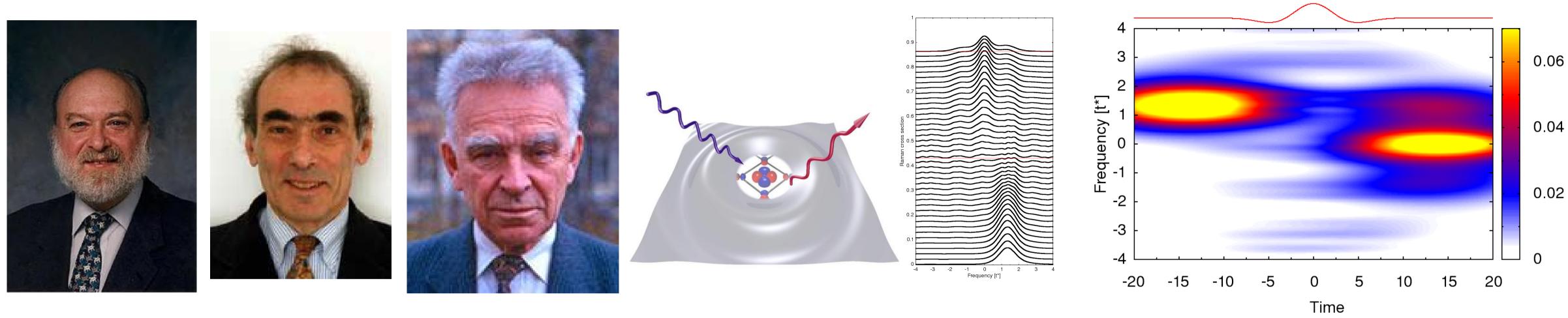
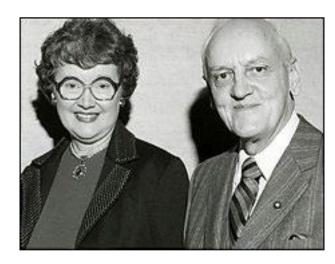
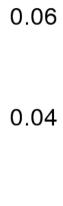
Introduction to Nonequilibrium Green's Functions



Jim Freericks Georgetown University

Georgetown work supported by DOE, BES, DE-FG02-08ER46542 and McDevitt bequest





Mark Jarrell (1960-2019)

I am dedicating this talk to Mark Jarrell, friend, mentor, collaborator, and physicist.

Mark passed away this summer after a long bout with kidney cancer.

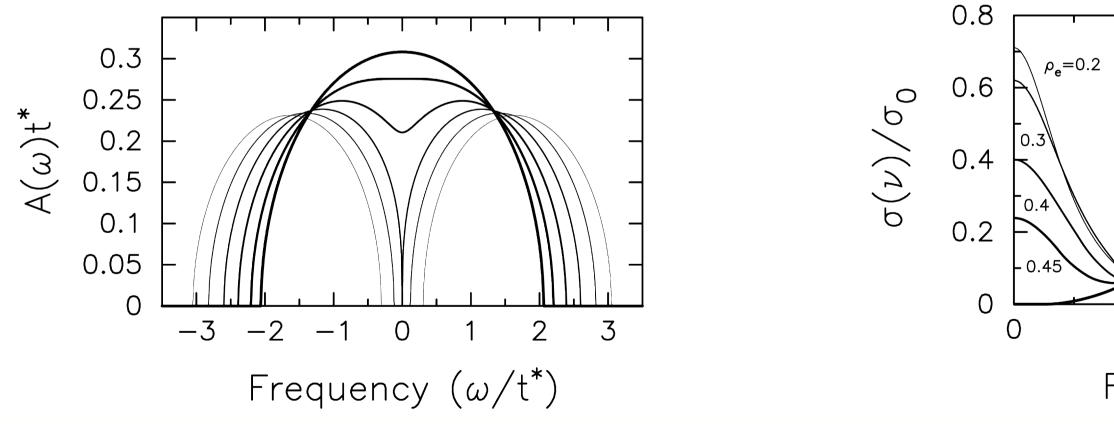
What can we do with Green's functions?

$$G_{ij\sigma}^{>}(t,t') = -\frac{i}{Z} \operatorname{Tr} \{e^{-\beta H}c_{i\sigma}(t)c_{j\sigma}^{\dagger}(t')\} \quad G_{ij\sigma}^{R}$$

Greater Green's function

$$G_{ij\sigma}(\omega) = \int dt \ e^{-i\omega(t-t')} G_{ij\sigma}(t,t')$$

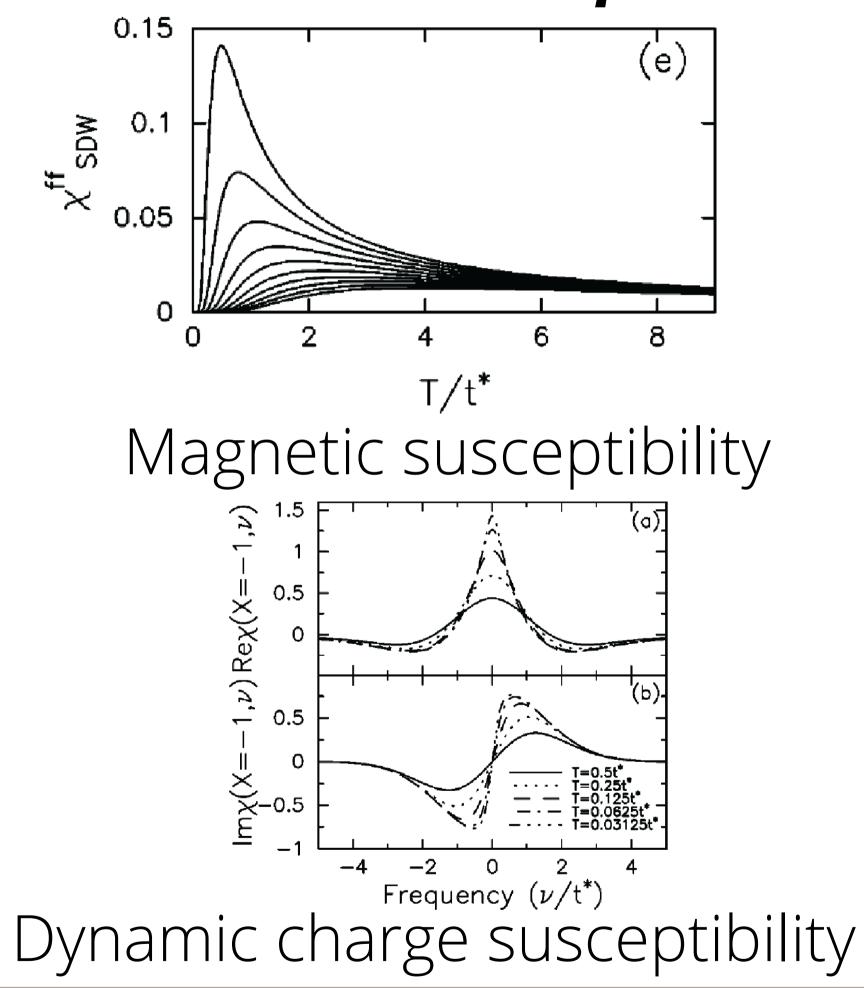
Frequency-dependent Green's function

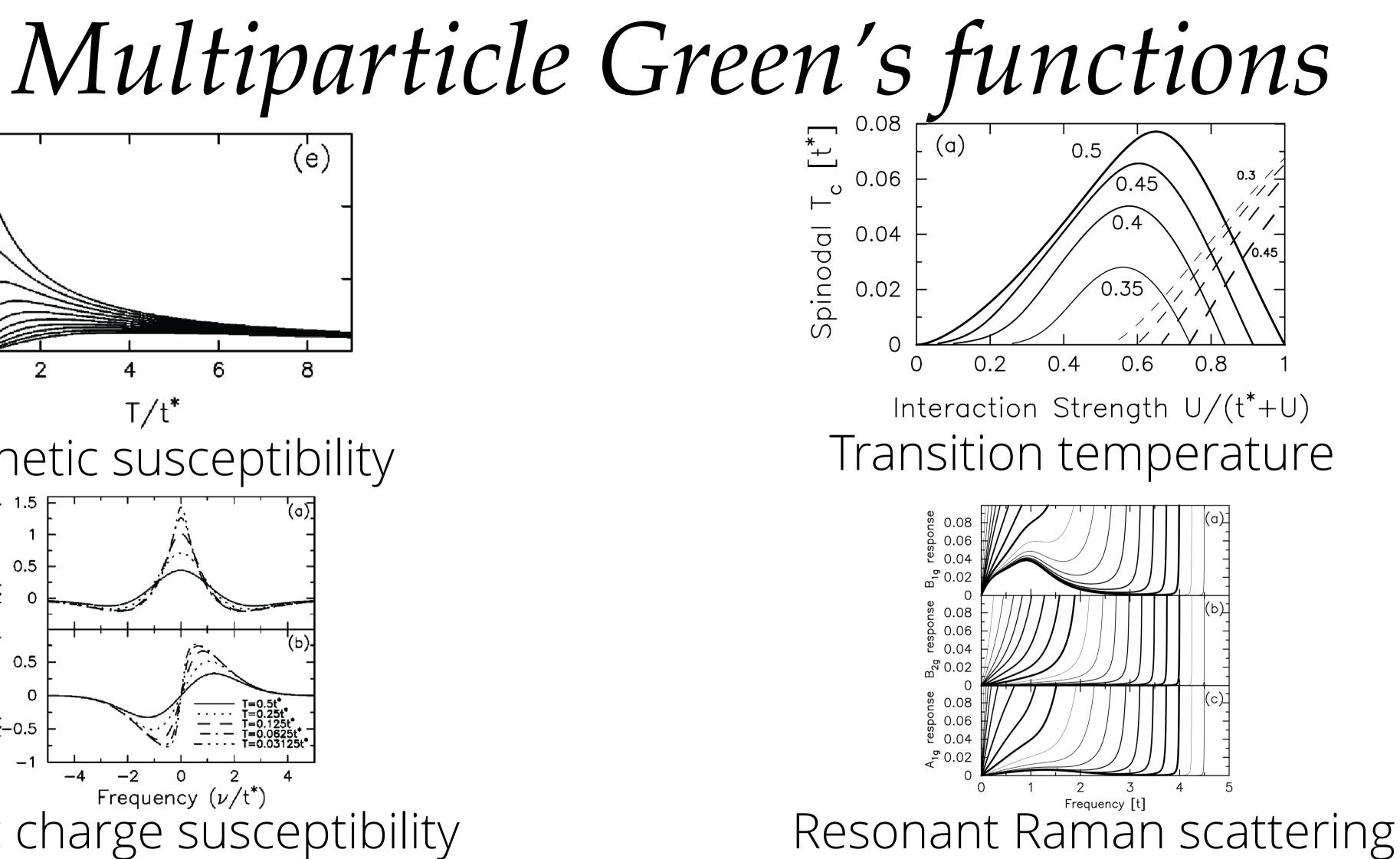


Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

n's functions $f_{\sigma}(t,t') = -\frac{i}{7}\theta(t-t')\operatorname{Tr}\left\{e^{-\beta H}[c_{i\sigma}(t),c_{j\sigma}^{\dagger}(t')]_{+}\right\}$ Retarded Green's function $A_{\sigma}(\omega) = -\frac{1}{\pi} \operatorname{Im} G^{R}_{ii\sigma}(\omega)$ Local density of states (b) 0.2 Raman response 0.15 0.25 0.50.1 0.05 2 3 6 7 Frequency (ν/t^*) Frequency [t*]

Freericks, et al, Phys. Rev. B, Fig. 3(a)





Why do we need Green's functions?

Easier to use than wavefunctions Can directly calculate thermal averages No easier method is known

Equilibrium

Time translat Lesser Gree $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} e^{iI}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{iHt'} e^{-\beta}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{7} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$

tion invariance

$$(t') c_{i\sigma}(t)$$

 $(t') c_{i\sigma}(t)$
 $(t') c_{i\sigma}(t)$
 $(t') c_{i\sigma}(t)$
 $(t') c_{i\sigma}(t)$

$${}^{\beta H}c^{\dagger}_{j\sigma} e^{-iHt'}e^{iHt}c_{i\sigma} e^{-iHt}$$

$$\sigma e^{-iHt'} e^{iHt} c_{i\sigma} e^{-iHt} e^{iHt'}$$

Time translat Lesser Gree $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} e^{iI}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{iHt'} e^{-f}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$

$$fion invarianceen's function
$$f_{\sigma}(t')c_{i\sigma}(t)$$
$$Ht'c_{j\sigma}^{\dagger}e^{-iHt}e^{iHt}c_{i\sigma}e^{-iHt}$$
$$e^{iHt}c_{i\sigma}e^{-iHt}$$$$

Time translat Lesser Gree $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} e^{i I}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{7} Tr e^{iHt'} e^{-\beta H} c_{j\sigma}^{\dagger} e^{-iHt'} e^{iHt} c_{i\sigma} e^{-iHt}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{7} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$

tion invariance
on's function
$$f_{\sigma}(t')c_{i\sigma}(t)$$

Ht' $c_{j\sigma}^{\dagger}e^{-iHt}e^{iHt}c_{i\sigma}e^{-iHt}$

$$\sigma_{\sigma} c_{i\sigma}(t-t')$$

Time translat Lesser Gree $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} e^{i I}$ $G_{ij\sigma}^{<}(t,t') = \frac{i}{7} Tr e^{iHt'} e^{-\beta H} c_{j\sigma}^{\dagger} e^{-iHt'} e^{iHt} c_{i\sigma} e^{-iHt}$ $G_{ii\sigma}^{<}(t,t') = G_{ii\sigma}^{<}(t-t')$

tion invariance
on's function
$$f_{\sigma}(t')c_{i\sigma}(t)$$

 $Ht'c_{j\sigma}^{\dagger}e^{-iHt}e^{iHt}c_{i\sigma}e^{-iHt}$

The equilibrium Green's function is time-translation invariant!

Lehmann Representation Lesser Green's function (i=j) $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t)$ $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} \sum \langle m | e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t) | m \rangle$

Lehmann Representation Lesser Green's function (i=j) $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t)$ $G_{jj\sigma}^{<}(t,t') = \frac{l}{7} \sum \langle m | e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle$ mn

Lehmann Representation Lesser Green's function (i=j) $G_{jj\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t)$ $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} \sum \langle m | e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle$ mn $G_{jj\sigma}^{<}(t,t') = \frac{i}{7} \sum e^{-\beta E_m - iE_m(t-t')} e^{iE_n(t-t')} \langle m | c_{j\sigma}^{\dagger} | n \rangle \langle n | c_{j\sigma} | m \rangle$ mn

Lehmann Representation Lesser Green's function (i=j) $G_{jj\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t)$ $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} \sum \langle m | e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle$ mn $G_{jj\sigma}^{<}(t,t') = \frac{i}{7} \sum_{j} e^{-\beta E_m - iE_m(t-t')} e^{iE_n(t-t')} |\langle m| c_{j\sigma}^{\dagger} |n\rangle|^2$ mn

Lehmann Representation Lesser Green's function (i=j) $G_{jj\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} c_{j\sigma}^{\dagger}(t') c_{j\sigma}(t)$ $G_{jj\sigma}^{<}(t,t') = \frac{l}{Z} \sum \langle m | e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle$ mn $G_{jj\sigma}^{<}(t,t') = \frac{i}{Z} \sum e^{-\beta E_m}$ mn

$$-i(E_m-E_n)(t-t')|\langle m|c_{j\sigma}^{\dagger}|n\rangle|^2$$

$$\begin{array}{l} Lehmann \ Representation \\ Lesser \ Green's \ function \ (i=j) \\ G_{jj\sigma}^{<}(t,t') = \ \frac{i}{Z} \ Tr \ e^{-\beta H} c_{j\sigma}^{\dagger}(t') \ c_{j\sigma}(t) \\ G_{jj\sigma}^{<}(t,t') = \ \frac{i}{Z} \ \sum_{mn} \langle m | \ e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle \\ G_{jj\sigma}^{<}(t,t') = \ \frac{i}{Z} \ \sum_{mn} e^{-\beta E_m - i(E_m - E_n)(t-t')} |\langle m | \ c_{j\sigma}^{\dagger} | n \rangle |^2 \\ G_{jj\sigma}^{<}(\omega) = \ \int_{-\infty}^{\infty} d(t-t') e^{-i\omega t} \ \frac{i}{Z} \ \sum_{mn} e^{-\beta E_m - i(E_m - E_n)(t-t')} |\langle m | \ c_{j\sigma}^{\dagger} | n \rangle |^2 \end{array}$$

$$\begin{array}{l} Lehmann \ Representation\\ Lesser \ Green's \ function \ (i=j)\\ G_{jj\sigma}^{<}(t,t') = & \frac{i}{Z} \ Tr \ e^{-\beta H} c_{j\sigma}^{\dagger}(t') \ c_{j\sigma}(t)\\ G_{jj\sigma}^{<}(t,t') = & \frac{i}{Z} \ \sum_{mn} \langle m | \ e^{-\beta H} c_{j\sigma}^{\dagger}(t') | n \rangle \langle n | c_{i\sigma}(t) | m \rangle\\ G_{jj\sigma}^{<}(t,t') = & \frac{i}{Z} \ \sum_{mn} e^{-\beta E_m - i(E_m - E_n)(t-t')} |\langle m | \ c_{j\sigma}^{\dagger} | n \rangle|^2\\ G_{jj\sigma}^{<}(\omega) = & \frac{2\pi i}{Z} \ \sum_{mn} e^{-\beta E_m} |\langle m | c_{j\sigma}^{\dagger} | n \rangle|^2 \delta(\omega + E_m - E_n) \end{array}$$

Nonequilibrium

$$The lesser Green's function$$

$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta h} c_{j\sigma}^{\dagger}(t') c_{i\sigma}(t) \quad \text{Assume } t < t'$$

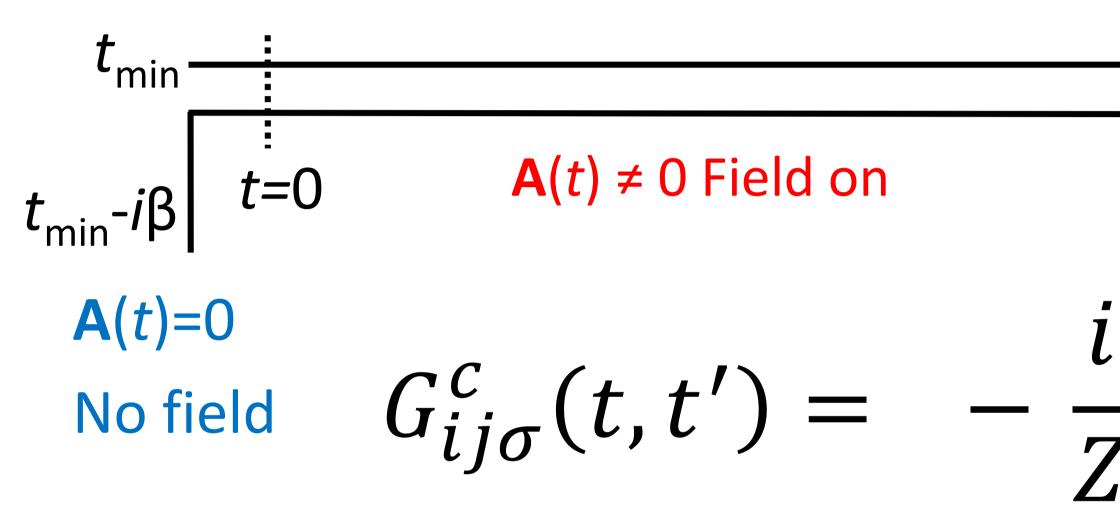
$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} U^{\dagger}(t',t_{min}) c_{j\sigma}^{\dagger} U(t',t_{min}) U^{\dagger}(t,t_{min}) c_{i\sigma} U(t,t_{min})$$

$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} U^{\dagger}(t',t_{min}) c_{j\sigma}^{\dagger} U(t',t) c_{i\sigma} U(t,t_{min})$$

$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} U^{\dagger}(t_{max},t_{min}) U(t_{max},t_{min}) U^{\dagger}(t',t_{min}) c_{j\sigma}^{\dagger} U(t',t) c_{i\sigma} U(t,t_{min})$$

$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} U^{\dagger}(t_{max},t_{min}) U(t_{max},t') c_{j\sigma}^{\dagger} U(t',t) c_{i\sigma} U(t,t_{min})$$

$$G_{ij\sigma}^{<}(t,t') = \frac{i}{Z} Tr e^{-\beta H} U^{\dagger}(t_{max},t_{min}) U(t_{max},t') c_{j\sigma}^{\dagger} U(t',t) c_{i\sigma} U(t,t_{min})$$



Both times, t and t', lie on the contour. One can extract Green's function.

