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Part I: Properties of Green’s functions and the self-energy



Preliminaries

• We consider a a system of interacting Fermions with Hamiltonian

H =
∑

α,β

tα,β c†αcβ +
1

2

∑

α,β,γ,δ

Vα,β,δ,γ c
†
αc

†
βcγcδ.

• The indices α, β . . . are shorthand for some set of quantum numbers,

in an LCAO description α = (k, n, σ), with n orbital type such as Cu 3dx2−y2, O 2pz, Fe 3dxy ....

• We consider a grand canonical ensemble at inverse temperature β = 1/kBT and chemical potential µ

• Following Fetter-Walecka we define K = H − µN ⇒ [K,N ] = 0

• The grand partition function is Z = trace
(

e−βK
)

• Using the complete basis of eigenstates K|i⟩ = Ki|i⟩, this becomes Z =
∑

i e
−βKi

• The thermal average of an operator Ô is

⟨Ô⟩th =
1

Z
trace

(

e−βKÔ
)

=
1

Z

∑

i

e−βKi ⟨i|Ô|i⟩



Green’s functions

Green’s functions describe the following gedanken experiment

• Initially, the system is in thermal equilibrium

• ‘Do something’ to the system - i.e. act with some operator B̂ - at time 0

• Let the system evolve under the action of H

• ‘Undo the change’ - i.e. act with some operator Â - at some other time t

• Form the overlap with the undisturbed state at t

One can define different Green’s functions but here we consider the retarded Green’s function

GR
A,B(t) = −iΘ(t)

(

⟨ Â(t)B̂ ⟩th − (−1)nB ⟨B̂Â(t) ⟩th
)

Thereby

• Ô(t) = eitK/! Ô e−itK/! (Heisenberg operator but with H → K = H − µN)

• nB = [N̂ , B̂] - the number of electrons added to the system by B̂ - which may also be zero or negative



The retarded real-time Green’s function has considerable physical significance

• Assume that the system is acted on by a small time dependent perturbation H1(t) = f(t)B̂

• Then the induced change in the expectation value of some operator Â at time t is

δ⟨Â⟩(t) =
1

!

∫ ∞

−∞
dt′ GR

A,B(t− t′) f(t′)

• GR
A,B(t) must be evaluated for the unperturbed system

• This is called linear-response theory or the Kubo formula

• The ‘components’ of GR
A,B such as ⟨ Â(t)B̂ ⟩th - so-called correlation functions - are ’related to’ the

spectra measured in inelastic scattering experiments

• For B̂ = ck,σ and Â = c†k,σ the Green’s function is ‘related to’ the photoemission and inverse

photoemission spectrum



Lehmann representation

We find (using
∑

j |j⟩⟨j| = 1)

GR
A,B(t) = −iΘ(t)

(

⟨ Â(t)B̂ ⟩th − (−1)nB ⟨B̂Â(t) ⟩th
)

= −iΘ(t)
1

Z

(

∑

i

e−βKi ⟨i| Â(t)B̂ |i⟩ − (−1)nB
∑

i

e−βKi ⟨i| B̂Â(t) |i⟩

)

= −iΘ(t)
1

Z

⎛

⎝

∑

i,j

e−βKi ⟨i| Â(t)|j⟩⟨j|B̂ |i⟩ − (−1)nB
∑

i,j

e−βKi ⟨i| B̂|j⟩⟨j|Â(t) |i⟩

⎞

⎠

= −iΘ(t)
1

Z

⎛

⎝

∑

i,j

e−βKi ⟨i| e
it
!
KÂe−

it
!
K |j⟩⟨j|B̂ |i⟩ − (−1)nB

∑

i,j

e−βKi ⟨i| B̂|j⟩⟨j|e
it
!
KÂe−

it
!
K |i⟩

⎞

⎠

= −iΘ(t)
1

Z

⎛

⎝

∑

i,j

e−βKi e
it
!
(Ki−Kj) ⟨i|Â|j⟩ ⟨j|B̂|i⟩ − (−1)nB

∑

i,j

e−βKi e
it
!
(Kj−Ki) ⟨i|B̂|j⟩ ⟨j|Â|i⟩

⎞

⎠

= −iΘ(t)
1

Z

∑

i,j

(

e−βKi − (−1)nB e−βKj
)

e
it
!
(Ki−Kj) ⟨i|Â|j⟩ ⟨j|B̂|i⟩

The Fourier transform GR
A,B(ω) =

∫ ∞

−∞
eiωt GR

A,B(t) dt =
1

Z

∑

i,j

e−βKi − (−1)nB e−βKj

ω + i0+ + 1
!
(Ki −Kj)

⟨i|Â|j⟩ ⟨j|B̂|i⟩



The imaginary time Green’s function

In the definition of the Heisenberg operator we replace it → τ : Ô(τ ) = eτK/! Ô e−τK/!

GA,B(τ ) = −⟨ T
[

Â(τ ) B̂
]

⟩th

= −iΘ(τ ) ⟨ Â(τ ) B̂ ⟩th − Θ(−τ ) (−1)nB ⟨ B̂ Â(τ ) ⟩th1234567891011121

We recall ....

