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2.2 W.M.C. Foulkes

1 Introduction

Chemists and condensed matter physicists are lucky to have a reliable “grand unified theory”
— the many-electron Schrödinger equation — capable of describing almost every phenomenon
we encounter. If only we were able to solve it! Finding the exact solution is believed to be “NP
hard” in general [1], implying that the computational cost almost certainly scales exponentially
with N . Until we have access to a working quantum computer, the best we can do is seek good
approximate solutions computable at a cost that rises less than exponentially with system size.
Another problem is that our approximate solutions have to be surprisingly accurate to be useful.
The energy scale of room-temperature phenomena is kBT ≈ 0.025 eV per electron, and the en-
ergy differences between competing solid phases can be as small as 0.01 eV per atom [2]. Quan-
tum chemists say that 1 kcal mol−1 (≈ 0.043 eV) is “chemical accuracy” and that methods with
errors much larger than this are not good enough to provide quantitative predictions of room
temperature chemistry. Yet the natural energy scale built in to the many-electron Schrödinger
equation is 1 Hartree (≈ 27.2 eV) per electron,1 which is about 630 times larger. The total en-
ergy of a medium-sized atom can be hundreds of Hartrees, so we need to be able to calculate
energies to at least five significant figures. Describing low-temperature many-body phenomena
such as magnetism, superconductivity, heavy fermions, and spin liquids requires another couple
of orders of magnitude. Single-precision arithmetic (accurate to about seven significant figures)
is not good enough.
Thinking about a simple non-interacting electron gas shows that calculating the properties of
solids to very high precision also requires very large simulations. Suppose that you want to
reach an accuracy of 0.1 eV per electron in an electron gas with Fermi energy EF = 10 eV ≈
0.37 Hartrees. Since

E =
1

2
k2,

[
E =

~2k2

2m
in MKS units

]
(1)

the energy ratio E/EF = 0.01 implies a wave vector ratio k/kF = 0.1. The Fermi wave vec-
tor kF =

√
2EF ≈ 0.86 a−10 , so the wave vector k associated with an accuracy of 0.1 eV is

0.086 a−10 . The corresponding length scale is 2π/k ≈ 73 a0. Given that the electron density
n = k3F/(3π

2) is around 0.021 a−30 , you need to solve the Schrödinger equation for a simulation
cell containing of order nλ3 ≈ 8,000 electrons, which is rarely possible in interacting systems.
A great deal of effort has gone into understanding and correcting the finite-size errors that arise
when smaller simulation cells are used [3].
The obvious conclusion is that attempting to study chemical reactions by starting from the
many-electron Schrödinger equation is a fool’s errand; it would be much better to work with

1This chapter uses dimensionless equations involving only the numerical values of physical quantities. The
numerical values are as measured in Hartree atomic units, where Planck’s constant h = 2π (so ~ = 1), the
permittivity of free space ε0 = 1/4π (so 4πε0 = 1), the electron mass m = 1, and the elementary charge e = 1.
Distances are made dimensionless by dividing by the Hartree atomic unit of length, a0 = 4πε0~2/(me2) ≈
0.529 · 10−10 m, which is also known as the Bohr radius. Energies are made dimensionless by dividing by the
Hartree atomic unit of energy, ~2/(ma20) = e2/(4πε0a0) ≈ 27.2 eV.
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a low-energy effective theory. Most of the strongly correlated phenomena of interest in many-
body physics take place at energy scales smaller than 0.025 eV and are indeed treated using
low-energy theories (even the Hubbard model, which ignores all but a few bands near the Fermi
level, is a low-energy theory by electronic structure standards), but we have at present no reliable
low-energy theory of chemical bond breaking and formation. The pseudo-potential approxima-
tion allows the core electrons to be eliminated from the Schrödinger equation with only a small
loss in accuracy, but that is as far as we can go. If we want to use quantum theory to understand
the mechanical properties of solids or follow chemical reactions in real time, the only option is
to solve the Schrödinger equation to extraordinarily high precision.
How might we accomplish this? The most widely used electronic structure method is den-
sity functional theory (DFT) [4–6], which is reasonably accurate and can, with enough effort,
be scaled to thousands of electrons. Although the Hohenberg-Kohn theorem shows that DFT
is in principle capable of producing exact ground-state energies and electron densities, this
guarantee is of little value in practice because we do not know the exact exchange-correlation
functional. DFT calculations for weakly correlated Fermi liquids give excellent qualitative
results and reasonably good quantitative results, but current exchange-correlation functionals
are far from capable of delivering chemical accuracy consistently. DFT’s main contribution
to the study of strong-correlation effects has been as a useful framework on which to build
more sophisticated approaches. Dynamical mean-field theory, the GW approximation, and the
Bethe-Salpeter equation [7] are examples of these.
Guessing the form of the many-electron wave function has proved to be a surprisingly successful
approach to complicated many-electron problems. The Bethe Ansatz [8] for one-dimensional
systems, the BCS theory of superconductivity [9], and Laughlin’s treatment of the fractional
quantum Hall effect [10] are all good examples. When seeking ground states, a common ap-
proach is to guess a trial wave function Ψ with a number of adjustable parameters and vary the
parameters until the energy expectation value,

E[Ψ ] =
〈Ψ |Ĥ|Ψ〉
〈Ψ |Ψ〉

, (2)

is minimized. According to the variational principle, this is the best you can do given the
constraints imposed by the assumed functional form.
The greatest successes of guessing the wave function have been in many-body theory, but this
article is about approximate wave functions used in electronic structure theory and quantum
chemistry. The aim here is to guess the ground-state wave function accurately enough to identify
the most stable molecular and crystal structures, study chemical and biochemical reactions, and
follow atomic rearrangements in solids, such as those associated with fracture processes or the
motion of dislocations. It is rare to achieve chemical accuracy in systems larger than small
molecules, but it is possible to outperform DFT in most cases. For the most part we will work
in the Schrödinger picture, using trial wave functions of the form Ψ(x1, x2, . . . , xN), where
xi = (ri, σi) is shorthand for the combined spatial and spin coordinates of electron i.
Before we can use the variational principle to optimize the parameters of a trial wave function,
we need to be able to work out the energy expectation value E[Ψ ]. This is not an easy task when
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the number of electrons N is 10, never mind when it is 100 or 1000. In the variational quantum
Monte Carlo (VMC) method [11, 7], the energy expectation value is rewritten as

E[Ψ ] =

∫ (
ĤΨ(x1, . . . , xN)

Ψ(x1, . . . , xN)

)(
|Ψ(x1, . . . , xN)|2∫
|Ψ |2 dx1 . . . dxN

)
dx1 . . . dxN , (3)

where integrals over x are understood to include a spin sum:∫
dx′ =

∑
σ′

∫∫∫
d3r′. (4)

The ĤΨ/Ψ term is called the local energy, and the |Ψ |2/
∫
|Ψ |2 term, which is positive and

integrates to one, is interpreted as a probability density in coordinate space. Points in this space
are specified by giving 3N position variables and N binary spin variables.
As long as it is possible to evaluate the local energy, one can obtain statistical estimates of the
value ofE[Ψ ] using Monte Carlo integration. The Metropolis algorithm [7,11] is used to sample
random coordinate-space points from the probability density |Ψ |2/

∫
|Ψ |2, and the values of the

local energy at the sampled points are averaged. Neither the Metropolis algorithm (which uses
only ratios of the probability density at different points) nor the evaluation of the local energy
require knowledge of the normalization of the wave function, so wave functions used in VMC
simulations do not need to be normalized. Other more sophisticated and accurate quantum
Monte Carlo (QMC) methods, including diffusion quantum Monte Carlo (DMC) [11, 7] and
auxiliary-field QMC [12], are also used to simulate molecules and solids and produce much
more accurate results, but all require trial wave functions as a starting point.
To whittle down the amount of material, I have had to leave out several important types of trial
wave function: the subject is larger than is apparent from this article. I have omitted all dis-
cussion of pairing wave functions such as the BCS wave function [9], geminals [13] and Pfaffi-
ans [14]. Until recently I would have said that attempts to use pairing wave functions to describe
non-superconducting electrons had produced disappointing results, but a new preprint [15] has
changed my mind. I have also omitted the family of trial wave functions that developed from
the density matrix renormalization group [16] and includes matrix product states and tensor
network states [17]. These are very important in low-dimensional model systems and becoming
more important in quantum chemistry.

