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1 Introduction

Electron and phonon quasiparticles are the fundamental constituents of solids. Knowledge of
their interaction provides deeper insight in many physical properties. In metals, the electron-
phonon coupling (EPC) profoundly alters low-energy electronic excitations, and gives impor-
tant contributions to transport and thermodynamic properties. Coupling to phonons creates
naturally an attractive interaction among electronic quasiparticles, triggering eventually the oc-
currence of a superconducting state. Recent decades have seen the rise of powerful computa-
tional tools to calculate these fundamental properties from first principles. In particular, density
functional theory (DFT) and its extensions have been very successful in providing a deeper
understanding of materials properties.
The purpose of this lecture is to introduce the modern linear-response technique within the
DFT framework, which gives access to EPC properties on a microscopic level, and to establish
the connections to derived physical quantities. In Section 2, we will present an overview of
the linear-response scheme, which is called density functional perturbation theory (DFPT). In
Section 3, this approach is applied to the case of a crystalline solid, and we show how EPC
properties can be calculated. Applications to various physical observables related to the EPC
will be presented in Section 4. Finally, in Section 5, we will take a brief look at more complex
extensions of DFT and how they can be used for an improved description of the EPC.
Throughout this Chapter, Rydberg atomic units ~=2me=e

2/2=1 as well as kB=1 are used.

2 Linear response in density functional theory

In this Section, we will develop the machinery of the linear response in the context of density
functional theory. The description will be kept rather general, but with having in mind to apply
it to the case of a crystalline solid, which will be addressed in more detail in the following
Section.

2.1 Adiabatic perturbations

There often exists an intimate relationship between physical observables and changes of ground
state properties under perturbations. To be specific, let us consider interacting electrons moving
in the potential of a periodic arrangement of atoms. In its ground state it has the energy E0.
This system can be perturbed in various ways. Examples are the displacement of an atom out of
its equilibrium position δR, or a distortion of the crystal by applying a homogeneous strain η.
Application of a homogeneous electric field, E is a further example.
In all these cases, the perturbation can be arbitrarily small. The electronic system reacts adia-
batically, if it remains in the ground state under a small perturbation λ. The ground state energy
becomes a function of λ: E0 = E0(λ). Many physical quantities are then linked directly to
derivatives of this function,

Qn =
dnE

dλn

∣∣∣∣
λ→0

. (1)
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type of perturbation λ order n physical property Q
displacements of atoms 1 atomic force

δR 2 force constants
≥ 3 anharmonic force constants

homogeneous strain η 1 stress
2 elastic constants
≥ 3 higher order elastic constants

homogeneous electric field E 1 dipole moment
2 polarizability

δR+ η 2+1 Grüneisen parameter
δR+ E 1+2 Raman scattering cross section

Table 1: Examples of external perturbations and physical quantities connected to derivatives
of the ground-state energy.

Table 1 lists examples of such relationships between perturbations and physical observables.
Some physical quantities are connected to mixed derivatives of two different perturbations. A
well known example is the Raman scattering cross section, which involves both atomic dis-
placement and homogeneous electric field as perturbations.
Density functional theory is ideally suited to exploit this relationship between physical observ-
ables and derivatives of the ground-state energy, because it targets ground-state properties by
design.

2.2 Basics of density functional theory

The foundations of density functional theory (DFT) have been laid in the seminal works by
Hohenberg, Kohn, and Sham [1,2] in the mid 60’s, and are outlined in numerous reviews [3–5].
Here we focus on the essential features which we need later.
Hohenberg and Kohn [1] proved, that the ground-state energy of a system of interacting elec-
trons moving in an external potential vext(r) is obtained by minimizing the functional

E[n] = F [n] +

∫
d3r vext(r)n(r) (2)

with respect to the electron density n(r). At its minimum, n(r) is the true electron density of the
interacting system. The functional F [n] is universal, i.e., independent of the external potential.
An important step for practical applications was done by Kohn and Sham [2]. By using the
minimum principle they showed that one can define a fictitious system of non-interacting elec-
trons, which in its ground state possesses the same inhomogeneous density as the interacting
system [2]. The energy functional is expressed as

F [n] = Ts[n] + EH [n] + EXC [n] , (3)

where Ts represents the kinetic energy of the non-interacting electrons

Ts[n] =
∑
i

fi

∫
d3r ψ∗i (r)

(
−∇2

)
ψi(r) (4)
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and EH [n] the Hartree energy

EH [n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r−r′|
. (5)

The complexity of the original many-body problem is transferred to the exchange-correlation
energy EXC . It is also a functional of the density, and has the important property that it is
universal and thus does not depend on the external potential. However, it functional form is in
general unknown.
For the non-interacting electron system, the density can be expressed in terms of the single-
particle wave functions ψi,

n(r) =
∑
i

fi
∣∣ψi(r)∣∣2 , (6)

where fi denotes the occupation number of the state ψi.
From the variational property of the energy functional, one can derive the single-particle equa-
tion (Kohn-Sham equation) (

−∇2 + veff(r)
)
ψi(r) = εi ψi(r) . (7)

Here, εi denotes the energy of the single-particle state ψi. The effective potential veff(r) is a
functional of the density and given as a sum of the external potential and a screening potential

veff [n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (8)

The latter is obtained as functional derivatives of the last two terms in the total energy func-
tional (3). It consists of the Hartree potential

vH(r)[n] =
δEH
δn(r)

=

∫
d3r′

2n(r′)

|r−r′|
, (9)

which describes an average electrostatic potential originating from the other electrons, and the
exchange-correlation potential vXC(r) = δEXC/δn(r).
Essentially, the original complex many-body problem is mapped onto a much simpler non-
interacting electron system. The remaining task is to solve a set of single-particle equations
(6)–(8), which has to be done in a self-consistent manner.
The big success of DFT partly rests on the empirical fact that already simple approximations to
vXC often give very accurate results. One ansatz is the local-density approximation (LDA)

vLDAXC (r) =
d
(
n εhom

XC (n)
)

dn

∣∣∣∣
n=n(r)

, (10)

where εhom
XC (n) represents the exchange-correlation energy density of the homogeneous inter-

acting electron gas. Another is the generalized-gradient approximation (GGA), where a depen-
dence of vXC on both local density and local gradient of the density is considered. For both
types of local approximations, various parameterizations derived from analytical and numerical
studies exist [4, 6–8].
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2.3 Linear-response formulation

Here we show how the perturbative approach is set up within the DFT framework. We will first
present some general considerations before applying them to the more specific cases in the next
Section.

