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Quantum mechanics reminder

Quantum states of an N-electron system are described by a wavefunction:

ψ(r1σ1, r2σ2, ..., rNσN ) with ri and σi space and spin variables.

The probability to find N electrons with spins (σ1, ..., σN ) in the
elementary volume dr1dr2...drN centred in r1, r2, ..., rN is given by

d3NP = |ψ(r1σ1, r2σ2, ..., rNσN )|2dr1dr2...drN .

By definition, the charge density can be found by integrating over (N-1)
space-variables and over spins:

n(r) = N

∫
dσdx2...dxN |ψ(rσ, x2, ..., xN )|2 where xi = (ri , σi )

with n(r)dr the number of electrons in the elementary volume dr centred
in r. By normalization of ψ one obtains:

∫
dr n(r) = N.



Hamiltonian and expectations values

The electronic Hamiltonian is actually known (atomic units):

Ĥ =
N∑

i=1

−∇2
i

2
+

N∑

i=1

v ions(ri ) +
∑

i<j

1

rij
with v ions(r) = −

∑

I

ZI

|RI − r|

We did not include the ions (positions {RI}) kinetic energy. v ions is the
ionic potential acting on electrons. The energy of the system is given by
the ”expectation value” of the Hamiltonian (let’s forget spin):

〈ψ|Ĥ|ψ〉 =

∫
· · ·
∫

dr1dr2...drN ψ∗({ri})Ĥ({ri}, {∇ri})ψ({ri})

Take a water molecule (10 electrons) and perform this
integral by discretizing the space in a small 10×10×10
grid → 103N = 1030 electronic configurations to sample,
to be compared to petaflofic (1015) modern computers !!

Let’s change paradigm : the mean-field Density Functional Theory ....



Prolegomena: 1-body operators and the density

The electron-ion energy reads: V ions−e =
∑

i 〈ψ
∣∣v ions(ri )

∣∣ψ〉 with:

〈ψ
∣∣v ions(ri )

∣∣ψ〉 =

∫
dr1dr2 . . . drN v ions(ri )|ψ(r1, r2, . . . , ri , . . . , rN )|2

=

∫
drdr2 . . . drN v ions(r)|ψ(r, r2, . . . , rN )|2

where we have renamed all variables and in particular (ri ⇒ r) and
reshuffled all space positions thanks to the symmetry properties of |ψ|2.
As a result, all N terms are identical yielding:

V ions−e = N

∫
dr v ions(r)

∫
dr2 . . . drN |ψ(r, r2, . . . , rN )|2 =

∫
dr v ions(r)n(r)

⇒ v ions acts only on the charge density : no need for the full many-body
wavefunction and 3N-integrals to get the V ions−e energy !!



2-body operators and the density of pairs

The electron-electron interaction energy: V ee =
∑

i<j〈ψ
∣∣ 1
|ri−rj |

∣∣ψ〉 can

also be simplified by renaming and reshuffling the integration variables:

〈ψ
∣∣ 1

|ri − rj |
∣∣ψ〉 =

∫
drdr′dr3 . . . drN

|ψ(r, r′, r3, . . . , rN )|2
|r − r′|

yielding N(N − 1)/2 identical terms so that V ee =
∫

drdr′ ρ2(r,r′)
|r−r′| with:

ρ2(r, r′) =
N(N − 1)

2

∫
dr3 . . . drN |ψ(r, r′, r3, . . . , rN )|2

the density of pairs with
∫

drdr′ρ2(r, r′) = N(N−1)
2 .

There is no need for all the details of the many-body wavefunctions and
3N-integrals: we only need averaged (mean-field) quantities !!

BUT we do not know how to build ρ2(r, r′) without the knowledge of ψ.



The density functional theory (DFT) for ground-states

Preliminaries : room temperature is of the order of 26 meV, namely much
smaller than typical electronic energy gaps or band dispersions → most
unperturbed (no strong light, etc.) solids or molecules are close to their
lowest energy (ground) state with wavefunction ψGS and energy EGS .

The variational principles provides a way to find ψGS and energy EGS :

EGS = min
ψ

E [ψ] with E [ψ] = 〈ψ|Ĥ|ψ〉 and 〈ψ|ψ〉 = 1

This is the standard approach where the energy is a functional of the
many-body wavefunction ψ. The dramatic result from Hohenberg and
Kohn (1965) is that one can show that the ground-state energy can be
written as a functional of the charge density !

EGS = min
ψ

E [ψ] =⇒ EGS
DFT
= min

n
E [n] with

∫
drn(r) = N.

This is an EXACT result, namely there is an exact mean-field theory for
the problem of the ground-state energy in N-electron systems !!



Demonstration for non-degenerate ground-states

The ionic potential acts on the charge density and the electronic
Hamiltonian (no ion-ion interaction) reads:

Ĥ = T̂ + V̂ ee +

∫
dr v ext(r)n(r), with T̂ kinetic energy operator

where v ext = v ions (the ions are ”external” to the N-electron system).

Theorem : given n(r) a ground-state charge density, then there exist
only one external potential v ext(r) that realizes n(r).