GR
A,B(t) = −i Θ(t) ⟨ Â(t) B̂ ⟩th − i Θ(t) (−1)nB ⟨B̂ Â(t) ⟩th1234567891011121

.... and by similar manipulations as in the preceding slide we find the Lehmann representation

GA,B(τ ) = −
1

Z

∑

i,j

(

Θ(τ ) e−βKi − (−1)nB Θ(−τ )e−βKj
)

e
τ
!
(Ki−Kj) ⟨i|Â|j⟩ ⟨j|B̂|i⟩



Domain of existence

We had

GA,B(τ ) = −
1

Z

∑

i,j

(

Θ(τ ) e−βKi − (−1)nB Θ(−τ )e−βKj
)

e
τ
!
(Ki−Kj) ⟨i|Â|j⟩ ⟨j|B̂|i⟩

τ -dependence, τ > 0: e−βKi e
τ
!
(Ki−Kj) = e−βKi e

|τ |
!
(Ki−Kj) = e(

|τ |
!
−β)Ki e−

|τ |
!
Kj

τ -dependence, τ < 0: e−βKj e
τ
!
(Ki−Kj) = e−βKj e

|τ |
!
(Kj−Ki) = e(

|τ |
!
−β)Kj e−

|τ |
!
Ki

Ki, Kj are eigenvalues of H − µN - in the thermodynamical limit they are bounded from below

- namely by K0 - but unbounded from above

⇒ GA,B(τ ) is well defined only for −!β < τ < !β



Fourier transform

• GA,B(τ ) exists only in the intervall [−!β : !β]

⇒ it can be expanded in a Fourier series with frequencies ων = ν
2π

2!β
=

νπ

!β

GA,B(τ ) =
1

!β

∞
∑

ν=−∞

e−iωντ GA,B(iων),

GA,B(iων) =

∫ !β

0
dτ eiωντ GA,B(τ ),

• One can show that for τ ∈ [−!β, 0] one has GA,B(τ + !β) = (−1)nB GA,B(τ )

⇒ e−iων ·!β = e−iνπ = (−1)nB ⇒ only even ν for even nB, only odd ν for odd nB

• The ων are called Matsubara frequencies

• By straightforward calculation we find the Fourier transform

GA,B(iων) =

∫ !β

0
dτ eiωντ GA,B(τ ) =

1

Z

∑

i,j

e−βKi − (−1)nB e−βKj

iων +
1
!
(Ki −Kj)

⟨i|Â|j⟩ ⟨j|B̂|i⟩



‘The’ Green’s function

We found

GA,B(iων) =
1

Z

∑

i,j

e−βKi − (−1)nB e−βKj

iων +
1
!
(Ki −Kj)

⟨i|Â|j⟩ ⟨j|B̂|i⟩.

Now recall the Fourier transform of the retarded real-time Green’s function

GR
A,B(ω) =

1

Z

∑

i,j

e−βKi − (−1)nB e−βKj

ω + i0+ + 1
!
(Ki −Kj)

⟨i|Â|j⟩ ⟨j|B̂|i⟩

GR
A,B(ω) can be obtained from GA,B(iων) by replacing iων → ω + i0+

This means that there is one function GAB(z) of the complex frequency z which gives the imaginary-time

Green’s function when evaluated at the Matsubara frequencies, z = iων, and the retarded real-time Green’s

function when evaluated along a line infinitesimally above the real axis, z = ω + i0+

This function which is defined in the whole complex frequency plane is often called ‘the’ Green’s function



Importance of the imaginary-time Green’s function

The relation between the Fourier transforms of the time-ordered imaginary-time Green’s function and the

real-time retarded Green’s function is the main reason why imaginary-time Green’s functions are considered in

the first place

The time-ordered imaginary-time Green’s function can be expanded into Feynman-diagrams whereas this is

not possible for real-time Green’s functions at finite temperature

A standard procedure - used frequently in the literature - therefore is to evaluate the imaginary Green’s func-

tion, often using e.g. a partial summation of Feynman diagrams. This gives some function Gapprox(iων) in

which one replaces iων → ω + i0+ (‘analytical continuation’) to obtain the real-time Green’s function

The question of whether the full Green’s function is uniquely defined by its values at the Matsubara frequencies

has been answered affirmatively by G. Baym and N. D. Mermin, J. Math. Phys. 2,232 (1961)



The single-particle Green’s function

We recall the definition of ‘the’ Green’s function

GA,B(z) =
1

Z

∑

i,j

e−βKi

[

⟨i|Â|j⟩ ⟨j|B̂|i⟩

z + 1
!
(Ki −Kj)

− (−1)nB
⟨i|B̂|j⟩⟨j|Â|i⟩

z + 1
!
(Kj −Ki)

]

We specialize to the single-particle Green’s function which corresponds to Â = cα, B̂ = c†β so that nB = 1

Gα,β(z) =
1

Z

∑

i,j

e−βKi

[

⟨i|cα|j⟩⟨j|c
†
β|i⟩

z − 1
!
(Kj −Ki)

+
⟨i|c†β|j⟩⟨j|cα|i⟩

z − 1
!
(Ki −Kj)

]

We recall that α = (k, n, σ) - Gα,β(z) may be viewed as a matrix of dimension norb × norb where norb is the

number of α in the system - we will often write this as G(z)

The 1st term describes adding an electron and removing it - inverse photoemission

The 2nd term describes removing an electron and adding it - photoemission



Spectral densities

Gα,β(z) =
1

Z

∑

i,j

e−βKi

[

⟨i|cα|j⟩⟨j|c
†
β|i⟩

z − 1
!
(Kj −Ki)

+
⟨i|c†β|j⟩⟨j|cα|i⟩

z − 1
!
(Ki −Kj)

]

=

∫ ∞

−∞
dω

ρ(+)
α,β(ω)

z − ω
+

∫ ∞

−∞
dω

ρ(−)
α,β(ω)

z − ω

whereby

ρ(+)
α,β(ω) =

1

Z

∑

i,j

e−βKi ⟨i|cα|j⟩⟨j|c
†
β|i⟩ δ

(

ω −
1

!
(Kj −Ki)

)

