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This talk:

The many-electron problem

Tensor networks

Intro to quantum chemistry

Chemistry approaches for tensor networks



The Many-Electron Problem



Behavior of electrons in matter:
e continuum problem
e three dimensional

* strong interaction (repulsion) between electrons

Credit: MARK GARLICK/SCIENCE PHOTO LIBRARY/Getty Images



Can simplify various ways:
* Born-Oppenheimer approximation (classical nuclei)

 ignore most relativistic effects



Then problem simplifies to
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v(r) = one-body potential

= two-body interaction

The "electronic structure problem”



Form of the one-body potential

©® = nucleus
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Attraction to classical point nuclei, atomic number Z



Form of the
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Coulomb repulsion of electrons



Accurate ground state energy
of electronic structure problem extremely useful

Example: energy of two atoms, distance R
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Most techniques require discrete and finite system
To achieve this can:
* integrate out "core" electrons (pseudopotentials)

* treat high energy states with approximations such
as perturbation theory

* project electron motion to certain orbitals



Regardless of discretization, system becomes
a "lattice" with four states per "site"
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Four states of a site are {0, 1, |, T}



Regardless of discretization, electronic structure

Hamiltonian takes following discrete form
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Quantum wavefunction assigns an amplitude

to each configuration:
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Four states per site {0, 1, |, T}

So 4N configurations given N sites
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Could try to store all the amplitudes, but

N =10, 410 ~ 108

N =20, 420 ~ 1012

N = 30, 430 ~ 1078

For N > 130, number of amplitudes
greater than number of atoms in
the known universe



But can "nature's computer" really work this
way?

Are the amplitudes of a realistic wavefunction all
different?

Or is there some relationship between them?



Tensor Network Wavefunctions



H is a 4N x 4N matrix

——> wavefunction I has 4N components

K|



Most of these eigenvectors / wavefunctions
are indeed exponentially complex
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But some have hidden structure that
makes them tractable
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* |ow-energy states
e equilibrium states

* short-time dynamics



Wavetunction a rule, mapping configurations to numbers
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Wavetunction a rule, mapping configurations to numbers
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Wavetunction a rule, mapping configurations to numbers
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Formally a tensor with N indices

S1 S92 S3 54 S5 S6

AN numbers inside



Problem seems hopeless (maximum N ~ 20)

Physical intuition:
weak correlations between distant particles
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Neglect correlations
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X Missing correlations



Restore correlations locally

\:[1818283848586 ~ ?7&81 S92 S3 S4 S5 S6

matrix product state (MPS)

\/ Local expected values accurate

\/ Exponentially decaying correlations



Name matrix product state derives from
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Compute wavefunction by multiplying matrices together
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matrix product state compresses a tensor

51528354585 __ S1 S2 S3 S4 S5
\ = M7 M52 M3? M= M-

For typical matrix size m X m

4N parameters > 4N'm* parameters



M M| MM MM

Why this rule?



1. Principled
Large enough matrices, represent any wavefunction

Proof (Hastings, 2007) that one-dimensional systems
with exponentially decaying correlations*
are 'close' to matrix product states

Error decreases rapidly (exponentially in practice)
and error per site is constant

*(technically: gap between ground state and excited states)



2. Powerful Algorithms

Matrix product ansatz comes with sophisticated
optimization techniques

DMRG algorithm

White, PRL 69, 2863 (1992)
Stoudenmire, White, PRB 87, 155137 (2013)



"In one dimension... it is at the moment the
closest to an ultimate weapon as one can
dream of."

— Thierry Giamarchi

"Quantum Physics in One Dimension”

Very often get exact answer

Only takes as many parameters as needed



3. Extendable

Generalize to tensor networks

Apply to two-dimensional systems, infinite systems, ...



