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Diagrammatic Monte Carlo for connected Feynman diagrams 
solves the computational complexity problem for fermions* 

Sign-blessing I: Feynman diagrammatic expansions converge or can be resummed efficiently only if same order diagrams 
cancel each other 

Sign-blessing II: Sum of all connected topologies carry some properties of fermionic determinants 
(n! terms in n3 operations) Æ efficient summation of all topologies

*for convergent or subject to resummation series                                                            

Personal viewpoint (at least at the level of standard thermodynamics):

If it can be measured it can be calculated on classical computers with the same accuracy …                       

we just don’t know yet how exactly in many cases …/
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Fermions do not 
have a sign problem 

Fermionic sign problem? Ask a voltmeter what it thinks about it! 



Diagrammatic Monte Carlo for connected Feynman diagrams

- How to compute contributions from high-order diagrams without systematic bias

- Why this makes sense to do even for divergent series  



Generic Diag.MC case:  

term order different terms of
of the same order
(say, topologies) 

Integration variables

Contribution to the answer
or  weight (with differential measures)

Sums of multi-dimensional integrals are typical for diagrammatic QFT expansions, but
can originate from  path integrals, impurity solvers, or any other series expansion



Polaron problem:

environmentparticl couplinge     H HHH � � o quasiparticle
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Electrons in semiconducting crystals (electron-phonon polarons)
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electron phonons

Green function: †  -  †( , ) ( ) (0)    
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 Sum of all connected Feynman diagrams
Positive definite series in the                 representation
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Graph-to-math correspondence:

D is a product of functions
for propagators and vertexes
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there are also diagrams for  optical conductivity, etc.

MC in the space of 
Feynman diagrams

is an endless fun!
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Frohlich polaron = single electron in ionic semiconductor
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D is a product of functions
for propagators and vertexes
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 ¦Sample                          by generating points      from the probability distribution             Q | |       DQv

Type A
changing existing variables

(diagram order is fixed)

Type B
changing diagram order 

and adding/removing variables
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Exponential probability density

lastW

Always accepted,   

Type A: changing ”external” time (the simplest version)

Transformation method:   

New  time: 



DQ

Insert/Delete a phonon line (increasing/decreasing the diagram order by one)
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Type B: changing diagram order (one possible example)



Detailed Balance equation:

Solution for acceptance ratio in Insert

Type B: changing diagram order (one possible example)

Solution for acceptance ratio in Delete
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Type B: changing diagram order (one possible example) Recall that  

Possible distribution

Not perfect, but FAPP “good enough”
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Normalization (not a problem in DiagMC = no sign in denominator ever):
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Normalization example (statistics is that for G diagrams)

Do it analytically (if possible) or numerically (to high accuracy)  

Collect statistics for your answers as usual  

and record the number of configurations in the normalization subspace  

Define “normalization” subspace and compute some physical answer in it 

Properly normalized physical answer: 



This is it! Collect statistics for                , Monte Carlo estimators for energy, 
group velocity, effective mass, number and distribution of phonons in the 
cloud, or some corr. function. 

Analyze it. For example:
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Analyzing data: polaron energy estimator W of[ In the               limit ]            

W of[ In the               limit ]            



Not Landau Pekar limit yet: 
broad superposition of 
phonon-number states, while 

*(17) / 1000m m !

A. Mishchenko, B. Svistunov, A. Sakamoto, NP,  ‘98, ‘00 



Many-body case is similar, but the expansion (for fermions) is not sign positive.

This is great! 

FSP does not apply to connected Feynman diagrams because

- There is no dependence on the particle number or system volume 
(thermodynamic limit   directly)

- Series convergence is only possible for fermions because different diagrams cancel
each other = sign blessing I

- Fast summation of topologies with the help of determinants = sign blessing II

sign blessing I:      All by itself the coupling constant         can never compensate for 
the factorial number of diagrams at large diagram order n. If not for 
the fermionic sign, the series of connected diagrams would always diverge!
(similarly to 

nU



Computational Complexity Problem (CCP)
[Revelent question: How easily can one improve the accuracy of computed answers?]

Let      and     be the quantity of interest in the thermodynamic limit (TL) and its 

desired relative accuracy                             , respectively.