(Reductio ad adsurdum) Assume there exist 2 external potential v ext
1 (r)

and v ext
2 (r) that lead to the same ground-state charge density:

v ext
1 (r) =⇒ Ĥ1 =⇒ ψGS

1 =⇒ n(r)

v ext
2 (r) =⇒ Ĥ2 =⇒ ψGS

2 =⇒ n(r)



Demonstration for non-degenerate ground-states (2)

Using the variational principle:

〈ψ1|Ĥ1|ψ1〉 < 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉+ 〈ψ2|Ĥ1 − Ĥ2|ψ2〉

E GS
1 < E GS

2 +

∫
dr
(

v ext
1 − v ext

2

)
(r)n(r)

Starting now from 〈ψ2|Ĥ2|ψ2〉 (switching 1 and 2 indices) one obtains:

E GS
2 < E GS

1 +

∫
dr
(

v ext
2 − v ext

1

)
(r)n(r)

and by adding the two inequalities:

E GS
1 + E GS

2 < E GS
2 + E GS

1 IMPOSSIBLE!

The demonstration hinges on strict inequalities, namely assuming
non-degenerate ground-state. This is the celebrated 1964 theorem by
Hohenberg and Kohn.



Ground-state energy as a functional of the charge density

It follows that the charge density completely determines the external
potential and thus the Hamiltonian (just add the universal kinetic and
V ee operators) and thus the ground-state wavefunction ψGS .

Ĥ  GSvext n(r)

Since n(r) determines ψGS , then it determines univocally the ground
state total energy EGS = 〈ψGS |Ĥ|ψGS〉. It can be shown further as a
corollary (Exercise) that the variational principle can be now used for EGS

as a functional of the charge density.

EGS = min
ψ

E [ψ] =⇒ EGS
DFT
= min

n
E [n] with

∫
drn(r) = N.



Problem : the unknown Hohenberg and Kohn functional

The ground-state energy as a functional of the charge density is usually
written with the Hohenberg and Kohn ”universal” functional FHK :

E [n] = FHK [n] +

∫
dr v ion(r)n(r) with FHK [n] = T [n] + V ee [n]

with the kinetic T [n] and electron-electron interaction V ee [n] energies.

But we do not know how to write T [n] and V ee [n] as a function of the
charge density n ! This is where exact DFT stops and where
approximations begin ...

Exercise. Kinetic energy per unit volume of the non-interacting
homogeneous electron gas : T [n]/V = CTF × n5/3 (Thomas-Fermi).

Exercise. Kinetic energy for the hydrogen atom (von Weizsäcker) reads :

2T [n] =
∫

dr (~∇
√

n(r))2.



Kohn and Sham (1965) : back to wavefunctions !

The idea of Kohn and Sham is to introduce a fictitious non-interacting
electron gas under the effect of an external effective potential v eff (r)
such that the ground-state charge density and energy are the same than
the true system.

With non-interacting electrons, the amplitude of probability to find an
electron somewhere is independent of the position of other electrons : we
are back to one-body wavefunctions {φn(r)} such that:

(
− ∇

2

2
+ v eff (r)

)
φn(r) = εnφn(r)

T0 =

occp∑

n

〈φn|
−∇2

2
|φn〉

n(r) =

occp∑

n

|φn(r)|2
occupied	(occp)	

unoccupied	

"1

"N/2

"(N/2)+1



The fictitious Kohn-Sham non-interacting system

What is this v eff potential ? We use the variational principle for
E [n] = FHK [n] +

∫
drv ion(r)n(r) under the constraint (Lagrange

parameter µ) that the charge density integrates to N electrons:

∂

∂n(r)

[
E [n]−µ

( ∫
n(r)dr−N

)]
= 0

=⇒ ∂FHK

∂n(r)
+ v ext(r) = µ

(Euler-Lagrange equation)

Non-interacting	in	Veff	 Interacting	electrons	

Kohn-Sham	

Fictitious	 Real	

For the 2 systems to be equivalent (same energy and charge density),
with E KS = T 0 +

∫
drv eff (r)n(r) :

∂FHK

∂n(r)
+ v ion(r) = µ =

∂T 0

∂n(r)
+ v eff (r)



=⇒ v eff (r) = v ion(r) +
∂
[
FHK − T 0

]

∂n(r)

Now : FHK [n] = T [n] + V ee [n] = T 0 + J[n] +
(

T − T 0 + V ee − J
)

J[n] = 1
2

∫
drdr′ n(r)n(r′)

|r−r′| is the (classical) Hartree energy.

Define E XC [n] = T − T 0 + V ee − J the exchange-correlation (XC)
energy to obtain:

v eff (r) = v ion(r) +
∂J[n]

∂n(r)
+
∂E XC [n]

∂n(r)

= v ion(r) +

∫
dr′

n(r′)

|r − r′| + V XC (r)

NOTE: within ”Kohn-Sham DFT”, the exchange-correlation energy
contains a kinetic component (T − T 0) !!