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

The contour-ordered Green's function

t_{max}

 $G_{ij\sigma}^{c}(t,t') = -\frac{i}{7} Tr e^{-\beta H(t_{min})} T_{c} c_{i\sigma}(t) c_{j\sigma}^{\dagger}(t')$

many different Green's functions from the contour-ordered

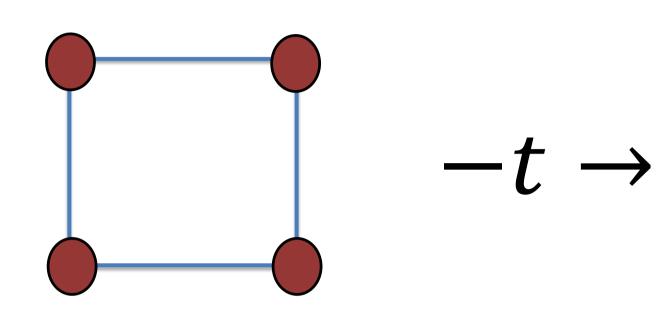
 $G_{ij\sigma}^{R}(t,t') = -\frac{i}{7} \theta(t-t') Tr \, e^{-\beta H(-\infty)} \left\{ c_{i\sigma}(t), c_{j\sigma}^{\dagger}(t') \right\}_{\perp}$ $t_{ave} = \frac{t+t'}{2};$ $\rho_{ii}(\omega, t_{ave}) = -\frac{1}{\pi} Im \int_{0}^{\infty} e^{i\omega t_{rel}} G_{ii\sigma}^{R} \left(t_{ave} + \frac{1}{2} t_{rel}, t_{ave} - \frac{1}{2} t_{rel} \right) dt_{rel}$

We find the DOS by performing a Fourier transformation with respect to relative time, keeping the average time fixed.

The DOS at t_{ave}

$$t_{rel} = t - t'$$

Electric fields



$\epsilon(\mathbf{k}) \rightarrow \epsilon(\mathbf{k} - \mathbf{A}(t))$

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

The Peierls substitution

 $-t \rightarrow -te^{-rac{ie}{\hbar c}\int_{R_{i}}^{R_{j}}\vec{A}(r,t)\cdot\vec{dr}}$

We work in a vector potential only gauge. This produces a timedependent phase on the hopping. If the field is uniform in space, we preserve translational invariance.

Noninteracting electrons

The noninterval

$$H_{S}(t) = \sum_{k\sigma} \epsilon(\mathbf{k} - \mathbf{A}(t))c_{k\sigma}^{\dagger}$$

$$c_{k\sigma}^{\dagger}(t) = e^{i\int_{-\infty}^{t} dt' [\epsilon(\mathbf{k} - \mathbf{A}(t')) - \mu]}c_{k\sigma}^{\dagger},$$

 $G_{k\sigma}^{R}(t,t') = -i\theta(t-t')e^{-i\int_{t'}^{t} \{\epsilon(k-A(\bar{t}))-\mu\}d\bar{t}}$

Using the EOM, we can immediately solve for the Green's function

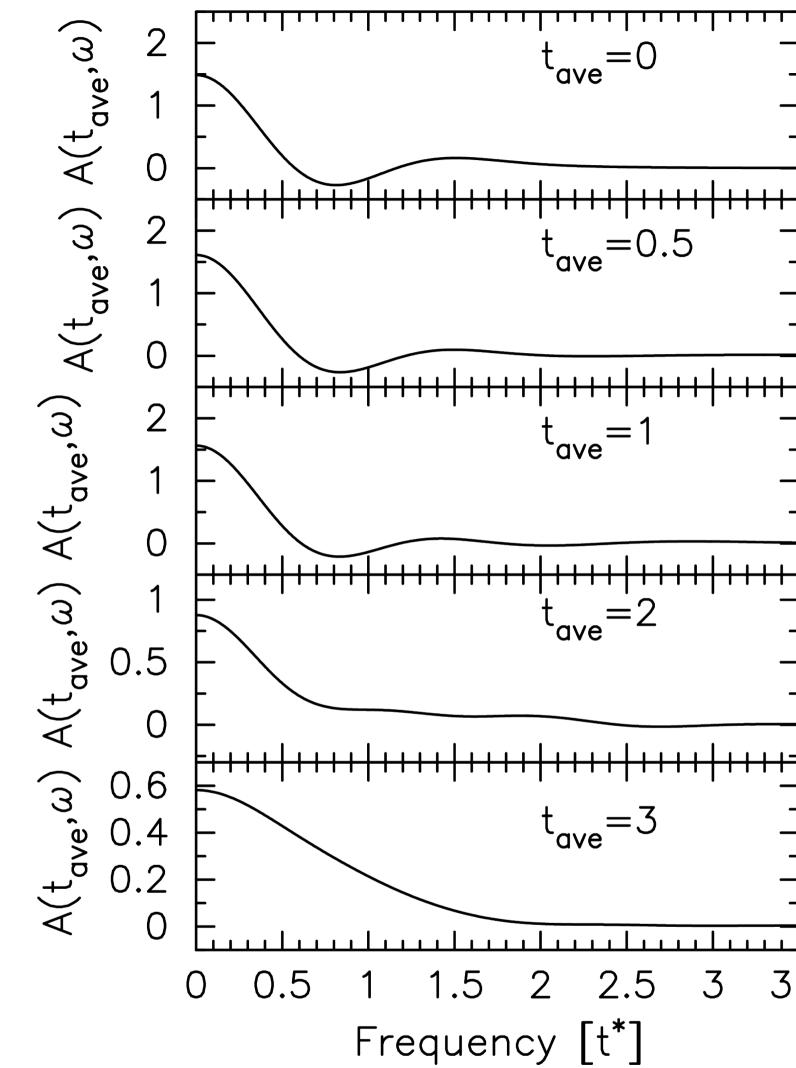
acting problem

- $[H_S(t), H_S(t')] = 0$ $\sigma^{C_{k\sigma}}$
- $c_{k\sigma}(t) = e^{-i \int_{-\infty}^{t} dt' [\epsilon (k A(t')) \mu]} c_{k\sigma}$

The noninteracting DOS

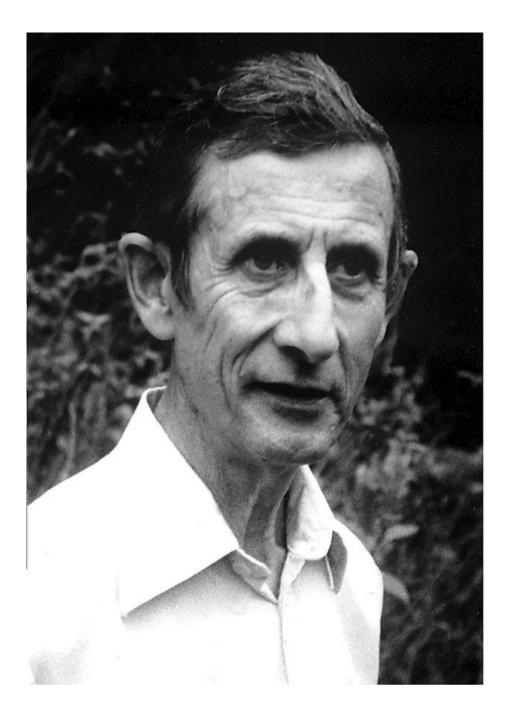
$DOS = \rho(\omega, t_{ave}) = -\frac{1}{\pi} Im G_{ii\sigma}^{R}(\omega, t_{ave})$

Gaussian pulse field Note that the set of instantaneous eigenvalues does not depend on the field due to the Peierls substitution. $\{\epsilon(k)\} = \{\epsilon(k - A(t))\}$ But the density of states depends strongly on the field and on average time.





Interacting electrons



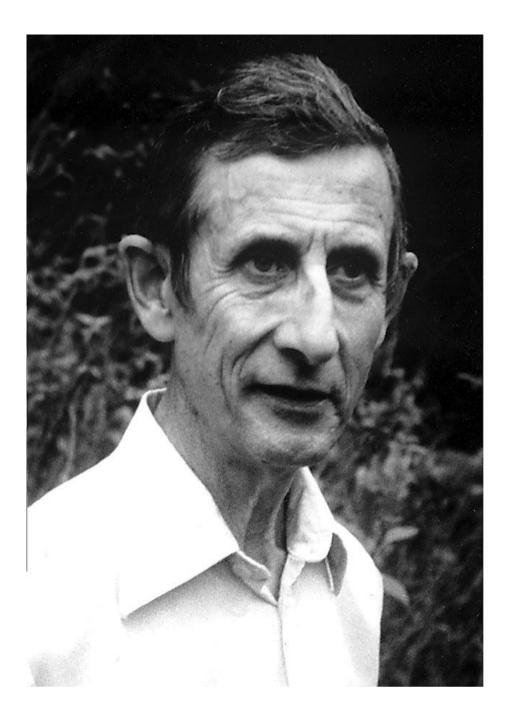
EOM and the Dyson equation

with respect to time. energy with the Green's function. This becomes Dyson's equation.

 $i\frac{\partial}{\partial t}G_{k\sigma}^{c}(t,t') = \theta_{c}(t,t')\frac{1}{Z}Tr e^{-\beta H(-\beta H)}$ $i\frac{\partial}{\partial t}G_{k\sigma}^{c}(t,t') = \theta_{c}(t,t')\frac{i}{Z} Tr e^{-\beta H(-\infty)}T_{c}[H_{H}(t),c_{k\sigma}(t)]c_{k\sigma}^{\dagger}(t') + \delta_{c}(t,t')$

- The equation of motion is determined by simply differentiating the contour-ordered Green's function
- One term is complicated. Rather than evaluate it directly, we define it to be the convolution of the self-

$$^{-\infty)}T_c \frac{\partial}{\partial t} c_{k\sigma}(t) c^{\dagger}_{k\sigma}(t') + \delta_c(t,t')$$

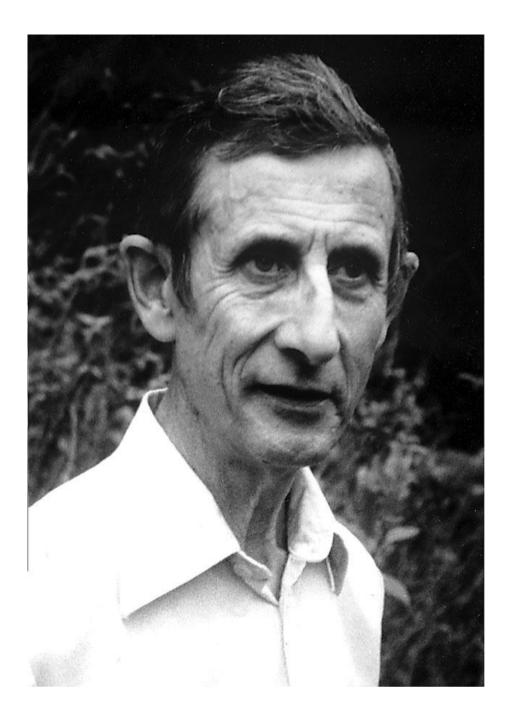


 $[i\frac{\partial}{\partial t} + \mu - \epsilon (\mathbf{k} - \mathbf{A}(t))]G^{c}_{k\sigma}(t,t') = \int_{a}^{b} d\bar{t}\Sigma^{c}(t,\bar{t})G^{c}_{k\sigma}(\bar{t},t') + \delta_{c}(t,t')$

EOM and the Dyson equation $H_H(t) = \sum \left[\epsilon \left(\mathbf{k} - \mathbf{A}(t) \right) - \mu \right] c_{k\sigma}^{\dagger}(t) c_{k\sigma}(t) + V_H(t)$

 $[H_H(t), c_{k\sigma}(t)] = -[\epsilon(\mathbf{k} - \mathbf{A}(t)) - \mu]c_{k\sigma}(t)$ $+[V_H(t), c_{k\sigma}(t)]$

This is the definition of the contour-ordered self-energy



 $[H_H(t), c_{k\sigma}(t)] = -[\epsilon (\mathbf{k} - \mathbf{A}(t)) - \mu] c_{k\sigma}(t) + [V_H(t), c_{k\sigma}(t)]$

 $[i\frac{\partial}{\partial t} + \mu - \epsilon (\mathbf{k} - \mathbf{A}(t))]G_{k\sigma}^{c}(t,t') = \int_{C} d\bar{t}\Sigma^{c}(t,\bar{t})G_{k\sigma}^{c}(\bar{t},t') + \delta_{c}(t,t')$ $\int_{C} d\bar{t} \left\{ \left[i \frac{\partial}{\partial t} + \mu - \epsilon \left(\mathbf{k} - \mathbf{A}(t) \right) \right] \delta_{c}(t, \bar{t}) - \Sigma^{c}(t, \bar{t}) \right\} G_{k\sigma}^{c}(\bar{t}, t') = \delta_{c}(t, t')$

EOM and the Dyson equation $H_H(t) = \sum \left[\epsilon \left(\mathbf{k} - \mathbf{A}(t) \right) - \mu \right] c_{k\sigma}^{\dagger}(t) c_{k\sigma}(t) + V_H(t)$

Solving the Dyson equation

$$\int_{c} d\bar{t} \left\{ \left[i \frac{\partial}{\partial t} + \mu - \epsilon (\mathbf{k} - \mathbf{A}(t)) \right] \delta_{c}(t, \bar{t}) - \Sigma^{c}(t, \bar{t}) \right\} G_{k\sigma}^{c}(\bar{t}, t') = \delta_{c}(t, t')$$
This is of the form $(G^{c})^{-1}(G^{c}) = \mathbb{I}$ with a boundary conditon
 $G_{k\sigma}^{c}(t_{min}, t_{min} - i\beta) = -\frac{i}{Z} Tr \ e^{-\beta H(t_{min})} c_{k\sigma}(t_{min}) c_{k\sigma}^{\dagger}(t_{min} - i\beta)$
 $G_{k\sigma}^{c}(t_{min}, t_{min} - i\beta) = -\frac{i}{Z} Tr \ e^{-\beta H} c_{k\sigma} e^{-\beta H} c_{k\sigma}^{\dagger} e^{\beta H}$
 $G_{k\sigma}^{c}(t_{min}, t_{min} - i\beta) = -\frac{i}{Z} Tr \ e^{-\beta H} c_{k\sigma}^{\dagger} c_{k\sigma} = -G_{k\sigma}^{c}(t_{min}, t_{min})$

Self energy and memory effects

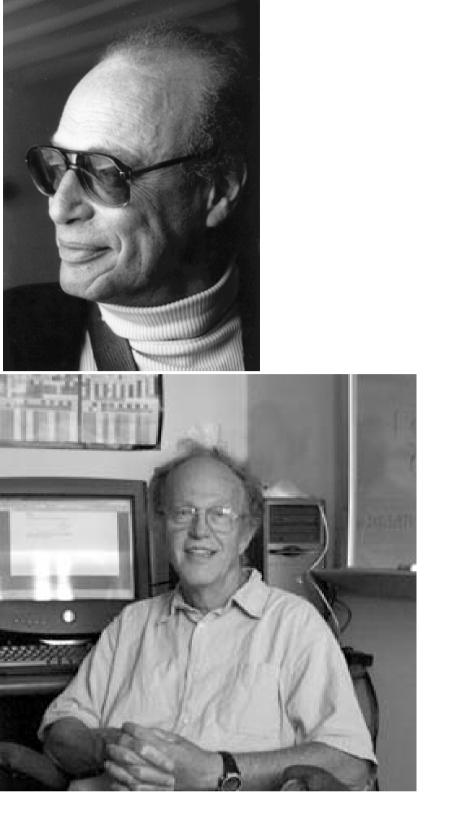
Often it is said that in nonequilibrium on has "memory effects"