ρ(−)
α,β(ω) =

1

Z

∑

i,j

e−βKi ⟨i|c†β|j⟩⟨j|cα|i⟩ δ

(

ω −
1

!
(Ki −Kj)

)

Then

∫ ∞

−∞
dω ρ(−)

α,β(ω) =
1

Z

∑

i,j

e−βKi ⟨i|c†β|j⟩⟨j|cα|i⟩ =
1

Z

∑

i

e−βKi ⟨i|c†βcα|i⟩ = ⟨c†βcα⟩th

Dito:
∫ ∞

−∞
dω ρ(+)

α,β(ω) = ⟨cαc
†
β⟩th

If we define ρ = ρ(+) + ρ(−)

∫ ∞

−∞
dω ρα,β(ω) = ⟨

{

cα, c
†
β

}

⟩th = δα,β



We recall

ρ(+)
α,β(ω) =

1

Z

∑

i,j

e−βKi ⟨i|cα|j⟩⟨j|c
†
β|i⟩ δ

(

ω −
1

!
(Kj −Ki)

)

ρ(−)
α,β(ω) =

1

Z

∑

i,j

e−βKi ⟨i|c†β|j⟩⟨j|cα|i⟩ δ

(

ω −
1

!
(Ki −Kj)

)

• The labels i and j denote eigenstates of the Hamiltonian

• For a finite system the eigenenergies are discrete and the ρ(ω) are ‘sums of δ-spikes’

• In the thermodynamical limit the spacing between eigenenergies rapidly approaches zero and i and j become continuous

• At the same time the matrix elements ⟨i|cα|j⟩ vanish and the sums over i and j become integrals

Then e.g.

ρ(+)
α,β(ω) =

1

Z

∫

dK1

∫

dK2 e
−βK1 F (K1, K2) δ

(

ω −
1

!
(K1 −K2)

)

=
!

Z

∫

dK1 e−βK1 F (K1, K1 − !ω)

The ρ(ω) become continuous functions



Asymptotic behavior

We recall....

Gα,β(z) =
1

Z

∑

i,j

e−βKi

[

⟨i|cα|j⟩⟨j|c
†
β|i⟩

z + 1
!
(Ki −Kj)

+
⟨i|c†β|j⟩⟨j|cα|i⟩

z + 1
!
(Kj −Ki)

]

.... and consider the limit |z| → ∞ - then

1

z + 1
!
(Kj −Ki)

→
1

z
−

Kj −Ki

!z2
+ O

(

1

z3

)

.

The first term gives

1

zZ

∑

i

e−βKi

[

⟨i|cαc
†
β|i⟩ + ⟨i|c†βcα|i⟩

]

=
1

z
⟨{c†β, cα}⟩⟩th =

δα,β
z

The second term gives

−
1

!z2Z

∑

i,j

e−βKi

[

(Ki −Kj)⟨i|cα|j⟩⟨j|c
†
β|i⟩ + (Kj −Ki)⟨i|c

†
β|j⟩⟨j|cα|i⟩

]

Now we use (Kj −Ki)⟨j|cα|i⟩ = ⟨j|Kcα − cαK|i⟩ = ⟨j| [K, cα] |i⟩ and find

−
1

!z2Z

∑

i

e−βKi

[

⟨i| [K, cα] c
†
β |i⟩ + ⟨i| c†β [K, cα] |i⟩

]

=

〈{

c†β, [cα, K]
}〉

th

!z2



For our Hamiltonian

K =
∑

α,β

tα,β c†αcβ − µ
∑

α

c†αcα +
1

2

∑

α,β,γ,δ

Vα,β,δ,γ c
†
αc

†
βcγcδ

we find

〈{

c†β, [cα, K]
}〉

th
= tα,β − µ δα,β +

∑

γ,δ

(Vα,γ,β,δ − Vα,γ,δ,β)
〈

c†γcδ
〉

th

= tα,β − µ δα,β + V (HF )
α,β

All in all we find the asymptotic expression for |z| → ∞

G(z) →
1

z
+

t− µ +V(HF )

!z2
+O

(

1

z3

)

.



The self-energy

The time-ordered imaginary-time Green’s functions can be expanded in Feynman diagrams - this allows to

introduce the self-energy ....

Σ Σ Σ

Σ = .... +

Σ α β
Gα β

G = + + + ....

+ ....

 β α

αβ

.... and we can read off the Dyson equation (note that we already replaced iων → z throughout)

G−1(z) = G−1
0 (z)−Σ(z) = z −

t− µ

!
−Σ(z)

(t is the matrix tα,β in H =
∑

α,β tα,β c†αcβ + . . . )



The Dyson equation was

G−1(z) = z −
t− µ

!
−Σ(z)

Now we recall the asymptotic expression

G(z) →
1

z
+

t− µ +V(HF )

!z2
+O

(

1

z3

)

⇒ G−1(z) → z −
t− µ

!
−

V(HF )

!
+O

(

1

z

)

It follows that

Σ(z) →
V(HF )

!
+ O

(

1

z

)

If we define

Σ(z) =
V(HF )

!
+Σres(z) ⇒ Σres(z) →

1

z

In particular for Hubbard-type models V(HF ) = Unσ̄



Analytical properties

The single particle Green’s function G(z) - and hence also the self-energy Σ(z) are defined in the whole

complex z-plane - we now want to discuss general properties of these functions

For simplicity we restrict ourselves to the single-band case that means α = (k, σ) -if wave vector and z-spin

are conserved we have Gα,β ∝ δα,β so that

Gα(z) =

∫ ∞

−∞
dω

ρ(+)
α (ω)

z − ω
+

∫ ∞

−∞
dω

ρ(−)
α (ω)

z − ω

ρ(+)
α (ω) =

1

Z

∑

i,j

e−βKi |⟨j|c†α|i⟩|
2 δ

(

ω −
1

!
(Kj −Ki)

