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Solving the Many-Body Schrödinger Equation
Straightforward approach:

1. Expand the many-body wavefunction as a linear combination of (possibly
nonorthogonal) basis states (determinants for Fermions).

2. Compute Hamiltonian and overlap matrices, H and S in this basis

3. Solve the generalized eigenvalue problem Hc = ESc

Problem:
The number of many-body states grows combinatorially in the number of single
particle basis states and the number of particles,

(
Norb

N↑

)
×
(
Norb

N↓

)
, e.g.

Molecules with 20 electrons in 200 orbitals:
(

200
10

)2
= 5.0× 1032

(Partial) Solutions:

1. DMRG: Very efficient for low-dimensional problems. Steve White, Garnet Chan

2. Selected CI: If only a small fraction, say 1012 of these states are important,
then one can use smart methods for finding the most important say 109 states,
diagonalizing and then include rest of 1012 states using perturbation theory.

3. Quantum Monte Carlo: Applicable to large finite Hilbert spaces as well as
infinite Hilbert spaces!
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What is Quantum Monte Carlo?
Stochastic implementation of the power method for projecting out the
dominant eigenvector of a matrix or integral kernel.

“Dominant state” means state with largest absolute eigenvalue.

If we repeatedly multiply an arbitrary vector, not orthogonal to the dominant state,
by the matrix, we will eventually project out the dominant state.
Power method is an iterative method for eigenvalue problems (less efficient than
Lanczos or Davidson). However, stochastic power method, QMC, is powerful.

QMC methods are used only when the number of states is so large (> 1010) that it
is not practical to store even a single vector in memory. Otherwise use exact
diagonalization method, e.g., Lanczos or Davidson. At each MC generation, only a
sample of the states are stored, and expectation values are accumulated.

QMC methods are used not only in a large discrete space but also in a continuously
infinite space. Hence “matrix or integral kernel” above. In the interest of brevity I
will use either discrete or continuous language (sums and matrices or integrals and
integral kernels), but much of what is said will apply to both situations.
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When to use Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics
2. chemistry
3. engineering
4. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the problem is many-dimensional and approximations that factor
the problem into products of lower dimensional problems are inaccurate.

2. A less important reason is that if one has a complicated geometry, a MC
algorithm may be simpler than other choices.

Obvious drawback of MC methods: There is a statistical error.
Frequently there is a tradeoff between statistical error and systematic error
(needed to overcome sign problem), so need to find the best compromise.
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MC Simulations versus MC calculations
One can distinguish between two kinds of algorithms:

1. The system being studied is stochastic and the stochasticity of the
algorithm mimics the stochasticity of the actual system. e.g. study of
neutron transport and decay in nuclear reactor by following the
trajectories of a large number of neutrons. Such problems are suitable
for MC algorithms in a very obvious way.

2. Much more interesting are applications where the system being studied
is not stochastic, but nevertheless a stochastic algorithm is the most
efficient, or the most accurate, or the only feasible method for studying
the system. e.g. the solution of a PDE in a large number of variables,
e.g., the solution of the Schrödinger equation for an N-electron system,
with say N = 100 or 1000. (Note: The fact that the wavefunction has a
probabilistic interpretation has nothing to do with the stochasticity of
the algorithm. The wavefunction itself is perfectly deterministic.)

I prefer to use the terminology that the former are MC simulations whereas
the latter are MC calculations but not everyone abides by that terminology.
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Early Recorded History of Monte Carlo
1777 Comte de Buffon: If a needle of length L is

thrown at random onto a plane ruled with straight lines a
distance d(d > L) apart, then the probability P of the

needle intersecting one of those lines is P = 2L
πd .

Laplace: This could be used to compute π (inefficiently).

1930s First significant scientific application of MC: Enrico Fermi
used it for neutron transport in fissile material.
Segre: “Fermi took great delight in astonishing his Roman
colleagues with his ”too-good-to-believe” predictions of
experimental results.”