The numerical scheme is said to have CCP if the CPU time,      , required to compute     

with accuracy     diverges faster than any polynomial function of                       . 

The problem is considered to be solved if                              .
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Why thermodynamic limit?  Because in finite size systems with                    particles the ultimate  

scaling of                 (if it can be reached in practice) is always subject to CLT  with 
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CCP and Diagrammatic MC  

DiagMC has no sign problem, but what about CCP? 

For convergent series                                             with            , and accuracy      is reached at

ln / ln gnH Hv

1ln lnQt nH H �v v�

For fermions, all order-n contributions can be computed in time [R. Rossi PRL’17]

(sign-blessing II)
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and the CCP is solved!

Define approximation                               (truncated sum)    
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When series converge: 2D Fermi-Hubbard model at / 2,   / 0.125,   0.87500(2)U t T t n   

Six to five digit (depending on quantity) accuracy for a finite-T answer!

/ 1.25992(6)E N  

R. Rossi, PRL ‘17
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Sign alternating contributions

Sample or sum?
(Diagrammatic series for fermions converge, despite having about 

n! of them at order n, only because they cancel each other )

Sample  Sum  

exact answer !

Definitely sum!
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All topologies are summed up efficiently to
account for significant sign cancellations

- Codes become very easy to develop - change n and shuffle xi

- Configuration weights are expensive to compute, but efficiency
is radically improved

- Will global updates help? Likely yes 



Spending CPU on performing “smart” global updates

Let                                                                       with           . Then, making local 

updates                is not optimal because getting an uncorrelated set         will 

require            updates           

``Learn’’ how to propose global updates                   

with acceptance ratio         .

``Heat bath’’ idea   + ``machine-learning’’ algorithms to  approximate

with easy-to-compute     ^ `exp ({ '}) ({ }i iH x H x� �({ '}) / ({ })i iD x D x



When bare series do NOT converge 

Do MF/HF/RPA/GW/NCA 
and publish

Change research topic Keep fighting at your own peril
and solve unsolvable (may be)!



Bold (self-consistent) Diagrammatic Monte Carlo

Diagrammatic technique admits partial summations and self-consistent formulations

No need to compute all diagrams for and  :G W

                       +                                     +                                + ... 
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Screening:

Calculate irreducible diagrams for ,  , … to get     ,      ,  …. from Dyson equations  6 3 G W
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In terms of “exact” propagators

Dyson Equation:
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Screening:

         +                       

One possible scheme: G2W- expansion



Hubbard model:  Build diagrams using four propagators:
(contact potential)

The only triple-couting (at the lowest order) 



Fully dressed skeleton graphs (Heidin):
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Irreducible 3-point vertex: 3*                                  � �
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all accounted for already!                                        ...�



Bare or “dressed” series or skeleton sequences?

Pros. for bare:

- Taylor series Æ theory of analytic functions & resummation techniques 
[work outside of convergence radius] 

- in diagrams are analytic; no self-consistent  loops     

Pros. for dressed/skeleton:  

- Same graphs as in bare, just a much smaller set Æ # of irreducible graphs at order n 
is smaller by a factor of about 1/n for each “dressed” channel:                 ,                 
One can simulate higher orders faster            

- are readily available from tables Æ as fast and easy, as intrinsic 

- Bare series for long-range interactions are ill-defined, e.g. for 
the  2d-order bubble diagram involves                                . Need to screen, or sum 
up all bubble chains.  
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Pros. for dressed/skeleton:  

- Different expansion parameter: consider a dilute gas with large V. Define 

a pair propagator                                        based on ladder diagrams, and arrive

at the techniques where expension is in powers of density, not V .    

� �V V GG*  � *

n:
            +                                        +     6  

2n:

Con. for skeleton (despite having well defined Luttinger-Ward functional):

- Skeleton sequence for divergent bare series will converge to the wrong answer!

Solution for this Con.   

