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Diagrammatic Monte Carlo for connected Feynman diagrams
solves the computational complexity problem for fermions*
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Fermions do not
have a sign problem

Personal viewpoint (; standard thermodynamics):

If it can be measured it can be calculated on classical computers with the same accuracy ...

we just don’t know yet how exactly in many cases ...®



Diagrammatic Monte Carlo for connected Feynman diagrams

- How to compute contributions from high-order diagrams without systematic bias

- Why this makes sense to do even for divergent series



Generic Diag MC case:
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Integration variables

A

term order different terms of
of the same order
(say, topologies)

Contribution to the answer
or weight (with differential measures)

Sums of multi-dimensional integrals are typical for diagrammatic QFT expansions, but
can originate from path integrals, impurity solvers, or any other series expansion



Polaron problem:

H=H + H

particle environment

+ H — quasiparticle

E(p), m., G(p,1), ...

coupling

Electrons in semiconducting crystals (electron-phonon polarons)
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Graph-to-math correspondence:
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G(p. ZZﬂjdxldsz dx, D, (&%, %, K X, p.7) where X=(@,.7,.7,)

D is a product of functions
for propagators and vertexes

Diagrams for: 5

<bq1 (0, (7) a,, , (7) a;_ql_qz (0) b; (O)bj;2 (0) )
MC in the space of

Feynman diagrams

there are also diagrams for optical conductivity, etc. is an endless fun!



Frohlich polaron = single electron in ionic semiconductor

H =Y e(p)aa,+Y o(p)bb,+1/2)+Y (V,a,_a,bl +hc)
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G(p,r)zz P

Feynman
digrams - /

G([l;,r) = 2;_[”617)261)21( d)rcn D, (é‘;)rcl,)rcz,K )rcn, lrQ,T) where )rciZ((r]l.,z'i,Ti ).

D is a product of functions
for propagators and vertexes

o r r [ [ o .
Define v = (n, f , {x. } > D, Z') as a point in the configuration space

l

Sample (5 = Z DV by generating points !/ from the probability distribution OC| DV|
1%

/\

Type A Type B
changing existing variables changing diagram order
(diagram order is fixed) and adding/removing variables



Type A: changing ”external” time (the simplest version)

1

. p .

I
'
z-last 4 2

. -3 — - ,_
New time: Exponential probability density P (7';v) = &g(p)e eP)(T —Tiast)
Transformation method: ‘L" = Tlast — ln(r)/e(ﬁ)

Always accepted, R=1



Type B: changing diagram order (one possible example)

Insert/Delete a phonon line (increasing/decreasing the diagram order by one)

q,

=P D P =P » P
7
D

| 4

prob. to call increasing and decreasing updates are P,,_,,,+1 and P,4+1-n

In Insert: Select one of the 2n + 1 electronic intervals at random (let it be interval a of
length AT,) and seed T, uniformly on this interval; prob. p = 1/[(2n + 1)At,]

Use distribution Q(75,J,; V) to seed new variables 75, 7

- In Delete: Select any of the 1 phonon lines at random, prob. p = 1/n, and propose to

remove it



Type B: changing diagram order (one possible example)

Detailed Balance equation:

> 1 ->n+1 1 n+1-n
D Qs g, v n =D —— R
v pn—>n+1 ( 2 CIZ» ) (2n+1)At, vrpn+1—>n (n+1)

Solution for acceptance ratio in Insert

Rn—»n+1 — Dn+1(72 ,Té,fiz ) Pn+1-n (2n + DATa
Dp(..) Q15, G V) pypy, (+1)

Solution for acceptance ratio in Delete

n—n—1 — Dn—l ()Q(T2 '? Q2;V) pn_1_>n n
D, (2'2,2'2 ' qz,...) Doy (2n—1Art,



Type B: changing diagram order (one possible example) Recall that |V (q)|%= 2V2na
q2

2 .
Dn+1 _ |V(q )|Ze—w(’f:’z—’fz) e_AE(Té_TZ) ququ(p Sln(H) do
Dy ’ (21)3

CI% — 2(p)q,
2m
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Possible distribution
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with ¢, =VZ2mw

Not perfect, but FAPP “good enough”