1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

1953 Algorithm for sampling any probability density
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(generalized by Hastings in 1970)

1962,1974 First PMC calculations, Kalos, and, Kalos, Levesque, Verlet.
1965 First VMC calculations (of liquid He), Bill McMillan.
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Compte de Buffon

I gave a series of lectures at the
University of Paris.
After my first lecture, my host,
Julien Toulouse, took me for a
short walk to the Jardin de Plantes

to meet Buffon!

Here he is:

Among other things, he wrote a 36
volume set of books on the Natural
History of the Earth!
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Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Pólya (1920)

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, and variance σ2. The central limit theorem states that as the sample size
N increases, the probability density of the sample average, X̄ , of these
random variables approaches the normal distribution,√

N
2πσ2 e

−(x−µ)2/(2σ2/N), with mean µ, and variance σ2/N, irrespective of the

original probability density function, e.g.:
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The rate at which they converge will however depend on the original PDF.
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(Weak) Law of Large Numbers

Cardano, Bernouli, Borel, Cantelli, Kolmogorov, Khinchin

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, but not necessarily a finite variance σ2. Then for any ε > 0,

lim
N→∞

P(|X̄ − µ| ≥ ε) = 0

However, the rate at which it converges may be very slow.
So, employ distributions with a finite variance whenever possible.
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Lorentzian
Does the Central Limit Theorem or the Law of Large Numbers apply to a
Lorentzian (also known as Cauchy) probability density function

L(x) =
1

π

1

1 + x2
?
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Lorentzian
A Lorentzian (also known as Cauchy) probability density function

L(x) =
1

π

1

1 + x2

not only violates the conditions for the Central Limit Theorem but also the
conditions for the Law of Large Numbers, since not only the variance but
even the mean is undefined.∫ ∞

−∞
xL(x)dx =

(∫ a

−∞
+

∫ ∞
a

)
xL(x)dx

= −∞+∞

Averages over a Lorentzian have the same spread of values as the original
values!
So, although the Lorentzian looks much “nicer” than the other 3 functions
we showed, it is a problem!
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Chebychev Inequality
The Central Limit Theorem by itself does not tell you how quickly the averages
converge to a Gaussian distribution.

If we have not averaged enough, for an arbitrary distribution with finite mean µ and
finite variance σ2, we have much weaker bounds given by Chebychev’s inequality:

The probability of a variable lying between µ− nσ and µ+ nσ is > 1− 1/n2, as
compared to erf(n/

√
2) for a Gaussian.

Prob. of being within 1σ of µ is ≥ 0% versus 68.3% for Gaussian
Prob. of being within 2σ of µ is ≥ 75% versus 95.4% for Gaussian
Prob. of being within 3σ of µ is ≥ 89% versus 99.7% for Gaussian
Prob. of being within 4σ of µ is ≥ 94% versus 99.994% for Gaussian

The worst case occurs for a distribution with probability 1− 1/n2 at µ and
probability 1/2n2 at µ− nσ and µ+ nσ.

What if the population variance σ2 =∞ but we do not know that beforehand? The
computed sample variance will ofcourse always be finite. The practical signature of
an infinite variance estimator is that the estimated σ increases with sample size, N
and tends to have upward jumps. So the estimated error of the sample mean,
σN = σ/

√
N, goes down more slowly than 1√

N
, or even does not go down at all.
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ε, using Nint integration points:
1-dim Simpson rule: ε ≤ cN−4

int , (provided derivatives up to 4th exist)

d-dim Simpson rule: ε ≤ cN
−4/d
int , (provided derivatives up to 4th exist)

This argument is correct for functions that are approximately separable.

Monte Carlo:
ε ∼ σ(Tcorr/Nint)

1/2, independent of dimension!, according to the central
limit theorem since width of gaussian decreases as (Tcorr/Nint)

1/2 provided
that the variance of the integrand is finite. (Tcorr is the autocorrelation
time.)