2 Slater determinants

Non-interacting electrons

Let us start by thinking about a molecule or periodically-repeated simulation cell containing N
non-interacting electrons. The many-electron Hamiltonian is

Ĥ =
N∑
i=1

(
−1

2
∇2

ri
+ V (xi)

)
=

N∑
i=1

ĥ(xi), (5)
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where ĥ(xi) = −1
2
∇2

ri
+ V (xi) acts on the coordinates of electron i only. In the simplest

plausible model of a molecule or solid, the effective potential might look like this:

V (x) = Vnuc(r) + VHartree(r) = −
∑
I

ZI
|r− dI |

+

∫
n(x′)

|r− r′|
dx′, (6)

where ZI is the atomic number of the (fixed, classical) nucleus at position dI , and n(x) =

n(r, σ) is the number density of spin σ electrons at point r. In Hartree-Fock theory [18, 5, 7],
V (x) also contains a non-local spin-dependent exchange potential. In the Kohn-Sham equations
of density functional theory (DFT) [4–6], it contains a local exchange-correlation potential.
The many-electron Schrödinger equation for the N non-interacting electrons,

ĤΨ(x1, x2, . . . , xN) = E Ψ(x1, x2, . . . , xN), (7)

is a separable partial differential equation with solutions of the form

Ψ(x1, x2, . . . , xN) = ϕ1(x1)ϕ2(x2) . . . ϕN(xN). (8)

(Such solutions are not totally antisymmetric, but let us ignore this problem for the time being.)
Substituting the trial solution into the Schrödinger equation gives

(ĥ ϕ1)ϕ2 . . . ϕN + ϕ1(ĥ ϕ2) . . . ϕN + . . .+ ϕ1 ϕ2 . . . (ĥ ϕN) = E ϕ1 ϕ2 . . . ϕN . (9)

If we now divide by ϕ1ϕ2 . . . ϕN we get,

ĥ(x1)ϕ1(x1)

ϕ1(x1)
+
ĥ(x2)ϕ2(x2)

ϕ2(x2)
+ . . .+

ĥ(xN)ϕN(xN)

ϕN(xN)
= E. (10)

The first term depends only on x1, the second only on x2, and so on, but the sum must be the
constant E. This is only possible if each and every term is constant:

ĥ1ϕ1 = ε1ϕ1, ĥ2ϕ2 = ε2ϕ2, . . . , ĥNϕN = εNϕN , (11)

with
E = ε1 + ε2 + . . .+ εN . (12)

Functions such as ϕi(x), obtained by solving a one-electron Schrödinger equation of the form
ĥϕi = εiϕi, are called one-electron orbitals or one-electron energy eigenfunctions.
Although Ψ is not antisymmetric, we can easily construct an antisymmetric linear combination
of solutions with the N electrons distributed among the N one-electron orbitals in different
ways

Ψ(x1, x2, . . . , xN) =
1√
N !

∑
P

(−1)ζPϕP1(x1)ϕP2(x2) . . . ϕPN(xN). (13)

Every term in the linear combination is an eigenfunction of Ĥ with the same eigenvalue E, so
the linear combination is also an eigenfunction with eigenvalue E.
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• The list P1, P2, . . . , PN is a permutation P of the list 1, 2, . . . , N . The sum is
over all permutations, with ζP the total number of pair interchanges needed to build the
permutation P . The value of (−1)ζP is +1 when P is an even permutation and −1 when
P is an odd permutation.

• The 1/
√
N ! is a normalizing factor.

• When N = 2,

Ψ(x1, x2) =
1√
2
[ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)] =

1√
2

∣∣∣∣∣ ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣∣∣∣∣ . (14)

• Generally,

Ψ(x1, x2, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ1(x2) . . . ϕ1(xN)

ϕ2(x1) ϕ2(x2) . . . ϕ2(xN)

. . .

. . .

ϕN(x1) ϕN(x2) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣
. (15)

Wave functions of this type are called Slater determinants. (For bosons we can use anal-
ogous symmetrized sums of products called permanents.)

• If two or more of ϕ1, ϕ2, . . . , ϕN are the same, two or more rows of the determinant are
the same and the wave function is zero; this is how the Pauli exclusion principle follows
from the antisymmetry. If two electrons of the same spin approach the same point in
space, even when all of the ϕi are different, two columns of the determinant become
the same and the wave function is again zero. The antisymmetry built in to the Slater
determinant helps to keep spin-parallel electrons apart.

• If we add a component of ϕ2 to ϕ1,

ϕ̃1(x) = ϕ1(x) + c ϕ2(x), (16)

the Slater determinant is unchanged:

D̃(x1, x2, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ̃1(x1) ϕ̃1(x2) . . . ϕ̃1(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2) . . . ϕ1(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
+

�������������������

1√
N !

∣∣∣∣∣∣∣∣∣∣
cϕ2(x1) cϕ2(x2) . . . cϕ2(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
= D(x1, x2, . . . , xN ). (17)

This shows that no generality is lost by assuming that the one-electron orbitals are or-
thonormal.
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Interacting electrons

In the interacting N -electron Schrödinger equation, the one-electron operator V (x) (which de-
pends on the electron density in DFT and the one-electron density matrix in Hartree-Fock the-
ory) is replaced by the electron-electron interaction(

N∑
i=1

(
−1

2
∇2
i + Vnuc(ri)

)
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

1

|ri−rj|

)
Ψ(x1, x2, . . . , xN) = E Ψ(x1, x2, . . . , xN).

(18)
I have assumed for simplicity that spin-orbit interactions can be neglected, so the Hamiltonian
is independent of spin. Reintroducing the electron-electron interaction may look like a small
change but it has large consequences: the Schrödinger equation is no longer separable and the
many-electron wave functions are no longer Slater determinants. Unlike the non-interacting
Schrödinger equation, the interacting version cannot be solved exactly for systems of more than
a few electrons, even using the world’s most powerful computers.

Slater determinants as basis functions

Although Slater determinants are not exact solutions of the many-electron Schrödinger equation
with interactions, we can still use them as basis functions. Suppose that ϕ1(x), ϕ2(x), . . . . . .
are a complete orthonormal basis for the one-particle Hilbert space. A common way to choose
the ϕi(x) is to solve a one-electron or mean-field Schrödinger equation, usually obtained from
density functional or Hartree-Fock theory, and use the resulting one-electron orbitals.
Given a complete basis for the one-electron Hilbert space, the set of all products of the form

ϕi1(x1)ϕi2(x2) . . . ϕiN (xN) (19)

is a complete basis for the N -particle Hilbert space. If the N particles are electrons or other
fermions, only antisymmetrized products are required and we can express the wave function as
a linear combination of Slater determinants

Ψ(x1, x2, . . . , xN) =
∑
i

CiDi(x1, x2, . . . , xN), (20)

where the sum is over all distinct determinants, the vector index i = (i1, i2, . . . , iN) identifies
the N one-electron basis function ϕi1 , ϕi2 , . . ., ϕiN , appearing in determinant Di, and the Ci are
expansion coefficients. Interchanging any two basis functions leaves Di unaltered (bar a sign),
so we can restrict the summation to vector indices i for which i1 < i2 < . . . < iN .2

Another way to index Slater determinants is to use the occupation number representation, in
which every determinant is defined by a list of binary numbers, one for each one-electron basis

2It is interesting to think about how this works in an infinite system. Even if the set of one-electron basis
functions is countable, the set of all ordered subsets of the set of one-electron basis functions is not, implying that
we cannot index the determinants using natural numbers. Perhaps attempting to describe large systems using wave
functions is not such a good idea?
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function. If basis function ϕi appears in the determinant (is “occupied”), the i’th binary number
is set to 1; otherwise, it is set to 0.
Slater determinants are the “building blocks” of many-fermion physics, including most of the
approximate many-electron wave functions we will be looking at.

Slater determinants and second quantization

The properties of Slater determinants underlie the properties of the creation and annihilation
operators, ĉ†p and ĉp, which are defined by their actions in the determinantal basis:

ĉ†p|Di1,i2,...,iN 〉 = |Dp,i1,i2,...,iN 〉, ĉp|Dp,i1,i2,...,iN 〉 = |Di1,i2,...,iN 〉. (21)

If the determinant |Di1,i2,...,iN 〉 already contains orbital ϕp, acting with ĉ†p produces a determi-
nant |Dp,i1,i2,...,iN 〉 with two identical rows. The result is therefore equal to zero. Similarly, if
|Di1,i2,...,iN 〉 does not contain ϕp, then ĉp finds nothing to annihilate and ĉp|Di1,i2,...,iN 〉 = 0.
Whenever you are working with creation and annihilation operators, you are in fact manipulat-
ing Slater determinants.
The fermion anti-commutation relations follow from the antisymmetry of the determinantal
basis. For example, given any determinant containing ϕq in the kth row but not containing ϕp,
where p 6= q, we have

ĉ†pĉq|Di1,...,ik−1,q,ik+1,...,iN 〉 = (−1)k−1ĉ†pĉq|Dq,i1,...,ik−1,ik+1,...,iN 〉
= (−1)k−1|Dp,i1,...,ik−1,ik+1,...,iN 〉 (22)

and

ĉq ĉ
†
p|Di1,...,ik−1,q,ik+1,...,iN 〉 = ĉq|Dp,i1,...,ik−1,q,ik+1,...,iN 〉

= (−1)kĉq|Dq,p,i1,...,ik−1,ik+1,...,iN 〉
= (−1)k|Dp,i1,...,ik−1,ik+1,...,iN 〉, (23)

implying that (
ĉ†pĉq + ĉq ĉ

†
p

)
|Di1,...,ik−1,q,ik+1,...,iN 〉 = 0. (24)

If Di1,...,iN already contains ϕp or does not contain ϕq, the operators ĉ†pĉq and ĉq ĉ
†
p annihilate it

and Eq. (24) still holds. Since the basis of Slater determinants is complete, it follows that

ĉ†pĉq + ĉq ĉ
†
p = 0, p 6= q. (25)

If you have never worked through a detailed explanation of how the properties of fermion cre-
ation and annihilation operators arise from the properties of the Slater determinants on which
they act, try Chapter 1 of Negele and Orland [19] for a physicist’s perspective or Chapter 1 of
Helgaker, Jorgensen and Olsen [20] for a chemist’s perspective.
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Exchange and correlation

If we write the full many-electron Hamiltonian,

Ĥ =
N∑
i=1

(
−1

2
∇2
i + Vnuc(ri)

