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organization of the lecture
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- from DMFT to LDA+DMFT

- Hubbard dimer
- one-band Hubbard model

- multi-band Hubbard model
- building materials-specific models
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Introduction
strong correlations: what are they?



all of physics and chemistry is correlation

Born-Oppenheimer approximation, non-relativistic

Kinetic energy potential energy constant

electron-electron interaction

why is it a problem??
simple interactions among many particles

lead to unexpected emergent co-operative behavior

more IS different
Philip Warren Anderson SCIENCE



emergence Iin social media

formation of polarized opinion-bubbles

yes yes yes
yes yes yes yes




emergence In solid-state systems

superconductivity

high-Tc superconductivity

non-conventional superconductivity

BSCCO-2223, photo from wikipedia

g T : G. Zhang and E. Pavarini,
&3l Rapid Research Letters 12, 1800211 (2018)
o '
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Mott transition orbital order magnetism

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004) E. Pavarini, E. Koch, A.l. Lichtenstein, PRL 101, 266405 (2008) photo from wikipedia


http://link.aps.org/doi/10.1103/PhysRevLett.101.266405
https://doi.org/10.1002/pssr.201800211

bad news: the exact solution is not an option

Kinetic energy potential energy constant

electron-electron interaction

A

Heqja(rlar27 e ,I'N) — anja(rlar.Qa e 7rN)



qguantum N-body problem

O already 1 body is difficult
 uncertainty principle AxAv > %E
T
» described via wavefunction U(r) [(r)]?
* eigenvalue problem & discrete energies HoW(r) = e¥(r)

2-bodies non interacting

* particles are identical and indistinguishable

02 02 01 «fermions Y (r1)Y(re) — W (re)yw(ry)
Hy =Y HY Slater determinant

1




guantum N-body problem, no interaction

U =W(r)V(rs)...¥(ry) + antisymmetrization
(classical/mean field) (Slater determinant)

Fermi gas .
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neutron stars




bad news: the exact solution is not an option

Kinetic energy potential energy constant

electron-electron interaction

A

Heqja(rlar27 e ,I'N) — anja(rlar.Qa e 7rN)



good news: It would be anyway useless

On the other hand, the exact solution of a many-body
problem is really irrelevant since it includes a large
mass of information about the system which although
measurable in principle is never measured in practice.

[..] An incomplete description of the system is
considered to be sufficient if these measurable
guantities and their behavior are described correctly.
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H.J. Lipkin

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction



what can be done then ?



a way out: density-functional theory

1964

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

‘Inhomogeneous Electron Gas*

" P. HOHENBERGT
Ecole Normale Superieure, Paris, France
AND

W. Konni
Ecole Normale Supericure, Paris, France and Faculté des Sciences, Orsay, France
and
University of California at San Diego, La Jolla, California
(Received 18 June 1964)

an avinmnal natantial afs) T s

This paper deals with the ground state of an inter~~+=« alactunn ~oo i

proved that there exists a universal functional of the ¢

pression E= [o(r)n (r)dr+ F{»(r)] has as its minimun
9(r). The functional F[x(r)] is then discussed for
(2) n(x) = @(r/ry) with ¢ arbitrary and 7o — . In bot
relation energy and linear and higher order electronicy
also sheds some light on generalized Thomas-Fermi r
these methods are presented.
PHYSICAL REVIEW

VOLUME 140,
INTRODUCTION

URING the last decade there has been considerable

progress in understanding the properties of a
homogeneous interacting electron gas.! The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 1920’s a different approach, represented by the
Thomas-Fermi method? and its refinements, in which
the electronic density #(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in metals.

systems with short-wavelength density oscillations.

I. INTRODUCTION

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompaneets and Pavlovskii,? Kirzhnits,* Lewis,’ Baraff
and Borowitz,® Baraff,” and DuBois and Kivelson.® The
present paper represents a contribution in the same area.

P ) . 1

N recent years a great deal of attention has been
given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systems (atoms, molecules, solids, etc.) the electronic
density is nonuniform.
It is then a matter of interest to see how properties
of the homogeneous gas can be utilized in theoretical

NUMBER 4A 15 NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

~ W. Kou~N anxp L. J. SHAM
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
TFor the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of }.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for

In Secs. III and IV, we describe the necessary modifi-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.