)

ρ(−)
α (ω) =

1

Z

∑

i,j

e−βKi |⟨j|cα|i⟩|
2 δ

(

ω −
1

!
(Ki −Kj)

)

The functions ρ(+)
α (ω) and ρ(−)

α (ω) are real and positive ⇒ (Gα(z))
∗ = Gα(z∗)



We had (with ρα(ω) = ρ(+)(ω) + ρ(−)(ω), real and positive and
∫

dω ρα(ω) = 1):

Gα(z) =

∫ ∞

−∞
dω

ρα(ω)

z − ω

Put z = x + iy - the imaginary part of Gα(z) is

IGα(x + iy) = −

∫ ∞

−∞
dω

yρα(ω)

(x− ω)2 + y2

⎧

⎨

⎩

< 0 y > 0

> 0 y < 0

Gα(z) has no zeros off the real axis ⇒ G−1
α (z) is regular (has no poles) off the real axis

From the Dyson equation ....

G−1
α (z) = z −

tα − µ

!
−

V (HF )

!
− Σres(z)

.... it follows that Σres(z) is regular off the real axis

Moreover we had (Gα(z))
∗ = Gα(z∗) ⇒

(

G−1
α (z)

)∗
= G−1

α (z∗)

z∗ −
tα − µ

!
−

V (HF )

!
− (Σres(z))

∗ = z∗ −
tα − µ

!
−

V (HF )

!
−Σres(z

∗)

⇒ (Σres(z))
∗ = Σres(z∗)



In summary:

• Σ(z) = V (HF )

!
+ Σres(z)

• Σres(z) →
C
z

• Σres(z) is analytical off the real axis

• (Σres(z))
∗ = Σres(z∗)

2C

C1

z

Now define for real ω (with real K(ω) and J(ω))

lim
ϵ→0+

Σres(ω + iϵ) = K(ω)− iJ(ω) ⇒ lim
ϵ→0+

Σres(ω − iϵ) = K(ω) + iJ(ω)

For z in the upper plane
∮

C1

dz′
Σres(z′)

z′ − z
= 0 ⇒

∫ ∞

−∞
dω

K(ω) + iJ(ω)

ω − z
= 0 ⇒

∫ ∞

−∞
dω

K(ω)

ω − z
= −

∫ ∞

−∞
dω

iJ(ω)

ω − z

Now use Cauchy’s theorem

Σres(z) =
1

2πi

∮

C2

dz′
Σres(z′)

z′ − z
=

1

2πi

∫ ∞

−∞
dω

K(ω)− iJ(ω)

ω − z
⇒ Σres(z) =

1

π

∫ ∞

−∞
dω

J(ω)

z − ω



We thus arrive at the spectral representation of the full self-energy

(J.M. Luttinger, Phys. Rev. 121, 942 (1961)):

Σ(z) =
V (HF )

!
+

∫ ∞

−∞
dω

σ(ω)

z − ω

(with σ(ω) = 1
πJ(ω), real and positive)



Summary, spectral representation

Green’s function

Gα(z) =

∫ ∞

−∞
dω

ρα(ω)

z − ω

• ρα(ω) is real and positive

• Gα(z) →
1
z

• Analytical off the real axis

Self energy

Σα(z) =
V (HF )

!
+

∫ ∞

−∞
dω

σα(ω)

z − ω

• σα(ω) is real and positive

• Σα(z) →
V (HF )

!
+ C

z

• Analytical off the real axis

Re(z)

Im(z)

Im G

Re G

π ρ(ω)



For a finite system we expect the self-energy also to be discrete

Σα(z) =
V (HF )
α

!
+

m
∑

i=1

σi
z − ζi

The Greens function therefore is

G(ω) =

(

ω −
tα − µ + V (HF )

α

!
−

m
∑

i=1

σi
z − ζi

)−1

=

(

ω − ϵα −
m
∑

i=1

σi
z − ζi

)−1

Now consider again the Green’s function:
G
(ω
)

ω

The ζi are the zeros of G(ω)

It follows that the poles of Σ(ω) are ‘sandwiched’ in between the poles of G(ω) - m = n− 1



G
(ω
)
ω

Near a zero ζi : G(ω) = ai(ω − ζi) + bi(ω − ζi)2 + . . . and

G−1(ω) = ω − ϵα −
∑

j

σj
z − ζj

= −
σi

ω − ζi
+ ω − ϵα −

∑

j≠i

σj
z − ζj

= −
σi

ω − ζi
+ c0 + c1(ω − ζi) + . . .

with real constants c0 and c1 - therefore

G(ω) = −
ω − ζi
σi

−
c0
σ2
i

(ω − ζi)
2 + . . . ,⇒ ai = −

1

σi
.



Part II: The Luttinger-Ward functional



Our Hamiltonian from now on

H0 =
∑

k

∑

α,β

tα,β(k) c
†
k,α ck,β

H1 =
1

2

∑

k,k′,q

∑

α,β,γ,δ

Vα,β,δ,γ(k,k
′,q) c†k+q,α c†

k′−q,β ck′,γ ck,δ

• α, β etc label the atom and orbital in the unit cell (e.g. Cu 3dx2−y2, O 2pz, Fe 3dxy) and the spin

• The number of such orbitals per unit-cell is norb

• The eigenvalues En(k) of t(k) give the noninteracting band structure

In Gα,β, Σα,β

α outgoing

β incoming

Σ Σ Σ

Σ = .... +

Σ α β
Gα β

G = + + + ....

+ ....

