Auxiliary-field quantum Monte Carlo at zero- and finite-temperatures

Shiwei Zhang Flatiron Institute, New York

College of William & Mary, Virginia

Homework Assignment

The Hydrogen chain can be a playground that ties together much of what we've learned in this school.

Apply your favorite approach to compute/understand some aspect of the physics of the Hydrogen chain.

Auxiliary-field quantum Monte Carlo at zero- and finite-temperatures

Shiwei Zhang

Flatiron Institute, New York College of William & Mary, Virginia

Outline

- Introduction (aka context of HW) look for overlaps w/ other lects!
- Brief reminder of Monte Carlo
- AFQMC framework, T=0K
 - Many-body ground state as ensembles of entangled DFT solutions
- Finite-T AFQMC use to introduce sign problem and exact gauge conditions to control it, followed by approximate implementation
- Example of ab initio calculations in solids and quantum chemistry

Hydrogen chain as an illustration:

Electrons respond quickly

Hydrogen chain as an illustration:

Born-Oppenheimer – for fixed nuclear positions

- Electrons respond instantaneously
- Path integrals infinite length (imaginary time) for most materials
- Precisely how -> many materials properties
- Electron density distribution -> inter-atomic force for atomic motion

Like stat. mech. ! Formulate as molecular dynamics or MC?

- Path is for wave function, not density
- Pauli paths have complicated signs from fermion exchange
- Hilbert space exponentially large natural to use sampling

The Hydrogen benchmark project

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta,¹ David M. Ceperley,² Garnet Kin-Lic Chan,³ John A. Gomez,⁴ Emanuel Gull,⁵ Sheng Guo,³ Carlos Jimenez-Hoyos,³ Tran Nguyen Lan,^{6,5,7} Jia Li,⁵ Fengjie Ma,⁸ Andrew J. Millis,⁹ Nikolay V. Prokof'ev,^{10,11} Ushnish Ray,³ Gustavo E. Scuseria,^{4,12} Sandro Sorella,^{13,14} Edwin M. Stoudenmire,¹⁵ Qiming Sun,³ Igor S. Tupitsyn,^{10,11} Steven R. White,¹⁵ Dominika Zgid,⁶ and Shiwei Zhang^{1,*} (The Simons Collaboration on the Many-Electron Problem) ¹Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA ²Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA ³Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA ⁴Department of Chemistry, Rice University, Houston, TX 77005, USA ⁵Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA ⁶Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA ⁷On leave from: Ho Chi Minh City Institute of Physics, VAST, Ho Chi Minh City, Vietnam ⁸Department of Physics, Beijing Normal University, Beijing, Beijing 100875, China ⁹Department of Physics, Columbia University, New York, NY 10027, USA ¹⁰Department of Physics, University of Massachusetts, Amherst, MA 01003, USA ¹¹National Research Center "Kurchatov Institute", 123182 Moscow, Russia ¹²Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA ¹³SISSA – International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy ¹⁴Democritos Simulation Center CNR-IOM Istituto Officina dei Materiali, Via Bonomea 265, 34136 Trieste, Italy ¹⁵Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA (Dated: May 1, 2017)

The Hydrogen benchmark project

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta,¹ David M. Ceperley,² Garnet Kin-Lic Chan,³ John A. Gomez,⁴ Emanuel Gull,⁵ Sheng Guo,³ Carlos Jimenez-Hoyos,³ Tran Nguyen Lan,^{6,5,7} Jia Li,⁵ Fengjie Ma,⁸ Andrew J. Millis,⁹ Nikolay V. Prokof'ev,^{10,11} Ushnish Ray,³ Gustavo E. Scuseria,^{4,12} Sandro Sorella,^{13,14} Edwin M. Stoudenmire,¹⁵ Qiming Sun,³ Igor S. Tupitsyn,^{10,11} Steven R. White,¹⁵ Dominika Zgid,⁶ and Shiwei Zhang^{1,*} (The Simons Collaboration on the Many-Electron Problem)

¹Department of Physics. College of William and Mary. Williamsburg. VA 23187. USA

10 groups, 21 authors; > a dozen many-body methods

- Following Hubbard model benchmark (PRX '15), move towards real materials:
 - long-range Coulomb interaction
 - reach complete basis set (continuous space) limit
 - thermodynamic limit

¹⁵Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA (Dated: May 1, 2017) |u|

PRX (2017)

The Hydrogen benchmark project

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

PRX (2017)