Of course, the simple methods which are here pro-
posed in general involve errors. These are of two general
origins*: a too rapid variation of density and, for finite
systems, boundary effects. Refinements aimed at re-
ducing the first type of error are briefly discussed in
Appendix II.

IT THE CROITND STATR



1998: Nobel Prize in Chemistry to Walter Kohn




1998: Nobel Prize in Chemistry to Walter Kohn

In my view DFT makes two kinds of contribution to the science of multi-
particle quantum systems, including problems of electronic structure of
molecules and of condensed matter:

The first is in the area of fundamental understanding. Theoretical chemists
and physicists, following the path of the chOdm‘g'anon have become
accustomed to think in a truncated Hilbert space of single particle orbitals. The
spectacular advances achieved in this way attest to the fruitfulness of this per-
spective. However, hen hlghaccuracyls requlrd SO many Slater deter—
minants are rec ue (1 om Cacltls ) to '09')tht’com reenszo e-
comes dlfﬁcult DFT pel erspective. It focuses on
anhies in the eé‘-?)»lel(-)n.-l codmteace 'plnc1pally on the
electron density n(r) of the groundstate. Other quantities of great interest

srovides a comg lementar 2




physics is understanding

S (1972)

Philip Warren 4 August 1972, Volume 177, Numbcr 4047 SCIE NCE

Anderson
Nobel Prize in Physics 1977

There is a school which essentially accepts the idea that nothing
further is to be learned in terms of genuine fundamentals and all that
is left for us to do is calculate. . . . [..] This is then the idea that | call
“The Great Solid State Physics Dream Machine”...

.. . In other words the better the machinery, the more likely it is to
conceal the workings of nature, in the sense that it simply gives you
the experimental answer without telling you why the experimental
answer is true (1980)

(RO Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



a way out: density-functional theory

-1 1 1 Za Ladar

from the ground-state wave-function to the electron density

Kohn-Sham auxiliary Hamiltonian

Bezz [——V2+vR ] Zh

Z "l‘ R / dr’ |:(’l”2/| —I-. Uen(r) + UH(’I“) + ch('r)

(in practice: LDA,GGA,...)




unexpected successes of DFT

Kohn-Sham eigenvalues as elementary excitations!
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band structures, material trends, prediction



unexpected successes of DFT

“the labours and controversies . . . In
understanding the chemical binding In
materials had finally come to a resolution
in favour of ‘LDA’ and the modern

computer” (1998)

Philip Warren Anderson

origin of failures: one-electron picture

(R.O. Jones, DFT for emergents, Autumn School on Correlated Electrons 2013)



big disappointments
KCu

DFT (LDA): it is a metal!
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Experiments: it is an insulator! and above 40 K a paramagnetic insulator



strongly correlated systems

paramagnetic Mott insulators are either metals or
magnetically ordered insulators
in the Kohn-Sham picture

Li | Be

Na [ Mg

D e i e e s e s

Rb | Sr

Cs | Ba

Fr | Ra

La |Ce | Pr I[Nd |[Pm|Sm | Eu [Gd | Tb | Dy | Ho | Er [ Tm | Yb

0010

Ac | Th |Pa| U [Np|Pu|Am |[Cm | Bk | Cf | Es [ Fm [ Md | No

Coulomb-induced metal-insulator transition
heavy-Fermions
unconventional superconductivity
spin-charge separation



ab-initio methods fail...



but it can be explained with simple models!

editorial

The Hubbard model at half a century

Models are abundant in virtually all branches of physics, with some achieving iconic status. The Hubbard
model, celebrating its golden jubilee this year, continues to be one of the most popular contrivances of
theoretical condensed-matter physics.