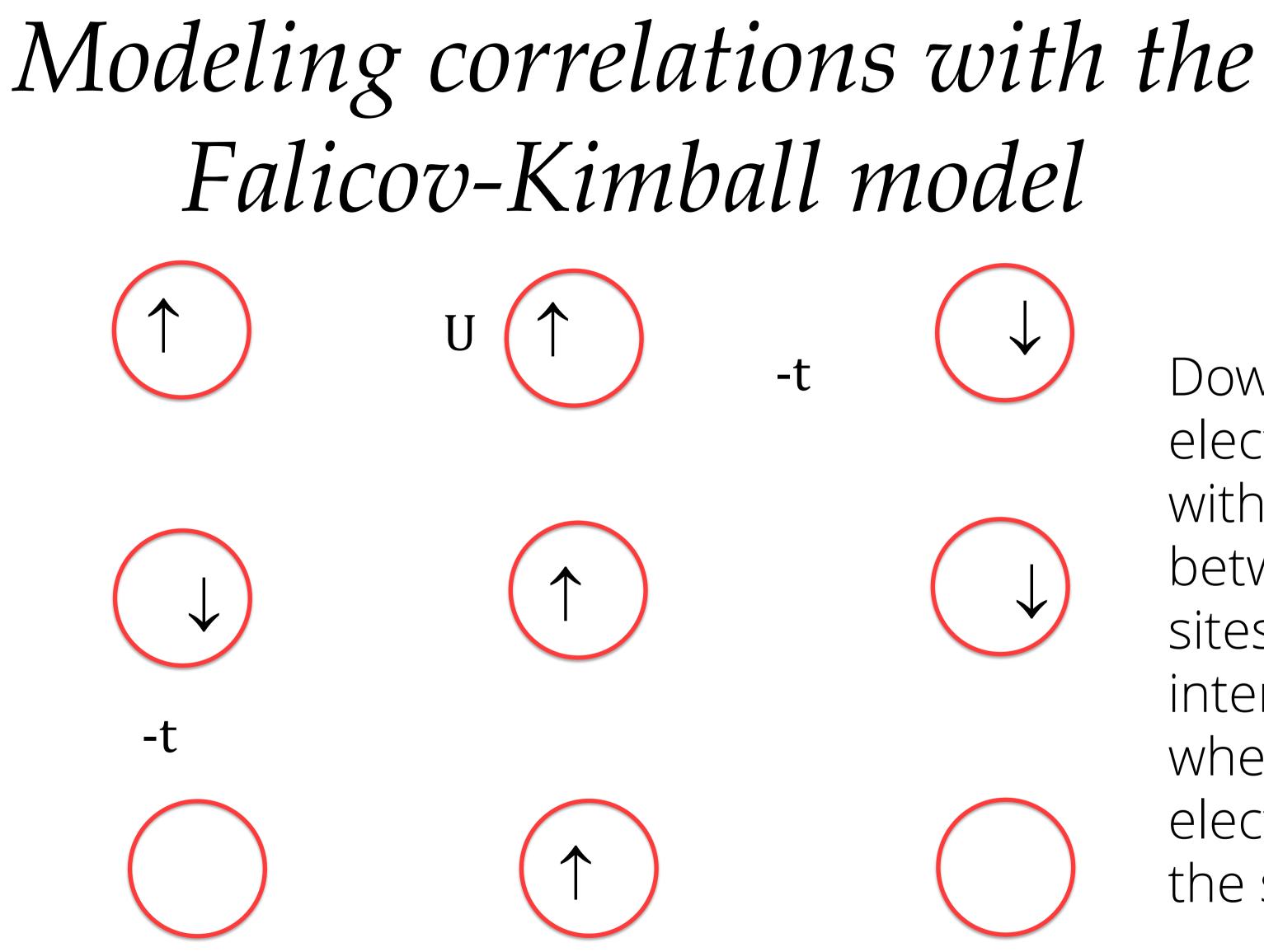
But the EOM is a first order linear equation, so how can this be?

It happens when we employ a self-energy, because it enters via a convolution, which couples different times together. If we could solve the problem just with the GFs, the memory effects would be gone, but we do not know how to do this.

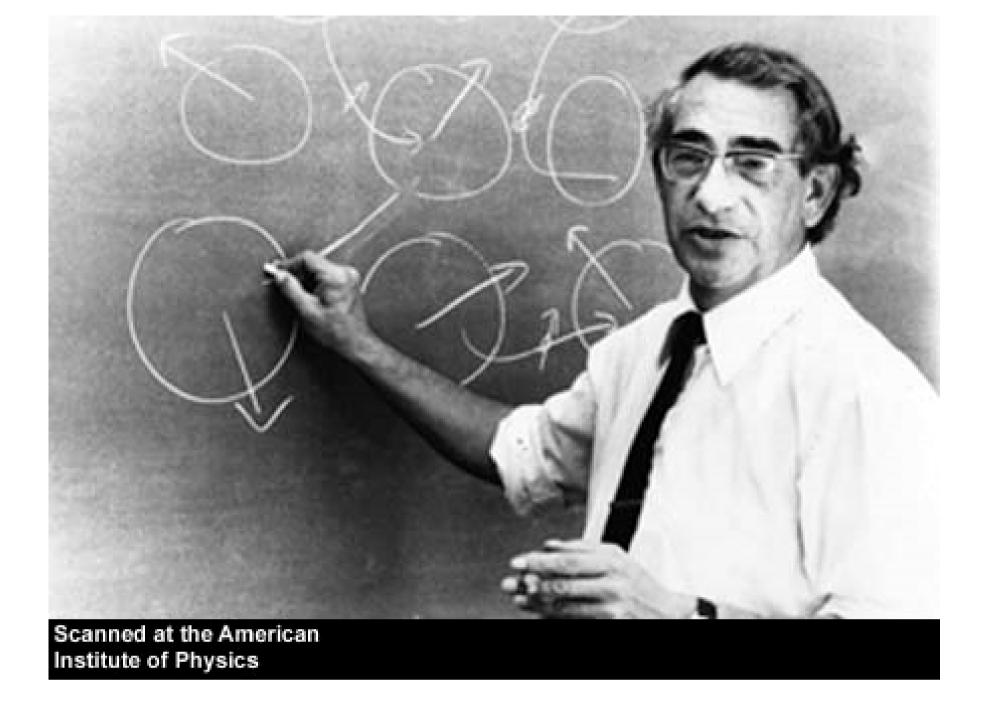
$$\begin{array}{l} Discretizing \ continuous \ matrix \ equations \\ \left(i\frac{\partial}{\partial t} + \mu\right)\delta_{c}(t,t') = \frac{1}{W_{j}}M_{jk}\frac{1}{W_{k}} \\ \\ \\ M_{jk} = \begin{pmatrix} 1 & 0 & 0 & \dots & 1 + i\Delta t \mu \\ -1 - i\Delta t \mu & 1 & 0 & \dots & 0 \\ 0 & -1 - i\Delta t \mu & 1 & 0 & \dots & 0 \\ 0 & -1 + i\Delta t \mu &$$

Modeling electrons





Down-spin electrons hop with strength – *t* between lattice sites. They feel an interaction of U when two electrons are on the same site.



Electrons hop with strength -t between lattice sites. Feel an interaction of U when two electrons are on the same site.

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

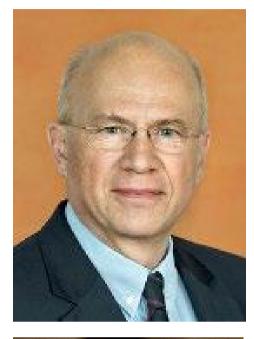
Hubbard model U -t

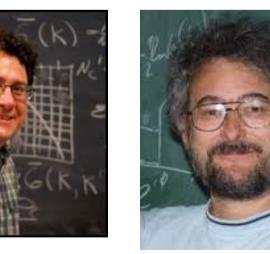
Ņ

م

Dynamical mean-field theory

Dynamical mean-field theory

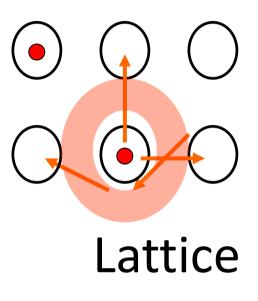




Dynamical mean-field theory introduced in the late 1980s.

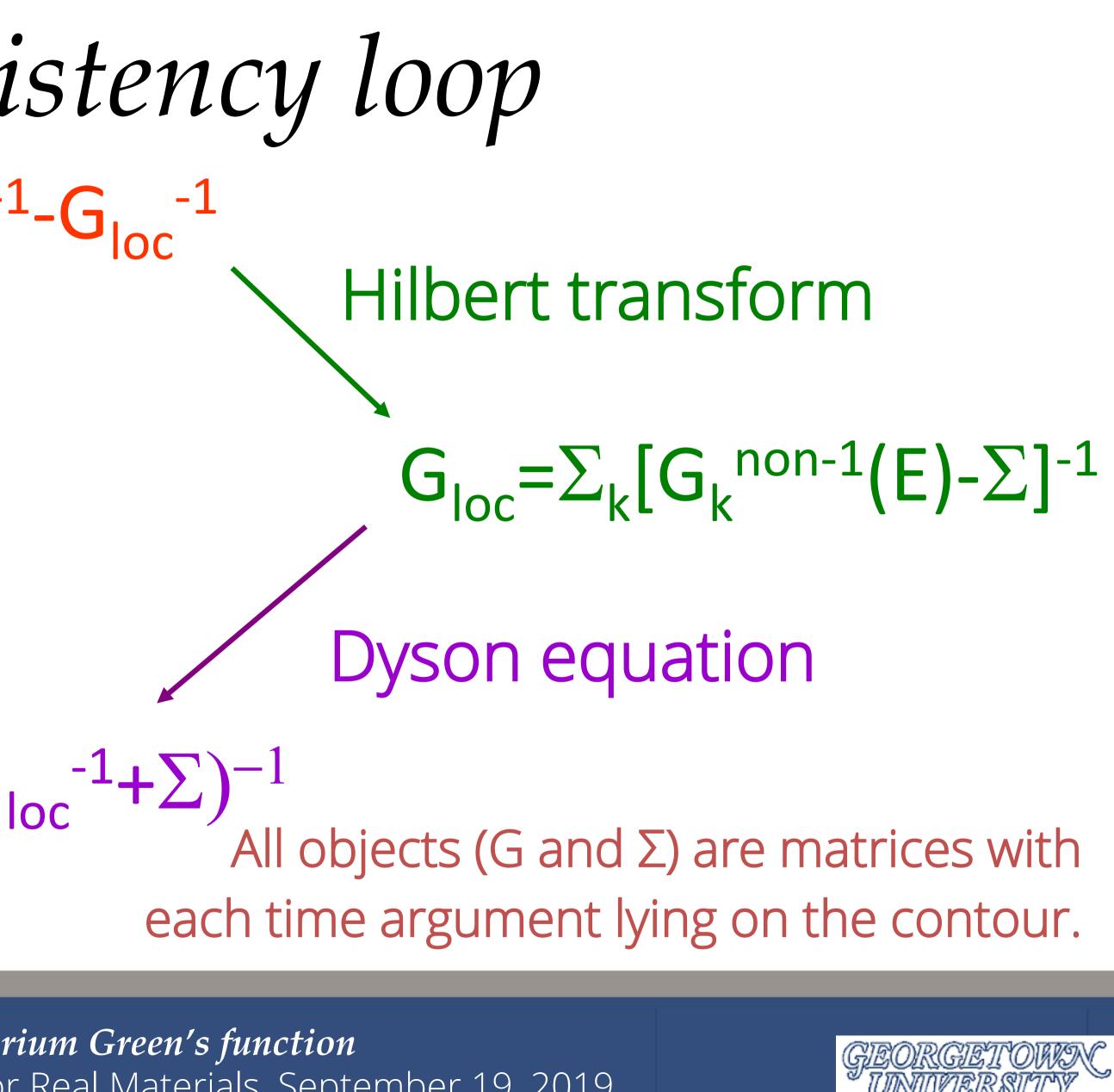
Self-consistent solution of an impurity problem solves the lattice problem in large dimensions

Extension to nonequilibrium in 2006 follows by working in the time representation.

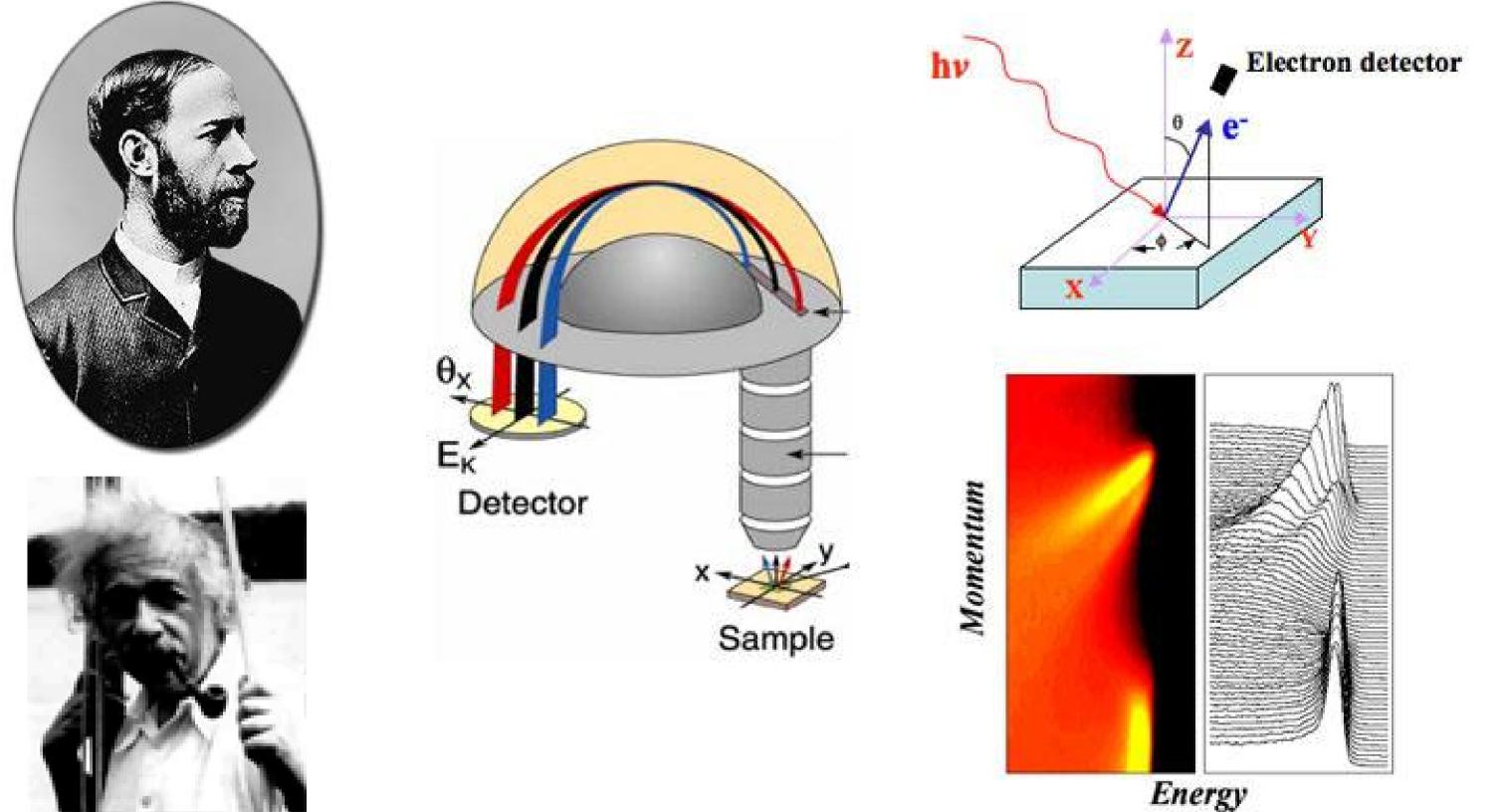


Solve impurity
$$G_0 = (G_{10})$$

 $Solve impurity$ $G_0 = (G_{10})$

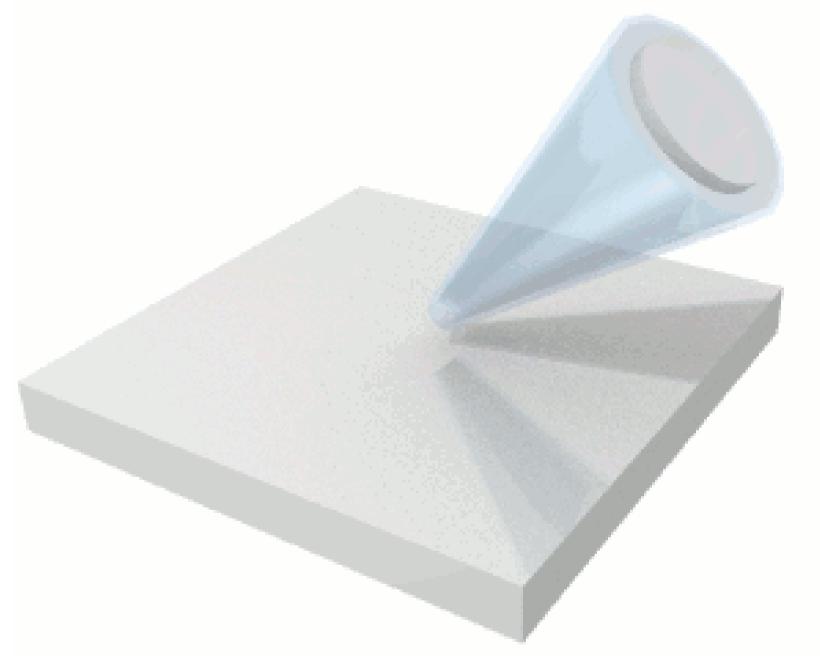


Experimental methodology

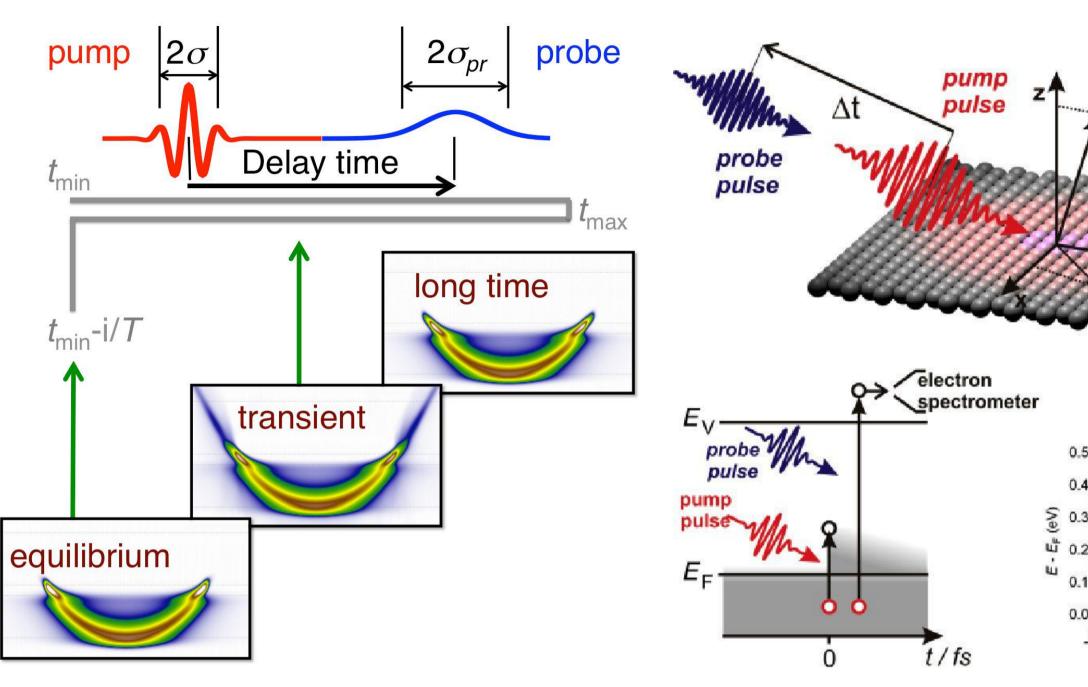


From the photoelectric effect to high-precision experiments on correlated electrons

Experimental observables: photoemission



Focus on the observables. Forget your frequency-space biases.



