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Mark Jarrell (1960-2019)

I am dedicating this talk to Mark 
Jarrell, friend, mentor, 
collaborator, and physicist.

Mark passed away this summer 
after a long bout with kidney 
cancer.
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What can we do with Green’s functions?
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Use of Green’s functions
𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖> 𝑡𝑡, 𝑡𝑡′ = −

𝑖𝑖
𝑍𝑍
Tr {𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖 𝑡𝑡 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ } 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅 𝑡𝑡, 𝑡𝑡′ = −
𝑖𝑖
𝑍𝑍
𝜃𝜃(𝑡𝑡 − 𝑡𝑡′)Tr 𝑒𝑒−𝛽𝛽𝛽𝛽[𝑐𝑐𝑖𝑖𝑖𝑖 𝑡𝑡 , 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′
+
}

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖 𝜔𝜔 = ∫ 𝑑𝑑𝑡𝑡 𝑒𝑒−𝑖𝑖𝑖𝑖 𝑡𝑡−𝑡𝑡′ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝑡𝑡′) 𝐴𝐴𝑖𝑖 𝜔𝜔 = −
1
𝜋𝜋
Im 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅 (𝜔𝜔)

Greater Green’s function Retarded Green’s function

Frequency-dependent Green’s function Local density of states



Introduction to nonequilibrium Green’s function
Autumn School on Many-Body Methods for Real Materials, September 19, 2019

Multiparticle Green’s functions

Magnetic susceptibility Transition temperature

Dynamic charge susceptibility Resonant Raman scattering
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Why do we need Green’s functions?
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Easier to use than wavefunctions
Can directly calculate thermal averages
No easier method is known

Easier to use than wavefunctions
Can directly calculate thermal averages
No easier method is known

Easier to use than wavefunctions
Can directly calculate thermal averages
No easier method is known
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Equilibrium
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Time translation invariance

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡
′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′
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Time translation invariance

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒𝑖𝑖𝛽𝛽(𝑡𝑡−𝑡𝑡′)𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽(𝑡𝑡−𝑡𝑡
′)

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′
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Time translation invariance

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function
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𝑖𝑖
𝑍𝑍
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† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑡𝑡′)

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′
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Time translation invariance

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
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Lesser Green’s function
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𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡′𝑒𝑒𝑖𝑖𝛽𝛽𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝛽𝛽𝑡𝑡

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ = 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< (𝑡𝑡 − 𝑡𝑡′)

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′

𝒆𝒆𝒊𝒊𝒊𝒊𝒕𝒕′
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The equilibrium Green’s function is 
time-translation invariant!



Introduction to nonequilibrium Green’s function
Autumn School on Many-Body Methods for Real Materials, September 19, 2019

Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚

𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)|𝑚𝑚〉



Introduction to nonequilibrium Green’s function
Autumn School on Many-Body Methods for Real Materials, September 19, 2019

Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
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† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑡𝑡′ 𝑛𝑛 〈𝑛𝑛|𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)|𝑚𝑚〉
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Lehmann Representation
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𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖𝐸𝐸𝑚𝑚(𝑡𝑡−𝑡𝑡′)𝑒𝑒𝑖𝑖𝐸𝐸𝑛𝑛 𝑡𝑡−𝑡𝑡′ 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 〈𝑛𝑛|𝑐𝑐𝑖𝑖𝑖𝑖|𝑚𝑚〉
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Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
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𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
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𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
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�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖𝐸𝐸𝑚𝑚(𝑡𝑡−𝑡𝑡′)𝑒𝑒𝑖𝑖𝐸𝐸𝑛𝑛 𝑡𝑡−𝑡𝑡′ | 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2
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Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑡𝑡′ 𝑛𝑛 〈𝑛𝑛|𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)|𝑚𝑚〉

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖(𝐸𝐸𝑚𝑚−𝐸𝐸𝑛𝑛)(𝑡𝑡−𝑡𝑡′)| 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2
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Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑡𝑡′ 𝑛𝑛 〈𝑛𝑛|𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)|𝑚𝑚〉