Capturing the essence of a phenomenon
while being simple: the ingredients of a
top model in physics. Since the early days
of quantum mechanics, many models,
Hamiltonians and theories aiming to
provide a deeper understanding of
various properties of condensed matter
have been put forward — with varying
degrees of success and fame. One

truly legendary model is the Hubbard
model, independently conceived by
Martin Gutzwiller!, Junjiro Kanamori?
and, of course, John Hubbard?® — their
original papers all appearing in 1963. The

refine his model. His ‘Electron correlations
in narrow energy bands’ would eventually
comprise six installments. ‘Hubbard I1I*
became especially important as it showed
that for one electron per lattice site — the
Hubbard model at half filling — the Mott (or
Mott-Hubbard) transition is reproduced.
This is a type of metal-insulator transition
that could not be understood in terms of
conventional band theory (which predicts
that a half-filled band always results in a
conducting state).

The simplicity of the Hubbard model,
when written down, is deceptive. Not only

NATURE PHYSICS | VOL 9 | SEPTEMBER 2013 | www.nature.com/naturephysics

when the field of cold-atom optical trapping
had advanced so far that experimental
realizations of the Hubbard model could

be achieved. A landmark experiment
demonstrated how a lattice of bosonic
atoms displays a transition from a superfluid
to a Mott insulator?, a result accounted

for by the Bose-Hubbard model (the
Hubbard model for bosons). Many other
variants of the Hubbard model, including
the original model for fermions®, have

been experimentally realized by now, a
development that nicely illustrates how a
model can become the target of experiments

523



Hubbard model at half-filling

atomic hoppings atomic

_8d> >4 CioCio t> >4 Cio za_l_UZn@TnZi_Hd_l_HT_I_HU

(13/) ©
A\ *JA\* ,,,,,,,,, A\*/.A\+ 7
‘\-ﬂ*j\ (‘j:/‘\:/‘*-l/ 1. t=0: collection of atoms, insulator
\_ ,"‘A‘\, ' ,-A*‘__ /_)\‘.\ J /.4‘\A >
Wa'n'n'n 2. U=0: half-filled band, metal
WO DO
000De

canonical model for Mott transition



Mott systems: two irreconcilable philosophies?

eimprove exchange-correlation functional

2 aspects are key

egive up DFT and use canonical models

) generic aspects are key)

both right and wrong




how do we connect
canonical models and DFT ?



let us go back to the basics

Hy

complete one-electron basis set!



parameters

Coulomb integrals




In theory all basis are identical

INn practice some bases are better than others

E tabc cb+ E U.,a'bb c cb,cb

aa’bb’
ﬁ,_/
I:I() I:IU

Kohn-Sham orbitals

‘V

E tap C! cb+ E Uga'tb C) Cb/Cb—HDC

aba’b’

flo= FILPA NS



what do the parameters contain”

~

by = = [ e IS (r) (— 59 + o)) 65

Hartree
|
|_ Z r’ r) | 0Bx[n] = Ven (1) + V(1) + Vge(T
) =2 5 [H |7 ) ) )
| |
potential exchange-correlation

Walter Kohn i .
understand and predict properties

Nobel Prize in Chemistry (1998) of solids, molecules, biological
systems, geological systems...

Kohn-Sham equations



weakly-correlated systems

one-electron approximation

A

b Cp — HDC

b cl

N

flo=FILPA N

. . 1
ab

aba’b’

Hyg ~ S 'H, S ~ H"PA

very good approach for weakly correlated systems



why not also for Mott systems ?

H Ztabc cp + — Z U_.qar /CTCZC /C g1
cdc’d’

— E tabclcb
ab

one-electron approximation



high-Tc superconducting cuprates

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7' .«

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen

Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2p,, and farther orbitals. Materials with higher T, nhax have larger hopping ranges and
axial orbitals more localized in the CuQO, layers.