2.3.1 Energy derivatives

Let us consider a situation where the external potential vext depends on a set of adiabatic pertur-
bation parameters Λ = {λa, a = 1, . . . , p}. Each vΛext determines an electronic ground state with
density nΛ(r), for which the energy functional EΛ[n] = F [n] +

∫
d3r vΛext(r)n(r) is minimal

δEΛ[n]

δn(r)

∣∣∣∣
n=nΛ

= 0 . (11)

The ground-state energy is then given by

EΛ
0 = EΛ[nΛ] = F [nΛ] +

∫
d3r nΛ(r)vΛext(r) , (12)

which depends on the perturbation via the external potential and implicitly via the density. Its
derivative then contains two contributions

∂EΛ
0

∂λa
=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
+

∫
d3r

δEΛ[n]

δn(r)

∣∣∣∣
n=nΛ

∂nΛ(r)

∂λa

=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
. (13)

The second term vanishes because of Eq. (11). Thus the first derivative depends on the ground-
state density only. This represents the DFT equivalent of the well known Hellmann-Feynman-
Theorem [9].
Because Eq. (13) is valid for each finite Λ, one can take the second-order derivatives

∂2EΛ
0

∂λa∂λb
=

∫
d3r

∂nΛ(r)

∂λb

∂vΛext(r)

∂λa
+

∫
d3r nΛ(r)

∂2vΛext(r)

∂λa∂λb
. (14)

Usually, the parametric dependence of vΛext on Λ is known, and its derivatives can be obtained
easily. The hard part is to calculate the derivatives of the electron density. Eq. (14) demon-
strates, that knowledge of the first-order variation of n is sufficient to access the second-order
derivatives of the total energy. This aspect is very important for practical purposes, as one has
to consider merely the linear response of the electron system.
As shown above, the first derivative of the energy depends solely of the unperturbed ground-
state density, while second-order derivatives require knowledge of the density and its first-order
derivatives. Both results are special cases of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+1)-th order with respect to the adiabatic perturbation
can be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and
density up to n-th order. The proof given by Gonze et al. [10–12] essentially rests on the
variational property of the energy functional.
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2.3.2 Linear response within the Kohn-Sham scheme

Let us now discuss how the linear response of the density is actually calculated with the DFT
framework. It involves standard perturbation techniques under the condition that the effective
potential entering the Kohn-Sham equations depends on the ground-state density. To this end
we are interested in the linear response of the Kohn-Sham system(

−∇2 + veff(r)
)
ψi(r) = εiψi(r) . (15)

A small perturbation in the effective potential, δveff , gives rise to a first-order variation of the
single-particle wave functions

δψi(r) =
∑
j(6=i)

〈j|δveff |i〉
εi−εj

ψj(r) . (16)

Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi
(
ψ∗i (r) δψi(r) + δψ∗i (r)ψi(r)

)
=
∑
i6=j

fi−fj
εi−εj

〈j|δveff |i〉ψ∗i (r)ψj(r) . (17)

On the other hand, δn contributes to the variation of the effective potential

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r−r′|
+

δ2EXC
δn(r) δn(r′)

. (18)

Eqs. (17) and (18) must be solved self-consistently to obtain the first-order variation of the
density.
It is instructive to establish a relationship between δn and δvext. It can be derived by first writing
the linear relationship (17) between δn and δveff more explicitly

δn(r) =

∫
d3r′ χ0(r, r

′) δveff(r
′) (19)

χ0(r, r
′) =

∑
i6=j

fi−fj
εi−εj

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′) . (20)

Here, χ0 represents the charge susceptibility of the non-interacting Kohn-Sham system. It is
expressed solely by ground-state quantities [13]. Although obtained by perturbation theory,
Eq. (20) is exact because the Kohn-Sham equations describe non-interacting electrons.
In combination with Eq. (18) this leads to

δveff = δvext + I χ0 δveff , (21)

which can be solved for δveff

δveff =
(
1−I χ0

)−1
δvext = ε−1 δvext , (22)
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where ε = 1−I χ0 denotes the static dielectric matrix and describes the screening of the ”bare”
perturbation. Using Eq. (19), one finally arrives at

δn = χ0 ε
−1 δvext , (23)

which in principle allows the calculation of the second derivative, Eq. (14).
The problem is now reduced to a calculation of ε−1. Direct evaluation of Eq. (23) has several
caveats. Firstly, it involves inversion of the matrix ε(r, r′), which for periodic systems is most
conveniently done in Fourier space. It is, however, often numerically expensive, because a
proper convergence requires a large number of Fourier components, and the size of the matrix
becomes prohibitively large. Secondly, to obtain χ0 via Eq. (20) involves summation also over
unoccupied orbitals, which either converge slowly, or are not accessible at all, as in band-
structure methods employing minimal basis sets (e.g. LMTO).

2.3.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach,
which avoids some of the aforementioned problems of the dielectric matrix approach. It is called
density functional perturbation theory (DFPT) and has been proposed independently by Zein et
al. [14–16] and Baroni et al. [17, 18]. A concise description can be found in [19]. We will give
a short outline for the case of a non-metallic system.
In the expression (17) for the first-order density variation, the prefactor (fi−fj)/(εi−εj) re-
stricts the sum to combinations where one state comes from the valence space and the other
from the conduction space. Using time-reversal symmetry, this can be rewritten as

δn(r) = 2
∑
vc

1

εv−εc
〈c|δveff |v〉ψ∗v(r)ψc(r) . (24)

Now one defines the quantity

|∆v〉 =
∑
c

1

εv−εc
|c〉 〈c|δveff |v〉 , (25)

which collects the summation over the conduction bands. The linear response of the density is
rewritten as

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) . (26)

To avoid an explicit evaluation of the sum in ∆v, one makes use of the following property(
HKS−εv

)
|∆v〉 = −

∑
c

|c〉〈c|δveff |v〉 = −Pc δveff |v〉 = (Pv−1)δveff |v〉 . (27)

Here, HKS = −∇2+veff is the KS Hamiltonian. Pc =
∑

c |c〉〈c| denotes the projector onto the
conduction space, and Pv = 1−Pc the projector onto the valence space. Eq. (27) represents a
linear equation for∆v, where only valence-state quantities enter. Solution of this linear equation
turns out to be numerically much more efficient than the expensive summation over conduction
states.
In practice, Eqs. (26), (27) together with (18) define a set of self-consistent equations which is
typically solved in an iterative manner.
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3 Electron-phonon coupling

The most common application of DFT linear response approaches addresses the calculation of
lattice dynamical properties, i.e., phonons, and their interaction with electrons. Here we discuss
the underlying concepts.

3.1 General considerations

Our starting point will be the adiabatic or Born-Oppenheimer approximation. The coupling
between electrons and ions is governed by the large ratio of the ionic mass (M ) and electronic
mass (m). It allows a partial decoupling of the dynamics of the ions and the electrons by a
systematic expansion in terms of the small parameter κ = (m/M)1/4 [20, 21]. To lowest order,
the total wave function of the coupled electron-ion system can be written as a product Ψ(r,R) =

χ(R)ψ(r;R), where r and R denote the sets of electron and ion coordinates, respectively. The
electronic wave function obeys the equation(

Te + Vee + Ve-i(R)
)
ψn(r;R) = En(R)ψn(r;R) , (28)

where Te and Vee denote the kinetic energy and Coulomb interaction of the electron system,
respectively. Ve-i represents the electron-ion interaction. Through this term, wave functions
and energies depend parametrically on the ionic positions R, and as a consequence also the
electronic ground-state energy E0(R). The latter enters the effective potential

Ω(R) = Vii(R) + E0(R) , (29)

which governs the statics and dynamics of the ions in adiabatic approximation. Here Vii(R)

denotes is the ion-ion (Coulomb) interaction. Ω is the starting point of the microscopic theory of
lattice dynamics (see review articles [22–24]). Dynamical properties are derived by a systematic
expansion ofΩ in atom displacements u around a chosen reference configuration, Ri = R0

i+ui,
leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + . . . . (30)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term of
first order is the negative of the force acting on an atom in the reference configuration, i.e., Fiα =

− ∂Ω
∂Riα

∣∣∣
0
= −Φα(i). It vanishes if one chooses as reference the equilibrium configuration, which

minimizes Ω. The second-order coefficients given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

(31)

are the so-called force constants.
To get a coupling of the dynamics of electrons and ions, one has to go beyond the adiabatic
approximation. It is described by an electron-ion vertex and appears to first order in κ. One can
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show that it results in off-diagonal matrix elements among the electronic eigenstates ψn and has
the form

〈n|δRV |n′〉 . (32)

The operator δRV stands for the linear change of the potential felt by the electrons under a
displacement of an atom from its rest position.
In the following, we will show how these general considerations come to life within a density
functional theory context. To this end, we will do this specifically for the very important case
of a solid, i.e., a periodic arrangement of atoms.

