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Homework Assignment

The Hydrogen chain can be a playground that ties together much of what
we've learned in this school.

Apply your favorite approach to compute/understand some aspect of the
physics of the Hydrogen chain.
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Outline

Introduction (aka context of HW) - look for overlaps w/ other lects!
Brief reminder of Monte Carlo

AFQMC framework, T=0K

- Many-body ground state as ensembles of entangled DFT solutions

Finite-T AFQMC - use to introduce sign problem and exact gauge
conditions to control it, followed by approximate implementation

Example of ab initio calculations in solids and quantum chemistry



Inside a materials computation
Hydrogen chain as an illustration:
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Electrons respond quickly
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Hydrogen chain as an illustration:
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Inside a materials computation

Born-Oppenheimer - for fixed nuclear positions

* Electrons respond instantaneously
* Path integrals - infinite length (imaginary time) for most materials
* Precisely how -> many materials properties

* Electron density distribution -> inter-atomic force for atomic motion
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Hydrogen chain as an illustration:
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Inside a materials computation

Hydrogen chain as an illustration:
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With ‘time”:

Like stat. mech. ! Formulate as molecular dynamics or MC?
* Path is for wave function, not density
* Pauli — paths have complicated signs from fermion exchange

* Hilbert space exponentially large — natural to use sampling
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» long-range Coulomb interaction
» reach complete basis set (continuous space) limit

» thermodynamic limit
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The problem: hydrogen chain

Stretching bonds in Hy:
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The Hamiltonian

Methods that work in continuous coordinate space
— DFT (effectively)
— diffusion Monte Carlo (DMC), VMC

h2
H — Hl—body + H2—body = ZV2 + Z V;;xt rz + Z ‘/mt 'rZ o )

1<J
Methods that work in a single-particle basis:
— All QChem methods
— auxiliary-field QMC (AFQMC)
— DMRG
— embedding methods (DMET, SEET)
— diagrammatic MC; sc-GW

H = Hl —I_HQ E 1] jC] + g ‘/Yz]klc C CLCl
1,7,k,l



Summary of characteristics

An array of many-body methods

method deterministic basis set self-consistent variational scaling

Wave-function CCSD yes b yes no N2M* + N3M3

CCSD(T) yes b yes no N2M*

DMRG  yes b yes yes D*M? + D*M*

SBDMRG yes sb yes yes NRD? [N + D(N,)]

HF yes b yes yes M*

FCI yes b no yes (]\]\/{)

MRCI  yes b no yes > (yy) N+ N2M*

NEVPT2 yes b no no ( NA/IQ) N®

AFQMC no b no no N?M? + M?N

VMC no cs no yes N2M + N3

LR-DMC no cs no yes N2M + N3
Embedding DMET  yes b yes no N}D? + N;D* [(N}D? + N;D*)M]

) SEET  yes b yes no Nimp(22) + M°nr [Nimp (3°) + M?]

Diagrammatic§ SC-GW  yes/no b yes no M*n,

GF2 yes b yes no M°n.,

BDMC,, no b yes no e




The homework problem

* Physics

— EOS (benchmark paper) - e.g. implement Hio (open or PBC)
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MC integration

To evaluate many-dimensional integral G' = [ g(x)dx >0 [, i 1
e Sampling a PDF means obtaining a sequence {x,xo,- -+, z;,---} so that
Prob{z; € (z,z +dzx)} = dx
M
1.e., the probability distribution of the sequence is flx) = i Z d(x — x;)
) —1

;A
o If is successfully sampled, then G, = — Z g(z;)) -G
1V im1



Integral eqs by random walk

e An integral equation of the form

Q2

can be viewed as a random walk (transport problem)

e For example,

P b (R
Vi(x) = < -l \,/EP 2Y dy

—00 \/‘(7‘.

conditional prob. for particle x
“birth/death”

to jump to x if it is currently
at y

at y

Q: What is the resulting prob. distribution of particles?