TI2Ba2Cu0O6




electron counting argument

one electron per site

e = —2t|cos ky; + cos k]

2

N
\

I X M I

t'/t==0.2 t'/t==0.4

:

L /NN

energy (eV)
o
\

7 == =




to open a gap we must lower the symmetry

mU=0 mU=2t
™ P

_—~ 2 ™\
?'5’; ; AN //j /\\\

I X M r'r X M I

FDIX KX




methods to lower the symmetry

magnetic/orbital/charge order
spin-glass

Slater insulator

Mott insulators have different properties
than Slater insulators

the gap is only one of them

It iIs not only about the gap



strongly-correlated systems

E tabc cb+ E Uval b ca, a/cb/cb Hpc

aba’b’

I:IO:I:IgDA AI:IU

| o

/\_1 N\ PaN N\
Heg ~ S "H.S ~ Hgubbard—_like

it is the local Coulomb interaction that matters

minimal model for a given class of phenomena

as system-specific as possible



we have to build & solve materials-
specific Hubbard-like models

let us discuss first how to solve them



Hubbard model

atomic hoppings atomic
(43’ > o

at half filling:

1. t=0: collection of atoms, insulator
2. U=0: half-filled band, metal

how do we solve it?



1989-1992: dynamical mean-field theory

map LATTICE problem to QUANTUM IMPURITY problem

local self-energy approximation

® W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

® E. Miiller-Hartmann, Z. Phys. B 74, 507 (1989);
Z.Phys. B 76,211 (1989); Int. J. Mod. Phys. B 3, 2169 (1989)

® A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

®M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)



1989-1992: dynamical mean-field theory

Hubbard model
IA{ = &d S:S:CIO'C’I:O' o t;: S:C}LUC’&"U

(31/)

k-independent self-energy

main difficulty: solve self-consistent quantum impurity problem
Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992).



dynamical mean-field theory

_8d> >4 CioCio > 4 za za_l_UZn’an’li

(it') ©
o =0
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o U/W =0.5
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= 0-
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0=
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Bethe Lattice
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P W: band width

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)



DMFET for real materials

realistic models

. 1
H. = Ztabcj,,@b + 5 Z Ucdd’c’cjzcjlcc’cd’
ab cdc’d’

5

realistic self-

3

N

consistent = IO X

" " 1 ; ’?ﬁ, f.;_,_:i %
quantum-impurity = SEEEFEEA
(Ql) model v 0 vl

L} & e — ~ v . \
- & N . . . .



how does it work?



DMFT for the Hubbard dimer

this is a toy model: coordination number is one

DMFT is exact for =0, U=0 and in the infinite dimension limit



the Hubbard dimer



the Hubbard dimer

— &d Z Nioc — Z (610620 + Cgacla) + U Z nZTnzi




@@ (=0: exact diagonalization

N, S, S.) N S E(N,S)
0,0,0) = 0) 0 0 0
1,1/2,0), = ¢l _10) 1 1/2 £d
1,1/2,0)2 = ch,|0) 1 /2 ed
2,1,1) = chrcl]0) 2 1 24
2,1,-1) = ch,ct,10) 2 1 24
2,1,0) = \/Lﬁ _chcg¢ + CLC;T_ 0) 2 1 2e4
2,0,0)g = \/LE _chcg¢ — CLCQT_ 0) 2 0 2eq4
2,0,0); = apaniy 2 0 2q+ U
2,0,0) = chrch |0) 2 0 24 + U
3,1/2,0); = el ychach |0) 3 1/2 3eq 4+ U
3,1/2,0)s = chyciact |0) 3 1/2 3eq 4+ U

4,0, 0) = CITCLCETC;JO} 4 0 deg +2U




@0 finite - exact diagonalization ~ N-=1

11, 5,5.)a E,(1,5) d.(1,5)
1,1/2,0) 4 = %(\1, 1/2,0)1 —|1,1/2,0)2)  eq+t 2
' |1,1/2,J>_:%(\1,1/2,0>1+|1,1/2,0>2) gq—t 2

U=0 2t




@O finite ¢ exact diagonalization

half filling (N=2)

2,5,5.)q E,(2,5) do(2,5)
2,0,0)4 =b1[2,0,0)0 — 2% (]2,0,0)1 +(2,0,0)2)  2eq+ 5 + ;(U +24(, 5)) 1
2,0,0), :A(\200>1—|200>) 2eq + U 1

3

1




@0 finitc ¢ exact diagonalization  N=3

3,5,5:)a

E.(3) do(3,95)
3,1/2,0), = %(1,1/2,@1%— 1,1/2,0)2) 3eqg+ U+t 2
3,1/2,0)_ = %(1,1/2,@1— 1,1/2,0)9) 3eq+U—t 2