3.2 Density functional perturbation theory
3.2.1 Phonon properties from DFPT

In adiabatic approximation, Eq. (28) describes interacting electrons moving in the potential
determined by the ionic positions. This can be (approximately) solved by the DFT approach.
We now consider the case of a solid, and assume that ions in their rest positions are sitting on
a periodic lattice. KS eigenstates are now Bloch states |kν〉 characterized by momentum k and
band index ν, respectively, and are solutions of HKS|kν〉 = εkν |kν〉.
In a periodic crystal, ions are characterized by two indices i=(ls), which denote the unit cell (l)
and the ions inside a unit cell (s), respectively. For periodic boundary conditions, the Fourier
transform of the force constant matrix is related to the dynamical matrix

Dsαs′β(q) =
1√

MsMs′

∑
l

Φαβ(ls, 0s
′) e−iq(R0

ls−R
0
0s′ ) , (33)

which determines the equation for the normal modes or phonons∑
s′β

Dsαs′β(q) ηs′β(qj) = ω2
qj ηsα(qj) . (34)

ωqj and ηsα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and the branch index j.
According to Eqs. (29) and (30), the force constants consist of two contributions, the ion-ion
and the electronic contribution. The ion-ion part stems from the Coulomb interaction of ions
positioned on a periodic lattice and can be evaluated with standard methods (Ewald summation).
The second part comes from the second derivative of the electronic energy and is thus accessible
by density functional perturbation theory. To this end we consider periodic displacements of the
ions from their equilibrium positions, Rls = R0

ls + uls, of the form

ulsα = dsα e
iqR0

ls + d∗sα e
−iqR0

ls , (35)

The complex amplitudes dsα allow to vary the relative phase of the displacement. It is conve-
nient to denote the corresponding derivatives by δqsα ≡ ∂

∂dsα
and δ−qs′β ≡ ∂

∂d∗sα
. The electronic

contribution to the dynamical matrix can be then written as a mixed derivative

Dsαs′β(q) =
1√

MsMs′
δqsαδ

−q
s′βE

∣∣∣∣
u=0

. (36)
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Commonly, the external potential is expressed as a superposition of atomic potentials vs cen-
tered at the instantaneous positions of the ions

vext(r) =
∑
ls

vs(r−Rls) . (37)

Its first-order variation, evaluated at the equilibrium positions, is given by

δqsαvext(r) = −
∑
l

∇r
αvs(r−R0

ls) e
iqR0

ls = −eiqr
∑
l

eiq(R0
ls−r)∇r

αvs(r−R0
ls) . (38)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqsα can be considered to carry a momentum q.
When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqsαveff , connects states of momentum k with those of momentum k+ q. The Fourier
transform of the first order density variation takes the form

δqsαn(q+G) = − 4

V

∑
kv

〈
kv
∣∣e−i(q+G)r

∣∣∆q
sα(kv)

〉
, (39)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (25))

|∆q
sα(kv)〉 =

∑
c

|k+qc〉〈k+qc|δqsαveff |kv〉
εk+qc−εkv

. (40)

It is obtained by solving the inhomogeneous linear equations (see Eq. (27))(
HKS − εkv

)
|∆q

sα(kv)〉 =
(
P k+q
v − 1

)
δqsαveff |kv〉 . (41)

Eqs. (39) and (41) together with (18) constitute a set of equations, which is solved self-consistently
for a fixed q to obtain δqsαn. As a by-product, also δqsαveff is calculated.
The electronic contribution to the dynamical matrix takes the form

δqsαδ
−q
s′βE =

∑
G

[
δqsαn(G+q) δ−qs′βvext(G+q) + δqsαδ

−q
s′βvext(G)

]
. (42)

3.2.2 Electron-phonon vertex from DFPT

We have seen that the lowest-order electron-ion interaction describes scattering of electronic
states via the operator δRV which denotes the change of the potential felt by the electrons
due to an ionic displacement. If the potential V is the bare electron-ion potential V 0, then
δRV = ∇V 0|R0u. In the context of DFPT, Eq. (32) would then be identified with

gqλk+qν′,kν =
∑
sα

Aqj
sα〈k+qν ′|δqsαvext|kν〉 with Aqj

sα =
ηsα(qj)√
2Msωqj

, (43)

where a transformation to the normal-mode coordinates is performed. Physically, g represents
the probability amplitude of scattering a single electron by a simultaneous creation or annihila-
tion of a single phonon. In the form given above this is called the bare vertex.
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++ + ...=

Fig. 1: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interaction.

However, in solids, and in particular in metals, the bare electron-ion potential is screened by the
other electrons. Screening also alters the vertex significantly. Within linear response theory this
operator takes the form

δRV = ε−1∇V 0|R0u . (44)

ε−1 is the inverse dielectric matrix, which is a measure of the screening. Note that in Eq. (44), the
screening operator does not commute with the gradient operation, and thus can not be written
in terms of the gradient of a screened potential.
It is instructive to look at it from a many-body perturbation perspective. Fig. 1 shows a dia-
grammatic representation of the screened vertex. The bare vertex is given by the first graph on
the right hand side, and is screened by virtual electron-hole excitations coupled via an effective
interaction. From the relationship (21) between the external (bare) and effective (screened) per-
turbation, we can see that within the DFPT framework, the electron-hole bubble is represented
by the charge-susceptibility of the non-interaction Kohn-Sham system (20). The effective in-
teraction is given by the kernel I defined in Eq. (18) and incorporates besides the Coulomb
interaction also contributions from exchange and correlation.
In essence this leads to a replacement of the external potential by the screened or effective one

gqλk+qν′,kν =
∑
sα

Aqj
sα〈k+qν ′|δqsαveff |kν〉 . (45)

Applying the self-consistent procedure described above results in the linear response of the
effective potential δqsαveff , which is then used to calculate the electron-phonon matrix elements.
The self-consistency procedure automatically takes into account the important screening ef-
fects. Eq. (45) thus enables the calculation of the screened EPC matrix elements on a micro-
scopic level, including their full momentum dependence and resolving the contributions from
different electronic bands and phononic modes. For further details one can refer to the book of
Grimvall [25].

4 Applications

4.1 Fröhlich Hamiltonian and many-body perturbation

When developing a perturbative treatment of the mutual influence of the electronic and phononic
subsystems in a solid, the question arises, what are the proper noninteracting quasiparticles to
start with. The correct answer requires to know the solution to some extent. As we will see,
electronic states are significantly influenced by lattice vibrations mostly in close vicinity of the
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Fermi energy. It is therefore appropriate to start with electrons moving in a static potential of
a rigid ion lattice, without any renormalization by the lattice vibrations. On contrast, the bare
vibrations of the ion lattice would be a bad starting point, because they are strongly altered by
the screening of the electrons. This screening must be built into the description of the harmonic
lattice vibrations which defines the noninteracting phonons.
Therefore, a good starting point is the Fröhlich Hamiltonian, which in second quantization
reads

H = He +Hph +He-ph . (46)

The electron system is described by noninteracting quasi-particles with dispersion εkν . These
quasiparticles are considered to be the stationary solutions of band electrons in a perfect periodic
lattice, and include already renormalization from Coulomb interaction.