)
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

1

|ri − rj|
, (26)

in the form

Ĥ =
N∑
i=1

ĥ(xi) +
1

2

N∑
i=1

N∑
j=1
(j 6=i)

v̂(xi, xj), (27)

and evaluate its expectation value E = 〈D|Ĥ|D〉 in a normalized Slater determinant D of
orthonormal one-electron functions ϕi, it is in principle straightforward, although in practice
tedious [7, 18, 20], to show that

E =
N∑
i=1

〈ϕi|ĥ|ϕi〉+
1

2

N∑
i=1

N∑
j=1
(j 6=i)

(
〈ϕiϕj|v̂|ϕiϕj〉 − 〈ϕjϕi|v̂|ϕiϕj〉

)
, (28)

where

〈ϕi|ĥ|ϕj〉 =
∫
ϕ∗i (x) ĥ(x)ϕj(x) dx, (29)

〈ϕiϕj|v̂|ϕkϕl〉 =
∫∫

ϕ∗i (x)ϕ
∗
j(x
′) v̂(x, x′)ϕk(x)ϕl(x

′) dx dx′. (30)

In the case of Coulomb interactions, when v̂(x, x′) = 1/|r − r′|, the first contribution to the
electron-electron interaction energy is

1

2

∫∫ ∑
i |ϕi(x)|2

∑
j( 6=i) |ϕj(x′)|2

|r− r′|
dxdx′. (31)

This is known as the Hartree energy and is equal to the sum of the classical Coulomb inter-
action energies of the charge densities associated with the one-electron orbitals appearing in
the determinant. We could have guessed it would appear. The second contribution to the in-
teraction energy, which is known as the exchange energy because the order of the orbitals in
the bra is reversed relative to their order in the ket, describes how the Pauli principle affects
the electron-electron interactions. The antisymmetry built into the Slater determinant prevents
spin-parallel electrons from getting close to each other, and this decreases the positive (i.e.,
repulsive) Coulomb energy of the electrons. The exchange term is therefore negative.
If the spins in a solid line up, so that there are more electrons of one spin than the other, the ex-
change energy (which acts only between electrons of the same spin) becomes more negative and
the total electron-electron interaction energy (which is positive) is lowered. At the same time,
the one-electron contribution to the total energy rises because electrons have been promoted
from lower-energy occupied minority-spin orbitals to higher-energy unoccupied majority-spin
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orbitals. In some solids, the lowering of the Coulomb energy wins and the spins polarize spon-
taneously. This is more likely when the hopping kinetic energy is small because the atoms
are far apart and the energy bands are narrow. Exchange interactions are the primary cause of
magnetism.
Real electrons are also kept apart by the repulsive Coulomb interactions between them. This
effect, called correlation, is not included in a simple Slater determinant wave function. The
Hartree energy of the Slater determinant is low when the electronic charge distribution is
smooth, which helps to keep electrons away from regions in which there are lots of other elec-
trons on average, but does not keep individual pairs of electrons apart. In a real solid, electrons
are kept apart both by the Pauli principle (exchange), which is included in the Slater determi-
nant, and by the Coulomb interaction (correlation), which is not.
One way to understand exchange and correlation is in terms of the pair density n(r, σ; r′, σ′),
defined such that n(r, σ; r′, σ′) d3rd3r′ is proportional to the probability of finding a spin σ

electron in the volume element d3r at r and a (different) spin σ′ electron in the volume element
d3r′ at r′. The closely related pair-correlation function, g(r, σ; r′, σ′), is defined by

n(r, σ; r′, σ′) = n(r, σ)g(r, σ; r′, σ′)n(r′, σ′). (32)

If the volume elements d3r and d3r′ are far apart, the numbers of electrons in d3r and d3r′ are
statistically independent; one therefore expects lim|r′−r|→∞ g(r, σ; r′, σ′) = 1.
Figure 1 shows the pair-correlation functions of pairs of spin-parallel and spin-antiparallel elec-
trons in a uniform electron gas, calculated assuming that the wave function is a Slater determi-
nant of plane waves. The way in which antisymmetry keeps pairs of spin-parallel electrons apart
is clear, as is the failure of pairs of spin-antiparallel electrons to avoid each other. Antisymme-
try alone is not sufficient to correlate (in the statistical sense) the positions of spin-antiparallel
electrons.
Basic notions of probability theory tell us that

n(r, σ; r′, σ′) d3rd3r′ = n(r, σ|r′, σ′) d3r × n(r′, σ′) d3r′, (33)

where n(r, σ|r′, σ′) d3r is proportional to the conditional probability of finding a spin σ electron
in d3r given that there is a spin σ′ electron in d3r′. Since there are N−1 electrons in the system,
excluding the one frozen at r′, the conditional density satisfies the sum rule∑

σ

∫
n(r, σ|r′, σ′) d3r = N − 1. (34)

Describing statistical correlations in terms of conditional probabilities is very natural, but it is
often easier to think about the exchange-correlation hole, nxc(r, σ|r′, σ′), defined by

n(r, σ|r′, σ′) = n(r, σ) + nxc(r, σ|r′, σ′). (35)

The density of spin σ electrons at r would be n(r, σ) in the absence of the frozen spin σ′ electron
at r′, so the exchange-correlation hole provides a very direct picture of the change (normally a
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Fig. 1: Pair-correlation functions of pairs of spin-parallel and spin-antiparallel electrons in a
uniform electron gas, calculated assuming that the wave function is a single Slater determinant
of plane waves. The antisymmetry of the wave function helps to keep pairs of spin-parallel
electrons apart but does not affect the pair-correlation function of pairs of spin-antiparallel
electrons.

reduction) in electron density caused by the presence of the frozen electron. It follows from the
definition of the exchange-correlation hole and the conditional-probability sum rule that∑

σ

∫
nxc(r, σ|r′, σ′) d3r = −1. (36)

Every electron of charge −e is thus surrounded by a hole of charge +e. If the hole is close to
the electron, which is not always the case, the entire quasi-particle — the electron plus its hole
— is charge neutral and might be expected to have only short-ranged interactions. This helps
explain why the models of non-interacting electrons used in undergraduate solid-state physics
courses work so well.
Figure 2 shows two views of the spin-summed exchange-correlation hole,

∑
σ nxc(r, σ|r′, σ′),

around a single electron frozen at the point r′ in the middle of a bond in silicon [21]. The graphs
were calculated using the VMC method and a Slater-Jastrow wave function (see later), which
includes both exchange and correlation effects.

3 The Hartree-Fock approximation

Although the many-electron eigenfunctions of real molecules and solids can in principle be
written as linear combinations of (huge numbers of) Slater determinants, we will see later that
the number of determinants required rises exponentially with the number of electrons. This
forces us to try something less ambitious. In the Hartree-Fock approximation, the variational
principle is used to find the single Slater determinant that best approximates the many-electron
ground state [18, 20, 6]. It turns out that the one-electron orbitals appearing in the best possible
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Fig. 2: Two views of the exchange-correlation hole around an electron in the middle of a bond
in silicon. The zig-zag chains of atoms lie in the Si (110) plane. From Ref. [21].

single determinant obey a mean-field Schrödinger-like equation,

ĥ(x)ϕn(x) +
N∑
j=1
(j 6=n)

∫
dx′ ϕ∗j(x

′) v̂(x, x′)ϕj(x
′)ϕn(x)

−
N∑
j=1
(j 6=n)

∫
dx′ ϕ∗j(x

′) v̂(x, x′)ϕn(x
′)ϕj(x) = λn ϕn(x), (37)

known as the Hartree-Fock equation. The electron-electron interactions have been replaced
by an effective potential with two contributions: the first summation describes the action of
the Hartree potential on orbital ϕn(x) and the second the action of the exchange potential.
Notice that the exchange potential is actually an integral operator. The j=n terms in both
summations cancel if they are included, so the form of the Hartree-Fock differential equation is
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independent of n. Another partial explanation for the success of one-electron concepts such as
band-structures, atomic orbitals, and π and σ bonds, in interacting systems where these ideas
appear to make little sense, is that the Hartree-Fock approximation is often reasonably accurate.
Other mean-field-like methods, such as DFT, work better than Hartree-Fock for many purposes,
but the wave function in DFT is an artificial construct introduced to help calculate the kinetic
energy of a fictitious system of non-interacting electrons with the same position-dependent
number density as the interacting system and has little to do with the true many-electron wave
function [4–6]. Our aim here is to devise approximate many-electron wave functions for atoms,
molecules and solids, so Hartree-Fock theory is a better starting point.
The Hartree-Fock Hamiltonian depends on the one-electron orbitals obtained by solving the
Hartree-Fock equation, so we have a chicken and egg problem: we cannot find the orbitals until
we know the Hamiltonian; but we cannot work out the Hamiltonian until we know the orbitals.
As usual in mean-field theories, we have to iterate until the inputs and outputs of the mean-field
equation are consistent with each other:

1. Guess the set of one-electron orbitals ϕj (j = 1, . . . , N ) and construct the corresponding
Hartree-Fock Hamiltonian.

2. Solve the Hartree-Fock equation to find a new set of one-electron orbitals. (This is quite
tricky because the exchange term is an integral operator with a Coulomb kernel that di-
verges as |r− r′| → 0, but it can be done.)