The problem: hydrogen chain

1

1.5

2

2.5

bond length [Bohr]

3

3.5

The Hamiltonian

- Methods that work in continuous coordinate space
 - DFT (effectively)
 - diffusion Monte Carlo (DMC), VMC

$$H = H_{1-\text{body}} + H_{2-\text{body}} = -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i=1}^N V_{\text{ext}}(\mathbf{r}_i) + \sum_{i$$

- Methods that work in a single-particle basis:
 - All QChem methods

- DMRG
- embedding methods (DMET, SEET)
- diagrammatic MC; sc-GW

$$\hat{H} = \hat{H}_1 + \hat{H}_2 = \sum_{i,j}^M T_{ij} c_j^{\dagger} c_j + \sum_{i,j,k,l}^M V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

An array of many-body methods

Summary of characteristics

method		deterministic	basis set	self-consistent	variational	scaling
Wave-function	CCSD	yes	b	yes	no	$N^2 M^4 + N^3 M^3$
	$\operatorname{CCSD}(T)$	yes	b	yes	no	N^3M^4
	DMRG	yes	b	yes	yes	$D^3M^3 + D^2M^4$
	SBDMRG	yes	\mathbf{sb}	yes	yes	$NRD^3\left[N_o^3 + D(N_o)\right]$
	HF	yes	b	yes	yes	M^4
	FCI	yes	b	no	yes	$\binom{M}{N}$
	MRCI	yes	b	no	yes	$> \binom{N}{N/2}N^4 + N^2M^4$
	NEVPT2	yes	b	no	no	$\binom{N}{N/2}N^8$
	AFQMC	no	b	no	no	$N^2M^2 + M^2N$
	VMC	no	\mathbf{CS}	no	yes	$N^2M + N^3$
	LR-DMC	no	\mathbf{cs}	no	yes	$N^2M + N^3$
Embedding	DMET	yes	b	yes	no	$N_f^3 D^3 + N_f^2 D^4 \left[(N_f^3 D^3 + N_f^2 D^4) M \right]$
ATTIN TO A STATE OF A S	SEET	yes	b	yes	no	$N_{imp}\binom{M_s}{n_e} + M^5 n_\tau \left[N_{imp}\binom{M_s}{n_e} + M^4 \right]$
Diagrammatic	SC-GW	yes/no	b	yes	no	$M^4 n_{ au}$
Longer and the second	m GF2	yes	b	yes	no	$M^5 n_{ au}$
	BDMC_n	no	b	yes	no	$e^{\alpha n}$

The homework problem

- Physics
 - EOS (benchmark paper) e.g. implement H10 (open or PBC)

MC integration

To evaluate many-dimensional integral $G = \int_{\Omega} f(x)g(x)dx$

• Sampling a PDF f(x) means obtaining a sequence $\{x_1, x_2, \dots, x_i, \dots\}$ so that

 $\operatorname{Prob}\{x_i \in (x, x + dx)\} = f(x)dx$

i.e., the probability distribution of the sequence is f(x)

$$f(x) \doteq \frac{1}{M} \sum_{i=1}^{M} \delta(x - x_i)$$

f(x) > 0; $\int_{\Omega} f(x) dx = 1$

f(x): probability density

• If f(x) is successfully sampled, then

$$G_{\boldsymbol{M}} \equiv \frac{1}{M} \sum_{i=1}^{M} g(x_i) \quad \rightarrow \boldsymbol{G}$$

Integral eqs by random walk

• An integral equation of the form

$$\Psi'(x) = \int_{\Omega} G(x, y) w(y) \Psi(y) dy$$

can be viewed as a random walk

• For example,

$$\Psi'(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-(x-y)^2} \sqrt{2} e^{-\frac{1}{2}y^2} \Psi(y) dy$$

conditional prob. for particle " to jump to x if it is currently at y

"birth/death" at y

prob. for particle to be at y

Q: What is the resulting prob. distribution of particles?