The local density approximation (LDA)

So far everything is exact ! The nice things is that we now how to
calculate T 0 and J and what is unknown (E XC ) has been reformulated as
an energy difference (T − T 0 + V ee − J) supposedly smaller than the
original FHK [n]. But still, how to we get now E XC [n] and v XC (r) ?

Inspired by historical ideas (Thomas-Fermi), HK and KS proposed very
early the Local Density Approximation, defining an exchange-correlation
energy per particle that only depends on the local charge density:

E XC [n] '
∫

dr n(r)εXC ,LDA
(

n(r)
)

Once this approximation is done, εXC ,LDA
(

n(r)
)

can be taken to be the

exchange-correlation energy of an homogeneous interacting electron gas
of uniform density: n̄ = n(r).



David Ceperley and Berni Alder (PRL 1980)

They performed Quantum Monte Carlo calculations of the total energy
E (n̄) of an homogeneous interacting electron gas (HEG) of density n̄.

For the HEG, the kinetic energy T 0 of the non-interacting system with
density n̄ and the Hartree potential J(n̄) can be calculated analytically.
By subtraction the XC energy E XC (n̄) = E (n̄)−T 0(n̄)− J(n̄) is obtained.

The numerical (QMC) data can be fitted by clever functional forms
(VWN80, PZ81, PW92, etc.) yielding the LDA functionals !

NOTE: The exchange energy can be calculated analytically for the HEG
(Dirac and Slater) → obtain the ”correlation-only” εC (n̄) energy per
electron.

K [n] = −3

4

( 3

π

)1/3
∫

dr n4/3(r) =⇒ local exchange from Slater HEG formula



Real systems are not in the low or high density limit

Standard extended condensed-matter or solid-state-physics systems are difficult
since they are not in a limit where standard perturbation theory starting from
the high or low-density limits can work ”accurately”.

Correlation energy density for the
interacting electron gas as a function of
the Wigner-Seitz radius (rS ) which is
the radius of the gedanken sphere
whose volume is the total volume
divided by the number of electrons
(ΩWS = 4πr 3

S/2 = Ω/N).

Analytic low-density (Wigner limit where potential energy dominates) and

high-density (RPA limit where kinetic energy dominates) provide analytic

”asymptotic” forms for developing functionals.



Real systems are usually inhomogeneous

(Hohenberg and Kohn, PRB 1964)

(Kohn and Sham, PRB 1965)

High density limit: kinetic energy dominates
Approximation (2.3) = local density approximation

Plot of the charge density |ψnk|2
associated with the top of the valence
bands and bottom of the conduction
bands in Germanium, a ”nearly” metal
(courtesy Prof. Majewsky, Virginia U.)



Self-consistent DFT Kohn-Sham calculations

Input	ionic	positions	=>		vions(r)

Initial	«	guessed	»	charge	density	
(e.g.	superposition	of	atomic	densities)	

n0(r)

Build		 veff (n(r))

h
� r2

2
+ veff (r)

i
�n(r) = "n�n(r)

Solve	Kohn-Sham	equation	

New	charge	density	from	lowest	energy	N	eigenstates	

n(r) =

NX

n=1

|�n(r)|2

Compare	input	and	output	charge	density	(or	potential)	

Get	total	self-consistent	energy	for	this	given	ionic	configuration	

Converged	

Lattice	parameter	of	solids	

Assume	one	studies	an	FCC	crystal	
(Si)	=>	the	only	structural	parameter	
is	the	lattice	constant	

One	calculate	the	total	energy	as	
a	function	of	the	lattice	constant	
or	unit	cell	volume.	

The	minimum	energy	gives	the	
equilibrium	lattice	constant	(0°K).		



Lattice parameters in metals and non-metals

Figure: Assessing the performance of recent density functionals for bulk solids, Csonka
et al., Phys. Rev. B 79, 155107 (2009). (courtesy Prof. János G. Ángyán)



DFT/LDA charge density in inhomogeneous systems

As shown here for solid argon, with very
inhomogeneous charge densities, the
DFT/LDA charge density is in excellent
agreement with higher level approaches
[PRB 74, 045102 (2006)].

[PRB 57, 15293 (1998)]

ρVMC (r, r′) = N

∫
ψ∗(r, r2, ..., rN )ψ(r′, r2, ..., rN ) dr2...drN

ρLDA(r, r′) =
∑

n

φ∗i (r)φi (r
′)θ(EF − εn)



The exchange correlation XC hole and its sum rule

Rewriting the pair density as: 2ρ2(r, r′) = ρ(r)ρ(r′)
[
1 + h(r, r′)

]
, with h

called the pair-correlation function, one can express the V ee energy in
function of the Hartree energy J and the XC hole density ρXC (r, r′):

V ee = J +
1

2

∫
drdr′

ρ(r)ρXC (r, r′)

|r − r′| with ρXC (r, r′) = ρ(r′)h(r, r′)

It is easy to demonstrate (Exercise):

∫
dr′ρ2(r, r′) =

(N − 1)

2
ρ(r) and

∫
dr′ ρXC (r, r′) = −1.

yielding the XC-hole sum rule !! The XC energy is the Coulomb energy
between electrons and their XC-hole, namely the depletion of one electron
(through exchange and Coulomb repulsion) dynamically created around
each electron. The (1/2) term in the XC energy is an adiabatic factor :
the XC hole grows with the electron and would not exist without it.