Very roughly, Monte Carlo becomes advantageous for d > 8.
For d = 50, even 2 grid points per dimensions gives Nint ≈ 1015, so
deterministic integration not possible.
For a many-body wavefunction d = 3Nelec and can be a few thousand!
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Monte Carlo Integration

I =

∫
V

f (x)dx = V f ± V

√
f 2 − f

2

N − 1

where f =
1

N

N∑
i

f (xi ), f 2 =
1

N

N∑
i

f 2(xi )

and the points xi are sampled uniformly in V . Many points may contribute very little.

Importance sampling

I =

∫
V

g(x)
f (x)

g(x)
dx =

(
f

g

)
±

√√√√( f
g

)2

−
(

f
g

)2

N − 1

where the probability density function g(x) ≥ 0 and
∫
V
g(x)dx = 1.

If g(x) = 1/V in V then we recover original fluctuations but if g(x) mimics f (x) then the
fluctuations are much reduced. Optimal g is |f |. Need: a) g(x) ≥ 0, b) know integral of
g(x), and, c) be able to sample it.

Importance sampling can turn an ∞−variance estimator into a finite variance one!
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Illustration of Importance Sampling

f (x) is the function to be integrated. g(x) is a function that is “similar” to
f (x) and has the required properties: a) g(x) ≥ 0, b)

∫
dx g(x) = 1, and,

c) we know how to sample it.
∫
f (x)dx can be evaluated efficiently by

sampling g(x) and averaging f (x)/g(x).
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Quantum Monte Carlo in a Nutshell
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑
i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

(If basis incomplete then “exact” means “exact in that basis”.)

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G in VMC, ΨGΨ0 in

PMC.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. Reasons to have ΨG 6= ΨT are: a) rapid
evaluation of “local energy”, b) have finite-variance estimators. To simplify
expressions, we sometimes use ΨG = ΨT or ΨG = 1 in what follows.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj∑Nst

k t2
k

=
Nst∑
i

t2
i∑Nst

k t2
k

∑Nst

j Hij tj

ti

=
Nst∑
i

t2
i∑Nst

k t2
k

EL(i) ≈

[∑NMC

i EL(i)
]

Ψ2
T

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

Sample probability density function
g2
i∑Nst

k
g2
k

using Metropolis-Hastings, if ΨG complicated.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.

Energy bias and statistical error vanish as ΨT → Ψ0.

For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
In fact ΨG 6= ΨT needed when optim. to get finite variance.

ΨG = ΨT allows simple unbiased estimator. Ratio of expec. val. 6= expec. val. of ratios.
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

k ektk
=

Nst∑
i

ei ti∑Nst

k ektk

∑Nst

j Hij tj

ti

=
Nst∑
i

ei ti∑Nst

k ektk
EL(i) ≈

[∑NMC

i EL(i)
]

ΨTΨ0

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

Sample eigi/
∑Nst

k ekgk using importance-sampled projector.

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
Statistical error vanishes as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

[∑NMC
i

(
ti
gi

)2
EL(i)

]
Ψ2

G[∑NMC
k

(
tk
gk

)2
]

Ψ2
G

(Value depends on ΨT, error ΨT,ΨG)

E0 =

[∑NMC
i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(Value exact†. Error depends on ΨT,ΨG.)

EL(i) =

∑Nst
j Hij tj

ti

In both VMC and PMC weighted average of the configuration value of Ĥ aka
local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉, gi = 〈φi |ΨG〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete)
or semi-diagonal, i.e. V (R) is local (if space continuous).

† In practice, usually necessary to make approximation (e.g. FN) and value depends on ΨG.
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Variational Monte Carlo in Real Space

Now we make things more concrete by considering the example of variational
MC in real space, i.e. the MC walk is in the space of position eigenstates.
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Variational Monte Carlo in Real Space
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Monte Carlo is used to perform the many-dimensional integrals needed to
calculate quantum mechanical expectation values. e.g.