Draw N-index tensor as blob with N lines
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Diagrams for simple tensors

vector Uj ?

matrix M’L]

3-index Z}jk ; L
tensor ‘



Joining lines means contraction, omit names




Matrix product state in diagram notation

\Ijsl 5253545586

192 203 304 4 0O5

> MM M3 M M M

Suppress index names, very convenient



Besides matrix product state network, other
very interesting networks are PEPS and

MERA

PEPS
(2D systems)

k=],2, s XT

MERA

(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)



In addition to physics, tensor networks useful
as an applied math technique

FIG. 13. Depiction of a multi-scale circuit (formed from com-
position of depth N = 2 binary unitary circuits) with an open
boundary on the left, where a double layer of (scale depen-
dent) unitary gates u(¢-) and u(o-) is introduced. Boundary
wavelets g® are given by transforming the unit vector 1 lo-
cated on a boundary index as indicated. The angles ¢. and

o are chosen to ensure the boundary wavelets each have two
vanishing moments.

= o

=11 0.615479708 0.261157410
z =2 0.713724378 | 0.316335000
z =231 0.752040089 0.339836909
z=4| 0.769266332 | 0.350823961
z=75| 0.777461322 0.356148400

FIG. 12. Plots of dilation m = 4 orthogonal wavelets from (a)
depth N =4 and (b) depth N = 9 quarternary circuits with

angles 0 as given in Tab. VIII. The top three panels of each z=0| 0.781461114 | 0.358770670
group denote the (exactly symmetric) scaling sequence h™ z="T1 0.783437374 0.360072087
and wavelet sequences h™, g™, h™, which possess the number 2 =28 | 0.784419689 0.360720398 89% accuracy on Fashion MN’ST data set
of vanishing moments (v.m.) as indicated. The bottom three 2 —9| 0784909404 | 0361043958

panels of each group depict the scaling functions and wavelets

in the continuum limit (windowed to include only the non- z = 10| 0.785153903 | 0.361205590
vanishingly small part of the functions). z=11| 0.785276063 0.361286369

z = 12| 0.785337120 0.361326749

TABLE IX. Angles ¢. and 0. parameterizing the boundary

Evenbly, White, Stoudenmire,
"Representation and design of wavelets "Learning Relevant Features of Data
using unitary circuits" with Multi-scale Tensor Networks"



Brief Note on Fermions



Typical tensor network approach uses
second quantization

This means:

W) = )®19293%4 |51 595354) sj = 0,1

= st (@) (@)™ (&) (¢)) 0

W_JW_/

can be
any tensor

No need to antisymmetrize (or symmetrize)
amplitude tensor represented by tensor network



When do the signs enter in?

When using operators:
e applying Hamiltonian
* computing observables

o [ (&)™ (eh) ()@ () o)

N\

Sign of result will depend on value of
s1 index



Fermion minus signs & tensor networks

Programming approaches — 3 alternatives:

* map fermionic operators to non-local bosonic
operators (Jordan-Wigner transformation);

work only with these

* choose canonical, reference ordering of sites and

always permute basis states to this order

* anti-commuting tensor indices (newest approach)
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Quantum Chemistry



Chemistry an instance of the many-electron
problem:

=5 [V o]t [ uler)d

electronic structure Hamiltonian



Unlike some areas of condensed matter,
mostly after energies & quantitative properties
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binding energy

vibrational
frequency

But qualitative properties also important:
Will two molecules or atoms bind?
State of atoms during a reaction?



Biggest challenges in quantum chemistry:
 continuum nature of problem

* strong correlation



Tensor network methods don't suffer from strong correlation

Strong correlation is fact that some wavefunctions
(e.g. stretched diatomic molecules) are sum of
exponentially many Slater determinants

Tensor networks do not use sums of Slater determinants



Continuum is the bigger issue for tensor networks...

Standard approach pioneered by John Pople is to use
Gaussian basis functions to approximate the continuum



Consider H, molecule

Cartoon of Gaussian basis set:

O O
Basis sets also include linear combinations of Gaussians:
N,
b () = ) Cp e (T7TA)”
1=1

And multiplicative factors: 2Py?z°



Orbital basis Hamiltonian (i,j,k,l label orbital 'sites’):
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Coulomb "integrals”



The coefficients Vi are called Coulomb integrals
For N orbitals, there are N4 of these....

Say N=100, then N4 = one hundred million!

Just constructing the Hamiltonian is a serious
business...

Point of Gaussians is computing integrals quickly!
(Especially on 1990's computers...)