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖(𝐸𝐸𝑚𝑚−𝐸𝐸𝑛𝑛)(𝑡𝑡−𝑡𝑡′)| 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝜔𝜔 = �
−∞

∞
𝑑𝑑 𝑡𝑡 − 𝑡𝑡′ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖(𝐸𝐸𝑚𝑚−𝐸𝐸𝑛𝑛)(𝑡𝑡−𝑡𝑡′)| 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2
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Lehmann Representation

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

Lesser Green’s function (i=j)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑚𝑚 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑡𝑡′ 𝑛𝑛 〈𝑛𝑛|𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)|𝑚𝑚〉

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚−𝑖𝑖(𝐸𝐸𝑚𝑚−𝐸𝐸𝑛𝑛)(𝑡𝑡−𝑡𝑡′)| 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝜔𝜔 =
2𝜋𝜋𝑖𝑖
𝑍𝑍

�
𝑚𝑚𝑚𝑚

𝑒𝑒−𝛽𝛽𝐸𝐸𝑚𝑚 | 𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖
† 𝑛𝑛 |2𝛿𝛿(𝜔𝜔 + 𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑚𝑚)
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Nonequilibrium
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The lesser Green’s function
𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =

𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑈𝑈† 𝑡𝑡′, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑈𝑈 𝑡𝑡′, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑈𝑈†(𝑡𝑡, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)𝑐𝑐𝑖𝑖𝑖𝑖𝑈𝑈(𝑡𝑡, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)

Assume t<t’

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑈𝑈† 𝑡𝑡′, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑈𝑈 𝑡𝑡′, 𝑡𝑡 𝑐𝑐𝑖𝑖𝑖𝑖𝑈𝑈(𝑡𝑡, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑈𝑈† 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑈𝑈 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑈𝑈† 𝑡𝑡′, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑈𝑈 𝑡𝑡′, 𝑡𝑡 𝑐𝑐𝑖𝑖𝑖𝑖𝑈𝑈(𝑡𝑡, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖< 𝑡𝑡, 𝑡𝑡′ =
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑈𝑈† 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑈𝑈(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡′)𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑈𝑈 𝑡𝑡′, 𝑡𝑡 𝑐𝑐𝑖𝑖𝑖𝑖𝑈𝑈(𝑡𝑡, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)
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The contour-ordered Green’s function

tmax
tmin

tmin-iβ t=0 A(t) ≠ 0 Field on

A(t)=0 
No field 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 𝑡𝑡, 𝑡𝑡′ = −

𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽(𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛)𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′

Both times, t and t’, lie on the contour. One can extract 
many different Green’s functions from the contour-ordered 
Green’s function.
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The DOS at tave

We find the DOS by performing a Fourier transformation with respect to relative 
time, keeping the average time fixed.

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅 𝑡𝑡, 𝑡𝑡′ = −
𝑖𝑖
𝑍𝑍
𝜃𝜃(𝑡𝑡 − 𝑡𝑡′)𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽 −∞ 𝑐𝑐𝑖𝑖𝑖𝑖 𝑡𝑡 , 𝑐𝑐𝑖𝑖𝑖𝑖

† 𝑡𝑡′
+

𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 =
𝑡𝑡 + 𝑡𝑡′

2
; 𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟 = 𝑡𝑡 − 𝑡𝑡𝑡

𝜌𝜌𝑖𝑖𝑖𝑖 𝜔𝜔, 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 = −
1
𝜋𝜋
𝐼𝐼𝑚𝑚�

0

∞
𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 +

1
2
𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟 , 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 −

1
2
𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟 𝑑𝑑𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟
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Electric fields
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The Peierls substitution

−𝑡𝑡 → −𝑡𝑡𝑒𝑒
−𝑖𝑖𝑎𝑎ℏ𝑐𝑐 ∫𝑅𝑅𝑚𝑚

𝑅𝑅𝑗𝑗 �⃗�𝐴(𝑟𝑟,𝑡𝑡)�𝑑𝑑𝑟𝑟

We work in a vector potential only 
gauge. This produces a time-
dependent phase on the hopping. If 
the field is uniform in space, we 
preserve translational invariance. 𝜖𝜖 𝒌𝒌 → 𝜖𝜖(𝒌𝒌 − 𝑨𝑨 𝑡𝑡 )
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Noninteracting electrons
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The noninteracting problem