3. Use the new set of one-electron orbitals to construct a new Hartree-Fock Hamiltonian.

4. Repeat steps 2 and 3 until the set of one-electron orbitals no longer changes from cycle
to cycle.

There is no guarantee that iterative algorithms of this type are stable, and clever tricks are
sometimes required to make them converge, but self-consistent solutions can be found within a
reasonable amount of computer time for systems of up to a few hundred electrons.
Until about 20 years ago, Hartree-Fock theory was widely used to study molecules, even though
it is far from being able to reach chemical accuracy. DFT has now become dominant, partly
because DFT calculations are easier to do and normally more accurate, and partly because our
imperfect knowledge of the exchange-correlation functional leaves more scope for tweaking
the calculations to make them give the right answers! A common tweak is to mix fractions of
the Hartree-Fock exchange energy into the DFT exchange-correlation functional, making DFT
calculations more similar to Hartree-Fock calculations. “Hybrid” density functionals including
a portion of exact exchange are not consistently able to achieve chemical accuracy, but are often
accurate enough to provide useful results. Hartree-Fock methods were not much used in solids
until fairly recently because the calculations were difficult; their main use now is in wide band-
gap insulators, where the results are not too bad. For metals, Hartree-Fock is something of a
disaster, but hybrid exchange-correlation functionals including screened exchange interactions
are popular and successful.
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4 Configuration expansions

Configuration-interaction methods

We saw in Sec. 2 that any many-electron wave function can be expressed as a linear combination
of Slater determinants (also known as configurations):

Ψ(x1, x2, . . . , xN) =
∑
i

CiDi(x1, x2, . . . , xN). (38)

This expansion underlies most of the approximate wave functions used in traditional quantum
chemistry. In the full-configuration-interaction (FCI) method [20], the sum over determinants is
made finite by choosing a finite set ofM (≥ N) one-electron basis functions (normally Hartree-
Fock or DFT one-electron orbitals) and approximating Ψ as a linear combination of the MCN

distinct N -electron Slater determinants that can be built using them. The vector of expansion
coefficients that minimizes the energy expectation value,

E =
〈Ψ |Ĥ|Ψ〉
〈Ψ |Ψ〉

=

∑
i,jC

∗
i 〈Di |Ĥ|Dj 〉Cj∑

kC
∗
kCk

, (39)

is easily shown to be the lowest eigenvector of the matrix eigenvalue problem∑
j

HijCj = ECi, (40)

where Hij = 〈Di|Ĥ|Dj〉 is an MCN×MCN matrix. The use of the variational principle is
exactly as in one-electron quantum theory, but the basis functions are many-electron Slater de-
terminants rather than one-electron orbitals and it is more difficult to work out the Hamiltonian
matrix elements.
Unfortunately, the number of determinants required to approximate the ground state to a given
accuracy rises exponentially with the system size, making FCI calculations impractical for any-
thing but the smallest molecules. Suppose (very optimistically) that you can obtain a reasonably
good description of the ground state of a single helium atom using a one-electron basis set con-
taining 1s and 2s orbitals only. Since every atom holds four spin-orbitals (1s ↑, 1s ↓ , 2s ↑,
2s ↓), the FCI basis for a system of N/2 helium atoms and N electrons contains

MCN = 2NCN =
(2N)!

N !N !
(41)

determinants. Using Stirling’s approximation, ln(n!) ≈ n lnn− n for large n, gives

2NCN ≈ e(2 ln 2)N , (42)

which rises exponentially with N. Even in this minimal and inaccurate basis set, calculating
the many-electron ground state of a system of 5 helium atoms and 10 electrons requires finding
the lowest eigenvector of a matrix with more than a million rows and columns. Dealing with
10 helium atoms requires a Hamiltonian matrix with over 1012 rows and columns and 1024
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elements. The size of the matrix can often be reduced using symmetry arguments, and the Hij

matrix is sparse because applying the Hamiltonian to a determinant changes at most two of the
one-electron orbitals, but increasing the system size soon makes the state vector too large to
store and manipulate.
It seems reasonable to hope that most of the Slater determinants in the vast FCI basis set are
unnecessary and can be neglected. Even when the He atoms are far enough apart to be indepen-
dent, however, simple truncation schemes do not work well.
The exact (within the FCI basis) Sz = 0 ground state of a single He atom is a linear combination
of four determinants,

Ψ(x, x′) = C1

∣∣∣∣∣ ϕ1s(r)χ↑(σ) ϕ1s(r
′)χ↑(σ

′)

ϕ1s(r)χ↓(σ) ϕ1s(r
′)χ↓(σ

′)

∣∣∣∣∣+ C2

∣∣∣∣∣ ϕ2s(r)χ↑(σ) ϕ2s(r
′)χ↑(σ

′)

ϕ2s(r)χ↓(σ) ϕ2s(r
′)χ↓(σ

′)

∣∣∣∣∣
+ C3

∣∣∣∣∣ ϕ1s(r)χ↑(σ) ϕ1s(r
′)χ↑(σ

′)

ϕ2s(r)χ↓(σ) ϕ2s(r
′)χ↓(σ

′)

∣∣∣∣∣+ C4

∣∣∣∣∣ ϕ1s(r)χ↓(σ) ϕ1s(r
′)χ↓(σ

′)

ϕ2s(r)χ↑(σ) ϕ2s(r
′)χ↑(σ

′)

∣∣∣∣∣ , (43)

where χ↑(σ) = δσ,↑ and χ↓(σ) = δσ,↓ are the usual up-spin and down-spin Sz eigenstates.
The exact (within the basis) ground state of a system of 10 well separated He atoms is an
antisymmetrized product of the ground states of each individual atom:

Ψ(x1, x2, . . . , x20) = NÂ
[
Ψ1(x1, x2)Ψ2(x3, x4) . . . , Ψ10(x19, x20)

]
=
N
N !

∑
P

(−1)ζPΨ1(xP1, xP2)Ψ2(xP3, xP4) . . . Ψ10(xP19, xP20), (44)

where Â is the antisymmetrization operator and N is a normalizing constant. The atomic
ground states Ψ1(x1, x2), Ψ2(x3, x4), . . ., Ψ10(x19, x20) are all of the same form but translated
with respect to one another because they are centered on different atoms. Every atom has a finite
probability, pexcited = |C2|2 + |C3|2 + |C4|2, of being found in an excited configuration in which
at least one of the two electrons is occupying a 2s orbital. If the states of all 10 atoms were
measured repeatedly, the average number found in excited configurations would be 10pexcited.
If the number of He atoms in the system were doubled, the expected number found in excited
configurations would also double.
Suppose that you try to describe the Sz = 0 ground state of the system of 10 isolated He
atoms using an FCI singles and doubles basis set, consisting of the Hartree-Fock ground-state
determinant, in which all 20 electrons are occupying 1s orbitals, plus the 14,250 distinct Sz = 0

determinants with one or two of the twenty electrons occupying 2s orbitals. Three of the 118
determinants occurring in the Sz = 0 FCI singles and doubles basis set for a system of three He
atoms are illustrated in Fig. 3. In one of these configurations an electron has been transferred
from one atom to another; this excitation is very unlikely to happen when the atoms are far apart
but might become more important as they approach each other.
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1s

2s

Fig. 3: Three of the 118 Sz = 0 configurations appearing in the FCI singles and doubles wave
function for three He atoms. Only the 1s and 2s orbitals on each atom are included in the
one-electron basis set. The configuration on the left is the Hartree-Fock ground state; the one
in the middle contains a single electron-hole excitation; and the one on the right contains two
excitations.

No configuration within the singles and doubles basis set contains more than two excited elec-
trons, so no more than two of the 10 He atoms can be found in (charge neutral) excited con-
figurations at any one time. If the expected number of excited atoms (10pexcited) is substantially
less than 2 that might be sufficient, but what happens as the system size is increased? For large
enough systems (and large enough is often very small), the expected number of atoms in excited
configurations will exceed 2 and the basis set will be inadequate.

All naive attempts to truncate the FCI basis set introduce analogues of this problem, the most
obvious symptom of which is that the calculated energy of a system of N well-separated atoms
is greater than N times the energy of one atom. (Remember that FCI is a variational method,
so lower energies are better energies.) In the language of quantum chemistry, the truncated FCI
method is not size consistent; in the language of condensed matter physics, the results are not
extensive. The problem gets worse as the number of atoms increases, with the fraction of the
correlation energy recovered reducing to zero as the system size tends to infinity. If you try to
fix the problem by increasing the maximum number of excited electrons in proportion to the
system size, the truncated FCI method becomes exponentially scaling.

Even when the FCI eigenvalue problem is too large to solve using the conventional methods of
linear algebra, molecules with up to a few tens of electrons can often be treated using the FCI
QMC method [22,23], in which the contributions to the numerator and denominator of Eq. (39)
are sampled stochastically without ever storing the complete eigenvector. This approach has
also been used to study very small solid-state simulation cells subject to periodic boundary con-
ditions [24]. Unfortunately, the fermion sign problem [25] imposes another limitation on the
number of electrons and the maximum system size remains disappointingly small. Another way
to increase the system size is to use one of several selected-CI approaches [26–29], which iter-
atively identify determinants that make important contributions to the ground state, neglecting
the rest. The selection can reduce the rate at which the basis set increases with system size, but
selected-CI methods remain exponentially scaling.