He =
∑
kνσ

εkν c
†
kνσckνσ . (47)

Here ckνσ (c†kνσ) are the annihilation (creation) operators for an electronic state with momentum
k, band index ν, spin σ, and band energy εkν .
The lattice Hamiltonian is expressed in terms of quantized harmonic vibrations, and represents
noninteracting phonons

Hph =
∑
qj

ωqj

(
b†qjbqj +

1

2

)
, (48)

where bqj (b†qj) are the annihilation (creation) operators for a phonon with momentum q, branch
index j, and energy ωqj . Phonons are the quanta of the normal mode vibrations. The operator
of atom displacements is expressed as ulsα = eiqR

0
ls1/
√
Nq

∑
qj A

qj
sα

(
bqj + b†−qj

)
, where Nq is

the number of points in the summation over q.
The third term describes the lowest-order coupling between electrons and phonons,

He-ph =
∑
kνν′σ

∑
qj

gqjk+qν′,kν c
†
k+qν′σckνσ

(
bqj + b†−qj

)
. (49)

gqjk+qν′,kν is the electron-phonon matrix element, Eq. (45) and describes the probability ampli-
tude for scattering an electron with momentum k from band ν to a state with momentum k+q

in band ν ′ under the simultaneous absorption (emission) of a phonon with momentum q (−q)
and branch index j.
To simplify the treatment, we will use a compact notation combining momentum and band or
branch index into a single symbol: k=(kν), k′=(k′ν ′), and q=(qj). The EPC matrix elements
are then denoted as

gqk′,k = gqjk′ν′,kν δk′,k+q , (50)

which implicitly takes into account momentum conservation.
This general form of the Fröhlich Hamiltonian is the starting point for a many-body perturbation
theory [26], where H0 = He +Hph denotes the Hamiltonian of the unperturbed quasiparticles,
and He-ph represents the perturbational part.
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The bare Green functions of the unperturbed Hamiltonian H0 = He +Hph are

G0(k, iωn) =
1

iωn − εk
(51)

D0(q, iνm) =
1

iνm − ωq
− 1

iνm + ωq
. (52)

where ωn = (2n+1)π T and νm = 2mπ T , with n, m integer values, denote fermionic and
bosonic Matsubara frequencies, respectively. Electronic energies are measured with respect to
the chemical potential. The Dyson equations

G(k, iωn)
−1 = G0(k, iωn)

−1 −Σ(k, iωn) (53)

D(q, iνm)
−1 = G0(q, iνm)

−1 −Π(q, iνm) (54)

connect bare and renormalized Green functions via the electron and phonon self-energy, Σ and
Π , respectively. In the following we will have a closer look at the leading contributions of EPC
to these electron and phonon self-energies.

4.2 Renormalization of electronic properties

The lowest-order diagram of the electron self-energy represents a virtual exchange of a phonon

Σep(k, iωn) = −T
∑
m

1

Nq

∑
k′,q

gqk′,kG0(k
′, iωn−iνm)(gqk′,k)

∗D0(q, iνm) . (55)

After performing the Matsubara sum over νm one obtains

Σep(k, iωn) =
1

Nq

∑
k′,q

|gqk′,k|
2

(
b(ωq) + f(εk′)

iωn+ωq−εk′
+
b(ωq) + 1−f(εk′)
iωn−ωq−εk′

)
. (56)

Σep depends on temperature T via the Fermi and Bose distribution functions, f(ε) = (eε/T+1)−1

and b(ω) = (eω/T−1)−1, respectively.
To discuss the quasiparticle renormalization, we consider the retarded Green function, which is
obtained by analytic continuation of Eq. (53) to real axis via iωn → ε+ iδ with an infinitesimal
positive δ. It is connected to the analytic continuation of the self-energy via the Dyson equation

G(k, ε) =
(
ε− εk −Σ(k, ε)

)−1
. (57)

It is straightforward to perform the analytic continuation of Σep(k, iωn → ε+iδ) in the form
given in Eq. (56) and to derive the expression for the imaginary part

ImΣep(k, ε)=−
π

Nq

∑
k′,q

|gqk′,k|
2
(
δ(ε−εk′+ωq)

(
b(ωq)+f(εk′)

)
+δ(ε−εk′−ωq)

(
b(ωq)+1−f(εk′)

))
(58)

It determines the quasiparticle linewidth (inverse lifetime) by

Γk = −2ImΣ(k, εk) , (59)
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while the shifted quasiparticle energy is determined by the real part via εk = εk − ReΣ(k, εk).
ReΣep is obtained via the Kramers-Kronig relation ReΣep(k, ε)=1/π

∫
dε′ ImΣep(k, ε

′)/(ε−ε′).
This can be rewritten by introducing two spectral functions

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2δ(ε−εk′±ω) . (60)

They depend on the electronic state k via the EPC vertex. The imaginary part can then be cast
in the form

ImΣep(k, ε) = −π
∞∫

0

dω
(
α2F+

k (ε, ω)
(
b(ω)+f(ω+ε)

)
+α2F−k (ε, ω)

(
b(ω)+f(ω−ε)

))
. (61)

The physical interpretation of this expression is as follows. When a quasiparticle hole is cre-
ated at the state k (ε < εF ), electrons can scatter from states with higher or lower energies,
respectively, accompanied by either emission or absorption of a phonon. The probabilities are
given by α2F−k and α2F+

k , respectively, weighted with the appropriate bosonic and fermionic
distribution functions. A similar description holds when a quasiparticle (electron) is created at
energies above the Fermi level.
Due to the small scale of the phonon energies, emission and absorption spectra are often rather
similar as one can ignore the phonon energy ωq in the δ-function of (60). Then

α2F±k ≈ α2Fk(ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2δ(ε−εk′) . (62)

For this quasielastic approximation the expression for the EPC-induced linewidth simplifies to

Γk = π

∞∫
0

dω
(
α2Fk(εk, ω)

(
2b(ω) + f(ω+εk) + f(ω−εk)

))
. (63)

The spectral function α2Fk contains the essential information related to the electron-phonon
coupling of the specific electronic state k = (kν). A convenient measure for the strength of the
EPC is the dimensionless coupling parameter

λk = 2

∫
dω

α2Fk(εk, ω)

ω
. (64)

It characterizes the strength of the coupling of a specific electronic state to the whole phonon
spectrum, and depends both on the momentum and band character of the electronic state.
An example for a calculation of λk is given in Fig. 2. The topological insulator Bi2Se3 pos-
sesses at its (0001) surface a metallic surface state with a very characteristic dispersion, a so-
called Dirac cone. Its origin lies in the topological nature of the bulk band structure, and has
very unusual properties, in particular a peculiar spin polarization. The study showed that the
EPC coupling constant increases linearly with energy for states in the upper cone, but remains
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Fig. 2: Renormalization of electronic states in the surface a Dirac cone of the topological insu-
lator Bi2Se3. Calculations were done for a slab consisting of 3 quintuple layers (QL) separated
by a large vacuum. (a) Bandstructure of the (0001) surface; shaded area indicated surface-
projected bulk states. (b) Coupling constants of electronic states as function of binding energy.
After [27].