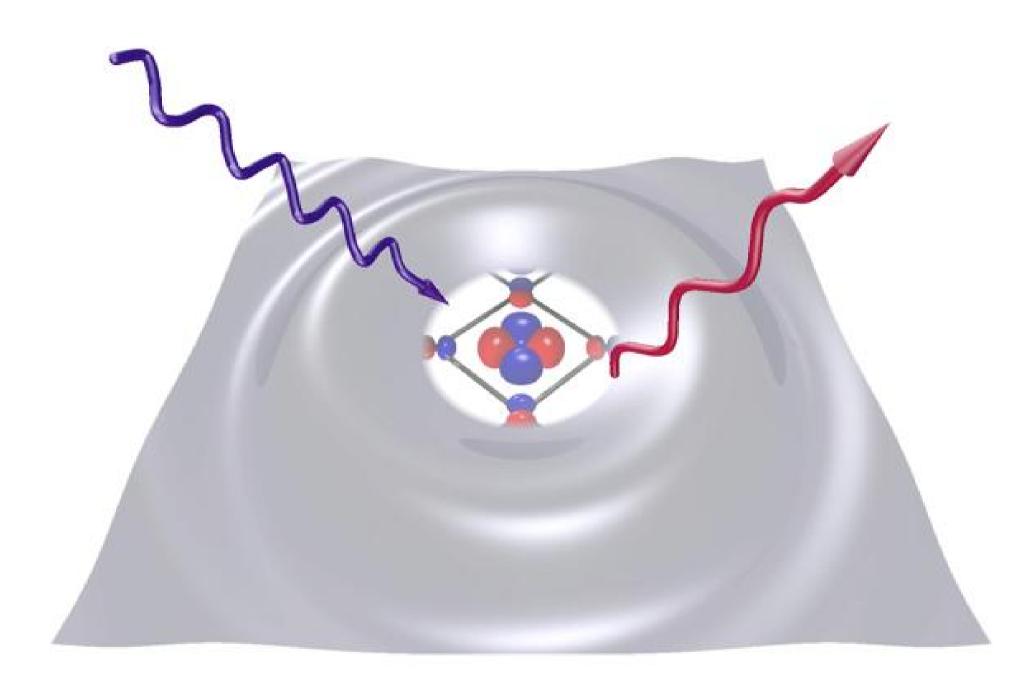
$$A_{\mathbf{k}}(\omega, t_0) = \operatorname{Im} \frac{1}{2\pi\sigma^2} \int dt dt' G_{\mathbf{k}}^{<}(t, t') e^{-(t-t_0)^2/2\sigma^2} e^{-(t'-t_0)^2/2\sigma^2} e^{i\omega(t-t')}$$

Theoretical description of TR-ARPES

For angle-resolved calculations, we need to work with GAUGE-INVARIANT Green's functions

$$\sum_{k_{ii}(A^{1})} \sum_{k_{ii}(A^{1})} \sum_{k_{ii}(A^{1})} k \to k - \frac{1}{t-t'} \int_{-\frac{t-t'}{2}}^{\frac{t-t'}{2}} d\bar{t}A \left(\frac{t+t'}{2} + \frac{t-t'}{2}\right) d\bar{t}A \left(\frac{t+t'}{$$

What is electronic Raman scattering



Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

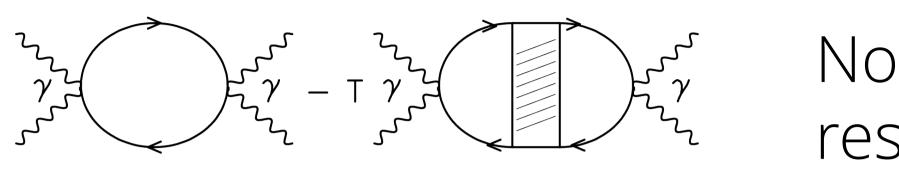
Inelastic scattering of light–one out of 10¹¹ photons loses or gains energy when scattering. If the energy is lost or gained comes from electronic excitations, it is called electronic Raman scattering

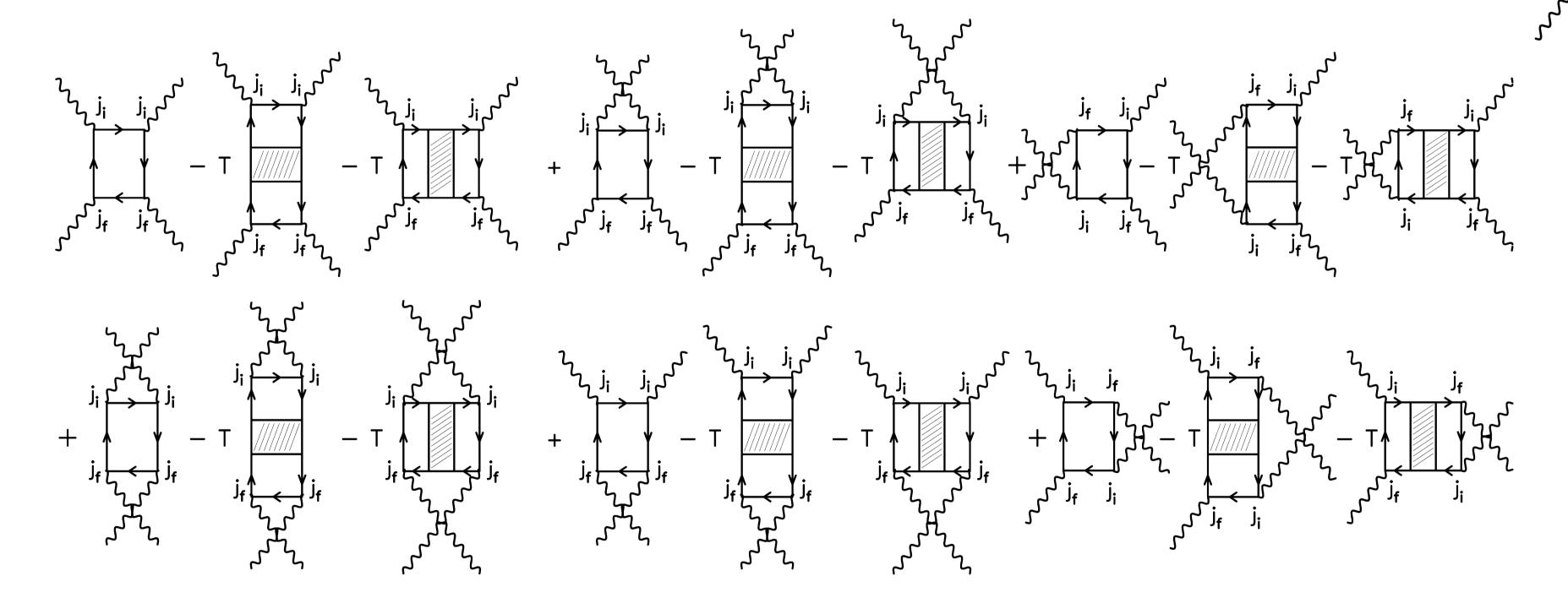
Raman cross section vs. response function

The nonresonant Raman cross-section $R_N(\Omega)$ is what one measures in an experiment; it comes from the greater correlation function. (anti-Stokes) to the case when energy is transferred to $\frac{Stokes}{anti-Stokes} = \frac{R_N(\Omega)}{R_N(-\Omega)} = \exp(\beta\Omega)$

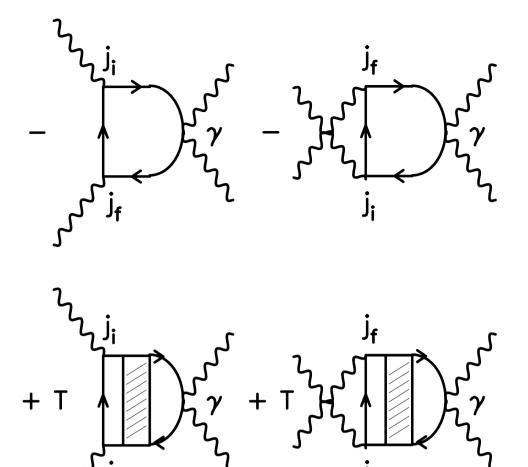
The ratio of the signal when energy comes from the electrons electron (Stokes) is given by the temperature: The Raman response function $\chi_N(\Omega)$ comes from the retarded Green's function. It is given by $R_N(\Omega) = [1 + n_B(\Omega)]\chi_N(\Omega)$. χ_N is antisymmetric and real.

Diagrammatic representation





Nonresonant response



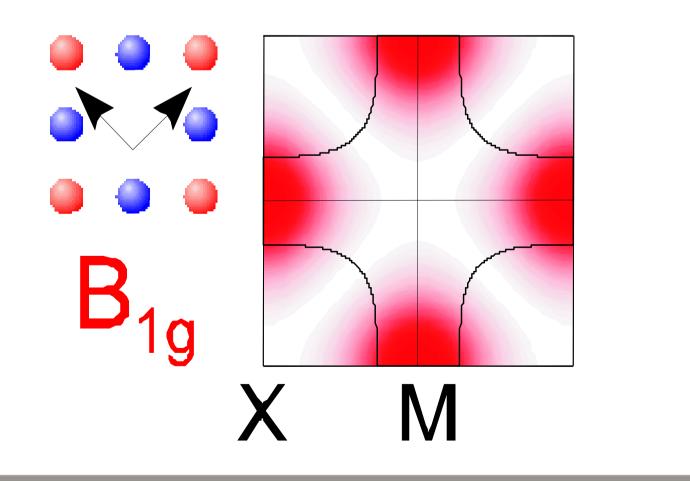
Mixed response

Resonant response

Polarization $\gamma_{R} = (\hat{e}_{i} \cdot \nabla)(\hat{e}_{f} \cdot \nabla)\epsilon(k)c_{k}^{\dagger}c_{k} \quad \text{Re}$

A_{1g} symmetry–same symmetry as the lattice–polarizers in the same direction.

B_{1g} symmetry–d-wave symmetry–crossed polarizers in the diagonal direction.

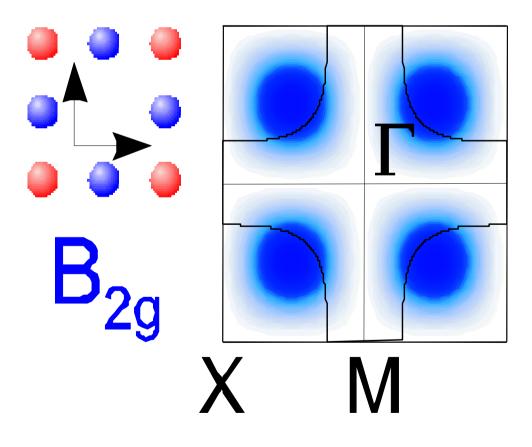


Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

Polarization dependence

Raman stress-tensor operator

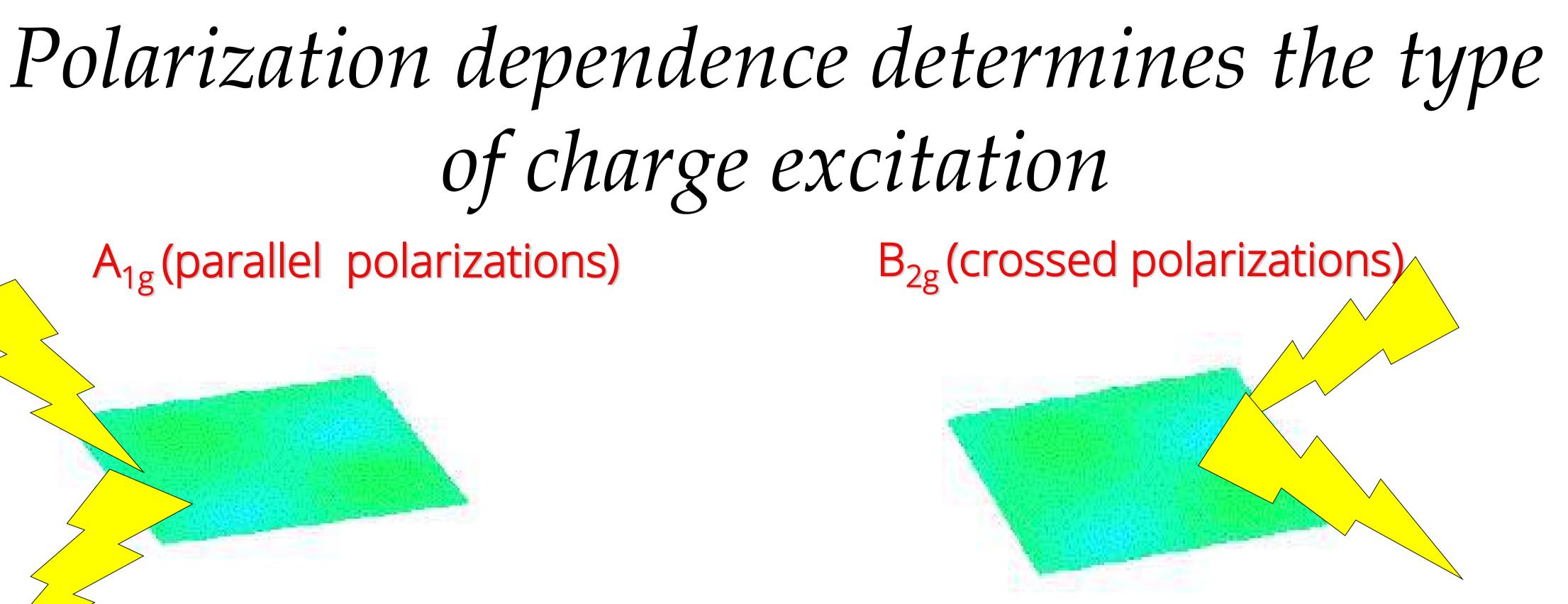
B_{2g} symmetry–d-wave symmetry–crossed polarizers in the axial direction.



A_{1g}(parallel polarizations)

Isotropic density (intercell) fluctuations – couple to long-range Coulomb interactions ~ Im $(1/\epsilon)$

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019



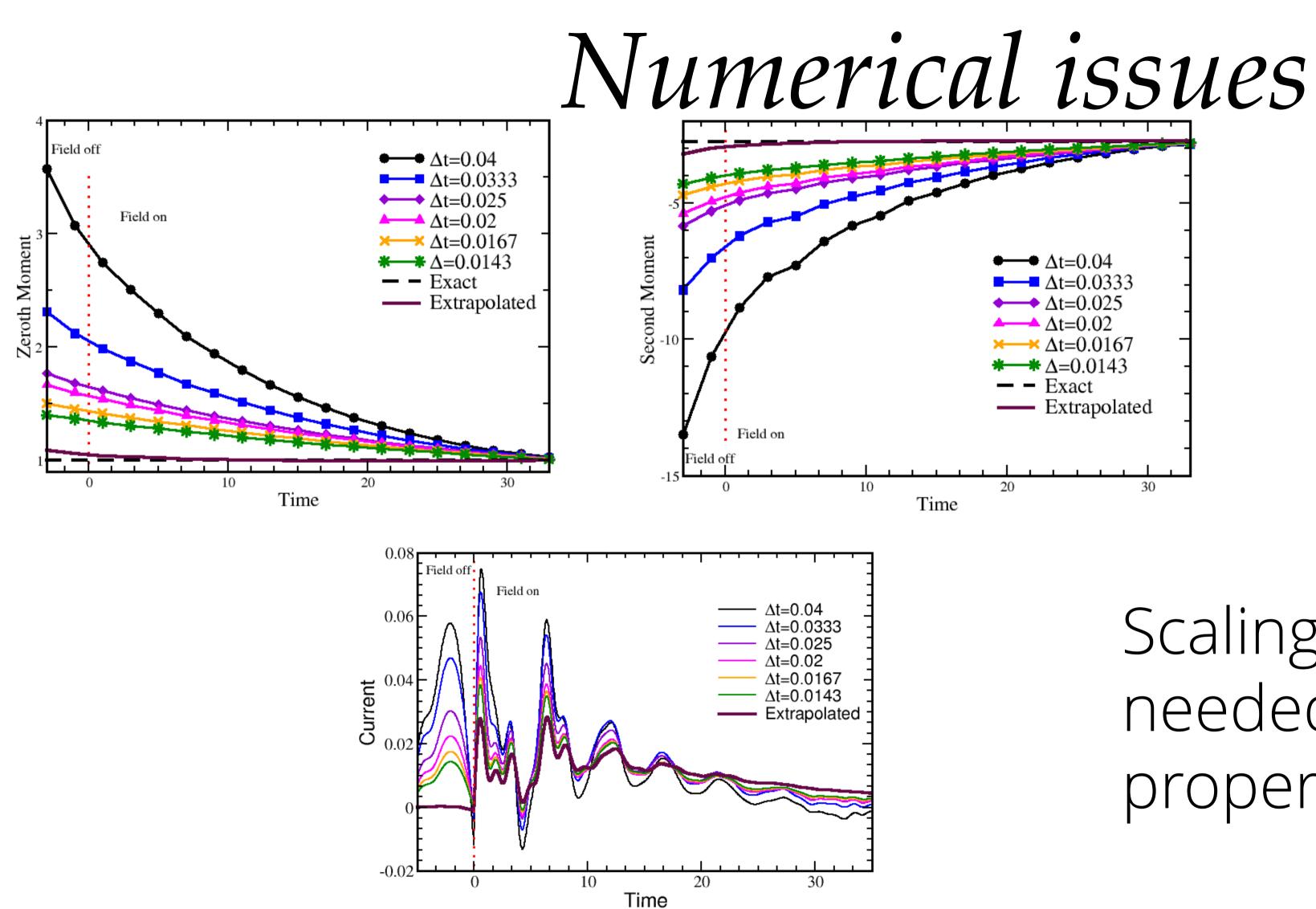
Anisotropic density (intracell) fluctuations – couple to short-range Coulomb interactions.