To summarize, although FCI methods can produce extraordinarily accurate results for light
atoms and small molecules, they are of little value for large molecules or solids.
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Coupled-cluster methods

The coupled-cluster method [20,30] offers a better way of truncating the FCI Hilbert space. To
motivate the idea, consider two well-separated He atoms, A andB, at positions dA and dB. The
four-electron Hamiltonian is

Ĥ =
4∑
i=1

(
−1

2
∇2

ri
+ Vnuc(ri−dA) + Vnuc(ri−dB)

)
+

1

2

4∑
i=1

4∑
j=1
(j 6=i)

1

|ri − rj|
. (45)

What happens when we apply this Hamiltonian to the product ΨA(x1, x2)ΨB(x3, x4) of the two
atomic ground states? (The product is not a valid four-electron wave function because it is not
antisymmetric on exchange of electrons between atoms, but we will antisymmetrize it later on.)
If the two atoms are far enough apart, all interactions involving pairs of charged particles on
different atoms can be neglected and we get

ĤΨA(x1, x2)ΨB(x3, x4) ≈
[
ĤA(x1, x2) + ĤB(x3, x4)

]
ΨA(x1, x2)ΨB(x3, x4)

= 2Eatom ΨA(x1, x2)ΨB(x3, x4), (46)

where HA and HB are the two-electron Hamiltonians for the two separate atoms. Applying the
antisymmetrization operator Â to both sides of this equation gives

ÂĤΨA(x1, x2)ΨB(x3, x4) ≈ 2Eatom ÂΨA(x1, x2)ΨB(x3, x4). (47)

The Hamiltonian is totally symmetric on exchange of particles, so it commutes with Â to leave

Ĥ
[
ÂΨA(x1, x2)ΨB(x3, x4)

]
≈ 2Eatom

[
ÂΨA(x1, x2)ΨB(x3, x4)

]
. (48)

We have reached the obvious result: the energy of two well-separated atoms is the sum of
the atomic energies and the wave function is an antisymmetrized product of the atomic wave
functions.
Within an FCI expansion, the ground states on atoms A and B can be expanded in Slater deter-
minants constructed using orbitals on those two atoms:

ΨA(x1, x2) =
∑
iA

CiADiA(x1, x2), ΨB(x3, x4) =
∑
iB

CiBDiB(x3, x4), (49)

where iA lists the occupied orbitals on atom A and iB lists the occupied orbitals on atom B.
Applying the antisymmetrization operator to a product of two Slater determinants, DiA(x1, x2)

DiB(x3, x4), produces a single larger determinant containing all of the orbitals involved, so

ΨAB(x1, x2, x3, x4) =
∑
iA,iB

CiACiBDiA,iB(x1, x2, x3, x4). (50)

An analogous result holds for any system consisting of well-separated fragments.
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An easier way to reach the same conclusions is to use second-quantized notation, where

Ĥ =
∑
i,j

ĉ†ihij ĉj +
1

2

∑
i,j,k,l

ĉ†i ĉ
†
jVijklĉlĉk, (51)

with

hij =

∫
ϕ∗i (x)

(
−1

2
∇2 + Vnuc(r−dA) + Vnuc(r−dB)

)
ϕj(x) dx,

Vijkl =

∫∫
ϕ∗i (x)ϕ

∗
j(x
′)

1

|r− r′|
ϕk(x)ϕl(x

′) dx dx′. (52)

When the two atoms are far enough apart, hij is negligible unless ϕi and ϕj are on the same
atom and Vijkl is negligible unless ϕi, ϕj , ϕk, and ϕl are all on the same atom. Furthermore, if
ϕi and ϕj are both on atom A, the Vnuc(r−dB) contribution to hij is negligible and vice versa.
Under these assumptions,

Ĥ ≈ ĤA + ĤB. (53)

Let us write the two-electron ground states of atoms A and B, treated separately, as

|ΨA〉 = Ψ̂ †A|VAC〉, |ΨB〉 = Ψ̂ †B|VAC〉. (54)

For the Sz = 0 ground state of Eq. (44), for example, we would have

Ψ̂ †A = C1 ĉ
†
A,1s,↑ĉ

†
A,1s,↓ + C2 ĉ

†
A,2s,↑ĉ

†
A,2s,↓ + C3 ĉ

†
A,1s,↑ĉ

†
A,2s,↓ + C4 ĉ

†
A,1s,↓ĉ

†
A,2s,↑,

Ψ̂ †B = C1 ĉ
†
B,1s,↑ĉ

†
B,1s,↓ + C2 ĉ

†
B,2s,↑ĉ

†
B,2s,↓ + C3 ĉ

†
B,1s,↑ĉ

†
B,2s,↓ + C4 ĉ

†
B,1s,↓ĉ

†
B,2s,↑. (55)

Since ĤA commutes with Ψ̂ †B, ĤB commutes with Ψ̂ †A, and Ψ̂ †A commutes with Ψ̂ †B (they would
anti-commute if Ψ̂ †A and Ψ̂ †B both created odd numbers of electrons, but the argument below is
easily generalized to the anti-commuting case), we find that Ψ̂ †AΨ̂

†
B|VAC〉 is the approximate

four-electron ground state:

ĤΨ̂ †AΨ̂
†
B|VAC〉 ≈ (ĤA + ĤB)Ψ̂

†
AΨ̂
†
B|VAC〉

= Ψ̂ †BĤAΨ̂
†
A|VAC〉+ Ψ̂ †AĤBΨ̂

†
B|VAC〉

= Ψ̂ †BEatom Ψ̂
†
A|VAC〉+ Ψ̂ †AEatom Ψ̂

†
B|VAC〉 = 2Eatom Ψ̂

†
AΨ̂
†
B|VAC〉. (56)

The problem with the FCI singles and doubles wave function is that it neglects the contributions
made by strings of four creation operators, two on atom A and two on atom B, appearing in
Ψ̂ †AΨ̂

†
B. The coupled-cluster trial wave function adopts a product form from the beginning,

cleverly ensuring that Ψ̂ †AB reduces to Ψ̂ †AΨ̂
†
B when fragments A and B are far enough apart.

Instead of creating states from the vacuum, it is convenient to start from a single N -electron
determinant,D0, normally taken to be the Hartree-Fock ground state. OnceD0 has been chosen,
we can separate the orbitals (and corresponding creation and annihilation operators) into two
types: the N orbitals appearing in D0 are denoted ϕi; and the M−N orbitals not appearing in
D0 (known as “virtuals”) are denoted ϕa. The choice of suffix (i, j, k, . . . for occupied orbitals;
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a, b, c, . . . for unoccupied orbitals) indicates the type of any given orbital, creation operator, or
annihilation operator.
Any determinant in the FCI basis set may be created from D0 by making a number (rang-
ing from 1 to N ) of electron-hole excitations of the form X̂a

i = ĉ†aĉi. The excitation opera-
tor X̂a

i replaces the orbital ϕi appearing in D0 by the previously unoccupied orbital ϕa. We
can also define operators that create multiple electron-hole pairs, such as the double excitation
X̂ab
ij = ĉ†aĉ

†
bĉiĉj = −ĉ

†
aĉiĉ

†
bĉj = −X̂a

i X̂
b
j . Because the excitation operators are constructed using

annihilation operators for orbitals in D0 and creation operators for orbitals not in D0, creation
and annihilation operators for the same orbital never occur. The excitation operators therefore
commute with one another. No orbital in D0 can be annihilated more than once and no orbital
not in D0 can be created more than once, so products of excitation operators are often zero. For
example, X̂a

i X̂
a
i = 0.

In the coupled-cluster method, the many-electron wave function is written in the product form

|Ψ〉 =

[ ∏
a,i

(
1 + tai X̂

a
i

)][ ∏
b>a,j>i

(
1 + tabij X̂

ab
ij

)]
. . . |D0〉, (57)

where the coupled-cluster amplitudes tai and tabij , . . ., are variational parameters. If the system
consists of two well-separated fragments, A and B, all amplitudes involving orbitals on both
fragments will be zero. After moving the terms involving fragment A to the front of the product
of operators, the coupled-cluster wave function takes the separable form Ψ̂ †AΨ̂

†
B|D0〉, where Ψ̂ †A

and Ψ̂ †B are just as they would be for an isolated fragment. The coupled-cluster approach is
therefore size consistent.
The product of any excitation operator X̂ with itself is zero, so

1 + tX̂ = 1 + tX̂ +
1

2!

(
tX̂
)2

+ . . . = etX̂ . (58)

This allows us to rewrite the coupled-cluster Ansatz in the more commonly encountered expo-
nential form

|Ψ〉 =

[ ∏
a,i

et
a
i X̂

a
i

][ ∏
b>a,j>i

et
ab
ij X̂

ab
ij

]
. . . |D0〉

= exp

(∑
a,i

tai X̂
a
i +

∑
a>b,i>j

tabij X̂
ab
ij + . . .

)
|D0〉 = exp

(
T̂
)
|D0〉. (59)

Truncating the exponent at the single excitation level, including only the
∑

i,a t
a
i X̂

a
i term,

leads to the coupled-cluster singles (CCS) method; truncating at double excitations yields the
coupled-cluster singles and doubles (CCSD) method; and so on. Regardless of the truncation
level, the expectation value of the energy of n well-separated molecules is n times the expecta-
tion value of the energy of one molecule. The exponential form ensures that the wave function
always includes determinants (but not all determinants) with up to N electron-hole pair exci-
tations. When the maximum excitation level reaches N , the coupled-cluster method becomes
equivalent to FCI.
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method R = Rref R = 2Rref

HF 0.217822 0.363954
CCSD 0.003744 0.022032
CCSDT 0.000493 −0.001405
CCSDTQ 0.000019 −0.000446

Table 1: Difference between the energy of a water molecule calculated using the coupled-
cluster method and the FCI energy in the same basis set. The convergence is very rapid at
the equilibrium bond length, Rref = 1.84345a0, but slower when the bond length is doubled.
The bond angle is fixed at 110.565o and energies are in Hartree atomic units. Note that the
coupled-cluster energy may lie below the FCI energy. Coupled-cluster results are not necessar-
ily variational. Data from Ref. [31].