- dress lines only partially by low-order bare or skeleton graphs

- do Taylor series for the rest using an auxiliary parameter      [



Shifted action tools

Original setup: > @ > @1 1
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then at            we will recover the physical action identically                               . Proceed with
Taylor series expansion in     but it’s a different series because of counter-terms       

1[  � �1S S[ /  
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- If         are based on                       diagrams, then we expand on top of partially dressed Gn/ 0[ , ]n V G6
- If         are based on                        diagrams, then we deal with skeleton dressingn/ [ , ]n V G/6

- This setup can be generalized (with the help of Hubbard-Stratanovich transformation)
to partial or skeleton dressing of interactions, ladders, etc. 



Recall

U

Complex plane

pole

branch cut

U u�

Complex plane

pole

branch cut
u

This is just a cartoon analogy, in shifted action we change the “origin of expansion” 
in the functional space, and [ =0 may not be even physical

When series diverge or convergence is slow



When series diverge or convergence is slow

U

Complex U plane

Conformal mapping:
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Hypergeometric functions
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Borel, conformal Borel, never-heard-of-method  …
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Divergent series

W. Wu, M. Ferrero, A. Georges, E.Kozik, arXiv:1608.08402 

[ , ]S[ \ D [ (optimize for best convergence in the atomic limit)

When series diverge or convergence is slow: 2D Fermi-Hubbard model

Expansion order

[ , ]optS[ \ D

Expansion order

0Z
1Z
2Z
3Z

[ ]S \



When convergence radius is zero & series are asymptotic (unitary ultra-cold Fermi gas)

Quantitative understanding of series divergent behavior 

L. N. Lipatov, Sov. Phys. JETP 45, 216 (1977)]
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- Can be generalized for partially summed and skeleton series

- Suggests efficient resummation technique & uniqueness of Z(g)

- “designer” conformal Borel transforms series from asymptotic 
- to  convergent!

R. Rossi, K. van Houcke, F. Werner  ‘19



Unitary limit:

In this case        and       are 

the only length/energy scales

SFk a of

Fk FH

Fermions with strong “zero”-range potential leading to large s-wave scattering length Sa

Skeleton diagrammatic series are asymptotic with leading divergence               , 
but are subject to the series resummation technique

1/5( !)n

When the convergence radius is zero: unitary Fermi gas



Real thing, not a cartoon!

tiny 10-6 fraction



Equation of state for the unitary Fermi gas  

R. Rossi, F. Werner, K. van Houcke (private comm. ‘16)

/ 0.2FT E  (superfluid transition is at                                   / 0.16C FT E  

3nO

max order



If you can 

- compute enough orders (say n~10; billions of skeleton graphs) and

- know what to do with them

then any interacting Fermi system can be solved accurately  



Conclusions:

1. For convergent and subject to re-summation series, Diag.MC  solves the computational complexity 

problem (                ) Æ correlated fermionic systems can be addressed with systematically improvable 

accuracy. What we lack mostly, is understanding of the model analytic properties in the complex plane. 

2. If item 1 above is understood, then the possibilities are unlimited !

- Hubbard model (need better formulations near half-filling Æ second fermionization, 

dual fermions, parquet, …

- Resonant fermions (develop DiagMC for superfluid states, explore polarized gases, move

away from unitarity, …)

- frustrated magnets (unique method for the cooperative paramagnet regime (can do pyrochlore), but 

need to explore alternative formulations for T<<J, develop SU(N) schemes, …)

- interacting topological materials (ready to explore stability bounds and phase diagrams) 

- Real materials? In progress (Simons Collaboration on the Many Electron Problem)
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Type A: changing “external” time (another, more fancy, version)

Acceptance ratio   



Type A: changing internal time

Always accepted,   

1. Select any electron interval except the last one at random

2. Use                                                   with                                                to seed new variable   
( ' )

( )( ; ')
1

c a

b a

E

E

EeP
e

W W

W WQ W
� �

� � 
�

2 2

2 2
a cp pE

M M
 � r:

� �( )' ln 1 1 /b aE
a r e EW WW W � �ª º � � �¬ ¼

ap cp

'W
ap cp



Type A: changing internal momentum angle

1. Select any phonon line out of n interval at random

Momenta for q=0

' '



Type A: changing internal momentum modulus

1. Select any phonon line out of n interval at random

' '

' '



Type A: changing local “topology”

1. Select any electron interval except the first and last one at random