The spherically averaged XC hole and LDA ”success”

The success of DFT/LDA even for highly inhomogeneous systems can be related to
the quality of the ”spherically averaged” exchange-correlation hole and the fact that
the LDA XC-hole satisfies the correct sum-rule.

E XC =
1

2

∫
dr1ρ(r1)

[ ∫
dr2

ρxc (r1, r2)

|r2 − r1|

]
and

∫
dr2 ρxc (r1, r2) = −1.

Exact versus LDA exchange hole for Neon atom along specific

directions (left) and spherically averaged (right). (Gunnarsson et al.

PRB 1979) Exact (VMC) versus LDA spherically averaged XC-hole for silicon.

[PRB 57, 15293 (1998)]



The jungle of XC functionals

Can we improve on the LDA ? Yes, but this is a tough job to progress
along all fronts (total energy, structural properties, atomization energy,
charge density, bulk modulus, etc.) and with universality ( molecules are
not extended solids, insulators are not metals !)

Quality of the DFT charge
density for atoms and ions,
from: Density functional
theory is straying (”going
away”) from the path toward
the exact functional , Perdew
et al. Science 355, 49 (2017)

Tested functionals : LDA, generalized gradient approximation (GGA),
meta-GGA (mGGA), and hybrid (hGGA) rungs. The hGGA* contain
100% of exact exchange.



Second ”rung” : generalized gradient approximation

These GGA functionals do not include (non-local) exact exchange and
offer (as LDA) a cubic scaling with system size.

The fact that the charge density is varying can
be described to lowest order by a functional of
the density and its gradient (Taylor expansion):

E GGA
XC [n] =

∫
dr n(r) εGGA

XC (n(r), ~∇n(r))

There are GGA functionals for the exchange
energy and other for the correlation energy.

XC functionals ”Jacob’s ladder” from
Perdew et al. in J. Chem. Phys. 123,
062201 (2005).

Well-known functionals: PW91 = Perdew and Wang (book 1991 + PRB,
46 (1992) 6671); PBE = Perdew, Becke and Ernzherof (PRL 96) ; BLYP
= Becke (GGA for exchange; PRA 1988) and Lee,Yang, Parr (GGA for
correlation; PRB 1988); etc.



Lattice parameters in metals and non-metals

Figure: Assessing the performance of recent density functionals for bulk solids, Csonka
et al., Phys. Rev. B 79, 155107 (2009). (courtesy Prof. János G. Ángyán)



Part II: Kohn-Sham Electronic energy levels

It is traditional, in particular in solid state-physics when studying periodic
systems, to use ”Kohn-Sham eigenvalues” as electronic energy levels to
understand molecular orbital energies or band-structures in solids. In fact,
the Kohn-Sham eigenvalues are just Lagrange multipliers imposing
Kohn-Sham orbital orthonormalization when minimizing the energy:

∂

∂φ∗(r)

[
E [{φn(r)}]−

∑

n

λn

(
〈φn|φn〉 − 1

)]
= 0

leads to (Exercise)

[
− ∇

2

2
+ v ion(r) +

∫
dr′

n(r′)

|r − r′| + V XC (r)
]
φn(r) = λnφn(r)

Writing λn = εn, is it correct to identify the Kohn-Sham eigenvalues ”εn”
to electronic energy levels ??



Band gap of solids using Kohn-Sham eigenvalues

Compilation of band gaps for
extended solids (courtesy Valerio
Olevano) as obtained from
DFT-LDA Kohn-Sham eigenvalues
(red dots), from Hartree-Fock
eigenvalues (pink diamonds) and
within a more accurate many-body
perturbation theory (G 0W 0) as
compared to ARPES experiments
(blue dashed diagonal).

Clearly, the LDA Kohn-Sham gaps are definitely too small while the HF
gaps are dramatically too large. Using hybrid functionals can lead to an
excellent gap by tuning the balance between local functionals and exact
exchange, but how can we be predictive if one has a tuning parameter ?



Band gap of gas phase organic molecules

Using Kohn-Sham eigenvalues for frontier orbitals (εHOMO/LUMO), one
can also attempt to calculate the ionization potential, the electronic
affinity and the gap. Again, the results are very poor in general.

Gap of pentacene and
C60 as compared to
experiment. LDA
Kohn-Sham gaps are
too small, and
Hartree-Fock too
large.

The NKC calculations (”Koopman’s compliant” functionals, Borghi et al.
PRB 90, 075135) and OT-BNL (Optimally-tuned range-separated hybrid
functionals, Refaely-Abramson et al. PRB 84, 075144) aim at providing a
rational mixing of local and exact exchange functionals.



Experimental photoemission data

Electronic energy levels are determined experimentally using direct photo-
emission (occupied levels) and inverse photoemission (unoccupied levels).

From http://www.ieap.uni-kiel.de/surface/ag-
kipp/arpes/arpes.htm

What we call electronic energy levels, related to the energy of an electron
in the solid, are given as differences of energy between the total energy of
the (N+1)- or (N-1)electron systems in one of their eigenstates and the
N-electron system ground-state energy (unoccupied states).