Table 1 shows how the calculated energy of a water molecule converges as a function of the
excitation level. The convergence is very rapid at the equilibrium bond length of 1.184345 a0
but slower when the bond length is doubled. Despite running into difficulties if there are multi-
ple very different determinants with similar energies, as is often the case when bonds are being
broken, the CCSD method hits a sweet spot between the demands of computational efficiency
and accuracy. Adding the effect of triples perturbatively yields the CCSD(T) method, often
known as the “gold standard” of quantum chemistry, which frequently produces excellent re-
sults. Straightforward implementations of the CCSD and CCSD(T) methods scale steeply with
system size, the effort being proportional to N6 for CCSD and N7 for CCSD(T), but corre-
lations are local and it is possible to do better than this. Coupled-cluster methods are even
beginning to become useful in solids.

It would be nice if it were possible to treat the CC wave function variationally, evaluating
the corresponding energy expectation value and adjusting the amplitudes to minimize the total
energy. Unfortunately, however, the presence of arbitrary numbers of electron-hole pairs (at all
truncation levels) makes the computational effort scale factorially with system size. To motivate
a more practical approach, let us suppose for the time being that the cluster operator T̂ has not
been truncated and that |Ψ〉 = eT̂ |D0〉 is the exact ground-state wave function:

(
Ĥ − E0

)
eT̂ |D0〉 = 0. (60)

Multiplying by e−T̂ gives (
e−T̂ ĤeT̂ − E0

)
|D0〉 = 0. (61)

We can therefore view the coupled-cluster method as a search for the operator eT̂ that makes the
reference determinant |D0〉 the ground state of the similarity-transformed Hamiltonian ĤT =

e−T̂ ĤeT̂ . Note that ĤT is not Hermitian, so its left and right eigenstates need not be the same;
|D0〉 is a right eigenstate.
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In the CCSD method, we replace the cluster operator by a truncated approximation,

T̂ ≈
∑
a,i

tai X̂
a
i +

∑
a>b,i>j

tabij X̂
ab
ij , (62)

so that Eq. (61) is only approximately correct. To make it as correct as possible, we insist that
it is satisfied in the subspace consisting of |D0〉 and the determinants

|Da
i 〉 = X̂a

i |D0〉 = ĉ†aĉi|D0〉, (63)

|Dab
ij 〉 = X̂ab

ij |D0〉 = ĉ†aĉ
†
bĉiĉj|D0〉. (64)

(Since eT̂ also contains products of excitation operators, this does not ensure that Eq. (61) is
satisfied exactly.) The result is the CCSD equations:

〈D0|ĤT − E0|D0〉 = 〈D0|ĤT |D0〉 − E0 = 0, (65)

〈Da
i |ĤT − E0|D0〉 = 〈Da

i |ĤT |D0〉 = 0, (66)

〈Dab
ij |ĤT − E0|D0〉 = 〈Dab

ij |ĤT |D0〉 = 0, a>b, i>j. (67)

The second and third lines provide exactly as many equations as there are amplitudes, allowing
us to find the tai and tabij . The first line then determines the approximate ground-state energy.
Furthermore, because the determinants appearing in the bras contain no more than two electron-
hole pairs, the matrix elements can all be evaluated with an effort that scales as a power of the
system size.

5 Slater-Jastrow wave functions

Cusps

Quantum chemists often find it useful to divide correlation effects into two separate types.
The division is not clear or absolute, but helpful nevertheless. Static correlation arises when
the ground state contains substantial components of several significantly different determinants
with similar energy expectation values. For small molecules, static correlation can in principle
be dealt with by including all of the important determinants in the basis set, although the number
required may grow exponentially with system size. Configuration-expansion methods such as
single-reference CCSD, that make excitations from a single determinant, often find strong static
correlations difficult to deal with. Dynamic correlation arises from the Coulomb repulsions
between nearby electrons. An important contribution is made by the non-analytic cusps in the
many-electron wave function at points where pairs of electrons coalesce [32, 33].
The simplest case of a wave function cusp occurs when an electron approaches a nucleus; a
good example is provided by the 1s energy eigenfunction of a hydrogen atom, ϕ1s(r) =

1√
π
e−r.

The electron-nucleus cusps can easily be built into the one-electron orbitals (although not when
the orbitals are expanded in a smooth analytic basis set of Gaussians or plane waves, as is often
done for computational reasons). The electron-electron cusps are difficult to represent in a basis
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of Slater determinants and cause FCI expansions to converge very slowly. This is the problem
that Slater-Jastrow wave functions solve.
The forms of the cusps can be understood in general [32, 33]. Consider what happens when
particles 1 and 2, with masses m1 and m2 and charges Z1 and Z2, approach each other. Trans-
forming into center-of-mass and difference coordinates, rcm = (m1r1 +m2r2)/(m1+m2) and
r = r1−r2, the N -particle Schrödinger equation becomes(
− 1

2µ
∇2

r −
1

2M
∇2

rcm
−

N∑
i=3

1

2mi

∇2
ri
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

ZiZj
rij

)
Ψ(r, rcm, σ1, σ2, x3, . . . , xN)

= EΨ(r, rcm, σ1, σ2, x3, . . . , xN), (68)

where µ = m1m2/(m1+m2) is the reduced mass and M = m1+m2 is the total mass of the two
particles involved. As r1 → r2 with rcm, r3, r4, . . ., rN held fixed, the Z1Z2/r divergence in the
potential energy must be cancelled by a corresponding divergence in the ∇2

r part of the kinetic
energy. In other words, we require

1

Ψ(r)

(
− 1

2µ
∇2

r +
Z1Z2

r

)
Ψ(r) (69)

to remain finite as r → 0, where Ψ(r) is shorthand for Ψ(r, rcm, σ1, σ2, x3, . . . , xN).
Near the origin, we can use the familiar representation of Ψ(r) as a linear combination of spher-
ical harmonics and radial functions,

Ψ(r) =
∞∑
l=0

l∑
m=−l

cl,mYl,m(ϑ, ϕ)r
lRl(r)

=
∞∑
l=0

l∑
m=−l

cl,mYl,m(ϑ, ϕ)r
l
(
1 + b

(l)
1 r + b

(l)
2 r

2 + · · ·
)
, (70)

where the cl,m and b(l)i are expansion coefficients that depend on rcm, σ1, σ2, x3, . . ., xN . Starting
from this representation, a few lines of algebra show that

1

Ψ

(
− 1

2µ
∇2

r +
Z1Z2

r

)
Ψ =

1

Ψ

∑
l,m

cl,mYl,m

(
− 1

2µr2
∂

∂r

1

r

∂

∂r
+
l(l+1)

2µr2
+
Z1Z2

r

)
Rl

=

∑
l,m cl,mYl,m

((
Z1Z2 −

l+1

µ
b
(l)
1

)
rl−1 + · · ·

)
∑

l,m cl,mYl,m (rl + · · · )
. (71)

The largest terms in the denominator at small r are the ones corresponding to the smallest
angular momentum for which cl,m is non-zero. Denoting this angular momentum by l0, we see
the right-hand side of Eq. (71) diverges as r → 0 unless

Z1Z2 −
l0+1

µ
b
(l0)
1 = 0. (72)
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We can therefore express Ψ(r) for small r as

Ψ(r) = rl0
l0∑

m=−l0

cl0,mYl0,m

(
1 +

µZ1Z2

l0+1
r

)
+ rl0+1

l0+1∑
m=−(l0+1)

cl0+1,mYl0+1,m +O(rl0+2). (73)

Any wave function that describes particles interacting via Coulomb forces must be of this form.
We are interested in three specific cases of this general result.

Electron-nucleus cusps: When an electron (mass m = 1, charge −1) approaches a nucleus
(mass M , charge +Z), symmetry imposes no restrictions on the value of l and one gen-
erally expects l0 = 0. Equation (73) then reduces to

Ψ(r) = c0,0Y0,0
(
1− Zr

)
+ r

1∑
m=−1

c1,mY1,m +O(r2), (74)

where we have noted that M � 1 and hence that µ ≈ 1. Since

Y1,−1 ∝
x−iy
r

Y1,0 ∝
z

r
, Y1,1 ∝

x+iy

r
,

we can rewrite Eq. (74) as

Ψ(r) = aen
(
1− Zr

)
+ ben · r+O(r2), (75)

where aen = c0,0Y0,0 and the r-independent vector ben depends on c1,−1, c1,0 and c1,1. The
−Zr contribution to the first term provides the cusp at the origin.