ET =

∫
dR Ψ∗T(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

∑
i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling an arbitrary wave function Metropolis-Hastings.
2. A functional form for the wave function that is capable of describing the

correct physics/chemistry.
3. An efficient method for optimizing the parameters in the wave functions.
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Metropolis-Hastings Monte Carlo
Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous density.
(Other quantum Monte Carlo methods, e.g., diffusion MC, enable one to
sample densities that are not explicitly known but are the eigenstates of
known matrices or integral kernels.)

Metropolis-Hastings has serial correlations. Hence, direct sampling methods
preferable, but rarely possible for complicated densities in many dimensions.
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Metropolis-Hastings Monte Carlo (cont)
A Markov chain is specified by two ingredients:
1) an initial state
2) a transition matrix M(Rf |Ri) (probability of transition Ri → Rf .)

M(Rf |Ri) ≥ 0,
∑
Rf

M(Rf |Ri) = 1. Column-stochastic matrix

To sample ρ(R), start from an arbitrary Ri and evolve the system by repeated
application of M that satisfies the stationarity condition (flux into state Ri equals
flux out of Ri):∑

Rf

M(Ri|Rf) ρ(Rf) =
∑
Rf

M(Rf |Ri) ρ(Ri) = ρ(Ri) ∀ Ri

i.e., ρ(R) is a right eigenvector of M with eigenvalue 1.
Stationarity ⇒ if we start with ρ, will continue to sample ρ.
Want more than that: any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri) δ(Ri) = ρ(Rf), ∀ Ri.

i.e., ρ should be the dominant right eigenvector.
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Metropolis-Hastings Monte Carlo (cont)

Want that any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri)δ(Ri) = ρ(Rf), ∀ Ri.

ρ should be the dominant right eigenvector. Additional conditions needed to
guarantee this.

A nonnegative matrix M is said to be primitive if ∃ n such that Mn has all elements
positive. (Can go from any state to any other in finite number of steps.)

(Special case of) Perron-Frobenius Theorem: A column-stochastic primitive matrix
has a unique dominant eigenvalue of 1, with a positive right eigenvector and a left
eigenvector with all components equal to 1 (by definition of column-stochastic
matrix).

In practice, length of Monte Carlo should be long enough that there be a significant
probability of the system making several transitions between the neighborhoods of
any pair of representative states that make a significant contribution to the average.
This ensures that states are visited with the correct probability with only small
statistical fluctuations.
For example in a double-well system many transitions between the 2 wells should
occur, but we can choose our proposal matrix to achieve this even if barrier between
wells is high.
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Metropolis-Hastings Monte Carlo (cont)
Construction of M

Need a prescription to construct M, such that ρ is its stationary state. Impose
detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

Detailed balance more stringent than stationarity condition (removed the sums).
Detailed balance is not necessary but provides way to construct M.
Write elements of M as product of elements of a proposal matrix T and an
acceptance Matrix A,

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not.
Detailed balance is now:

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

or
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.
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Metropolis-Hastings Monte Carlo (cont)
Choice of Acceptance Matrix A

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.

Infinity of choices for A. Any function

F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
= A(Rf |Ri)

for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1 will do.
Choice of Metropolis et al. F (x) = min{1, x}, maximizes the acceptance:

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
.

Other less good choices for A(Rf |Ri) have been made, e.g. F (x) = x
1+x

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
.

Metropolis: T (Ri|Rf) = T (Rf |Ri), Hastings:T (Ri|Rf) 6= T (Rf |Ri)
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Metropolis-Hastings Monte Carlo (cont)
Choice of Proposal Matrix T

So, the optimal choice for the acceptance matrix A(Rf |Ri) is simple and
known.

However, there is considerable scope for using one’s ingenuity to come up
with good proposal matrices, T (Rf |Ri), that allow one to make large moves
with large acceptances, in order to make the autocorrelation time small.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

CJU, PRL 71, 408 (1993)

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}

Use freedom in T to make
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
≈ 1.