Kohn-Sham : Total energy and sum of eigenvalues

The total GS energy can be written :

E =
N∑

i=1

〈φi |
−∇2

2
|φi 〉+

∫
dr v ion(r)n(r) +

1

2

∫
drdr′

n(r)n(r′)

|r − r′| + E XC [n]

The sum of eigenvalues for occupied levels read:

N∑

i=1

εi =
N∑

i=1

〈φi

∣∣∣−∇
2

2
+ v ion(r) +

∫
dr′

n(r′)

|r − r′| + v XC (r)
∣∣∣φi 〉

with v XC (r) = ∂E XC [n]/∂n(r), so that:

E =
N∑

i=1

εi − J[n] + E XC [n]−
∫

dr v XC (r)n(r)

No obvious relation between total energy and sum of eigenvalues. Cannot
interpret Kohn-Sham eigenvalues as removal/addition energies !



The Janak theorem [PRB 18, 7165 (1978)]

By working out a generalization of the Kohn-Sham scheme to ”fractional
occupation” of energy levels, Janak (PRB 18, 7165) was able to
demonstrate the following property, where ni is the occupation of the
electronic energy level ”i” (ni =0 or 1 within Kohn-Sham DFT) :

εi =
∂E

∂ni

∣∣∣
ni =0,1

the variation of the total energy for an infinitesimal variation of the
occupation around the ni =0 or 1 values.

This is different from the variation of the total
energy upon integer change of the number of
electrons unless the total energy is linear
between integer number of electrons (Figure
from Dabo et al. PRB 82, 115121).



Piece-wise linearity of the total energy E(N)

It was shown that the exact total ground-state energy E(N) is piece-wise
linear with respect to the number of electrons N (Perdew, Parr, Levy,
Balduz 1982). Unfortunately, the ”pure DFT” (no exact exchange) total
energy E(N) is continuous and convex with N.

On the contrary, HF total energies are
concave. This provides a rational for mixing
local functional with exact exchange in such
amount that the piece-wise linearity is
recovered (Figure from Tsuneda et al. JCP
33, 174101; E(N) for C2H4 ).

Optimally tuned functionals: tuning the amount of exact exchange so
that e.g. εKS

HOMO = E (N)− E (N − 1) leads to a (close to) correct
piece-wise linearity of E [N + δn] and a much better gap in general.



Beyond the band gap problem

We have shown that the Kohn-Sham gap strongly depends on the
functional used. What about the overall band structure ?

(Left) Silicon band
structure within LDA, an
accurate many-body (GW)
approach and experimental
data (triangles/diamonds).
Band structures aligned at
the top of the valence
bands. (Right) Difference
between the GW
(QP=quasiparticle) and
LDA energies for Si and Ge
(Hybertsen, Louie, 1986).

For extended solids with delocalized states, the DFT Kohn-Sham error
consists mainly in a ”scissor” that reduces the gap within LDA (increases
it within HF). The Kohn-Sham band structures remain extremely useful !!



The self-interaction problem

This interpretation in terms of a ”gap problem only” fails when the
system combines localized and extended states because of self-interaction
problem : within local DFT, an electron interacts with itself through the
density-dependent XC potential (think of a DFT calculation on the
Hydrogen atom!) This ”destabilizing” effect pushes occupied localized
states higher in energy than delocalized ones.

HOMO, (HOMO-1) and
(HOMO-2) energy levels for
cytosine within several
formalisms. The localized σO

state (localized on oxygen) is
erroneously located as the
HOMO within LDA (Faber et
al. 2011).

This self-interaction problem is reduced when introducing some amount
of exact exchange (HF is self-interaction free; remember : Jii = Kii ).



Dynamical polarization effects (”image charges”)

In a photoemission process, the target system is charged. In the case of
localized charges (molecular systems), this charge polarizes the
surrounding medium that ”reacts” (reaction field) to stabilize the added
hole or electron. This is similar to the standard ”image charge” physics.

This effect CANNOT be reproduce by DFT/HF (or hybrid) Kohn-Sham
calculations on neutral systems. In molecular systems (e.g. bulk
pentacene) it can be ”mimicked” by imposing a long-range 1/εM r tail to
the exchange potential in a range-separated formalism, with εM the
macroscopic dielectric constant of the medium.



Summary and beyond

DFT is a ground-state formalism not formally designed to access
electronic excitations. However, besides the ”band gap” problem and for
extended states (itinerant electrons), the Kohn-Sham (KS) band
structure gives valuable informations.