 β α

αβ



The Grand Canonical Potential

The Grand Canonical Potential Ω = U − TS − µN is obtained from the Grand Partition Function Z

Ω = −
1

β
log(Z)

It gives the thermodynamics of the system: S = −

(

∂Ω

∂T

)

V,µ

, p = −

(

∂Ω

∂V

)

T,µ

, N = −

(

∂Ω

∂µ

)

T,V

Ω can be evaluated analytically for some systems e.g. for noninteracting Bloch electrons:

Ω = −
1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

• norb number of orbitals per unit cell, 2norb the number of bands

• En(k): Dispersion of nth band

• Gives for example: Cv ∝ T

But: No way to calculate this for an interacting system of macroscopic size



The Grand Canconical Potential of interacting Fermions

Luttinger and Ward have derived an expression for the Grand Canonical Potential of interacting Fermions

(J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960))

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

• ων =
(2ν + 1)π

!β
: Matsubara Frequencies for nN = 1

• G: Green’s Function, Σ: Self-Energy

• Φ[G]: The Luttinger-Ward functional:

Φ[ G ] = + + + + ....



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



The case λ = 0: Noninteracting Fermions

The Grand Canonical potential of free Bloch electrons is

Ω = −
1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

The expression by Luttinger and Ward is

.Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη ln det

(

−iων +
t(k)− µ

!

)

+1, trace (G(k, iων)(k, iων)) +Φ[G]

For noninteracting electrons we have Σ = 0 and Φ = 0:

Φ[ G ] = + + + + ....



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward:

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



Calculation of λ
∂Ω

∂λ

The definition of Ω

Ω = −
1

β
lnZ

= −
1

β
ln
(

trace e−β(H0+λH1−µN)
)

Here we use

λ
∂

∂λ
Ω(λ) = −

1

β
λ

∂

∂λ
ln
(

trace
(

e−β(H0+λH1−µN)
))

=
1

Z
trace

(

λH1 e
−β(H0+λH1−µN)

)

= ⟨λH1⟩λ

⟨...⟩λ: thermal average at interaction strength λ



Calculation of ⟨λH1⟩λ

This can be obtained from the equation of motion of the Green’s function

⟨λH1⟩λ = −
1

2
lim
τ→0−

∑

k

trace

(

!
∂

∂τ
+ t(k)− µ

)

Gλ(k, τ ),

Now: Use the Dyson equation
(

iων −
t(k)− µ

!
−Σλ(k, iων)

)

Gλ(k, iων) = 1

Its Fourier transform is
(

−
∂

∂τ
−

t(k)− µ

!

)

Gλ(k, τ )−

∫ β!

0
Σλ(k, τ − τ ′) Gλ(k, τ

′)dτ ′ = δ(τ )

(

−
1

!

) (

!
∂

∂τ
+ t(k)− µ

)

Gλ(k, τ )−

∫ β!

0
Σλ(k, τ − τ ′) Gλ(k, τ

′)dτ ′ = δ(τ )

Using limτ→0− δ(τ ) = 0:
(

!
∂

∂τ
+ t(k)− µ

)

Gλ(k, τ ) = −!

∫ β!

0
Σλ(k, τ − τ ′) Gλ(k, τ

′)dτ ′



Calculation of ⟨λH1⟩λ

This can be obtained from the equation of motion of the Green’s function

⟨λH1⟩λ = −
1

2
lim
τ→0−

∑

k

trace

(

!
∂

∂τ
+ t(k)− µ

)

Gλ(k, τ ),

We found....
(

!
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) = −!

∫ β!

0
Σλ(k, τ − τ ′) Gλ(k, τ

′)dτ ′

= −!
1

β!

∑

ν

e−iωντ Σλ(k, iων) Gλ(k, iων)

... so that the end result is (remember that τ → 0−)

λ
∂

∂λ
Ω(λ) = ⟨λH1⟩λ =

1

2β

∑

k,ν

trace Σλ(k, iων) Gλ(k, iων)



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward:

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



The Precise Definition and Properties of the Luttinger-Ward Functional Φ[G]

Reminder: The Luttinger-Ward functional is defined in terms of Feynman diagrams

Φ[ G ] = + + + + ....

The diagrams which are included into Φ are

• Closed (no open ends)

• Connected (no subdiagrams with no lines connecting them)

• Skeleton diagrams (no self-energy parts in any Green’s function line)



Excluded diagrams

Open ends! Disconnected! Self−energy insertion!



Short disgression: Self-energy diagrams can be reduced uniquely to skeleton diagrams

unique reduktion

Each self-energy diagram can be reduced uniquely to a skeleton diagram by removing all self-energy insertions



This also goes the other way round

....

.... + + + ....

+ ++

=

By drawing all skeleton-diagrams for the self-energy and ‘translating’ Green’s function lines into the full Green’s

function instead of the noninteracting one the total self-energy is obtained



The Precise Definition and Properties of the Luttinger-Ward Functional Φ[G]

Reminder: The Luttinger-Ward functional is defined in terms of Feynman diagrams

Φ[ G ] = + + + + ....

The diagrams which are included into Φ are

• Closed (no open ends)

• Connected (no subdiagrams with no lines connecting them)

• Skeleton diagrams (no self-energy parts in any Green’s function line)



The Diagrams are Converted into Multiple Sums using the Standard Feynman Rules....

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1δ 1

q

q

k’−q

k’

k+q

k

α
β γδ

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

The Green’s function in the algebraic expression corresponding to a given diagram is not the noninteracting

Green’s function G(0) but the Green’s function G which is the argument of the functional: Φ[G]!



D.... but there is one crucial difference!