An auxiliary-field perspective

General H w/ two-body interaction, in 2nd quantization:

H = E ij ]cj—l— E Vwklccckcl

1,7,k,l

Interaction can be decoupled:

1 J

V ’\/\/

o - / —0? 200 g —TH _ | / (o) B(0)do

Many-body propagator —> linear combination of independent-particle
propagators in auxiliary-fields




An auxiliary-field perspective

To obtain , use projection in imaginary-time:

<\IJT| )31 e—TH”.e—THe—TH|\IJ(O)>
<\IJT| e—TH,,,e—THe—’TH|\Ij(O)>

. Independen’r—elec’rron'

H Hl +H2 Z 1] jC] + Z V;jleTCTckcl
1,7,k,l

LDA  Hy — Y fo(ni)i

- Change the Hamiltonian

- Demand a single-determinant solution



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)
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 Independent-electron: e~ THipa(n) = o=TH1 o= Hxe(n)



An auxiliary-field perspective
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Thus, LDA calculation:



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)
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Thus, LDA calculation:
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An auxiliary-field perspective
Consider the propagator e TH o g—rHi =TI + O(7?)

 Independent-electron: e~ THipa(n) = o=TH1 o= Hxe(n)

Thus, LDA calculation:

e_TﬁLDA(”(O)) \SD(O)>



An auxiliary-field perspective
Consider the propagator e TH o g—rHi =TI + O(7?)

 Independent-electron: e~ THipa(n) = o=TH1 o= Hxe(n)

Thus, LDA calculation:

e_TﬁLDA<n(O) )\SD(O)>



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
SDW) <= =T Hia (2§ D)



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)
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* Independent-electron: € €

Thus, LDA calculation:
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An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
e—TI:ILDA(n(l))|SD(1)> < e—TﬁLDA<n(O))‘SD(O)>



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
e e TR gDy e = Hna (1S D)



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
|GS) -« 6_TﬁLDA(n(1))|SD(1>> <« o~ Hipa(n'?)gpO)



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
’GS> " e_TI:ILDA(n(l))|SD(1>> < e—TﬁLDA<n(O))‘SD(O)>

Single-determinant solution



An auxiliary-field perspective

Consider the propagator e TH o g—rHi =TI + O(7?)

THipa(n) - ,—7H; e—TﬁXC(n)

* Independent-electron: € €

Thus, LDA calculation:
GS) +e e e AT ) g py € o~ DA ()5 DIO)
Single-determinant solution

* Many-body: Hy=—) o2
-

A

. 5 - X
e—TH N e—THlfe—OT /2 VTV

Propagation leads to multi-determinants

Importance sampling fo make practical (Lect. notes; web - Matlab)



An auxiliary-field perspective

Reformulating field theory:
many-body effects as fluctuations around ‘DFT soln’:

Hyp = Hipa + AV

N Ru-v

g/v&ﬁg
R Vi o+ Vi

XC

., LDA
A T Hipa(p™) | L (n
. |¢( +1)> _ o~ THrpa(p )|¢( )>

(Uolg) =0 ~T

next 2>



An auxiliary-field perspective

Reformulating field theory:
many-body effects as fluctuations around ‘DFT soln’:

Hyp = Hipa + AV

N Ru-v

Y K Ve Ve

XC

., LDA
A T Hipa(p™) | L (n
. |¢( +1)> _ o~ THrpa(p )|¢( )>

e~ HuB / p(0)B(0)do
B(o)l¢) = |¢')

next 2>



An auxiliary-field perspective

Reformulating field theory:
many-body effects as fluctuations around ‘DFT soln’:

Hy = Hipa + AV

N Ru-v

W K Vi Vae

XC

. LDA
¥ —rHipa(p™) [ 4(n
. |¢( +1)> — o~ THLpa(p )|¢( )>

5_TﬁMB = / p(o)B(o)do
B(o)l¢) = 1¢')

"™\ AFQM

(Wolg) =0 > T

next 2>



Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| )31 e—’THH.e—THe—’THl\IJ(O)>

<\IJT| e—TH,,,e—THe—TH|\Ij(O)>

A step advances the SD by ‘rotations’



Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| H G_TH"'G_THG_THl\IJ(O)>

<\PT| e—TH,,,e—THe—TH|\Ij(O)>

A step advances the SD by ‘rotations’

CW P
P, P,
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Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| H G_TH"'G_THG_THl\IJ(O)>