Electron-electron cusps, antiparallel spins: If a spin-up electron meets a spin-down electron,
the wave function has singlet and triplet components in general. As long as the singlet
component is non-zero, the spatial wave function need not be antisymmetric on exchange
of r1 and r2 and l0 is again 0 in the general case. Proceeding as for the electron-nucleus
cusp, setting µ = 1/2 and Z = −1, yields:

Ψ(r) = a↑↓ee

(
1 +

1

2
r

)
+ b↑↓ee · r+O(r2). (76)

Electron-electron cusps, parallel spins: If two electrons of the same spin meet, the spin wave
function must be a triplet, implying that the spatial wave function must be antisymmetric.
Only terms with odd values of l can appear in Eq. (70) and one expects l0 to be 1 in the
general case. The l = 2 term vanishes because it is even, so Eq. (73) becomes:

Ψ(r) = r
1∑

m=−1

c1,mY1,m

(
1 +

1

4
r

)
+O(r3)

=
(
b↑↑ee · r

)(
1 +

1

4
r

)
+O(r3). (77)
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Fig. 4: The cusps in the S=0 ground-state wave function of He, as learnt by a deep neural
network. The cusps were not built in to the wave function in advance but discovered by the
network in its attempts to minimize the total energy. According to Eqs. (75) and (76), the
coefficients of the nuclear-electron and antiparallel electron-electron cusp terms should be −2
and 0.5; the learnt values were −1.9979(4) and 0.4934(1). From Ref. [34].

Figure 4 shows the electron-electron and electron-nucleus cusps for a helium atom. The wave
function was represented as a deep neural network [34] (see later), the parameters of which
were adjusted to minimize the variational ground-state energy. No attempt was made to force
the network to generate the correct cusps; it discovered them spontaneously in its attempts to
minimize the total energy. Its success in doing so confirms that the cusps have a significant
effect on the total energy and adds weight to the assertion that it is a bad idea to use trial wave
functions without cusps.

The Jastrow factor

We have explained that Slater determinants behave smoothly as electrons approach each other
and cannot easily represent the electron-electron cusps. This failure increases the energy expec-
tation value and slows down the convergence of configuration expansions. Cusp-related errors
often limit the accuracy of otherwise well-converged FCI and coupled-cluster calculations.
A good way to add cusps to a Slater determinant is to use a Jastrow factor [35, 11, 7]. The
determinant D(x1, x2, . . . , xN) is replaced by a Slater-Jastrow wave function,

ΨSJ(x1, x2, . . . , xN) = eJ(x1,x2,...,xN )D(x1, x2, . . . , xN), (78)

where J is a totally symmetric function of the electron coordinates. The Jastrow factor affects
the normalization in a manner that is not easy to calculate, so we have made no attempt to
normalize ΨSJ. Fortunately, QMC methods do not require normalized trial wave functions.
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The simplest approximation assumes that

J(x1, x2, . . . , xN) = −
1

2

N∑
i=1

N∑
j=1
(j 6=i)

u(xi, xj) (79)

is a sum of two-electron terms. In a typical example, u(xi, xj) increases in value as |ri − rj|
decreases, suppressing the value of the wave function when pairs of electrons approach each
other. The determinant incorporates the antisymmetry that helps to keep like-spin electrons
apart; the Jastrow factor adds a partial description of the correlations caused by the repulsive
Coulomb interactions, which keep both like- and unlike-spin electrons apart.
By making sure that u(xi, xj) has the right behavior as |ri − rj| → 0, we can also use the
Jastrow factor to make ΨSJ satisfy the cusp conditions. As in our previous discussion of cusps,
we express ΨSJ as a function of r, rcm, σ1, σ2, x3, . . . , xN , where r = r1−r2 and rcm = 1

2
(r1+r2).

We then consider how the wave function depends on r at fixed σ1, σ2, x3, . . ., xN . Writing
Ψ(r, rcm, σ1, σ2, x3, . . . , xN) as Ψ(r) to simplify the notation, we have ΨSJ(r) = e−u(r)D(r).

Antiparallel spins: The antiparallel cusp condition,

Ψ(r) = a↑↓ee

(
1 +

1

2
r

)
+ b↑↓ee · r+O(r2), (80)

can be imposed using a spherical Jastrow function, u(r)→ u(r).
Expanding u(r) and D(r) about the origin,

u(r) = u(0) + u′(0)r + . . . , and D(r) = D(0) + r · ∇rD|r=0 + . . . , (81)

we get

ΨSJ(r) = e−u(r)D(r) =
(
1− u′(0)r + . . .

)
e−u(0)

(
D(0) + r · ∇rD|r=0 + . . .

)
= a↑↓ee

(
1− u′(0)r

)
+ b↑↓ee · r+O(r2), (82)

where a↑↓ee = e−u(0)D(0) and b↑↓ee = e−u(0) ∇rD|r=0.
In order to satisfy the spin-antiparallel cusp condition, all we require is that

∂u

∂r

∣∣∣∣
r=0

= −1

2
. (83)

Parallel spins: The parallel cusp condition,

Ψ(r) =
(
b↑↑ee · r

)(
1 +

1

4
r

)
+O(r3), (84)

can also be imposed using a spherical Jastrow function. D(0) is now zero, so (82) becomes

ΨSJ(r) =
(
1−u′(0)r+ · · ·

)
e−u(0)

(
r · ∇rD|r=0+ · · ·

)
=
(
b↑↑ee · r

) (
1−u′(0)r

)
+O(r3),

(85)
with b↑↑ee = e−u(0) ∇rD|r=0. This has the correct cusp if

∂u

∂r

∣∣∣∣
r=0

= −1

4
. (86)
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Fig. 5: The left-hand figure shows the pseudo-valence electron density of germanium as calcu-
lated using a determinant of DFT orbitals. The middle figure shows the effect of introducing a
Jastrow factor containing spherical two-electron u(|ri−rj|) terms. The cusps (which cannot be
seen here) are improved and the energy expectation value is lowered, but the electron density
is changed significantly. The right-hand figure shows the effect of including one-electron χ(ri)
terms in addition to the spherical u(|ri−rj|) terms. The cusps remain correct but the density is
pushed back towards the original HF density, which was quite accurate.

Writing the spherical Jastrow function u(x1, x2) = u(r1, σ1, r2, σ2) as uσ1σ2(r), we can sum-
marize these results as follows:

∂uσ1σ2(r)

∂r

∣∣∣∣
r=0

=

{
−1

2
, σ1=− σ2,

−1
4
, σ1= σ2.

(87)

If the one-electron orbitals are expanded in a basis of smooth functions such as plane waves or
Gaussians, it is often best to incorporate the electron-nucleus cusps into the Jastrow factor too.
This requires adding terms dependent on |ri−dI | to J , where dI is the position of nucleus I .
The large-r behavior of u(r) in solids can be derived within the random phase approximation
[35]. The result is that u(r) ∼ 1/ωp r as r → ∞, where n is the average electron density and
ωp =

√
4πn is the plasma frequency of a uniform electron gas of that density.

The Jastrow function does not have to be pairwise or spherical. We can, for example, add any
smooth function of r to the spherical pairwise term u(r) without affecting the cusps. We can
also add to J a totally symmetric one-electron contribution of the form

∑
i χ(xi), which can

provide a convenient way to optimize the electron spin density n(x) = n(r, σ). An example
is shown in Fig. 5. Finally, we can add terms that depend on the positions of more than two
charged particles. The usual practice in QMC simulations [36] is to choose a fairly general
parametrized Jastrow factor incorporating the cusps and adjust the parameters to minimize the
energy expectation value.
Although one-determinant Slater-Jastrow wave functions do not achieve chemical accuracy,
they are easy to use and often account for 80–90% or more of the correlation energy missed by
Hartree-Fock theory. The O(N3) system-size scaling of Slater-Jastrow based variational QMC
simulations is favorable enough that they can be used to study periodic supercells containing of
order 1000 electrons.
When studying small molecules, it is straightforward to carry out Slater-Jastrow QMC simula-
tions with large linear combinations of Slater determinants, all multiplied by a Jastrow factor,
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thus accounting for static correlation as well as dynamic correlation. Dealing with static corre-
lation in solids is an unsolved problem in general, as the number of configurations required rises
exponentially with system size, but one-determinant Slater-Jastrow VMC calculations are often
used and often produce surprisingly good results. Jastrow factors are not so easy to combine
with conventional quantum chemical methods such as coupled cluster, but alternative “R12”
approaches are available [37].