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1δ 1

q

q

k’−q

k’

k+q

k

α
β γδ

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

The Green’s function in the algebraic expression corresponding to a given diagram is not the noninteracting

Green’s function G(0) but the Green’s function G which is the argument of the functional: Φ[G]!



Reminder: using the full Green’s function instead of the noninteracting one is precisely the same idea as in the

skeleton-diagram expansion of the self-energy!

....

.... + + + ....

+ ++

=



Symmetry factors

In addition to the factors from the Feynman rules the expression for each diagram is multiplied by

−
1

βS

where the integer S is the symmetry factor of the diagram

In simplest terms S gives the number of ways in which the diagram can be ‘deformed’ such that it is

identical to itself



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

The final diagram looks exactly like the original one - including direction of all arrows - but the Green’s function

lines are permuted!



Determination of the Symmetry Factors S

• We label the lines on the diagram by integers ∈ {1 . . . n}

• We imagine that the diagram can be ‘taken off the paper’ and is completely flexible

• We deform the diagram but without breaking any line or changing the direction of any arrow on a Green’s

function line - this means we maintain the connectivity properties of the diagram

• If the resulting diagram looks exactly the same as the original one but with permuted labels we call this

a symmetry operation of the diagram

• The symmetry factor S of a diagram is the number of different symmetry operations

(including the ‘unit deformation’)

• All Green’s function lines then can be grouped into classes such that the members of a class are permuted

amongst themselves

• If two lines i and j belong to the same class the diagram can be deformed such that it looks completely

the same but i and j have switched their positions

• We call all lines of a class symmetry equivalent



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

For this diagram there are no further symmetry operations → the diagram has S = 2 (we include identity!)

The classes of equivalent Green’s function lines are (1, 2), (3, 6) and (4, 5)



Another example

1 2

3 4

1 2

3 4

34

2 1 2 1

34

21

3 4

Above we show two symmetry operations corresponding to the permutations (2, 1, 4, 3) and (3, 4, 1, 2) - there

is a third operation corresponding to the product of these two permutations namely (4, 3, 2, 1) → the diagram

has S = 4, there is only one class comprising all lines



Further discussion

• An nth order diagram - i.e. a diagram with n interaction lines - has 2n Green’s function lines

• Assume that the diagram has symmetry factor S

• This means the classes of equivalent Green’s function have S members each

• The number of classes - therefore is 2n
S (which of course better be an integer...)

• If two lines - say i and j - belong to the same class it means that the diagram can be redrawn such that

it looks completely the same but with line j in place of line i



The real defining property of the Luttinger-Ward functional

The Luttinger-Ward functional is the generating functional of the self-energy

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

To see this we need to consider the change of a given diagram contributing to Φ under a change of G:

Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)



Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG

G+δG

G+δG

G+δG

G

G

G

G

Gδ

Gδ Gδ

Gδ

Gδ

Gδ

Gδ Gδ

G

G

G

G

G

G

G

G
−

G

G

G

G G

G

G

G G

G

G

G

G

G G G

+ + +

+ + +......

−=



What is the meaning of the ‘substituted’ diagrams?

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1δ 1

δG

q

q

k’−q

k’

k+q

k

α
β γδ

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)



Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG

G+δG

G+δG

G+δG

G

G

G

G

Gδ

Gδ Gδ

Gδ

Gδ

Gδ

Gδ Gδ

G

G

G

G

G

G

G

G
−

G

G

G

G G

G

G

G G

G

G

G

G

G G G

+ + +

+ + +......

−=



Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG

G+δG

G+δG

G+δG

G

G

G

G

Gδ

− =

G

G

G

G G

G

G

G G

G

G

G

+ + +



Forming the derivative

∂Φ

∂Gα,β(k, iων)

means ‘opening’ one of the Green’s function lines in the diagrams contributing to Φ

The ‘opened’ diagrams then indeed ‘look like’ self-energy diagrams:

The question is: Do we have the correct prefactors so as to fulfill

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων) ?



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1δ 1

δG

q

q

k’−q

k’

k+q

k

α
β γδ

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

• The incoming and outgoing momentum and frequency are k and ων

• There is still momentum/frequency conservation at each vertex and all remaining momenta, frequencies,

band indices keep on being summed over - exactly as in the true expression for Σ(k,ω)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

• The remaining diagram has band index δ on its incoming entry and δ1 on its outgoing entry

• This is exactly as in the true expression for Σδ1,δ(k,ω)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

• The order n (number of interaction lines) is not changed by opening a Fermion line

(

−1

β!2N

)n

remains correct



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)

• Opening one Green’s function lines reduces the number of Fermion loops F by 1 → the factor (−1)F

changes sign - the extra (-1) in the prefactor takes care of this:

−
1

βS



What about the factor 1/S?

• Let us consider an nth order Φ-diagram with symmetry factor S

• The symmetry factor S was the number of ways in which the diagram could be deformed into itself

• Then there are 2n/S classes, each containing S Green’s function lines, which are symmetry equivalent to

each other

• Symmetry equivalence means that the diagram can be deformed such that it looks exactly the same but

with the two symmetry equivalent Green’s function exchanged

•
This means that if two symmetry equivalent lines are opened the resulting self-energy diagrams also can

be deformed into each other and thus are completely identical

•
All S Green’s function lines in one class therefore give exactly the same self-energ diagram when they are

opened

• Since we have 2n/S classes with S lines in each class the Φ-diagram gives 2n/S Σ-diagrams and each is

produced S times

•
This factor of S exactly cancels the factor of 1/S in the prefactor of the diagram



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

For this diagram there are no further symmetry operations → the diagram has S = 2 (we include identity!)