<\PT| e—TH,,,e—THe—TH|\Ij(O)>

A step advances the SD by ‘rotations’

CW P
ot | W, W2

\q;N wNj



Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| H G_TH"'G_THG_THl\IJ(O)>
<\PT| e—TH,,,e—THe—TH|\Ij(O)>

—
e_Tﬁ‘:-7 p(O’)B.(O')dO' -

"1
L  BO)4) — 14"

A step advances the SD by ‘rotations’

CW P
P, P,

0
I

1-body op

o)

AF variable -- sample



Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| H G_TH"'G_THG_THl\IJ(O)>
<\PT| e—TH,,,e—THe—TH|\Ij(O)>

G
;—Tﬁ;7 AT

"1
L B8~ 18)

A step advances the SD by ‘rotations’

CW; W)
ot | W, W2

NXxN matrix \Wn Yy /\
N is size of ‘basis’




Path integral over AFs

Imaginary-time projection --> random walk:

<\IJT| H G_TH"'G_THG_THl\IJ(O)>

<\PT| e—TH,,,e—THe—TH|\Ij(O)>

‘ .--..-......

A step advances the SD by ‘rotations’

/W] P fw’l w’l\
O"i\) lpZ wz w’z IP’z

W W) \11;’N 1VN/



Relation & differences with QC methods

Sampling Slater determinant space:

quantum chemistry AF QMC
N
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Sampling Slater determinant space:

quantum chemistry AF QMC
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Relation & differences with QC methods

Sampling Slater determinant space:

quantum chemistry AF QMC
N

V 4 : .
3
0 2 i>

1

AF QMC:
* non-orthogonal |¢®)
* more compact rep

e weaker sign problem
(FCIQMC or DMC)

e constraint - O(N"3)




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81
Partition function for Hamiltonian H is: (5 =1/kT)

Te(e PH) = Te(e ™ e ™H ... o=TH)
Need:

~ Tr(Oe"H)
<O> o TI‘(G_"BH)




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81

/da p(o) eVl

Need: em™ =% B(x)

~ Tr(O e~ P
<O> o TI.(e—;BH)

Partition function for Hamiltonian H is: (5 =1/kT)

Tr(e_"SH) _ TI( e—'rH G_TH e—'rH)




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar,

Partition function for Hamiltonian H is: (5 =1/kT)

Tr(e_"SH) _ TI( e—'rH G_TH e—'rH)

81

Need: e

—-TH __

0) = Tr(O e ") - Z{X_} Tr(OB(x;)B(x; 1)+~ B(x1))
T e ) T g (B0 B0 1) B(x)




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81

Partition function for Hamiltonian H is: (5 =1/kT)

Tr(e—,BH) _ TI( e—'rH Q_TH e—'rH)

Need: em™ =% B(x)

0y = TO =) Y, T(OB(x)B(x; 1)+ B(x.
D) Yy Tr(Bxe)Blxs-) - Blxy)

& N, X Ny matrix




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81
Partition function for Hamiltonian H is: (5 =1/kT)
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Sample fields {x;} by Metropolis Monte Carlo to compute sum.

k N, X Ny matrix
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Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81

Partition function for Hamiltonian H is: (5 =1/kT)
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Sample fields {x;} by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC: N

o As T lowers, average sign of det| | — 0 exponentially.

& N, X Ny matrix




Introduction - T>0 method

Standard finite-T method Blankenbecler, Scalapino, and Sugar, 81
Partition function for Hamiltonian H is: (5 =1/kT)

Tr(e—BH) _ TI( e—TH e—TH e—TH)

Need: em™ =% B(x)

0) = Tr(Oe= ) Yy Tr(OB(x1)B(x, 1)+ B(x1))
— Tr(e—BH) o Z{X} TI'(B(X_,( )B(X ‘) — 'B(X| ))

Analytically evaluate trace:  Tr(e %) = (x,y det[ I + B(x;

Sample fields {x;} by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC: N

o As T lowers, average sign of det| | — 0 exponentially.

& N, X Ny matrix

Referred to as DQMC



Path integral over AFs

T=0K:

det|

finite-T:

det[/ +

N

\

\

N

N\

)

7

\

%?’