T (Rf |Ri) ∝ ρ(Rf) optimal if T (Rf |Ri) can be sampled over all space – usually not the
case. And if it is, then one would not use Metropolis-Hastings in the first place.

Otherwise, let T (Rf |Ri) =
S(Rf |Ri)∫

dRf S(Rf |Ri)
≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)

S(Rf |Ri) is non-zero only in domain D(Ri) of volume Ω(Ri) around Ri).

A(Rf ,Ri)

A(Ri,Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ Ω(Ri)

Ω(Rf)

S(Ri|Ri)

S(Rf |Rf)

S(Ri|Rf)

S(Rf |Ri)

ρ(Rf)

ρ(Ri)

from which it is apparent that the choice

S(Rf |Ri)
∝∼
√
ρ(Rf)/Ω(Rf) yields A(Rf ,Ri)/A(Ri,Rf) ≈ 1.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

To be more precise, if the log-derivatives of T (Rf |Ri) equal those of
√
ρ(Rf)/Ω(Rf) at Rf =Ri, the

acceptance goes as 1−O((R
′ − R)3), i.e., the average acceptance goes as 1−O(∆4), where ∆ is

the linear dimension of D(Ri).

Considerable improvement compared to using a symmetric S(Rf |Ri) or choosing S(Rf |Ri)
∝∼ ρ(Rf)

for either of which we have acceptance 1−O((R
′ − R)1) and av. accep. 1−O(∆2).

Another possible choice, motivated by (DMC) is

T (Rf |Ri) =
1

(2πτ)3/2
exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
, V(Ri) =

∇Ψ(Ri)

Ψ(Ri)

Advantage: allows Metropolis Monte Carlo and diffusion Monte Carlo programs to share almost all

the code.

Such an algorithm is more efficient than one with a symmetric S(Rf |Ri) or one for which

S(Rf |Ri)
∝∼ ρ(Rf), but less efficient than one for which S(Rf |Ri)

∝∼
√
ρ(Rf)/Ω(Rf).

These arguments are rigorous only in the small-step limit and are applicable only to functions with

sufficiently many derivatives within D(Ri). In practice these ideas yield large reduction in the

autocorrelation time provided that we employ a coordinate system such that ρ has continuous

derivatives within D(Ri).
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Some examples

We want to sample from |Ψ(R)|2.
We propose moves with probability density

T (Rf |Ri) =
S(Rf |Ri)∫

dRf S(Rf |Ri)
≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)

and since the acceptance is

A(Rf |Ri) = min

{
1,
|Ψ(Rf)|2 T (Ri|Rf)

|Ψ(Ri)|2 T (Rf |Ri)

}
we want

|Ψ(Rf)|2 T (Ri|Rf)

|Ψ(Ri)|2 T (Rf |Ri)

to be as close to 1 as possible. Let’s see how it changes with T (Rf |Ri).
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Symmetrical T in Metropolis
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Non-symmetrical linear T in Metropolis-Hastings
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Deviation from 1 is cubic.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

When will the above not work so well?
What assumptions have we made in both of the non-symmetric choices
above?

Answer: In both cases we are utilizing the gradient of the function to be
sampled and are implicitly assuming that it is smooth.

Let’s see what happens when it is not.
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Non-symmetrical linear T in Metropolis-Hastings
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When the gradient has a discontinuity the acceptance goes down.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

How to make large moves with high acceptance in spite of
wavefunctions that have cusps at nuclei?

1. Make moves in spherical polar coordinates, centered on the nearest
nucleus.

2. Radial move is proportional to distance to nucleus, say in interval [ r5 , 5r ].
3. Angular move gets larger as electron approaches nucleus.

Using these ideas an autocorrelation time Tcorr ≈ 1 can be achieved!

Details are in: Accelerated Metropolis Method, C. J. Umrigar, PRL 71 408, (1993).