Normalization (not a problem in DiagMC = no sign in denominator ever):
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histogram /1, oc If(x)dX/

bin

special “bin” where
xX)dx =1
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bin
is known exactly )i

Normalized histogram —2%] 4
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Normalization using “desined bin”:
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Normalization example (statistics is that for G diagrams)

Define “normalization” subspace and compute some physical answer in it

o 2m ,
Gnorm = ] |G()(p0, T)l dt =— (]_ — e_Topo/zm)
0 Po
Do it analytically (if possible) or numerically (to high accuracy)

Collect statistics for your answers as usual
Ayc = Apc + 4y
MC estimator for quantity A, say
1/A; forT € bin; of size A;
and record the number of configurations in the normalization subspace

Znorm =2Znorm +1 when T € (0,75) & n=20

Properly normalized physical answer: G
norm

A = Aymc

Znorm




This is it! Collect statistics for G( p, T), Monte Carlo estimators for energy,
group velocity, effective mass, number and distribution of phonons in the
cloud, or some corr. function.

Analyze it. For example: G(p,T—>®) — Zpe—E(P)f

Quasiparticle energy

. 2 probability of getting
L p _‘ Cp | a bare electron

InG,(z)




Analyzing data: polaron energy estimator [ In the 7 —> 90 limit ]

G XyDy

standard form of average over an ensemble of G-configurations. For every G-diagram,

In the limit of large T we have E), = ; this expression has the

the dependence on imaginary time is given by (recall “fancy” external time update)

D, o 72"e~ET |eading to MC polaron energy estimator

2n+1 n
E,=1"1 [Z e(pAT; + Z w(g;)At; — 2n — Zn]
J=1

i=1

dD v EyD _ : :
because ——*=EyD, and E), = E ; ~ . Similarly, one can derive estimators for
v~V
group velocity an effective mass
. 1 2n+1 A ( 1 ) 1 7.,
vy = — E Aty = = —— =1
Vo omr L= Pifti m*), m 37

[ Inthe T —> 0 limit ]
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FIG. 8. The average number of phonons in the polaron ground
FIG. 4. Bottom of the polaron band £, as a function of «. The state as a function of «. Filled circles are the NIC data (calculated to

error bars are much smaller than the point size.

the relative accuracy better than 107 2), the dashed line is the per-

turbation theory result (4.1), and the solid ling is the parabolic fit for

the strong coupling limit.
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Many-body case is similar, but the expansion (for fermions) is not sign positive.

This is great!

FSP does not apply to connected Feynman diagrams because

- There is no dependence on the particle number or system volume
(thermodynamic limit directly)

- Series convergence i1s only possible for fermions because different diagrams cancel

each other = sign blessing I

- Fast summation of topologies with the help of determinants = sign blessing I1

All by itself the coupling constant U " can never compensate for

the factorial number of diagrams at large diagram order n. If not for
the fermionic sign, the series of connected diagrams would always diverge!

sign blessing I:

(similarly to




Computational Complexity Problem (CCP)

[Revelent question: How easily can one improve the accuracy of computed answers?]

Let Q and £ be the quantity of interest in the thermodynamic limit (TL) and its
desired relative accuracy & = |5Q /O

, respectively.

The numerical scheme is said to have CCP if the CPU time, [ o » required to computeQ

with accuracy & diverges faster than any polynomial function of el 5w .

The problem is considered to be solved if Int 0 «ln & -

Why thermodynamic limit? Because in finite size systems with N = L? particles the ultimate
-2
scaling of 7, (N) (if it can be reached in practice) is always subject to CLT with lo (N)xce




CCP and Diagrammatic MC

DiagMC has no sign problem, but what about CCP?

n
Define approximation Qn = Zb [ g / (truncated sum)
j=0

For convergent series ‘(Q — Qn_1 ) / Q‘ oc g" with g < 1, and accuracy £is reached at
n oclne/lng

For fermions, all order-n contributions can be computed in time [R. Rossi PRL’17]

#
To (n)oce™ (sign-blessing II)

and the CCP is solved! In ly n, oC Ing™’




When series converge: 2D Fermi-Hubbard model at U /t=2, T/t=0.125, n=0.87500(2)

1.774215

E/ N =1.25992(6)
1.774210 }

>

o 1.774205
Pt

o

c

QO >

() = 1.774200 ¢
QO N

= C

L o

1 O

1.774195 |

b
-

'S ' ' '

1.774190

6 7 8 9 10 11
Truncation order R. Rossi, PRL ‘17

Six to five digit (depending on quantity) accuracy for a finite-T answer!