Further, KS eigenstates can be used as ”zeroth order” eigenstates to
build higher order correlated techniques, within e.g. perturbation theory !
For example the independent-electron KS electronic susceptibility:

χ0(r, r′; iω) = 2
∑

ja

φ∗j (r)φa(r)φ∗a(r′)φj (r′)

iω − (εa − εj )
+ cc

can be used to build the RPA correlation energy (lecture Prof. X. Ren):

E RPA
C =

1

2π

∫ +∞

0

dω Tr [ln(1− χ0(iω)v) + χ0(iω)v ]



Summary and beyond (II)

The independent electron susceptibility χ0 can also be used to calculate
the screened Coulomb potential W = v + vχ0W leading to the
Σ = iGW exchange-correlation self-energy, with G the Kohn-Sham
one-body Green’s function:

G (r, r′;ω) =

occp∑

i

φi (r)φi (r′)

ω − εi − iη
+

unoccup∑

a

φa(r)φa(r′)

ω − εa + iη

Further, one can imagine techniques combining DFT/Kohn-Sham for
itinerant electrons and more sophisticated explicitly correlated techniques
for localized or strongly correlated electrons.

DFT is a cheap and fast mean-field ground-state techniques. Use it for
what it is supposed to do (structural, vibrational, etc. properties) and
keep a critical but interested eye on what it is not supposed to achieve.



END



Exercise: Assessing v eff through the Kohn-Sham equation

Since we look for the total energy as a functional of one-body
(normalized) wavefunctions {φn(r)}, we can also use the variational
principal with respect to these one-body wavefunctions:

∂

∂φ∗(r)

[
E [{φn(r)}]−

∑

n

λn

(
〈φn|φn〉 − 1

)]
= 0 with:

∂T 0

∂φ∗n(r)
= −∇

2

2
φn(r),

∂

∂φ∗n(r)
=

∂n(r)

∂φ∗n(r)

∂

∂n(r)
= φn(r)

∂

∂n(r)
=⇒

∂
[ ∫

drv ion(r)n(r) + J[n] + E XC [n]
]

∂φ∗(r)
=
[
v ion(r)+

∂J[n]

∂n(r)
+
∂E XC [n]

∂n(r)

]
φn(r)

[
− ∇

2

2
+ v ion(r) +

∫
dr′

n(r′)

|r − r′| + V XC (r)
]
φn(r) = λnφn(r)



Exercise : exchange-correlation hole and sum

Rewrite the pair density as: 2ρ2(r, r′) = ρ(r)ρ(r′)
[
1 + h(r, r′)

]
with h

called the pair-correlation function to express the XC energy in function
of the Hartree energy J and the XC hole density ρXC (r, r′):

V ee = J +
1

2

∫
drdr′

ρ(r)ρXC (r, r′)

|r − r′| with ρXC (r, r′) = ρ(r′)h(r, r′)

Demonstrate that:
∫

dr′ρ2(r, r′) =
(N − 1)

2
ρ(r)

to obtain the XC hole sum rule:
∫

dr′ ρXC (r, r′) = −1. The XC energy
can be seen as the Coulomb energy between electrons and their XC-hole,
namely the depletion of one electron (through exchange and Coulomb
repulsion) dynamically created around each electron. The (1/2) term in
the XC energy is an adiabatic factor : the XC hole grows with the
electron and would not exist without it.



Exercise : long-range behaviour of exchange energy
density εX (r) in finite size systems

Using for simplicity one-body orbitals such as KS or HF orbitals:

EX =

∫
dr εX (r) with εX (r) = −1

2

occp∑

ij

∫
dr′

φ∗i (r)φj (r)φ∗j (r′)φi (r′)

|r − r′|

Taking the position r to go far away in the vacuum, and since the
eigenstates {φi/j} decay exponentially in the vacuum:

εX (r) = −1

2

occp∑

ij

φ∗i (r)φj (r)

r

∫
dr′ φ∗j (r′)φi (r

′)

= −1

2

occp∑

ij

φ∗i (r)φj (r)

r
δij = −n(r)

2r

Note that for spin compensated systems, n(r) = 2n↑(r) = 2n↓(r) and we
recover a (-1/r) potential for an electron interacting through exchange
with electrons of same spin only.



Appendix A: Occupation and density matrix

We introduce here the density matrix, showing that the kinetic energy
does not need as well the knowledge of the full many-body wavefunction.
We further introduce natural orbitals, namely one-body orbitals
generating the exact charge-density, and the idea of fractional
occupations that we will briefly discussed when invoking Janak’s theorem.
This stands as a generalization to the Kohn-Sham approach.

We introduce the first-order reduced density matrix:

γ(r, r′) = N

∫
dr2...drN ψ∗(r, r2, . . . , rN )ψ(r′, r2, . . . , rN )

with γ(r, r) = n(r) > 0 and γ(r, r′) = γ∗(r′, r) and (Exercise):

T =
N∑

i=1

〈ψi |
−∇2

ri

2
|ψi 〉 =

∫
dr
[−∇2

r

2
γ(r′, r)

]
r=r′



Appendix A : Occupation and density matrix (II)

Since γ is definite positive and Hermitian its eigenvalues {fi} are real and
positive. Calling {ξi} the corresponding eigenvectors:

Trγ̂ =

∫
dr γ(r, r) =

∫
dr n(r) = N =

∑

i

〈ξi |γ̂|ξi 〉 =
∑

i

fi

n(r) =
∑

i

fi 〈r|ξi 〉〈ξi |r〉 =
∑

i

fi |ξi (r)|2

T =
∑

i

fi 〈ξi |
−∇2

ri

2
|ξi 〉

This is an exact formulation in terms of (”natural”) one-body orbitals
with fractional occupancy as a generalization of Kohn-Sham approach !



