Introduction to Nonequilibrium Green’s Functions
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Mark Jarrell (1960-2019)

| am dedicating this talk to Mark
Jarrell, friend, mentor,
collaborator, and physicist.

Mark passed away this summer

after a long bout with kidney
cancer.
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What can we do with Green’s functions?

Introduction to nonequilibrium Green’s function GEORCETOWAN

J Autumn School on Many-Body Methods for Real Materials, September 19, 2019



Use of Green’s functions
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Why do we need Green’s functions?
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Easier to use than wavefunctions
Can directly calculate thermal averages
No easier method 1s known
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Equilibrium
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Time translation 1movariance
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The equilibrium Green’s function is
time-translation imvariant!
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Lehmann Representation
Lesser Green’s function (i=j)

l
Gio(t.t) = - Tr e~ Pl (£) ¢jo(t)

Gla(tt) = Z“’”‘ e =P el (o (6)]m)
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Lehmann Representation
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Noneguilibrium
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The lesser Green’s function
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The contour-ordered Green’s function

t

" E tmaX
t -igﬁ
A(t)=0 i
o fiele GiCjU (&)= - 7 Ir e_ﬁH(tmin)TcCia (t)C]TG (t")

Both times, t and t', lie on the contour. One can extract
many different Green'’s functions from the contour-ordered
Green’s function.
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The DOS at t_,

l
Glio(tt) = — - 8(t = t')Tr e FHE {eio (), c;“(,(t')}+

t+t ,
Lave = 2 ; Lreg = 10—

1 0 . R 1 1
pii(w: tave) — = E Im € relGiia tave + 5 trel: tave o 5 trel dtrel
0

We find the DOS by performing a Fourier transformation with respect to relative
time, keeping the average time fixed.
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Electric fields
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The Peierls substitution
O

_le ij A(rt)-dr

We work in a vector potential only
gauge. This produces a time-
dependent phase on the hopping. It

B the field is uniform in space, we
E(k) - E(k A(t)) preserve translational invariance.
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Noninteracting electrons
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The noninteracting problem

Hs(t) = ) etk = AD)cl,cee  [Hs(®), Hs(t)] = 0
ko

. L / / Y / /
C,ia(t) _ e‘f-oo dt [e(k—A(t ))—u]cga’ Cror (1) = e“f-oo dt [e(k—A(t ))—u] Cre

GR (t,t) = —if(t — t")e ! Jorle(k-A®)-n}at

Using the EOM, we can immediately solve for the Green’s function
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The noninteracting DOS
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Interacting electrons
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Dyson's equation.
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EOM and the Dyson equation
Hy(0) = ) [e(k — A®) —ulc, (Do) + Vi (©

[Hy (), Cp(t)] = —[E(k — A(t)) —]Ckqg (E)
+[VH (t)» Cro (t)]

0 _ _
[i—+u—e(k—A(t))]GE,(E, t) = f dtX¢(t, £)GE . (E,t') + 6.(t,t)

C

This is the definition of the contour-ordered selt-energy
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EOM and the Dyson equation
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Solving the Dyson equation

[ df{[ :t+u—e(k A(t))l& (t, ©) —X€ (t, D}Gk(,(t t") = 6.(t,t")

This is of the form (G¢)~1(G¢) = I with a boundary conditon
l

Glga (tmin; Cmin — lﬁ) — = Z I'r e_ﬁH(tmin) Cko (tmin)cl-{l-a (tmin o lﬁ)
l
Gka(tmm: min lﬁ) — _Z I're ﬁHCkae ﬁHC]-\I:-aeﬁH
l
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Self enerqy and memory effects

Often it is said that in nonequilibrium on has “memory
effects”

Sut the EOM is a first order linear equation, so how can this
pe?

't happens when we employ a self-energy, because it enters
via a convolution, which couples ditferent times together.

T we could solve the problem just with the GFs, the memory
effects would be gone, but we do not know how to do this.,
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Discretizing continuous matrix equations

5 1 1
+ 1) 6.(t,t") = — M} —
at Wi W,
1 0 0 | +iAtu
_ 1 —iAtu 1 0 0
0 _1—iAtw 1 0
) 0 —1+iAru 1 0
M= 0 —1+iAtp ]
—1-A7mu 1
—1-A7u |

det(M) = 1+ (—1)2NetNe=1(1 + jAtu) (=1 — iAtw)Ve~ (=1 + iAtp)Ne(—1 — Atp)Ne
=1+ (1 + Atw)Ne + 0(At?) = 1 + ePH

Introduction to nonequilibrium Green’s function @ET@W@\\C,

J Autumn School on Many-Body Methods for Real Materials, September 19, 2019



Modeling electrons
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Modeling correlations with the
Falicov-Kimball model

&) (Y
@ -t DOWN-spin

electrons hop
with strength -t
between lattice
Sites. They feel an
interaction of U
when two

O electrons are on

the same site.
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Hubbard model
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Dynamical mean-field theory
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Dynamical mean-field theory

Dynamical mean-field theory introduced
in the late 1980s.