The point of the above exercise was not the particular problem treated, but
rather to provide a concrete example of the ideas that enable making large
moves with high acceptance, thereby achieving Tcorr ≈ 1.
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Estimation of Errors
Autocorrelation time

N Monte Carlo steps = Nb blocks × Ns steps/block
If Ns is large enough the block averages are nearly independent.

Ē = average of EL over the N Monte Carlo steps
σ = rms fluctuations of individual EL

σb = rms fluctuations of block averages of EL

Need to estimate Tcorr to make sure Nb � Tcorr.
Neff = N/Tcorr independent measurements of EL, so get Tcorr from:

err(Ē ) =
σ√

Nb × Ns

√
Tcorr =

σb√
Nb

⇒ Tcorr = Ns

(σb
σ

)2 Choose Ns � Tcorr, say, 100 Tcorr.
If Ns ≈ 10Tcorr, Tcorr underest. ≈ 10%.
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Functional form of Trial Wave Function
Other methods: Restrictions on the form of the wavefn.:

1. Many-body wavefn. expanded in determinants of single-particle orbitals.
2. Single-particle orbitals are expanded in planewaves or gaussians.

occasionally wavelets etc.

QMC: Great freedom in form of the wavefn. – use physics/chemistry
intuition:

1. Multideterminant times Jastrow. Ceperley, many others

2. Antisymmetrized Geminal Power times Jastrow. Sorella, Casula

A
[
Φ(r↑1, r

↓
1) Φ(r↑2, r

↓
2) · · · Φ(r↑N/2, r

↓
N/2)

]
3. Pfaffians times Jastrow. Schmidt, Mitas, Wagner and coworkers
A [Φ(r1, s1; r2, s2) Φ(r3, s3; r4, s4) · · · Φ(rN−1, sN−1; rN , sN)]

4. Backflow times Jastrow. Needs and coworkers, Moroni (extension of
Feynman)

5. Laughlin and Composite Fermion. Jeon, Güclu, CJU and Jain
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Multideterminant × Jastrow form of Trial Wavefunction

ΨT =

(∑
n

dnD↑n D↓n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD↑n D↓n
D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and down
(↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αkα

ckα Nkαr
nkα−1
iα e−ζkα riα Ylkαmkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏
αi exp (Aαi )

∏
ij exp (Bij)

∏
αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα , ζkα and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα parms.
∼ N2

atom of ckα parms.
∼ eNatom of dn parms.
Power of QMC:
J parms. replace many dn parms.
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Optimization of many-body wavefunctions
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Almost all errors reduced by optimizing trial
wavefunctions

1. Statistical error (both the rms fluctuations of EL and the
autocorrelation time)

2. EVMC

3. Fixed-node error in EDMC (nodes move during optimization). Fixed
node errors can be LARGE. For C2, FN error for 1-det wavefn is 1.3 eV
for total energy and 0.7 eV for well-depth. However, optimized multidet.
wavefn has FN error that is better than chemical accuracy (1 kcal/mole
= 0.043 eV/molecule).

4. Time-step error in DMC
5. Population control error in PMC
6. Pseudopotential locality error in DMC when using nonlocal

pseudopotentials
7. Error of observables that do not commute with the Hamiltonian (mixed

estimators, 〈Ψ0|Â|ΨT 〉 not exact even for nodeless ψ0, ψT) if one does
not use forward/side walking.
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Choices to be made when optimizing trial
wavefunctions

1. What precisely do we want to optimize – the objective function or
measure of goodness?

2. What method do we use to do the optimization? If more than one
method is applied to the same objective function, they will of course
give the same wavefunction, but the efficiency with which we arrive at
the solution may be much different.
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Measures of goodness of variational wave functions

min EVMC =
〈ψT|H|ψT〉
〈ψT|ψT〉

= 〈EL〉|ψT|2

min σ2
VMC =

〈ψT|(H − ET)2|ψT〉
〈ψT|ψT〉

=
〈
E 2

L(Ri )
〉
|ψT|2

− 〈EL(Ri )〉2|ψT|2

max Ω2 =
| 〈ψFN|ψT〉 |2

〈ψFN|ψFN〉 〈ψT|ψT〉
=

〈
ψFN
ψT

〉2

|ψT|2〈∣∣∣ψFN
ψT

∣∣∣2〉
|ψT|2

min EDMC =
〈ψFN|H|ψT〉
〈ψFN|ψT〉

= 〈EL〉|ψFNψT|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Variance vs. Energy