The Hartree-Fock (HF) approach

One keep the EXACT Hamiltonian but make an approximation on the
many-body wavefunction ψ under the form of a single Slater determinant
built from one-body eigenstates {φn(x) = φn(r)⊗ σn} (Roothan 1951).
This is just adding the anti-symmetrization principle on top of the
classical Hartree approximation where the probability of finding an
electron somewhere is independent of the other electron positions.

ψHF (x1, x2, ..., xN ) =
1√
N!

∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

...
...

...
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣

A cumbersome calculation leads to the energy with respect to the {φn}:

E [φn] = 〈ψ|Ĥ|ψ〉 =
N∑

i=1

〈φn(r)|−∇2
r /2 + v ions(r)|φn(r)〉+

1

2

∑

ij

(Jij − Kij )



The Hartree-Fock (HF) approach (continued)

The Jij and Kij terms are the Coulomb Hartree and exchange integrals.

Jij =

∫
dr1dr2 φi (r1)φ∗i (r1)

1

r12
φj (r2)φ∗j (r2)

Kij =

∫
dr1dr2 φj (r1)φ∗i (r1)

1

r12
φi (r2)φ∗j (r2)× 〈σi |σj〉

The {φn} eigenstates are obtained using the variational principle, i.e.

minimizing 〈ψ|Ĥ|ψ〉 under the constraint of normalization of the one-
body orbitals → minimize Ω[{λn, φn}] = E [φn]−∑n λn[〈φn|φn〉 − 1]

∂Ω

∂φ∗n(r)
= 0 ⇒

(−∇2
r

2
+ v ions + v H

)
φn(r)− [k̂φn](r) = λnφn(r)

with V H the classical Hartree potential :

v H (r) =

∫
n(r′)dr′

|r − r′| and [k̂φn](r) =
N∑

k=1

∫
dr′

φk (r)φ∗k (r′)

|r − r′| φn(r′)〈σk |σn〉



Hartree-Fock limitations and correlation energy

Since within HF the variational principal is restricted to a very limited set
of many-body wavefunctions, the ground-state HF total energy is an
upper-bound for the true ground-state energy. The correlation energy is
by definition the difference between the exact energy and the
Hartree-Fock energy: E C = E exact − E HF .

In the Hartree approximation, the probability of finding two electrons r,
and r′ are uncorrelated (despite the classical Hartree potential) ⇒
electrons can come very close to each other and the energy increases due
to Coulomb repulsion.

Within HF, only electrons with same spin are correlated thanks to the
exchange energy ⇒ electron with opposite spins are not correlated and
can come close to each other with large Coulomb repulsion penality !

Note: Jii and Kii cancel out (related below to lack of self-interaction)

Note: the ”λn” are just Lagrange parameters !



Example : GGA for exchange energy density

For small systems (atoms, etc.) the exchange energy represents most of
the XC energy. Using dimensionality arguments the lowest gradient
correction (LGC) for the exchange energy density reads:

E LGC
X = E LDA

X − β
∑

σ

∫
dr ρ4/3

σ x2
σ with xσ =

|∇ρσ|
ρ

4/3
σ

adimensional

This was a failure: E LGC
X does not satisfy the exchange-hole sum rule,

leads to divergency in the vacuum where ρ(r) decays exponentially, etc.
Further, the potential felt by an electron far away from an atom,
molecule, surface, etc. should scale as (-1/r). This term comes from the
exchange potential, yielding for exchange density of energy: (Exercise).

lim
r→∞

εX (r) ' −ρ(r)

2r
with ρ(r) = 2ρ↑(r) = 2ρ↓(r) (unpolarized system)

Ref: Density-functional exchange-energy approximation with correct asymptotic
behavior, A. D. Becke, PRA 1988.



Example : GGA for exchange energy density (2)

Becke proposed in 1988 an exchange functional (B88) that scales

smoothly between the small and large xσ = |∇ρσ|/ρ4/3
σ :

E B88
X = E LDA

X − β
∑

σ

∫
dr ρ4/3

σ

x2
σ

1 + 6βsinh−1(xσ)
(β parameter)

The GGA correction vanishes for small gradients
(xσ → 0). With ρ(r) ' e−αr for large r, xσ → eαr/3

and sinh−1(xσ)→ αr/3, the correct (vacuum)
asymptotic behaviour is recovered. This is the
exchange functional used in the BLYP functional
(B=Becke88). Here exact relations (asymptotic
behaviour, low or high density limit, sum rules, etc.)
lead to a functional form. Complementary to fitting
strategies. The B88 exploits both approaches.



Hybrid functionals

For the Kohn-Sham system, we know how to calculate the ”exact”
exchange energy ”associated with” the Kohn-Sham eigenstates {φn}.