small enough (λ < 0.15), such that the electronic quasiparticles are not much disturbed by the
coupling to phonons [27].
There are two relations which connect this parameter to experimentally accessible quantities.
The first is related to the real part of the self-energy for an electronic band crossing the Fermi
level

λk =
∂ReΣep(k, ε)

∂ε

∣∣∣∣∣
ε=0F ,T=0

. (65)

Thus the coupling constant is given by the slope of ReΣep right at the Fermi energy in the
limit T→ 0. λk is also called the mass-enhancement parameter, because the quasiparticle ve-
locity is changed to v∗k = vk/(1+λk) and can be interpreted as an enhanced effective mass
m∗k = mk(1+λk), where mk denotes the unrenormalized mass. Eq. (65) is often utilized in
ARPES measurements of bands crossing the Fermi level, which attempt to extract the energy
dependence of the real part of the self-energy.
A second route to determine the coupling constant of an electronic state is via the temperature
dependence of the linewidth. In Eq. (63), the T -dependence it contained solely in the Bose and
Fermi distribution functions. For temperatures larger than the maximum phonon frequencies,
it becomes almost linear in T, and its slope is determined by the average coupling parameter
defined above

Γk ≈ 2πλkT . (66)

This relationship has been widely used to extract λk from measurements of Γk(T ), in particular
for surface electronic states.
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4.3 Phonon renormalization

The EPC also renormalizes the phononic quasiparticles. Measurement of the phonon linewidth
provides another way to gain experimental information about the coupling strength. We will
briefly sketch this approach here.
The finite linewidth γq (half-width at half maximum), or inverse lifetime of a phonon mode is
connected to the imaginary part of the phonon self-energy by γq = −2ImΠq(ωq). The leading
contributing to Πq(ω) is given by virtual electron-hole excitations expressed as

Πq(iνm) = T
∑
n

1

Nk

∑
k,k′

|gqk′,k|
2G0(k, iωn)G0(k

′ν ′, iωn+iνm)

=
1

Nk

∑
k′,k

|gqk′,k|
2 f(εk)− f(εk′)
iνm + εk − εk′

. (67)

Analytic continuation results in

γq = 2π
1

Nk

∑
k′,k

|gqk′,k|
2
(
f(εk)−f(εk′)

)
δ
(
ωq + (εk−εk′)

)
. (68)

This expression contains the T -dependence via the Fermi distribution functions f . Because
phonon energies are typically small compared to electronic energies, the energy difference
εk−εk′ is also small, and one can approximate

f(εk)− f(εk′) ≈ f ′(εk) (εk−εk′)→ −f ′(εk)ωq (69)

with f ′ = df/dε. In the limit T → 0, f ′(εk) → −δ(εk), and by neglecting ωq inside the
δ-function, the expression further simplifies to

γq = 2πωq
1

Nk

∑
k′,k

|gqk′,k|
2 δ(εk) δ(εk′) . (70)

This approximate formula for the linewidth, first derived by Allen [28], is widely used in nu-
merical calculations. As will be discussed below, γq in the form of Eq. (70) enters directly the
expression for the coupling strength of a phonon mode relevant for superconductivity. Thus
measurements of the phonon linewidths, for example by inelastic neutron or x-ray scattering
experiments, provide information about the importance of a phonon mode for the pairing. One
has to keep in mind, however, that γq only represents the contribution from EPC, while the
experimental linewidth also contains other contributions like those from anharmonic decay pro-
cesses. Furthermore, approximation (70) does not hold in the limit q → 0 for metals, because
the phonon frequency in Eq. (68) cannot be neglected anymore for intraband contributions,
which involve arbitrarily small energy differences εk−εk′ .
An example of a combined study of EPC by DFPT and neutron-scattering experiments is shown
in Fig. 3 for YNi2B2C [29, 30]. This member of the nickelborocarbide family is a strong cou-
pling superconductor (TC=15.2 K), and exhibits pronounced phonon anomalies related to large
and momentum dependent EPC. Good agreement for both renormalized phonon frequencies
and linewidths as function of momentum indicates a good predictive power of the DFPT calcu-
lation for this compound.
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Fig. 3: Lattice dynamics of YNi2B2C. Left panel: theoretical phonon dispersion and linewidths
(vertical bars) from DFPT. Right panel: time-of-flight neutron scattering results for the disper-
sion (a) and linewidth (c) of a prominent phonon branch compared with predictions from DPFT
in (b) and (d), respectively. After [29, 30].

4.4 Transport

The electron-phonon interaction plays an important role for electronic transport properties. The
general approach is based on Boltzmann transport theory (see, e.g., [25, 31–33]) and is briefly
sketched in the following. To be specific, we discuss the contribution of the EPC to the case of
electrical conductivity. In a semi-classical picture, when one applies an external electric field E,
electrons become accelerated. By collisions with other objects (like defects, phonons or other
electrons) they are scattered, until finally a steady state is reached. It is characterized by a new
distribution Fk which differs from the Fermi distribution fk = f(εk) in equilibrium. Knowledge
of Fk allows to calculate the electronic current density via (for definiteness, we assume a field
along x)

jx = −
2e

V

1

Nk

∑
k

Fk(vk)x (71)

and the diagonal component of the electrical conductivity σxx = jx/Ex
The new occupation Fk is determined using the well known Boltzmann transport equation

− eE ∂Fk
∂kx

=

(
∂Fk
∂t

)
coll

. (72)

The left-hand side describes the change in occupations induced by the electric field, which is
balanced by the rate of change of the occupation due to collisions given on the right-hand side.
Using Fermi golden rule the latter is expressed as(

∂Fk
∂t

)
coll

=
∑
k′

(
Pk′k Fk′ (1−Fk)− Pkk′ Fk (1−Fk′)

)
. (73)
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Here, Pkk′ denotes the probability of scattering an electron from state (k) to (k′). The first term
(∝ Pk′k) describes events, where electrons are scattered into state (k), and the second those,
where electrons are scattered out of that state. Pkk′ must satisfy a detailed balance condition

Pk′k fk′ (1−fk) = Pkk′ fk (1−fk′) (74)

such that the RHS of Eq. (72) vanishes in equilibrium.
When the scattering process is due to the electron-phonon interaction, the probability depends
on the EPC vertex and the availability of phonons

Pkk′ =
2π

N
|gqk′k|

2
(
b(ωq) δ(εk′−εk−ωq) +

(
b(ωq)+1

)
δ(εk′−εk+ωq)

)
(75)

The first term describes a phonon annihilation, the second a phonon creation process.
For small applied fields, it is sufficient to look at the first-order change of the occupation with
the electric field Ex

Fk = fk + f 1
k , f 1

k ∝ Ex (76)

and to resort to the linearized Boltzmann equation, where the left-hand side is approximated by

− eEx
∂Fk
∂kx
→ −eEx

∂fk
∂kx

= −eEx
∂fk
∂εk

∂εk
∂kx

= −eEx
∂fk
∂εk

(vk)x . (77)

The right-hand side simplifies in O(Ex) to∑
k′

(
Pk′k

(
f 1
k′(1−fk)− fk′f 1

k

)
− Pkk′

(
f 1
k (1−fk′)− fkf 1

k′

))
=
∑
k′

(
− f 1

k

(
Pk′k fk′ + Pkk′(1−fk′)