© © O
Self-consistent solution of an impurity O

oroblem solves the lattice problem in | attice
arge dimensions

—xtension to nonequilibrium in 2006 0
follows by working in the time o
-epresentation. Impurity site
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Self-consistency loop

' ZzGO_l_Gloc_1
Jyson equatlcy, wilbert transform
G,,.=Functional(G,)
{example: FK model: G,, =2, [G"°"}(E)-2]

Gioc=(1-W3) Gy 1)+, G p-U)} / ,
\ Dyson equation

Solve impurity G,=(G,, +2)!
problem All objects (G and %) are matrices with
each time argument lying on the contour.
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Experimental methodology
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Experimental observables: photoemission

Momenitim

From the photoelectric effect to high-precision experiments on correlated electrons
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Focus on the observables.
Forget your frequency-space biases.
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Theoretical description of TR-ARPES
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What 1s electronic Raman scattering

nelastic scattering of
ight—one out of 10"
pDhotons loses or gains
energy when scattering.
f the energy is lost or
gained comes from
electronic excitations, it
s called electronic
Raman scattering
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Raman cross section vs. response function

The nonresonant Raman cross-section Ry () is what one
measures in an experiment; it comes from the greater
correlation function.

The ratio of the signal when energy comes from the electrons
(anti-Stokes) to the case when energy is transferred to

electron (Stokes) is given by the temperature:
Stokes B Ry (Q) B 0
anti — Stokes Ry(—=Q) exp(BL)
he Raman response function yy () comes from the
retarded Green’s function. It is given by

Ry(Q) = [1 4+ ng(Q)]xn(Q). xy IS antisymmetric and real.

J Introduction to nonequilibrium Green’s function
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Polarization dependence

Yr = (€;- V) (éf | V)E(k)c,irck Raman stress-tensor operator

A,, Symmetry-same symmetry 55 Symmetry—d-wave
as the lattice—polarizers in the Symmetry—crossed polarizers
same direction. N the axial direction.
200 o900 j

3, , symmetry—d-wave o Yo o o |‘
symmetry—crossed polarizers @ @ @ 909
in the diagonal direction. R 82 ‘ F

19 9

X M X M
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Polarization dependence determines the type
of charge excitation

Aqg (parallel polarizations) B,, (Crossed polarizations

Isotropic density (intercell) fluctuations - couple  gAnisotropic density (intracell) fluctuations -
to long-range Coulomb interactions ~ Im (1/¢) couple to short-range Coulomb interactions.
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X-ray absorption spectroscopy

* Shine x-rays in, detect x-rays that come out

« ADbsorption of x-rays can be described by an interband
optical conauctivity

« Has an "edge singularity” in metals
 Singularity disappears in insulators
« Peaks of spectra are strongly T-dependent at high T
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Numerics
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DC fields and Bloch oscillations
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Electrons are uniformly accelerated in

a dc field: k(t) = eTEt Bragg
But, when the wavevector arrives at the reflection
Brillouin zone boundary, it is Bragg /
reflected.

So a dc field induces an ac current with a : A
period inversely proportional to E. This is Reflected
called a Bloch-Zener oscillation. wavevector

Introduction to nonequilibrium Green’s function @ET@W

Autumn School on Many-Body Methods for Real Materials, September 19, 2019



Bloch oscillations in metals and insulators
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Long tzme DOS weak fzeld ( E 0.125)
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Long-time DOS moderate fzeld ( E 0.5)
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DOS DOS
o (Tw)  p(Tw)

DOS
o (T,w)

|
U=1

||._=|=..||

Frequency w

Introduction to nonequilibrium Green’s function

8_—(0 UO125—: 33_

6 - —

4 b - o 4T

2 L _ “2 1 F

0 H “ i “ | 0

3 [ (b) U=0.25_ 3

- —

2 - - =

- o

1_ | O

I Q.

0 u = =I=u | 0

3k (¢) U=0.5 _ ’ej:s

2 - - 5 2

- o

1 ~ °Q1
O-I.M.I. .|.|\_|_ﬁ.| 0 |
-3 -2 -1 0 1 2 3 B

Frequency w

Autumn School on Many-Body Methods for Real Materials, September 19, 2019

G'QR@ET@W




Long-time DOS Hubbard (E=2, approx)
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Time-resolved Photoemission
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Time-resolved PES (normal state)
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sze resolved PES (CDW state)
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TIime-resolved electronic Raman scattering
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A Strongly pumped at MIT

0.7 % /—//_/\:\\ :
— f\//\——\/‘/t’_\\ : 3 0.06
; T TN — —
§05:-—-—* ~ — :,1
e A — > 0.04
504-::: - P eyt N - 0
~ — ®
— o —— 3
O — N ® -1
L 0.02

— j\/\/% 2 Floquet

k 3! bands | I
o %ﬁ -4 e 0
0 e — 20 -15 -10 -5 0 5 10 15 20

Frequency [t*]

Introduction to nonequilibrium Green’s function GEORCETOWAN

Autumn School on Many-Body Methods for Real Materials, September 19, 2019




Raman cross section
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Ultrafast Thermometry
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Extract fermionic T from PES and collective
bosonic T from electronic Raman scattering

Thermalization occurs when they are the same!
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Application of similar ideas to XFELS
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XPS and XAS have satellites with strong T
dependence
1 Te. 7T =1 XPSin correlated systems have
satellite features split off from
the main peak.

These satellites have strong T
dependence at high T.

A, (w)

<
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1o -e-s1 One should be able to measure

: : -a 1 these satellites in pump/probe
L 1o sl experiments to determine Te(t).
el 1 Similar behavior occurs for XAS.
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Spectral response of Similar ideas have been used
the Unitary Fermi gas: : : :
TS with cold atoms in Martin
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Lweirlein’s group
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