#
U=0

4y



@ —® the local Green function

Lehmann representation

Pl
o /- 1 14+ w(t,U) 1 —w(t,U)
Glaliva) = 7 (iun ~ (Eo(2) — catt—p) L (Eo(2) — eq—t—p)
E(2)-E(1)— -
Bl —
N | — w(t,U) . 1 w(t,U)
vy — (— Eo(2) + U+3eq+t—p) vy — (— Eo(2) + U+3e4—t—p)
E(3)-E(2) — - N

d2ap d

)



“ the local spectral function




@ —® the local Green function

Lehmann representation

Pl
o /- 1 14+ w(t,U) 1 —w(t,U)
Glaliva) = 7 (iun ~ (Eo(2) — catt—p) L (Eo(2) — eq—t—p)
E(2)-E(1)— -
Bl —
N | — w(t,U) . 1 w(t,U)
vy — (— Eo(2) + U+3eq+t—p) vy — (— Eo(2) + U+3e4—t—p)
E(3)-E(2) — - N

d2ap d

)



@ —® the local Green function

1
change basis Cho = 7 (c11 F coq)

G (ivn) = 5 - :
C W) = = | - - - '
1,1 9 ZVn‘I_M_5d+t_EG(O7ZVn) Zyn—l—lu—gd—t—zo'(ﬂ',ZVn)
G“(Bjiz/n) GU(:TTiVn)
| U U2 1
Y (k,iv,) =— A




local Green function

U=0 vs finite U

1

hybridization function

0 t2
F~(iv,) = ,
() Wy — (€4 — 1)



@ —® the local Green function

local self-energy

7 (ivn) = = (57 (mivn) + 270 i) ) = 2 4 o TR
9 2 4 (ivy, +p—eqg— 7)2 — (3t)?

non-local self-energy
1 _U? 3t

Azg.n:_za 7.71_20 7.n —
7(ivn) = 2 (27 (miva) — 27 (0i)) = 5 TRy

modified hybridization function

(.. ) = (t—i_ AZl(iVn))Q
F (ivn) wWn, — (€a — p+ X7 (ivy))




@ —® the local Green function

hybridization function

0 tz
F (1 n) — - ?
(ivn) Wy — (€4 — 1)

modified hybridization function

(t + AX;(ivy,))?

F°(iv,) = , .
(i) Wy — (€qa — b+ 27 (1))




map to a quantum impurity model ?

the Anderson molecule

1 2 1 2

HA = &g Zﬁsa — tz (CZ;GCSO + Clacda) + &4 Zﬁda + UﬁdT’flou

~ same local Green function ?



H self-consistency haif filling: N=2

(24 0 0O 0 0 0\
0 24 O 0 0 0
) 0 0 24 0 0 0
MmEaUD= 0 o o 9, _VBt _va
Hubbard 0 0 0 =2t 244U 0
\ 0 0 0 —V2t 0 244U /
[ cates O 0 0 0 0\
0 EdTEs 0 0 0 0
. 0 0  egtes O 0 0
Bl Utie) =1 0 0 egte. VI /2
Anderson 0 0 0 2t 244U 0
\ 0 0 0 =2t 0 2.

same occupations of Hubbard dimer Es=Eq+U/2=U



@ —® solution: Hubbard vs Anderson

Anderson molecule

o) ' 1

dd(zyn) _Z‘Vn _ (gd — W+ Zlo-(ZVn) =+ F(ST(ZV’I”L))
o

Hubbard dimer
o ( ) 1
Wy ) —- ' '

11 Wy — (€4 — p+ X7 (ivy) + F7(ivy))

I

let us neglect the non-local self-energy



@ —® solution: Hubbard vs Anderson

hybridization function

0 tz
F (1 n) — - ?
(ivn) Wy — (€4 — 1)

modified hybridization function

(t + AX;(ivy,))?

F°(iv,) = , .
(i) Wy — (€qa — b+ 27 (1))




“ Green function U=4t

vs Hubbard
only local self-energy exact




“ DMFT for the dimer

H=¢4 Zﬁia - tz (CJ{UCZU T Cgacl") i Uzﬁ”ﬁu CD_@
10 o i

map to quantum impurity model (QIM) in local self-energy approximation

N ~ "

QIM solver ] l l 5
self-consistency loop | - Jl - 11 .