6 Beyond Slater determinants

Attempting to describe the wave functions of solids as linear combinations of Slater determi-
nants, with or without a Jastrow factor, is a futile task because the number of determinants
required rises exponentially with system size. As a result, the vast majority of solid-state QMC
simulations have used single-determinant trial wave functions. Single-determinant VMC results
are not very much more accurate than DFT, but DMC simulations [11, 7] with one-determinant
Slater-Jastrow trial wave functions have produced much of the most accurate data available for
weakly correlated bulk solids, including the electron gas data used to parametrize the local den-
sity approximation. Until recently, it has been difficult to ascertain the quality of DMC results
for solids because experiments are of limited accuracy and no better methods were known, but
auxiliary-field QMC (which also requires a trial wave function) is now producing slightly better
results for some molecules and solids and coupled-cluster approaches are making progress.
Given the limitations of multi-determinant expansions, it is no surprise that efforts have been
made to find better starting points. An old idea that still has value is the backflow transformation
introduced by Richard Feynman in 1954 [38]. Feynman’s approach was inspired by the way a
classical fluid flows around an obstruction and his application was to liquid 4He, but the idea
is general enough to work for electrons too. It was first used in a QMC simulation of the
interacting electron gas in 1994 [39].
In a backflow wave function, the electron positions in the Slater determinant are replaced by
“quasi-particle” coordinates that depend on the positions of other nearby electrons

qi = ri + ξi(x1, x2, . . . , xN) = ri +
∑
j ( 6=i)

ηijrij, (88)

where rij = ri − rj and ηij depends on rij = |ri − rj| and on the relative spins of electrons i
and j. The Slater matrix is otherwise unchanged, but every entry in every row and column now
depends on the coordinates of every electron, which slows down QMC calculations by a factor
of N. Although the backflow wave function is still a determinant, it is not a Slater determinant
and cannot be expanded as a linear combination of a small number of Slater determinants; it is
something new.
One advantage of the use of parametrized backflow transformations is that they provide a con-
venient way to adjust the nodal surface of the trial wave function. Given a choice of the spin
coordinates (σ1, σ2, . . . , σN), the nodal surface is the (3N−1)-dimensional surface in the 3N -
dimensional space of positions (r1, r2, . . . , rN) on which the wave function is zero. It matters
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Fig. 6: Nodes encountered when moving one of the electrons in a two-dimensional homoge-
neous gas of 101 like-spin electrons. The positions of the other 100 electrons, indicated by the
green circles, are held fixed. The Hartree-Fock and backflow nodes are in black and orange,
respectively. The top panel shows results for a weakly correlated electron gas with density pa-
rameter rs = 0.5; the bottom panel shows results for a less dense and more strongly correlated
electron gas with rs = 10. From Ref. [40].

because the quality of the nodal surface is the only factor that limits the quality of DMC results:
if the nodal surface is exact, DMC gives the exact ground-state energy. Figure 6 shows how the
nodes of an optimized backflow wave function differ from those of the Hartree-Fock determi-
nant [40]. The differences are subtle but improve the quality of the results substantially. As far
as can be ascertained, energies calculated using backflow DMC simulations of electron gases
at densities comparable to those found in most solids are almost exact. Results for light atoms,
where we know the ground-state energy almost exactly, are somewhat less impressive but Fig. 7
shows that backflow remains useful, reducing the error in the total energy of a Slater-Jastrow
wave function by more than 50%.
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Fig. 7: Errors in the energies of various atoms as calculated using a variety of different one-
determinant VMC trial wave functions. Hartree atomic units are used. The data used to plot
the cyan and orange lines comes from Ref. [41]; the other three lines show data from Ref. [34].

Backflow is a good idea but we can take it much further [34]. Nothing requires the orbitals in a
Slater determinant to be functions of the coordinates of a single electron only, nor need they be
functions of a single three-dimensional (plus spin) quasi-particle coordinate, as in a backflow
wave function. The only requirement is that interchanging any two coordinates, xi and xj ,
exchanges the corresponding columns of the determinant and thus changes the sign of the wave
function. This freedom allows us to replace the one-electron orbitals ϕi(xj) by multi-electron
functions of the form

ϕi(xj;x1, . . . , xj−1, xj+1, . . . , xN) = ϕi(xj; {x/j}), (89)

where x/j is shorthand for all of the coordinates except xj . As long as ϕi(xj; {x/j}) is invariant
under any change in the order of the arguments after xj , the resulting wave function,

D =

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1, {x/1}) ϕ1(x2, {x/2}) . . . ϕ1(xN , {x/N})
ϕ2(x1, {x/1}) ϕ2(x2, {x/2}) . . . ϕ2(xN , {x/N})

. . . . . .

. . . . . .

ϕN(x1, {x/1}) ϕN(x2, {x/2}) . . . ϕN(xN , {x/N})

∣∣∣∣∣∣∣∣∣∣∣
, (90)

is totally antisymmetric.
Surprisingly, it can be shown that any totally antisymmetric wave function can be represented as
a single generalized determinant of this type [34]. The proof does not explain how to construct
the generalized determinant we need, but the fact that it exists is reassuring: the exponential
wall that makes expanding many-electron wave functions in conventional Slater determinants
so difficult might not apply when generalized determinants are used. The NP hardness of the
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many-electron problem is bound to rear its ugly head somewhere, but it is going to take a
different form and the exponential rise in difficulty with system size might be less steep.
Trial wave functions of the type introduced in Eq. (90) are so general that it is hard to see how
to parametrize them. This is a common problem with trial wave function construction: the more
general the functional form, the more parameters you need and the less you know about which
ones to choose. Until a few years ago, this would have ruled out using generalized determinants,
but recent progress in machine learning [42, 43] has made it much easier to find parametrized
representations of extremely complicated functions without having to choose the functional
form or parameters explicitly. Deep neural networks [44] are general function approximators,
able in principle to represent any function in any number of dimensions. Furthermore, via the
magic of automatic differentiation and back propagation, optimizing the parameters that define
a neural network is remarkably efficient.
In Ref. [34], generalized determinants were represented using a new neural network architec-
ture, the Fermi Net, designed to guarantee the necessary exchange symmetries but otherwise
being very general. The method used was VMC, conventional in all respects except for the
wave function. The Fermi Net was the wave function and was used to calculate the value and
first and second derivatives of the wave function at arbitrary points in coordinate space. This
is all that is required to implement the Metropolis algorithm and allow the calculation of the
local energy. The parameters of the network were adjusted to minimize the energy expectation
value, exactly as prescribed by the variational principle. Learning from the variational princi-
ple differs from the more frequently encountered concept of learning from data; the Fermi-Net
optimization generates its own input on the fly and can never run out of training data.
Using neural networks to represent wave functions is a fashionable idea and several other ap-
proaches are being explored [45–47]. Here I concentrates on Fermi Net because I played a
minor role in helping to develop it and because it is in some way the most accurate approach
proposed so far. The field is so young, however, that I would not be surprised to see better
approaches come along soon.
The Fermi Net takes electron spins σi, positions ri, the vectors between electrons ri−rj , and
electron-nucleus vectors ri−dI as input. The network is only capable of representing smooth
analytic functions of position (this is on purpose; the VMC method runs into difficulties if the
gradient or value of the trial wave function is discontinuous), so it is unable to represent the
cusps exactly. To circumvent this problem, the distances |ri−rj| and |ri−dI | are also provided
as inputs. The distance function |r| has its own cusp at the origin, enabling the network to
represent the electron-electron and electron-nucleus cusps as smooth functions of the inter-
particle distances. As was shown in Fig. 4, it accomplishes this very effectively. Note that the
Fermi-Net wave function takes positions as input and returns values of the wave function as
output. No one-electron or many-electron basis set is required.
Although this approach to machine learning wave functions has only been applied to atoms and
small molecules to date, the results have been spectacularly good. Fermi-Net wave functions
are clearly much better than any other known type of VMC trial wave function used in such
systems.
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Fig. 8: Convergence with the number of determinants of the total energy (in Hartrees) of the CO
and N2 molecules. The Slater-Jastrow, Slater-Jastrow-backflow, and Fermi-Net wave functions
were all represented as neural networks. From Ref. [34].

Figure 7 compares the accuracies of several different one-determinant VMC methods. The
dark blue and cyan lines show results obtained with a single-determinant Slater-Jastrow wave
function. They differ only because the dark blue results were generated using a neural-network
representation of the Slater-Jastrow wave function whereas the cyan line used an explicitly
parametrized functional form [41]. The generality and freedom inherent in the neural network
allows it to slightly outperform the conventional implementation. The orange and pink lines are
related in the same way. Both show results for a single-determinant Slater-Jastrow-backflow
wave function, but the orange line used a conventional representation and the pink line a neural
network representation. The green line shows the Fermi-Net results. Even though only one
determinant was used, they are quite close to chemical accuracy indicated by the grey bar.
Figure 8 illustrates the convergence of the total energy of two molecules, CO and N2, as a func-
tion of the number of determinants used. All results were obtained using neural-network wave
functions of the corresponding type, so these are fair comparisons. The results obtained with
16 Fermi-Net determinants are close to chemical accuracy. From now on, all of the calculations
reported used 16 Fermi-Net determinants and a neural network with approximately 700,000
variational parameters. This may sound extreme, but the number of amplitudes required for
comparably accurate CCSD(T) calculations is even larger.
Figure 9 shows results for various molecules with up to 30 electrons. All of the methods inves-
tigated are less accurate for larger systems, but the Fermi Net is again the best and the growth
of the Fermi Net errors with system size appears to be more systematic.
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Fig. 9: Errors in the total energies (in Hartrees) of various molecules with up to 30 electrons
calculated using Fermi Net, CCSD, and CCSD(T). High-quality QZ and 5Z basis sets were used
for the coupled-cluster calculations. From Ref. [34].

Fig. 10: Energy (in Hartrees) of theH10 chain calculated using a wide variety of different meth-
ods for a range of inter-atomic distances (in Bohr radii). All energies are measured relative to
the MRCI + Q + F12 CBS energy. The mauve shaded region indicates the estimated uncertainty
in the reference result. Fermi Net results from Ref. [34]; all other results from Ref. [48].
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The H10 chain was the subject of an important recent benchmark paper [48] comparing practi-
cally every accurate method known at the time. Figure 10 shows the total energy as a function
of the inter-atomic spacing. At each spacing, all energies are measured relative to a reference
obtained by extrapolating the MRCI + Q + F12 result to the complete basis set (CBS) limit.
The mauve shaded region indicates the estimated uncertainty in the reference energy. All of the
data except for the Fermi-Net results came from Ref. [48]. Despite the newness and conceptual
simplicity of our neural-net based approach, it comfortably outperforms most of its rivals.
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[16] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)
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