Using the EOM, we can immediately solve for the Green’s function

𝐻𝐻𝑆𝑆(𝑡𝑡) =�
𝑘𝑘𝑖𝑖

𝜖𝜖(𝒌𝒌 − 𝑨𝑨 𝑡𝑡 )𝑐𝑐𝑘𝑘𝑖𝑖
† 𝑐𝑐𝑘𝑘𝑖𝑖 𝐻𝐻𝑆𝑆(𝑡𝑡 ,𝐻𝐻𝑆𝑆(𝑡𝑡𝑡)] = 0

𝑐𝑐𝑘𝑘𝑖𝑖
† 𝑡𝑡 = 𝑒𝑒𝑖𝑖 ∫−∞

𝑡𝑡 𝑑𝑑𝑡𝑡′[𝜖𝜖 𝒌𝒌−𝑨𝑨 𝑡𝑡′ −𝜇𝜇]𝑐𝑐𝑘𝑘𝑖𝑖
† , 𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡 = 𝑒𝑒−𝑖𝑖 ∫−∞

𝑡𝑡 𝑑𝑑𝑡𝑡′[𝜖𝜖 𝒌𝒌−𝑨𝑨 𝑡𝑡′ −𝜇𝜇] 𝑐𝑐𝑘𝑘𝑖𝑖

𝐺𝐺𝑘𝑘𝑖𝑖𝑅𝑅 𝑡𝑡, 𝑡𝑡′ = −𝑖𝑖𝜃𝜃(𝑡𝑡 − 𝑡𝑡′)𝑒𝑒−𝑖𝑖 ∫𝑡𝑡′
𝑡𝑡 𝜖𝜖 𝒌𝒌−𝑨𝑨 �̅�𝑡 −𝜇𝜇 𝑑𝑑�̅�𝑡
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The noninteracting DOS

Gaussian pulse field
Note that the set of instantaneous eigenvalues does 
not depend on the field due to the Peierls
substitution. 𝜖𝜖 𝒌𝒌 = {𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 }
But the density of states depends strongly on the 
field and on average time.

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜌𝜌 𝜔𝜔, 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎 = −
1
𝜋𝜋
𝐼𝐼𝑚𝑚 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅 (𝜔𝜔, 𝑡𝑡𝑚𝑚𝑎𝑎𝑎𝑎)
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Interacting electrons
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EOM and the Dyson equation
The equation of motion is determined by simply 
differentiating the contour-ordered Green’s function 
with respect to time. 
One term is complicated. Rather than evaluate it 
directly, we define it to be the convolution of the self-
energy with the Green’s function.
This becomes Dyson’s equation.

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡, 𝑡𝑡′ = 𝜃𝜃𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

1
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽 −∞ 𝑇𝑇𝑐𝑐

𝜕𝜕
𝜕𝜕𝑡𝑡
𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡 𝑐𝑐𝑘𝑘𝑖𝑖

† 𝑡𝑡′ + 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡, 𝑡𝑡′ = 𝜃𝜃𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽 −∞ 𝑇𝑇𝑐𝑐[𝐻𝐻𝛽𝛽 𝑡𝑡 , 𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡 ]𝑐𝑐𝑘𝑘𝑖𝑖

† 𝑡𝑡′ + 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)
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EOM and the Dyson equation
𝐻𝐻𝛽𝛽(𝑡𝑡) =�

𝑘𝑘𝑖𝑖

[𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 −𝜇𝜇]𝑐𝑐𝑘𝑘𝑖𝑖
† 𝑡𝑡 𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡 + 𝑉𝑉𝛽𝛽(𝑡𝑡)

[𝐻𝐻𝛽𝛽 𝑡𝑡 , 𝑐𝑐𝑘𝑘𝑖𝑖(𝑡𝑡)] = −[𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 −𝜇𝜇]𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡
+[𝑉𝑉𝛽𝛽 𝑡𝑡 , 𝑐𝑐𝑘𝑘𝑖𝑖(𝑡𝑡)]

[𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
+ 𝜇𝜇 − 𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 ]𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡, 𝑡𝑡′ = �

𝑐𝑐
𝑑𝑑 ̅𝑡𝑡Σ𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 ( ̅𝑡𝑡, 𝑡𝑡′) + 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

This is the definition of the contour-ordered self-energy
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EOM and the Dyson equation
𝐻𝐻𝛽𝛽(𝑡𝑡) =�

𝑘𝑘𝑖𝑖

[𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 −𝜇𝜇]𝑐𝑐𝑘𝑘𝑖𝑖
† 𝑡𝑡 𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡 + 𝑉𝑉𝛽𝛽(𝑡𝑡)

[𝐻𝐻𝛽𝛽 𝑡𝑡 , 𝑐𝑐𝑘𝑘𝑖𝑖(𝑡𝑡)] = −[𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 −𝜇𝜇]𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡
+[𝑉𝑉𝛽𝛽 𝑡𝑡 , 𝑐𝑐𝑘𝑘𝑖𝑖(𝑡𝑡)]

[𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
+ 𝜇𝜇 − 𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 ]𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡, 𝑡𝑡′ = �

𝑐𝑐
𝑑𝑑 ̅𝑡𝑡Σ𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 ( ̅𝑡𝑡, 𝑡𝑡′) + 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

�
𝑐𝑐
𝑑𝑑 ̅𝑡𝑡 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑡𝑡
+ 𝜇𝜇 − 𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 𝛿𝛿𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 −Σ𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 ̅𝑡𝑡, 𝑡𝑡′ = 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)
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Solving the Dyson equation
�
𝑐𝑐
𝑑𝑑 ̅𝑡𝑡 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑡𝑡
+ 𝜇𝜇 − 𝜖𝜖 𝒌𝒌 − 𝑨𝑨 𝑡𝑡 𝛿𝛿𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 −Σ𝑐𝑐 𝑡𝑡, ̅𝑡𝑡 𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 ̅𝑡𝑡, 𝑡𝑡′ = 𝛿𝛿𝑐𝑐(𝑡𝑡, 𝑡𝑡′)

This is of the form 𝐺𝐺𝑐𝑐 −1 𝐺𝐺𝑐𝑐 = 𝕀𝕀with a boundary conditon

𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑖𝑖 = −
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽 𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 𝑐𝑐𝑘𝑘𝑖𝑖 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑐𝑐𝑘𝑘𝑖𝑖

† 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑖𝑖

𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑖𝑖 = −
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑘𝑘𝑖𝑖𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑘𝑘𝑖𝑖

† 𝑒𝑒𝛽𝛽𝛽𝛽

𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑖𝑖 = −
𝑖𝑖
𝑍𝑍
𝑇𝑇𝑇𝑇 𝑒𝑒−𝛽𝛽𝛽𝛽𝑐𝑐𝑘𝑘𝑖𝑖

† 𝑐𝑐𝑘𝑘𝑖𝑖 = −𝐺𝐺𝑘𝑘𝑖𝑖𝑐𝑐 (𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚, 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)
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Self energy and memory effects
Often it is said that in nonequilibrium on has “memory 
effects”
But the EOM is a first order linear equation, so how can this 
be?
It happens when we employ a self-energy, because it enters 
via a convolution, which couples different times together.
If we could solve the problem just with the GFs, the memory 
effects would be gone, but we do not know how to do this.
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Discretizing continuous matrix equations
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
+ 𝜇𝜇 𝛿𝛿𝑐𝑐 𝑡𝑡, 𝑡𝑡′ =

1
𝑊𝑊𝑖𝑖

𝑀𝑀𝑖𝑖𝑘𝑘
1
𝑊𝑊𝑘𝑘

det 𝑀𝑀 = 1 + −1 2𝑁𝑁𝑡𝑡+𝑁𝑁𝜏𝜏−1 1 + 𝑖𝑖Δ𝑡𝑡𝜇𝜇 −1− 𝑖𝑖Δ𝑡𝑡𝜇𝜇 𝑁𝑁𝑡𝑡−1 −1 + 𝑖𝑖Δ𝑡𝑡𝜇𝜇 𝑁𝑁𝑡𝑡 −1− Δ𝜏𝜏𝜇𝜇 𝑁𝑁𝜏𝜏