The sign problem

Imaginary-time projection for GS. — random walk:

<\IJT| )31 e—TH”.e—THe—TH|\IJ(O)>
<\IJT| e—TH,,,e—THe—’TH|\Ij(O)>

The sign problem L

* happens whenever B...B|¢) — —|¢) exists
symmetry can prevent this:
- attractive interaction (det[])72
- repulsive half-filling bipartite  (particle-hole)
- a more general formulation PRL 116, 250601 (2016)



An exact gauge condition on the paths

Imagine introducing path integrals one time slice at a time: Zhang, 99

Z = Tr(e™He ™ .. gTH mTHY P, e T = Z B(x)
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An exact gauge condition on the paths

Imagine introducing path integrals one time slice at a time: Zhang, 99
—TH
Z = Tr(e e ™ . omTH mTHY P, eV = Z B(x)
X
= y: Tr(e ™Me ™ ... 7" B(x1)) Pi({x1}) — integrand

1) T
— Z Tr( e THTH . B(x2) B(x1) ) Po({x1,x2})

{xl X2 }

= ) det[I+ B(xz) B(xz-1)---B(x1)]  Pr({xi,x2,--,xL})
{xi}

Suppose we know e~ 7H

Consider P:

A det[] A P

o If P, =0, all future paths {x/+1, X142, -+, Xz } collectively contribute 0 in Z.

o A complete path {x;} contributes to Z iff P, > 0 for all [.



An exact gauge condition on the paths

Imagine introducing path integrals one time slice at a time: Zhang, 99
—TH
Z = Tr(e e ™ . omTH mTHY P, eV = Z B(x)
X
= y: Tr(e ™Me ™ ... 7" B(x1)) Pi({x1}) — integrand

1) T
= Z Tr(e_TH e TH ... B(x2) B(x1) ) Pr({x1,x2})

{xl X2 }

= S det{ I+ Blxz) Bixio1) -+ Bxi)]  Pr({xixa,-,xc})
{xi}

Suppose we know e~

TH

Consider P:

A det[] A

N, x N, matrix

'

o If P, =0, all future paths {x/+1, X142, -+, Xz } collectively contribute 0 in Z.

o A complete path {x;} contributes to Z iff P, > 0 for all [.



Impose gauge condition approximately

Constraint to control the sign problem
Require: Pi({x1}) > 0; Py({x1.x2}) > 0; . Pr({x1.x9,---,x1}) > 0.

e Constraint eliminates all noise paths (‘dashed lines’).

TH

e In practice, we use trial Bt for e™™" — approximate.



Impose gauge condition approximately

T=0K: many-body effects as fluctuations around “"LDA soln”

H=Hipa+ AV

(Wolo)
A

Q_TH — ¢ TlHipa e—TAV

» 1, T

next 2>
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Impose gauge condition approximately

T=0K: many-body effects as fluctuations around “"LDA soln”

H=Hipa+ AV

(Wole)

(Wolg) =0

€

n T

—TH — e_THLDA e—TAV

Degeneracy between

+|$) and —|¢)

next 2>
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Impose gauge condition approximately

T=0K: many-body effects as fluctuations around “"LDA soln”
H = Hipa+ AV

(Wole)

e_TH — ¢ TlHipa e—TAV

Degeneracy between

nT ®¢ “”d@¢

Coulomb +/- — 6

next 2>

(Wolg) =0




Impose gauge condition approximately

Self consistent algorithm

1. Hartree-Fock ("DFT") solution -> AFQMC trial density matrix (DM)
2. Carry out AFQMC calculation with trial DM as constraint

3. Solve mean-field H, tune interaction strength (or form!), e.g U_eff,
to match (minimize difference) DM with QMC from prev. iteration

4. Take new mean-field solution as trial DM

5. Repeat 2-4 until convergence: final QMC answer; optimal mean-field

trial DM

mean-field

Green fcn/DM
He et al, PRB 99, 045108 (2019)



Magnetic properties in the Hubbard model

*  Model for CuO plane in cuprates ? doping of a Mott insulator
*  Half-filling: antiferromagnetic (AF) order at T=0K
(Furukawa & Imada 1991; Tang & Hirsch 1983; White et al, 1989; ....)