EX = −1

2

occp∑

ij

∫ ∫
drdr′

φ∗i (r)φj (r)φ∗j (r′)φi (r′)

|r − r′|

This is more expansive than pure density functionals (Hartree-Fock (HF)
scales as N4 with system size) but helps in several directions:

I it offers clearly the correct asymptotic behavior for the electronic
potential in the vacuum and satisfies the exchange-hole sum rule

I it helps curing the self-interaction (SI) problem : within DFT, since
the charge density depends on the occupied orbitals, the action of
v eff [n] on an occupied orbital amounts to have an electron
interacting with itself (consider the H atom system!). This is a
dramatic problem for localized orbitals. This does not exist within
HF since the SI in the Hartree and exchange energies cancel out !



Hybrid functionals (2)

However, mixing 100% of exact exchange with a density dependent
correlation functional leads (in general) to a failure ! Density-dependent
XC functionals are usually built ”together” for reproducing the total XC
potential properties ! Namely, they benefit from large error cancellations.

Considerations built on the ”adiabatic connection” between the
non-interacting and interacting electronic systems generated the
historical Becke ”half and half” functional :
EXC = 0.5EX (HF ) + 0.5EX (Slater) + EC (LYP=Lee-Yang-Parr).

With fitting strategy on ”56 (small molecules) atomization energies, 8
proton affinities, and 10 first-row total atomic energies”, the ”Becke 3
parameters” (B3 of B3LYP) exchange functional (Becke JCP 1993)
mixes Slater LDA and B88 GGA exchange with 20% of exact exchange .

Using perturbation theory, Perdew, Burke and Ernzerhof advocated 25%
of exact exchange, leading to the 1996 PBE0 functional.



Range-separated hybrids (CAM-B3LYP, LC-ωPBE, etc.)

Defining a short-range (SR) and long-range (LR)
Coulomb interaction thanks e.g. to the error
function erf allows to define a short-range and
long-range exchange potential:

v LR
X (ω) = −

occp∑

i

φi (r)φ
∗
i (r′)

erf (ω|r − r′|)
|r − r′|

Once can now replace a fraction of the short-range exchange by a local
(Slater) or semilocal (GGA) exchange functional and keep a fraction of
long-range exchange ! Provides more flexibility to fulfill long-range
asymptotic potential shape (keeping up to 100% of LR exchange) with
local exchange tuning as developed within the GGA world.

The CAM-B3LYP includes 65% of LR exact exchange with ω = 0.33 and
the LC-ωPBE includes 100% of LR exact exchange with ω = 0.4.

Refs: T. Leininger, H. Stoll, H.-J. Werner, A. Savin, Chem. Phys. Lett. 275 (1997) 151; H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J.
Chem. Phys. 115 (2001) 3540.



Range-separated hybrids (RSH) in solids !!

Due to screening, the effective electron-electron
interaction is exponentially decaying in metals and
reduce by the macroscopic dielectric constant in
semiconductors : the long-range (-1/r) behaviour
of electronic potential in the vacuum does NOT
apply in solids ! The HSE03 and HSE06
(Heyd-Scuseria-Ernzerhof) functionals are
range-separated hybrids with the exact exchange
kept in the short-range, NOT the long-range !

Ratio W(r)/v(r) of screened versus bare
Coulomb potentials in Germanium and
Aluminum (Raffaele Resta, SISSA
Lecture notes) .

NOTE: several RSH for solids with long-range potential controled by the
dielectric constant are being developed for obtaining good electronic
properties, not total energies and structure (see e.g. Density-based
mixing parameter for hybrid functionals, Marques et al. PRB 2011).

Refs: ”Hybrid functionals based on a screened Coulomb potential”, Heyd-Scuseria-Ernzerhof JCP 2003;



Correlation energy within the RPA formalism

The fifth rung of functionals stairway is to calculate the correlation
energy within many-body perturbation theory, namely an explicit
formulation in terms of molecular orbitals. The RPA energy is a
promising approach that offers O(N4) scaling with system size, and
efficient O(N3) formalisms are appearing.

E RPA
C =

1

2π

∫ +∞

0

dω Tr [ln(1− χ0(iω)v) + χ0(iω)v ]

where v is the bare Coulomb operator and χ0(iω) the independent
electron susceptibility:

χ0(r, r′; iω) = 2
∑

ja

φ∗j (r)φa(r)φ∗a(r′)φj (r′)

iω − (εa − εj )
+ cc

where the {εn, φn} eigenstates are typically Hartree-Fock or Kohn-Sham
eigenstates.



Correlation energy within the RPA formalism (II)

The RPA correlation energy includes long-range dispersion effects (such
as van der Waals) that are missing in local or GGA functionals !

References:

I Furche, Molecular tests of the RPA to the exchange-correlation
energy functional. PRB 2001, 64, 195120.

I Eshuis, Yarkony, Furche, Fast computation of molecular RPA
correlation energies using resolution of the identity and imaginary
frequency integration. JCP 2010, 132, 234114.

I Assessment of correlation energies based on the RPA, Paier, Ren et
al. New Journal of Physics 14 (2012) 043002.

I Kaltak, Klimes̆, Kresse, Low Scaling Algorithms for the RPA:
Imaginary Time and Laplace Transformations. JCTC 2014, 10,
2498-2507.