= 1 + 1 + Δ𝜏𝜏𝜇𝜇 𝑁𝑁𝜏𝜏 + 𝐷𝐷 Δ𝑡𝑡2 = 1 + 𝑒𝑒𝛽𝛽𝜇𝜇
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Modeling electrons
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Modeling correlations with the
Falicov-Kimball model

↑

↓

↓↓ ↑

↑

-t

-t
U

Down-spin 
electrons hop 
with strength – 𝑡𝑡
between lattice 
sites. They feel an 
interaction of 𝑈𝑈
when two 
electrons are on 
the same site.

↑
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Hubbard model

Electrons hop with strength 
– 𝑡𝑡 between lattice sites. Feel 
an interaction of 𝑈𝑈 when two 
electrons are on the same 
site.

↑

↓

↓↓ ↑

↑

-t

-t
-t

U
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Dynamical mean-field theory
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Dynamical mean-field theory

Impurity site

Lattice

Dynamical mean-field theory introduced 
in the late 1980s.

Self-consistent solution of an impurity 
problem solves the lattice problem in 
large dimensions

Extension to nonequilibrium in 2006 
follows by working in the time 
representation.
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Self-consistency loop
Σ=G0

-1-Gloc
-1

Gloc=Σk[Gk
non-1(E)-Σ]-1

G0=(Gloc
-1+Σ)−1

Gloc=Functional(G0)
{example: FK model:
Gloc=(1-w1)G0(µ)+w1G0(µ-U)}

Hilbert transform

Dyson equation

Solve impurity
problem

Dyson equation

All objects (G and Σ) are matrices with 
each time argument lying on the contour.
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Experimental methodology
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Experimental observables: photoemission

From the photoelectric effect to high-precision experiments on correlated electrons
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Focus on the observables. 
Forget your frequency-space biases.
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Theoretical description of TR-ARPES
For angle-resolved 
calculations, we need 
to work with GAUGE-
INVARIANT Green’s 
functions

𝑘𝑘 → 𝑘𝑘 −
1

𝑡𝑡 − 𝑡𝑡𝑡
�
−𝑡𝑡−𝑡𝑡

′

2

𝑡𝑡−𝑡𝑡′
2

𝑑𝑑 ̅𝑡𝑡𝐴𝐴
𝑡𝑡 + 𝑡𝑡′

2
+ ̅𝑡𝑡
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What is electronic Raman scattering
Inelastic scattering of 
light−one out of 1011

photons loses or gains 
energy when scattering.
If the energy is lost or 
gained comes from 
electronic excitations, it 
is called electronic 
Raman scattering
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Raman cross section vs. response function
The nonresonant Raman cross-section 𝑅𝑅𝑁𝑁 Ω is what one 
measures in an experiment; it comes from the greater 
correlation function.
The ratio of the signal when energy comes from the electrons 
(anti-Stokes) to the case when energy is transferred to 
electron (Stokes) is given by the temperature:

𝐷𝐷𝑡𝑡𝑆𝑆𝑘𝑘𝑒𝑒𝑆𝑆
𝑎𝑎𝑛𝑛𝑡𝑡𝑖𝑖 − 𝐷𝐷𝑡𝑡𝑆𝑆𝑘𝑘𝑒𝑒𝑆𝑆

=
𝑅𝑅𝑁𝑁 Ω
𝑅𝑅𝑁𝑁 −Ω

= exp(𝑖𝑖Ω)

The Raman response function 𝜒𝜒𝑁𝑁(Ω) comes from the 
retarded Green’s function. It is given by                          
𝑅𝑅𝑁𝑁 Ω = 1 + nB Ω 𝜒𝜒𝑁𝑁(Ω). 𝜒𝜒𝑁𝑁 is antisymmetric and real.
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Diagrammatic representation
Nonresonant
response