DMRG & MPS for Quantum Chemistry
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DMRG and MPS require system to be discrete*
Finite basis is needed

Let's briefly discuss 3 types:
1. Gaussian basis sets [standard]
2. sliced basis sets

3. gausslet basis

* exception are continuous MPS, but still new topic



1. Gaussian basis DMRG (MPS tensor network)

a. choose a Gaussian basis set, orthogonalize basis,
& compute integrals tj, Vi

\

Vi = / ¢i(r1)¢;(r2)dp(r2) @i (ry)

vy —ra|



1. Gaussian basis DMRG (MPS tensor network)

b. treat orbitals as "sites" of a pseudo-1D system

H = E t@jCZO'CJO'_I_ E ‘[l/]klczg jgfck’a’cla
17kl



1. Gaussian basis DMRG (MPS tensor network)

c. if converged, obtain state of the art results!

a Mn1l b Mn2V
o Mn1-01,3 * Mn2-01,3 o Mn2—02.3
Error from exact soln of binding energy of N3
(0.18)
0.18) (0.20)
e 0.13) ==,
o+ N € (—°-)\ 0.8 T T T T T T T
tog 44+\\\2p 01,3->Mn1 tag ++\+\:\\2p 01,3->Mn2 .'$
2p 02,3->Mn2
(1.84) (1.88)
0.6 -
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0 Mn2-01,3 ¢ Mn2-02,3

Error from FCl (mH)
o
S
[
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c Mn3V d Mn4lt .
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Bond length (bohr)
o Mn3-05 o Mn3-02,4 o Mn4-04
Figure 3 | Orbital energy levels and electron occupancies of four Mn sites
for the refined structure. a-d, Orbital energy levels and electron
occupancies for Mn1 (a), Mn2 (b), Mn3 (c) and Mn4 (d). The layout and
labelling follows Fig. 1 (XRD model).
Kurashige, Chan, Yanai, Nat. Chem. (2013) Chan, Sharma, Ann. Rev. Phys. Chem. (2011)

Study of photosystem-l| Review: DMRG in Quantum Chemistry



1. Gaussian basis DMRG (MPS tensor network)

Drawbacks of this approach?

Gaussian basis functions overlap significantly
(especially after orthogonalization)

VAVAGSYAVAN

Must keep all N4 Coulomb integrals (can't truncate)

Hamiltonian non-local; DMRG scales poorly
(large MPS bond dimension required)



Alternatives to Gaussian basis set approach?



Consider 1D particles in a box:

Approach 1: basis set ¢, = / b (2)0()

N
~ N

1 . 0? .
_ T __ E T

- Loss of locality
- Must compute integrals

4+ Variational



Consider 1D particles in a box:

Approach 2: grid approximation ¢; =/« 1&(%‘)

1 [ - 0° -
i =5 [ V@550 §
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H ~ Z(C;[Cj_'_l — QTLJ' + C;L-+1Cj)

202
+ C’)(aQ)
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+ Local / short range
+ No integrals to compute!

- Not variational



Possible to mix basis set and grid approaches?

Yes...



2. sliced-basis DMRG

Slice 3D basis

sets along d @
z-direction:

Stoudenmire, White, arxiv:1702.03650



2. sliced-basis DMRG

Slice 3D basis
sets along 4 q @@éé{ C{ <®>
z-direction: ‘ __

Map to 1D 'chain'
with 1000's of sites
(small Az =a):

e Leverage ability of DMRG to scale to long systems
e Can reach high (chemical) accuracy for a < 0.1

e Scalable to 1000's of atoms

Stoudenmire, White, arxiv:1702.03650



2. sliced-basis DMRG

Slices roughly equivalent to using
basis set of "functions":

(dddedds®
comayentey) ]

n= 12 3 4 5 6 7 8 9

N

Pnj(r) =0

Stoudenmire, White, arxiv:1702.03650



2. sliced-basis DMRG

Pnj(r) =0

Interaction Energy:

N

(z = n-a) onj(z,y)

Normally must deal with N* interaction terms

‘/fijkl:/ ¢i(r1)9;(r2)dr(ra)e(ry)