(transport problem)

General H w/ two-body interaction, in 2nd quantization:

$$\hat{H} = \sum_{i,j}^{M} T_{ij} c_j^{\dagger} c_j + \sum_{i,j,k,l}^{M} V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Interaction can be decoupled:

$$e^{v^{2}} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\sigma^{2}} e^{2\sigma v} d\sigma \qquad e^{-\tau \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

Many-body propagator —> linear combination of independent-particle propagators in auxiliary-fields

To obtain ground state, use projection in imaginary-time:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

• Independent-electron:

$$\hat{H} = \hat{H}_1 + \hat{H}_2 = \sum_{i,j}^{M} T_{ij} c_j^{\dagger} c_j + \sum_{i,j,k,l}^{M} V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

LDA
$$\hat{H}_2 \rightarrow \sum_i f_c(n_i) \hat{n}_i$$

- Change the Hamiltonian
- Demand a single-determinant solution

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

Thus, LDA calculation:

 $|SD^{(0)}\rangle$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

$$e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}$$
 $|SD^{(0)}\rangle$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

Thus, LDA calculation:

 $e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

$$|SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

$$e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})} \qquad |SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

$$e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})}|SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

$$\cdots \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})} |SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})} |SD^{(0)}\rangle$$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

$$|GS\rangle \dots \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})}|SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$$

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

Thus, LDA calculation:

$$|GS\rangle \dots \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})}|SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})}|SD^{(0)}\rangle$$

Single-determinant solution

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{LDA}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{xc}(n)}$

Thus, LDA calculation:

 $|GS\rangle \cdots \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(1)})} |SD^{(1)}\rangle \leftarrow e^{-\tau \hat{H}_{\text{LDA}}(n^{(0)})} |SD^{(0)}\rangle$

Single-determinant solution

• Many-body: $\hat{H}_2 = -\sum_{\gamma} \hat{v}_{\gamma}^2$

$$e^{-\tau \hat{H}} \rightarrow e^{-\tau \hat{H}_1} \int e^{-\sigma^2/2} e^{\sigma \sqrt{\tau} \hat{v}} d\sigma$$

Propagation leads to multi-determinants Importance sampling to make practical (L

(Lect. notes; web - Matlab)

Path integral over AFs

Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$
$$e^{-\tau \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$
$$B(\sigma) | \phi \rangle \to | \phi' \rangle$$

A step advances the SD by 'rotations'

Path integral over AFs

Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

$$e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

 $B(\sigma) |\phi\rangle o |\phi'
angle$

A step advances the SD by `rotations'

$$\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi_N & \psi_N \end{pmatrix}$$
Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

$$e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

 $B(\sigma) |\phi\rangle o |\phi'
angle$

A step advances the SD by `rotations'

$$e^{\boldsymbol{\sigma}\hat{\boldsymbol{v}}\begin{pmatrix}\boldsymbol{\psi}_{1} & \boldsymbol{\psi}_{1} \\ \boldsymbol{\psi}_{2} & \boldsymbol{\psi}_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \boldsymbol{\psi}_{N} & \boldsymbol{\psi}_{N} \end{pmatrix}}$$

Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

$$e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

 $B(\sigma) |\phi\rangle o |\phi'
angle$

A step advances the SD by `rotations'

$$e_{\uparrow}^{\sigma \hat{v}} \begin{pmatrix} \psi_{1} & \psi_{1} \\ \psi_{2} & \psi_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi_{N} & \psi_{N} \end{pmatrix}$$
1-body op

AF variable -- sample

Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

$$e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

 $B(\sigma) |\phi\rangle o |\phi'
angle$

A step advances the SD by `rotations'

$$e^{\sigma \hat{v}} \begin{pmatrix} \psi_{1} & \psi_{1} \\ \psi_{2} & \psi_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi_{N} & \psi_{N} \end{pmatrix}$$

N is size of 'basis'

Imaginary-time projection --> random walk:

$$\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$$

$$e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$$

 $B(\sigma) |\phi\rangle o |\phi'
angle$

A step advances the SD by 'rotations'

$$e^{\sigma \hat{v}} \begin{pmatrix} \psi_{1} & \psi_{1} \\ \psi_{2} & \psi_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi_{N} & \psi_{N} \end{pmatrix} \quad - > \begin{pmatrix} \psi'_{1} & \psi'_{1} \\ \psi'_{2} & \psi'_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi'_{N} & \psi'_{N} \end{pmatrix}$$

Relation & differences with QC methods

Sampling Slater determinant space:

Relation & differences with QC methods

Sampling Slater determinant space:

$$\begin{pmatrix}
\psi_1 & \psi_1 \\
\psi_2 & \psi_2 \\
\cdot & \cdot \\
\cdot & \cdot \\
\psi_N & \psi_N
\end{pmatrix}$$

Relation & differences with QC methods

Sampling Slater determinant space:

Standard finite-T methodBlankenbecler, Scalapino, and Sugar, '81Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}$$

Standard finite-T methodBlankenbecler, Scalapino, and Sugar, '81Partition function for Hamiltonian H is: $(\beta = 1/kT)$ $Tr(e^{-\beta H}) = Tr(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$ $\int d\sigma p(\sigma) e^{\mathbf{v}(\sigma)}$

 $e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}$$

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81 Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} = \frac{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(OB(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(B(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}$$

$$e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$$

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81 Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81 Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

Need:

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} = \frac{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(OB(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(B(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}$$

Analytically evaluate trace: $\operatorname{Tr}(e^{-\beta H}) = \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)]$ Sample fields $\{\mathbf{x}_l\}$ by Metropolis Monte Carlo to compute sum.

 $N_s \times N_s$ matrix

 $e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81 Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

Need:

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} = \frac{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(OB(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(B(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}$$

Analytically evaluate trace: $\operatorname{Tr}(e^{-\beta H}) = \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)]$ Sample fields $\{\mathbf{x}_l\}$ by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC:

• As T lowers, average sign of det[] $\rightarrow 0$ exponentially.

 $e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81 Partition function for Hamiltonian H is: $(\beta = 1/kT)$

$$\operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H})$$

 $e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$

 $N_s \times N_s$ matrix

Need:

$$\langle O \rangle = \frac{\operatorname{Tr}(O e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} = \frac{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(OB(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}{\sum_{\{\mathbf{x}_l\}} \operatorname{Tr}(B(\mathbf{x}_L)B(\mathbf{x}_{L-1})\cdots B(\mathbf{x}_1))}$$

Analytically evaluate trace: $\operatorname{Tr}(e^{-\beta H}) = \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)]$ Sample fields $\{\mathbf{x}_l\}$ by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC:

• As T lowers, average sign of det $[] \rightarrow 0$ exponentially.

Referred to as DQMC

finite-T:

The sign problem

Imaginary-time projection for GS. —> random walk:

 $\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}$

The sign problem

- * happens whenever $B \dots B |\phi\rangle \rightarrow -|\phi\rangle$ exists symmetry can prevent this:
 - attractive interaction (det[])²
 - repulsive half-filling bipartite (particle-hole)
 - a more general formulation PRL 116, 250601 (2016)

 $e^{- au \hat{H}} = \int p(\sigma) B(\sigma) d\sigma$ $B(\sigma) |\phi\rangle o |\phi'
angle$

Imagine introducing path integrals one time slice at a time: Zhang, '99 $Z = \text{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}) \qquad P_0 \qquad e^{-\tau H} = \sum B(\mathbf{x})$

Imagine introducing path integrals one time slice at a time: Zhang, '99 $Z = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}) \qquad P_0 \qquad e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$ $= \sum_{\{\mathbf{x}_1\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B(\mathbf{x}_1)) \qquad P_1(\{\mathbf{x}_1\}) \qquad \leftarrow \text{ integrand}$

Imagine introducing path integrals one time slice at a time: Zhang, '99

$$Z = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}) \qquad P_{0} \qquad e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$$
$$= \sum_{\{\mathbf{x}_{1}\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B(\mathbf{x}_{1})) \qquad P_{1}(\{\mathbf{x}_{1}\}) \qquad \leftarrow \text{ integrand}$$
$$= \sum_{\{\mathbf{x}_{1}, \mathbf{x}_{2}\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots B(\mathbf{x}_{2}) B(\mathbf{x}_{1})) \qquad P_{2}(\{\mathbf{x}_{1}, \mathbf{x}_{2}\})$$

Imagine introducing path integrals one time slice at a time: Zhang, '99

$$Z = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}) \qquad P_0 \qquad e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$$
$$= \sum_{\{\mathbf{x}_1\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B(\mathbf{x}_1)) \qquad P_1(\{\mathbf{x}_1\}) \qquad \leftarrow \text{ integrand}$$
$$= \sum_{\{\mathbf{x}_1, \mathbf{x}_2\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots B(\mathbf{x}_2) B(\mathbf{x}_1)) \qquad P_2(\{\mathbf{x}_1, \mathbf{x}_2\})$$
$$= \cdots$$
$$= \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)] \qquad P_L(\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L\})$$