AF correlation:

C(I') == I >]; T, Z<Sr : Sr—|—r’>

r/

What happens to the AF order uponn ~

- =24 next >



Illustration in Hubbard ladders

Add pinning field to break translational invariance:

+ . E 8 5l 5 8§ 8
-

pinning field ; e
CERERE e

Cylindrical systems:

* Allows direct comparison with DMRG, which can treat
narrow cylinders very accurately

e Calculations made easier! :

correlation function ==> spin density

He et al, PRB 99, 045108 (2019)



Stripe order in 2D Hubbard model

4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16

* High T

—No order 0.21

— Agree with DQMC to I
beta=5 (when DQMC 0.14
breaks down)

FT-AFQMC
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Stripe order in 2D Hubbard model

4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16

* High T
—No order
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Stripe order in 2D Hubbard model

4x16 cylinder, U=61, doping h=1/8, pinning field at x=1, 16

* High T
—No order 0_21_" T o
— Agree with DQMC to I
beta=5 (when DQMC 014}
breaks down) > i
2 0.07}
* As T lowers, ° _
order develops = 0.00t
a
-0.07 |
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4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16
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Stripe order in 2D Hubbard model

4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16
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Stripe order in 2D Hubbard model

4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16
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Stripe order in 2D Hubbard model

4x16 cylinder, U=6%, doping h=1/8, pinning field at x=1, 16

* High T
—No order

— Agree with DQMC to
beta=5 (when DQMC
breaks down)

* As T lowers,
order develops

* Approaches zero-T
AFQMC, and DMRG

0.21

0.14

Spin density

-0.07

-0.14

0.07

0.00

\/

—&— DMRG I

FT-AFQMC
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Hubbard model ground-state order

Collaboration determines 'stripe phase':

e Combines best methods
- complement (size)
- cross-check

e Careful approach to TDL
- resolves 0.005t scale

—0.750
—0.755 |
o —0.760 |
—0.765 |

—0.770 ¢

(1/8 doping, U=8)

—0.522 . = |
half-filled
ol ] x=0.125
ox L ®
—0.524 . . " {
—0.525 |
real
space
= B
I hybrid
*
DMET __ AFQMC DMRG

S

Chan, Corboz, White, Zhang groups: Science (2017)

Figure 1: Best estimates of ground state energy for the 1/8-doped 2D Hubbard model at U/t =
8 from DMET, AFQMC, iPEPS and DMRG. Inset: Best estimates of ground state energy for
the half-filled 2D Hubbard model at U/t = 8.



Hubbard model ground-state order

Collaboration determines 'stripe phase’:  (1/8 doping, U=8)

e Combines best methods
- complement (size)
- cross-check

e Careful approach to TDL
- resolves 0.005t scale

® Properties

- wavelength = 1/h

magnetic moments

0.00 0.08 0.14 0.21 0.19 013 0.05 0.00 | 0.00 0.08 0.14 0.21

0.19 0.13

0.05

0.00
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hole densities

Chan, Corboz, White, Zhang groups: Science (2017)




Hubbard model ground-state order

Collaboration determines 'stripe phase’:  (1/8 doping, U=8)

e Combines best methods

0.03 —
- complement (size) :

- cross-check

0.02f \ ooz

e Careful approach to TDL |
- resolves 0.005t scale 0| \ t

® Properties
0.00 |

- wavelength = 1/h

- fluctuating stripes (sloppy) 5T 5

0.5

0.3

0.1

“05 16x32 lattice: AFQMC
—0.5

Chan, Corboz, White, Zhang groups: Science (2017)




Total energy calculations in solids

Basis from downfol

ding  (Kohn-Sham orbitals: occupied and virtual)

Relative error vs. expt

(a) 5%

S
Eq volume 51 _

T e T 11

1 1T

v—v TPSS

o—e [ DA
=—a PBE
PBEsol

a~— HSEQ06
HSEsol

»—» AFQMC

SISO | S

Bulk mod 0%

1 e 111

¢

Ma, et al, PRL 114, 226

401 (2015)



Quantum chemistry

‘ I ‘ Journal of Chemical Theory and Computation
@ Cite This: J. Chem. Theory Comput. XXXX, XXX, XXX—XXX pubs.acs.org/JCTC