E(k,w) — Zd(w)

non-local self-energy terms
vs non-local interaction
Uijij



“ non-local Coulomb terms

how important are they ?

H —¢, an tz (010020 + 620610) +U Z M T |

1=1,2
+ Z (V —2Jy — Jy 500/)ﬁ10ﬁ20/ — Jy Z (C;‘rTCuC;eri’T + CE’TCI’W’L'TCQ)
oo’ 1£1/




H non-local Coulomb terms
/ %, 0 0 0 0 0 \ N=2 half fl”lng

0 2ey4 0 0 0 0
A 0 0 2¢ey4 0 0 0
Ho(egq,U,t) =
2(2a, U 1) 0 0 0 2, V2 —o
Hubbard 0 0 0 =2 244U 0
\ 0 0 0 —V2t 0 244U /
[ 2e4+V-3Jy 0 0 0 0 0 \
0 24+ V —3Jy 0 0 0 0
) 0 0 24+ V —3Jy 0 0 0
HNL:
2 0 0 0 2eg+V—Jy /2 —/2
Hubbard 0 0 0 /2t 26 +U  —Jy
+non-|oca| \ 0 0 0 —/2t —Jy 2ed+U)

Setting for simplicity Jy» = 0, we can notice that HN" equals Hy(¢/,, U, t), the Hamiltonian of the Jy =V =0
Hubbard dimer, with parameters €/, = ¢4+ V/2and U'=U—-V.



®—0® on-10cal Coulomb terms

U=V: N=2, effective non-correlated dimer

Strong-correlation effects appear when the local electron-
electron repulsion dominates over non-local terms

If Coulomb interaction independent on site distance map to
effective weakly correlated model



guantum-impurity solvers



“ DMFT for the dimer

H=¢4 Zﬁia - tz (CJ{UCZU T Cgacl") i Uzﬁ”ﬁu CD_@
10 o i

map to quantum impurity model (QIM) in local self-energy approximation

N ~ "

QIM solver ] l l 5
self-consistency loop | - Jl - 11 .




“ gquantum-impurity solver

A — E g Neo —tz (CZJCSJ -+ Ciacda) + &4 Zﬁdg + Ungrnay
O O O

W
Hyatn Hyyp Hioc

hybridization-expansion CT-QMC



H gquantum-impurity solver

hybridization expansion

Z =Tr (e PH=r Y ()

only even orders survive (m=2k)



" gquantum-impurity solver
bath-impurity decoupling

L [ ettt
= dT dT de (T, T)ty 5(T, T
= SUMEETHEES
o (7,7) = (0 Triaup (&2 NI MLl (7)o, (7)) /v

tk o (T7 7_-) — TrlOC (6_B(ﬁloc_uNd)THi1:kcd0'i (Ti)cji(?'q; (7_-2)> 9

o,0



“ gquantum-impurity solver
bath-impurity decoupling

_Z/ dT/ dTZd (T, 7)

Zbath

bath dcl;,o-(Ta 7_-) = det (Fa'k,a(Ta 7_-))
non-interacting hybridization function

the difficult part: the local trace te &(T,T)



feoeooeeeonneeenneeenns I
feooooornnnneneeennnnns [
k=0
T2 T1
Joooo- O._. ....... I
feooooornnnneneeennnnns [
k=1
T1 T2
|_‘. ..... O_|

define configurations




“ gquantum-impurity solver

hybridization-expansion CT-QMC

7 = ch = Z [w.| sign w,

configuration c: expansion order & segments

w, = dT,. d, t.

moves: addition & removal of segments, antisegments,
or complete lines



DMFT for the one-band Hubbard model

_€d> >4 CivCio t> >4 Cio ZJ_I—UZn@Tn’Li_Hd_I_HT—I_HU




dynamical mean-field theory

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)



self-consistency loop

_8d> >4 ’LO‘ Cio > 420 za_I_UZnZTnN_Hd_l—HT_I_HU

(14"

» quantum impurity model (QIM)