Sign alternating contributions

Sample or sum?

(Diagrammatic series for fermions converge, despite having about
n! of them at order n, only because they cancel each other)

Consider Z = Y™ . D; Sign; with M > 1 and relatively uniform distribution of weights

and signs such that the net resultis Z~1. We assume that t.p; > M, butis very long.

Need to know Z with accuracy ¢ = % <1

/\

Sample Sum

in M operations (one random “sweep” over tcpy =M t '
the configuration space) the MC estimate will exact answer

be 6Z~Z\M > Z

By CLT the error will subsequently decrease V4
as e~ VM /M /tcpy. Toget£=52—z< 1 one g

needs

Definitely sum!




Convert A =D [[[dvdb,K &, D, (% %K %,.& )
n=0 ¢&

in to A(y) Z”jdx de (xl,xz,K )rcn,§)

with ﬁ’(xl,xz,K xn,y) ZD (xl,xz,K xnaf )’)

\ All topologies are summed up efficiently to
account for significant sign cancellations

- Codes become very easy to develop - change n and shuffle x;

- Configuration weights are expensive to compute, but efficiency
is radically improved

- Will global updates help? Likely yes



Spending CPU on performing “smart” global updates

Local or Global updates?
The key advantage of local updates is in R~1)

M

Let D, =D(xq,...,x,) = D(xq,...,xy; &)| with M > 1. Then, making local

£=1

updates x; = x5’ is not optimal because getting an uncorrelated set {x;’} will

require L > n updates %
““Learn” how to propose global updates {x;} - {x;}

with acceptance ratio R~1

“"Heat bath” idea + 'machine-learning” algorithms to approximate

D({x;'})/ D({x;}) with easy-to-compute exp{—H({x;"})+H({x}}



When bare series do NOT converge

v

Do MF/HF/RPA/GW/NCA Change research topic Keep fighting at your own peril
and publish and solve unsolvable (may be)!



Bold (self-consistent) Diagrammatic Monte Carlo

Diagrammatic technique admits partial summations and self-consistent formulations

No need to compute all diagrams for (5 and W:

—— = Wm&uﬁoﬁ‘ﬁ%@@@—* + ...
G(p,7) S22 @

Calculate irreducible diagrams for>, ,[ 1 , ... to get (7, W, .... from Dyson equations




One possible scheme: G°W- expansion

Dyson Equation: == = > +

Screening:

In terms of “exact” propagators




Hubbard model: Build diagrams using four propagators:

(contact potential)

\.’{" \’ ﬁ N
7N A N 4
7, T, x 7 T
g Wi
0o Q.. O L Y v
Bo'= AN+ A= t =\ F yr—\"2xj ¥ N "
:G y:lh_o MY = 8,0 B Diagrammatic elements
The only triple-couting (at.the lowest order)
X - + Z ):_:“.C.i =Ud(r,—,)+W. N1, - 1))
5 U
Go = - , W=eouoo-—--U,
m o 1 3 GSTO)EO. ' 1 [ U'H

L et et
P

T TR
An example of a . diagram\ /

U




Fully dressed skeleton graphs (Heidin):

— O

_—— e @.-

®
O



Bare or “dressed” series or skeleton sequences?

- Taylor series = theory of analytic functions & resummation techniques
[work outside of convergence radius]

- F

line 1N diagrams are analytic; no self-consistent loops

- Same graphs as in bare, just a much smaller set = # of irreducible graphs at order n
is smaller by a factor of about 1/n for each “dressed” channel: GlvslG,,, WivsV

One can simulate higher orders faster

- F

iine are readily available from tables > as fast and easy, as intrinsic

- Bare series for long-range interactions are ill-defined, e.g. for V.(q) = 4re’ /q2
the 2d-order bubble diagram involves Id3qMC2 (q) » . Need to screen, or sum
up all bubble chains.