Mixed 
response

Resonant
response
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Polarization dependence
𝛾𝛾𝑅𝑅 = (�̂�𝑒𝑖𝑖⋅ 𝛻𝛻)(�̂�𝑒𝑓𝑓 ⋅ 𝛻𝛻)𝜖𝜖(𝑘𝑘)𝑐𝑐𝑘𝑘

†𝑐𝑐𝑘𝑘 Raman stress-tensor operator

A1g symmetry−same symmetry 
as the lattice−polarizers in the 
same direction.

B1g symmetry−d-wave
symmetry−crossed polarizers 
in the diagonal direction.

B2g symmetry−d-wave
symmetry−crossed polarizers 
in the axial direction.
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Polarization dependence determines the type 
of charge excitation

A1g (parallel  polarizations) B2g (crossed polarizations)

Isotropic density (intercell) fluctuations – couple 
to long-range Coulomb interactions ~ Im (1/ε)

Anisotropic density (intracell) fluctuations –
couple to short-range Coulomb interactions.
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X-ray absorption spectroscopy
• Shine x-rays in, detect x-rays that come out
• Absorption of x-rays can be described by an interband

optical conductivity
• Has an “edge singularity” in metals
• Singularity disappears in insulators
• Peaks of spectra are strongly T-dependent at high T
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Numerics
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Numerical issues
Need to scale 
results to 
continuum limit to 
satisfy sum rules

Scaling also 
needed to satisfy 
proper causality.
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DC fields and Bloch oscillations
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DC fields and Bloch oscillations

k(t)

Bragg
reflection

Reflected
wavevector

1st BZ

E

Electrons are uniformly accelerated in 
a dc field: 𝑘𝑘 𝑡𝑡 = 𝑎𝑎𝐸𝐸𝑡𝑡

ℏ
But, when the wavevector arrives at the 
Brillouin zone boundary, it is Bragg 
reflected.
So a dc field induces an ac current with a 
period inversely proportional to E. This is 
called a Bloch-Zener oscillation.
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Bloch oscillations in metals and insulators
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Transient local DOS metal (U=0.5,E=1) 
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Long-time DOS weak field (E=0.125) 
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Long-time DOS moderate field (E=0.5) 
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Long-time DOS strong field (E=2) 
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Long-time DOS Hubbard (E=2, approx) 
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Time-resolved Photoemission
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Time-resolved PES (normal state)
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Time-resolved PES (normal state)

U=0.5                       U=1.5                       U=2
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Time-resolved PES (CDW state)
U=0.5                       U=0.87                       U=1.41
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Time-resolved electronic Raman scattering
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Strongly pumped metal

Floquet
bands

High T
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Strongly pumped at MIT

Floquet
bands

High T
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Strongly pumped insulator

Floquet
bands

High T
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Ultrafast Thermometry
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Extract fermionic T from PES and collective 
bosonic T from electronic Raman scattering

Thermalization occurs when they are the same!
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Comparison of TPES to TRaman
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Application of similar ideas to XFELS
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XPS and XAS have satellites with strong T 
dependence

XPS in correlated systems have 
satellite features split off from 
the main peak.
These satellites have strong T 
dependence at high T.
One should be able to measure 
these satellites in pump/probe 
experiments to determine Teff(t).
Similar behavior occurs for XAS.
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XPS and XAS have satellites with strong T 
dependence

XPS in correlated systems have 
satellite features split off from 
the main peak.
These satellites have strong T 
dependence at high T.
One should be able to measure 
these satellites in pump/probe 
experiments to determine Teff(t).
Similar behavior occurs for XAS.
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Similar ideas have been used 
with cold atoms in Martin 

Zweirlein’s group

Spectral response of 
the Unitary Fermi gas:

Strongly temperature
dependent

 A local thermometer!

Z. Yan, P. Patel, B. Mukherjee, R. 
Fletcher, J. Struck, M. Zwierlein,
arXiv:1902.08548 (2019)
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