QIM solver: QMC, ED, NRG, DMRG,...

self-consistency loop Gad=Gii I




a real-system case: VOMo0O4

VOMoO,

Energy (eV)

Amin Kiani and Eva Pavarini, Phys. Rev. B 94, 075112 (2016)



a real-system: VOMoQOg4




why this cannot be obtained
with static mean-field methods?



comparison to Hartree-Fock (LDA+U)

Hartree-Fock Hamiltonian and bands

ferromagnetic Hartree-Fock

. ) 1
HMF:Z Ek U(§—0m> ’flkg

self-energy

m: magnetization



ferromagnetic Hartree-Fock

2d-tight binding model

e = —2t|cos k,; + cos k]
Y (k,iv,) = U(% —om
mU=0 mU=2t
1 //\\
/\ /1T TN
— <
M e X M I

)



antiferromagnetic case

cuo: -

oo o o o
mU=0 mU=0.5t




Mott transition: HF vs DMFT

LDA+U LDA+DMFT

Hartree-Fock DMFT

b o
2 (w)

see also my lecture notes in correl17




multi-band Hubbard model



-band models

DMFT for multi




In theory, more Iindices

YES

Jolly good show!

You converged




in practice, QMC-based solvers

computational time

[imited number of orbitals/site
finite temperature

sign problem
some /nteractions are worse than others

some bases are worse than others

we need minimal material-specific models



strongly-correlated systems

H, Ztabc cb+ Z aa’bb’ cl: ch,cb Hpe

aba’b’

flo—FLDA NS
PaN /\_1 PaN PaN N\
Heg ~ S "H. S ~ Hgubbard —like

minimal model for a given class of phenomena
as system-specific as possible

build & solve these models



model building



chose the one-electron basis

LDA Wannier(-like) functions

LDA, GGA & so on: minor differences in this context



why LDA Wannier functions?

span exactly the one-electron Hamiltonian
can be constructed site-centered & orthogonal & localized

natural basis for local Coulomb terms
very good for weakly correlated systems

information on lattice and chemistry

LaTiO,




why LDA Wannier functions?

AU
A, = Hy + iy — 0PN 4]y — |

iIf long range Hartree and mean-field exchange-correlation
already are well described by LDA (GGA,..), AU is local

LaTiO,




heavy electrons, light electrons

O light electrons DFT (LDA, GGA,...)

‘ heavy electrons —} AU correction, DMFT




self-consistency loop

YES

p

&

Jolly good show!

You converged




to downfold or not to downfold?

energy (eV)
©® ® A M O N A O ®
\(

rest

m integrate out light electrons




massive downfolding: no DC correction

around mean-field approximation
Hy =UY iy
)

Hpc =U Z (”flnnu + M1 — niTnu)
i
T_LZ'J — n/2
n

lec — gUZ (ffm + 1 — §> — 5,u]\7 — const



should we downfold light electrons?

no downfolding

more parameters & Hpc
WF more localized

massive downfolding

fewer parameters & no Hpc
WF less localized




how important is the basis localization?

local or almost local

strong correlations arise from strong local Coulomb

[y 1
nzp{zp/ —/drl/dr2 wzna rl)wjpa (r2) % p’ o’ (r2)¢z 'm/’ a(rl)-
r; — 1o

wimcf (r)wi’m’a’ (’P) ™ 5@;,;/5(7“ — CFL)




extreme localization

methods based on space tiling functions inside the sphere?

Pabal



screening effects

1
0750y = [ [ Do (005 (12) o (12) (1)

O light electrons DFT (LDA, GGA,...)

‘ heavy electrons _} AU correction, DMFT

screening: approximate schemes such as cRPA, cLDA




LDA+DMFT

e

YES

Jolly good show!