Imagine introducing path integrals one time slice at a time: Zhang, '99

$$Z = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}) \qquad P_0 \qquad e^{-\tau H} = \sum_{\mathbf{x}} B(\mathbf{x})$$

$$= \sum_{\{\mathbf{x}_1\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B(\mathbf{x}_1)) \qquad P_1(\{\mathbf{x}_1\}) \qquad \leftarrow \text{ integrand}$$

$$= \sum_{\{\mathbf{x}_1, \mathbf{x}_2\}} \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots B(\mathbf{x}_2) B(\mathbf{x}_1)) \qquad P_2(\{\mathbf{x}_1, \mathbf{x}_2\})$$

$$= \cdots$$

$$= \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)] \qquad P_L(\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L\})$$

Suppose we know $e^{-\tau H}$. Consider P_l :

• If $P_l = 0$, all future paths $\{\mathbf{x}_{l+1}, \mathbf{x}_{l+2}, \cdots, \mathbf{x}_L\}$ collectively contribute 0 in Z.

• A complete path $\{\mathbf{x}_l\}$ contributes to Z iff $P_l > 0$ for all l.

Imagine introducing path integrals one time slice at a time: Zhang, '99 $e^{-\tau H} = \sum B(\mathbf{x})$ $Z = \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H})$ P_0 $= \sum_{\{\mathbf{x}_1\}} \underline{\operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B(\mathbf{x}_1))} \qquad P_1(\{\mathbf{x}_1\}) \qquad \leftarrow \text{ integrand}$ $= \sum \operatorname{Tr}(e^{-\tau H} e^{-\tau H} \cdots B(\mathbf{x}_2) B(\mathbf{x}_1)) \qquad P_2(\{\mathbf{x}_1, \mathbf{x}_2\})$ $\{x_1, x_2\}$ $= \sum_{\{\mathbf{x}_l\}} \det[I + B(\mathbf{x}_L) B(\mathbf{x}_{L-1}) \cdots B(\mathbf{x}_1)] \qquad P_L(\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L\})$ Suppose we know $e^{-\tau H}$. Consider P_l : $N_s \times N_s$ matrix Ζ

• If $P_l = 0$, all future paths $\{\mathbf{x}_{l+1}, \mathbf{x}_{l+2}, \cdots, \mathbf{x}_L\}$ collectively contribute 0 in Z.

• A complete path $\{\mathbf{x}_l\}$ contributes to Z iff $P_l > 0$ for all l.

Constraint to control the sign problem

Require: $P_1({\mathbf{x}_1}) > 0; P_2({\mathbf{x}_1, \mathbf{x}_2}) > 0; \dots; P_L({\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L}) > 0.$

- Constraint eliminates all noise paths ('dashed lines').
- In practice, we use trial B_T for $e^{-\tau H}$ approximate.

Self consistent algorithm

- 1. Hartree-Fock ("DFT") solution -> AFQMC trial density matrix (DM)
- 2. Carry out AFQMC calculation with trial DM as constraint
- 3. Solve mean-field H, tune interaction strength (or form!), e.g U_eff, to match (minimize difference) DM with QMC from prev. iteration
- 4. Take new mean-field solution as trial DM
- 5. Repeat 2-4 until convergence: final QMC answer; optimal mean-field

Magnetic properties in the Hubbard model

- Model for CuO plane in cuprates ? doping of a Mott insulator
- Half-filling: antiferromagnetic (AF) order at T=OK (Furukawa & Imada 1991; Tang & Hirsch 1983; White et al, 1989;)
 - AF correlation:

$$C(\mathbf{r}) = \frac{1}{L \times L} \sum_{\mathbf{r}'} \langle \mathbf{S}_{\mathbf{r}} \cdot \mathbf{S}_{\mathbf{r}+\mathbf{r}'} \rangle$$

What happens to the AF order upon doping?

Illustration in Hubbard ladders

Add pinning field to break translational invariance:

pinning field $\frac{1}{4}$

Cylindrical systems:

- Allows direct comparison with DMRG, which can treat narrow cylinders very accurately
- Calculations made easier! :

correlation function ==> spin density

He et al, PRB 99, 045108 (2019)

Stripe order in 2D Hubbard model

4x16 cylinder, U=6t, doping h=1/8, pinning field at x=1, 16

Stripe order in 2D Hubbard model

4x16 cylinder, U=6t, doping h=1/8, pinning field at x=1, 16

Stripe order in 2D Hubbard model

4x16 cylinder, U=6t, doping h=1/8, pinning field at x=1, 16

Hubbard model ground-state order

Collaboration determines `stripe phase': (1/8 doping, U=8)

- Combines best methods
 - complement (size)
 - cross-check
- Careful approach to TDL
 - resolves 0.005t scale

Figure 1: Best estimates of ground state energy for the 1/8-doped 2D Hubbard model at U/t = 8 from DMET, AFQMC, iPEPS and DMRG. Inset: Best estimates of ground state energy for the half-filled 2D Hubbard model at U/t = 8.

