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Outline

• Concept and history of random phase approximation (RPA) as 
an approach to compute correlation energy of interacting 
electrons

• Selected examples of applications in materials science

• Efforts of going beyond RPA to further improve its accuracy

• Current (community-wide) activities and future perspectives



Success and limitations of conventional DFT in 

computational materials science

Density functional theory (DFT) in its semi-local approximations is 
enormously successful in simulating materials’ properties, but has certain 
(intrinsic) limitations.

Typical situations: 

⚫ Systems with mixed bonding characteristics
(e.g., mixed physisorption and chemisorptions of molecules 
on metal surfaces, organic/inorganic interfaces, …)

⚫ Systems where both ground-state energy and charge
excitation energy gap are important.

(e.g.,  point defects in wide-gap insulators, …)

⚫ Systems with near degeneracies (“strong correlation”)
(multi-configurational in nature, e.g., bond breaking, transition states,
transition-metal oxides, f-electron systems, …)   



Jacob’s ladder in DFT

Hartree

LDA

GGA

meta-GGA

hybrids

Fifth-rung

Chemical accuracy

𝑛(𝒓)

𝑛 𝒓 , 𝛻𝑛(𝒓)

𝑛 𝒓 , 𝛻𝑛 𝒓 , 𝜏(𝒓)

𝑜𝑐𝑐. 𝜓𝑖

𝑜𝑐𝑐. & 𝑢𝑛𝑜𝑐𝑐 𝜓𝑖

e.g., BLYP, PBE

e.g., TPSS, SCAN

e.g., PBE0, B3LYP, HSE

e.g., RPA, DHDFs

J. Perdew & K. Schmidt, in Density functional theory and its application to materials,
edited by Van Doren e al. (2001).



A zoo of electronic-structure methods

Workhorse LDA/GGAs

Deficiencies
Lack of van der Waals;
Self-interaction errors

Lack of functional derivative 
discontinuity; Insufficiency 
of KS spectrum

Consequences Inaccuracy for ground-
state energies

Inaccuracy for quasi-particle 
excitation energies

Possible fixes
MP2 RPA CCSD(T) DFT+U

Double hybridsHybrid functionals

GW

LDA+DMFTvdW-DF

DFT+vdW DFT-D DFT+G ……

SIC-LDA

meta-GGA



Early history of RPA

● Correlation energy of  homogeneous electron gas (HES):
-- Divergence problem of “order-by-order” perturbation theory

● Separation of collective modes and internal modes of motion:
-- First appearance of the RPA concept (Bohm & Pines, 1950’s)

“A Collective Description of Electron Interactions (I-IV)” -- Bohm-Pines quartet
For a review, see D. Pines, Rep. Prog. Phys. 79, 092501 (2016).

● Self-consistent field approach to HES
-- Lindhard function (Lindhard, 1954)

● RPA = “sum of ring diagrams to infinite order”
-- (Brueckner & Gell-Mann, 1957)

● The introduction of screened Coulomb interaction W
-- (Hubbard, 1957)

● The GW approximation to the self-energy  Ʃ=iGW
-- (Hedin, 1965)



The concept of RPA

We distinguish between two kinds of response of the electrons to a wave. One of 
these is in phase with the wave, so that the phase difference between the particle 
response and the wave producing it is independent of the position of the particle. 
This is the response which contributes to the organized behavior of the system. 
The other response has a phase difference with the wave producing it which 
depends on the position of the particle. Because of the general random location of 
the particles, this second response tends to average out to zero when we consider 
a large number of electrons, and we shall neglect the contributions arising from 
this. This procedure we call the “random phase approximation”. 

D. Bohm and D Pines, Phys. Rev. 82, 625 (1950).
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The adiabatic connection construction

Physical system Kohn-Sham system

෡𝐻 = ෠𝑇 + ෠𝑉𝑒𝑒 + ෠𝑉𝑒𝑥𝑡
෡𝐻𝐾𝑆 = ෠𝑇 + ෠𝑉𝑎𝑢𝑥

Define a series of fictitious systems with scaled interparticle interactions:

෡𝐻𝜆 = ෠𝑇 + 𝜆 ෠𝑉𝑒𝑒 + ෡𝐻𝑒𝑥𝑡
𝜆

෡𝐻𝜆=1 = ෡𝐻 ෡𝐻𝜆=0 = ෡𝐻𝐾𝑆

The electron density 𝑛 𝑟 is kept fixed for 0 ≤ 𝜆 ≤ 1.