You converged

Y (ivy,)

G(ivy)




what can we be done?

orbital order Fermi surface spin-orbit

| LDA+SO+DMFT

S-Pbca },
cLDA '

conductivity response functions spin waves
£ X
Oab Sr,RuO, 2
10 | T=150 K ' ¢

o

NoOWoAs
S O

Energy (meV)

o




do we need it ?



details matter!

week ending
VOLUME 92, NUMBER 17 PHYSICAL REVIEW LETTERS 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d! Perovskites

E. Pavarini,1 S. Biermann,2 A. Poteryaev,3 A L Lichtenstein,3 A. Georges,2 and O. K. Andersen”

A=200-300 meV a small crystal field plays a key role



our DMFT codes for materials

..
H — - S S ; tZZ /CT C-/ /
y y o m’ TTmo v m’'o 16384

1w mm' o

- Uznianimi 8192 |
+ % Z (U — 2J — J6O-O-/)nimo.nimlo./ fgz 4096 |
im#Em’oo’
— [ Z (C:rnchn’icm’Tcmi —+ C%Tckicm%cmw) 2048 |
m=£m/
1024 - - -
1024 2048 4096 8192 16384
# CPU
g oooZIAS 5 | | | IHF
7:/100 ;
O
DMFT and cDMFT |
. i C
quantum impurity solvers: S 4]
general HF QMC 3

general CT-INT QMC
general CT-HYB QMC




an example:
SroRuQq
and its Fermi surface



the case of SroRuQOq

0.1
\
: N

£ N | N\
> -0.1- xz,yz xy '
Y 02 Q\

-0.3 — %
Z I M X r P N

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



tog Or egonly models

A A~ 1 ~ A
H, = — g tab c:flcb + 5 E Udia'bb clcz,cb,cb — Hpc
ab aba’b’

* Ql size: 3x3

o i;éz mm’

T __ITLDA
HO_He

+ U Z ﬁzmTﬁzm¢ -+ 1 Z (U — 2J — Jéa,a’) ﬁimaﬁim’a

. 2
Tm 100’
m==m/’

T T
—J Z ( zmT zmi zm’T zm’¢ _I_szT zm¢czm’¢ zm’T)

derivation: www.cond-mat.de/events/correl11/manuscripts/pavarini.pdf



however, spin-orbit interaction important
Ql size: 6x6

! 300 ~/
2 :2 ,2 ,mama zmaclmU

mm’ oo’

T35 Z Z ZUmmPP lma zmcy/cip/cf’cipcr

mm' pp’ oo’

local spin-orbit interaction

I 2 : 2 : [
HSO_E :HSO_ )" mama lmaclm/U’

inw mom'oc’



with SO, everything more difficult
larger (6x6) Green function matrices, QMC sign problem

basis that diagonalizes on-site Hamiltonian/Green function
reduces sign problem

0.5 |

m (T)

1 1 1 . i .—
20 30 40 50 60 70 80
T (K)

0

A. Flesch et al., Phys. Rev. B 87, 195141 (2013)



Fermi surface SroRuQOq

0.1
0
-
x
> |
g_) -0.1 XZ,yA
0 e

I'N

‘0.2' /
-0.3+——> /

e

Al




DMFT — Fermi surface SroRuQq4

(e 0 00 5 5
0 & -% % 0 0
|0 oo, %m0 0
0 - o e 0 0
0 0 0 g, &
\—’“TX 0 0 0 -% ¢ )
effective crystal-field effective spin-orbit coupling

ECF=Exz/yz-Exy>0 }\

Axy Z
ECF * ecr +Aecr A * A +AN

2.(0) changes local Hamiltonian



the LDA+DMFT Fermi surface

L DA L DA+SO
SCF A
L DA+DMFT LDA+SO+DMFT
SCF

v

ccr +A\eck

~2ECF

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



? a crucial mechanism is still missing 7

Is the Coulomb interaction spherical?

the bare Coulomb interaction is spherical
but the screened interaction has the symmetry of the site

/
ecr +A'ecr ~ ecr

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



reduced crystal-field enhancement

*Dsn Coulomb term reduces crystal-field enhancement

AU (eV)
AU= ny,xy-sz,xz

ecr +A'ecF ~ ecr
A +AN ~2

G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)



DMFT

dimer strong-correlations are local

OO -0 @O i=v O=0O=0-0O

Hartree-Fock DMFT

multiband P




DMFT for materials

basis choice light & heavy electrons

o @

downfolding, localization, spin-orbit coupling &
double counting & screening non-spherical U