- Shine x-rays in, detect x-rays that come out
- Absorption of x-rays can be described by an interband optical conductivity
- Has an "edge singularity" in metals
- Singularity disappears in insulators
- Peaks of spectra are strongly T-dependent at high T

X-ray absorption spectroscopy

Numerics



Need to scale results to continuum limit to satisfy sum rules

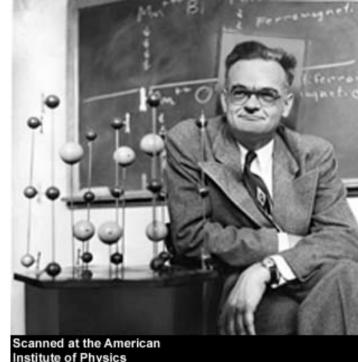
Scaling also needed to satisfy proper causality.

DC fields and Bloch oscillations

DC fields and Bloch oscillations

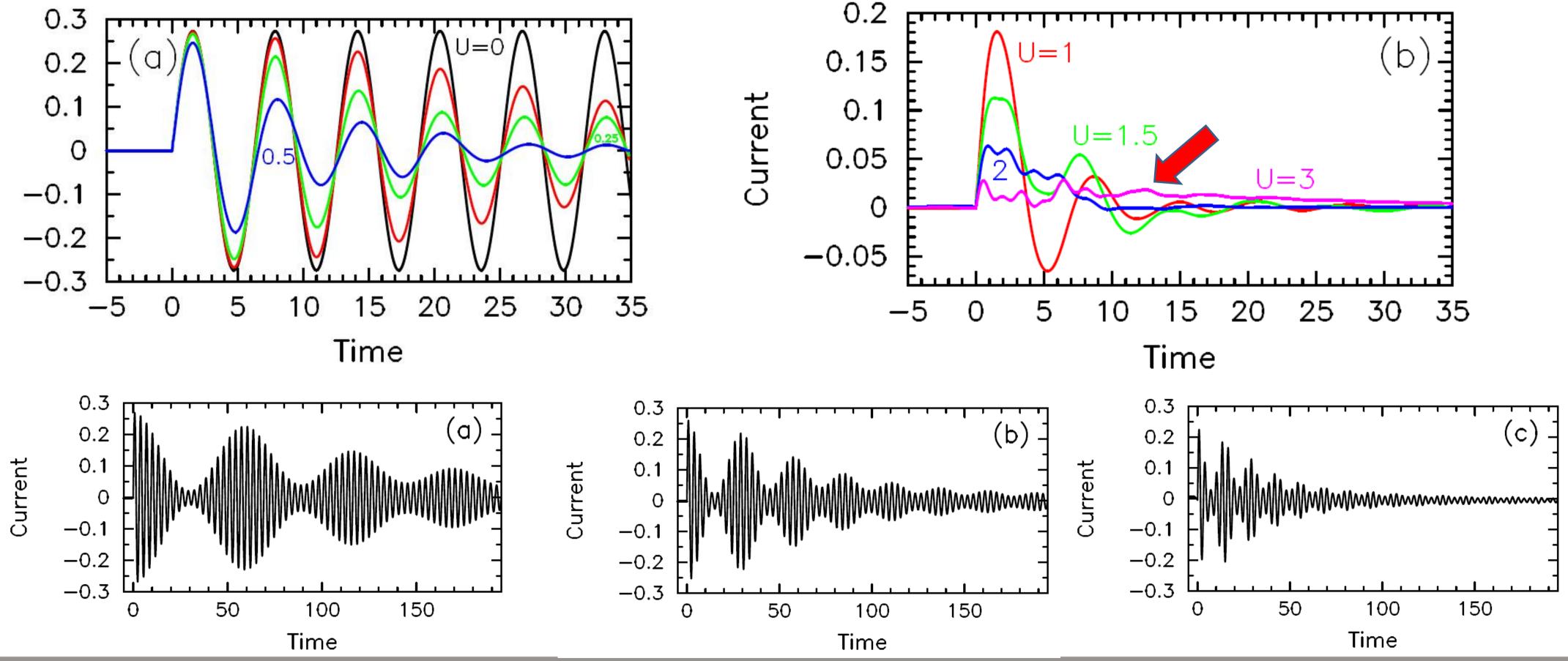
Electrons are uniformly accelerated in a dc field: $k(t) = \frac{eEt}{\hbar}$ But, when the wavevector arrives at the Brillouin zone boundary, it is Bragg reflected. So a dc field induces an ac current with a period inversely proportional to E. This is called a Bloch-Zener oscillation.

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019



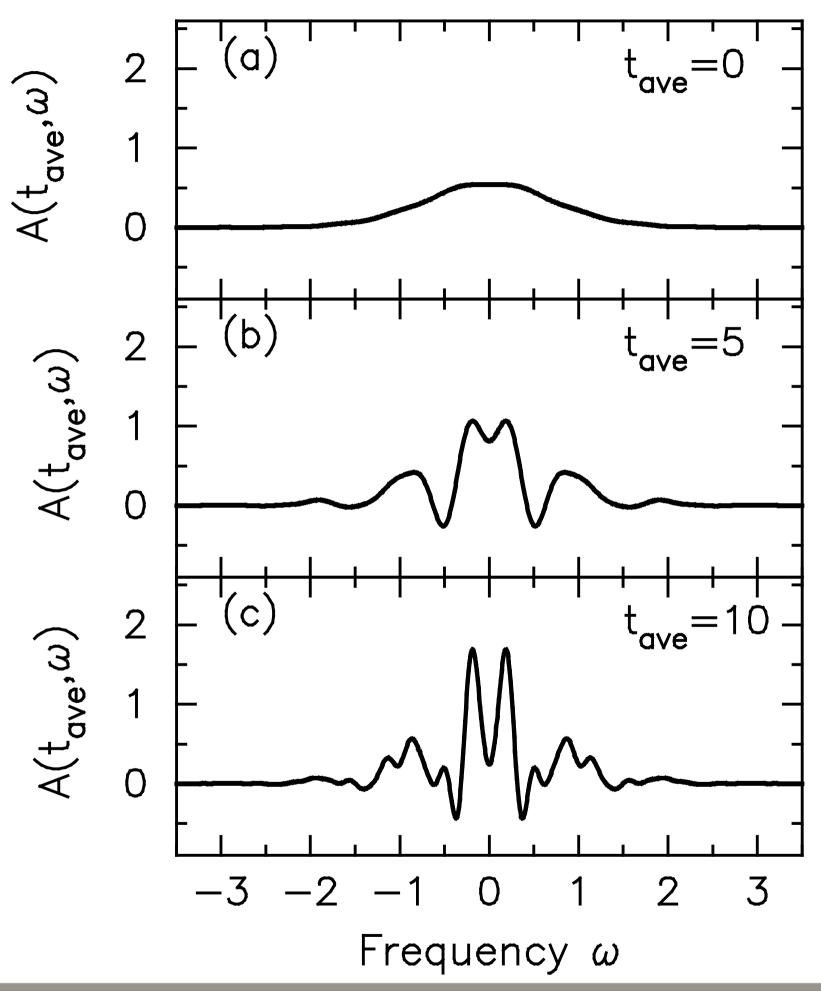
Bragg reflection 1st BZ **k(t)** Reflected wavevector

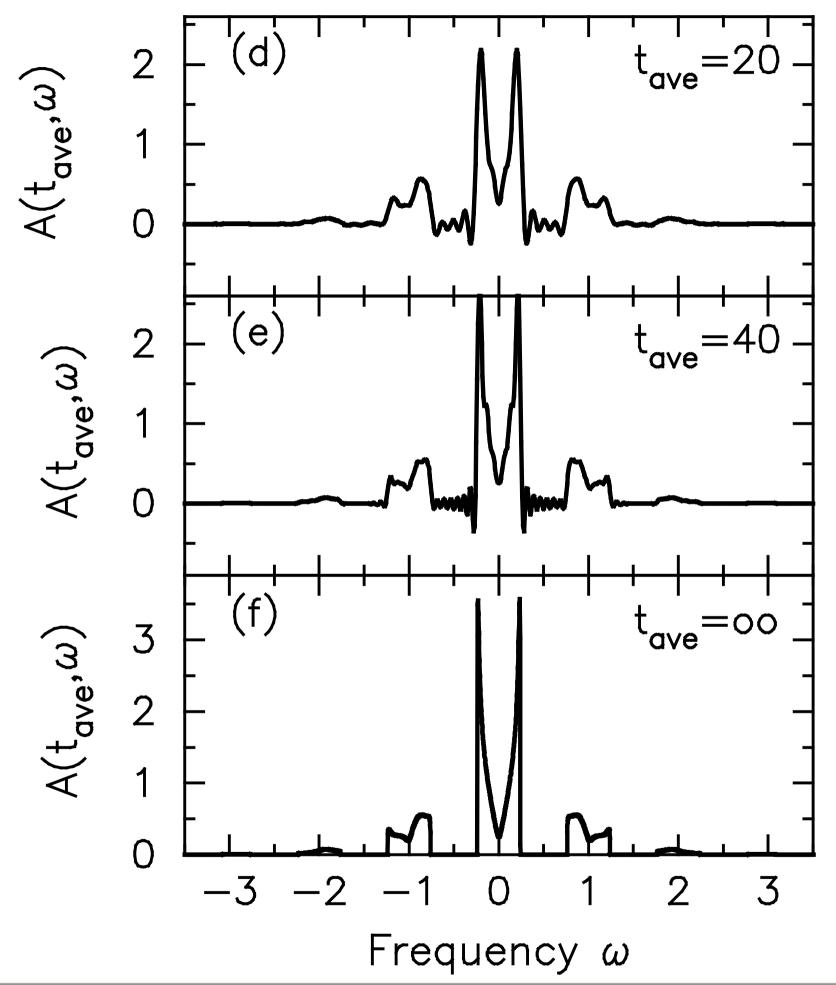
Bloch oscillations in metals and insulators

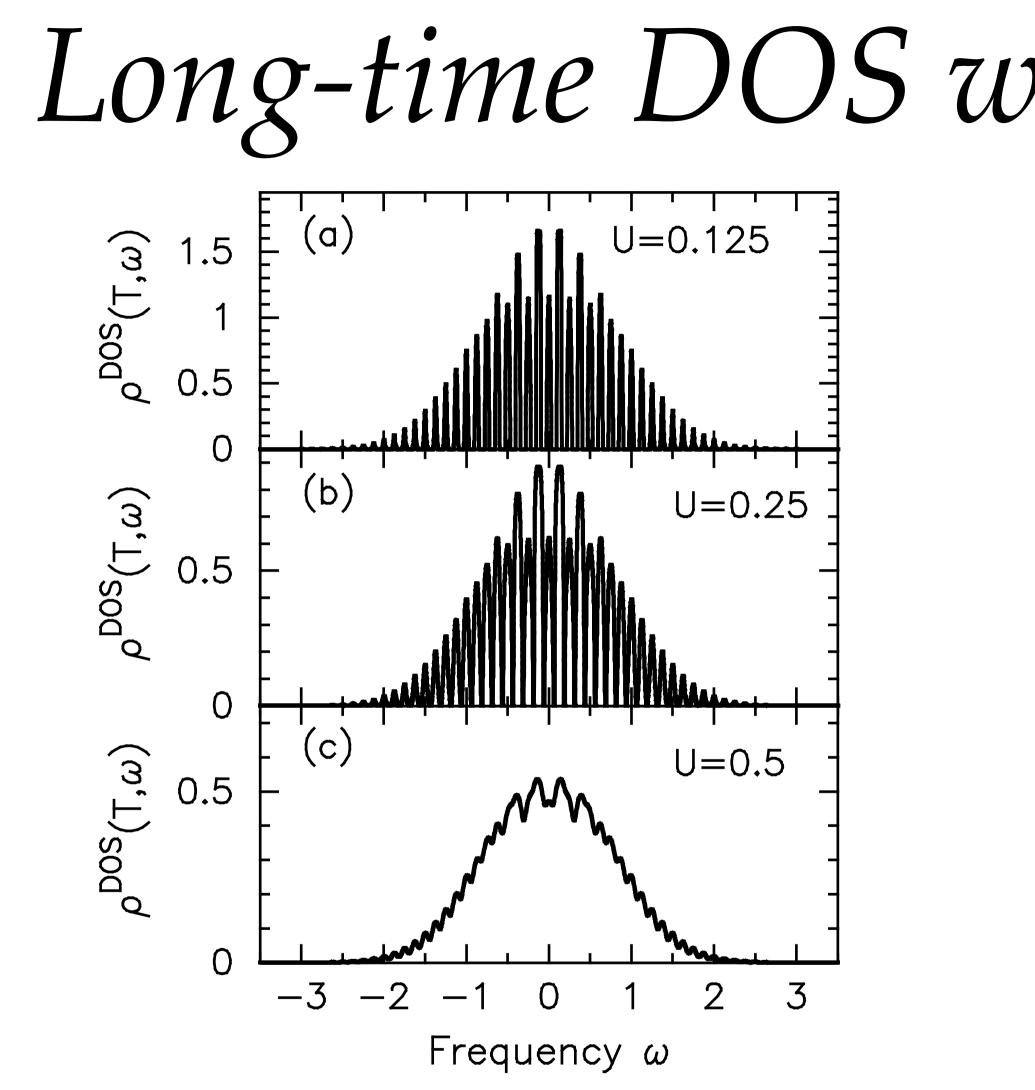


Current

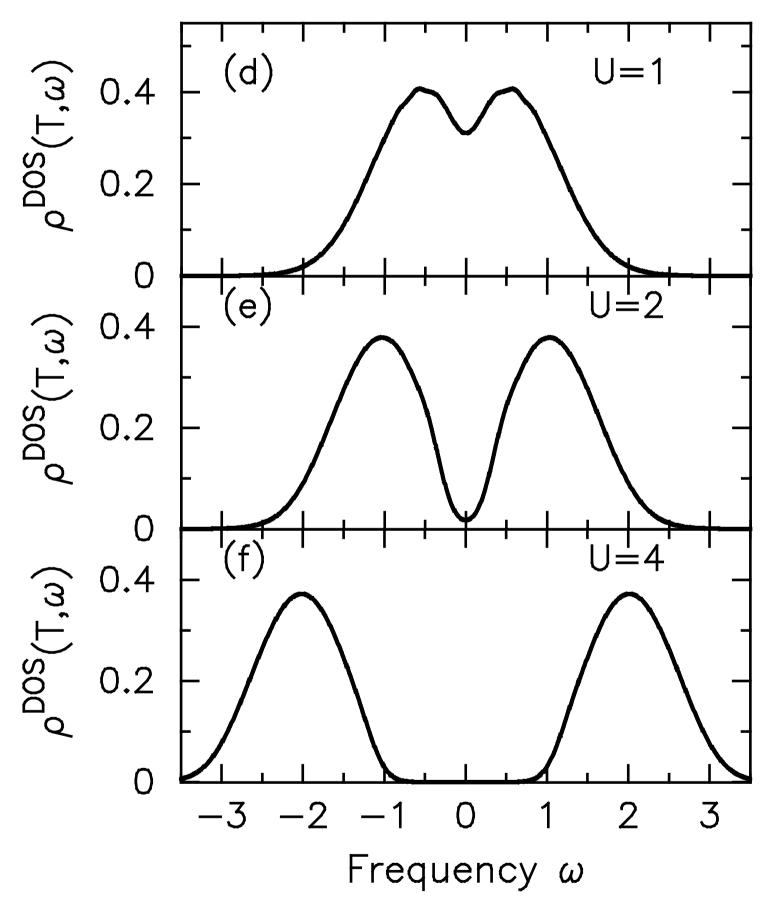
Transient local DOS metal (U=0.5,E=1)