The classes of equivalent Green’s function lines are (1, 2), (3, 6) and (4, 5)



Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d

1

12

23

3



Example, cont’d

1

12

23

3

• The diagram has n = 3 and S = 2 → 3 classes with 2 members each

• By successively opening the lines we get 3 different self-energy diagrams

• Each of them is produced 2 times



We have seen that the derivative

∂Φ[G]

∂Gα,β(k, iων)

gives precisely all skeleton diagrams for Σβ,α(k, iων) but with the the Green’s function G used for all Green’s

function lines (and a prefactor 1/β)

If G is the exact Green’s function this is the exact self-energy

Therefore: If G is the exact Green’s function we have

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)



This also goes the other way round

....

.... + + + ....

+ ++

=

By drawing all skeleton-diagrams for the self-energy and ‘translating’ Green’s function lines into the full Green’s

function instead of the noninteracting one the total self-energy is obtained



We have seen that the derivative

∂Φ[G]

∂Gα,β(k, iων)

gives precisely all skeleton diagrams for Σβ,α(k, iων) but with the the Green’s function G used for all Green’s

function lines (and a prefactor 1/β)

If G is the exact Green’s function this is the exact self-energy

Therefore: If G is the exact Green’s function we have

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)



We saw that Σ(k,ω) can be obtained from Φ[G] by ‘opening’ Green’s function lines

The question is then: can this be reversed, that means:

Can Φ[G] be obtained from Σ(k,ω) by ‘reconnecting’ the two entry points by a Green’s function?



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram
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Vα β δ γ
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β γδ
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(
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(−1)2
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∑
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α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β 1

γ
1

δ 1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1(k, iων)

(

−1

β!2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k
′,q) Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1(k, iων) Gβ1,β(k
′ − q, iων′ − iωµ) Gγ,γ1(k

′, iων′)



The correct operation to ‘undo’ the opening of a line therefore is something like

Φ(n)[G] ∝
1

β

∑

ν,k

∑

α,β

Gα,β(k, iων)Σ
(s,n)
β,α (k, iων)

=
1

β

∑

ν,k

trace G(k, iων) Σ
(s,n)(k, iων)

Φ(n) is the sum of all nth order diagrams for Φ: closed, linked skeleton diagrams, with Green’s function lines

standing for the full Green’s function G

Σ
(s,n)
β,α (k, iων) is the sum of all nth order skeleton diagrams for the self-energy with Green’s function lines

standing for the full Green’s function G

We include only skeleton-diagrams for Σ because we only want skeleton diagrams for Φ

However, again we need to be careful about prefactors!



We consider nth-order diagrams for Φ and Σ

This shows

Φ(n) =
1

2nβ

∑

ν,k

trace G(k, iων) Σ
(s,n)(k, iων)

2n
S

2n
S

2n
S

S1 S1 S1 S2 S3 S3 S3

1
βS1

1
βS2

1
βS3

S3

2n
S

2n
S

2n
S

1
β

βS
2n

βS
2n

βS
2n

1 2 3

1 2 3

1 2 3



Summary of the properties of the Luttinger-Ward functional

• The Luttinger Ward functional involves only the interaction matrix elements Vαβγδ of the Hamiltonian,

but not the single particle matrix elements tαβ

• The Luttinger-Ward functional is the generating functional of the self-energy, which is obtained by opening

Green’s function lines

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

• The Luttinger-Ward functional can also be written by ‘closing’ the open ends in the self-energ - however,

there is an extra factor of 1/2n (n is the order of the self-energy diagram) which makes resummation

impossible

Φ =
∑

n

Φ(n)

=
1

β

∑

n

1

2n

∑

ν,k

trace G(k, iων) Σ
(s,n)(k, iων)

Σ(s,n) is the nth order ‘skeleton self-energy’



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward:

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



Calculation of λ ∂Ω′

∂λ

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

Reminder: we replaced H → H0 + λH1 - a variation λ → λ + δλ has two different effects

• The self-energy Σ will change

• The interaction lines in the Luttinger-Ward functional will change

(since H1 → λ H1 they carry a factor of λ!)

Φ[ G ] = + + + + ....

We treat these two variations separately and first consider the variation of Ω′ under a change Σ → Σ + δΣ



Calculation of
∂Ω′

∂Σ

To avoid calculations with many indices we treat only the case of a single spinless band

(see the notes for the full multi-band case)

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

then becomes

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln
(

−G−1(k, iων)
)

+G(k, iων) Σ(k, iων)
]

+ Φ [G]

• We need to differentiate this with respect to Σ(k, iων)

• The first two terms are a sum over terms with different k and iων - only one term contributes

• All G and Σ in this term have the same argument (k, iων) - we omit this for simlicity



Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln
(

−G−1(k, iων)
)

+G(k, iων) Σ(k, iων)
]

+ Φ [G]

Then we have

∂Ω′

∂Σ
= −

1

β

[

1

(−G−1)

∂(−G−1)

∂Σ
+

∂G

∂Σ
Σ +G

]

+
∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)

Now we use the Dyson equation

−G−1(k, iων) = −iων +
1

!
(E(k)− µ) + Σ(k, iων)

→
∂(−G−1)

∂Σ
= 1

So that

∂Ω′

∂Σ
= −

1

β

[

−G +
∂G

∂Σ
Σ +G

]

+
∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)



We had

∂Ω′

∂Σ
= −

1

β

∂G

∂Σ
Σ +

∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)

Now we use the fact that Φ is the generating functional of Σ

∂Φ

∂G(k, iων)
=

1

β
Σ(k, iων)

Then we have

∂Ω′

∂Σ
= −

1

β

∂G

∂Σ
Σ +

1

β
Σ

∂G

∂Σ
= 0

Ω′ is stationary under variations of the self-energy

Once we have shown that Ω′ = Ω this prooves a variational principle of central importance: The Grand

Canonical Potential of an interacting Fermi system is stationary with respect to variations of its self-energy



Calculation of λ ∂Ω′

∂λ

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

Reminder: we replaced H → H0 + λH1 - a variation λ → λ + δλ has two different effects

• The self-energy Σ will change - but the corresponding first order change of Ω′ is zero!