)
+ f 1

k′

(
Pk′k(1−fk) + Pkk′ fk

))
=
∑
k′

Pkk′
(
− f 1

k

1−fk′
1−fk

+ f 1
k′
fk
fk′

)
(78)

In the last step, use of the detailed balance relation (74) was made.
To proceed further, one applies the so-called energy relaxation time approximation. It consists
of neglecting the occupation changes of the in-scattered electrons: f 1

k′ = 0. Then the RHS
consists only of the first term, which using Eq. (75) just gives −f 1

k/τk. Here τk = 1/Γk is the
lifetime or inverse linewidth of the electronic state (k) as derived in Eq. (63). Now the linearized
Boltzmann equations with (76) and (77) can be solved easily

f 1
k = eEx

∂fk
∂εk

(vk)xτk (79)

which finally gives for the conductivity

σxx = −
2e

V Ex

1

Nk

∑
k

Fk(vk)x = −
2e

V Ex

1

Nk

∑
k

f 1
k (vk)x =

2e2

V

1

Nk

∑
k

(
−∂fk
∂εk

)
(vk)x(vk)xτk

(80)
Direct evaluation of this equation from first principles is quite demanding, as it requires the
calculation of Vk and in particular τk for each relevant k. It has been used to assess the mobility
of carriers in doped semiconductors [34, 35].
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For metals, a simplified expression often works very well. Here, the k-dependent lifetime is
replaced by an effective relaxation time τ , which is determined using a variational procedure to
solve the Boltzmann equation [31]. In the case of pure electron-phonon scattering, it takes the
form [36–38]

1

τ
= 2π

∫
dx

x

sinh2 x
α2

trF (ω) (81)

with x = ω/2T . The properties of the electron-phonon scattering are encoded in the transport
spectral function

α2
trF (ω) =

1

Nq

∑
q

δ(ω−ωq)
1

N(0)

1

Nk

∑
kk′

|gqk′k|
2 ηk′k δ(εk) δ(εk′) , (82)

where N(0) = 1/Nk

∑
k δ(εk) is the electronic density of states per spin at the Fermi energy.

α2
trF (ω) is very similar to the isotropic Eliashberg function α2F appearing in the theory of

phonon-mediated superconductivity (see Eq. (87)). The only difference lies in the efficiency
factor

ηk′k = 1− vkvk′

|vk|2
, (83)

which accounts for a dependence on the scattering direction. Then the conductivity becomes

σxx = τ
2e2

V

1

Nk

∑
k

(
−∂fk
∂εk

)
(vk)x(vk)x = τ

2e2N(0)

V

〈
v2
x

〉
(84)

〈
v2
x

〉
denotes the Fermi-surface average of (vk)2

x, and an isotropic average has been taken. Along
these lines, first DFPT calculations for simple metals appeared already in 1998 [39].

4.5 Phonon-mediated pairing

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin
lies in an instability of the Fermi liquid state and leads to a new ground state of correlated
paired electrons (Cooper pairs). The superconducting state has the important property that the
quasiparticle spectrum is gapped. The size of the gap plays the role of an order parameter.
In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [40] have shown that this state
is stabilized, whenever there exists an attractive interaction among two electrons. Such an
attractive interaction is always provided by the electron-phonon coupling, which thus represents
a natural source for pairing in any metal. EPC is known to be the pairing mechanism in most
superconductors, which are commonly termed classical superconductors to distinguish them
from more exotic materials where other types of pairing mechanism are suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. A more complete theory has been soon after worked out applying many-body techniques
(for a review see, e.g., Scalapino [41]) . The resulting Eliashberg theory [42] extends the frame-
work of BCS into the strong coupling regime and allows quantitative predictions.
Central to the theoretical formulation is a set of coupled equations, the so-called Eliashberg
equations. A detailed derivation and justification of the approximations involved is given in the
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review of Allen and Mitrovic [43]. One of its simplest form are the so-called isotropic gap equa-
tions. They are obtained by taking Fermi-surface averages of relevant quantities, i.e., ignoring
the explicit momentum dependence, but keeping their frequency dependence. The justification
comes from the observation that superconducting properties like the gap function are often very
isotropic. In real materials, defects are always present and tend to average anisotropic gaps.
On the imaginary axis the isotropic gap equations read

iωn
(
1−Z(iωn)

)
= −πT

∑
n′

Λ(ωn−ωn′)
ωn′√

ω2
n′+∆(iωn′)2

∆(iωn)Z(iωn) = πT
∑
n′

Λ(ωn−ωn′)
∆(iωn′)√

ω2
n′+∆(iωn′)2

. (85)

Here, ∆(iωn) is the frequency-dependent gap function and Z(iωn) the frequency-dependent
quasiparticle renormalization factor. The pairing interaction is encoded in the kernel

Λ(νm) =

∫
dω

2ωα2F (ω)

(νm)2 + ω2
, (86)

where the electron-phonon coupling properties are described by the isotropic Eliashberg func-
tion

α2F (ω) =
1

Nq

∑
q

δ(ω−ωq)
1

N(0)

1

Nk

∑
kk′

|gqk′k|
2δ(εk) δ(εk′) , (87)

The isotropic Eliashberg function has the structure of a phonon density of states, weighted with
squared EPC matrix elements averaged over states at the Fermi surface.
The set of non-linear equations (85) must be solved self-consistently for a given tempera-
ture T and pairing function α2F . The superconducting state is characterized by a solution with
∆(iωn)6=0. The largest T which still allows such a solution defines the critical temperature Tc.
The interaction kernel Λ(νm) entering both equations is an even function of νm. It takes its
largest value at νm = 0

λ = Λ(0) = 2

∫
dω

α2F (ω)

ω
. (88)

λ is called the (isotropic) coupling constant and is a dimensionless measure of the average
strength of the electron-phonon coupling. Depending on its value, materials are characterized
as strong (λ > 1) or weak coupling (λ < 1) . Due to the factor 1/ω in the integral, low-energy
modes contribute more to the coupling strength than high-energy modes.
An important feature of the Eliashberg gap equations is that they only depend on normal-state
properties, which specify a particular material. These comprise the electronic band structure,
phonons, and the EPC vertex. Therefore, DFPT enables materials-specific predictions of super-
conducting properties from first principles.
One can establish a connection between α2F and the phonon linewidths derived in the limit
T → 0, Eq. (70), namely

α2F (ω) =
1

2πN(0)

1

Nq

∑
q

γq
ωq
δ(ω−ωq) , (89)
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Fig. 4: DFPT results for the superconductor SrPt3P. Left: phonon dispersion and relative
linewidths (vertical red bars); middle: phonon density of states; right: calculated isotropic
α2F . DFPT predicts a soft, but strong-coupling phonon branch, which is the origin of the large
peak in α2F at low energies, and of a large coupling constant of λ ≈ 2. After [46].

which leads to the formula for the isotropic coupling constant

λ =
1

πN(0)

1

Nq

∑
q

γq
ω2
q

. (90)

The dimensionless prefactor γq/ωq in (89) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momenta.
The residual Coulomb interaction among the quasiparticles can, however, not be completely
neglected in the discussion of phonon-mediated superconductivity. It has a repulsive character
and tends to reduce or completely suppress the pairing. It was shown by Morel and Anderson
[44], that the Coulomb repulsion can be taken into account by replacing in the equation for the
gap function the kernel by