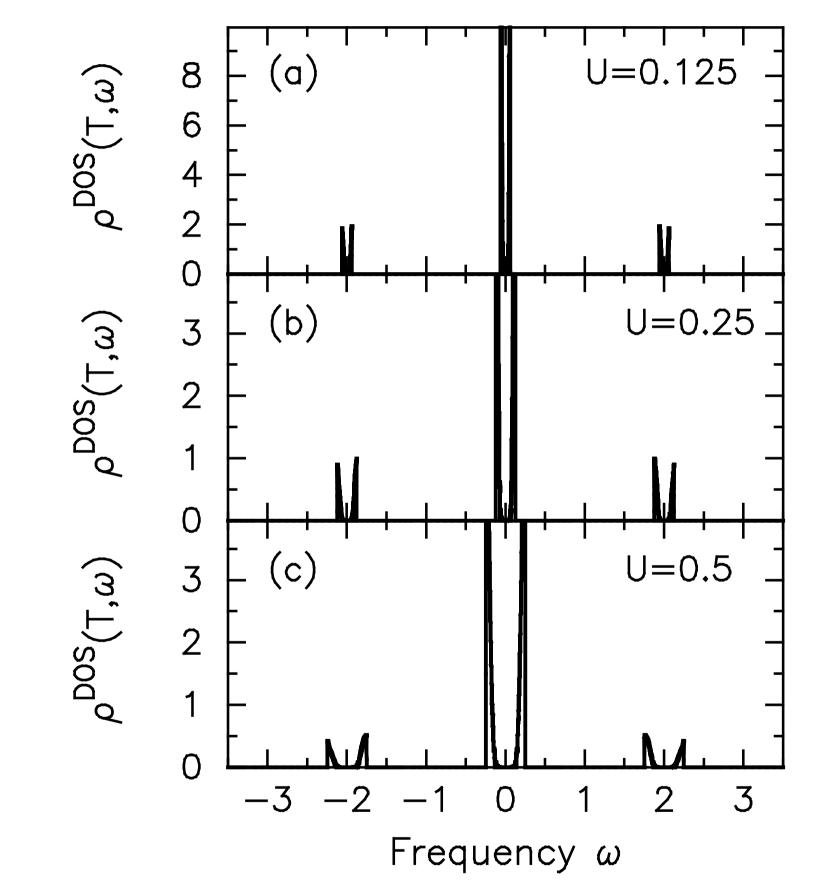




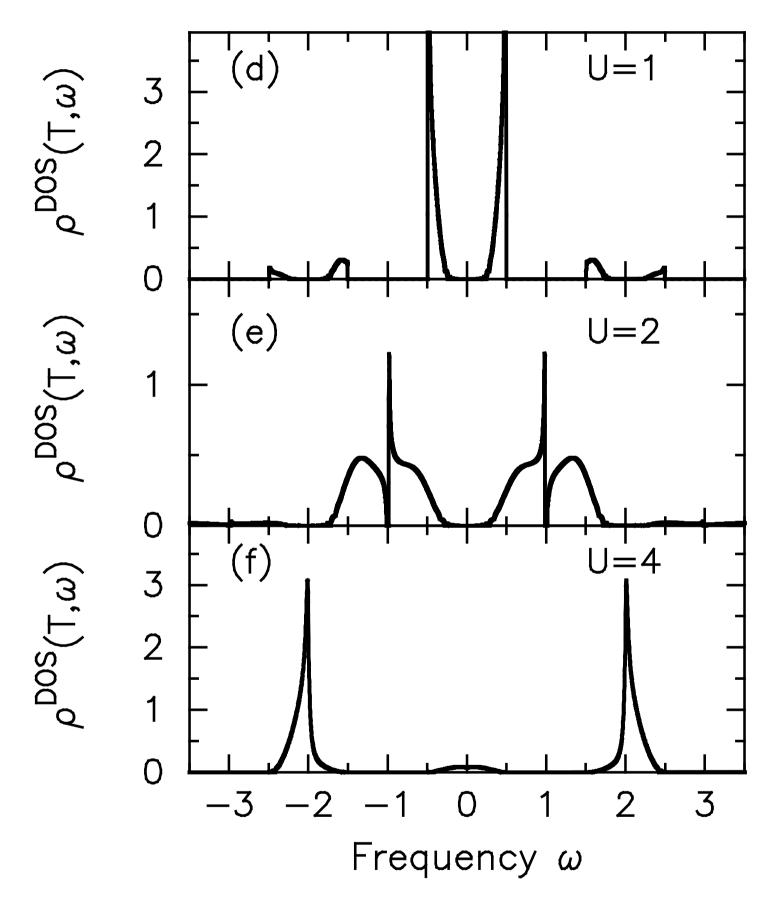


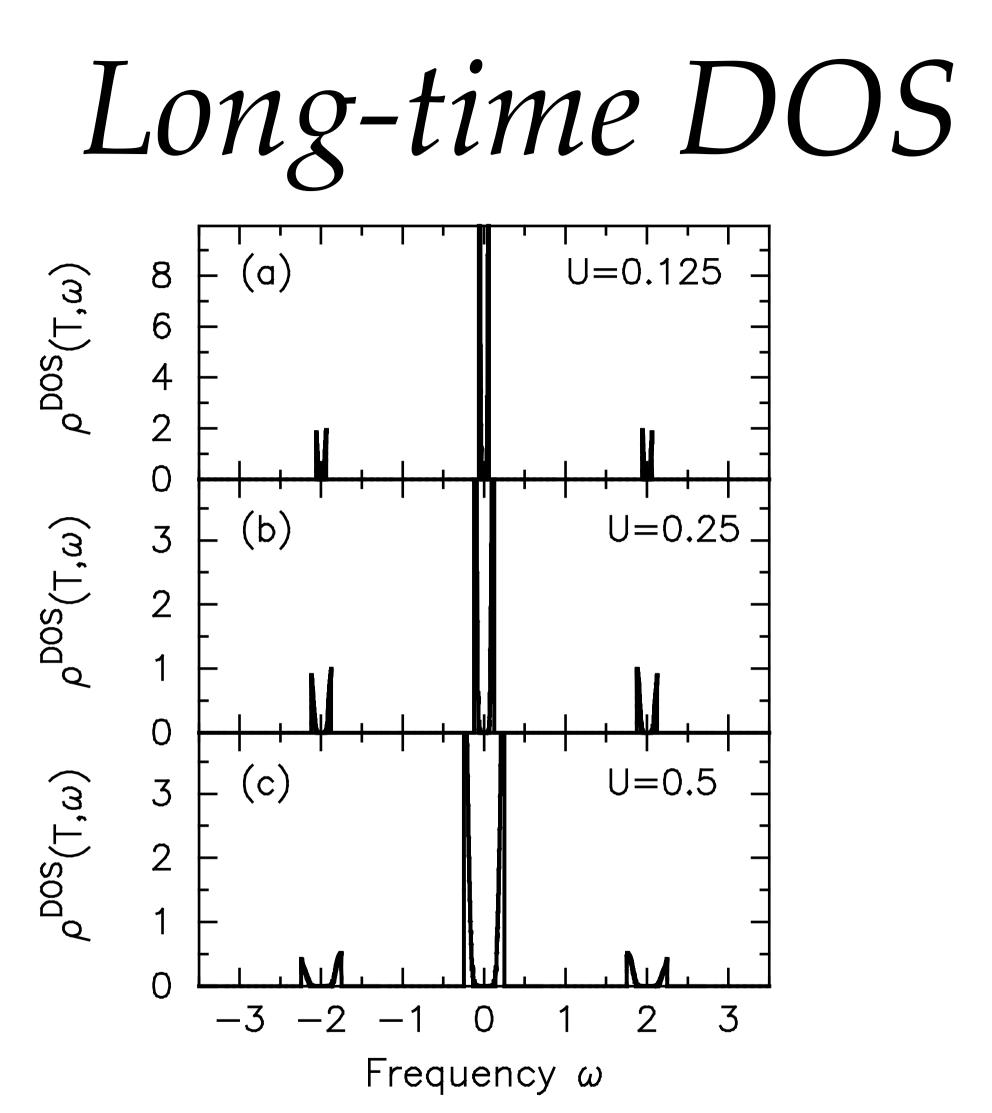
Long-time DOS weak field (E=0.125)



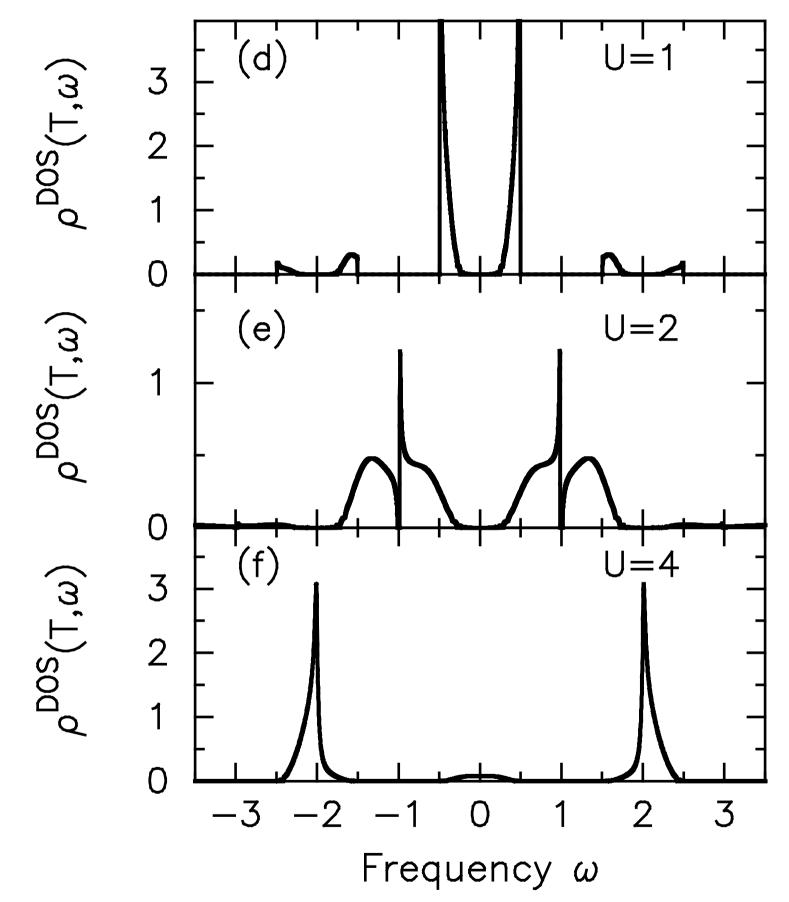


Long-time DOS moderate field (E=0.5)

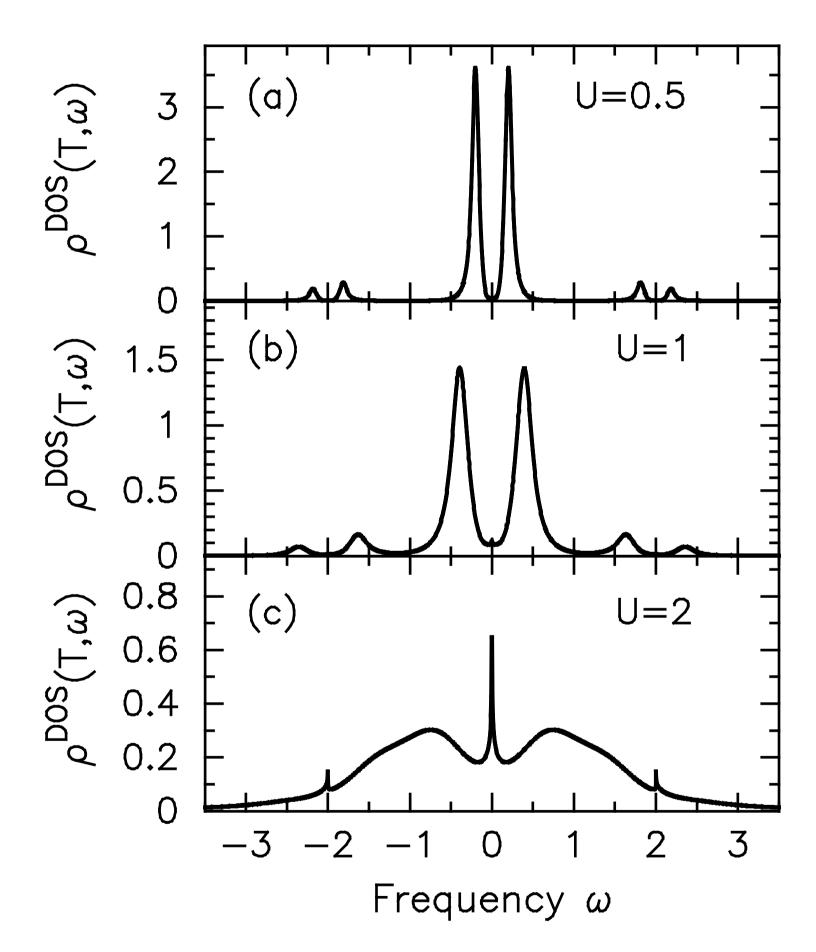


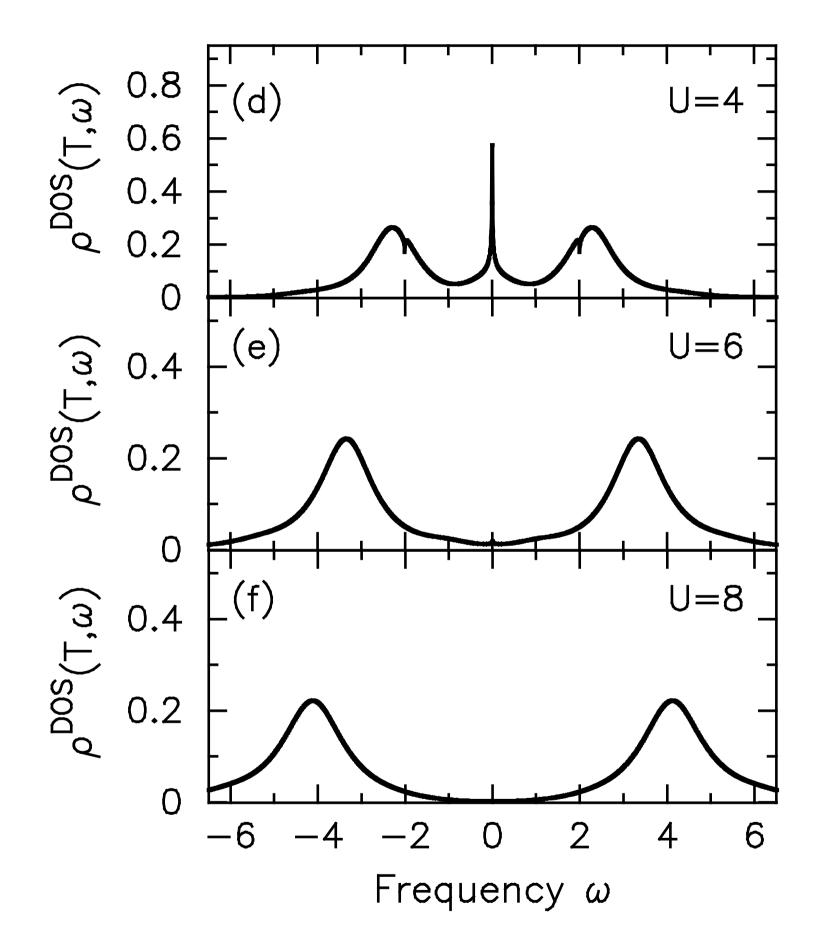


Long-time DOS strong field (E=2)



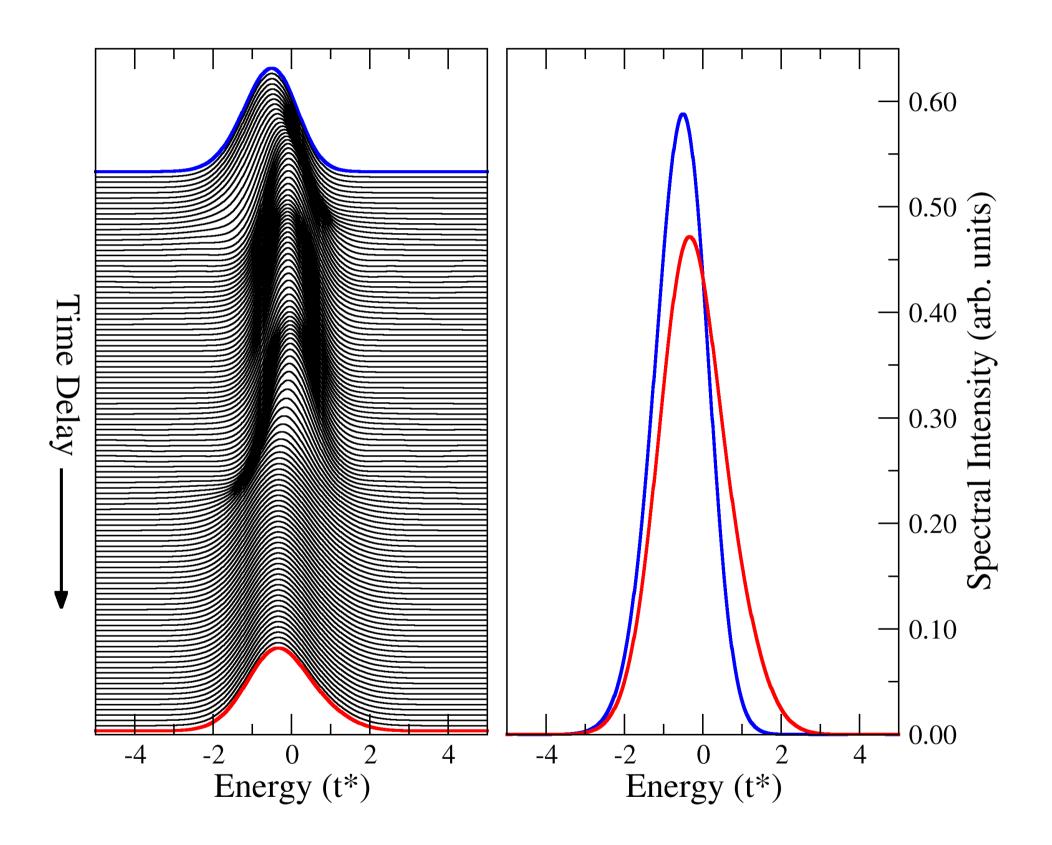
Long-time DOS Hubbard (E=2, approx)