Chan, Corboz, White, Zhang groups: Science (2017)

Hubbard model ground-state order

Collaboration determines `stripe phase': (1/8 doping, U=8)

- Combines best methods
 - complement (size)
 - cross-check
- Careful approach to TDL
 - resolves 0.005t scale
- Properties
 - wavelength = 1/h

Chan, Corboz, White, Zhang groups: Science (2017)

Hubbard model ground-state order

Collaboration determines `stripe phase': (1/8 doping, U=8)

- Combines best methods
 - complement (size)
 - cross-check
- Careful approach to TDL
 - resolves 0.005t scale
- Properties
 - wavelength = 1/h
 - fluctuating stripes (sloppy)

Chan, Corboz, White, Zhang groups: Science (2017)

16x32 lattice: AFQMC

Total energy calculations in solids

• Basis from downfolding (Kohn-Sham orbitals: occupied and virtual) Relative error vs. expt

Ma, et al, PRL 114, 226401 (2015)

Quantum chemistry

JUC Journal of Chemical Theory and Computation

Article

pubs.acs.org/JCTC

Cite This: J. Chem. Theory Comput. XXXX, XXX, XXX–XXX

On Achieving High Accuracy in Quantum Chemical Calculations of 3*d* Transition Metal-Containing Systems: A Comparison of Auxiliary-Field Quantum Monte Carlo with Coupled Cluster, Density Functional Theory, and Experiment for Diatomic Molecules

James Shee,*^{,†}[®] Benjamin Rudshteyn,[†][®] Evan J. Arthur,[‡] Shiwei Zhang,^{¶,§} David R. Reichman,[†] and Richard A. Friesner[†]

[†]Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States [‡]Schrodinger Inc., 120 West 45th Street, New York, New York 10036, United States [¶]Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, United States [§]Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, United States

- Bond dissociation energy of 44
 3d transition metal diatomics
- 10 DFT functionals; CCSD(T); multi-reference CCSD(T)
- Questioned 3 expt values
- AFQMC systematically reaches chemical accuracy

A major obstacle in finite-T method

Continuum limit is required in ab initio computations in molecules and solids (basis set, or grid/planewaves) $N_s/N_e \to \infty$

Major obstacle for finite-T calculations

A major obstacle in finite-T method

Continuum limit is required in ab initio computations in molecules and solids (basis set, or grid/planewaves) $N_s/N_e \to \infty$

Major obstacle for finite-T calculations

Solution — low-rank decomposition:

 $\mathbf{R} = \mathbf{B}_{\ell} \mathbf{B}_{\ell-1} \cdots \mathbf{B}_{2} \mathbf{B}_{1} = \mathbf{U}_{R} \mathbf{D}_{R} \mathbf{V}_{R} \qquad \mathbf{L} = \mathbf{B}_{M} \mathbf{B}_{M-1} \cdots \mathbf{B}_{\ell+1} = \mathbf{V}_{L} \mathbf{D}_{L} \mathbf{U}_{L}$

Note that in T=0: $m = N_e$!

Can tune truncation threshold: (negligible error w/ 0.001t (aggressive))

Dynamic truncation along the path; large speedups

Dynamic truncation along the path; large speedups

Application to Fermi gas - *on-going*

Allows access to very low T, large systems sizes

- computing exact properties in both normal and superfluid states
- examine BKT transition in 2D Fermi gas

Summary

- Advances in computation —> new opportunities for synergy
 - progress in auxiliary-field QMC
 - sign problem \neq can't do very accurate computation
 - Ab initio calculations in quantum many-body systems:
 - Reformulate field theory for post-DFT calculation which utilizes much of the DFT machinery
 - Many-body wave function or density matrix expressed as a linear combination of DFT solutions in stochastic auxiliary fields
 - Controls sign/phase problem with gauge condition
- Many opportunities for further algorithmic and coding development
- Exceptional potential for parallelism -- petascale computing makes a wide range of problems accessible with this framework