• The interaction lines in the Luttinger-Ward functional will change

(since H1 → λ H1 they carry a factor of λ!)

Φ[ G ] = + + + + ....

Accordingly we study the change of Φ under a change of λ (prefactor of all interaction lines) when Σ is kept

fixed



This is in fact a rather simple calculation: we again split the Luttinger-Ward functional

Φ =
∑

n

Φ(n)

whereby Φ(n) is the sum of diagrams with n interaction lines - which is proportional to λn

But:

λ
∂λn

∂λ
= nλn

It follows that (Σ(s,n) denotes all nth order self-energy skeleton diagrams)

λ
dΩ′

dλ
= λ

dΦ

dλ
=
∑

n

n Φ(n)

=
∑

n

n
1

2βn

∑

ν,k

trace Gλ(k, iων)Σ
(s,n)
λ (k, iων)

=
1

2β

∑

ν,k

trace Gλ(k, iων)

(

∑

n

Σ
(s,n)
λ (k, iων)

)

=
1

2β

∑

ν,k

trace Gλ(k, iων) Σλ(k, iων) = λ
dΩ

dλ

This is precisely the same result we obtained for λ∂λ Ω!



Summary of the Proof

• The Grand Canonical Potential of an interacting Fermi system is given by

Ω = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

• Ω is stationary with respect to variations of the self-energy

∂Ω

∂Σαβ(k, iων)
= 0

• The Luttinger-Ward functional is the generating functional of the self-energy

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)



Applications of the Luttinger-Ward functional: Conserving Approximations

• We consider a translationally invariant system V (r) = 0 - the Hamiltonian is

H =
!2

2m

∫

dr ∇Ψ†(r) ·∇Ψ(r) +
1

2

∫

dr

∫

dr′ Ψ†(r)Ψ†(r′)V (r− r′)Ψ(r′)Ψ(r).

• We assume that a time-dependent perturbation Hp =
∫

dr U(r, t) n(r)

• Then the change of the expectation value of any operator Â(r) is

δ ⟨Â(r)⟩(t) =
1

!

∫

dr′
∫ ∞

−∞
dt′ GR

A,n(rt, r
′t′) U (r′, t′)

• We may choose Â to be electron density or electron current - we obtain the density δn(r, t) and current j(r, t) induced

• However, density and current must obey conservation laws

∂δn(r)

∂t
+∇ · δj(r) = 0,

d

dt

∫

dr mδj(r) =

∫

dr (−∇U(r, t))n(r, t)

d

dt
⟨H⟩ =

∫

dr (−∇U(r, t)) · δj(r)



For the exact δn(r, t) and j(r, t) the conservation laws of course are obeyed - but in general we have to make

some approximation to calculate the retarded Green’s function in

δ ⟨Â(r)⟩(t) =
1

!

∫

dr′
∫ ∞

−∞
dt′ GR

A,n(rt, r
′t′) U (r′, t′)

The question is: can we find approximations to GR
A,n(rt, r

′t′) such that the resulting approximate δn(r, t) and

j(r, t) obey the conservation laws?

This question was addressed in the famous papers by Kadanoff and Baym

Their answer: if we construct an approximate Luttinger-Ward functional Φ̃[G] by retaining only a subclass of

skeleton diagrams and defining

−
1

β
Σ̃α,β(k, iων) =

∂Φ̃[G]

∂Gβ,α(k, iων)
⇒ Σ̃ = Σ̃[G] ⇒ G−1 = G−1

0 − Σ̃[G]

the resulting theory does obey the conservation laws

This is difficult to proove - in the notes the proof is given for the continuity equation.....



A famous example for such a conserving approximation is the GW-approximation

1
2

1

6
1

−
β

Σ = + +

+ + +1

4
Φ =

+ ........



G

W

+

+ ........

Σ =

W = + +

= 1 + +

=

+1

1



Summary

• The Grand Canonical Potential of an interacting Fermi system can be expressed as a functional of its

Green’s function

• This involves the Luttinger-Ward functional which is defined as a sum over infinitely many Feynman

diagrams

• The expression for Ω is the starting point for important results such as the Luttinger theorem

• The Luttinger-Ward functional is the generating functional for the self-energy and is of considerable

importance for obtaining conserving approximations

• Ω is stationary with respect to variations of the self-energy and this can be used to derive many schemes

to compute the self-energy



Calculation of ⟨λH1⟩λ

This can be obtained from the Green’s function

Gα,β(τ ) = −Θ(τ ) ⟨ cα(τ ) c
†
β ⟩th + Θ(−τ ) ⟨ c†β cα(τ ) ⟩th

We assume τ < 0 and set β = α

Gα,α(τ ) = ⟨c†α cα(τ )⟩th

= ⟨c†α e
τ
!
K cα e−

τ
!
K ⟩th

⇒ −!
∂Gα,α(τ )

∂τ
= ⟨c†α e

τ
!
K [cα, K] e−

τ
!
K ⟩th

→ lim
τ→0−

(

−!
∂Gα,α(τ )

∂τ

)

= ⟨c†α [cα, K] ⟩th = ⟨H0 − µN⟩th + 2⟨H1⟩th

Using limτ→0− = ⟨ c†β cα(τ ) ⟩th we can exoress ⟨H0 − µN⟩th in terms of limτ→0− G