RPA as a first-principles method

❖ With the framework of adiabatic-connection fluctuation-dissipation 
(ACFD) theorem, RPA can be formulated as an approximate, but fully 
nonlocal exchange-correlation (XC) energy functional.

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).
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Dyson equation for the linear response function:

𝜒𝜆 = 𝜒0 + 𝜆𝜒0 𝑣 + 𝑓𝑥𝑐 𝜒𝜆 , 𝑓𝑥𝑐 = 0 → 𝜒𝜆 ≈ 𝜒𝜆
RPA

Explicitly known in terms of KS  (both occupied and virtual) orbitals 
and orbital energies

𝐸𝑐
RPA = 𝐸𝑐

RPA[𝜖𝑖 , 𝜓𝑖]



RPA as a first-principles method

❖ With the framework of adiabatic-connection fluctuation-dissipation 
(ACFD) theorem, RPA can be formulated as an approximate, but fully 
nonlocal exchange-correlation (XC) energy functional.

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).

❖ First application to real molecules.

Furche, Phys. Rev. B 64, 195120 (2001).
Fuchs & Gonze, Phys. Rev. B 65 235109 (2002).
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❖ Applications to molecules, solids, surfaces, molecules on surfaces, 
and layered materials (2006-2012).

For a review, see XR, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012)



Sixty-plus years later, the RPA continues to play a significant role in
nuclear physics [66], bosonic field-theory [67], the quark-gluon plasma
[68], many-fermion solvable models [69], and especially in
computational chemistry and materials science. A recent review by Ren
et al [70], to which the interested reader is referred, describes the
impact of the RPA in the theoretical chemistry and materials science
community, cites some thirty articles that indicate the renewed and
widespread interest in the RPA during the period 2001–2011, discusses
how it enables one to derive the 1/r6 interaction between spatially
separated closed shell electron systems, and, shows, in some detail,
how the RPA enables one to go beyond density functional theory in
computing ground state energies.

-- David Pines, emergent behavior in strongly correlated electron
systems, Rep. Prog. Phys. 79, 092501 (2016)

RPA for chemistry and materials science, 
as noted by Pines



Why is RPA interesting for materials science?

• Automatic and seamless inclusion of van der Waals (vdW) 
interactions; non-additive, anisotropic, and many-body 
screening effects are properly accounted for.

• Compatible with exact exchange; exact exchange plus RPA 
correlation makes the self-interaction error insignificant. 

• Different bonding (ionic, covalent, metallic, vdW) types 
are treated on an equal footing.

• Static correlation (partly) captured  =>  Correct dissociation 
of H2; excellent chemical reaction barrier heights



RPA calculations in practice (so far … )

In practical calculations, RPA is most often carried out as a single-point post-SCF 
approach, based on references from a preceding semi-local (or hybrid) 
calculation.

𝐸RPA = Φ0
෡𝐻 Φ0 + 𝐸𝑐

RPA[𝜖𝑖, 𝜓𝑖]

Hartree-Fock energy
with (generalized) KS orbitals

RPA correlation energy

𝜖𝑖 , 𝜓𝑖: (generalized) Kohn-Sham orbitals and orbital energies

Φ0: Slater determinant formed with occupied 𝜓𝑖

Typical choices for reference: LDA, PBE, TPSS, PBE0, HSE 

Consequently, RPA results show a slight dependence on the starting point,
denoted e.g., by “RPA@PBE”.



RPA description of vdW interactions
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• RPA captures the non-local coupling between spontaneous 
quantum charge fluctuations separated in space.

𝜒0 𝜒0

v

v RPA=
“summation of ring diagrams”

• It can be shown analytically        
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RPA/𝑅6 for large R→∞
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J. Dobson, in “Topics in Condensed Matter Physics”, Ed. M. P. Das (Nova, New York, 1994)



Basic formalism behind RPA 

1. Kohn-Sham eigenvalues and eigenfunctions
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4. RPA correlation energy calculation

3. Basis representation
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Matrix representation of χ0
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Matrix representation of χ0
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First-Principles code package

The Fritz Haber Institute ab-initio molecular simulations
(FHI-aims) package

Numeric atom-centered basis functions

)ˆ()()(][ rr lmillmi Yru=

Conventional DFT (LDA, GGAs)

⚫ All-electron, full potential
⚫ Periodic and finite systems on 

equal  footing
⚫ Favorable scaling  

(w.r.t system size and CPU cores)

“Beyond-DFT” methods

⚫ Hybrid functionals, MP2, RPA
and rPT2, etc.
⚫ Quasiparticle excitation energies:

G0W0, scGW, MP2, and beyond 

V. Blum et al., Comp. Phys. Comm.
180, 2175 (2009)

X. Ren et al., New J. Phys.
14, 053020 (2012)



First-Principles code package

The Fritz Haber Institute ab-initio molecular simulations
(FHI-aims) package

Numeric atom-centered basis functions
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⚫ Hybrid functionals, MP2, RPA
and rPT2, etc.
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V. Blum et al., Comp. Phys. Comm.
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X. Ren et al., New J. Phys.
14, 053020 (2012)

RPA implementations are also available in

• VASP
• Turbomole
• CP2K



RPA for the S22 test set



RPA applied to the “CO adsorption puzzle”

CO@Cu(111)

LDA/GGA => hollow site
Exp/RPA => on-top siteXR, P. Rinke, and M. Scheffler,

Phys. Rev. B 80, 045402 (2009)

See also L. Schimka et al., Nature Materials 9, 741 (2010). 



CO adsorption energy versus surface energy

L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, 
F. Mittendorfer, and G. Kresse, Nature Materials 9, 741 (2010)
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The 𝛼 − 𝛾 phase transition of Ce

M. Casadei, XR, P. Rinke, A. Rubio, and M. Scheffler, 
Phys. Rev. Lett. 109, 146402 (2012); Phys. Rev. B 93, 075153 (2016)

“Exact exchange” (EX) is crucial to produce two distinct solutions, 
corresponding to the two phases.  Further adding the RPA correlation is 
necessary to yield the quantitively correct stability of two phases.



The phase stability of FeS2 polymorphs

Pyrite (P)

Marcasite (M)

M.-Y. Zhang, Z.-H. Cui, H. Jiang, J. Maters. Chem. A 6, 6606 (2018). 



RPA for Ar2



The singles correction: A many-body perturbation analysis
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The computation of singles correction

⚫ This term accounts for the fact that the orbitals used in RPA 
calculations are not “optimal”.
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Kohn-Sham orbitals

⚫ Originally derived within the framework of Rayleigh-Schrödinger 
perturbation theory 

XR, A. Tkatchenko, P. Rinke, M. Scheffler, PRL 106,  153003 (2011)

Fock operator



S

RPA+SE for Ar2

XR, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett.  106, 153003 (2011).

Singles contributions correct the too strong Pauli repulsion arising 
from the too extended semi-local DFT charge density.



(PT2)

rPT2 = “RPA+SOSEX+rSE”

The concept of renormalized second-order 
perturbation theory (rPT2)

XR, P. Rinke, G.E. Scuseria, M. Scheffler,
Phys Rev. B  88, 035120 (2013).



The performance of rPT2  

Van der Waals Cohesive energy Bond length Barrier heights

rPT2: most balanced approach for atomization energy, van der Waals

interaction, and chemical reaction barrier heights !



RPA + Singles for Solids  

rSE fixed the problem of RPA!



Spin component scaled direct RPA (scsRPA) 

• Spin-pair distinctive error analysis
• Simultaneous reduction of the self-interaction error  and 

non-dynamical error

I. Y. Zhang and X. Xu, J. Phys. Chem. Lett. 10, 2617 (2019)



On-going community-wide activities

• Low-scaling [O 𝑁3 ] RPA algorithm and implementations

-- Georg Kresse (VASP), up to 256 Si atoms
-- Joerg Hutter (CP2K), up to 500 water molecules

• Analytical gradient of RPA energy, allowing for geometry determination

-- Filipp Furche (Turbomole) for molecules
-- Georg Kresse (VASP) for solids 

• Self-consistent RPA within a generalized Kohn-Sham (GKS) framework

-- Weitao Yang, optimizing the orbitals for RPA (similar to the Bruckner theory)
-- Filipp Furche, GKS-RPA, defining a static “RPA Hamiltonian”

A conceptually rigorous and practically useful self-consistency scheme, based on
the variational principle has to be worked out, that yields

-- Self-consistently determined charge densities and dipole moments
-- Ground-state energy and quasi-particle energy levels in a unified framework
-- Improved dielectric, optical, and magnetic properties



Perspectives

With the rapid advance of new concepts and algorithms, we hope 
(and believe), RPA can developed into a viable approach in the 
near future which can

• bridge the conventional DFT and quantum-chemistry methods

• routinely tackle system size of a few hundred atoms

• provide unprecedented accuracy for computational 
materials science 