σ2 =

Nconf∑
i=1

(
HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized

Variance

Energies

Original

Energies

Energy
Optimized

Energies

E
av

E
av Eexact
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Well-depth of C2
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Error in Well-Depth of 1st-Row Diatomic Molecules
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Projector MC

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

Projector is any function of the Hamiltonian that maps the ground state
eigenvalue of Ĥ to 1, and the higher eigenvalues of Ĥ to absolute values that
are < 1 (preferably close to 0).

Exponential projector: P̂ = eτ(ET 1̂−Ĥ) (usually has time-step error)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ) (τ < 2
Emax−E0

)

Green’s function projector: P̂ =
1

1̂− τ(ET 1̂− Ĥ)
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Taxonomy of Projector Monte Carlo Methods
The amplitudes of Ψ0 in the chosen basis are obtained by using a “Projector”, P̂,
that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st-quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) eτ(ET 1̂−Ĥ) (samp. τ) r 1st

LRDMC (Sorella, Casula) eτ(ET 1̂−Ĥ) (samp. τ) ri 1st

FCIQMC (Alavi, Booth) 1̂ + τ(ET 1̂− Ĥ) φorthogi 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthogi 2nd

1 + τ(ET 1̂− Ĥ) can be used only if the spectrum of Ĥ is bounded, τ < 2
Emax−E0

.
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Diffusion Monte Carlo
i.e., P̂(τ) = exp(τ(ET − Ĥ)), |φi 〉 = |R〉 , walkers are 1st-quantized

G (R
′
,R, τ) ≡ P(R

′
,R, τ) = 〈R′ |eτ(ET−Ĥ)|R〉.
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Diffusion Monte Carlo – Importance Sampled Green’s Function

Importance sampling: Multiply imaginary-time Schrödinger equation

−1

2
∇2Ψ(R, t) + (V(R)− ET)Ψ(R, t) = −∂Ψ(R, t)

∂t

by ΨT(R) and rearranging terms we obtain

−∇
2

2
(ΨΨT) + ∇ ·

(
∇ΨT

ΨT
ΨΨT

)
+

(
−∇2ΨT

2ΨT
+ V︸ ︷︷ ︸

EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t

defining f (R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(
∇ΨT

ΨT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f
∂t

Since we know the exact Green function for any one term on LHS, an approximation is:

G̃(R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−V(R)τ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))
2

}
τ

]
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Singularities of Green’s function
CJU, Nightingale, Runge, JCP 1993

Region Local energy EL Velocity V
Nodes EL ∼ ± 1

R⊥
for ΨT V ∼ 1

R⊥
EL = E0 for Ψ0 for both ΨT and Ψ0

e-n and e-e EL ∼ 1
x if cusps not imposed V has a discontinuity

coincidences EL finite if cusps are imposed for both ΨT and Ψ0

EL = E0 for Ψ0

All the above infinities and discontinuities cause problems, e.g.,∫ a

0
dx EL =

∫ a

0
dx

(
1

x

)
= ±∞∫ a

0
dx E 2

L =

∫ a

0
dx

(
1

x

)2

=∞

Modify Green’s function, by approximately integrating EL and V over path,
taking account of the singularities, at no additional computational cost.
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Combining with Metropolis to reduce time-step error
Reynolds, Ceperley, Alder, Lester, JCP 1982

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(
∇ψT

ψT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f
∂t

If we omit the growth/decay term then |ΨT|2 is the solution.