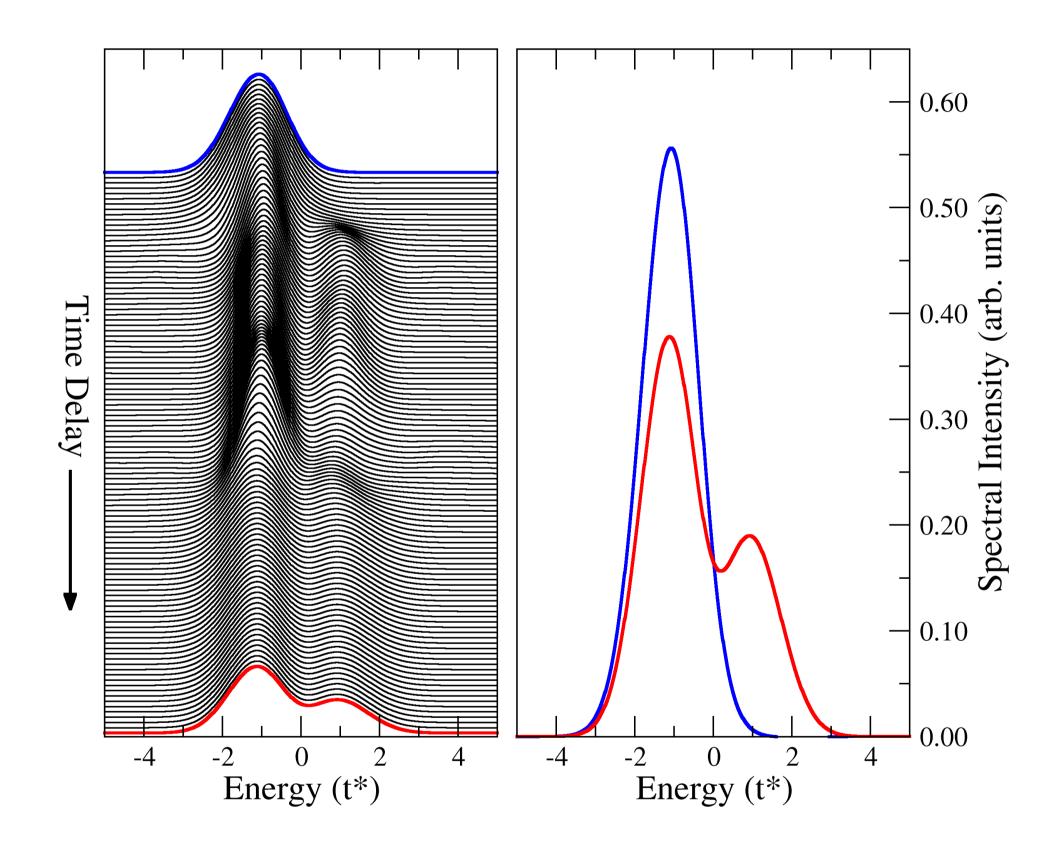




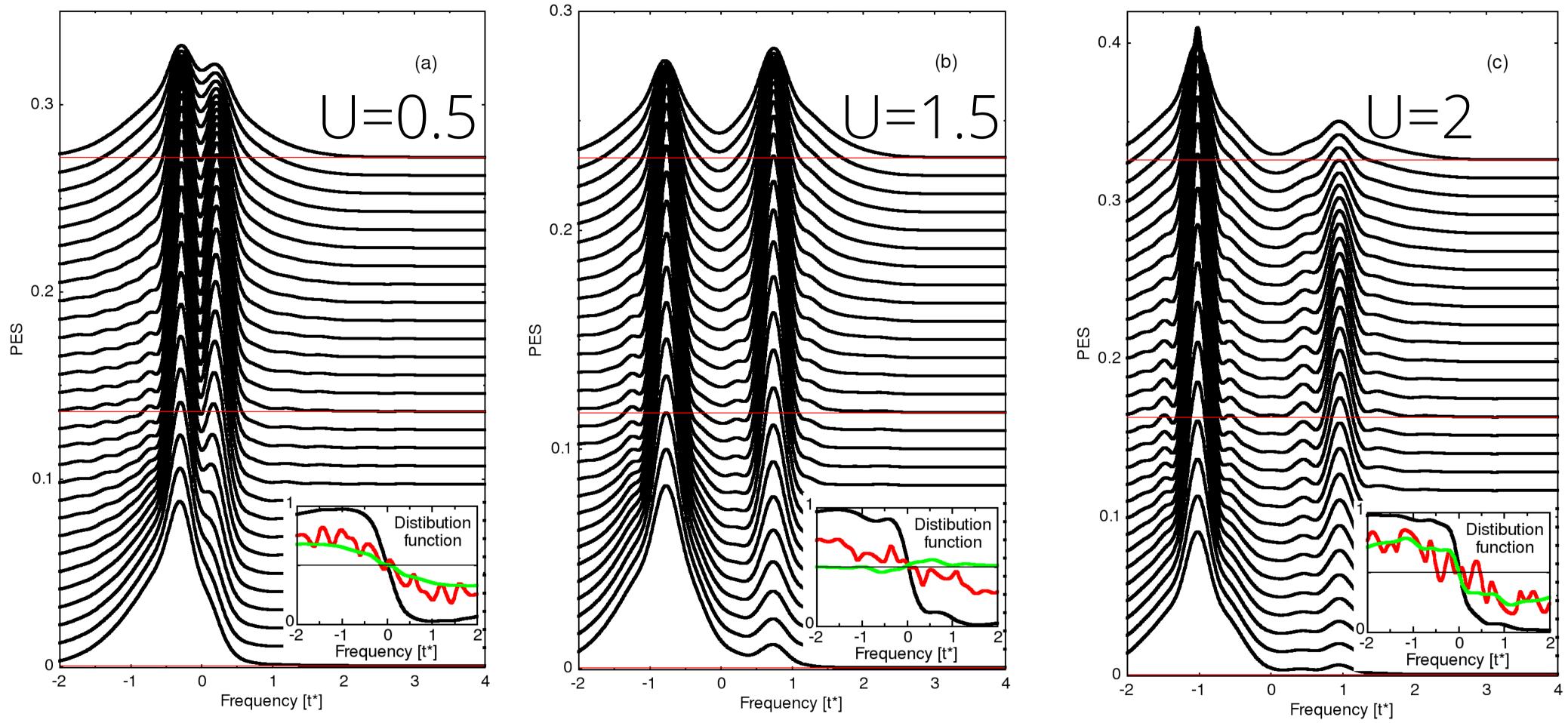
Time-resolved Photoemission

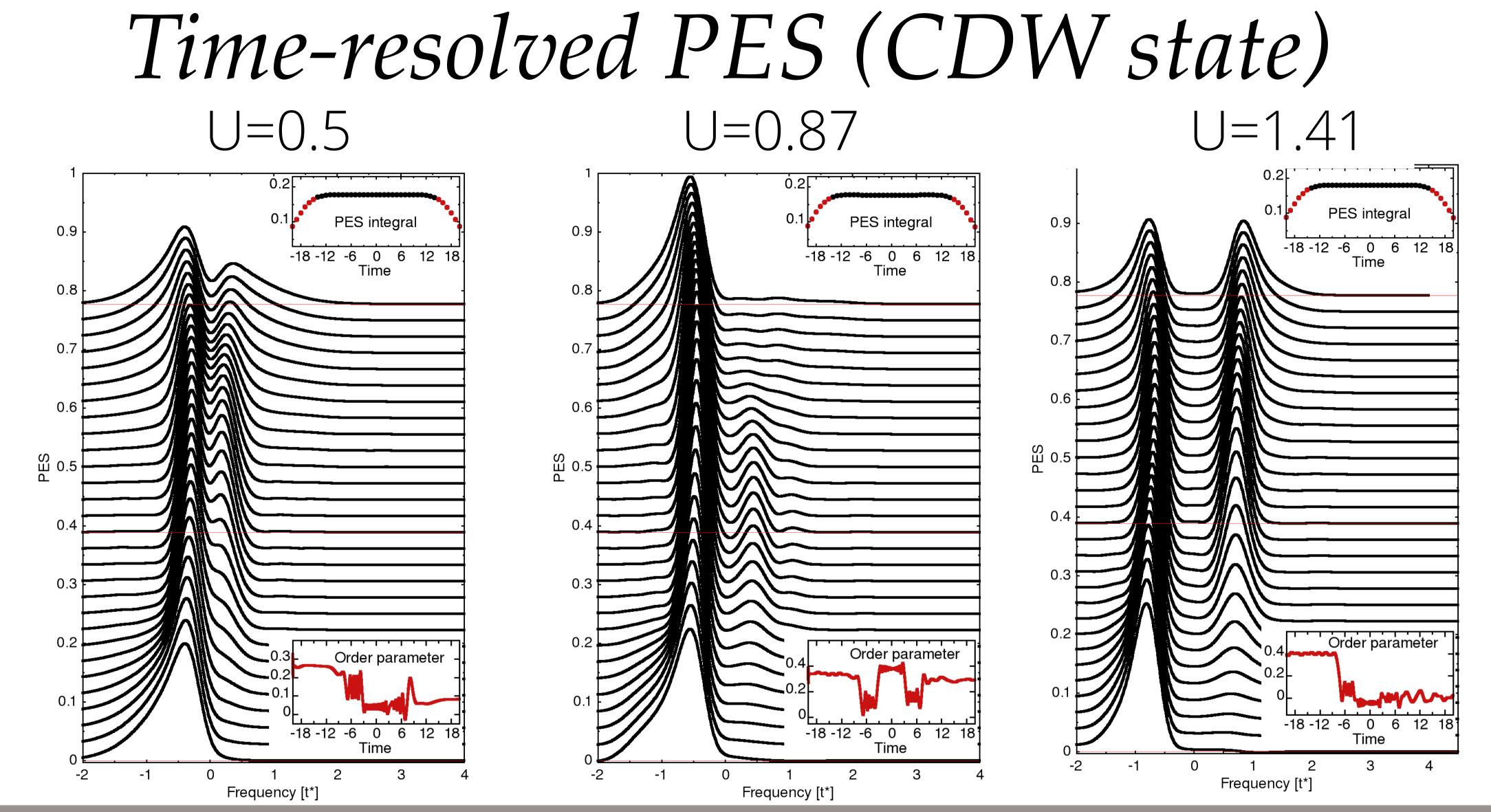
Time-resolved PES (normal state)



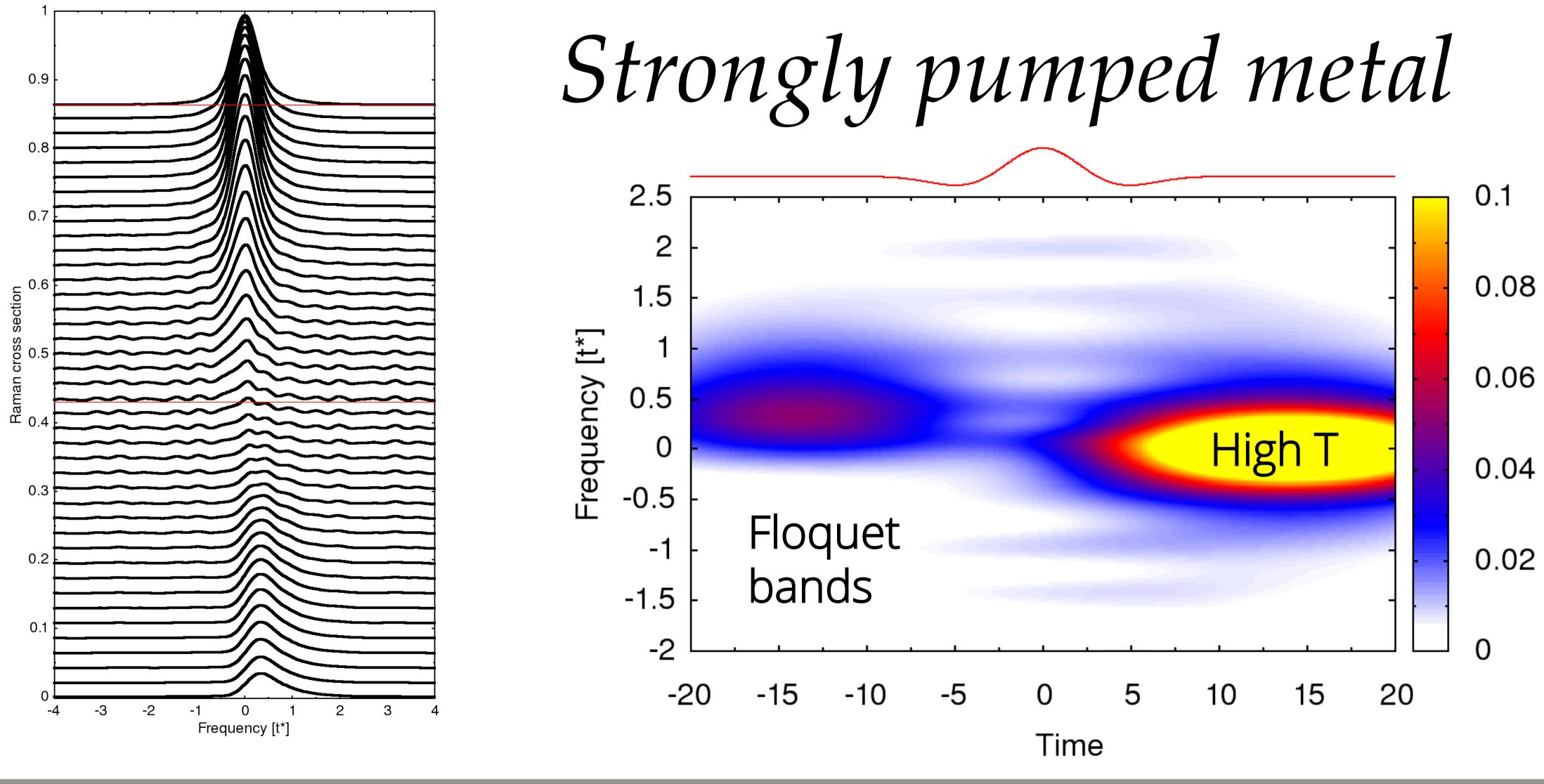


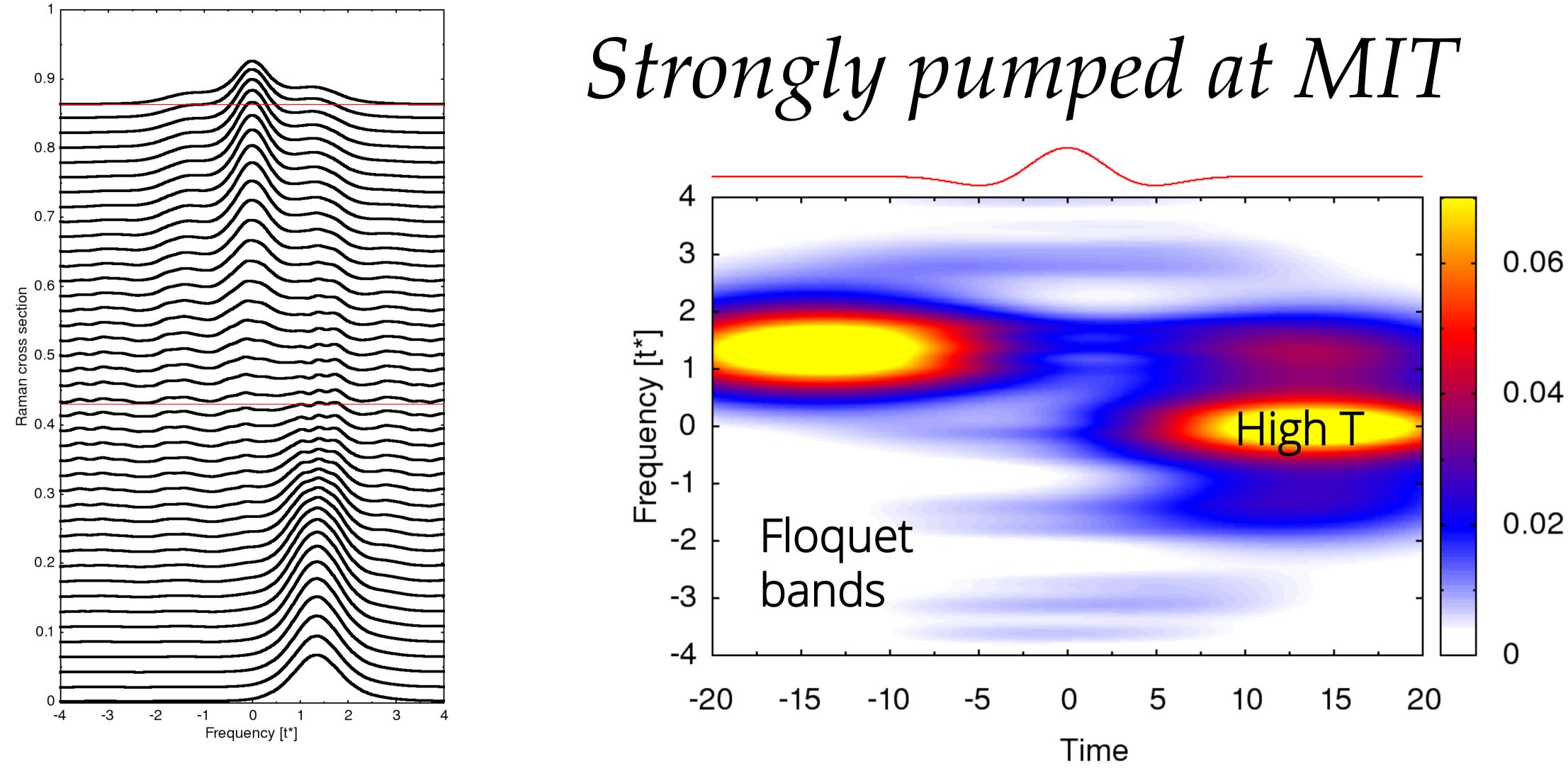
Time-resolved PES (normal state)