Λ(iωn−iωn′)→
(
Λ(iωn−iωn′)− µ∗(ωc)

)
Θ(ωc−|ωn′|) . (91)

A cutoff ωc is introduced which must be chosen to be much larger than phononic energies.
µ∗ is called the effective Coulomb pseudopotential. In praxis, µ∗ is commonly treated as a
phenomenological parameter of the order of ≈ 0.1 for normal metals. A more satisfactory
approach, which actually allows to incorporate the Coulomb effects from first principles, is the
density-functional theory of superconductors [45].
As an example, Fig. 4 shows results for the non-centrosymmetric, strong-coupling superconduc-
tor SrPt3P (TC = 8.4 K). DFPT predicts that the pairing is driven mainly by a low-frequency
mode, which carries more than 80% of the coupling. The existence of the low-frequency mode
was confirmed by high-resolution inelastic X-ray experiments [46].
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5 Extensions: LDA+U and beyond

In the previous Sections, we have demonstrated how the linear response technique is applied
to the calculation of lattice dynamical properties and the evaluation of the electron-phonon
vertex. This technique has been implemented for various band structure techniques. They usu-
ally rely on local approximations to the exchange-correlation functional (either LDA of GGA
variants), which allows a straightforward evaluation of derivatives of the exchange-correlation
potential vxc. Yet, weaknesses of the local approximations are well known. Examples are an
underestimation of band gaps in semiconductors, the failure to catch the long-range part of the
van der Waals interaction, or the inadequate description of the Mott-Hubbard physics in strongly
correlated materials. Various modifications have been proposed to improve these deficiencies.
In many cases, they amount to a replacement of the local exchange-correlation potentials or
functional by a more complex quantity, and thus has direct consequences for the evaluation of
the linear response. In the following, we will use the DFT+U method, which is one of the sim-
plest extension, as an example to discuss the type of complications arising in such schemes. At
the end we will briefly touch more elaborate approaches.
The DFT+U method intends to improve the DFT description of electronic structures in the
presence of pronounced local correlation. Examples are atoms with open d or f shells. The
method has been introduced almost 30 years ago [47, 48] and is nowadays implemented in a
variety of DFT codes. A more recent review can be found in [49].
Starting point is the definition of a correlated subspace, usually constructed from atom-like or-
bitals, Φa(r). The index a = (lmσ) represents a collection of quantum numbers characterizing
the orbital. The DFT+U functional is expressed as

E = Elocal + EU . (92)

Elocal is the DFT energy functional in a local approximation, i.e., with EXC approximated by
the LDA or GGA exchange-correlation energy. EU is a correction of the form

EU =
1

2

∑
abcd

〈ab|vc|cd〉
(
ρacρbd − ρadρbc

)
− Edc[{ρab}] . (93)

EU is a function of the orbital density matrix of the correlated orbitals, which is calculated from
the Kohn-Sham eigenstates ψi as

ρab =
occ∑
i

〈i|b〉〈a|i〉 . (94)

〈ab|vc|cd〉 denotes the matrix elements of the Coulomb potential and thus encodes the local
electron-electron interaction. There exists different variants of the functional form of this
Coulomb kernel, but in all cases, it is expressed in terms of a few parameters only. The most
common ones are U and J , which represent the effective Coulomb and exchange interactions,
respectively.
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The term Edc is the famous double counting term which attempts to correct for the fact that
Elocal already contains part of the local electron-electron interaction. Different expressions for
the double counting term exist, but it is always given by a quadratic polynomial in ρab.
The Kohn-Sham equations are augmented by an additional potential

veff = vext + vscr[n(r)] + v̂U [{ρab}] (95)

given by
v̂U =

∑
ab

vab|a〉〈b| =
∑
ab

vabQ̂ab (96)

with
vab =

δEU
δρba

=
∑
cd

(
〈ac|vc|bd〉 − 〈ad|vc|cb〉

)
ρcd − (vdc)ab . (97)

v̂U is a non-local operator containing the operator Q̂ab = |a〉〈b| of the local correlated subspace.
When solving the self-consistent Kohn-Sham equations, ρab can formally be considered as ad-
ditional degrees of freedom besides the density n(r). In each step, after solving the Kohn-Sham
equation to obtain the KS wave functions, both the density and the orbital density matrix are
updated, and finally a new effective potential is calculated with the help of Eqs. (96) and (97).
What are the consequences for the linear-response calculations? Let us first consider the linear
change of the orbital density matrix under an external adiabatic perturbation. It consists of two
parts

δρab = δρ
(el)
ab + δρ

(b)
ab (98)

with

δρ
(el)
ab =

occ∑
i

({
δ〈i|
}
Q̂ba|i〉+ 〈i|Q̂ba

{
δ|i〉
})

δρ
(b)
ab =

occ∑
i

〈i|δQ̂ba|i〉 . (99)

δρ
(el)
ab results from the variation of the KS wave functions, while δρ(b)

ab derives from a change of
the local basis by the perturbation. The latter comes into play when a perturbation modifies the
correlated subspace. This happens, for example, when an atom is displaced and the correlated
subspace attached to this atom is moved along.
Derivatives of the total energy involve additional contributions fromEU . In first order it reads as

∂E

∂λ
→
∑
ab

δEU
δρab

(
∂ρ

(b)
ab

∂λ

)
. (100)

This form is a consequence of the Hellmann-Feynman theorem, which ensures, that no contri-
bution from the first-order variation of the wave functions enters. Only the explicit dependence
of the correlated subspace on the perturbation plays a role. This is not true anymore for the
second derivative of the energy

∂2E

∂λ1∂λ2

→
∑
abcd

δ2EU
δρabδρcd

(
∂ρ

(b)
ab

∂λ1

)(
∂ρcd
∂λ2

)
+
∑
ab

δEU
δρab

∂

∂λ2

(
∂ρ

(b)
ab

∂λ1

)
. (101)
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Fig. 5: Phonon dispersion of NiO for LDA (left panel) and LDA+U (right panel) using U=5 eV.
Experimental data (red circles) are taken from [51].

Both terms now contain first-order variations of the KS wave functions. They are solutions of
the linear Eq. (27), but with δveff augmented by an additive contribution from the orbital density
matrix

δveff(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′) +

∑
abcd

Iab,cd δρcd Q̂ab +
∑
ab

vab δQ̂ab , (102)

where

Iab,cd =
∂vab
∂ρcd

=
∂2EU

∂ρab∂ρcd
. (103)

Combined with Eq. (99) this closes the DFPT self-consistency cycle. The above expressions
exhibit an increased complexity as compared to the standard DFPT. This is the reason why up
to now, only one implementation has been reported [50].
Finally, the EPC vertex can be corrected by taking into account both the modified wave func-
tions and the augmented change of the effective potential (102).
The effect of the +U correction can be quite dramatic not only for electronic structure, but also
for derived quantities like the lattice dynamics. An example is given in Fig. 5, which compares
the phonon spectrum of NiO obtained with LDA and LDA+U. NiO is a textbook example of
a charge-transfer insulator, where local correlations in the open d shell of Ni are decisive. In
its ground state, it orders antiferromagnetically along the cubic [111] direction of the rock-salt
structure, and possesses a large optical gap of 3.1 eV. While LDA can reproduce the AF state,
it severely underestimates the gap (0.4 eV). The gap is increased by adding the +U correction.
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For a test calculation with U = 5 eV, the gap increases to 2.8 eV. At the same time, the phonon
spectrum hardens significantly (see Fig. 5). Its origin lies in an effectively reduced screening
when the LDA+U correction is applied. This significantly improves agreement with experiment.
Similar trends were also found for MnO [50].
To conclude this Section, we will take a brief look at more advanced corrections to the local
approximation in DFT, and discuss recent attempts to use them in linear response and electron-
phonon interaction. Three classes will be considered:

1. Hybrid functionals: the local approximation to the exchange energy, EX(n), is replaced
by the exact, non-local exchange. This corrects some deficiencies of the local approxi-
mations, and improves the description of wave functions and energies (e.g. gaps in semi-
conductors). The prize to pay is a drastically increased numerical effort in evaluating
both exchange energy and potential, preventing up to now a full DFPT implementation.
Phonons and EPC have been addressed using frozen phonon techniques [52–54], but they
require the use of supercells and give only limited information on the momentum depen-
dence.