−1

2
∇2ψ2

T(R) + ∇ ·
(
∇ψT

ψT
ψ2
T(R)

)
= 0

We can sample |ΨT|2 exactly using Metropolis-Hastings! So, view G(R
′
,R, t) as being the

proposal matrix T (R′,R) and introduce accept-reject step after drift and diffusion steps.

Since some of the moves are rejected, account for that approximately by reducing the time
step in the reweighting factor from τ to τeff .
If accept/reject is done after each 1-electron move, then

τeff = τ
R2

accep

R2
prop
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Branching random walks

Ψ(x)
0

V(x)

Walkers multiply/die in regions of lower/higher V than ET (no imp. sampling)
Walkers multiply/die in regions of lower/higher EL than ET (with imp. sampling)
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Sign Problem in PMC

The sign problem differs for the various PMC methods.
However, in all PMC methods the underlying cause is that a state other than
the desired state grows exponentially compared to the desired state,
combined with the fact that since we are sampling states, cancellations of
opposite sign contributions are relatively ineffective.

In DMC we saw that we sample not Ψ0(R) but ΨT(R)Ψ0(R) using the
importance-sampled projector.
This sneaks in the fixed-node approximation, since we are projecting onto the
lowest state that has the same nodes ΨT(R) rather than the global ground
state.
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Fermion Nodes - a simple case

Consider a He atom in its 11S ground state. What are its nodes?

It has none!

Consider a He atom in its 13S state. What are its nodes?
r1 = r2 (r1 = r2 is co-dimension 2 from r1 = r2.)
Proof: Suppose r1 = r2.
If we rotate by 180◦ about line joining nucleus to the midpoint of the 2
electrons, Ψ→ Ψ.
If we exchange the electrons, Ψ→ −Ψ.
So, Ψ = 0 when r1 = r2.
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Sign Problem

Except for some special cases, there is a sign problem, and there is a FN
error.

Diffusion Monte Carlo
Physical dimension of space d
Number of parallel-spin electrons N
Dimension of wavefunction dN
Dimension of nodal surface dN − 1
Dimension of particle coincidences dN − d

So, in 1-d the nodal surface is known (when particles cross) and DMC does
not have a sign problem.

Another special case: AFQMC does not have a sign problem for the
1/2-filled Hubbard model.

What if we use the projector without importance sampling?
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ). |φi 〉 = |R〉

〈R|P̂(τ)|R′〉 ≈ e

−
(

R−R
′)2

2τ +

(
ET−

V(R)+V(R
′

)
2

)
τ

(2πτ)3N/2 is nonnegative.

So, where does the sign problem come from?

Problem: Since the Bosonic energy is always lower than the Fermionic
energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.
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〈R|P̂(τ)|R′〉 ≈ e

−
(

R−R
′)2

2τ +

(
ET−

V(R)+V(R
′

)
2

)
τ

(2πτ)3N/2 is nonnegative.

So, where does the sign problem come from?
Problem: Since the Bosonic energy is always lower than the Fermionic
energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.

Cyrus J. Umrigar



Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers
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Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Problem: In large space walkers rarely meet and cancel, so tiny signal/noise! Further, if
there are many cancellations, eventually there will be exclusively walkers of one sign only
and a purely Bosonic distribution.
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Sign Problem in 2nd quantization

It would appear from the above discussion that one could eliminate the sign
problem simply by using an antisymmetrized basis. In that case there are no
Bosonic states or states of any other symmetry than Fermionic, so there is
no possibility of getting noise from non-Fermionic states. Is that the case?

No!
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Sign Problem in 2nd quantization
Walk is done in the space of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of having a
stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign. Further,
Ψ and −Ψ are equally good.

The projector in the chosen 2nd -quantized basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign, e.g.

PΨ =


+ − + +
− + − −
+ − + +
+ − + +




+
−
+
+

 =


+
−
+
+


or equivalently:
It is possible to find a set of sign changes of the basis functions such that all elements of
the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC generations.
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