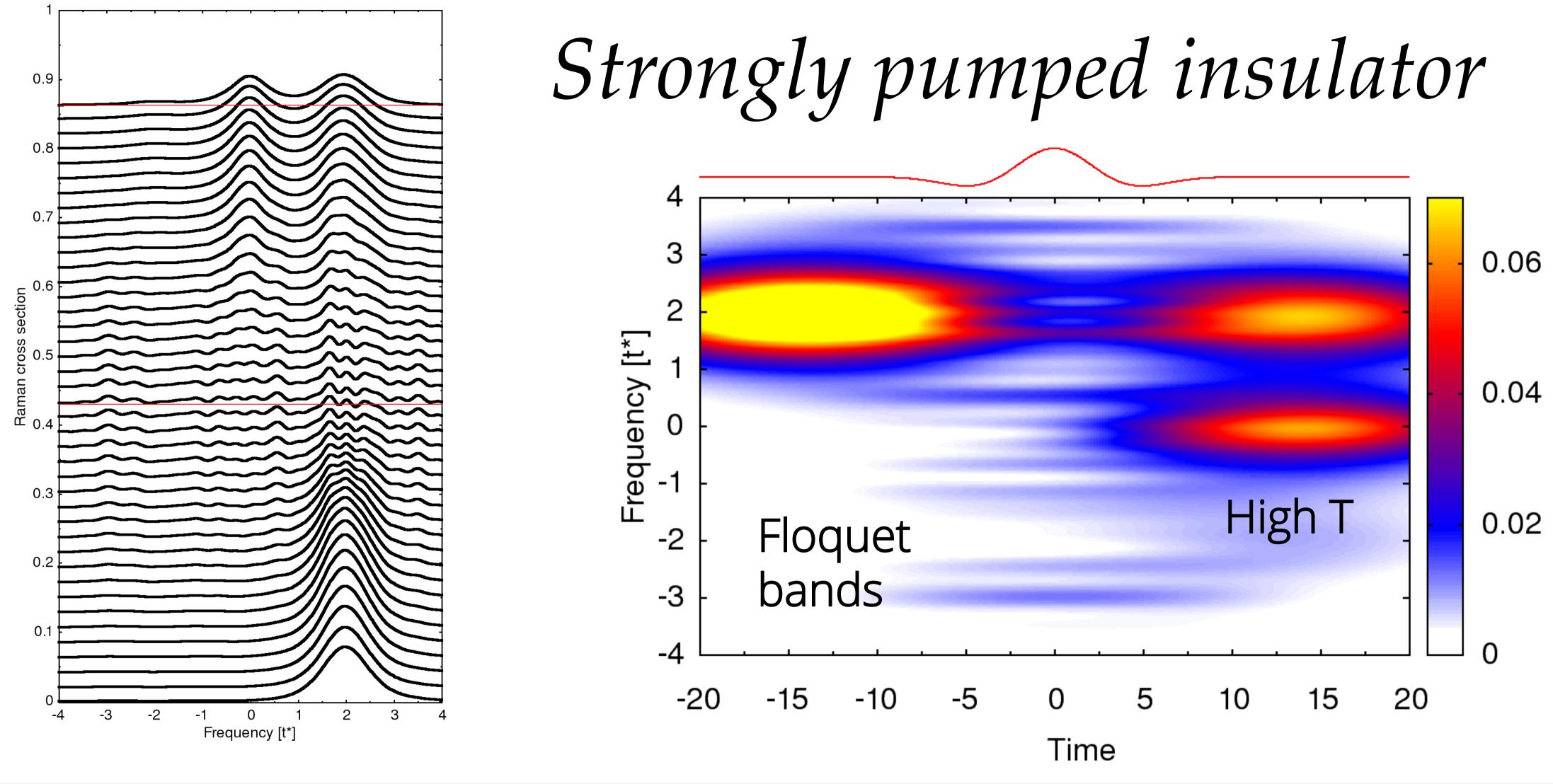




Time-resolved electronic Raman scattering





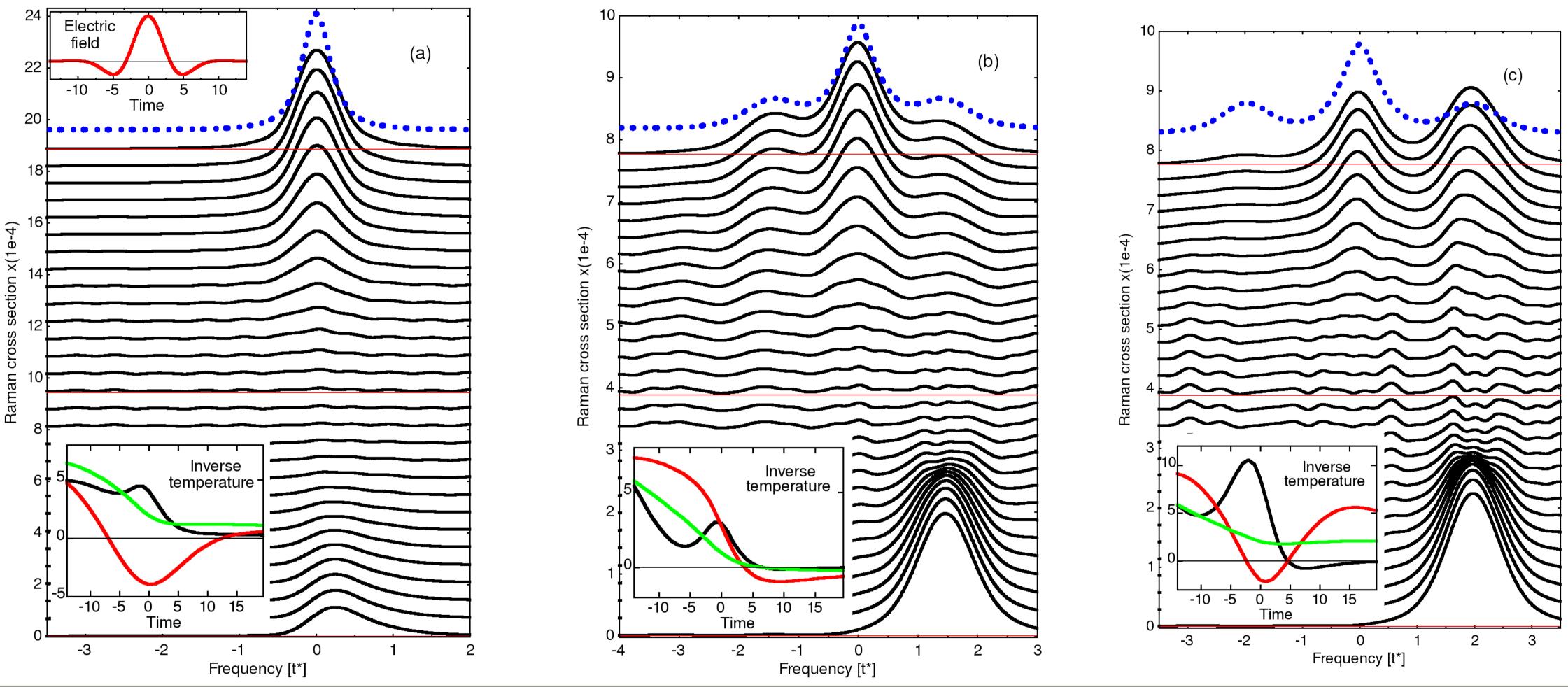


Ultrafast Thermometry

Extract fermionic T from PES and collective bosonic T from electronic Raman scattering

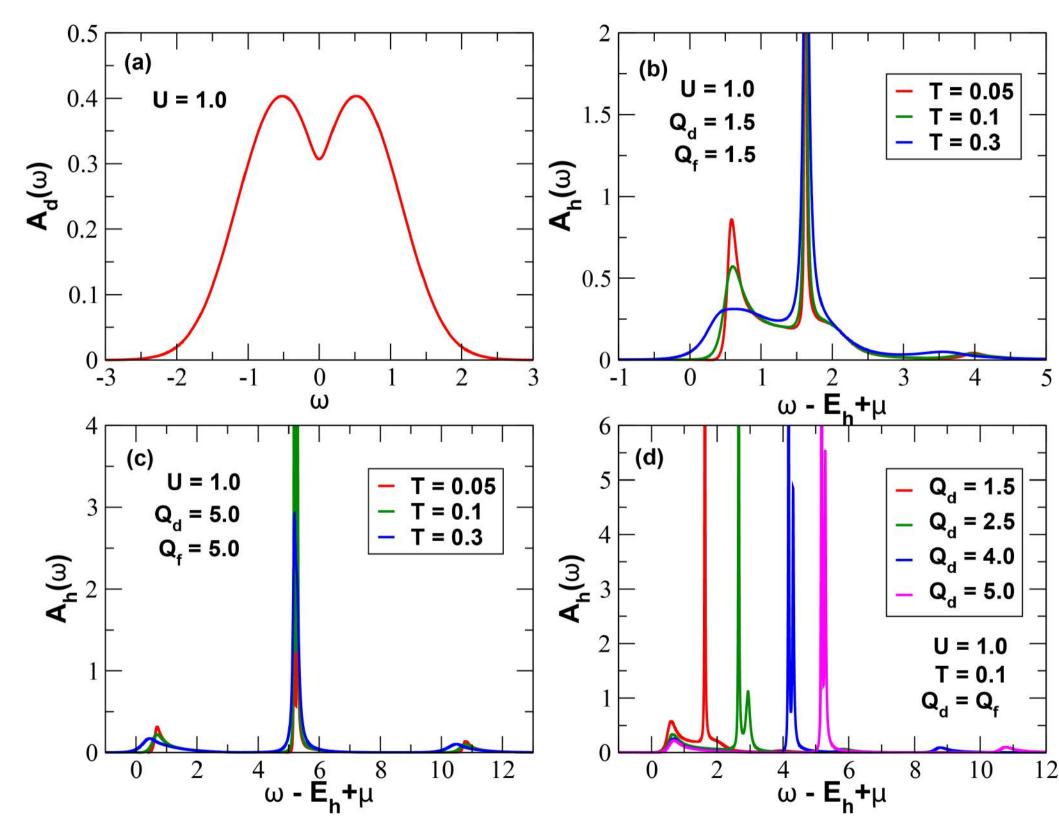
Thermalization occurs when they are the same!

Comparison of T_{PES} to T_{Raman}



Application of similar ideas to XFELS

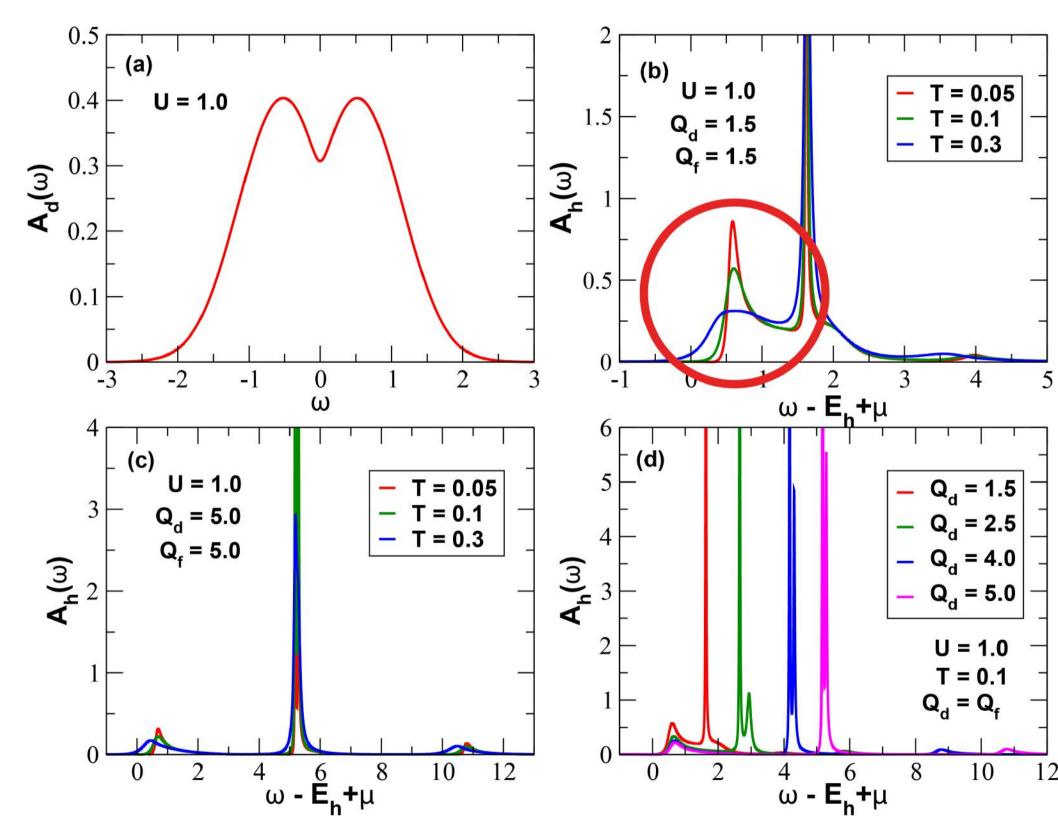
XPS and XAS have satellites with strong T dependence



Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

XPS in correlated systems have satellite features split off from the main peak. These satellites have strong T dependence at high T. One should be able to measure these satellites in pump/probe experiments to determine $T_{eff}(t)$. Similar behavior occurs for XAS.

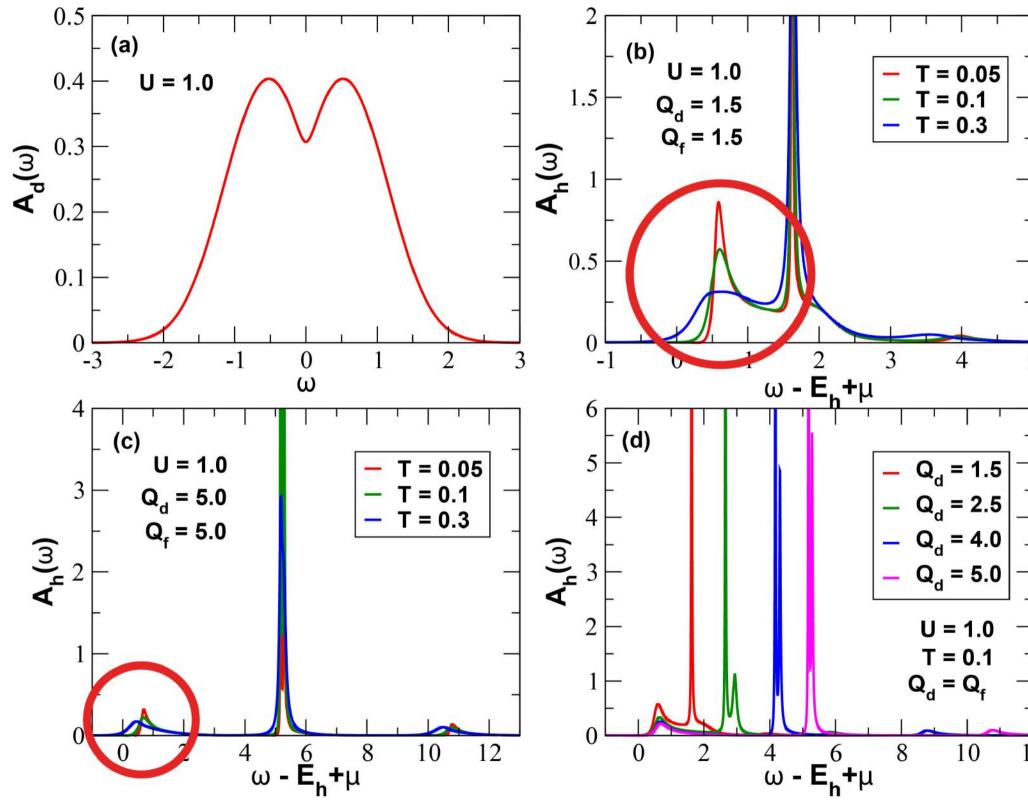
XPS and XAS have satellites with strong T dependence



Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

XPS in correlated systems have satellite features split off from the main peak. These satellites have strong T dependence at high T. One should be able to measure these satellites in pump/probe experiments to determine $T_{eff}(t)$. Similar behavior occurs for XAS.

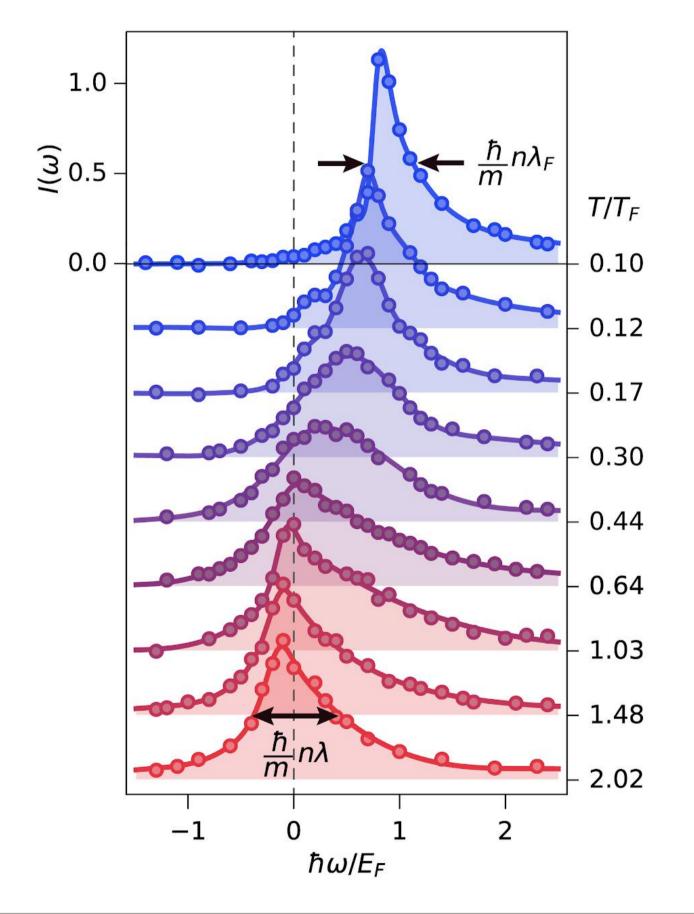
XPS and XAS have satellites with strong T dependence



Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

XPS in correlated systems have satellite features split off from the main peak. These satellites have strong T dependence at high T. One should be able to measure these satellites in pump/probe experiments to determine $T_{eff}(t)$. Similar behavior occurs for XAS.

Spectral response of the Unitary Fermi gas:



Strongly temperature dependent \rightarrow A local thermometer!

Z. Yan, P. Patel, B. Mukherjee, R. Fletcher, J. Struck, M. Zwierlein, arXiv:1902.08548 (2019)

Introduction to nonequilibrium Green's function Autumn School on Many-Body Methods for Real Materials, September 19, 2019

Similar ideas have been used with cold atoms in Martin Zweirlein's group

