a finite cluster, i.e., in a space of discrete momentum K, which is then used to
obtain estimates of the actual infinite-lattice self-energy (where the momentum k is continu-
ous). Thus the method is fully formulated in momentum space, including the generalization
of G0(iωn) to a G0(K, iωn). So the issue of restoring translational invariance does not emerge.
However, there is a price to pay, which is the discontinuity of the self-energy that is defined of
coarse-grain “patches” of the BZ.
Both extensions of DMFT enable the exploration of momentum dependence. One of the main
results that these approaches provided is the notion of momentum-space differentiation. Namely,
the possibility that a Mott gap may open only in certain regions of the Fermi surface. This pro-
vides an interpretation to the intriguing observation of “Fermi arcs” in the cuprates [50].

3.5.5 Realistic DMFT or LDA+DMFT

DMFT has also been extended to incorporate real material-specific information. This methodol-
ogy goes by the names of DFT+DMFT, LDA+DMFT, or Realistic-DMFT [47]. Schematically,
the approach retains the same mapping onto an QIP and its self-consistent solution, but the
material-specific electronic structure dispersion replaces the εk in the k-summations, Eq. (13).
Since LDA solution to the DFT equations is a self-consistent method itself, this opens the door
to a variety of possible schemes. We shall not dwell further on this topic since there is the
dedicated lecture by E. Pavarini.

3.5.6 Out-of-equilibrium Mott transition

An exciting new frontier is the investigation of the correlated systems driven away from equi-
librium conditions. This is relevant for recently developed experimental techniques such as
“pump-probe” spectroscopies that give access to the time-resolved evolution of a strongly in-
teracting quantum material. Particularly interesting to us is the possibility of driving a Mott
insulator out of equilibrium, which has been considered in a variety of experimental studies.
Here we cite some particularly interesting ones related to vanadates [51, 52] that indicate that a
sharp insulator-metal transition (IMT) can be induced by strong enough light irradiation. Par-
ticularly interesting is that these experiments seem to have provided strong evidence of the
meta-stable states (i.e. the state coexistence) that has been predicted by DMFT studies of the
Hubbard and dimer Hubbard models. The latter case is particularly interesting is where a pho-
toemission study of the Mott insulator VO2 was conducted [53]. The main observations where
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Fig. 15: Top: Photoemission spectra of the VO2 insulator “before and after” the pump pulse.
Bottom: Difference between after- and before-pump spectra showing the transfer of spectral in-
tensity across the pump-driven Mott transition. Mid-top: Occupied part (ω < 0) of the DOS(ω)
of the insulator (blue) and metal (red) coexistent solutions of the DHM. Mid-bottom: Difference
between the model DOS(ω). Bottom: Detail of experimental photoemission difference data.

the existence of a sharp light-fluence threshold for the IMT, that the resulting metallic state was
very long lived (> 10 ps) and that the photoemission spectrum was different from the high-T
metallic state. We found that this intriguing metallic state could be the realization of a mono-
clinic metal in VO2, which emerges from a DMFT study of the Mott insulating state of a dimer
Hubbard model [33, 21, 34]. In Fig. 15 we show the experimental variation of the spectrum
across the IMT along with the results from the theoretical study [54]
The time-resolved behavior across the Mott-Hubbard transition can be studied by extending
the DMFT approach to the out-of-equilibrium situation by adopting the Kadanoff-Baym and
Keldysh GFs formalism. These extension of DMFT received a great deal of attention in recent
years [55,30]. Despite significant progress and new insights the detailed solution of the problem
in the coupling regime where there are coexistent solutions still remains a challenge. We shall
not devote much more here and point to the lecture on this topic by J. Freericks.