On Achieving High Accuracy in Quantum Chemical Calculations of
3d Transition Metal-Containing Systems: A Comparison of Auxiliary-
Field Quantum Monte Carlo with Coupled Cluster, Density
Functional Theory, and Experiment for Diatomic Molecules

James Shee,*" Benjamin Rudshteyn,T Evan J. Arthur,” Shiwei Zhang,q[’§ David R. Reichman,’
and Richard A. Friesner'

TDepartment of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States

iSchrodinger Inc., 120 West 45th Street, New York, New York 10036, United States

ICenter for Computational Quantum Physics, Flatiron Institute, 162 Sth Avenue, New York, New York 10010, United States
SDepartment of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States

MAE and Max Error [kcal/mol]

» Bond dissociation energy of 44 :
3d transition metal diatomics 2
» 10 DFT functionals; CCSD(T);
multi-reference CCSD(T) 2 1o
» Questioned 3 expt values : Is
» AFQMC systematically reaches ——
chemical accuracy T 0\@Q & s

Maximum Error



A major obstacle in finite-T method

T=0K:

det|

finite-T:

det[/ +

N\

N\

N\

N

N\

N\

7 .

‘§§

O(NsN2)

\]
N

O(N;)

Continuum limit is required in ab initio computations in molecules and
solids (basis set, or grid/planewaves) N /N, — oo

Major obstacle for finite-T calculations



A major obstacle in finite-T method

T=0OK:
O(NsN;
finite-T: ( s' Ve )
A\ A\ N
d( We have solved this problem with = ]
factorization & decomposition N
— PRL (in press) arXiv:1906.02247 (’)(N 3)
, S

Continuum limit is required in ab initio computations in molecules and
solids (basis set, or grid/planewaves) N /N, — oo

Major obstacle for finite-T calculations



Approaching the continuum limit

Solution — low-rank decomposition:

R=BB, ---B,B, =U;D,V, L=B,B, B, =VDU,

(a) R&& L (b) N, |
b= T

Note that in T=0: m = N, |

He et al, PRL (in press)



Approaching the continuum limit

Can tune truncation threshold: (negligible error w/ 0.001t (aggressive) )

-0.5404 | ia)é' ' e A
S : e
2 -0.5408 | ‘ ' {;
(73] |
@ 5 "
Q_ 1
> -0.5412 | ‘ _{
o
Q % RERE s z s é 1
T S
= | e pE=0| A pE100]

05420} | | | | |

1 102 10° 10° 10° 10 102 0
Truncation threshold ¢

He et al, PRL (in press)



Approaching the continuum limit

Dynamic truncation along the path; large speedups

400 ‘1 (b) 50_' 4| R 'm' ,L . ‘r_
4 R ' 1
=300 00 Y ——m ;‘» | ’ -
& e, o _
'g 200 | 30 Wm - + i
s | 29] |
© i 20, L |
g 100 |
= X
0

He et al, PRL (in press)



Approaching the continuum limit

Dynamic truncation along the path; large speedups

Truncation dimensions
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He et al, PRL (in press)



Application to Fermi gas - on-going

Allows access to very low T, large systems sizes
- computing exact properties in both normal and superfluid states

- examine BKT transition in 2D Fermi gas

BCS
——1=45 N_=581 |

Pairing wf

Condensate frac

T
. TIT=i4 In(k-a)=0.50, L=45, N =58 I

0.02L ——TIT =18

|« =140 ..‘-‘._l
0_00 L ! 2 1 " 1 L 1 L 1

He et al, PRL (in press)




Summary

Advances in computation — new opportunities for synergy
—  progress in auxiliary-field QMC
—  sign problem # cant do very accurate computation

Ab initio calculations in quantum many-body systems:

— Reformulate field theory for post-DFT calculation which utilizes much
of the DFT machinery

- Many-body wave function or density matrix expressed as a linear
combination of DFT solutions in stochastic auxiliary fields

—  Controls sign/phase problem with gauge condition

Many opportunities for further algorithmic and coding development

Exceptional potential for parallelism -- petascale computing makes a
wide range of problems accessible with this framework