1 — 12

But treat slices as orthogonal. Then V;;i; non-zero
only if ¢,/ onsame slice and j,k on same slice

Number of terms: N* — Nforb Better Scaling

Stoudenmire, White, arxiv:1702.03650



2. sliced-basis DMRG

[Technical Slides] — Important for Practitioners

'L v / | 6:(r) 2], (") 2
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Y

Sliced Coulomb integrals have upper-triangular-low-
rank property (SVD of upper triangles compresses well)

Lin, Tong, arxiv:1909.02206
Stoudenmire, White, arxiv:1702.03650



2. sliced-basis DMRG

[Technical Slides] — Important for Practitioners

= SVD
T D e

From SVD's of all upper triangle blocks,
construct efficient matrix product operator (MPO)

of Coulomb Hamiltonian terms

Lowers scaling all the way to linear in number of z

slices (number of atoms)
Lin, Tong, arxiv:1909.02206

Stoudenmire, White, arxiv:1702.03650



Possible to do better?



3. multi-sliced gausslet basis

Drawback of sliced bases include:
® require very many slices to resolve z-direction

* problems with Gaussians in x,y directions

({4{dg{(
L

n= 12 3 45 6 7 8 9




3. multi-sliced gausslet basis

Seek functions which are local (compact), orthogonal,
and sums of them can represent any smooth function

Can find such functions using theory of wavelets

Fig. 4: One-dimensional array of gausslet functions with a length scale of 1.0. The gausslet
centered at the origin is highlighted in solid black to emphasize details.

Gausslets = wavelet (scaling functions) built from Gaussians



3. multi-sliced gausslet basis

By scale-adapting and "multi-slicing”
can represent smooth 3D functions

1 /Nucleus

-10 - 0 10
X

scale-adaptation multi-slicing




Results of sliced-basis and multi-sliced gausslets



Hydrogen chains make good benchmark systems

e continuum limit

* strong correlation

* many-atom (thermodynamic) limit
* treatable by most methods

+z

Density cross-
section of Hqg
hydrogen chain:



Sliced-basis results for Hqp:
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Fig. 2: Ground-state energies of H,oy chains as a function of inter-atomic spacing R calculated
using DMRG within standard Gaussian basis sets (dashed curves) and sliced basis sets (solid
curves and points) using a uniform grid spacing of a = 0.1 atomic units [26].



Sliced-basis results for Hqgoo:

| | |
-0.482 - .
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1/1\121t0m

Fig. 3: Scaling with number of atoms of sliced-basis calculations up to 1000 hydrogen atoms.
The inter-atomic spacing is fixed to R = 3.6 and a sliced basis derived from the STO-6G
Gaussian basis was used. The outer plot shows the ground state energy from DMRG using the
standard STO-6G basis and the sliced version (SB-STO-6G). The inset shows the average time
per DMRG sweep, taking a bond dimension of m = 100.



Multi-sliced-gausslet (MSG) results for Hio:

Comparison
to diffusion
Monte Carlo
(DMC)

(mH)

atom

(E-E,,,JN

- Chemical accuracy

*—* MRCI+Q
AFQMC
SBDMRG

*¢—¢ =09
s=0.8

Oo—© s=0.7

+—< UCCSD(T) |

| } MSG-DMRG



Future Directions & Conclusions



A lot of creativity is possible in going beyond
standard Gaussian approach to quantum chemistry

Sliced-basis and gausslet basis are just two of many
ideas to be tried
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min

Tensor networks are real-space oriented, don't use
Slater determinants

Require re-thinking conventional choices to get
best performance



Recent work by Lin and Tong for compressing
Coulomb interactions into "PEPO" tensor networks
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Combined with recent progress in optimizing PEPS”,
could soon see PEPS quantum chemistry!

In principle scalable to huge 2D planes of atoms,
controlled & accurate, handling strong correlation

* Liao, Liu, Wang, Zhang, arxiv:1903.09650
Zaletel, Pollmann, 1902.05100
Haghshenas, O'Rourke, Chan, 1903.03843

Liu, Huang, Gong, Gu, 1908.09359
Hyatt, Stoudenmire, 1908.08833