3.5.7 Mottronics for Artificial Intelligence

One of the latest and perhaps most original and exciting developments regarding the Mott tran-
sition is the possibility of using the Mott insulators to fabricate artificial electronic neurons for
spiking neural networks [28]. This is particularly timely given the current explosion and inter-
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est in artificial intelligence (AI). The algorithms of AI are often based on neural networks (NN)
such as the classic Hoppfield model, popular in the 70’s, to the more modern convolutional NN.
In general, NN have two types of units, a non-linear input-output device, the neuron, and devices
that interconnects the neurons and modulate the intensity of their coupling, the synapses. Mod-
els of NN can be implemented in software or in hardware. In the first case, a notable example
is the AlphaGo code that has defeated the world champion of Go [56]. However, running this
algorithm requires a powerful supercomputer that consumes several kW. In the second case,
powerful chips are built using state-of-the-art electronics that can implement a million neurons,
such as TrueNorth [57]. They are energetically efficient but their main limitation is that they re-
quire almost 1010 transistors to implement a million neurons (synapses require relatively fewer
transistors than neurons). While this accomplishment is remarkable, these chips are still several
orders of magnitude below the 109 neurons in a cat’s brain. This situation opens the way for a
disruptive technology, which may implement artificial neurons using far fewer components.
Recently, we have shown that a Mott insulator may accomplish this task [58, 29]. The key
finding was that Mott insulators under electric pulsing realize a neuromorphic functionality,
which consists in behaving analogously to the leaky-integrate-and-fire (LIF) model of spiking
neurons [59]. The LIF model is a classic and basic model of biological neurons. It describes
the integration of electric input that arrives at a neuron through its dendrites, the leakage during
the time in-between arriving input spikes, and the fire of an action potential when the integrated
input reaches a threshold. A Mott insulator under electric pulsing may behave similarly. The
key feature is that in narrow gap Mott insulators, such as GaTa4Se8 [60] or V2O3, when a strong
voltage is applied, creating a field of the order of kV/cm, a collapse of the resistance is observed
after a certain delay time τd ∼ tens of µs [61]. Let us now consider applying instead of a
constant voltage a train of pulses, where the duration of each pulse τp is smaller than τd. It
is easy to understand that if the time between the pulses τw is very long, then each pulse is
an independent perturbation that will not produce the resistive collapse of the Mott state. On
the other extreme, if τw goes to zero, then the pulses will simply accumulate and produce the
collapse after nsw pulses, where nminsw = τd/τp. Thus, nsw is a function of τw that increases from
nminsw to ∞. This behavior was originally predicted by a phenomenological model of resistive
breakdown in Mott insulators and experimentally observed [61], as illustrated in Fig. 16.
The phenomenological model consisted of a resistor network, where the key assumption for the
resistive units was the existence of two resistive states. One more stable with high resistance
and a metastable one with low resistance. This assumption was motivated by the coexistence of
solutions of the DMFT studies of Hubbard models that we described in this lecture. Interest-
ingly, the equations that describe the resistor network model can be shown to be analogous to
that of the LIF model of neurons [29], where the role of spikes is played by the applied pulses.
The “firing” of an action potential corresponds to the current spike through the Mott insulator
as its resistance collapses.
Interestingly, following a different line of work a group at Hewlett-Packard has proposed an
implementation of another classic biological neuron model, the Hodking-Huxley model [59],
using NbO2, which is also a Mott insulator material [62].
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Fig. 16: Top: Collapse of the Mott insulator state in GaTa4Se8 observed after 5 pulses by the
collapse of the resistance (i.e., the voltage drop on the sample). Middle: Resistor network model
simulation that qualitatively captures the behavior of the Mott insulator under strong electric
pulsing. Bottom: Systematic behavior of nsw as a function of the time between pulses τw (left is
experimental data and right model simulations). From [61].

Thus the neuromorphic functionalities of Mott insulators, owing to the unique non-linear be-
havior of their I-V characteristics, are emerging as a new and exciting road towards bringing
Mott materials to the realm of future electronics — or rather Mottronics.

4 Hands-on exercise (with IPT code):
The Mott-Hubbard transition

Many of the plots in this lecture illustrating the Mott-Hubbard transition were obtained by
solving the DMFT equations using an impurity solver based on iterative perturbation theory
(Sect. 2.4) [35, 31]. This approximate method has the advantage of being simple and providing
qualitatively good solutions across the transition. The interested reader is invited to download
the IPT codes and go through the proposed exercises that serve as a guide for a hands-on explo-
ration of the Mott-Hubbard metal-insulator transition in DMFT. Codes are available for free at
http://mycore.core-cloud.net/index.php/s/oAz0lIWuBM90Gqt.

http://mycore.core-cloud.net/index.php/s/oAz0lIWuBM90Gqt
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