- Different expansion parameter: consider a dilute gas with large V. Define
a pair propagator[ =V +V (GG)F based on ladder diagrams, and arrive

at the techniques where expension is in powers of density, not V.
3 — Q 4 @ 1
. n : n2

Con. for skeleton (despite having well defined Luttinger-Ward functional):

- Skeleton sequence for divergent bare series will converge to the wrong answer!

Vg

- dress lines only partially by low-order bare or skeleton graphs

- do Taylor series for the rest using an auxiliary parameter éj



Shifted action tools

Original setup: § — (/7[}0_1 @’@rﬂim [l/7, W]DB—)DMK}O—I @’E@Smt [W, l//]

Bare series produce Taylor series in £ and the physical answer corresponds to & = 1

K
=l k —
Introduce S§ (A) = l//GA @(D-F Z 5 @Eﬂk @E@Sim [l//, W]
k=1
Unphysical, in general, with formally arbitrary set of functions A i » but if we demand
K
-1 o~
G, =G,'+ D A,
k=1

then at £ = | we will recover the physical action identically S =l ( A) =9 . Proceed with

Taylor series expansion in & but it’s a different series because of counter-terms {A I }

- If An are based on Zn [V, Go ] diagrams, then we expand on top of partially dressed G
- If An are based on Zn [V, G A ]diagrams, then we deal with skeleton dressing

- This setup can be generalized (with the help of Hubbard-Stratanovich transformation)
to partial or skeleton dressing of interactions, ladders, etc.



When series diverge or convergence is slow

Recall
Complex plane Complex plane
A A A
pole | _ pole E >>>>>>>>>>>>>>>>>>>>
. o
| uzu
4* » mmemeeeee- giainiuinks el Aalaiaiel *---‘-----»
U i >
\ Lou
branch cut / | branch cut E
This is just a cartoon analogy, in shifted action we change the “origin of expansion”

in the functional space, and £ =0 may not be even physical



When series diverge or convergence is slow

Complex U plane o
u. 1
Conformal mapping: - —» |:> 7= —U
FWU)
Generalization =Pade 7 =———
P,U)
F (a,b,c,U
F’ :> = P q( )
U F(a',b',c\U)

Hypergeometric functions

Borel, conformal Borel, never-heard-of-method ...

' Complex z plane

{k

zZ(U)



When series diverge or convergence is slow: 2D Fermi-Hubbard model

S £ [W, o= é: ] (optimize for best convergence in the atomic limit)

Sly]

Divergent series

] E ------- ‘-}"—v—f - -  oEEEEEEY

—~0.3f U :

3 0.4} 04F —_— ]
) ; i

E —0.5F <0.5fp"===="" 7"'?-“* ------ 4

~0.6f Sly] : -0.6F S:ly.,x,, ] :

12 3 4 5 6 1 I 3 4 5 6 7

Expansion order Expansion order

W. Wu, M. Ferrero, A. Georges, E.Kozik, arXiv:1608.08402



When convergence radius is zero & series are asymptotic (unitary ultra-cold Fermi gas)

Quantitative understanding of series divergent behavior

. c n . dg Z(g) _ dg (n+)Ing+InZ(g) saddle-point in g
Z(8) = ;g 4 = 1, _Nz—ﬂ'l g"+1 B 2—72-1@_ = method for large exp.

— ~So[w ]-&Sin[v] . dg =So[w]-8Sin[w]-(n+D)Ing saddle-point in g and
Z(g) IDW@ = z,= NZ—ﬂ'i[ﬁDV/@ = bosonic field @ (after

Hubbard-Stratanovich
transformation) for large
exponent

L. N. Lipatov, Sov. Phys. JETP 45, 216 (1977)]

- Can be generalized for partially summed and skeleton series
- Suggests efficient resummation technique & uniqueness of Z(g)

- “designer” conformal Borel transforms series from asymptotic
- to convergent!

R. Rossi, K. van Houcke, F. Werner ‘19



When the convergence radius is zero: unitary Fermi gas

Fermions with strong “zero”-range potential leading to large s-wave scattering length ¢ ¢

Molecular BEC ? C Fermi superfluid ?