2. GW approach: the KS equations describe a fictitious system of non-interacting electrons,
and KS states differ in general from the true quasiparticle wave functions and energies.
The latter are determined from a quasiparticle equation, which replaces vXC in the KS
equation by a self-energy operator Σ̂. The GW method evaluates Σ̂ based on the lowest-
order term of the electron-electron interaction. Σ̂ is expressed in terms of the Green
function “G”) and screened electron-electron interaction (“W”). This approach, too, is
numerically very expensive, but improves the description of quasiparticle properties. It
has been used to improve the EPC vertex in the context of frozen-phonon techniques [53].
Very recently a more elaborate linear-response formulation was developed [55]. It starts
from a LDA/GGA self-consistent DFPT calculation to obtain the first-order change of the
KS wave functions. This is subsequently used to calculate δΣ̂ and to correct the EPC
vertex via

δvGWeff = δvDFTeff − δvXC + δΣ̂ . (104)

This perturbative scheme has the advantage to get the EPC matrix elements for arbitrary
momenta without the need of a supercell.

3. DFT + Dynamical mean-field theory (DMFT): local correlations are cast into a frequency-
dependent self-energy Σ(ω) by solving a many-body impurity problem. The impurity
system is embedded in a crystalline environment, whose electronic structure is described
by DFT. Kotliar and coworkers developed a formulation based on a generating functional,
from which both DFT and DMFT equations are derived in a unified framework [56].
Based on this description, a linear response approach has been formulated and applied to
a lattice dynamical properties [57]. The method is, however, involved and numerically
challenging.
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6 Summary

The purpose of this tutorial was to give an introduction into modern linear-response techniques,
give access to fundamental properties of electrons, phonons, and their interactions from first
principles. In many respects, this approach has matured into a powerful tool, which is applied
routinely to a large variety of material classes. We have also discussed examples of physical
quantities, which are influenced or even determined by EPC in a direct way, thus providing
experimental probes to critically assess theoretical predictions. While for many compounds
DFPT predictions for the EPC strength turn out to be rather reliable, larger deviations are ex-
pected in cases, when standard DFT already fails to properly describe the electronic subsystem.
First promising steps have been taken to incorporate more sophisticated treatments of electron
correlations in order to improve the description of EPC in systems, where strong correlations
play a crucial role.



DFPT and EPC 14.27

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. B136, 864 (1964)

[2] W. Kohn and L.J. Sham, Phys. Rev. A140, 1133 (1965)

[3] R.M. Dreizler and E.K.U. Gross: Density Functional Theory:
An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1990)

[4] R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

[5] R.G. Parr and W. Yang: Density-Functional Theory of Atoms and Molecules
(Oxford University Press, New York, 1989)

[6] D.C. Langreth and M.J. Mehl, Phys. Rev. B 28, 1809 (1983)

[7] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

[8] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

[9] R.P. Feynman, Phys. Rev. 56, 340 (1939)

[10] X. Gonze and J.-P. Vigneron, Phys. Rev. B 39, 13120 (1989)

[11] X. Gonze, Phys. Rev. A 52, 1086 (1995)

[12] X. Gonze, Phys. Rev. A 52, 1096 (1995)

[13] M.S. Hybertsen and S.G. Louie, Phys. Rev. B 35, 5585 (1987)

[14] N.E. Zein, Sov. Phys. Solid State 26, 1825 (1984)

[15] D.K. Blat, N.E. Zein, and V.I. Zinenko, J. Phys. Condens. Matt. 3, 5515 (1991)

[16] N.E. Zein, Phys. Lett. A 161, 526 (1992)

[17] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987)

[18] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991)

[19] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001)

[20] M. Born and J.R. Oppenheimer, Ann. Physik 84, 457 (1927)

[21] G.V. Chester and A. Houghton, Proc. Phys. Soc. 73, 609 (1959)

[22] M. Born and K. Huang: Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954)



14.28 Rolf Heid

[23] A.A. Maradudin, E.W. Montroll, G.H. Weiss, and I.P. Ipatova: Solid State Physics,
Supplement 3 (Academic Press, New York, 1971), p. 1

[24] H. Boettger: Principles of the Theory of Lattice Dynamics
(Physik Verlag, Weinheim, 1983)

[25] G. Grimvall: The Electron–Phonon Interaction in Metals in E. Wohlfarth (ed.):
Selected Topics in Solid State Physics (North-Holland, New York, 1981)

[26] G.D. Mahan: Many-Particle Physics, (Plenum Press, New York, 1990)

[27] R. Heid, I.Yu. Sklyadneva, and E.V. Chulkov, Sci. Rep. 7, 1095 (2017)

[28] P.B. Allen, Phys. Rev. B 6, 2577 (1972)

[29] F. Weber, S. Rosenkranz, L. Pintschovius, J.-P. Castellan, R. Osborn, W. Reichardt,
R. Heid, K.-P. Bohnen, E.A. Goremychkin, A. Kreyssig, K. Hradil, and D. Abernathy,
Phys. Rev. Lett. 109, 057001 (2012)

[30] F. Weber, L. Pintschovius, W. Reichardt, R. Heid, K.-P. Bohnen, A. Kreyssig, D. Reznik,
and K. Hradi, Phys. Rev. B 89, 104503 (2014)

[31] J.M. Ziman: Electrons and phonons: the theory of transport phenomena in solids
(Clarendon, Oxford, 1960)

[32] F. Giustino, Rev. Mod. Phys. 89, 015003 (2017)

[33] T. Sohier, M. Calandra, C.-H. Park, N. Bonini, N. Marzari, and F. Mauri,
Phys. Rev. B 90, 125414 (2014)

[34] W. Li, Phys. Rev. B 92, 075405 (2015)

[35] M. Fiorentini and N. Bonini, Phys. Rev. B 94, 085204 (2016)

[36] P.B. Allen, Phys. Rev. B 3, 305 (1971)

[37] P.B. Allen, Phys. Rev. B 13, 1416 (1976)

[38] P.B. Allen, W.E. Pickett, and H. Krakauer, Phys. Rev. B 37, 7482 (1988)

[39] R. Bauer, A. Schmid, P. Pavone, and D. Strauch, Phys. Rev. B 57, 11276 (1998)

[40] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

[41] D.J. Scalapino: The Electron-Phonon Interaction and Strong-Coupling
in R.D. Parks (ed.): Superconductivity, Vol. 1 (Dekker, New York, 1969)

[42] G.M. Eliashberg, Zh. Eksp. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696 (1960)]



DFPT and EPC 14.29
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