Unitary limit: k g —> 0
In this case k p and & are

the only length/energy scales

Skeleton diagrammatic series are asymptotic with leading divergence (n !)
but are subject to the series resummation technique

1/5

b




Real thing, not a cartoon!

@@_@M

- - — :.-r—._ - e i ,'4’—;:
e e Lot ciAe 4
W

e

= &S L
= “&% ‘fi\a“

tiny 106 fraction %;j)f = 7&\%&%\ (



Equation of state for the unitary Fermi gas

T/E, = O 2 (superﬂuld transition isat 7. / £, = 0.16

17.5 T 17.5

bold - conlormal Borel (mis work) »—e—-
Lindeloef (2012)
MIT experiment +—@
17 + 4 17
16.5 | 4 165
3
nA
16 | 4 186
o
155 | 17 15.5
15 L A A ' A ' L L ]5
1 2 3 4 5 6 7 8
max order

R. Rossi, F. Werner, K. van Houcke (private comm. ‘16)



If you can
- compute enough orders (say n~10; billions of skeleton graphs) and
- know what to do with them

then any interacting Fermi system can be solved accurately



Conclusions:

1. For convergent and subject to re-summation series, Diag.MC solves the computational complexity
problem ( fio¢ (g™ ¢ ) =2 correlated fermionic systems can be addressed with systematically improvable

accuracy. What we lack mostly, is understanding of the model analytic properties in the complex plane.

2. If item 1 above is understood, then the possibilities are unlimited !

- Hubbard model (need better formulations near half-filling - second fermionization,
dual fermions, parquet, ...
- Resonant fermions (develop DiagMC for superfluid states, explore polarized gases, move
away from unitarity, ...)
- frustrated magnets (unique method for the cooperative paramagnet regime (can do pyrochlore), but
need to explore alternative formulations for T<<J, develop SU(N) schemes, ...)

- interacting topological materials (ready to explore stability bounds and phase diagrams)

- Real materials? In progress (Simons Collaboration on the Many Electron Problem)



Type A: changing “external” time (another, more fancy, version)

Notice that D o« 72"e"ET where E = 1|2 1 e (p;)At; + 21 (q;)A7]

P = (Et)*™eETE but generating random numbers for large n is not easy.

Instead, use Gaussian P = e~ (Et-2nm)*/4n /N 4mnn (reject negative 1)

Acceptance ratio

/ N2 (e ey2
R = exp {Zn In (T?) — E(T, . T) + (ETr 2n)4n(ET 2n)

}zl forn>1



Type A: changing internal time

1. Select any electron interval except the last one at random

Ee_E(Tc '_Ta) 2 2

2.Use P(v;7')= F o With E = Po__ P
I—e " 2M  2M

+ () to seed new variable

T'=1, —ln[l—r(l—e_E(T”_T“))]/E

Always accepted, R =1



Type A: changing internal momentum angle

191 =19l

Ta Tp

1. Select any phonon line out of n interval at random

2. Use simple exponential in cos(6) distribution P(7’; v) < exp{Acos(0)} to seed

new polar angle 6 and use @ = 2m rndm() to seed a new azimutal angle (both

relative to a fixed vector (p) = (1, — 7,) " f;b p(t)dt+q.

This setup follows from the diagram weight related to the updated interval

1 T N - > ( — a) =\ 2
E == |1 (@) + G — §)? dr| = const + =2 )
-
Momenta for g=0

Always accepted, R =1



Type A: changing internal momentum modulus

~

—>[|

gl - g

el
'E'QL

Ta Tp

1. Select any phonon line out of n interval at random

f— )2
2. Use Gaussian distribution IP(T'; V) & exp {— (qs—gO)} to seed new modulus of
momentum transfeer q'. Again, this follows from the diagram weight related to the
T
updated interval £ = —[f b @B() + G — §)? dT] = const + S a)( '— qo)2

where q,=(p)q/q.
For unlimited Gaussian, we simply reject negative values of g, to make sure that q'is

always positive we need to use the error function. Either way

Always accepted, R=1



Type A: changing local “topology”

1. Select any electron interval except the first and last one at random

2. Propose to swap its interaction vertexes places (electron momentum changes from

P to p'=P+qq-qp)
Acceptance ratio

R =exp{— (t, —1)[e®@) — ) + w, + wp]}



